Network Working Group                                       G. Fairhurst
Request for Comments: 4326                        University of Aberdeen
Category: Standards Track                              B. Collini-Nocker
                                                 University of Salzburg
                                                          December 2005


          Unidirectional Lightweight Encapsulation (ULE) for
  Transmission of IP Datagrams over an MPEG-2 Transport Stream (TS)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  The MPEG-2 Transport Stream (TS) has been widely accepted not only
  for providing digital TV services, but also as a subnetwork
  technology for building IP networks.

  This document describes a Unidirectional Lightweight Encapsulation
  (ULE) mechanism for the transport of IPv4 and IPv6 Datagrams and
  other network protocol packets directly over the ISO MPEG-2 Transport
  Stream as TS Private Data.  ULE specifies a base encapsulation format
  and supports an extension format that allows it to carry additional
  header information to assist in network/Receiver processing.

















Fairhurst & Collini-Nocker  Standards Track                     [Page 1]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................4
  3. Description of the Method .......................................8
  4. SNDU Format .....................................................9
     4.1. Destination Address Absent (D) Field ......................10
     4.2. Length Field ..............................................10
     4.3. End Indicator .............................................10
     4.4. Type Field ................................................10
          4.4.1. Type 1: Next-Header Type Fields ....................11
          4.4.2. Type 2: EtherType Compatible Type Fields ...........11
     4.5. SNDU Destination Address Field ............................12
     4.6. SNDU Trailer CRC ..........................................12
     4.7. Description of SNDU Formats ...............................13
          4.7.1. End Indicator ......................................14
          4.7.2. IPv4 SNDU Encapsulation ............................14
          4.7.3. IPv6 SNDU Encapsulation ............................15
  5. Extension Headers ..............................................16
     5.1. Test SNDU .................................................18
     5.2. Bridged Frame SNDU Encapsulation ..........................18
     5.3. Extension-Padding Optional Extension Header ...............21
  6. Processing at the Encapsulator .................................22
     6.1. SNDU Encapsulation ........................................22
     6.2. Procedure for Padding and Packing .........................24
  7. Receiver Processing ............................................25
     7.1. Idle State ................................................26
          7.1.1. Idle State Payload Pointer Checking ................26
     7.2. Processing of a Received SNDU .............................26
          7.2.1. Reassembly Payload Pointer Checking ................28
     7.3. Other Error Conditions ....................................28
  8. Summary ........................................................29
  9. Acknowledgements ...............................................29
  10. Security Considerations .......................................29
  11. IANA Considerations ...........................................30
     11.1. IANA Guidelines ..........................................30
  12. References ....................................................31
     12.1. Normative References .....................................31
     12.2. Informative References ...................................32
  Appendix A. SNDU Packing Examples .................................35
  Appendix B. SNDU Encapsulation ....................................40










Fairhurst & Collini-Nocker  Standards Track                     [Page 2]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


1.  Introduction

  This document describes an encapsulation for the transport of IP
  datagrams, or other network-layer packets, over ISO MPEG-2 Transport
  Streams [ISO-MPEG2, RFC4259].  The encapsulation satisfies the
  requirement for a lightweight encapsulation defined in section 4 of
  [RFC4259].  The basic header provides the required set of protocol
  fields.  Extension headers may also be defined.  This header
  structure is significantly simpler to parse and process [SOOR05] than
  current alternative methods (e.g., MPE [ETSI-DAT], which builds upon
  the DSM-CC Table Section syntax [ISO-DSMCC]).

  The encapsulation is suited to services based on MPEG-2; for example,
  the Digital Video Broadcast (DVB) architecture, the Advanced
  Television Systems Committee (ATSC) system [ATSC, ATSC-G], and other
  similar MPEG-2-based transmission systems.  Such systems provide
  unidirectional (simplex) physical and link-layer standards.  Support
  has been defined for a wide range of physical media (e.g.,
  Terrestrial TV [ETSI-DVBT, ATSC-PSIP-TC], Satellite TV [ETSI-DVBS,
  ATSC-S], and Cable Transmission [ETSI-DVBC, ATSC-PSIP-TC]).
  Bi-directional (duplex) links may also be established using these
  standards (e.g., DVB defines a range of return channel technologies,
  including the use of two-way satellite links [ETSI-RCS]) and dial-up
  modem links [RFC3077].

  Protocol Data Units (PDUs), such as Ethernet Frames, IP datagrams, or
  other network-layer packets, used for transmission over an MPEG-2
  Transport Multiplex are passed to an Encapsulator.  This formats each
  PDU into a SubNetwork Data Unit (SNDU) by adding an encapsulation
  header and an integrity check trailer.  The SNDU is fragmented into a
  series of one or more MPEG-2 Transport Stream (TS) Packets that are
  sent over a single TS Logical Channel.

  The MPEG-2 specification [ISO-MPEG2] requires that conformant TS
  Multiplexes provide Program Specific Information (PSI) for each
  stream in the TS Multiplex.  Other MPEG-2-based transmission
  standards may also define Service Information (SI).

  A format_identifier value has been registered for ULE [ULE1].  This
  32 bit number has a hexadecimal value of 0x554C4531.  Transport
  Streams that utilise the Programme Map Table (PMT) defined in ISO
  13818-1 [ISO-MPEG2] and that use the ULE format defined in this
  document, SHOULD insert a descriptor with this value in the PMT
  ES_info descriptor loop.  ULE Streams may also be identified by the
  stream_type value of 0x91 [ATSC-REG] in a SI/PSI Table [ISO_MPEG2].

  This information may allow Receivers and Re-multiplexors [RFC4259] to
  locate a specific ULE Stream (i.e., the PID value of the TS Logical



Fairhurst & Collini-Nocker  Standards Track                     [Page 3]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  Channel that carries a ULE Stream).  The conditions under which this
  information is required and the format in which it is to be provided
  are beyond the scope of this document.  Addressing and mapping issues
  for ULE over MPEG-2 are also described in [IPDVB-AR].

2.  Conventions Used in This Document

  The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
  "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

  Other terms used in this document are defined below:

  Adaptation Field: An optional variable-length extension field of the
  fixed-length TS Packet header, intended to convey clock references
  and timing and synchronization information as well as stuffing over
  an MPEG-2 Multiplex [ISO-MPEG2].

  AFC: Adaptation Field Control [ISO-MPEG2].  A pair of bits carried in
  the TS Packet header that signal the presence of the Adaptation Field
  and/or TS Packet payload.

  ATSC: Advanced Television Systems Committee [ATSC].  A framework and
  a set of associated standards for the transmission of video, audio,
  and data using the ISO MPEG-2 standard.

  b: bit.  For example, one byte consists of 8b.

  B: Byte.  Groups of bytes are represented in Internet byte order.

  DSM-CC: Digital Storage Media Command and Control [ISO-DSMCC].  A
  format for transmission of data and control information in an MPEG-2
  Private Section, defined by the ISO MPEG-2 standard.

  DVB: Digital Video Broadcast.  A framework and set of associated
  standards published by the European Telecommunications Standards
  Institute (ETSI) (e.g., [ETSI-DVBC, ETSI-DVBS, ETSI-DVBT]) for the
  transmission of video, audio, and data using the ISO MPEG-2 Standard
  [ISO-MPEG2].

  Encapsulator: A network device that receives PDUs and formats these
  into Payload Units (known here as SNDUs) for output as a stream of TS
  Packets.

  End Indicator: A value that indicates to the Receiver that there are
  no further SNDUs present within the current TS Packet.




Fairhurst & Collini-Nocker  Standards Track                     [Page 4]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  LLC: Logical Link Control [ISO-8802-2, IEEE-802.2].  A link-layer
  protocol defined by the IEEE 802 standard, which follows the Ethernet
  MAC Header.

  MAC: Medium Access Control [IEEE-802.3].  A link-layer protocol
  defined by the IEEE 802.3 standard (or by Ethernet v2 [DIX]).

  MAC Header: The link-layer header of the IEEE 802.3 standard
  [IEEE-802.3] or Ethernet v2 [DIX].  It consists of a 6B destination
  address, 6B source address, and 2B Type field (see also NPA, LLC).

  MPE: Multiprotocol Encapsulation [ETSI-DAT, ATSC-DAT, ATSC-DATG].  A
  scheme that encapsulates PDUs, forming a DSM-CC Table Section.  Each
  Section is sent in a series of TS Packets using a single TS Logical
  Channel.

  MPEG-2: A set of standards specified by the Motion Picture Experts
  Group (MPEG) and standardized by the International Standards
  Organisation (ISO/IEC 13818-1) [ISO-MPEG2], and ITU-T (in H.222
  [ITU-H222]).

  Next-Header: A Type value indicating an Extension Header.

  NPA: Network Point of Attachment.  In this document, refers to a
  6-byte destination address (resembling an IEEE MAC address) within
  the MPEG-2 transmission network that is used to identify individual
  Receivers or groups of Receivers.

  Packing Threshold: A period of time an Encapsulator is willing to
  defer transmission of a partially filled TS-Packet to accumulate more
  SNDUs, rather than use Padding.  After the Packet Threshold period,
  the Encapsulator uses Padding to send the partially filled TS-Packet.

  Padding: A method that fills the remaining unused bytes in a TS
  Packet payload using the specific pattern of 0xFF.

  Payload Unit, PU.  A sequence of bytes sent using a TS.  Examples of
  Payload Units include: an MPEG-2 Table Section or a ULE SNDU.

  PDU: Protocol Data Unit.  Examples of a PDU include Ethernet frames,
  IPv4 or IPv6 datagrams, and other network packets.

  PES: Packetized Elementary Steam [ISO-MPEG2].  A format of MPEG-2 TS
  packet payload usually used for video or audio information.

  PID: Packet Identifier  [ISO-MPEG2].  A 13-bit field carried in the
  header of TS Packets.  This is used to identify the TS Logical
  Channel to which a TS Packet belongs [ISO-MPEG2].  The TS Packets



Fairhurst & Collini-Nocker  Standards Track                     [Page 5]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  forming the parts of a Table Section, PES, or other Payload Unit must
  all carry the same PID value.  The all-zeros PID 0x0000 as well as
  other PID values are reserved for specific PSI/SI Tables [ISO-MPEG2].
  The all-ones PID value 0x1FFF indicates a Null TS Packet introduced
  to maintain a constant bit rate of a TS Multiplex.  There is no
  required relationship between the PID values used for TS Logical
  Channels transmitted using different TS Multiplexes.

  PP: Payload Pointer [ISO-MPEG2].  An optional one-byte pointer that
  directly follows the 4-byte TS Packet header.  It contains the number
  of bytes that follow the Payload Pointer, up to the start of the
  first Payload Unit (counted from the first byte of the TS Packet
  payload field, and excluding the PP field itself).  The presence of
  the Payload Pointer is indicated by the value of the PUSI bit in the
  TS Packet header.  The Payload Pointer is present in DSM-CC, Table
  Sections, and ULE.  It is not present in TS Logical Channels that use
  the PES-format.

  Private Section: A syntactic structure constructed in accordance with
  Table 2-30 of [ISO-MPEG2].  The structure may be used to identify
  private information (i.e., not defined by [ISO-MPEG2]) relating to
  one or more elementary streams, or a specific MPEG-2 program, or the
  entire Transport Stream.  Other Standards bodies, e.g., ETSI, ATSC,
  have defined sets of table structures using the private_section
  structure.  A Private Section is transmitted as a sequence of TS
  Packets using a TS Logical Channel.  A TS Logical Channel may carry
  sections from more than one set of tables.

  PSI: Program Specific Information [ISO-MPEG2].  Tables used to convey
  information about the service carried in a TS Multiplex.  The
  information is carried in one of four specifically identified Table
  Sections defined by MPEG-2 [ISO-MPEG2].  See also SI Table.

  PU: Payload Unit.

  PUSI: Payload_Unit_Start_Indicator [ISO-MPEG2].  A single-bit flag
  carried in the TS Packet header.  A PUSI value of zero indicates that
  the TS Packet does not carry the start of a new Payload Unit.  A PUSI
  value of one indicates that the TS Packet does carry the start of a
  new Payload Unit.  In ULE, a PUSI bit set to 1 also indicates the
  presence of a one-byte Payload Pointer (PP).

  Receiver: Equipment that processes the signal from a TS Multiplex and
  performs filtering and forwarding of encapsulated PDUs to the
  network-layer service (or bridging module when operating at the link
  layer).





Fairhurst & Collini-Nocker  Standards Track                     [Page 6]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  SI Table: Service Information Table [ISO-MPEG2].  In this document,
  this term describes a table that is defined by another standards body
  to convey information about the services carried in a TS Multiplex.
  A Table may consist of one or more Table Sections; however, all
  sections of a particular SI Table must be carried over a single TS
  Logical Channel [ISO-MPEG2].

  SNDU: SubNetwork Data Unit.  An encapsulated PDU sent as an MPEG-2
  Payload Unit.

  Table Section: A Payload Unit carrying all or part of an SI or PSI
  Table [ISO-MPEG2].

  TS: Transport Stream [ISO-MPEG2], a method of transmission at the
  MPEG-2 level using TS Packets; it represents layer 2 of the ISO/OSI
  reference model.  See also TS Logical Channel and TS Multiplex.

  TS Header: The 4-byte header of a TS Packet [ISO-MPEG2].  Each 188B
  TS Packet incorporates a 4B header with the following fields (those
  referenced within this document are marked with *):

       Field Length            Name/Purpose
        (in bits)

        8b             Synchronisation pattern equal to 0x47
       *1b             Transport Error Indicator
       *1b             Payload Unit Start Indicator (PUSI)
        1b             Transport Priority
       *13b            Packet IDentifier (PID)
        2b             Transport Scrambling Control
       *2b             Adaptation Field Control (AFC)
       *4b             Continuity Counter (CC)

  If the PUSI bit is set to a value of 1, there is one
  additional field following the TS packet header:

       *8b             Payload Pointer (PP)

  TS Logical Channel: Transport Stream Logical Channel.  In this
  document, this term identifies a channel at the MPEG-2 level
  [ISO-MPEG2].  It exists at level 2 of the ISO/OSI reference model.
  All packets sent over a TS Logical Channel carry the same PID value
  (this value is unique within a specific TS Multiplex).  The term
  "Stream" is defined in MPEG-2 [ISO-MPEG2] to describe the content
  carried by a specific TS Logical Channel (see ULE Stream).  Some PID
  values are reserved (by MPEG-2) for specific signalling.  Other
  standards (e.g., ATSC, DVB) also reserve specific PID values.




Fairhurst & Collini-Nocker  Standards Track                     [Page 7]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  TS Multiplex: In this document, this term defines a set of MPEG-2 TS
  Logical Channels sent over a single lower-layer connection.  This may
  be a common physical link (i.e., a transmission at a specified symbol
  rate, FEC setting, and transmission frequency) or an encapsulation
  provided by another protocol layer (e.g., Ethernet, or RTP over IP).
  The same TS Logical Channel may be repeated over more than one TS
  Multiplex (possibly associated with a different PID value) [RFC4259];
  for example, to redistribute the same multicast content to two
  terrestrial TV transmission cells.

  TS Packet: A fixed-length 188B unit of data sent over a TS Multiplex
  [ISO-MPEG2].  Each TS Packet carries a 4B header, plus optional
  overhead including an Adaptation Field, encryption details, and time
  stamp information to synchronise a set of related TS Logical
  Channels.

  ULE Stream: An MPEG-2 TS Logical Channel that carries only ULE
  encapsulated PDUs.  ULE Streams may be identified by definition of a
  stream_type in SI/PSI [ISO-MPEG2].

3.  Description of the Method

  PDUs (IP packets, Ethernet frames or packets from other network
  protocols) are encapsulated to form a Subnetwork Data Unit (SNDU).
  The SNDU is transmitted over an MPEG-2 transmission network either by
  being placed in the payload of a single TS Packet, or, if required,
  by being fragmented into a series of TS Packets.  Where there is
  sufficient space, the method permits a single TS Packet to carry more
  than one SNDU (or part thereof), a practice sometimes known as
  Packing.  All TS Packets comprising an SNDU MUST be assigned the same
  PID, and therefore form a part of the same TS Logical Channel.

  The ULE encapsulation is limited to TS private streams only.  The
  header of each TS Packet carries a one-bit Payload Unit Start
  Indicator (PUSI) field.  A PUSI field with a value of 1 indicates the
  start of at least one Payload Unit (SNDU) within the TS Packet
  payload.  The semantics of the PUSI bit are defined for PES and PSI
  packets [ISO-MPEG2]; for private data, its use is not defined in the
  MPEG-2 Standard.  Although ULE uses private data, the operation
  follows that of PSI packets.  Hence, the following PUSI values are
  defined:

       0: The TS Packet does NOT contain the start of an SNDU, but
       contains the continuation, or end, of an SNDU;

       1: The TS Packet contains the start of an SNDU, and a one byte
       Payload Pointer follows the last byte of the TS Packet header.




Fairhurst & Collini-Nocker  Standards Track                     [Page 8]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  If a Payload Unit (SNDU) finishes before the end of a TS Packet
  payload, but it is not intended to start another Payload Unit, a
  stuffing procedure (known as Padding) fills the remainder of the TS
  Packet payload with bytes with a value 0xFF [ISO-MPEG2].

  A Receiver processing MPEG-2 Table Sections that receives a value of
  0xFF in the first byte of a Table Section (table_Id) interprets this
  as Padding/Stuffing and silently discards the remainder of the TS
  Packet payload.  The payload of the next TS Packet for the same TS
  Logical Channel will begin with a Payload Pointer of value 0x00,
  indicating that the next Payload Unit immediately follows the TS
  Packet header.  The ULE protocol resembles this, but differs in the
  exact procedure (see the following sections).

  The TS Packet Header also carries a two-bit Adaptation Field Control
  (AFC) value.  This adaptation field may extend the TS Packet Header
  to carry timing and synchronisation information and may also be used
  to include stuffing bytes before a TS Packet payload.  Adaptation
  Field stuffing is NOT used in this encapsulation method, and TS
  Packets from a ULE Encapsulator MUST be sent with an AFC value of
  '01'.  For TS Logical Channels supporting ULE, Receivers MUST discard
  TS Packets that carry other AFC values.

4.  SNDU Format

  PDUs are encapsulated using ULE to form an SNDU.  (Each SNDU is an
  MPEG-2 Payload Unit.) The encapsulation format to be used for PDUs is
  illustrated below:

  < ----------------------------- SNDU ----------------------------- >
  +-+-------------------------------------------------------+--------+
  |D| Length | Type | Dest Address* |           PDU         | CRC-32 |
  +-+-------------------------------------------------------+--------+

      Figure 1: SNDU Encapsulation (* optional Destination Address)

  All multi-byte values in ULE (including the Length/End Indicator
  (4.2,4.3), Type (4.4), Destination Address (4.5), and Extension
  Headers (5)) are transmitted in network byte order (most significant
  byte first).  The most significant bit of each byte is placed in the
  left-most position of the 8-bit field.  Appendix A provides
  informative examples of usage.









Fairhurst & Collini-Nocker  Standards Track                     [Page 9]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


4.1.  Destination Address Absent (D) Field

  The most significant bit of the Length field carries the value of the
  Destination Address Absent Field, the D-bit.  A value of 0 indicates
  the presence of the Destination Address Field (see section 4.5).  A
  value of 1 indicates that a Destination Address Field is not present.

  An End Indicator (4.3) MUST be sent with a D-bit value of 1.  Other
  SNDUs MAY be sent with a D-bit value of 0 or 1.  The default method
  SHOULD use a D-bit value of 0 (see section 4.5).

4.2.  Length Field

  A 15-bit value that indicates the length, in bytes, of the SNDU
  counted from the byte following the Type field of the SNDU base
  header (figure 9) up to and including the CRC.  This Length includes
  the size of any extension headers that may be present (section 5).
  Note the special case described in section 4.3.

4.3.  End Indicator

  When the first two bytes following an SNDU have the value 0xFFFF,
  this denotes an End Indicator (i.e., all ones length combined with a
  D-bit value of 1).  This indicates to the Receiver that there are no
  further SNDUs present within the current TS Packet (see section 6),
  and that no Destination Address Field is present.  The value 0xFF has
  specific semantics in MPEG-2 framing, where it is used to indicate
  the presence of Padding.  This use resembles [ISO-DSMCC].

4.4.  Type Field

  The 16-bit Type field indicates the type of payload carried in an
  SNDU, or the presence of a Next-Header.  The set of values that may
  be assigned to this field is divided into two parts, similar to the
  allocations for Ethernet.

  EtherTypes were originally specified by Xerox under the Ethernet v2
  Specification  [DIX].  After specification of IEEE 802.3 [IEEE-802.3,
  ISO-8802-2], the set of EtherTypes less than 1536 (0x0600) assumed
  the role of a length indicator.  Ethernet receivers use this feature
  to discriminate LLC format frames.  Hence, any IEEE EtherType < 1536
  indicates an LLC frame, and the actual value indicates the length of
  the LLC frame.

  There is a potential ambiguous case when a Receiver receives a PDU
  with two Length fields:  The Receiver would need to validate the
  actual length and the Length field and ensure that inconsistent
  values are not propagated by the network.  Specification of two



Fairhurst & Collini-Nocker  Standards Track                    [Page 10]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  independent Length fields is therefore undesirable.  In the ULE
  header, this is avoided in the SNDU header by including only one
  length value, but bridging of LLC frames re-introduces this
  consideration (section 5.2).

  The Ethernet LLC mode of identification is not required in ULE, since
  the SNDU format always carries an explicit Length field, and
  therefore the procedure in ULE is modified, as below:

  The first set of ULE Type field values comprise the set of values
  less than 1536 in decimal.  These Type field values are IANA assigned
  (see section 4.4.1) and indicate the Next-Header.

  The second set of ULE Type field values comprise the set of values
  greater than or equal to 1536 in decimal.  In ULE, this value is
  identical to the corresponding type codes specified by the IEEE/DIX
  type assignments for Ethernet and recorded in the IANA EtherType
  registry.

4.4.1.  Type 1: Next-Header Type Fields

  The first part of the Type space corresponds to the values 0 to 1535
  decimal.  These values may be used to identify link-specific
  protocols and/or to indicate the presence of Extension Headers that
  carry additional optional protocol fields (e.g., a bridging
  encapsulation).  Use of these values is co-ordinated by an IANA
  registry.  The following types are defined in this document:

          0x0000: Test SNDU (see section 5.1)
          0x0001: Bridged Frame (see section 5.2)
          0x0100: Extension-Padding (see section 5.3)


  The remaining values within the first part of the Type space are
  reserved for Next-Header values allocated by the IANA.

4.4.2.  Type 2: EtherType Compatible Type Fields

  The second part of the Type space corresponds to the values between
  0x600 (1536 decimal) and 0xFFFF.  This set of type assignments
  follows DIX/IEEE assignments (but excludes use of this field as a
  frame length indicator).  All assignments in this space MUST use the
  values defined for IANA EtherType.  The following two Type values are
  used as examples (taken from the IANA EtherTypes registry):

          0x0800: IPv4 Payload (see section 4.7.2)
          0x86DD: IPv6 Payload (see section 4.7.3)




Fairhurst & Collini-Nocker  Standards Track                    [Page 11]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


4.5.  SNDU Destination Address Field

  The SNDU Destination Address Field is optional (see section 4.1).
  This field MUST be carried (i.e., D=0) for IP unicast packets
  destined to routers that are sent using shared links (i.e., where the
  same link connects multiple Receivers).  A sender MAY omit this field
  (D=1) for an IP unicast packet and/or multicast packets delivered to
  Receivers that are able to utilise a discriminator field (e.g., the
  IPv4/IPv6 destination address, or a bridged MAC destination address),
  which, in combination with the PID value, could be interpreted as a
  Link-Level address.

  When the SNDU header indicates the presence of an SNDU Destination
  Address field (i.e., D=0), a Network Point of Attachment (NPA) field
  directly follows the fourth byte of the SNDU header.  NPA destination
  addresses are 6 Byte numbers, normally expressed in hexadecimal, used
  to identify the Receiver(s) in a MPEG-2 transmission network that
  should process a received SNDU.  The value 0x00:00:00:00:00:00 MUST
  NOT be used as a destination address in an SNDU.  The least
  significant bit of the first byte of the address is set to 1 for
  multicast frames, and the remaining bytes specify the link-layer
  multicast address.  The specific value 0xFF:FF:FF:FF:FF:FF is the
  link broadcast address, indicating that this SNDU is to be delivered
  to all Receivers.

  IPv4 packets carrying an IPv4 subnetwork broadcast address need to be
  delivered to all systems with the same network prefix.  When a SNDU
  Destination Address is present (D=0), the value MUST be set to the
  NPA link broadcast address (0xFF:FF:FF:FF:FF:FF).

  When the PDU is an IP multicast packet and an SNDU Destination
  Address is present (D=0), the IP group destination address of the
  multicast packet MUST be mapped to the multicast SNDU Destination
  Address (following the method used to generate a destination MAC
  address in Ethernet).  The method for mapping IPv4 multicast
  addresses is specified in [RFC1112].  The method for mapping IPv6
  multicast addresses is specified in [RFC2464].

4.6.  SNDU Trailer CRC

  Each SNDU MUST carry a 32-bit CRC field in the last four bytes of the
  SNDU.  This position eases CRC computation by hardware.  The CRC-32
  polynomial is to be used.  Examples where this polynomial is also
  employed include Ethernet, DSM-CC section syntax [ISO-DSMCC], and
  AAL5 [ITU-3563].  This is a 32-bit value calculated according to the
  generator polynomial represented 0x104C11DB7 in hexadecimal:

  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0.



Fairhurst & Collini-Nocker  Standards Track                    [Page 12]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  The Encapsulator initialises the CRC-32 accumulator register to the
  value 0xFFFF FFFF.  It then accumulates a transmit value for the
  CRC32 that includes all bytes from the start of the SNDU header to
  the end of the SNDU (excluding the 32-bit trailer holding the
  CRC-32), and places this in the CRC Field.  In ULE, the bytes are
  processed in order of increasing position within the SNDU; the order
  of processing bits is NOT reversed.  This use resembles, but is
  different from that in SCTP [RFC3309].

  The Receiver performs an integrity check by independently calculating
  the same CRC value and comparing this with the transmitted value in
  the SNDU trailer.  SNDUs that do not have a valid CRC are discarded,
  causing the Receiver to enter the Idle State.

  This description may be suited for hardware implementation, but this
  document does not imply any specific implementation.  Software-based
  table-lookup or hardware-assisted software-based implementations are
  also possible.  Appendix B provides an example of an Encapsulated PDU
  that includes the computed CRC-32 value.

  The primary purpose of this CRC is to protect the SNDU (header and
  payload) from undetected reassembly errors and errors introduced by
  unexpected software/hardware operation while the SNDU is in transit
  across the MPEG-2 subnetwork and during processing at the
  Encapsulator and/or the Receiver.  It may also detect the presence of
  uncorrected errors from the physical link (however, these may also be
  detected by other means, e.g., section 7.3).

4.7.  Description of SNDU Formats

  The format of an SNDU is determined by the combination of the
  Destination Address Absent bit (D) and the SNDU Type field.  The
  simplest encapsulation places a PDU directly into an SNDU payload.
  Some Type 1 encapsulations may require additional header fields.
  These are inserted in the SNDU following the NPA destination address
  and directly preceding the PDU.

  The following SNDU Formats are defined here:

  End Indicator: The Receiver should enter the Idle State (4.7.1).
  IPv4 SNDU: The payload is a complete IPv4 datagram (4.7.2).
  IPv6 SNDU: The payload is a complete IPv6 datagram (4.7.3).
  Test SNDU: The payload will be discarded by the Receiver (5.1).
  Bridged SNDU: The payload carries a bridged MAC frame (5.2).

  Other formats may be defined through relevant assignments in the IEEE
  and IANA registries.




Fairhurst & Collini-Nocker  Standards Track                    [Page 13]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


4.7.1.  End Indicator

  The format of the End Indicator is shown in figure 2.  This format
  MUST carry a D-bit value of 1.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|            0x7FFF           |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                                                               |
     =   A sequence of zero or more bytes with a value 0xFF filling  =
     |           the remainder of the TS Packet Payload              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 2: Format for a ULE End Indicator

4.7.2.  IPv4 SNDU Encapsulation

  IPv4 datagrams are directly transported using one of the two standard
  SNDU structures, in which the PDU is placed directly in the SNDU
  payload.  The two encapsulations are shown in Figures 3 and 4.  (Note
  that in this, and the following figures, the IP datagram payload is
  of variable size and is directly followed by the CRC-32).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|        Length  (15b)        |         Type = 0x0800         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Receiver Destination NPA Address  (6B)             |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                                                               |
     =                           IPv4 datagram                       =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 3: SNDU Format for an IPv4 Datagram using L2 filtering (D=0)









Fairhurst & Collini-Nocker  Standards Track                    [Page 14]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|        Length  (15b)        |         Type = 0x0800         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     =                           IPv4 datagram                       =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 4: SNDU Format for an IPv4 Datagram using L3 filtering (D=1)

4.7.3.  IPv6 SNDU Encapsulation

  IPv6 datagrams are directly transported using one of the two standard
  SNDU structures, in which the PDU is placed directly in the SNDU
  payload.  The two encapsulations are shown in Figures 5 and 6.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|        Length  (15b)        |         Type = 0x86DD         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Receiver Destination NPA Address  (6B)             |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                                                               |
     =                           IPv6 datagram                       =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 5: SNDU Format for an IPv6 Datagram using L2 filtering (D=0)














Fairhurst & Collini-Nocker  Standards Track                    [Page 15]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|        Length  (15b)        |         Type = 0x86DD         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     =                           IPv6 datagram                       =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 6: SNDU Format for an IPv6 Datagram using L3 filtering (D=1)

5.  Extension Headers

  This section describes an extension format for the ULE encapsulation.
  In ULE, a Type field value less than 1536 decimal indicates an
  Extension Header.  These values are assigned from a separate IANA
  registry defined for ULE.

  The use of a single Type/Next-Header field simplifies processing and
  eliminates the need to maintain multiple IANA registries.  The cost
  is that each Extension Header requires at least 2 bytes.  This is
  justified, on the basis of simplified processing and maintaining a
  simple lightweight header for the common case when no extensions are
  present.

  A ULE Extension Header is identified by a 16-bit value in the Type
  field.  This field is organised as a 5-bit zero prefix, a 3-bit H-LEN
  field, and an 8-bit H-Type field, as follows:

          0                   1
          0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |0 0 0 0 0|H-LEN|    H-Type     |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 7: Structure of ULE Next-Header Field

  The H-LEN Assignment is described below:

  0    Indicates a Mandatory Extension Header
  1    Indicates an Optional Extension Header of length 2B (Type only)
  2    Indicates an Optional Extension Header of length 4B (Type + 2B)
  3    Indicates an Optional Extension Header of length 6B (Type + 4B)
  4    Indicates an Optional Extension Header of length 8B (Type + 6B)
  5    Indicates an Optional Extension Header of length 10B (Type + 8B)



Fairhurst & Collini-Nocker  Standards Track                    [Page 16]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  >=6  The combined H-LEN and H-TYPE values indicate the EtherType
       of a PDU that directly follows this Type field.

  The H-LEN value indicates the total number of bytes in an Optional
  Extension Header (including the 2B Type field).

  An H-LEN value of zero indicates a Mandatory Extension Header.  Each
  Mandatory Extension Header has a pre-defined length that is not
  communicated in the H-LEN field.  No additional limit is placed on
  the maximum length of a Mandatory Extension Header.  A Mandatory
  Extension Header MAY modify the format or encoding of the enclosed
  PDU (e.g., to perform encryption and/or compression).

  The H-Type is a one-byte field that is either one of 256 Mandatory
  Header Extensions or one of 256 Optional Header Extensions.  The set
  of currently permitted values for both types of Extension Headers are
  defined by an IANA Registry (section 15).  Registry values for
  Optional Extensions are specified in the form H=1 (i.e., a decimal
  number in the range 256-511), but may be used with an H-Length value
  in the range 1-5 (see example in section 5.3).

  Two examples of Extension Headers are the Test SNDU and the use of
  Extension-Padding.  The Test SNDU Mandatory Extension Header results
  in the entire PDU's being discarded.  The Extension-Padding Optional
  Extension Header results in the following (if any) option header
  being ignored (i.e., a total of H-LEN 16-bit words).

  The general format for an SNDU with Extension Headers is:

  < --------------------------   SNDU   ------------------------- >
  +---+--------------------------------------------------+--------+
  |D=0| Length | T1 | NPA Address | H1 | T2 |    PDU     | CRC-32 |
  +---+--------------------------------------------------+--------+
  < ULE base header >             <  ext 1  >

  Figure 8: SNDU Encapsulation with one Extension Header (for D=0)

  Where:
  D  is the ULE D_bit (in this example D=0; however, NPA addresses may
     also be omitted when using Extension Headers).
  T1 is the base header Type field.  In this case, specifying a
     Next-Header value.
  H1 is a set of fields defined for header type T1.  There may be 0
     or more bytes of information for a specific ULE Extension Header.
  T2 is the Type field of the next header, or an EtherType > 1535 B
     indicating the type of the PDU being carried.





Fairhurst & Collini-Nocker  Standards Track                    [Page 17]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  < --------------------------   SNDU   ------------------------- >
  +---+---------------------------------------------------+--------+
  |D=1| Length | T1 | H1 | T2 | H2 | T3 |       PDU       | CRC-32 |
  +---+---------------------------------------------------+--------+
  < ULE base header >< ext 1  >< ext 2  >

  Figure 9: SNDU Encapsulation with two Extension Headers (D=1)

  Using this method, several Extension Headers MAY be chained in
  series.  Figure 12 shows an SNDU including two Extension Headers.  In
  the example, the values of T1 and T2 are both less than 1536 decimal.
  Each indicates the presence of an Extension Header, rather than a
  directly following PDU.  T3 has a value > 1535 indicating the
  EtherType of the PDU being carried.  Although an SNDU may contain an
  arbitrary number of consecutive Extension Headers, it is not expected
  that SNDUs will generally carry a large number of extensions.

5.1.  Test SNDU

  A Test SNDU (Figure 10) is a Mandatory Extension Header of Type 1.
  This header must be the final (or only) extension header specified in
  the header chain of an SNDU.  The structure of the Data portion of
  this SNDU is not defined by this document.  Receivers MAY record
  reception in a log file, but MUST then discard any Test SNDUs.  The
  D-bit MAY be set in a TEST SNDU.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |D|        Length  (15b)        |         Type = 0x0000         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     =               Data (not forwarded by a Receiver)              =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 10: SNDU Format for a Test SNDU

5.2.  Bridged Frame SNDU Encapsulation

  A bridged SNDU is a Mandatory Extension Header of Type 1.  It MUST be
  the final (or only) extension header specified in the header chain of
  an SNDU.  The payload includes MAC address and EtherType [DIX] or LLC
  Length [ISO-8802-2] fields together with the contents of a bridged
  MAC frame.  The SNDU has the format shown in Figures 11 and 12.




Fairhurst & Collini-Nocker  Standards Track                    [Page 18]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  When an NPA address is specified (D=0), Receivers MUST discard all
  SNDUs that carry an NPA destination address that does NOT match their
  own NPA address (or a broadcast/multicast address); the payload of
  the remaining SNDUs are processed by the bridging rules that follow.
  An SNDU without an NPA address (D=1) results in a Receiver performing
  bridging processing on the payload of all received SNDUs.

  An Encapsulator MAY also use this encapsulation format to directly
  communicate network protocol packets that require the LLC
  encapsulation [IEEE-802.2, ISO-8802-2].  To do this, it constructs an
  SNDU with a Bridge Extension Header containing the intended
  destination MAC address, the MAC source address of the Encapsulator,
  and the LLC-Length.  The PDU comprises an LLC header followed by the
  required payload.  The Encapsulator MAY choose to suppress the NPA
  address (see 4.5).

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0|        Length  (15b)        |         Type = 0x0001         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Receiver Destination NPA Address  (6B)             |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                MAC Destination Address  (6B)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    MAC Source Address  (6B)                   |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |   EtherType/LLC-Length (2B)   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     =                 (Contents of bridged MAC frame)               =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 11: SNDU Format for a Bridged Payload (D=0)












Fairhurst & Collini-Nocker  Standards Track                    [Page 19]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1|        Length  (15b)        |         Type = 0x0001         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   MAC Destination Address  (6B)               |
     +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                     MAC Source Address  (6B)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   EtherType/LLC-Length (2B)   |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
     |                                                               |
     =                 (Contents of bridged MAC frame)               =
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             (CRC-32)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 12: SNDU Format for a Bridged Payload (D=1)

  The EtherType/LLC-Length field of a frame is defined according to
  IEEE 802.3 [IEEE-802.2] (see section 5).

  In this special case, the Mandatory Extension Header format may be
  interpreted as either an EtherType [DIX] or an LLC Length field,
  specified by IEEE 802 [IEEE-802.3] rather than as a value assigned in
  the ULE Next-Header Registry maintained by the IANA.

  The MAC addresses in the frame being bridged SHOULD be assigned
  according to the rules specified by the IEEE and denote unknown,
  unicast, broadcast, and multicast link addresses.  These MAC
  addresses denote the intended recipient in the destination LAN, and
  therefore have a different function from the NPA addresses carried in
  the SNDU header.

  A frame Type < 1536 for a bridged frame introduces a LLC Length
  field.  The Receiver MUST check this length and discard any frame
  with a length greater than permitted by the SNDU payload size.

  In normal operation, it is expected that any padding appended to the
  Ethernet frame SHOULD be removed prior to forwarding.  This requires
  the sender to be aware of such Ethernet padding (e.g., [DIX,
  IEEE-802.3]).

  Ethernet frames received at the Encapsulator for onward transmission
  over ULE carry a Local Area Network Frame Check sequence (LAN FCS)



Fairhurst & Collini-Nocker  Standards Track                    [Page 20]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  field (e.g., CRC-32 for Ethernet [DIX, IEEE-802.3]).  The
  Encapsulator MUST check the LAN-FCS value of all frames received,
  prior to further processing.  Frames received with an invalid LAN FCS
  MUST be discarded.  After checking, the LAN FCS is then removed
  (i.e., it is NOT forwarded in the bridged SNDU).  As in other ULE
  frames, the Encapsulator appends a CRC-32 to the transmitted SNDU.
  At the Receiver, an appropriate LAN-FCS field will be appended to the
  bridged frame prior to onward transmission on the Ethernet interface.

  This design is readily implemented using existing network interface
  cards and does not introduce an efficiency cost by
  calculating/verifying two integrity check fields for bridged frames.
  However, it also introduces the possibility that a frame corrupted
  within the processing performed at an Encapsulator and/or Receiver
  may not be detected by the final recipient(s) (i.e., such corruption
  would not normally result in an invalid LAN FCS).

5.3.  Extension-Padding Optional Extension Header

  The Extension-Padding Optional Extension Header is specified by an
  IANA-assigned H-Type value of 0x100.  As in other Optional
  Extensions, the total length of the extension is indicated by the
  H-LEN field (specified in 16-bit words).  The extension field is
  formed of a group of one to five 16-bit fields.

  For this specific option, only the last 16-bit word has an assigned
  value; the sender SHOULD set the remaining values to 0x0000.  The
  last 16-bit field forms the Next-Header Type field.  A Receiver MUST
  interpret the Type field, but MUST ignore any other fields of this
  Extension Header.





















Fairhurst & Collini-Nocker  Standards Track                    [Page 21]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


6.  Processing at the Encapsulator

  The Encapsulator forms the PDUs queued for transmission into SNDUs by
  adding a header and trailer to each PDU (section 4).  It then
  segments the SNDU into a series of TS Packet payloads (Figure 13).
  These are transmitted using a single TS Logical Channel over a TS
  Multiplex.  The TS Multiplex may be processed by a number of MPEG-2
  (re)multiplexors before it is finally delivered to a Receiver
  [RFC4259].

               +------+--------------------------------+------+
               | ULE  |        Protocol Data Unit      | ULE  |
               |Header|                                |CRC-32|
               +------+--------------------------------+------+
              /         /                             \       \
             /         /                               \       \
            /         /                                 \       \
  +--------+---------+   +--------+---------+   +--------+---------+
  |MPEG-2TS| MPEG-2  |...|MPEG-2TS| MPEG-2  |...|MPEG-2TS| MPEG-2  |
  | Header | Payload |   | Header | Payload |   | Header | Payload |
  +--------+---------+   +--------+---------+   +--------+---------+

  Figure 13: Encapsulation of an SNDU into a series of TS Packets

6.1.  SNDU Encapsulation

  When an Encapsulator has not previously sent a TS Packet for a
  specific TS Logical Channel, or after an Idle period, it starts to
  send an SNDU in the first available TS Packet.  This first TS Packet
  generated MUST carry a PUSI value of 1.  It MUST also carry a Payload
  Pointer value of zero, indicating that the SNDU starts immediately
  after the Payload Pointer in the TS Packet payload.

  The Encapsulation MUST ensure that all TS Packets set the MPEG-2
  Continuity Counter carried in the TS Packet header, according to
  [ISO-MPEG2].  This value MUST be incremented by one (modulo 16) for
  each successive TS Packet containing a fragment/complete SNDU sent
  using the same TS Logical Channel.

  An Encapsulator MAY decide not to send another SNDU immediately, even
  if space is available in a partially filled TS Packet.  This
  procedure is known as Padding (Figure 14).  The End Indicator informs
  the Receiver that there are no more SNDUs in this TS Packet payload.
  The End Indicator is followed by zero or more unused bytes until the
  end of the TS Packet payload.  All unused bytes MUST be set to the
  value of 0xFF, following current practice in MPEG-2 [ISO-DSMCC].  The
  Padding procedure trades decreased efficiency against improved
  latency.



Fairhurst & Collini-Nocker  Standards Track                    [Page 22]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


                +-/------------+
                |  SubNetwork  |
                |     DU 1     |
                +-/------------+
                       \        \
                        \        \
                         \        \
                +--------+--------+--------+----------+
                |MPEG-2TS| End of | 0xFFFF |  Unused  |
                | Header | SNDU 1 |        |  Bytes   |
                +--------+--------+--------+----------+
                  PUSI=0            ULE
                                    End
                                    Indicator

  Figure 14: A TS Packet carrying the end of SNDU 1, followed by an
             End Indicator

  Alternatively, when more packets are waiting at an Encapsulator, and
  a TS Packet has sufficient space remaining in the payload, the
  Encapsulator can follow a previously encapsulated SNDU with another
  SNDU using the next available byte of the TS Packet payload (see
  6.2).  This is called Packing (Figure 15).

             +-/----------------+       +----------------/-+
             |   Subnetwork     |       |   Subnetwork     |
             |      DU 2        |       |      DU 3        |
             +-/----------------+       +----------------/-+
                        \        \     /          /\
                         \        \   /          /  \
                          \        \ /          /    \. . .
         +--------+--------+--------+----------+
         |MPEG-2TS| Payload| end of | start of |
         | Header | Pointer| SNDU 2 | SNDU 3   |
         +--------+--------+--------+----------+
           PUSI=1     |              ^
                      |              |
                      +--------------+

  Figure 15: A TS Packet with the end of SNDU 2, followed by SNDU 3











Fairhurst & Collini-Nocker  Standards Track                    [Page 23]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


6.2.  Procedure for Padding and Packing

  Five possible actions may occur when an Encapsulator has completed
  encapsulation of an SNDU:

  (i) If the TS Packet has no remaining space, the Encapsulator
  transmits this TS Packet.  It starts transmission of the next SNDU in
  a new TS Packet.  (The standard rules [ISO-MPEG2] require that the
  header of this new TS Packet carry a PUSI value of 1 followed by a
  Payload Pointer value of 0x00.)

  (ii) If the TS Packet carrying the final part of an SNDU has one byte
  of unused payload, the Encapsulator MUST place the value 0xFF in this
  final byte and transmit the TS Packet.  This rule provides a simple
  mechanism to resolve the complex behaviour that may arise when the TS
  Packet has no PUSI set.  To send another SNDU in the current TS
  Packet would otherwise require the addition of a Payload Pointer that
  would consume the last remaining byte of TS Packet payload.  The
  behaviour follows similar practice for other MPEG-2 payload types
  [ISO-DSMCC].  The Encapsulator MUST start transmission of the next
  SNDU in a new TS Packet.  (The standard rules require the header of
  this new TS Packet to carry a PUSI value of 1 followed by a Payload
  Pointer value of 0x00.)

  (iii) If the TS Packet carrying the final part of an SNDU has exactly
  two bytes of unused payload, and the PUSI was NOT already set, the
  Encapsulator MUST place the value 0xFFFF in these final two bytes,
  providing an End Indicator (section 4.3), and transmit the TS Packet.
  This rule prevents fragmentation of the SNDU Length field over two TS
  Packets.  The Encapsulator MUST start transmission of the next SNDU
  in a new TS Packet.  (The standard rules require the header of this
  new TS Packet to carry a PUSI value of 1 followed by a Payload
  Pointer value of 0x00.)

  (iv) If the TS Packet has more than two bytes of unused payload, the
  Encapsulator MAY transmit this partially full TS Packet but MUST
  first place the value 0xFF in all remaining unused bytes (i.e.,
  setting an End Indicator followed by Padding).  The Encapsulator MUST
  then start transmission of the next SNDU in a new TS Packet.  (The
  standard rules [ISO-MPEG2] require that the header of this new TS
  Packet carry a PUSI value of 1 and a Payload Pointer value of 0x00.)

  (v) If at least two bytes are available for SNDU data in the TS
  Packet payload (i.e., three bytes if the PUSI was NOT previously set,
  and two bytes if it was previously set), the Encapsulator MAY
  encapsulate further queued PDUs, by starting the next SNDU in the
  next available byte of the current TS Packet payload.  When the
  Encapsulator packs further SNDUs into a TS Packet where the PUSI has



Fairhurst & Collini-Nocker  Standards Track                    [Page 24]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  NOT already been set, the PUSI MUST be updated (set to 1), and an
  8-bit Payload Pointer MUST be inserted in the first byte directly
  following the TS Packet header.  (This reduces the size of the TS
  Packet payload field that is available for data by one byte.)  The
  value of the Payload Pointer MUST be set to the position of the byte
  following the end of the first SNDU in the TS Packet payload.  If no
  further PDUs are available, an Encapsulator MAY wait for additional
  PDUs to fill the incomplete TS Packet.  The maximum period of time an
  Encapsulator can wait, known as the Packing Threshold, MUST be
  bounded and SHOULD be configurable in the Encapsulator.  If
  sufficient additional PDUs are NOT received to complete the TS Packet
  within the Packing Threshold, the Encapsulator MUST insert an End
  Indicator (using rule iv).

  Use of the Packing method (v) by an Encapsulator is optional and may
  be determined on a per-session, per-packet, or per-SNDU basis.

  When an SNDU is less than the size of a TS Packet payload, a TS
  Packet may be formed that carries a PUSI value of one and also an End
  Indicator (using rule iv).

7.  Receiver Processing

  A Receiver tunes to a specific TS Multiplex carrying a ULE Stream and
  sets a receive filter to accept all TS Packets with a specific PID.
  These TS Packets are associated with a specific TS Logical Channel
  and are reassembled to form a stream of SNDUs.  A single Receiver may
  be able to receive multiple TS Logical Channels, possibly using a
  range of TS Multiplexes.  In each case, reassembly MUST be performed
  independently for each TS Logical Channel.  To perform this
  reassembly, the Receiver may use a buffer to hold the partially
  assembled SNDU, referred to here as the Current SNDU buffer.  Other
  implementations may choose to use other data structures, but MUST
  provide equivalent operations.

  Receipt of a TS Packet with a PUSI value of 1 indicates that the TS
  Packet contains the start of a new SNDU.  It also indicates the
  presence of the Payload Pointer (indicating the number of bytes to
  the start of the first SNDU in the TS-Packet currently being
  reassembled).  It is illegal to receive a Payload Pointer value
  greater than 181, and this MUST cause the SNDU reassembly to be
  aborted and the Receiver to enter the Idle State.  This event SHOULD
  be recorded as a payload pointer error.

  A Receiver MUST support the use of both the Packing and Padding
  method for any received SNDU and MUST support reception of SNDUs with
  or without a Destination Address Field (i.e., D=0 and D=1).




Fairhurst & Collini-Nocker  Standards Track                    [Page 25]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


7.1.  Idle State

  After initialisation or errors, or on receipt of an End Indicator,
  the Receiver enters the Idle State.  In this state, the Receiver
  discards all TS Packets until it discovers the start of a new SNDU,
  upon which it then enters the Reassembly State.  Figure 16 outlines
  these state transitions:

                               +-------+
                               | START |
                               +---+---+
                                   |
                                  \/
                              +----------+
                             \|   Idle   |/
                     +-------/|   State  |\-------+
        Insufficient |        +----+-----+        |
        unused space |             | PUSI set     | MPEG-2 TS Error
        or           |            \/              | or
        End Indicator|        +----------+        | SNDU Error
                     |        |Reassembly|        |
                     +--------|  State   |--------+
                              +----------+

  Figure 16: Receiver state transitions

7.1.1.  Idle State Payload Pointer Checking

  A Receiver in the Idle State MUST check the PUSI value in the header
  of all received TS Packets.  A PUSI value of 1 indicates the presence
  of a Payload Pointer.  Following a loss of synchronisation, values
  between 0 and 181 are permitted, in which case the Receiver MUST
  discard the number of bytes indicated by the Payload Pointer (counted
  from the first byte of the TS Packet payload field, and excluding the
  PP field itself), before leaving the Idle State.  It then enters the
  Reassembly State, and starts reassembly of a new SNDU at this point.

7.2. Processing of a Received SNDU

  When in the Reassembly State, the Receiver reads a 2-byte SNDU Length
  field from the TS Packet payload.  If the value is less than or equal
  to 4, or equal to 0xFFFF, the Receiver discards the Current SNDU and
  the remaining TS Packet payload and returns to the Idle State.
  Receipt of an invalid Length field is an error event and SHOULD be
  recorded as an SNDU length error.






Fairhurst & Collini-Nocker  Standards Track                    [Page 26]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  If the Length of the Current SNDU is greater than 4, the Receiver
  accepts bytes from the TS Packet payload to the Current SNDU buffer
  until either Length bytes in total are received, or the end of the TS
  Packet is reached (see also 7.2.1).  When the Current SNDU length
  equals the value of the Length field, the Receiver MUST calculate and
  verify the CRC value (see 4.6).  SNDUs that contain an invalid CRC
  value MUST be discarded.  Mismatch of the CRC is an error event and
  SHOULD be recorded as a CRC error.  The underlying physical-layer
  processing (e.g., forward error correction coding) often results in
  patterns of errors, rather than single bit errors, so the Receiver
  needs to be robust to arbitrary patterns of corruption to the TS
  Packet and payload, including potential corruption of the PUSI, PP,
  and SNDU Length fields.  Therefore, a Receiver SHOULD discard the
  remaining TS Packet payload (if any) following a CRC mismatch and
  return to the Idle State.

  When the Destination Address is present (D=0), the Receiver accepts
  SNDUs that match one of a set of addresses specified by the Receiver
  (this includes the NPA address of the Receiver, the NPA broadcast
  address, and any required multicast NPA addresses).  The Receiver
  MUST silently discard an SNDU with an unmatched address.

  After receiving a valid SNDU, the Receiver MUST check the Type field
  (and process any Type 1 Extension Headers).  The SNDU payload is then
  passed to the next protocol layer specified.  An SNDU with an unknown
  Type value < 1536 MUST be discarded.  This error event SHOULD be
  recorded as an SNDU type error.

  The Receiver then starts reassembly of the next SNDU.  This MAY
  directly follow the previously reassembled SNDU within the TS Packet
  payload.

  (i) If the Current SNDU finishes at the end of a TS Packet payload,
  the Receiver MUST enter the Idle State.

  (ii) If only one byte remains unprocessed in the TS Packet payload
  after completion of the Current SNDU, the Receiver MUST discard this
  final byte of TS Packet payload.  It then enters the Idle State.  It
  MUST NOT record an error when the value of the remaining byte is
  identical to 0xFF.

  (iii) If two or more bytes of TS Packet payload data remain after
  completion of the Current SNDU, the Receiver accepts the next 2 bytes
  and examines whether this is an End Indicator.  When an End Indicator
  is received, a Receiver MUST silently discard the remainder of the TS
  Packet payload and transition to the Idle State.  Otherwise, this is
  the start of the next Packed SNDU, and the Receiver continues by
  processing this SNDU.  (This is provided that the TS Packet has a



Fairhurst & Collini-Nocker  Standards Track                    [Page 27]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  PUSI value of 1, see 7.2.1; otherwise, the Receiver has detected a
  delimiting error and MUST discard all remaining bytes in the TS
  Packet payload and transitions to the Idle State.)

7.2.1.  Reassembly Payload Pointer Checking

  A Receiver that has partially received an SNDU (in the Current SNDU
  buffer) MUST check the PUSI value in the header of all subsequent TS
  Packets with the same PID (i.e., same TS Logical Channel).  If it
  receives a TS Packet with a PUSI value of 1, it MUST then verify the
  Payload Pointer.  If the Payload Pointer does NOT equal the number of
  bytes remaining to complete the Current SNDU (i.e., the difference
  between the SNDU Length field and the number of reassembled bytes),
  the Receiver has detected a delimiting error.

  Following a delimiting error, the Receiver MUST discard the partially
  assembled SNDU (in the Current SNDU buffer) and SHOULD record a
  reassembly error.  It MUST then re-enter the Idle State.

7.3.  Other Error Conditions

  The Receiver SHOULD check the MPEG-2 Transport Error Indicator
  carried in the TS Packet header [ISO-MPEG2].  This flag indicates a
  transmission error for a TS Logical Channel.  If the flag is set to a
  value of one, a transmission error event SHOULD be recorded.  Any
  partially received SNDU MUST be discarded.  The Receiver then enters
  the Idle State.

  The Receiver MUST check the MPEG-2 Continuity Counter carried in the
  TS Packet header [ISO-MPEG2].  If two (or more) successive TS Packets
  within the same TS Logical Channel carry the same Continuity Counter
  value, the duplicate TS Packets MUST be silently discarded.  If the
  received value is NOT identical to that in the previous TS Packet,
  and it does NOT increment by one for successive TS Packets (modulo
  16), the Receiver has detected a continuity error.  Any partially
  received SNDU MUST be discarded.  A continuity counter error event
  SHOULD be recorded.  The Receiver then enters the Idle State.

  Note that an MPEG2-2 Transmission network is permitted to carry
  duplicate TS Packets [ISO-MPEG2], which are normally detected by the
  MPEG-2 Continuity Counter.  A Receiver that does not perform the
  above Continuity Counter check would accept duplicate copies of TS
  Packets to the reassembly procedure.  In most cases, the SNDU CRC-32
  integrity check will result in discard of these SNDUs, leading to
  unexpected PDU loss; however, in some cases, duplicate PDUs (fitting
  into one TS Packet) could pass undetected to the next layer protocol.





Fairhurst & Collini-Nocker  Standards Track                    [Page 28]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


8.  Summary

  This document defines a Unidirectional Lightweight Encapsulation
  (ULE) that performs efficient and flexible support for IPv4 and IPv6
  network services over networks built upon the MPEG-2 Transport Stream
  (TS).  The encapsulation is also suited to transport of other
  protocol packets and bridged Ethernet frames.

  ULE also provides an Extension Header format and defines an
  associated IANA registry for efficient and flexible support of both
  mandatory and optional SNDU headers.  This allows for future
  extension of the protocol, while providing backwards compatibility
  with existing implementations.  In particular, Optional Extension
  Headers may safely be ignored by Receivers that do not implement
  them, or choose not to process them.

9.  Acknowledgements

  This document is based on a previous document authored by: Horst D.
  Clausen, Bernhard Collini-Nocker, Hilmar Linder, and Gorry Fairhurst.
  The authors wish to thank the members of the ip-dvb mailing list for
  their input; in particular, the many comments received from Art
  Allison, Carstsen Borman, Patrick Cipiere, Wolgang Fritsche, Hilmar
  Linder, Alain Ritoux, and William Stanislaus.  Alain also provided
  the original examples of usage.

10.  Security Considerations

  The security considerations for ULE resemble those that arise when
  the existing Multi-Protocol Encapsulation (MPE) is used.  ULE does
  not add specific new threats that will impact the security of the
  general Internet.

  There is a known security issue with un-initialised stuffing bytes.
  In ULE, these bytes are set to 0xFF (normal practice in MPEG-2).

  There are known integrity issues with the removal of the LAN FCS in a
  bridged networking environment.  The removal for bridged frames
  exposes the traffic to potentially undetected corruption while being
  processed by the Encapsulator and/or Receiver.

  There is a potential security issue when a Receiver receives a PDU
  with two Length fields:  The Receiver would need to validate the
  actual length and the Length field and ensure that inconsistent
  values are not propagated by the network.  In direct encapsulation of
  IPv4/IPv6 in ULE, this is avoided by including only one SNDU Length





Fairhurst & Collini-Nocker  Standards Track                    [Page 29]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  Field.  However, this issue still arises in bridged LLC frames, and
  frames with a LLC Length greater than the SNDU payload size MUST be
  discarded, and an SNDU payload length error SHOULD be recorded.

  In the future, a ULE Mandatory Extension Header may be used to define
  a method to perform link encryption of the SNDU payload.  This is as
  an additional security mechanism to IP-, transport-, or application-
  layer security, not a replacement [RFC4259].  The approach is generic
  and decouples the encapsulation from future security extensions.  The
  operation provides functions that resemble those currently used with
  the MPE encapsulation.

  Additional security control fields may be provided as part of this
  link encryption Extension Header, e.g., to associate an SNDU with one
  of a set of Security Association (SA) parameters.  As a part of the
  encryption process, it may also be desirable to authenticate some or
  all of the SNDU headers.  The method of encryption and the way in
  which keys are exchanged is beyond the scope of this specification,
  as are the definition of the SA format and that of the related
  encryption keys.

11.  IANA Considerations

  The IANA has created the ULE Next-Header Type field registry as
  defined in this document.

  ULE Next-Header registry

     This registry allocates Next-Header values within the range 0-511
     (decimal).  For each allocated value, it also specifies the set of
     allowed H-LEN values (see section 5).  In combination, these
     define a set of allowed values in the range 0-1535 for the first
     part of the ULE Type space (see section 4.4.1).

11.1.  IANA Guidelines

  The following contains the IANA guidelines for management of the ULE
  Next-Header registry.  This registry allocates values 0-511 decimal
  (0x0000-0x01FF, hexadecimal).  It MUST NOT allocate values greater
  than 0x01FF (decimal).

  It subdivides the Next-Header registry in the following way:

  1) 0-255 (decimal) IANA-assigned values, indicating Mandatory
     Extension Headers (or link-dependent Type fields) for ULE,
     requiring expert review leading to prior issue of an IETF RFC.
     This specification MUST define the value and the name associated
     with the Extension Header, together with the procedure for



Fairhurst & Collini-Nocker  Standards Track                    [Page 30]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


     processing the Extension Header.  It MUST also define the need for
     the Mandatory Extension and the intended use.  The size of the
     Extension Header MUST be specified.

     Assignments have been made in this document, and registered by
     IANA:

     Type      Name                             Reference

     0:       Test-SNDU                        Section 5.1
     1:       Bridged-SNDU                     Section 5.2

  2) 256-511 (decimal) IANA-assigned values, indicating Optional
     Extension Headers for ULE, requiring expert review leading to
     prior issue of an IETF RFC.  This specification MUST define the
     value and the name associated with the Extension Header, together
     with the procedure for processing the Extension Header.  The entry
     MUST specify the range of allowable H-LEN values that are
     permitted (in the range 1-5).  It MUST also define the need for
     the Optional Extension and the intended use.

     Assignments have been made in this document, and registered by
     IANA:

     Type      Name                    H-LEN   Reference

     256:      Extension-Padding       1-5     Section 5.3

12. References

12.1.  Normative References

  [ISO-MPEG2]    IS 13818-1, "Information technology -- Generic coding
                 of moving pictures and associated audio information --
                 Part 1: Systems", International Standards Organisation
                 (ISO), 2000.

  [RFC2119]      Bradner, S., "Key Words for Use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, 1997.

  [RFC1112]      Deering, S., "Host extensions for IP multicasting",
                 STD 5, RFC 1112, August 1989.

  [RFC2464]      Crawford, M., "Transmission of IPv6 Packets over
                 Ethernet Networks", RFC 2464, December 1998.






Fairhurst & Collini-Nocker  Standards Track                    [Page 31]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  [ULE1]         Registration for format_identifier ULE1, SMPTE
                 Registration Authority, LLC,
                 http://www.smpte-ra.org/ule1.html.

12.2.  Informative References

  [IPDVB-AR]     Fairhurst, G. and M-J. Montpetit, "Address Resolution
                 for IP datagrams over MPEG-2 Networks", Work in
                 Progress, September 2005.

  [ATSC]         A/53, "ATSC Digital Television Standard", Advanced
                 Television Systems Committee (ATSC), Doc. A/53 Rev.C,
                 2004

  [ATSC-DAT]     A/90, "ATSC Data Broadcast Standard", Advanced
                 Television Systems Committee (ATSC), Doc. A/090, 2000.

  [ATSC-DATG]    A/91, "Recommended Practice: Implementation Guidelines
                 for the ATSC Data Broadcast Standard", Advanced
                 Television Systems Committee (ATSC), Doc. A/91, 2001.

  [ATSC-G]       A/54, "Guide to the use of the ATSC Digital Television
                 Standard", Advanced Television Systems Committee
                 (ATSC), Doc. A/54, 1995.

  [ATSC-PSIP-TC] A/65B, "Program and System Information Protocol for
                 Terrestrial Broadcast and Cable", Advanced Television
                 Systems Committee (ATSC), Doc. A/65B, 2003.

  [ATSC-REG]     ATSC "Code Point Registry"
                 www.atsc.org/standards/Code_Point_Registry.pdf.

  [ATSC-S]       A/80, "Modulation and Coding Requirements for Digital
                 TV (DTV) Applications over Satellite", Advanced
                 Television Systems Committee (ATSC), Doc. A/80, 1999.

  [DIX]          Digital Equipment Corp, Intel Corp, Xerox Corp,
                 "Ethernet Local Area Network Specification" Version
                 2.0, November 1982.

  [ETSI-DAT]     EN 301 192, "Specifications for Data Broadcasting",
                 European Telecommunications Standards Institute
                 (ETSI), 2004.

  [ETSI-DVBC]    EN 300 800, "Digital Video Broadcasting (DVB); DVB
                 interaction channel for Cable TV distribution systems
                 (CATV)", European Telecommunications Standards
                 Institute (ETSI), 1998.



Fairhurst & Collini-Nocker  Standards Track                    [Page 32]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  [ETSI-DVBS]    EN 300 421, "Digital Video Broadcasting (DVB);
                 Modulation and Coding for DBS satellite systems at
                 11/12 GHz", European Telecommunications Standards
                 Institute (ETSI), 1997.

  [ETSI-DVBT]    EN 300 744, "Digital Video Broadcasting (DVB); Framing
                 structure, channel coding and modulation for digital
                 terrestrial television (DVB-T)", European
                 Telecommunications Standards Institute (ETSI), 2004.

  [ETSI-RCS]     ETSI 301 790, "Digital Video Broadcasting (DVB);
                 Interaction Channel for Satellite Distribution
                 Systems", European Telecommunications Standards
                 Institute (ETSI), 2005.

  [IEEE-802.2]   IEEE 802.2, "Local and metropolitan area networks-
                 Specific requirements Part 2: Logical Link Control",
                 IEEE Computer Society, (also ISO/IEC 8802-2), 1998.

  [IEEE-802.3]   IEEE 802.3, "Local and metropolitan area networks-
                 Specific requirements Part 3: Carrier sense multiple
                 access with collision detection (CSMA/CD) access
                 method and physical layer specifications", IEEE
                 Computer Society, (also ISO/IEC 8802-3), 2002.

  [ISO-DSMCC]    IS 13818-6, "Information technology -- Generic coding
                 of moving pictures and associated audio information --
                 Part 6: Extensions for DSM-CC", International
                 Standards Organisation (ISO), 1998.

  [ITU-H222]     H.222.0, "Information technology - Generic coding of
                 moving pictures and associated audio information:
                 Systems", International Telecommunication Union,
                 (ITU-T), 1995.

  [ITU-3563]     I.363.5, "B-ISDN ATM Adaptation Layer specification:
                 Type 5 AAL", International Telecommunication Union,
                 (ITU-T), 1996.

  [ISO-8802-2]   ISO/IEC 8802.2, "Logical Link Control", International
                 Standards Organisation (ISO), 1998.

  [RFC3077]      Duros, E., Dabbous, W., Izumiyama, H., Fujii, N., and
                 Y. Zhang, "A Link-Layer Tunneling Mechanism for
                 Unidirectional Links", RFC 3077, March 2001.






Fairhurst & Collini-Nocker  Standards Track                    [Page 33]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  [RFC3309]      Stone, J., Stewart, R., and D. Otis, "Stream Control
                 Transmission Protocol (SCTP) Checksum Change", RFC
                 3309, September 2002.

  [RFC4259]      Montpetit, M.-J., Fairhurst, G., Clausen, H.,
                 Collini-Nocker, B., and H. Linder, "A Framework for
                 Transmission of IP Datagrams over MPEG-2 Networks",
                 RFC 4259, November 2005.

  [SOOR05]       M. Sooriyabandara, G. Fairhurst, A. Ang, B. Collini-
                 Nocker, H. Linder, W. Stering  "A Lightweight
                 Encapsulation Protocol for IP over MPEG-2 Networks:
                 Design, Implementation and Analysis", Computer
                 Networks 48 p5-19, 2005.





































Fairhurst & Collini-Nocker  Standards Track                    [Page 34]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


Appendix A: SNDU Packing Examples

  This appendix provides some examples of use.  The appendix is
  informative.  It does not provide a description of the protocol.  The
  examples provide the complete TS Packet sequence for some sample
  encapsulated IP packets.

  The specification of the TS Packet header operation and field values
  is provided in [ISO-MPEG2].  The specification of ULE is provided in
  the body of this document.

  The key below is provided for the following examples.

  HDR    4B TS Packet Header
  PUSI   Payload Unit Start Indicator
  PP     Payload Pointer
  ***    TS Packet Payload Pointer (PP)

  Example A.1: Two 186B PDUs.

    SNDU A is 200 bytes (including the ULE destination NPA address)
    SNDU B is 200 bytes (including the ULE destination NPA address)

  The sequence comprises 3 TS Packets:

                     SNDU
          PP=0      Length
  +-----+------+------+------+-   -+------+
  | HDR | 0x00 | 0x00 | 0xC4 | ... | A182 |
  +-----+----*-+-*----+------+-   -+------+
  PUSI=1     *   *
             *****
                                         SNDU
          PP=17           CRC for A     Length
  +-----+------+------+-   -+--- --+------+------+-   -+------+
  | HDR | 0x11 | A183 | ... | A199 | 0x00 | 0xC4 | ... | B165 |
  +-----+----*-+------+-   -+------+-*----+------+-   -+------+
  PUSI=1     *                       *
             *************************

                                End     Stuffing
                   CRC for A Indicator   Bytes
  +-----+------+-   -+------+----+----+-   -+----+
  | HDR | B166 | ... | B199 |0xFF|0xFF| ... |0xFF|
  +-----+------+-   -+------+----+----+-   -+----+
  PUSI=0





Fairhurst & Collini-Nocker  Standards Track                    [Page 35]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  Example A.2: Usage of last byte in a TS-Packet

    SNDU A is 183 bytes
    SNDU B is 182 bytes
    SNDU C is 181 bytes
    SNDU D is 185 bytes

  The sequence comprises 4 TS Packets:

                      SNDU
           PP=0      Length     CRC for A
   +-----+------+------+------+-   -+------+
   | HDR | 0x00 | 0x00 | 0xB3 | ... | A182 |
   +-----+----*-+-*----+------+-   -+------+
   PUSI=1     *   *
              *****
                      SNDU                  Unused
           PP=0      Length       CRC for B  byte
   +-----+------+------+------+-   -+------+------+
   | HDR | 0x00 | 0x00 | 0xB2 | ... | B181 | 0xFF |
   +-----+---*--+-*----+------+-   -+------+------+
   PUSI=1    *    *
             ******
                      SNDU                       SNDU
           PP=0      Length      CRC for C      Length
   +-----+------+------+------+-   -+------+------+------+
   | HDR | 0x00 | 0x00 | 0xB1 | ... | C180 | 0x00 | 0x65 |
   +-----+---*--+-*----+------+-   -+------+------+------+
   PUSI=1    *    *
             ******           Unused
                               byte
   +-----+------+-   -+------+------+
   | HDR | D002 | ... | D184 | 0xFF |
   +-----+------+-   -+------+------+
    PUSI=0

  Example A.3: Large SNDUs

  SNDU A is 732 bytes
  SNDU B is 284 bytes

  The sequence comprises 6 TS Packets:









Fairhurst & Collini-Nocker  Standards Track                    [Page 36]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


                      SNDU
           PP=0      Length
   +-----+------+------+------+-   -+------+
   | HDR | 0x00 | 0x02 | 0xD8 | ... | A182 |
   +-----+---*--+-*----+------+-   -+------+
   PUSI=1    *    *
             ******

   +-----+------+-   -+------+
   | HDR | A183 | ... | A366 |
   +-----+------+-   -+------+
   PUSI=0

   +-----+------+-   -+------+
   | HDR | A367 | ... | A550 |
   +-----+------+-   -+------+
   PUSI=0

                                          SNDU
           PP=181         CRC for A      Length
   +-----+------+------+-   -+------+------+------+
   | HDR | 0xB5 | A551 | ... | A731 | 0x01 | 0x18 |
   +-----+---*--+------+-   -+------+*-----+------+
   PUSI=1    *                       *
             *************************

   +-----+------+-   -+------+
   | HDR | B002 | ... | B185 |
   +-----+------+-   -+------+
   PUSI=0

                                   End          Stuffing
                                Indicator        Bytes
   +-----+------+-   -+------+------+------+-   -+------+
   | HDR | B186 | ... | B283 | 0xFF | 0xFF | ... | 0xFF |
   +-----+------+-   -+------+------+------+-   -+------+
   PUSI=0














Fairhurst & Collini-Nocker  Standards Track                    [Page 37]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  Example A.4: Illustration of SNDU Length field

    SNDU A is 200 bytes
    SNDU B is 60 bytes
    SNDU C is 60 bytes

  The sequence comprises two TS Packets:

                      SNDU
           PP=0      Length
   +-----+------+------+------+-   -+------+
   | HDR | 0x00 | 0x00 | 0xC4 | ... | A182 |
   +-----+----*-+-*----+------+-   -+------+
   PUSI=1     *   *  +      +
              *****  ++++++++
                      +
                      +++++++++++++++++
                                      +   SNDU
           PP=17           CRC for A  +  Length
   +-----+------+------+-   -+------+-+----+------+-
   | HDR | 0x11 | A183 | ... | A199 | 0x00 | 0x38 | ...
   +-----+----*-+------+-   -+------+*-----+------+-
   PUSI=1     *                      *  +       +
              ************************  +++++++++
                                         +
   +++++++++++++++++++++++++++++++++++++++
   +
   +                  SNDU                       End      Stuffing
   +                 Length                   Indicator     bytes
   +    -+------+------+------+  -+------+------+------+- -+------+
   + ... | B59  | 0x00 | 0x38 |...| C59  | 0xFF | 0xFF |...| 0xFF |
   +    -+------+-+----+------+  -+------+-+----+------+- -+------+
   +              +  +      +              +
   +              +  ++++++++              +
   +              +   +                    +
   ++++++++++++++++   ++++++++++++++++++++++

  *** TS Packet Payload Pointer (PP)
  +++ ULE Length Indicator












Fairhurst & Collini-Nocker  Standards Track                    [Page 38]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


  Example A.5: Three 44B PDUs.

    SNDU A is 52 bytes (no ULE destination NPA address) SNDU B is 52
    bytes (no ULE destination NPA address) SNDU C is 52 bytes (no ULE
    destination NPA address)

  The sequence comprises 1 TS Packet:

                     SNDU
          PP=0      Length
  +-----+------+------+------+-   -+-----+------+------+-   -+-----+-
  | HDR | 0x00 | 0x80 | 0x30 | ... | A51 | 0x80 | 0x30 | ... | B51 | ..
  +-----+----*-+-*----+------+-   -+-----+------+------+-   -+-----+-
  PUSI=1     *   *
             *****

                                          End        Stuffing
                                        Indicator     bytes
               -----+------+-   -+-----+---------+- -+------+
           ... 0x80 | 0x30 | ... | C51 |0xFF|0xFF|   | 0xFF |
               -----+------+-   -+-----+---------+- -+------+






























Fairhurst & Collini-Nocker  Standards Track                    [Page 39]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


Appendix B: SNDU Encapsulation

  An example of ULE encapsulation carrying an ICMPv6 packet generated
  by ping6.

  ULE SNDU Length  :            63 decimal
  D-bit value  :                0 (NPA destination address present)
  ULE Protocol Type :           0x86dd (IPv6)
  Destination ULE NPA Address : 00:01:02:03:04:05
  ULE CRC32 :                   0x7c171763

  Source IPv6 :                 2001:DB8:3008:1965::1
  Destination IPv6 :            2001:DB8:2509:1962::2

  SNDU contents (including CRC-32):

  0000: 00 3f 86 dd 00 01 02 03 04 05 60 00 00 00 00 0d
  0016: 3a 40 20 01 0d b8 30 08 19 65 00 00 00 00 00 00
  0032: 00 01 20 01 0d b8 25 09 19 62 00 00 00 00 00 00
  0048: 00 02 80 00 9d 8c 06 38 00 04 00 00 00 00 00 7c
  0064: 17 17 63






























Fairhurst & Collini-Nocker  Standards Track                    [Page 40]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


Authors' Addresses

  Godred Fairhurst
  Department of Engineering
  University of Aberdeen
  Aberdeen, AB24 3UE
  UK

  EMail: [email protected]
  Web: http://www.erg.abdn.ac.uk/users/Gorry


  Bernhard Collini-Nocker
  Department of Scientific Computing
  University of Salzburg
  Jakob Haringer Str. 2
  5020 Salzburg
  Austria

  EMail: [email protected]
  Web: http://www.scicomp.sbg.ac.at/






























Fairhurst & Collini-Nocker  Standards Track                    [Page 41]

RFC 4326              ULE for IP over MPEG-2/DVB           December 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Fairhurst & Collini-Nocker  Standards Track                    [Page 42]