Network Working Group                              D. Papadimitriou, Ed.
Request for Comments: 4328                                       Alcatel
Updates: 3471                                               January 2006
Category: Standards Track


          Generalized Multi-Protocol Label Switching (GMPLS)
  Signaling Extensions for G.709 Optical Transport Networks Control

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document is a companion to the Generalized Multi-Protocol Label
  Switching (GMPLS) signaling documents.  It describes the technology-
  specific information needed to extend GMPLS signaling to control
  Optical Transport Networks (OTN); it also includes the so-called
  pre-OTN developments.

Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions Used in This Document ..........................3
  2. GMPLS Extensions for G.709 - Overview ...........................3
  3. Generalized Label Request .......................................4
     3.1. Common Part ................................................5
          3.1.1. LSP Encoding Type ...................................5
          3.1.2. Switching Type ......................................6
          3.1.3. Generalized-PID (G-PID) .............................6
     3.2. G.709 Traffic Parameters ...................................8
          3.2.1. Signal Type (ST) ....................................8
          3.2.2. Number of Multiplexed Components (NMC) ..............9
          3.2.3. Number of Virtual Components (NVC) .................10
          3.2.4. Multiplier (MT) ....................................10
          3.2.5. Reserved Fields ....................................10
  4. Generalized Label ..............................................10
     4.1. ODUk Label Space ..........................................11
     4.2. Label Distribution Rules ..................................13



Papadimitriou               Standards Track                     [Page 1]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


     4.3. Optical Channel Label Space ...............................14
  5. Examples .......................................................14
  6. RSVP-TE Signaling Protocol Extensions ..........................16
  7. Security Considerations ........................................16
  8. IANA Considerations ............................................16
  9. Acknowledgements ...............................................18
  10. References ....................................................18
     10.1. Normative References .....................................18
     10.2. Informative References ...................................19
  11. Contributors ..................................................19
  Appendix A. Abbreviations .........................................21
  Appendix B. G.709 Indexes .........................................22

1.  Introduction

  Generalized Multi-Protocol Label Switching (GMPLS) [RFC3945] extends
  MPLS from supporting Packet Switching Capable (PSC) interfaces and
  switching to include support of four new classes of interfaces and
  switching: Layer-2 Switching (L2SC), Time-Division Multiplex (TDM),
  Lambda Switch (LSC), and Fiber-Switch (FSC) Capable.  A functional
  description of the extensions to MPLS signaling that are needed to
  support these new classes of interfaces and switching is provided in
  [RFC3471].  [RFC3473] describes the RSVP-TE-specific formats and
  mechanisms needed to support all four classes of interfaces.

  This document presents the technology details that are specific to
  G.709 Optical Transport Networks (OTN) as specified in the ITU-T
  G.709 recommendation [ITUT-G709] (and referenced documents),
  including pre-OTN developments.  Per [RFC3471], G.709 technology-
  specific parameters are carried through the signaling protocol in
  dedicated traffic parameter objects.

  The G.709 traffic parameters defined hereafter (see Section 3.2) MUST
  be used when the label is encoded as defined in this document.
  Moreover, the label MUST be encoded as defined in Section 4 when
  these G.709 traffic parameters are used.

  In the context of this memo, by pre-OTN developments, one refers to
  Optical Channel, Digital Wrapper and Forward Error Correction (FEC)
  solutions that are not fully G.709 compliant.  Details concerning
  pre-OTN Synchronous Optical Network (SONET)/Synchronous Digital
  Hierarchy (SDH) based solutions including Section/Regenerator Section
  overhead (SOH/RSOH) and Line/Multiplex Section overhead (LOH/MSOH)
  transparency are covered in [RFC3946].







Papadimitriou               Standards Track                     [Page 2]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  *** Note on ITU-T G.709 Recommendation ***

  The views on the ITU-T G.709 OTN Recommendation presented in this
  document are intentionally restricted to the GMPLS perspective within
  the IETF CCAMP WG context.  Hence, the objective of this document is
  not to replicate the content of the ITU-T OTN recommendations.
  Therefore, readers interested in more details concerning the
  corresponding technologies are strongly invited to consult the
  corresponding ITU-T documents (also referenced in this memo).

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  In addition, the reader is assumed to be familiar with the
  terminology used in ITU-T [ITUT-G709], as well as [RFC3471] and
  [RFC3473].  Abbreviations used in this document are detailed in
  Appendix 1.

2.  GMPLS Extensions for G.709 - Overview

  [ITUT-G709] defines several networking layers constituting the
  optical transport hierarchy:

  - with full functionality:
    . Optical Transmission Section (OTS)
    . Optical Multiplex Section (OMS)
    . Optical Channel (OCh)
  - with reduced functionality:
    . Optical Physical Section (OPS)
    . Optical Channel with reduced functionality (OChr)

  It also defines two layers constituting the digital transport
  hierarchy:

  - Optical Channel Transport Unit (OTUk)
  - Optical Channel Data Unit (ODUk)

  However, only the OCh and the ODUk layers are defined as switching
  layers.  Both OCh (but not OChr) and ODUk layers include the overhead
  for supervision and management.  The OCh overhead is transported in a
  non-associated manner (also referred to as the non-associated
  overhead naOH) in the Optical Transport Module (OTM) Overhead Signal
  (OOS), together with the OTS and OMS non-associated overhead.  The
  OOS is transported via a dedicated wavelength, referred to as the
  Optical Supervisory Channel (OSC).  It should be noticed that the



Papadimitriou               Standards Track                     [Page 3]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  naOH is only functionally specified and as such, it is open to
  vendor-specific solutions.  The ODUk overhead is transported in an
  associated manner as part of the digital ODUk frame.

  As described in [ITUT-G709], in addition to the support of ODUk
  mapping into OTUk (k = 1, 2, 3), G.709 supports ODUk multiplexing.
  It refers to the multiplexing of ODUj (j = 1, 2) into an ODUk (k > j)
  signal, in particular:

    - ODU1 into ODU2 multiplexing
    - ODU1 into ODU3 multiplexing
    - ODU2 into ODU3 multiplexing
    - ODU1 and ODU2 into ODU3 multiplexing

  Adapting GMPLS to control G.709 OTN can be achieved by creating:

    - a Digital Path layer, by extending the previously defined
      "Digital Wrapper" in [RFC3471] corresponding to the ODUk
      (digital) path layer.
    - an Optical Path layer, by extending the "Lambda" concept (defined
      in [RFC3471]) to the OCh (optical) path layer.
    - a label space structure, by considering a tree whose root is an
      OTUk signal and leaves the ODUj signals (k >= j); enabling the
      identification of the exact position of a particular ODUj signal
      in an ODUk multiplexing structure.

  Thus, the GMPLS signaling extensions for G.709 need to cover the
  Generalized Label Request, the Generalized Label as well as the
  specific technology dependent objects included in the so-called
  traffic parameters as specified in [RFC3946] for SONET/SDH networks.
  Moreover, because multiplexing in the digital domain (such as ODUk
  multiplexing) has been specified in the amended version of the G.709
  ITU-T recommendation (October 2001), this document also proposes a
  label space definition suitable for that purpose.  Notice also that
  one uses the G.709 ODUk (i.e., Digital Path) and OCh (i.e., Optical
  Path) layers directly in order to define the corresponding label
  spaces.

3.  Generalized Label Request

  The Generalized Label Request, as defined in [RFC3471], includes a
  common part (i.e., used for any switching technology) and a
  technology dependent part (i.e., the traffic parameters).  In this
  section, both parts are extended to accommodate GMPLS Signaling to
  the G.709 transport plane recommendation (see [ITUT-G709]).






Papadimitriou               Standards Track                     [Page 4]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


3.1.  Common Part

  As defined in [RFC3471], the LSP Encoding Type, the Switching Type
  and the Generalized Protocol Identifier (Generalized-PID) constitute
  the common part of the Generalized Label Request.  The encoding of
  the RSVP-TE GENERALIZED_LABEL_REQUEST object is specified in
  [RFC3473] Section 2.1.

  As mentioned above, this document extends the LSP Encoding Type, the
  Switching Type, and G-PID (Generalized-PID) values to accommodate
  G.709 Recommendation [ITUT-G709].

3.1.1.  LSP Encoding Type

  Because G.709 Recommendation defines two networking layers (ODUk
  layers and OCh layer), the LSP Encoding Type code-points can reflect
  these two layers defined in [RFC3471] Section 3.1 as "Digital
  Wrapper" and "Lambda" code.  The LSP Encoding Type is specified per
  networking layer or, more precisely, per group of functional
  networking layers: the ODUk layers and the OCh layer.

  Therefore, an additional LSP Encoding Type code-point for the G.709
  Digital Path layer is defined; it enlarges the existing "Digital
  Wrapper" code-point defined in [RFC3471].  The former MUST be
  generated when the interface or tunnel on which the traffic will be
  transmitted supports G.709 compliant Digital Path layer encoding.
  The latter MUST only be used for non-G.709 compliant Digital Wrapper
  layer(s) encoding.  A transit or an egress node (receiving a Path
  message containing a GENERALIZED_LABEL_REQUEST object) MUST generate
  a PathErr message, with a "Routing problem/Unsupported Encoding"
  indication, if the requested LSP Encoding Type cannot be supported on
  the corresponding incoming interface.

  In the same way, an additional LSP Encoding Type code-point for the
  G.709 Optical Channel layer is defined; it enlarges the existing
  "Lambda" code-point defined in [RFC3471].  The former MUST be
  generated when the interface or tunnel on which the traffic will be
  transmitted supports G.709-compliant Optical Channel layer encoding.
  The latter MUST only be used for non-G.709 compliant Lambda layer(s)
  encoding.  A transit or an egress node (receiving a Path message that
  contains a GENERALIZED_LABEL_REQUEST object) MUST generate a PathErr
  message with a "Routing problem/Unsupported Encoding" indication, if
  the requested LSP Encoding Type cannot be supported on the
  corresponding incoming interface.







Papadimitriou               Standards Track                     [Page 5]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  Consequently, the following additional code-points for the LSP
  Encoding Type are defined:

       Value           Type
       -----           ----
       12             G.709 ODUk (Digital Path)
       13             G.709 Optical Channel

  Moreover, the code-point for the G.709 Optical Channel (OCh) layer
  will indicate the requested capability of an end-system to use the
  G.709 non-associated overhead (naOH), i.e., the OTM Overhead Signal
  (OOS) multiplexed into the OTM-n.m interface signal.

3.1.2.  Switching Type

  The Switching Type indicates the type of switching that should be
  performed at the termination of a particular link (see [RFC4202]).

  No additional Switching Type values are to be considered in order to
  accommodate G.709 switching types, because an ODUk switching (and
  thus LSPs) belongs to the TDM class, while an OCh switching (and thus
  LSPs) belong to the Lambda class (i.e., LSC).

  Intermediate and egress nodes MUST verify that the value indicated in
  the Switching Type field is supported on the corresponding incoming
  interface.  If the requested value can not be supported, the node
  MUST generate a PathErr message with a "Routing problem/Switching
  Type" indication.

3.1.3.  Generalized-PID (G-PID)

  The G-PID (16 bits field), as defined in [RFC3471], identifies the
  payload carried by an LSP, i.e., an identifier of the client layer of
  that LSP.  This identifier is used by the endpoints of the G.709 LSP.

  The G-PID can take one of the following values when the client
  payload is transported over the Digital Path layer, in addition to
  the payload identifiers defined in [RFC3471]:

  - CBRa:  asynchronous Constant Bit Rate (i.e., mapping of STM-16/OC-
           48, STM-64/OC-192 and STM-256/OC-768)
  - CBRb:  bit synchronous Constant Bit Rate (i.e., mapping of STM-
           16/OC-48, STM-64/OC-192 and STM-256/OC-768)
  - ATM:   mapping at 2.5, 10 and 40 Gbps
  - BSOT:  non-specific client Bit Stream with Octet Timing (i.e.,
           Mapping of 2.5, 10 and 40 Gbps Bit Stream)
  - BSNT:  non-specific client Bit Stream without Octet Timing (i.e.,
           Mapping of 2.5, 10 and 40 Gbps Bit Stream)



Papadimitriou               Standards Track                     [Page 6]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  - ODUk:  transport of Digital Paths at 2.5, 10 and 40 Gbps
  - ESCON: Enterprise Systems Connection
  - FICON: Fiber Connection

  The G-PID can take one of the following values when the client
  payload is transported over the Optical Channel layer, in addition to
  the payload identifiers defined in [RFC3471]:

  - CBR: Constant Bit Rate (i.e., mapping of STM-16/OC-48, STM-64/OC-
    192 and STM-256/OC-768)
  - OTUk/OTUkV: transport of Digital Section at 2.5, 10 and 40 Gbps

  Also, when client payloads such as Ethernet MAC/PHY and IP/PPP are
  encapsulated through the Generic Framing Procedure (GFP), as
  described in ITU-T G.7041, dedicated G-PID values are defined.

  In order to include pre-OTN developments, the G-PID field can take
  one of the values (currently defined in [RFC3471]) when the following
  client payloads are transported over a so-called lambda LSP:

  - Ethernet PHY (1 Gbps and 10 Gbps)
  - Fiber Channel

  The following table summarizes the G-PID with respect to the LSP
  Encoding Type:

  Value     G-PID Type                       LSP Encoding Type
  -----     ----------                       -----------------
   47       G.709 ODUj                       G.709 ODUk (with k > j)
   48       G.709 OTUk(v)                    G.709 OCh
                                             ODUk mapped into OTUk(v)
   49       CBR/CBRa                         G.709 ODUk, G.709 OCh
   50       CBRb                             G.709 ODUk
   51       BSOT                             G.709 ODUk
   52       BSNT                             G.709 ODUk
   53       IP/PPP (GFP)                     G.709 ODUk (and SDH)
   54       Ethernet MAC (framed GFP)        G.709 ODUk (and SDH)
   55       Ethernet PHY (transparent GFP)   G.709 ODUk (and SDH)
   56       ESCON                            G.709 ODUk, Lambda, Fiber
   57       FICON                            G.709 ODUk, Lambda, Fiber
   58       Fiber Channel                    G.709 ODUk, Lambda, Fiber

  Note: Values 49 and 50 include mapping of SDH.








Papadimitriou               Standards Track                     [Page 7]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  The following table summarizes the update of the G-PID values defined
  in [RFC3471]:

  Value     G-PID Type                 LSP Encoding Type
  -----     ----------                 -----------------
   32       ATM Mapping                SDH, G.709 ODUk
   33       Ethernet PHY               SDH, G.709 OCh, Lambda, Fiber
   34       Sonet/SDH                  G.709 OCh, Lambda, Fiber
   35       Reserved (SONET Dep.)      G.709 OCh, Lambda, Fiber

3.2.  G.709 Traffic Parameters

  When G.709 Digital Path Layer or G.709 Optical Channel Layer is
  specified in the LSP Encoding Type field, the information referred to
  as technology dependent (or simply traffic parameters) is carried
  additionally to the one included in the Generalized Label Request.

  The G.709 traffic parameters are defined as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Signal Type  |   Reserved    |              NMC              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              NVC              |        Multiplier (MT)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Reserved                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In this frame, NMC stands for Number of Multiplexed Components, NVC
  for Number of Virtual Components, and MT for Multiplier.  Each of
  these fields is tailored to support G.709 LSP requests.

  The RSVP-TE encoding of the G.709 traffic-parameters is detailed in
  Section 6.

3.2.1.  Signal Type (ST)

  This field (8 bits) indicates the type of G.709 Elementary Signal
  that comprises the requested LSP.  The permitted values are:

     Value     Type
     -----     ----
       0       Not significant
       1       ODU1 (i.e., 2.5 Gbps)
       2       ODU2 (i.e., 10  Gbps)
       3       ODU3 (i.e., 40  Gbps)
       4       Reserved (for future use)



Papadimitriou               Standards Track                     [Page 8]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


       5       Reserved (for future use)
       6       OCh at 2.5 Gbps
       7       OCh at 10  Gbps
       8       OCh at 40  Gbps
       9-255   Reserved (for future use)

  The value of the Signal Type field depends on LSP Encoding Type value
  defined in Section 3.1.1 and [RFC3471]:

    - if the LSP Encoding Type value is the G.709 Digital Path layer,
      then the valid values are the ODUk signals (k = 1, 2 or 3).
    - if the LSP Encoding Type value is the G.709 Optical Channel
      layer, then the valid values are the OCh at 2.5, 10, or 40 Gbps.
    - if the LSP Encoding Type is "Lambda" (which includes the pre-OTN
      Optical Channel layer) then the valid value is irrelevant (Signal
      Type = 0).
    - if the LSP Encoding Type is "Digital Wrapper", then the valid
      value is irrelevant (Signal Type = 0).

  Several transforms can be sequentially applied on the Elementary
  Signal to build the Final Signal that is actually requested for the
  LSP.  Each transform application is optional and must be ignored if
  zero; this does not include the Multiplier (MT), which cannot be zero
  and must be ignored if equal to one.  Transforms must be applied
  strictly in the following order:

    - First, virtual concatenation (by using the NVC field) can be
      optionally applied directly on the Elementary Signal to form a
      Composed Signal
    - Second, a multiplication (by using the Multiplier field) can be
      optionally applied, either directly on the Elementary Signal, or
      on the virtually concatenated signal obtained from the first
      phase.  The resulting signal is referred to as Final Signal.

3.2.2.  Number of Multiplexed Components (NMC)

  The NMC field (16 bits) indicates the number of ODU tributary slots
  used by an ODUj when multiplexed into an ODUk (k > j) for the
  requested LSP.  This field is not applicable when an ODUk is mapped
  into an OTUk and irrelevant at the Optical Channel layer.  In both
  cases, it MUST be set to zero (NMC = 0) when sent and should be
  ignored when received.

  When applied at the Digital Path layer, in particular for ODU2
  connections multiplexed into one ODU3 payload, the NMC field
  specifies the number of individual tributary slots (NMC = 4) that
  constitute the requested connection.  These components are still
  processed within the context of a single connection entity.  For all



Papadimitriou               Standards Track                     [Page 9]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  other currently defined multiplexing cases (see Section 2), the NMC
  field is set to 1.

3.2.3.  Number of Virtual Components (NVC)

  The NVC field (16 bits) is dedicated to ODUk virtual concatenation
  (i.e., ODUk Inverse Multiplexing) purposes.  It indicates the number
  of ODU1, ODU2, or ODU3 Elementary Signals that are requested to be
  virtually concatenated to form an ODUk-Xv signal.  By definition,
  these signals MUST be of the same type.

  This field is set to 0 (default value) to indicate that no virtual
  concatenation is requested.

  Note that the current usage of this field only applies for G.709 ODUk
  LSPs, i.e., values greater than zero, are only acceptable for ODUk
  Signal Types.  Therefore, it MUST be set to zero (NVC = 0), and
  should be ignored when received, when a G.709 OCh LSP is requested.

3.2.4.  Multiplier (MT)

  The Multiplier field (16 bits) indicates the number of identical
  Elementary Signals or Composed Signals that are requested for the
  LSP, i.e., that form the Final Signal.  A Composed Signal is the
  resulting signal from the application of the NMC and NVC fields to an
  elementary Signal Type.  GMPLS signaling currently implies that all
  the Composed Signals must be part of the same LSP.

  This field is set to one (default value) to indicate that exactly one
  instance of a signal is being requested.  Intermediate and egress
  nodes MUST verify that the node itself and the interfaces on which
  the LSP will be established can support the requested multiplier
  value.  If the requested values cannot be supported, the receiver
  node MUST generate a PathErr message (see Section 6).

  Zero is an invalid value for the MT field.  If received, the node
  MUST generate a PathErr message (see Section 6).

3.2.5.  Reserved Fields

  The reserved fields (8 bits in row 1 and 32 bits in row 3) are
  dedicated for future use.  Reserved bits SHOULD be set to zero when
  sent and MUST be ignored when received.

4.  Generalized Label

  This section describes the Generalized Label value space for Digital
  Paths and Optical Channels.  The Generalized Label is defined in



Papadimitriou               Standards Track                    [Page 10]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  [RFC3471].  The format of the corresponding RSVP-TE GENERALIZED_LABEL
  object is specified in [RFC3473] Section 2.3.

  The label distribution rules detailed in Section 4.2 follow (when
  applicable) the ones defined in [RFC3946].

4.1.  ODUk Label Space

  At the Digital Path layer (i.e., ODUk layers), G.709 defines three
  different client payload bit rates.  An Optical Data Unit (ODU) frame
  has been defined for each of these bit rates.  ODUk refers to the
  frame at bit rate k, where k = 1 (for 2.5 Gbps), 2 (for 10 Gbps), or
  3 (for 40 Gbps).

  In addition to the support of ODUk mapping into OTUk, the G.709
  label space supports the sub-levels of ODUk multiplexing.  ODUk
  multiplexing refers to multiplexing of ODUj (j = 1, 2) into an ODUk
  (k > j), in particular:

     - ODU1 into ODU2 multiplexing
     - ODU1 into ODU3 multiplexing
     - ODU2 into ODU3 multiplexing
     - ODU1 and ODU2 into ODU3 multiplexing

  More precisely, ODUj into ODUk multiplexing (k > j) is defined when
  an ODUj is multiplexed into an ODUk Tributary Unit Group (i.e., an
  ODTUG constituted by ODU tributary slots) that is mapped into an
  OPUk.  The resulting OPUk is mapped into an ODUk, and the ODUk is
  mapped into an OTUk.

  Therefore, the label space structure is a tree whose root is an OTUk
  signal and whose leaves are the ODUj signals (k >= j) that can be
  transported via the tributary slots and switched between these slots.
  A G.709 Digital Path layer label identifies the exact position of a
  particular ODUj signal in an ODUk multiplexing structure.

  The G.709 Digital Path Layer label or ODUk label has the following
  format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Reserved                |     t3    | t2  |t1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Reserved bits MUST be set to zero when sent and SHOULD be ignored
  when received.




Papadimitriou               Standards Track                    [Page 11]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  The specification of the fields t1, t2, and t3 self-consistently
  characterizes the ODUk label space.  The value space for the t1, t2,
  and t3 fields is defined as follows:

  1. t1 (1-bit):
       - t1=1 indicates an ODU1 signal.
       - t1 is not significant for the other ODUk signal types (i.e.,
         t1 value MUST be set to 0 and ignored).

  2. t2 (3-bit):
       - t2=1 indicates an ODU2 signal that is not further sub-
         divided.
       - t2=[2..5] indicates the tributary slot (t2th-2) used by the
         ODU1 in an ODTUG2 mapped into an ODU2 (via OPU2).
       - t2 is not significant for an ODU3 (i.e., t2 value MUST be
         set to 0 and ignored).

  3. t3 (6-bit):
       - t3=1 indicates an ODU3 signal that is not further sub-
         divided.
       - t3=[2..17] indicates the tributary slot (t3th-1) used by the
         ODU1 in an ODTUG3 mapped into an ODU3 (via OPU3).
       - t3=[18..33] indicates the tributary slot (t3th-17) used by
         the ODU2 in an ODTUG3 mapped into an ODU3 (via OPU3).

  Note: in case of ODU2 into ODU3 multiplexing, 4 labels are required
  to identify the 4 tributary slots used by the ODU2; these tributary
  time slots have to be allocated in ascending order.

  If the label sub-field value t[i]=1 (i, j = 1, 2 or 3) and t[j]=0 (j
  > i), the corresponding ODUk signal ODU[i] is directly mapped into
  the corresponding OTUk signal (k=i).  This is referred to as the
  mapping of an ODUk signal into an OTUk of the same order.  Therefore,
  the numbering starts at 1; zero is used to indicate a non-significant
  field.  A label field equal to zero is an invalid value.

  Examples:

  - t3=0, t2=0, t1=1 indicates an ODU1 mapped into an OTU1
  - t3=0, t2=1, t1=0 indicates an ODU2 mapped into an OTU2
  - t3=1, t2=0, t1=0 indicates an ODU3 mapped into an OTU3
  - t3=0, t2=3, t1=0 indicates the ODU1 in the second tributary slot
    of the ODTUG2 mapped into an ODU2 (via OPU2) mapped into an OTU2
  - t3=5, t2=0, t1=0 indicates the ODU1 in the fourth tributary slot
    of the ODTUG3 mapped into an ODU3 (via OPU3) mapped into an OTU3






Papadimitriou               Standards Track                    [Page 12]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


4.2.  Label Distribution Rules

  In case of ODUk in OTUk mapping, only one label can appear in the
  Generalized Label.  The unique label is encoded as a single 32-bit
  label value (as defined in Section 4.1) of the GENERALIZED_LABEL
  object (Class-Num = 16, C-Type = 2).

  In case of ODUj in ODUk (k > j) multiplexing, the explicit ordered
  list of the labels in the multiplex is given (this list can be
  restricted to only one label when NMC = 1).  Each label indicates a
  component (ODUj tributary slot) of the multiplexed signal.  The order
  of the labels must reflect the order of the ODUj into the multiplex
  (not the physical order of tributary slots).  This ordered list of
  labels is encoded as a sequence of 32-bit label values (as defined in
  Section 4.1) of the GENERALIZED_LABEL object (Class-Num = 16, C-Type
  = 2).

  In case of ODUk virtual concatenation, the explicit ordered list of
  all labels in the concatenation is given.  Each label indicates a
  component of the virtually concatenated signal.  The order of the
  labels must reflect the order of the ODUk to concatenate (not the
  physical order of time-slots).  This representation limits virtual
  concatenation to remain within a single (component) link.  In case of
  multiplexed virtually concatenated signals, the first set of labels
  indicates the components (ODUj tributary slots) of the first
  virtually concatenated signal, the second set of labels indicates the
  components (ODUj tributary slots) of the second virtually
  concatenated signal, and so on.  This ordered list of labels is
  encoded as a sequence of 32-bit label values (as defined in Section
  4.1) of the GENERALIZED_LABEL object (Class-Num = 16, C-Type = 2).
  In case of ODUk virtual concatenation, the number of label values is
  determined by the NVC value.  Multiplexed ODUk virtual concatenation
  additionally uses the NMC value to determine the number of labels per
  set (equal in size).

  In case of multiplication (i.e., when using the MT field), the
  explicit ordered list of all labels taking part in the composed
  signal is given.  The above representation limits multiplication to
  remain within a single (component) link.  In case of multiplication
  of multiplexed virtually concatenated signals, the first set of
  labels indicates the components of the first multiplexed virtually
  concatenated signal, the second set of labels indicates components of
  the second multiplexed virtually concatenated signal, and so on.
  This ordered list of labels is encoded as a sequence of 32-bit label
  values (as defined in Section 4.1) of the GENERALIZED_LABEL object
  (Class-Num = 16, C-Type = 2).  In case of multiplication of (equal)
  ODUk virtual concatenated signals, the number of label values per
  signal is determined by the NVC value.  Multiplication of multiplexed



Papadimitriou               Standards Track                    [Page 13]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  (equal) ODUk virtual concatenation additionally uses the NMC value to
  determine the number of labels per set (equal in size).

4.3.  Optical Channel Label Space

  At the Optical Channel layer, the label space must be consistently
  defined as a flat space whose values reflect the local assignment of
  OCh identifiers that correspond to the OTM-n.m sub-interface signals
  (m = 1, 2 or 3).  Note that these identifiers do not cover OChr
  because the corresponding Connection Function (OChr-CF) between OTM-
  nr.m/OTM-0r.m is not defined in [ITUT-G798].

  The OCh label space values are defined by either absolute values
  (i.e., channel identifiers or Channel ID, also referred to as
  wavelength identifiers) or relative values (channel spacing, also
  referred to as inter-wavelength spacing).  The latter is strictly
  confined to a per-port label space, whereas the former could be
  defined as a local or a global (per node) label space.  Such an OCh
  label space is applicable to both OTN Optical Channel layer and pre-
  OTN Optical Channel layer.

  Optical Channel label encoding (and distribution) rules are defined
  in [RFC3471].  They MUST be used for the Upstream Label, the
  Suggested Label, and the Generalized Label.

5.  Examples

  The following examples are given in order to illustrate the
  processing described in the previous sections of this document.

  1. ODUk in OTUk mapping: when one ODU1 (ODU2 or ODU3) signal is
     directly transported in an OTU1 (OTU2 or OTU3), the upstream node
     requests results simply in an ODU1 (ODU2 or ODU3) signal request.

     In such conditions, the downstream node has to return a unique
     label because the ODU1 (ODU2 or ODU3) is directly mapped into the
     corresponding OTU1 (OTU2 or OTU3).  Because a single ODUk signal
     is requested (Signal Type = 1, 2 or 3), the downstream node has to
     return a single ODUk label, which can be, for instance, one of the
     following when the Signal Type = 1:

     - t3=0, t2=0, t1=1 indicating a single ODU1 mapped into an OTU1
     - t3=0, t2=1, t1=0 indicating a single ODU2 mapped into an OTU2
     - t3=1, t2=0, t1=0 indicating a single ODU3 mapped into an OTU3

  2. ODU1 into ODUk multiplexing (k > 1): when one ODU1 is multiplexed
     into the payload of a structured ODU2 (or ODU3), the upstream node
     requests results simply in an ODU1 signal request.



Papadimitriou               Standards Track                    [Page 14]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


     In such conditions, the downstream node has to return a unique
     label because the ODU1 is multiplexed into one ODTUG2 (or ODTUG3).
     The latter is then mapped into the ODU2 (or ODU3) via OPU2 (or
     OPU3) and then mapped into the corresponding OTU2 (or OTU3).
     Because a single ODU1 multiplexed signal is requested (Signal Type
     = 1 and NMC = 1), the downstream node has to return a single ODU1
     label, which can take, for instance, one of the following values:

     - t3=0,t2=4,t1=0 indicates the ODU1 in the third TS of the ODTUG2
     - t3=2,t2=0,t1=0 indicates the ODU1 in the first TS of the ODTUG3
     - t3=7,t2=0,t1=0 indicates the ODU1 in the sixth TS of the ODTUG3

  3. ODU2 into ODU3 multiplexing: when one unstructured ODU2 is
     multiplexed into the payload of a structured ODU3, the upstream
     node requests results simply in an ODU2 signal request.

     In such conditions, the downstream node has to return four labels
     since the ODU2 is multiplexed into one ODTUG3.  The latter is
     mapped into an ODU3 (via OPU3) and then mapped into an OTU3.
     Since an ODU2 multiplexed signal is requested (Signal Type = 2,
     and NMC = 4), the downstream node has to return four ODU labels
     which can take for instance the following values:

     - t3=18, t2=0, t1=0 (first  part of ODU2 in first TS of ODTUG3)
     - t3=22, t2=0, t1=0 (second part of ODU2 in fifth TS of ODTUG3)
     - t3=23, t2=0, t1=0 (third  part of ODU2 in sixth TS of ODTUG3)
     - t3=26, t2=0, t1=0 (fourth part of ODU2 in ninth TS of ODTUG3)

  4. When a single OCh signal of 40 Gbps is requested (Signal Type =
     8), the downstream node must return a single wavelength label as
     specified in [RFC3471].

  5. When requesting multiple ODUk LSP (i.e., with a multiplier (MT)
     value > 1), an explicit list of labels is returned to the
     requestor node.

     When the downstream node receives a request for a 4 x ODU1 signal
     (Signal Type = 1, NMC = 1 and MT = 4) multiplexed into an ODU3, it
     returns an ordered list of four labels to the upstream node: the
     first ODU1 label corresponds to the first signal of the LSP, the
     second ODU1 label corresponds to the second signal of the LSP,
     etc.  For instance, the corresponding labels can take the
     following values:

     - First  ODU1: t3=2,  t2=0, t1=0 (in first TS of ODTUG3)
     - Second ODU1: t3=10, t2=0, t1=0 (in ninth TS of ODTUG3)
     - Third  ODU1: t3=7,  t2=0, t1=0 (in sixth TS of ODTUG3)
     - Fourth ODU1: t3=6,  t2=0, t1=0 (in fifth TS of ODTUG3)



Papadimitriou               Standards Track                    [Page 15]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


6.  RSVP-TE Signaling Protocol Extensions

  This section specifies the [RFC3473] protocol extensions needed to
  accommodate G.709 traffic parameters.

  The G.709 traffic parameters are carried in the G.709 SENDER_TSPEC
  and FLOWSPEC objects.  The same format is used both for SENDER_TSPEC
  object and FLOWSPEC objects.  The content of the objects is defined
  above in Section 3.2. The objects have the following class and type
  for G.709:

  - G.709 SENDER_TSPEC Object: Class = 12, C-Type = 5
  - G.709 FLOWSPEC Object: Class = 9, C-Type = 5

  There is no Adspec associated with the G.709 SENDER_TSPEC.  Either
  the Adspec is omitted or an Int-serv Adspec with the Default General
  Characterization Parameters and Guaranteed Service fragment is used,
  see [RFC2210].

  For a particular sender in a session, the contents of the FLOWSPEC
  object received in a Resv message SHOULD be identical to the contents
  of the SENDER_TSPEC object received in the corresponding Path
  message.  If the objects do not match, a ResvErr message with a
  "Traffic Control Error/Bad Flowspec value" error SHOULD be generated.

  Intermediate and egress nodes MUST verify that the node itself, and
  the interfaces on which the LSP will be established, can support the
  requested Signal Type, NMC, and NVC values (as defined in Section
  3.2).  If the requested value(s) cannot be supported, the receiver
  node MUST generate a PathErr message with a "Traffic Control
  Error/Service unsupported" indication (see [RFC2205]).

  In addition, if the MT field is received with a zero value, the node
  MUST generate a PathErr message with a "Traffic Control Error/Bad
  Tspec value" indication (see [RFC2205]).

7.  Security Considerations

  This document introduces no new security considerations to [RFC3473].

8.  IANA Considerations

  Two values have been defined by IANA for this document:

  Two RSVP C-Types in registry:

            http://www.iana.org/assignments/rsvp-parameters




Papadimitriou               Standards Track                    [Page 16]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


            - A G.709 SENDER_TSPEC object: Class = 12, C-Type = 5 - see
              Section 6.

            - A G.709 FLOWSPEC object: Class = 9, C-Type = 5 - see
              Section 6.

  IANA will also track the code-point spaces extended and/or updated by
  this document.  For this purpose, the following new registry entries
  have been added in the newly requested registry entry:
  http://www.iana.org/assignments/gmpls-sig-parameters

  - LSP Encoding Type:
    Name: LSP Encoding Type
    Format: 8-bit number
    Values:
       [1..11]         defined in [RFC3471]
       12              defined in Section 3.1.1
       13              defined in Section 3.1.1
    Allocation Policy:
       [0..239]        Assigned by IANA via IETF Standards Track RFC
                       Action.
       [240..255]      Assigned temporarily for Experimental Usage.
                       These will not be registered with IANA

  - Switching Type:
    Name: Switching Type
    Format: 8-bit number
    Values: defined in [RFC3471]
    Allocation Policy:
       [0..255]        Assigned by IANA via IETF Standards Track RFC
                       Action.

  - Generalized PID (G-PID):
    Name: G-PID
    Format: 16-bit number
    Values:
       [0..31]         defined in [RFC3471]
       [32..35]        defined in [RFC3471] and updated by Section
                       3.1.3
       [36..46]        defined in [RFC3471]
       [47..58]        defined in Section 3.1.3
    Allocation Policy:
       [0..31743]      Assigned by IANA via IETF Standards Track RFC
                       Action.
       [31744..32767]  Assigned temporarily for Experimental Usage






Papadimitriou               Standards Track                    [Page 17]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


       [32768..65535]  Not assigned.  Before any assignments can be
                       made in this range, there MUST be a Standards
                       Track RFC that specifies IANA Considerations
                       that covers the range being assigned.

  Note: per [RFC3471], Section 3.1.1, standard Ethertype values are
  used as G-PIDs for packet and Ethernet LSPs.

9.  Acknowledgements

  The authors would like to thank Jean-Loup Ferrant, Mathieu Garnot,
  Massimo Canali, Germano Gasparini, and Fong Liaw for their
  constructive comments and inputs as well as James Fu, Siva
  Sankaranarayanan, and Yangguang Xu for their useful feedback.  Many
  thanks to Adrian Farrel for having thoroughly reviewed this document.

  This document incorporates (upon agreement) material and ideas from a
  work in progress, "Common Label and Label Request Specification for
  Automatic Switched Transport Network", by Zhi Lin.

10.  References

10.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2205]    Braden, R., Zhang, L., Berson, S., Herzog, S., and S.
               Jamin, "Resource ReSerVation Protocol (RSVP) -- Version
               1 Functional Specification", RFC 2205, September 1997.

  [RFC2210]    Wroclawski, J., "The Use of RSVP with IETF Integrated
               Services", RFC 2210, September 1997.

  [RFC3471]    Berger, L., "Generalized Multi-Protocol Label Switching
               (GMPLS) Signaling Functional Description", RFC 3471,
               January 2003.

  [RFC3473]    Berger, L., "Generalized Multi-Protocol Label Switching
               (GMPLS) Signaling Resource ReserVation Protocol-Traffic
               Engineering (RSVP-TE) Extensions", RFC 3473, January
               2003.

  [RFC3946]    Mannie, E. and D. Papadimitriou, "Generalized Multi-
               Protocol Label Switching (GMPLS) Extensions for
               Synchronous Optical Network (SONET) and Synchronous
               Digital Hierarchy (SDH) Control", RFC 3946, October
               2004.



Papadimitriou               Standards Track                    [Page 18]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  [RFC4202]    Kompella, K., Ed. and Y. Rekhter, Ed., "Routing
               Extensions in Support of Generalized Multi-Protocol
               Label Switching (GMPLS)", RFC 4202, September 2005.

10.2.  Informative References

  [RFC3945]    Mannie, E., "Generalized Multi-Protocol Label Switching
               (GMPLS) Architecture", RFC 3945, October 2004.

  For information on the availability of the following documents,
  please see http://www.itu.int

  [ITUT-G709]  ITU-T, "Interface for the Optical Transport Network
               (OTN)," G.709 Recommendation (and Amendment 1), February
               2001 (October 2001).

  [ITUT-G798]  ITU-T, "Characteristics of Optical Transport Network
               Hierarchy Equipment Functional Blocks," G.798
               Recommendation, October 2001.

11.  Contributors

  Alberto Bellato (Alcatel)
  Via Trento 30,
  I-20059 Vimercate, Italy
  EMail: [email protected]

  Sudheer Dharanikota (Consult)
  EMail: [email protected]

  Michele Fontana (Alcatel)
  Via Trento 30,
  I-20059 Vimercate, Italy
  EMail: [email protected]

  Nasir Ghani (Sorrento Networks)
  9990 Mesa Rim Road,
  San Diego, CA 92121, USA
  EMail: [email protected]

  Gert Grammel (Alcatel)
  Lorenzstrasse, 10,
  70435 Stuttgart, Germany
  EMail: [email protected]







Papadimitriou               Standards Track                    [Page 19]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


  Dan Guo (Turin Networks)
  1415 N. McDowell Blvd,
  Petaluma, CA 94954, USA
  EMail: [email protected]

  Juergen Heiles (Siemens)
  Hofmannstr. 51,
  D-81379 Munich, Germany
  EMail: [email protected]

  Jim Jones (Alcatel)
  3400 W. Plano Parkway,
  Plano, TX 75075, USA
  EMail: [email protected]

  Zhi-Wei Lin (Lucent)
  101 Crawfords Corner Rd, Rm 3C-512
  Holmdel, New Jersey 07733-3030, USA
  EMail: [email protected]

  Eric Mannie (Consult)
  EMail: [email protected]

  Maarten Vissers (Alcatel)
  Lorenzstrasse, 10,
  70435 Stuttgart, Germany
  EMail: [email protected]

  Yong Xue (WorldCom)
  22001 Loudoun County Parkway,
  Ashburn, VA 20147, USA
  EMail: [email protected]



















Papadimitriou               Standards Track                    [Page 20]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


Appendix A.  Abbreviations

  BSNT         Bit Stream without Octet Timing
  BSOT         Bit Stream with Octet Timing
  CBR          Constant Bit Rate
  ESCON        Enterprise Systems Connection
  FC           Fiber Channel
  FEC          Forward Error Correction
  FICON        Fiber Connection
  FSC          Fiber Switch Capable
  GCC          General Communication Channel
  GFP          Generic Framing Procedure
  LSC          Lambda Switch Capable
  LSP          Label Switched Path
  MS           Multiplex Section
  naOH         non-associated Overhead
  NMC          Number of Multiplexed Components
  NVC          Number of Virtual Components
  OCC          Optical Channel Carrier
  OCG          Optical Carrier Group
  OCh          Optical Channel (with full functionality)
  OChr         Optical Channel (with reduced functionality)
  ODTUG        Optical Date Tributary Unit Group
  ODU          Optical Channel Data Unit
  OH           Overhead
  OMS          Optical Multiplex Section
  OMU          Optical Multiplex Unit
  OOS          OTM Overhead Signal
  OPS          Optical Physical Section
  OPU          Optical Channel Payload Unit
  OSC          Optical Supervisory Channel
  OTH          Optical Transport Hierarchy
  OTM          Optical Transport Module
  OTN          Optical Transport Network
  OTS          Optical Transmission Section
  OTU          Optical Channel Transport Unit
  OTUkV        Functionally Standardized OTUk
  PPP          Point to Point Protocol
  PSC          Packet Switch Capable
  RES          Reserved
  RS           Regenerator Section
  TTI          Trail Trace Identifier
  TDM          Time Division Multiplex








Papadimitriou               Standards Track                    [Page 21]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


Appendix B.  G.709 Indexes

  - Index k: The index "k" is used to represent a supported bit rate
  and the different versions of OPUk, ODUk and OTUk. k=1 represents an
  approximate bit rate of 2.5 Gbit/s, k=2 represents an approximate bit
  rate of 10 Gbit/s, k = 3 an approximate bit rate of 40 Gbit/s and k =
  4 an approximate bit rate of 160 Gbit/s (under definition).  The
  exact bit-rate values are in kbits/s:

   . OPU: k=1: 2 488 320.000, k=2:  9 995 276.962, k=3: 40 150 519.322

   . ODU: k=1: 2 498 775.126, k=2: 10 037 273.924, k=3: 40 319 218.983

   . OTU: k=1: 2 666 057.143, k=2: 10 709 225.316, k=3: 43 018 413.559

  - Index m: The index "m" is used to represent the bit rate or set of
  bit rates supported on the interface.  This is a one or more digit
  "k", where each "k" represents a particular bit rate.  The valid
  values for m are (1, 2, 3, 12, 23, 123).

  - Index n: The index "n" is used to represent the order of the OTM,
  OTS, OMS, OPS, OCG and OMU.  This index represents the maximum number
  of wavelengths that can be supported at the lowest bit rate supported
  on the wavelength.  It is possible that a reduced number of higher
  bit rate wavelengths are supported.  The case n=0 represents a single
  channel without a specific wavelength assigned to the channel.

  - Index r: The index "r", if present, is used to indicate a reduced
  functionality OTM, OCG, OCC and OCh (non-associated overhead is not
  supported).  Note that for n=0 the index r is not required as it
  implies always reduced functionality.

Editor's Address

  Dimitri Papadimitriou (Alcatel)
  Francis Wellesplein 1,
  B-2018 Antwerpen, Belgium

  Phone: +32 3 240-8491
  EMail: [email protected]











Papadimitriou               Standards Track                    [Page 22]

RFC 4328          GMPLS Signaling Extensions for G.709      January 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Papadimitriou               Standards Track                    [Page 23]