Network Working Group                                          M. Blinov
Request for Comments: 4212                          Guardeonic Solutions
Category: Informational                                         C. Adams
                                                   University of Ottawa
                                                           October 2005


               Alternative Certificate Formats for the
            Public-Key Infrastructure Using X.509 (PKIX)
                   Certificate Management Protocols

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

IESG Note

  This document is not a candidate for any level of Internet Standard.
  The IETF disclaims any knowledge of the fitness of this document for
  any purpose, and in particular notes that it has not had IETF review
  for such things as security, congestion control, or inappropriate
  interaction with deployed protocols.  The RFC Editor has chosen to
  publish this document at its discretion.  Readers of this document
  should exercise caution in evaluating its value for implementation
  and deployment.

Abstract

  The Public-Key Infrastructure using X.509 (PKIX) Working Group of the
  Internet Engineering Task Force (IETF) has defined a number of
  certificate management protocols.  These protocols are primarily
  focused on X.509v3 public-key certificates.  However, it is sometimes
  desirable to manage certificates in alternative formats as well.
  This document specifies how such certificates may be requested using
  the Certificate Request Message Format (CRMF) syntax that is used by
  several different protocols.  It also explains how alternative
  certificate formats may be incorporated into such popular protocols
  as PKIX Certificate Management Protocol (PKIX-CMP) and Certificate
  Management Messages over CMS (CMC).






Blinov & Adams               Informational                      [Page 1]

RFC 4212            Alternative Certificate Formats         October 2005


1.  Introduction

  Full certificate life-cycle management in a Public-Key Infrastructure
  (PKI) requires protocol support in order to achieve automated
  processing and end user transparency.  Such protocols require
  standardization in order to allow more than one vendor to supply
  various pieces -- End Entity (EE), Certification Authority (CA),
  Registration Authority (RA) -- in the PKI deployment of a single
  organization, or to allow multiple, independently-deployed PKIs to be
  interconnected usefully.

  The IETF PKIX (Public-Key Infrastructure using X.509) Working Group
  currently has several certificate management protocols and
  certificate request syntax specifications on the standards track.
  Although these specifications are primarily focused on X.509v3
  public-key certificates, some of them can be easily extended to
  handle certificates in alternative formats as well.

  This document focuses on a popular certificate request syntax called
  CRMF (Certificate Request Message Format) [CRMF].  Although the
  original specification of CRMF is X.509-specific, extensions have
  already been proposed to allow for alternative certificate templates
  [CMP].  However, those extensions have only defined a framework; they
  did not define the exact format to be used for various certificate
  types.

  This document builds on top of the framework mentioned above and
  defines how CRMF can be used to request certificates of the following
  types:

  - X.509 attribute certificates [ATTCERT]

  - OpenPGP certificates [OPENPGP]

  The CRMF syntax is used by such popular protocols as PKIX-CMP (PKIX
  Certificate Management Protocol) [CMP] and CMC (Certificate
  Management Messages over CMS) [CMC].  This means that CRMF extensions
  proposed in this document enable these protocols to request
  certificates of the above types.  However, it is not enough to be
  able to request a certificate.  The protocol should be prepared to
  handle certificates of a particular type and, for example, return
  them to the user.

  This document proposes extensions to the PKIX-CMP and CMC protocols
  that are required to manage certificates in alternative formats.






Blinov & Adams               Informational                      [Page 2]

RFC 4212            Alternative Certificate Formats         October 2005


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Certificate Template

  One of the features of the CRMF format is its use of the CertTemplate
  construct, which allows a requester (EE, or RA acting on behalf of an
  EE) to specify as much or as little as they wish regarding the
  content of the requested certificate.  It is explicitly noted that
  the CA has final authority over the actual certificate content; that
  is, the CA may alter certificate fields or may add, delete, or alter
  extensions according to its operating policy (if the resulting
  certificate is unacceptable to the EE or RA, then that certificate
  may be rejected and/or revoked prior to any publication/use).

  A similar flexibility in the request must be available for
  alternative certificate types as well.  For this purpose, an
  AltCertTemplate extension was introduced in [CMP] as follows (where
  id-regCtrl = {1 3 6 1 5 5 7 5 1}, as defined in [CRMF]).

     CertRequest ::= SEQUENCE {
         certReqId     INTEGER,
         certTemplate  CertTemplate,
         controls      Controls OPTIONAL }

     -- If certTemplate is an empty SEQUENCE (i.e., all fields
     -- omitted), then controls MAY contain the
     -- id-regCtrl-altCertTemplate control, specifying a template
     -- for a certificate other than an X.509v3 public-key
     -- certificate.  Conversely, if certTemplate is not empty
     -- (i.e., at least one field is present), then controls
     -- MUST NOT contain id-regCtrl-altCertTemplate.  The new
     -- control is defined as follows:
     id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= {id-regCtrl 7}
     AltCertTemplate ::= AttributeTypeAndValue

  In this section, an AltCertTemplate is specified for each of the
  alternative certificate types defined in Section 1.

2.1.  X.509 Attribute Certificate CertTemplate

  A CertTemplate for an X.509 attribute certificate can be used by
  simply defining an object identifier (OID) and corresponding value
  for use in the id-regCtrl-altCertTemplate control.  These are
  specified as follows.





Blinov & Adams               Informational                      [Page 3]

RFC 4212            Alternative Certificate Formats         October 2005


  OID:

     id-acTemplate OBJECT IDENTIFIER ::=
        {id-regCtrl-altCertTemplate 1}

  Value:

     AttCertTemplate ::= SEQUENCE {
        version                 AttCertVersion            OPTIONAL,
        holder                  Holder                    OPTIONAL,
        issuer                  AttCertIssuer             OPTIONAL,
        signature               AlgorithmIdentifier       OPTIONAL,
        serialNumber            CertificateSerialNumber   OPTIONAL,
        attrCertValidityPeriod  OptionalAttCertValidity   OPTIONAL,
        attributes              SEQUENCE OF Attribute     OPTIONAL,
        issuerUniqueID          UniqueIdentifier          OPTIONAL,
        extensions              Extensions                OPTIONAL
     }
     OptionalAttCertValidity  ::= SEQUENCE {
        notBeforeTime  GeneralizedTime  OPTIONAL,
        notAfterTime   GeneralizedTime  OPTIONAL
     } -- at least one must be present

2.2.  OpenPGP Certificate CertTemplate

  Similar to certificate templates defined above, a CertTemplate for an
  OpenPGP certificate can be used by defining an object identifier
  (OID) and corresponding value for use in the
  id-regCtrl-altCertTemplate control.  These are specified as follows:

  OID:

     id-openPGPCertTemplateExt OBJECT IDENTIFIER ::=
        {id-regCtrl-altCertTemplate 2}

  Value:

     OpenPGPCertTemplateExtended ::= SEQUENCE {
        nativeTemplate   OpenPGPCertTemplate,
        controls         Controls  OPTIONAL }

     OpenPGPCertTemplate ::= OCTET STRING
     -- contains the OpenPGP CertTemplate data structure defined
     -- below (binary format without Radix-64 conversions)
     -- encoded as an ASN.1 OCTET STRING






Blinov & Adams               Informational                      [Page 4]

RFC 4212            Alternative Certificate Formats         October 2005


2.2.1.  OpenPGP CertTemplate Data Structure

  Similar to the X.509 CertTemplate, the OpenPGP CertTemplate is an
  OpenPGP certificate (OpenPGP Transferable Public Key) [OPENPGP] with
  all fields optional.  The essential elements of an OpenPGP
  CertTemplate are:

  - Zero or one Public Key packet.

  - Zero or more Direct Key Self Signature packets.

  - Zero or more Certification Signature packets (only if no User ID
    packets are present).

  - Zero or more User ID packets.

  - After each User ID packet, zero or more Certification Signature
    packets.

  - Zero or more Subkey packets.

  - After each Subkey packet, zero or one Subkey Binding Signature
    packet.

  Each packet in the OpenPGP CertTemplate MUST be a syntactically
  correct OpenPGP packet.  This will enable conformant implementations
  to use existing PGP libraries for building and parsing OpenPGP
  CertTemplates.

  The following implications of this rule should be explicitly noted:

  - Fields for which the OpenPGP specification defines a set of
    permitted values (e.g., the signature type or the public key
    algorithm fields of the Signature packet) MUST have a value from
    the defined set.  Even if the requester does not have any
    particular preferences for, for example, the signature algorithm,
    it MUST choose one value that is the most desirable.

    Rationale: An alternative solution could be to define extra "any"
    values, but this would be a modification of the OpenPGP syntax,
    which is not considered appropriate in this document.

  - All subpackets of the Signature packet defined by the OpenPGP
    specification as mandatory (e.g., the creation time and the
    issuer's key id subpackets) MUST be present even though they do not
    make much sense in the context of a certificate request.





Blinov & Adams               Informational                      [Page 5]

RFC 4212            Alternative Certificate Formats         October 2005


  - The number of MPIs at the end of the Key Material and the Signature
    packets MUST match the number defined by the OpenPGP specification
    for the given algorithm (the algorithm is controlled by the value
    of the "algorithm" field).  For example, there should be 2 MPIs for
    DSA signatures.  Note that the OpenPGP specification does not
    define validation rules for the content of those MPIs.

  Though it is not considered appropriate here to define extra "any"
  values for fields of enumerated types, such values can still be
  defined for some other fields where the OpenPGP specification is not
  that strict.

  The following extra values are defined in the context of the OpenPGP
  CertTemplate.  Note that these definitions do not modify the syntax
  of OpenPGP packets, and existing PGP libraries can still be used to
  generate and parse them.

  - For fields representing time (e.g., signature creation time): the
    value of zero means "any time".

  - For fields holding key IDs: the value of 0xFFFFFFFFFFFFFFFF means
    "any key id".

  - For signature fields: the "any signature" value is encoded as a
    sequence of MPIs such that:

    * the number of MPIs matches the number of MPIs defined by the
      OpenPGP specification for the given algorithm, and

    * the value of each MPI is 0xFF.

    A Signature packet with the "any" value in the signature fields is
    called a Signature Template.

      Example: The "any signature" value for a DSA signature would look
      like [00 08 FF 00 08 FF]

  - For key material fields: the "any key" value is encoded as a
    sequence of MPIs such that:

    * the number of MPIs matches the number of MPIs defined by the
      OpenPGP specification for the given algorithm, and

    * the value of at least one of the MPIs is a bit string with all
      its bits set to 1.






Blinov & Adams               Informational                      [Page 6]

RFC 4212            Alternative Certificate Formats         October 2005


    A Key Material packet with the "any" value in the key material
    fields is called a Key Template.  (See Key Template section for
    further details.)

      Example: The "any key" value for a DSA public key may look like
      [00 08 FF 00 10 FF FF 00 10 85 34 00 08 FF]

  The following rules apply to the sequence of packets within the
  OpenPGP CertTemplate:

  - If the Public Key packet is omitted from the OpenPGP CertTemplate,
    then this CertTemplate does not constrain the value of the public
    key (i.e., it refers to "any" public key).

  - The order of Signature packets following a User ID packet and the
    order of User ID packets within the CertTemplate are not important.

  - If an OpenPGP CertTemplate does not contain any User ID packets,
    then it refers to "any" user IDs that are relevant to a given
    request.

2.2.2.  OpenPGP CertTemplate in Certificate Requests

  Since an OpenPGP certificate can have several certification
  signatures, the OpenPGP CertTemplate uses Signature Templates to
  define where certification signatures should occur.  The values of
  the fields of the Signature Templates define the parameters of the
  new certification signatures.  The following rules apply:

  - A Signature Template that is present in the list of signatures
    following a User ID packet requests that the CA certify this User
    ID and the public key and replace the Signature Template with the
    new certification signature.  The Signature Template does not
    mandate the exact place of the certification signature within the
    list.  The certification signature may be inserted at any position
    within the list of signatures (following the certified User ID
    packet).

  - A Signature Template may be present in the OpenPGP CertTemplate
    without any preceding User ID packet.  In this case, it is assumed
    that the CA knows the ID(s) of the user by some other means.  A
    Signature Template without a preceding User ID requests that the CA
    insert all known User IDs of the user into the OpenPGP certificate
    and certify each of them.  The Signature Template defines the
    parameters of these certification signatures.






Blinov & Adams               Informational                      [Page 7]

RFC 4212            Alternative Certificate Formats         October 2005


  - If an OpenPGP CertTemplate contains no Signature Templates, then
    the CA is requested to certify all User IDs that are present in the
    OpenPGP CertTemplate.  Such a CertTemplate does not define
    parameters of the certification signatures explicitly, but the CA
    SHOULD use parameters of the certification self-signatures (if
    present in the CertTemplate) as a guide (e.g., key flags fields).

  - If neither Signature Templates nor User IDs are present in the
    OpenPGP CertTemplate, then the CA is expected to know the ID(s) of
    the user by some other means.  In this case, the CertTemplate
    requests that the CA insert these User IDs into the OpenPGP
    certificate and certify each of them.  The parameters of the
    certification signatures are left to the CA.

  If several certification signatures have to be produced according to
  an OpenPGP CertTemplate, and any of them cannot be granted (even with
  modifications) for whatever reason, then the whole request with this
  OpenPGP CertTemplate MUST be rejected.

  The client SHOULD provide enough information in its request that the
  CA could produce a complete OpenPGP certificate.  For example, the
  client SHOULD include in the template all relevant subkeys with their
  binding signatures so that the CA can include them in the resultant
  OpenPGP certificate as well.  Rationale: In some environments, the
  CA/RA is responsible for publishing certificates.

2.2.3.  Key Templates and Central Key Generation

  The OpenPGP CertTemplate can also be used to request certification of
  centrally-generated keys.  This is accomplished by using Key
  Templates.

  If the Public Key packet of an OpenPGP CertTemplate is a Key
  Template, then this OpenPGP CertTemplate requests that the CA/RA
  generate the key pair prior to certifying it.  Fields of the Key
  Template define parameters of the new key pair as follows (see
  examples in the Appendix):

  - The "public key algorithm" field specifies the algorithm to be used
    for the key generation.

  - MPI fields with the value of 0xFF ([00 08 FF]) specify that no
    constraint is placed on the corresponding part of the key.

  - MPI fields that contain any other bit strings in which all bits are
    set to 1, specify that the corresponding part of the key should be
    of the same length as the length of the MPI (e.g., the length of
    the public modulus n of the RSA key).



Blinov & Adams               Informational                      [Page 8]

RFC 4212            Alternative Certificate Formats         October 2005


  - MPI fields that contain any other values specify that the
    corresponding part of the key should be of the given value (key
    generation parameters).

  In order to return a complete OpenPGP certificate, in addition to
  certifying the new key and the User ID, the CA (or RA) SHOULD also
  create a self-signature (i.e., sign the new public key and the User
  ID with the new private key) and include it after the User ID packet.
  This SHOULD be done for all User IDs certified by the CA.

  If a Subkey packet of an OpenPGP CertTemplate is a Key Template, then
  this OpenPGP CertTemplate requests that the CA/RA generate a subkey.
  Fields of the Key Template define parameters of the new subkey.  The
  new subkey obviously does not have to be certified.  However, the
  CA/RA SHOULD produce the binding signature and include it after the
  subkey, if the CA/RA knows the user's primary private key (e.g., it
  was centrally generated as well).  Note that if the CA/RA does not
  know the user's primary private key, then the resultant OpenPGP
  certificate returned from the CA/RA to the client will be incomplete
  (i.e., there will be no binding signature for the subkey).  It will
  be the responsibility of the client to produce and add the binding
  signature and to publish the final OpenPGP certificate.

  If an OpenPGP CertTemplate contains neither PublicKey/Subkey packets
  nor Key Template packets, then it requests that the CA generate
  keys/subkeys according to the CA's policies.

2.2.4.  OpenPGPCertTemplateExtended

  The OpenPGPCertTemplateExtended structure enables additional
  extensions and controls to be added to the basic OpenPGP
  CertTemplate.

2.2.5.  OpenPGP CertTemplate Required Profile

  A conformant implementation is REQUIRED to support OpenPGP
  CertTemplates that are valid OpenPGP certificates, i.e., that have
  the following structure (see examples in the Appendix):

  - One Public Key packet (not a Key Template).

  - Zero or more Direct Key Self Signature packets (without Signature
    Templates).

  - One or more User ID packets.

  - After each User ID packet, zero or more Certification Signature
    packets (without Signature Templates).



Blinov & Adams               Informational                      [Page 9]

RFC 4212            Alternative Certificate Formats         October 2005


  - Zero or more Subkey packets (without Key Templates).

  - After each Subkey packet, one Subkey Binding Signature packet (not
    a Signature Template).

  A conformant implementation is REQUIRED to recognise Key Templates
  and Signature Templates and is REQUIRED to either support them or
  reject requests containing them if it does not.

3.  Proof-of-Possession

  A CRMF request includes a Proof-of-Possession (POP) field that
  contains proof that an End Entity has possession of the private key
  corresponding to the public key for which a certificate is requested.

  The following rule applies to this field (with modifications from
  [CMP]):

     * NOTE: If CertReqMsg certReq certTemplate (or the
     * altCertTemplate control) contains the subject and
     * publicKey values, then poposkInput MUST be omitted
     * and the signature MUST be computed on the DER-encoded
     * value of CertReqMsg certReq (or the DER-encoded value
     * of AltCertTemplate).

  An OpenPGP CertTemplate is considered to satisfy the conditions of
  this note if it has a Public Key packet (not a Key Template) and at
  least one User ID packet.

4.  Protocol-specific Issues

  This section explains how alternative certificate formats may be
  incorporated into such popular protocols as PKIX-CMP and CMC.

4.1.  PKIX-CMP

  In PKIX-CMP, the ASN.1 [ASN1] construct, and corresponding comment
  for a certificate is given as follows.

     CMPCertificate ::= CHOICE {
        x509v3PKCert        Certificate
     }

     -- This syntax, while bits-on-the-wire compatible with the
     -- standard X.509 definition of "Certificate", allows the
     -- possibility of future certificate types (such as X.509
     -- attribute certificates, WAP WTLS certificates, or
     -- other kinds of certificates) within this certificate



Blinov & Adams               Informational                     [Page 10]

RFC 4212            Alternative Certificate Formats         October 2005


     -- management protocol, should a need ever arise to support
     -- such generality.

  Building on this framework, this document expands the above CHOICE
  construct as follows.

     CMPCertificate ::= CHOICE {
        x509v3PKCert        Certificate,
        x509v2AttCert   [0] AttributeCertificate,
                            -- defined in [ATTCERT]
        openPGPCert     [2] OpenPGPCert
     }

     OpenPGPCert ::= OCTET STRING
        -- contains the OpenPGP certificate (OpenPGP Transferable
        -- Public Key) data structure from the OpenPGP specification
        -- [OPENPGP] (binary format without Radix-64 conversions),
        -- encoded as an ASN.1 OCTET STRING

  Expanding the CHOICE construct as above allows X.509 attribute
  certificates and OpenPGP certificates to be used within the PKIX-CMP
  management messages.  In the future, this construct may be expanded
  further (in subsequent revisions of this document) to accommodate
  other certificate types, if this is found to be necessary.

4.2.  CMC

  The CMC protocol uses the CMS (Cryptographic Message Syntax) syntax
  [CMS], which defines the certificate type as

   CertificateChoices ::= CHOICE {
     certificate Certificate,
     extendedCertificate [0] IMPLICIT ExtendedCertificate,  -- Obsolete
     v1AttrCert [1] IMPLICIT AttributeCertificateV1,        -- Obsolete
     v2AttrCert [2] IMPLICIT AttributeCertificateV2 }

  Similar to PKIX-CMP, this CHOICE can be extended to include
  additional types of certificates as follows.

   CertificateChoices ::= CHOICE {
     certificate Certificate,
     extendedCertificate [0] IMPLICIT ExtendedCertificate,  -- Obsolete
     v1AttrCert [1] IMPLICIT AttributeCertificateV1,        -- Obsolete
     v2AttrCert [2] IMPLICIT AttributeCertificateV2,
     openPGPCert [3] IMPLICIT OpenPGPCert }






Blinov & Adams               Informational                     [Page 11]

RFC 4212            Alternative Certificate Formats         October 2005


  This allows both X.509 attribute certificates and OpenPGP
  certificates to be used within the CMC management messages.  In the
  future, this construct may be expanded further (in subsequent
  revisions of this document) to accommodate other certificate types,
  if this is found to be necessary.

  The CMC specification defines certain constraints on the subject and
  publicKey fields of the CRMF's CertTemplate structure.  The same
  constraints should apply to the AltCertTemplate structure if
  alternative certificate types are used.  For example, the CMC
  specification mandates that

     When CRMF message bodies are used in the Full Enrollment Request
     message, each CRMF message MUST include both the subject and
     publicKey fields in the CertTemplate.

  If alternative certificate types are used, this should be extended as

     When CRMF message bodies are used in the Full Enrollment Request
     message, each CRMF message MUST include both the subject and
     publicKey fields in the CertTemplate (or in the altCertTemplate
     control).

5.  Security Considerations

5.1.  Protection of Alternative Certificate Templates

  This document defines extensions to the CRMF format, so security
  considerations from the CRMF specification [CRMF] apply here as well.
  In particular, the security of alternative certificate templates
  relies upon the security mechanisms of the protocol or process used
  to communicate with CAs.

  Exact security requirements depend on a particular PKI deployment,
  but integrity protection and message origin authentication are
  typically required for certification requests.  The CMP and CMC
  certificate management protocols mentioned in this document provide
  both integrity protection and message origin authentication for
  request messages (which includes certificate templates as well).

  Confidentiality may also be required where alternative certificate
  templates contain subscriber-sensitive information.  The CMC protocol
  allows the content of request messages to be encrypted.  CMP does not
  include confidentiality mechanisms for certification requests, but if
  confidentiality is needed, it can be achieved with a lower-layer
  security protocol (e.g., TLS or IPsec).





Blinov & Adams               Informational                     [Page 12]

RFC 4212            Alternative Certificate Formats         October 2005


5.2.  Request Authorisation

  In order to make a decision as to whether a request should be
  accepted, a CA should normally be able to compare the (authenticated)
  name of the sender of the request with the request subject name.

  For example, an End Entity may be allowed to request additional
  certificates for himself/herself.  In this case, the CA will accept a
  request if the Sender is equal to the Subject (of course, other
  conditions will have to be checked as well before the certificate is
  granted).

  If a PGP certificate is requested using the extensions proposed here,
  the Sender field of the request will be encoded as an ASN.1
  GeneralName (in both CMP and CMC), while the Subject will be
  represented as a PGP UserID.  Since the PGP UserID is effectively an
  unrestricted octet string, it is not always trivial to compare these
  two types.  It is possible that an attacker may try to submit
  requests with specially crafted UserIDs (e.g., that include obscure
  characters) in order to trick the CA comparison algorithm and obtain
  a PGP certificate with a UserID that belongs to someone else.

  In these circumstances, it is safer for the CA, when building the PGP
  certificate's UserID, to completely rebuild the UserID based on the
  content of the authenticated Sender name rather than take the UserID
  from the request.  To achieve this, additional information about the
  End Entity may be required at the CA (e.g., the EE's email address).

5.3.  PGP Parser

  Software components that implement the proposed extensions (e.g., CMP
  or CMC servers) will necessarily increase in complexity.  If a
  "standard" server is expected to be able to parse ASN.1 streams, the
  "extended" server is required to be able to parse PGP streams as
  well.  A PGP parser code may introduce new security vulnerabilities
  that can be exploited by an attacker to mount a DoS attack or gain
  access to the server.

  In order to reduce the consequences of a successful attack, it is
  recommended that the CMP or CMC servers be run on a separate machine
  from the main CA server.  These protocol servers should not have
  access to the main CA key and should not have write access to the CA
  store.








Blinov & Adams               Informational                     [Page 13]

RFC 4212            Alternative Certificate Formats         October 2005


Appendix A.  Examples of OpenPGP CertTemplates

  This Appendix presents examples of OpenPGP CertTemplates that are
  used for requesting OpenPGP certificates from a CA.

A1.  Simple Certificate Request

  Alice requests an OpenPGP certificate for her public key accompanied
  by a subkey.

  The content of the OpenPGP CertTemplate in the request is as follows.
  This CertTemplate conforms to the OpenPGP CertTemplate Required
  Profile.

     0000:  99 01 A2         === Pub Key packet ===
     0003:  04 3C 58 27 A2 11      ver 4, created 30 Jan 2002, DSA
     0009:  00 E3 FB 9D .. 2B EF   DSA prime p
     008B:  00 A0 FF 7E .. BA 71   DSA group order q
     00A1:  03 FF 68 BC .. 56 71   DSA group generator g
     0123:  03 FE 38 1F .. F2 63   DSA public key value y
     01A5:  B4 19            === User ID packet ===
     01A7:  41 6C .. 6D 3E         "Alice <[email protected]>"
     01C0:  89 00 49         === Signature packet (self-signature) ===
     01C3:  04 10 11 02            ver 4, gen cert, DSA, SHA1
     01C7:  00 09 05 02 3C 58 27 A2 02 1B 03
                                   created 30 Jan 2002, key usage:
                                   sign data and certify other keys
     01D2:  00 0A 09 10 43 5C .. 06 77   issuer key id
     01DE:  5A C2                  left 16 bits of signed hash value
     01E0:  00 A0 EB 00 .. 1B 75   DSA value r
     01F6:  00 A0 F4 E4 .. A8 3D   DSA value s
     020C:  B9 02 0D         === Public Subkey packet ===
     020F:  04 3C 58 27 A2 10      ver 4, created 30 Jan 2002,
                                   Elgamal (encrypt-only) algorithm
     0215:  08 00 F6 42 .. 0B 3B   Elgamal prime p
     0317:  00 02 02               Elgamal group generator g
     031A:  07 FE 37 BA .. DF 21   Elgamal public key value y
     041C:  89 00 49         === Signature packet (subkey binding) ===
     041F:  04 18 11 02            ver 4, subkey binding, DSA, SHA1
     0423:  00 09 05 02 3C 58 27 A2 02 1B 0C
                                   created 30 Jan 2002, key usage:
                                   encrypt communications and storage
     042E:  00 0A 09 10 43 5C .. 06 77   issuer key id
     043A:  C7 DE                  left 16 bits of signed hash value
     043C:  00 9E 21 33 .. 39 1B   DSA value r
     0452:  00 9F 64 D7 .. 63 08   DSA value s
     0468:




Blinov & Adams               Informational                     [Page 14]

RFC 4212            Alternative Certificate Formats         October 2005


  CA certifies Alice's User ID and the public key and creates the
  following OpenPGP certificate:

     0000:  99 01 A2             === Pub Key packet ===
     0003:    <the same as in the request>
     01A5:  B4 19            === User ID packet ===
     01A7:    <the same as in the request>
     01C0:  89 00 49         === Signature packet (self-signature) ===
     01C3:    <the same as in the request>
     020C:  89 00 49         === Signature packet (certification) ===
     020F:  04 13 11 02            ver 4, positive cert, DSA, SHA1
     0213:  00 09 05 02 3C 58 28 1A 02 1B 03
                                   created 30 Jan 2002, key usage:
                                   sign data and certify other keys
     021E:  00 0A 09 10 F0 0D .. 1F CA   issuer key id
     022A:  06 DF                  left 16 bits of signed hash value
     022C:  00 9F 57 2D .. 26 E3   DSA value r
     0242:  00 A0 B3 02 .. CE 65   DSA value s
     0258:  B9 02 0D         === Public Subkey packet ===
     025B:    <the same as in the request>
     0468:  89 00 49         === Signature packet (subkey binding) ===
     046B:    <the same as in the request>
     04B4:

A2.  Certificate Request with Central Key Generation

  Alice requests that the CA generate an RSA key pair that will be used
  for signing, an RSA key pair that will be used for encryption, and
  requests that the CA certify these keys.  The RSA keys are requested
  to be 2048 bits long with the public exponent 65537.

  The content of the OpenPGP CertTemplate in the request is as follows:

     0000:  99 01 0D         === Pub Key packet (Template) ===
     0003:  04 FF FF FF FF 01      ver 4, any creation date, RSA
     0009:  08 00 FF FF .. FF FF   RSA public modulus n - given length
     010B:  00 11 01 00 01         RSA public exponent e
     0110:  B4 19            === User ID packet ===
     0112:  41 6C .. 6D 3E         "Alice <[email protected]>"
     012B:  89 00 23         === Signature packet (Template) ===
     012E:  04 10 11 02            ver 4, gen cert, DSA, SHA1
     0132:  00 09 05 02 FF FF FF FF 02 1B 03
                                   any creation date, key usage:
                                   sign data and certify other keys
     013D:  00 0A 09 10 FF FF .. FF FF   issuer key id - any
     0149:  05 3A                  left 16 bits of signed hash value
     014B:  00 08 FF               DSA value r - any
     014E:  00 08 FF               DSA value s - any



Blinov & Adams               Informational                     [Page 15]

RFC 4212            Alternative Certificate Formats         October 2005


     0151:  99 01 0D         === Public Subkey packet (Template) ===
     0154:  04 FF FF FF FF 01      ver 4, any creation date, RSA
     015A:  08 00 FF FF .. FF FF   RSA public modulus n - given length
     025C:  00 11 01 00 01         RSA public exponent e
     0261:  89 00 20         === Signature packet (Template) ===
     0264:  04 18 01 02            ver 4, subkey binding, RSA, SHA1
     0268:  00 09 05 02 FF FF FF FF 02 1B 0C
                                   any creation date, key usage:
                                   encrypt communications and storage

     0273:  00 0A 09 10 FF FF .. FF FF   issuer key id - any
     027F:  12 E6                  left 16 bits of signed hash value
     0281:  00 08 FF               RSA signature value - any
     0284:

  CA generates keys, certifies Alice's User ID and the public key, and
  creates the following OpenPGP certificate:

     0000:  99 01 0D         === Pub Key packet  ===
     0003:  04 3C 5A A5 BB 01      ver 4, created 01 Feb 2002, RSA
     0009:  08 00 C7 21 .. 5B EB   RSA public modulus n
     010B:  00 11 01 00 01         RSA public exponent e
     0110:  B4 19            === User ID packet ===
     0112:  41 6C .. 6D 3E         "Alice <[email protected]>"
     012B:  89 01 1F         === Signature packet (self-signature) ===
     012E:  04 10 01 02            ver 4, gen cert, RSA, SHA1
     0132:  00 09 05 02 3C 5A A5 BB 02 1B 03
                                   created 01 Feb 2002, key usage:
                                   sign data and certify other keys
     014D:  00 0A 09 10 8E AF .. 1A 18   issuer key id
     0149:  3B 21                  left 16 bits of signed hash value
     014B:  07 FE 2F 1D .. C0 81   RSA signature value
     024D:  89 00 49         === Signature packet (certification) ===
     0250:  04 13 11 02            ver 4, positive cert, DSA, SHA1
     0254:  00 09 05 02 3C 5A A5 DC 02 1B 03
                                   created 01 Feb 2002, key usage:
                                   sign data and certify other keys
     025F:  00 0A 09 10 F0 0D .. 1F CA   issuer key id
     026B:  BA C2                  left 16 bits of signed hash value
     026D:  00 9F 5E 58 .. 30 B3   DSA value r
     0283:  00 A0 D1 D7 .. 5A AF   DSA value s
     0299:  99 01 0D         === Public Subkey packet ===
     029C:  04 3C 5A A5 C5 01      ver 4, created 01 Feb 2002, RSA
     02A2:  08 00 C3 03 .. 8C 53   RSA public modulus n
     03A4:  00 11 01 00 01         RSA public exponent e
     03A9:  89 01 1F         === Signature packet (subkey binding) ===
     03AC:  04 18 01 02            ver 4, subkey binding, RSA, SHA1




Blinov & Adams               Informational                     [Page 16]

RFC 4212            Alternative Certificate Formats         October 2005


     03B0:  00 09 05 02 3C 5A A5 C5 05 1B 0C
                                   created 01 Feb 2002, key usage:
                                   encrypt communications and storage
     03BB:  00 0A 09 10 8E AF .. 1A 18   issuer key id
     03C7:  C8 44                  left 16 bits of signed hash value
     03C9:  07 FB 04 D7 .. 75 BE   RSA signature value
     04CB:

Normative References

  [ASN1]    CCITT Recommendation X.208: Specification of Abstract
            Syntax Notation One (ASN.1), 1988.

  [ATTCERT] Farrell, S. and R. Housley, "An Internet Attribute
            Certificate Profile for Authorization", RFC 3281, April
            2002.

  [CMC]     Myers, M., Liu, X., Schaad, J., and J. Weinstein,
            "Certificate Management Messages over CMS", RFC 2797, April
            2000.

  [CMS]     Housley, R., "Cryptographic Message Syntax (CMS)", RFC
            3852, July 2004.

  [CMP]     Adams, C., Farrell, S., Kause, T., and T. Mononen,
            "Internet X.509 Public Key Infrastructure: Certificate
            Management Protocol (CMP)", RFC 4210, September 2005.

  [CRMF]    Schaad, J., "Internet X.509 Public Key Infrastructure:
            Certificate Request Message Format (CRMF)", RFC 4211,
            September 2005.

  [OPENPGP] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
            "OpenPGP Message Format", RFC 2440, November 1998.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.














Blinov & Adams               Informational                     [Page 17]

RFC 4212            Alternative Certificate Formats         October 2005


Authors' Addresses

  Mikhail Blinov
  Guardeonic Solutions
  Fitzwilliam Court, Leeson Close
  Dublin 2, Ireland

  EMail:  [email protected]


  Carlisle Adams
  School of Information Technology and Engineering (SITE)
  University of Ottawa
  800 King Edward Avenue
  P.O. Box 450, Stn A
  Ottawa, Ontario, Canada K1N 6N5

  EMail:  [email protected]

































Blinov & Adams               Informational                     [Page 18]

RFC 4212            Alternative Certificate Formats         October 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Blinov & Adams               Informational                     [Page 19]