Network Working Group                                           C. Adams
Request for Comments: 4210                          University of Ottawa
Obsoletes: 2510                                               S. Farrell
Category: Standards Track                         Trinity College Dublin
                                                               T. Kause
                                                                    SSH
                                                             T. Mononen
                                                                SafeNet
                                                         September 2005


              Internet X.509 Public Key Infrastructure
                Certificate Management Protocol (CMP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document describes the Internet X.509 Public Key Infrastructure
  (PKI) Certificate Management Protocol (CMP).  Protocol messages are
  defined for X.509v3 certificate creation and management.  CMP
  provides on-line interactions between PKI components, including an
  exchange between a Certification Authority (CA) and a client system.

Table of Contents

  1. Introduction ....................................................5
  2. Requirements ....................................................5
  3. PKI Management Overview .........................................5
     3.1. PKI Management Model .......................................6
          3.1.1. Definitions of PKI Entities .........................6
                 3.1.1.1. Subjects and End Entities ..................6
                 3.1.1.2. Certification Authority ....................7
                 3.1.1.3. Registration Authority .....................7
          3.1.2. PKI Management Requirements .........................8
          3.1.3. PKI Management Operations ..........................10
  4. Assumptions and Restrictions ...................................14
     4.1. End Entity Initialization .................................14



Adams, et al.               Standards Track                     [Page 1]

RFC 4210                          CMP                     September 2005


     4.2. Initial Registration/Certification ........................14
          4.2.1. Criteria Used ......................................15
                 4.2.1.1. Initiation of Registration/Certification ..15
                 4.2.1.2. End Entity Message Origin Authentication ..15
                 4.2.1.3. Location of Key Generation ................15
                 4.2.1.4. Confirmation of Successful Certification ..16
          4.2.2. Mandatory Schemes ..................................16
                 4.2.2.1. Centralized Scheme ........................16
                 4.2.2.2. Basic Authenticated Scheme ................17
     4.3. Proof-of-Possession (POP) of Private Key ..................17
          4.3.1. Signature Keys .....................................18
          4.3.2. Encryption Keys ....................................18
          4.3.3. Key Agreement Keys .................................19
     4.4. Root CA Key Update ........................................19
          4.4.1. CA Operator Actions ................................20
          4.4.2. Verifying Certificates .............................21
                 4.4.2.1. Verification in Cases 1, 4, 5, and 8 ......22
                 4.4.2.2. Verification in Case 2 ....................22
                 4.4.2.3. Verification in Case 3 ....................23
                 4.4.2.4. Failure of Verification in Case 6 .........23
                 4.4.2.5. Failure of Verification in Case 7 .........23
          4.4.3. Revocation - Change of CA Key ......................23
  5. Data Structures ................................................24
     5.1. Overall PKI Message .......................................24
          5.1.1. PKI Message Header .................................24
                 5.1.1.1. ImplicitConfirm ...........................27
                 5.1.1.2. ConfirmWaitTime ...........................27
          5.1.2. PKI Message Body ...................................27
          5.1.3. PKI Message Protection .............................28
                 5.1.3.1. Shared Secret Information .................29
                 5.1.3.2. DH Key Pairs ..............................30
                 5.1.3.3. Signature .................................30
                 5.1.3.4. Multiple Protection .......................30
     5.2. Common Data Structures ....................................31
          5.2.1. Requested Certificate Contents .....................31
          5.2.2. Encrypted Values ...................................31
          5.2.3. Status codes and Failure Information for
                 PKI Messages .......................................32
          5.2.4. Certificate Identification .........................33
          5.2.5. Out-of-band root CA Public Key .....................33
          5.2.6. Archive Options ....................................34
          5.2.7. Publication Information ............................34
          5.2.8. Proof-of-Possession Structures .....................34
                 5.2.8.1. Inclusion of the Private Key ..............35
                 5.2.8.2. Indirect Method ...........................35
                 5.2.8.3. Challenge-Response Protocol ...............35
                 5.2.8.4. Summary of PoP Options ....................37




Adams, et al.               Standards Track                     [Page 2]

RFC 4210                          CMP                     September 2005


     5.3. Operation-Specific Data Structures ........................38
          5.3.1. Initialization Request .............................38
          5.3.2. Initialization Response ............................39
          5.3.3. Certification Request ..............................39
          5.3.4. Certification Response .............................39
          5.3.5. Key Update Request Content .........................40
          5.3.6. Key Update Response Content ........................41
          5.3.7. Key Recovery Request Content .......................41
          5.3.8. Key Recovery Response Content ......................41
          5.3.9. Revocation Request Content .........................41
          5.3.10. Revocation Response Content .......................42
          5.3.11. Cross Certification Request Content ...............42
          5.3.12. Cross Certification Response Content ..............42
          5.3.13. CA Key Update Announcement Content ................42
          5.3.14. Certificate Announcement ..........................43
          5.3.15. Revocation Announcement ...........................43
          5.3.16. CRL Announcement ..................................43
          5.3.17. PKI Confirmation Content ..........................43
          5.3.18. Certificate Confirmation Content ..................44
          5.3.19. PKI General Message Content .......................44
                 5.3.19.1. CA Protocol Encryption Certificate .......44
                 5.3.19.2. Signing Key Pair Types ...................45
                 5.3.19.3. Encryption/Key Agreement Key Pair Types ..45
                 5.3.19.4. Preferred Symmetric Algorithm ............45
                 5.3.19.5. Updated CA Key Pair ......................45
                 5.3.19.6. CRL ......................................46
                 5.3.19.7. Unsupported Object Identifiers ...........46
                 5.3.19.8. Key Pair Parameters ......................46
                 5.3.19.9. Revocation Passphrase ....................46
                 5.3.19.10. ImplicitConfirm .........................46
                 5.3.19.11. ConfirmWaitTime .........................47
                 5.3.19.12. Original PKIMessage .....................47
                 5.3.19.13. Supported Language Tags .................47
          5.3.20. PKI General Response Content ......................47
          5.3.21. Error Message Content .............................47
          5.3.22. Polling Request and Response ......................48
  6. Mandatory PKI Management Functions .............................51
     6.1. Root CA Initialization ....................................51
     6.2. Root CA Key Update ........................................51
     6.3. Subordinate CA Initialization .............................51
     6.4. CRL production ............................................52
     6.5. PKI Information Request ...................................52
     6.6. Cross Certification .......................................52
          6.6.1. One-Way Request-Response Scheme: ...................52
     6.7. End Entity Initialization .................................54
          6.7.1. Acquisition of PKI Information .....................54
          6.7.2. Out-of-Band Verification of Root-CA Key ............55
     6.8. Certificate Request .......................................55



Adams, et al.               Standards Track                     [Page 3]

RFC 4210                          CMP                     September 2005


     6.9. Key Update ................................................55
  7. Version Negotiation ............................................56
     7.1. Supporting RFC 2510 Implementations .......................56
          7.1.1. Clients Talking to RFC 2510 Servers ................56
          7.1.2. Servers Receiving Version cmp1999 PKIMessages ......57
  8. Security Considerations ........................................57
     8.1. Proof-Of-Possession with a Decryption Key .................57
     8.2. Proof-Of-Possession by Exposing the Private Key ...........57
     8.3. Attack Against Diffie-Hellman Key Exchange ................57
  9. IANA Considerations ............................................58
  Normative References ..............................................58
  Informative References ............................................59
  A. Reasons for the Presence of RAs ................................61
  B. The Use of Revocation Passphrase ...............................61
  C. Request Message Behavioral Clarifications ......................63
  D. PKI Management Message Profiles (REQUIRED) .....................65
     D.1. General Rules for Interpretation of These Profiles ........65
     D.2. Algorithm Use Profile .....................................66
     D.3. Proof-of-Possession Profile ...............................68
     D.4. Initial Registration/Certification (Basic
          Authenticated Scheme) .....................................68
     D.5. Certificate Request .......................................74
     D.6. Key Update Request ........................................75
  E. PKI Management Message Profiles (OPTIONAL) .....................75
     E.1. General Rules for Interpretation of These Profiles ........76
     E.2. Algorithm Use Profile .....................................76
     E.3. Self-Signed Certificates ..................................76
     E.4. Root CA Key Update ........................................77
     E.5. PKI Information Request/Response ..........................77
     E.6. Cross Certification Request/Response (1-way) ..............79
     E.7. In-Band Initialization Using External Identity
          Certificate  ..............................................82
  F. Compilable ASN.1 Definitions ...................................83
  G. Acknowledgements ...............................................93

















Adams, et al.               Standards Track                     [Page 4]

RFC 4210                          CMP                     September 2005


1.  Introduction

  This document describes the Internet X.509 Public Key Infrastructure
  (PKI) Certificate Management Protocol (CMP).  Protocol messages are
  defined for certificate creation and management.  The term
  "certificate" in this document refers to an X.509v3 Certificate as
  defined in [X509].

  This specification obsoletes RFC 2510.  This specification differs
  from RFC 2510 in the following areas:

     The PKI management message profile section is split to two
     appendices: the required profile and the optional profile.  Some
     of the formerly mandatory functionality is moved to the optional
     profile.

     The message confirmation mechanism has changed substantially.

     A new polling mechanism is introduced, deprecating the old polling
     method at the CMP transport level.

     The CMP transport protocol issues are handled in a separate
     document [CMPtrans], thus the Transports section is removed.

     A new implicit confirmation method is introduced to reduce the
     number of protocol messages exchanged in a transaction.

     The new specification contains some less prominent protocol
     enhancements and improved explanatory text on several issues.

2.  Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
  as shown) are to be interpreted as described in [RFC2119].

3.  PKI Management Overview

  The PKI must be structured to be consistent with the types of
  individuals who must administer it.  Providing such administrators
  with unbounded choices not only complicates the software required,
  but also increases the chances that a subtle mistake by an
  administrator or software developer will result in broader
  compromise.  Similarly, restricting administrators with cumbersome
  mechanisms will cause them not to use the PKI.






Adams, et al.               Standards Track                     [Page 5]

RFC 4210                          CMP                     September 2005


  Management protocols are REQUIRED to support on-line interactions
  between Public Key Infrastructure (PKI) components.  For example, a
  management protocol might be used between a Certification Authority
  (CA) and a client system with which a key pair is associated, or
  between two CAs that issue cross-certificates for each other.

3.1.  PKI Management Model

  Before specifying particular message formats and procedures, we first
  define the entities involved in PKI management and their interactions
  (in terms of the PKI management functions required).  We then group
  these functions in order to accommodate different identifiable types
  of end entities.

3.1.1.  Definitions of PKI Entities

  The entities involved in PKI management include the end entity (i.e.,
  the entity to whom the certificate is issued) and the certification
  authority (i.e., the entity that issues the certificate).  A
  registration authority MAY also be involved in PKI management.

3.1.1.1.  Subjects and End Entities

  The term "subject" is used here to refer to the entity to whom the
  certificate is issued, typically named in the subject or
  subjectAltName field of a certificate.  When we wish to distinguish
  the tools and/or software used by the subject (e.g., a local
  certificate management module), we will use the term "subject
  equipment".  In general, the term "end entity" (EE), rather than
  "subject", is preferred in order to avoid confusion with the field
  name.  It is important to note that the end entities here will
  include not only human users of applications, but also applications
  themselves (e.g., for IP security).  This factor influences the
  protocols that the PKI management operations use; for example,
  application software is far more likely to know exactly which
  certificate extensions are required than are human users.  PKI
  management entities are also end entities in the sense that they are
  sometimes named in the subject or subjectAltName field of a
  certificate or cross-certificate.  Where appropriate, the term "end-
  entity" will be used to refer to end entities who are not PKI
  management entities.

  All end entities require secure local access to some information --
  at a minimum, their own name and private key, the name of a CA that
  is directly trusted by this entity, and that CA's public key (or a
  fingerprint of the public key where a self-certified version is
  available elsewhere).  Implementations MAY use secure local storage
  for more than this minimum (e.g., the end entity's own certificate or



Adams, et al.               Standards Track                     [Page 6]

RFC 4210                          CMP                     September 2005


  application-specific information).  The form of storage will also
  vary -- from files to tamper-resistant cryptographic tokens.  The
  information stored in such local, trusted storage is referred to here
  as the end entity's Personal Security Environment (PSE).

  Though PSE formats are beyond the scope of this document (they are
  very dependent on equipment, et cetera), a generic interchange format
  for PSEs is defined here: a certification response message MAY be
  used.

3.1.1.2.  Certification Authority

  The certification authority (CA) may or may not actually be a real
  "third party" from the end entity's point of view.  Quite often, the
  CA will actually belong to the same organization as the end entities
  it supports.

  Again, we use the term "CA" to refer to the entity named in the
  issuer field of a certificate.  When it is necessary to distinguish
  the software or hardware tools used by the CA, we use the term "CA
  equipment".

  The CA equipment will often include both an "off-line" component and
  an "on-line" component, with the CA private key only available to the
  "off-line" component.  This is, however, a matter for implementers
  (though it is also relevant as a policy issue).

  We use the term "root CA" to indicate a CA that is directly trusted
  by an end entity; that is, securely acquiring the value of a root CA
  public key requires some out-of-band step(s).  This term is not meant
  to imply that a root CA is necessarily at the top of any hierarchy,
  simply that the CA in question is trusted directly.

  A "subordinate CA" is one that is not a root CA for the end entity in
  question.  Often, a subordinate CA will not be a root CA for any
  entity, but this is not mandatory.

3.1.1.3.  Registration Authority

  In addition to end-entities and CAs, many environments call for the
  existence of a Registration Authority (RA) separate from the
  Certification Authority.  The functions that the registration
  authority may carry out will vary from case to case but MAY include
  personal authentication, token distribution, revocation reporting,
  name assignment, key generation, archival of key pairs, et cetera.






Adams, et al.               Standards Track                     [Page 7]

RFC 4210                          CMP                     September 2005


  This document views the RA as an OPTIONAL component: when it is not
  present, the CA is assumed to be able to carry out the RA's functions
  so that the PKI management protocols are the same from the end-
  entity's point of view.

  Again, we distinguish, where necessary, between the RA and the tools
  used (the "RA equipment").

  Note that an RA is itself an end entity.  We further assume that all
  RAs are in fact certified end entities and that RAs have private keys
  that are usable for signing.  How a particular CA equipment
  identifies some end entities as RAs is an implementation issue (i.e.,
  this document specifies no special RA certification operation).  We
  do not mandate that the RA is certified by the CA with which it is
  interacting at the moment (so one RA may work with more than one CA
  whilst only being certified once).

  In some circumstances, end entities will communicate directly with a
  CA even where an RA is present.  For example, for initial
  registration and/or certification, the subject may use its RA, but
  communicate directly with the CA in order to refresh its certificate.

3.1.2.  PKI Management Requirements

  The protocols given here meet the following requirements on PKI
  management

  1.   PKI management must conform to the ISO/IEC 9594-8/ITU-T X.509
       standards.

  2.   It must be possible to regularly update any key pair without
       affecting any other key pair.

  3.   The use of confidentiality in PKI management protocols must be
       kept to a minimum in order to ease acceptance in environments
       where strong confidentiality might cause regulatory problems.

  4.   PKI management protocols must allow the use of different
       industry-standard cryptographic algorithms (specifically
       including RSA, DSA, MD5, and SHA-1).  This means that any given
       CA, RA, or end entity may, in principle, use whichever
       algorithms suit it for its own key pair(s).

  5.   PKI management protocols must not preclude the generation of key
       pairs by the end-entity concerned, by an RA, or by a CA.  Key
       generation may also occur elsewhere, but for the purposes of PKI
       management we can regard key generation as occurring wherever
       the key is first present at an end entity, RA, or CA.



Adams, et al.               Standards Track                     [Page 8]

RFC 4210                          CMP                     September 2005


  6.   PKI management protocols must support the publication of
       certificates by the end-entity concerned, by an RA, or by a CA.
       Different implementations and different environments may choose
       any of the above approaches.

  7.   PKI management protocols must support the production of
       Certificate Revocation Lists (CRLs) by allowing certified end
       entities to make requests for the revocation of certificates.
       This must be done in such a way that the denial-of-service
       attacks, which are possible, are not made simpler.

  8.   PKI management protocols must be usable over a variety of
       "transport" mechanisms, specifically including mail, http,
       TCP/IP and ftp.

  9.   Final authority for certification creation rests with the CA.
       No RA or end-entity equipment can assume that any certificate
       issued by a CA will contain what was requested; a CA may alter
       certificate field values or may add, delete, or alter extensions
       according to its operating policy.  In other words, all PKI
       entities (end-entities, RAs, and CAs) must be capable of
       handling responses to requests for certificates in which the
       actual certificate issued is different from that requested (for
       example, a CA may shorten the validity period requested).  Note
       that policy may dictate that the CA must not publish or
       otherwise distribute the certificate until the requesting entity
       has reviewed and accepted the newly-created certificate
       (typically through use of the certConf message).

  10.  A graceful, scheduled change-over from one non-compromised CA
       key pair to the next (CA key update) must be supported (note
       that if the CA key is compromised, re-initialization must be
       performed for all entities in the domain of that CA).  An end
       entity whose PSE contains the new CA public key (following a CA
       key update) must also be able to verify certificates verifiable
       using the old public key.  End entities who directly trust the
       old CA key pair must also be able to verify certificates signed
       using the new CA private key (required for situations where the
       old CA public key is "hardwired" into the end entity's
       cryptographic equipment).

  11.  The functions of an RA may, in some implementations or
       environments, be carried out by the CA itself.  The protocols
       must be designed so that end entities will use the same protocol
       regardless of whether the communication is with an RA or CA.
       Naturally, the end entity must use the correct RA of CA public
       key to protect the communication.




Adams, et al.               Standards Track                     [Page 9]

RFC 4210                          CMP                     September 2005


  12.  Where an end entity requests a certificate containing a given
       public key value, the end entity must be ready to demonstrate
       possession of the corresponding private key value.  This may be
       accomplished in various ways, depending on the type of
       certification request.  See Section 4.3 for details of the in-
       band methods defined for the PKIX-CMP (i.e., Certificate
       Management Protocol) messages.

3.1.3.  PKI Management Operations

  The following diagram shows the relationship between the entities
  defined above in terms of the PKI management operations.  The letters
  in the diagram indicate "protocols" in the sense that a defined set
  of PKI management messages can be sent along each of the lettered
  lines.




































Adams, et al.               Standards Track                    [Page 10]

RFC 4210                          CMP                     September 2005


    +---+     cert. publish        +------------+      j
    |   |  <---------------------  | End Entity | <-------
    | C |             g            +------------+      "out-of-band"
    | e |                            | ^                loading
    | r |                            | |      initial
    | t |                          a | | b     registration/
    |   |                            | |       certification
    | / |                            | |      key pair recovery
    |   |                            | |      key pair update
    | C |                            | |      certificate update
    | R |  PKI "USERS"               V |      revocation request
    | L | -------------------+-+-----+-+------+-+-------------------
    |   |  PKI MANAGEMENT    | ^              | ^
    |   |    ENTITIES      a | | b          a | | b
    | R |                    V |              | |
    | e |             g   +------+    d       | |
    | p |   <------------ | RA   | <-----+    | |
    | o |      cert.      |      | ----+ |    | |
    | s |       publish   +------+   c | |    | |
    | i |                              | |    | |
    | t |                              V |    V |
    | o |          g                 +------------+   i
    | r |   <------------------------|     CA     |------->
    | y |          h                 +------------+  "out-of-band"
    |   |      cert. publish              | ^         publication
    |   |      CRL publish                | |
    +---+                                 | |    cross-certification
                                        e | | f  cross-certificate
                                          | |       update
                                          | |
                                          V |
                                        +------+
                                        | CA-2 |
                                        +------+

  Figure 1 - PKI Entities

    At a high level, the set of operations for which management
    messages are defined can be grouped as follows.

  1.  CA establishment: When establishing a new CA, certain steps are
      required (e.g., production of initial CRLs, export of CA public
      key).

  2.  End entity initialization: this includes importing a root CA
      public key and requesting information about the options supported
      by a PKI management entity.




Adams, et al.               Standards Track                    [Page 11]

RFC 4210                          CMP                     September 2005


  3.  Certification: various operations result in the creation of new
      certificates:

      1.  initial registration/certification: This is the process
          whereby an end entity first makes itself known to a CA or RA,
          prior to the CA issuing a certificate or certificates for
          that end entity.  The end result of this process (when it is
          successful) is that a CA issues a certificate for an end
          entity's public key, and returns that certificate to the end
          entity and/or posts that certificate in a public repository.
          This process may, and typically will, involve multiple
          "steps", possibly including an initialization of the end
          entity's equipment.  For example, the end entity's equipment
          must be securely initialized with the public key of a CA, to
          be used in validating certificate paths.  Furthermore, an end
          entity typically needs to be initialized with its own key
          pair(s).

      2.  key pair update: Every key pair needs to be updated regularly
          (i.e., replaced with a new key pair), and a new certificate
          needs to be issued.

      3.  certificate update: As certificates expire, they may be
          "refreshed" if nothing relevant in the environment has
          changed.

      4.  CA key pair update: As with end entities, CA key pairs need
          to be updated regularly; however, different mechanisms are
          required.

      5.  cross-certification request: One CA requests issuance of a
          cross-certificate from another CA.  For the purposes of this
          standard, the following terms are defined.  A "cross-
          certificate" is a certificate in which the subject CA and the
          issuer CA are distinct and SubjectPublicKeyInfo contains a
          verification key (i.e., the certificate has been issued for
          the subject CA's signing key pair).  When it is necessary to
          distinguish more finely, the following terms may be used: a
          cross-certificate is called an "inter-domain cross-
          certificate" if the subject and issuer CAs belong to
          different administrative domains; it is called an "intra-
          domain cross-certificate" otherwise.

          1.  Note 1.  The above definition of "cross-certificate"
              aligns with the defined term "CA-certificate" in X.509.
              Note that this term is not to be confused with the X.500
              "cACertificate" attribute type, which is unrelated.




Adams, et al.               Standards Track                    [Page 12]

RFC 4210                          CMP                     September 2005


          2.  Note 2.  In many environments, the term "cross-
              certificate", unless further qualified, will be
              understood to be synonymous with "inter-domain cross-
              certificate" as defined above.

          3.  Note 3.  Issuance of cross-certificates may be, but is
              not necessarily, mutual; that is, two CAs may issue
              cross-certificates for each other.

      6.  cross-certificate update: Similar to a normal certificate
          update, but involving a cross-certificate.

  4.  Certificate/CRL discovery operations: some PKI management
      operations result in the publication of certificates or CRLs:

      1.  certificate publication: Having gone to the trouble of
          producing a certificate, some means for publishing it is
          needed.  The "means" defined in PKIX MAY involve the messages
          specified in Sections 5.3.13 to 5.3.16, or MAY involve other
          methods (LDAP, for example) as described in [RFC2559],
          [RFC2585] (the "Operational Protocols" documents of the PKIX
          series of specifications).

      2.  CRL publication: As for certificate publication.

  5.  Recovery operations: some PKI management operations are used when
      an end entity has "lost" its PSE:

      1.  key pair recovery: As an option, user client key materials
          (e.g., a user's private key used for decryption purposes) MAY
          be backed up by a CA, an RA, or a key backup system
          associated with a CA or RA.  If an entity needs to recover
          these backed up key materials (e.g., as a result of a
          forgotten password or a lost key chain file), a protocol
          exchange may be needed to support such recovery.

  6.  Revocation operations: some PKI operations result in the creation
      of new CRL entries and/or new CRLs:

      1.  revocation request: An authorized person advises a CA of an
          abnormal situation requiring certificate revocation.

  7.  PSE operations: whilst the definition of PSE operations (e.g.,
      moving a PSE, changing a PIN, etc.) are beyond the scope of this
      specification, we do define a PKIMessage (CertRepMessage) that
      can form the basis of such operations.





Adams, et al.               Standards Track                    [Page 13]

RFC 4210                          CMP                     September 2005


  Note that on-line protocols are not the only way of implementing the
  above operations.  For all operations, there are off-line methods of
  achieving the same result, and this specification does not mandate
  use of on-line protocols.  For example, when hardware tokens are
  used, many of the operations MAY be achieved as part of the physical
  token delivery.

  Later sections define a set of standard messages supporting the above
  operations.  Transport protocols for conveying these exchanges in
  different environments (file-based, on-line, E-mail, and WWW) are
  beyond the scope of this document and are specified separately.

4.  Assumptions and Restrictions

4.1.  End Entity Initialization

  The first step for an end entity in dealing with PKI management
  entities is to request information about the PKI functions supported
  and to securely acquire a copy of the relevant root CA public key(s).

4.2.  Initial Registration/Certification

  There are many schemes that can be used to achieve initial
  registration and certification of end entities.  No one method is
  suitable for all situations due to the range of policies that a CA
  may implement and the variation in the types of end entity which can
  occur.

  However, we can classify the initial registration/certification
  schemes that are supported by this specification.  Note that the word
  "initial", above, is crucial: we are dealing with the situation where
  the end entity in question has had no previous contact with the PKI.
  Where the end entity already possesses certified keys, then some
  simplifications/alternatives are possible.

  Having classified the schemes that are supported by this
  specification we can then specify some as mandatory and some as
  optional.  The goal is that the mandatory schemes cover a sufficient
  number of the cases that will arise in real use, whilst the optional
  schemes are available for special cases that arise less frequently.
  In this way, we achieve a balance between flexibility and ease of
  implementation.

  We will now describe the classification of initial
  registration/certification schemes.






Adams, et al.               Standards Track                    [Page 14]

RFC 4210                          CMP                     September 2005


4.2.1.  Criteria Used

4.2.1.1.  Initiation of Registration/Certification

  In terms of the PKI messages that are produced, we can regard the
  initiation of the initial registration/certification exchanges as
  occurring wherever the first PKI message relating to the end entity
  is produced.  Note that the real-world initiation of the
  registration/certification procedure may occur elsewhere (e.g., a
  personnel department may telephone an RA operator).

  The possible locations are at the end entity, an RA, or a CA.

4.2.1.2.  End Entity Message Origin Authentication

  The on-line messages produced by the end entity that requires a
  certificate may be authenticated or not.  The requirement here is to
  authenticate the origin of any messages from the end entity to the
  PKI (CA/RA).

  In this specification, such authentication is achieved by the PKI
  (CA/RA) issuing the end entity with a secret value (initial
  authentication key) and reference value (used to identify the secret
  value) via some out-of-band means.  The initial authentication key
  can then be used to protect relevant PKI messages.

  Thus, we can classify the initial registration/certification scheme
  according to whether or not the on-line end entity -> PKI messages
  are authenticated or not.

  Note 1: We do not discuss the authentication of the PKI -> end entity
  messages here, as this is always REQUIRED.  In any case, it can be
  achieved simply once the root-CA public key has been installed at the
  end entity's equipment or it can be based on the initial
  authentication key.

  Note 2: An initial registration/certification procedure can be secure
  where the messages from the end entity are authenticated via some
  out-of-band means (e.g., a subsequent visit).

4.2.1.3.  Location of Key Generation

  In this specification, "key generation" is regarded as occurring
  wherever either the public or private component of a key pair first
  occurs in a PKIMessage.  Note that this does not preclude a
  centralized key generation service; the actual key pair MAY have been





Adams, et al.               Standards Track                    [Page 15]

RFC 4210                          CMP                     September 2005


  generated elsewhere and transported to the end entity, RA, or CA
  using a (proprietary or standardized) key generation request/response
  protocol (outside the scope of this specification).

  Thus, there are three possibilities for the location of "key
  generation":  the end entity, an RA, or a CA.

4.2.1.4.  Confirmation of Successful Certification

  Following the creation of an initial certificate for an end entity,
  additional assurance can be gained by having the end entity
  explicitly confirm successful receipt of the message containing (or
  indicating the creation of) the certificate.  Naturally, this
  confirmation message must be protected (based on the initial
  authentication key or other means).

  This gives two further possibilities: confirmed or not.

4.2.2.  Mandatory Schemes

  The criteria above allow for a large number of initial
  registration/certification schemes.  This specification mandates that
  conforming CA equipment, RA equipment, and EE equipment MUST support
  the second scheme listed below (Section 4.2.2.2).  Any entity MAY
  additionally support other schemes, if desired.

4.2.2.1.  Centralized Scheme

  In terms of the classification above, this scheme is, in some ways,
  the simplest possible, where:

  o  initiation occurs at the certifying CA;

  o  no on-line message authentication is required;

  o  "key generation" occurs at the certifying CA (see Section
     4.2.1.3);

  o  no confirmation message is required.

  In terms of message flow, this scheme means that the only message
  required is sent from the CA to the end entity.  The message must
  contain the entire PSE for the end entity.  Some out-of-band means
  must be provided to allow the end entity to authenticate the message
  received and to decrypt any encrypted values.






Adams, et al.               Standards Track                    [Page 16]

RFC 4210                          CMP                     September 2005


4.2.2.2.  Basic Authenticated Scheme

  In terms of the classification above, this scheme is where:

  o  initiation occurs at the end entity;

  o  message authentication is REQUIRED;

  o  "key generation" occurs at the end entity (see Section 4.2.1.3);

  o  a confirmation message is REQUIRED.

  In terms of message flow, the basic authenticated scheme is as
  follows:

    End entity                                          RA/CA
    ==========                                      =============
         out-of-band distribution of Initial Authentication
         Key (IAK) and reference value (RA/CA -> EE)
    Key generation
    Creation of certification request
    Protect request with IAK
                  -->>-- certification request -->>--
                                                   verify request
                                                   process request
                                                   create response
                  --<<-- certification response --<<--
    handle response
    create confirmation
                  -->>-- cert conf message      -->>--
                                                   verify confirmation
                                                   create response
                  --<<-- conf ack (optional)    --<<--
    handle response

  (Where verification of the cert confirmation message fails, the RA/CA
  MUST revoke the newly issued certificate if it has been published or
  otherwise made available.)

4.3.  Proof-of-Possession (POP) of Private Key

  In order to prevent certain attacks and to allow a CA/RA to properly
  check the validity of the binding between an end entity and a key
  pair, the PKI management operations specified here make it possible
  for an end entity to prove that it has possession of (i.e., is able
  to use) the private key corresponding to the public key for which a
  certificate is requested.  A given CA/RA is free to choose how to
  enforce POP (e.g., out-of-band procedural means versus PKIX-CMP



Adams, et al.               Standards Track                    [Page 17]

RFC 4210                          CMP                     September 2005


  in-band messages) in its certification exchanges (i.e., this may be a
  policy issue).  However, it is REQUIRED that CAs/RAs MUST enforce POP
  by some means because there are currently many non-PKIX operational
  protocols in use (various electronic mail protocols are one example)
  that do not explicitly check the binding between the end entity and
  the private key.  Until operational protocols that do verify the
  binding (for signature, encryption, and key agreement key pairs)
  exist, and are ubiquitous, this binding can only be assumed to have
  been verified by the CA/RA.  Therefore, if the binding is not
  verified by the CA/RA, certificates in the Internet Public-Key
  Infrastructure end up being somewhat less meaningful.

  POP is accomplished in different ways depending upon the type of key
  for which a certificate is requested.  If a key can be used for
  multiple purposes (e.g., an RSA key) then any appropriate method MAY

  be used (e.g., a key that may be used for signing, as well as other
  purposes, SHOULD NOT be sent to the CA/RA in order to prove
  possession).

  This specification explicitly allows for cases where an end entity
  supplies the relevant proof to an RA and the RA subsequently attests
  to the CA that the required proof has been received (and validated!).
  For example, an end entity wishing to have a signing key certified
  could send the appropriate signature to the RA, which then simply
  notifies the relevant CA that the end entity has supplied the
  required proof.  Of course, such a situation may be disallowed by
  some policies (e.g., CAs may be the only entities permitted to verify
  POP during certification).

4.3.1.  Signature Keys

  For signature keys, the end entity can sign a value to prove
  possession of the private key.

4.3.2.  Encryption Keys

  For encryption keys, the end entity can provide the private key to
  the CA/RA, or can be required to decrypt a value in order to prove
  possession of the private key (see Section 5.2.8).  Decrypting a
  value can be achieved either directly or indirectly.

  The direct method is for the RA/CA to issue a random challenge to
  which an immediate response by the EE is required.







Adams, et al.               Standards Track                    [Page 18]

RFC 4210                          CMP                     September 2005


  The indirect method is to issue a certificate that is encrypted for
  the end entity (and have the end entity demonstrate its ability to
  decrypt this certificate in the confirmation message).  This allows a
  CA to issue a certificate in a form that can only be used by the
  intended end entity.

  This specification encourages use of the indirect method because it
  requires no extra messages to be sent (i.e., the proof can be
  demonstrated using the {request, response, confirmation} triple of
  messages).

4.3.3.  Key Agreement Keys

  For key agreement keys, the end entity and the PKI management entity
  (i.e., CA or RA) must establish a shared secret key in order to prove
  that the end entity has possession of the private key.

  Note that this need not impose any restrictions on the keys that can
  be certified by a given CA.  In particular, for Diffie-Hellman keys
  the end entity may freely choose its algorithm parameters provided
  that the CA can generate a short-term (or one-time) key pair with the
  appropriate parameters when necessary.

4.4.  Root CA Key Update

  This discussion only applies to CAs that are directly trusted by some
  end entities.  Self-signed CAs SHALL be considered as directly
  trusted CAs.  Recognizing whether a non-self-signed CA is supposed to
  be directly trusted for some end entities is a matter of CA policy
  and is thus beyond the scope of this document.

  The basis of the procedure described here is that the CA protects its
  new public key using its previous private key and vice versa.  Thus,
  when a CA updates its key pair it must generate two extra
  cACertificate attribute values if certificates are made available
  using an X.500 directory (for a total of four: OldWithOld,
  OldWithNew, NewWithOld, and NewWithNew).

  When a CA changes its key pair, those entities who have acquired the
  old CA public key via "out-of-band" means are most affected.  It is
  these end entities who will need access to the new CA public key
  protected with the old CA private key.  However, they will only
  require this for a limited period (until they have acquired the new
  CA public key via the "out-of-band" mechanism).  This will typically
  be easily achieved when these end entities' certificates expire.






Adams, et al.               Standards Track                    [Page 19]

RFC 4210                          CMP                     September 2005


  The data structure used to protect the new and old CA public keys is
  a standard certificate (which may also contain extensions).  There
  are no new data structures required.

  Note 1.  This scheme does not make use of any of the X.509 v3
  extensions as it must be able to work even for version 1
  certificates.  The presence of the KeyIdentifier extension would make
  for efficiency improvements.

  Note 2.  While the scheme could be generalized to cover cases where
  the CA updates its key pair more than once during the validity period
  of one of its end entities' certificates, this generalization seems
  of dubious value.  Not having this generalization simply means that
  the validity periods of certificates issued with the old CA key pair
  cannot exceed the end of the OldWithNew validity period.

  Note 3.  This scheme ensures that end entities will acquire the new
  CA public key, at the latest by the expiry of the last certificate
  they owned that was signed with the old CA private key (via the
  "out-of-band" means).  Certificate and/or key update operations
  occurring at other times do not necessarily require this (depending
  on the end entity's equipment).

4.4.1.  CA Operator Actions

  To change the key of the CA, the CA operator does the following:

  1.  Generate a new key pair;

  2.  Create a certificate containing the old CA public key signed with
      the new private key (the "old with new" certificate);

  3.  Create a certificate containing the new CA public key signed with
      the old private key (the "new with old" certificate);

  4.  Create a certificate containing the new CA public key signed with
      the new private key (the "new with new" certificate);

  5.  Publish these new certificates via the repository and/or other
      means (perhaps using a CAKeyUpdAnn message);

  6.  Export the new CA public key so that end entities may acquire it
      using the "out-of-band" mechanism (if required).

  The old CA private key is then no longer required.  However, the old
  CA public key will remain in use for some time.  The old CA public
  key is no longer required (other than for non-repudiation) when all
  end entities of this CA have securely acquired the new CA public key.



Adams, et al.               Standards Track                    [Page 20]

RFC 4210                          CMP                     September 2005


  The "old with new" certificate must have a validity period starting
  at the generation time of the old key pair and ending at the expiry
  date of the old public key.

  The "new with old" certificate must have a validity period starting
  at the generation time of the new key pair and ending at the time by
  which all end entities of this CA will securely possess the new CA
  public key (at the latest, the expiry date of the old public key).

  The "new with new" certificate must have a validity period starting
  at the generation time of the new key pair and ending at or before
  the time by which the CA will next update its key pair.

4.4.2.  Verifying Certificates

  Normally when verifying a signature, the verifier verifies (among
  other things) the certificate containing the public key of the
  signer.  However, once a CA is allowed to update its key there are a
  range of new possibilities.  These are shown in the table below.

               Repository contains NEW     Repository contains only OLD
                 and OLD public keys        public key (due to, e.g.,
                                             delay in publication)

                  PSE      PSE Contains  PSE Contains    PSE Contains
               Contains     OLD public    NEW public      OLD public
              NEW public       key            key            key
                  key

   Signer's   Case 1:      Case 3:       Case 5:        Case 7:
   certifi-   This is      In this case  Although the   In this case
   cate is    the          the verifier  CA operator    the CA
   protected  standard     must access   has not        operator  has
   using NEW  case where   the           updated the    not updated
   public     the          repository in repository the the repository
   key        verifier     order to get  verifier can   and so the
              can          the value of  verify the     verification
              directly     the NEW       certificate    will FAIL
              verify the   public key    directly -
              certificate                this is thus
              without                    the same as
              using the                  case 1.
              repository








Adams, et al.               Standards Track                    [Page 21]

RFC 4210                          CMP                     September 2005


   Signer's   Case 2:      Case 4:       Case 6:        Case 8:
   certifi-   In this      In this case  The verifier   Although the
   cate is    case the     the verifier  thinks this    CA operator
   protected  verifier     can directly  is the         has not
   using OLD  must         verify the    situation of   updated the
   public     access the   certificate   case 2 and     repository the
   key        repository   without       will access    verifier can
              in order     using the     the            verify the
              to get the   repository    repository;    certificate
              value of                   however, the   directly -
              the OLD                    verification   this is thus
              public key                 will FAIL      the same as
                                                        case 4.

4.4.2.1.  Verification in Cases 1, 4, 5, and 8

  In these cases, the verifier has a local copy of the CA public key
  that can be used to verify the certificate directly.  This is the
  same as the situation where no key change has occurred.

  Note that case 8 may arise between the time when the CA operator has
  generated the new key pair and the time when the CA operator stores
  the updated attributes in the repository.  Case 5 can only arise if

  the CA operator has issued both the signer's and verifier's
  certificates during this "gap" (the CA operator SHOULD avoid this as
  it leads to the failure cases described below)

4.4.2.2.  Verification in Case 2

  In case 2, the verifier must get access to the old public key of the
  CA.  The verifier does the following:

  1.  Look up the caCertificate attribute in the repository and pick
      the OldWithNew certificate (determined based on validity periods;
      note that the subject and issuer fields must match);

  2.  Verify that this is correct using the new CA key (which the
      verifier has locally);

  3.  If correct, check the signer's certificate using the old CA key.

  Case 2 will arise when the CA operator has issued the signer's
  certificate, then changed the key, and then issued the verifier's
  certificate; so it is quite a typical case.






Adams, et al.               Standards Track                    [Page 22]

RFC 4210                          CMP                     September 2005


4.4.2.3.  Verification in Case 3

  In case 3, the verifier must get access to the new public key of the
  CA.  The verifier does the following:

  1.  Look up the CACertificate attribute in the repository and pick
      the NewWithOld certificate (determined based on validity periods;
      note that the subject and issuer fields must match);

  2.  Verify that this is correct using the old CA key (which the
      verifier has stored locally);

  3.  If correct, check the signer's certificate using the new CA key.

  Case 3 will arise when the CA operator has issued the verifier's
  certificate, then changed the key, and then issued the signer's
  certificate; so it is also quite a typical case.

4.4.2.4.  Failure of Verification in Case 6

  In this case, the CA has issued the verifier's PSE, which contains
  the new key, without updating the repository attributes.  This means
  that the verifier has no means to get a trustworthy version of the
  CA's old key and so verification fails.

  Note that the failure is the CA operator's fault.

4.4.2.5.  Failure of Verification in Case 7

  In this case, the CA has issued the signer's certificate protected
  with the new key without updating the repository attributes.  This
  means that the verifier has no means to get a trustworthy version of
  the CA's new key and so verification fails.

  Note that the failure is again the CA operator's fault.

4.4.3.  Revocation - Change of CA Key

  As we saw above, the verification of a certificate becomes more
  complex once the CA is allowed to change its key.  This is also true
  for revocation checks as the CA may have signed the CRL using a newer
  private key than the one within the user's PSE.

  The analysis of the alternatives is the same as for certificate
  verification.






Adams, et al.               Standards Track                    [Page 23]

RFC 4210                          CMP                     September 2005


5.  Data Structures

  This section contains descriptions of the data structures required
  for PKI management messages.  Section 6 describes constraints on
  their values and the sequence of events for each of the various PKI
  management operations.

5.1.  Overall PKI Message

  All of the messages used in this specification for the purposes of
  PKI management use the following structure:

     PKIMessage ::= SEQUENCE {
        header           PKIHeader,
        body             PKIBody,
        protection   [0] PKIProtection OPTIONAL,
        extraCerts   [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
                         OPTIONAL
    }
    PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

  The PKIHeader contains information that is common to many PKI
  messages.

  The PKIBody contains message-specific information.

  The PKIProtection, when used, contains bits that protect the PKI
  message.

  The extraCerts field can contain certificates that may be useful to
  the recipient.  For example, this can be used by a CA or RA to
  present an end entity with certificates that it needs to verify its
  own new certificate (if, for example, the CA that issued the end
  entity's certificate is not a root CA for the end entity).  Note that
  this field does not necessarily contain a certification path; the
  recipient may have to sort, select from, or otherwise process the
  extra certificates in order to use them.

5.1.1.  PKI Message Header

  All PKI messages require some header information for addressing and
  transaction identification.  Some of this information will also be
  present in a transport-specific envelope.  However, if the PKI
  message is protected, then this information is also protected (i.e.,
  we make no assumption about secure transport).






Adams, et al.               Standards Track                    [Page 24]

RFC 4210                          CMP                     September 2005


  The following data structure is used to contain this information:

    PKIHeader ::= SEQUENCE {
        pvno                INTEGER     { cmp1999(1), cmp2000(2) },
        sender              GeneralName,
        recipient           GeneralName,
        messageTime     [0] GeneralizedTime         OPTIONAL,
        protectionAlg   [1] AlgorithmIdentifier     OPTIONAL,
        senderKID       [2] KeyIdentifier           OPTIONAL,
        recipKID        [3] KeyIdentifier           OPTIONAL,
        transactionID   [4] OCTET STRING            OPTIONAL,
        senderNonce     [5] OCTET STRING            OPTIONAL,
        recipNonce      [6] OCTET STRING            OPTIONAL,
        freeText        [7] PKIFreeText             OPTIONAL,
        generalInfo     [8] SEQUENCE SIZE (1..MAX) OF
                            InfoTypeAndValue     OPTIONAL
    }
    PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String

  The pvno field is fixed (at 2) for this version of this
  specification.

  The sender field contains the name of the sender of the PKIMessage.
  This name (in conjunction with senderKID, if supplied) should be
  sufficient to indicate the key to use to verify the protection on the
  message.  If nothing about the sender is known to the sending entity
  (e.g., in the init. req. message, where the end entity may not know
  its own Distinguished Name (DN), e-mail name, IP address, etc.), then
  the "sender" field MUST contain a "NULL" value; that is, the SEQUENCE
  OF relative distinguished names is of zero length.  In such a case,
  the senderKID field MUST hold an identifier (i.e., a reference
  number) that indicates to the receiver the appropriate shared secret
  information to use to verify the message.

  The recipient field contains the name of the recipient of the
  PKIMessage.  This name (in conjunction with recipKID, if supplied)
  should be usable to verify the protection on the message.

  The protectionAlg field specifies the algorithm used to protect the
  message.  If no protection bits are supplied (note that PKIProtection
  is OPTIONAL) then this field MUST be omitted; if protection bits are
  supplied, then this field MUST be supplied.

  senderKID and recipKID are usable to indicate which keys have been
  used to protect the message (recipKID will normally only be required
  where protection of the message uses Diffie-Hellman (DH) keys).





Adams, et al.               Standards Track                    [Page 25]

RFC 4210                          CMP                     September 2005


  These fields MUST be used if required to uniquely identify a key
  (e.g., if more than one key is associated with a given sender name)
  and SHOULD be omitted otherwise.

  The transactionID field within the message header is to be used to
  allow the recipient of a message to correlate this with an ongoing
  transaction.  This is needed for all transactions that consist of
  more than just a single request/response pair.  For transactions that
  consist of a single request/response pair, the rules are as follows.
  A client MAY populate the transactionID field of the request.  If a
  server receives such a request that has the transactionID field set,
  then it MUST set the transactionID field of the response to the same
  value.  If a server receives such request with a missing
  transactionID field, then it MAY set transactionID field of the
  response.

  For transactions that consist of more than just a single
  request/response pair, the rules are as follows.  Clients SHOULD
  generate a transactionID for the first request.  If a server receives
  such a request that has the transactionID field set, then it MUST set
  the transactionID field of the response to the same value.  If a
  server receives such request with a missing transactionID field, then
  it MUST populate the transactionID field of the response with a
  server-generated ID.  Subsequent requests and responses MUST all set
  the transactionID field to the thus established value.  In all cases
  where a transactionID is being used, a given client MUST NOT have
  more than one transaction with the same transactionID in progress at
  any time (to a given server).  Servers are free to require uniqueness
  of the transactionID or not, as long as they are able to correctly
  associate messages with the corresponding transaction.  Typically,
  this means that a server will require the {client, transactionID}
  tuple to be unique, or even the transactionID alone to be unique, if
  it cannot distinguish clients based on transport-level information.
  A server receiving the first message of a transaction (which requires
  more than a single request/response pair) that contains a
  transactionID that does not allow it to meet the above constraints
  (typically because the transactionID is already in use) MUST send
  back an ErrorMsgContent with a PKIFailureInfo of transactionIdInUse.
  It is RECOMMENDED that the clients fill the transactionID field with
  128 bits of (pseudo-) random data for the start of a transaction to
  reduce the probability of having the transactionID in use at the
  server.

  The senderNonce and recipNonce fields protect the PKIMessage against
  replay attacks.  The senderNonce will typically be 128 bits of
  (pseudo-) random data generated by the sender, whereas the recipNonce
  is copied from the senderNonce of the previous message in the
  transaction.



Adams, et al.               Standards Track                    [Page 26]

RFC 4210                          CMP                     September 2005


  The messageTime field contains the time at which the sender created
  the message.  This may be useful to allow end entities to
  correct/check their local time for consistency with the time on a
  central system.

  The freeText field may be used to send a human-readable message to
  the recipient (in any number of languages).  The first language used
  in this sequence indicates the desired language for replies.

  The generalInfo field may be used to send machine-processable
  additional data to the recipient.  The following generalInfo
  extensions are defined and MAY be supported.

5.1.1.1.  ImplicitConfirm

  This is used by the EE to inform the CA that it does not wish to send
  a certificate confirmation for issued certificates.

        implicitConfirm OBJECT IDENTIFIER ::= {id-it 13}
        ImplicitConfirmValue ::= NULL

  If the CA grants the request to the EE, it MUST put the same
  extension in the PKIHeader of the response.  If the EE does not find
  the extension in the response, it MUST send the certificate
  confirmation.

5.1.1.2.  ConfirmWaitTime

  This is used by the CA to inform the EE how long it intends to wait
  for the certificate confirmation before revoking the certificate and
  deleting the transaction.

        confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14}
        ConfirmWaitTimeValue ::= GeneralizedTime

5.1.2.  PKI Message Body

       PKIBody ::= CHOICE {
         ir       [0]  CertReqMessages,       --Initialization Req
         ip       [1]  CertRepMessage,        --Initialization Resp
         cr       [2]  CertReqMessages,       --Certification Req
         cp       [3]  CertRepMessage,        --Certification Resp
         p10cr    [4]  CertificationRequest,  --PKCS #10 Cert.  Req.
         popdecc  [5]  POPODecKeyChallContent --pop Challenge
         popdecr  [6]  POPODecKeyRespContent, --pop Response
         kur      [7]  CertReqMessages,       --Key Update Request
         kup      [8]  CertRepMessage,        --Key Update Response
         krr      [9]  CertReqMessages,       --Key Recovery Req



Adams, et al.               Standards Track                    [Page 27]

RFC 4210                          CMP                     September 2005


         krp      [10] KeyRecRepContent,      --Key Recovery Resp
         rr       [11] RevReqContent,         --Revocation Request
         rp       [12] RevRepContent,         --Revocation Response
         ccr      [13] CertReqMessages,       --Cross-Cert.  Request
         ccp      [14] CertRepMessage,        --Cross-Cert.  Resp
         ckuann   [15] CAKeyUpdAnnContent,    --CA Key Update Ann.
         cann     [16] CertAnnContent,        --Certificate Ann.
         rann     [17] RevAnnContent,         --Revocation Ann.
         crlann   [18] CRLAnnContent,         --CRL Announcement
         pkiconf  [19] PKIConfirmContent,     --Confirmation
         nested   [20] NestedMessageContent,  --Nested Message
         genm     [21] GenMsgContent,         --General Message
         genp     [22] GenRepContent,         --General Response
         error    [23] ErrorMsgContent,       --Error Message
         certConf [24] CertConfirmContent,    --Certificate confirm
         pollReq  [25] PollReqContent,        --Polling request
         pollRep  [26] PollRepContent         --Polling response
         }

  The specific types are described in Section 5.3 below.

5.1.3.  PKI Message Protection

  Some PKI messages will be protected for integrity.  (Note that if an
  asymmetric algorithm is used to protect a message and the relevant
  public component has been certified already, then the origin of the
  message can also be authenticated.  On the other hand, if the public
  component is uncertified, then the message origin cannot be
  automatically authenticated, but may be authenticated via out-of-band
  means.)

  When protection is applied, the following structure is used:

       PKIProtection ::= BIT STRING

  The input to the calculation of PKIProtection is the DER encoding of
  the following data structure:

       ProtectedPart ::= SEQUENCE {
           header    PKIHeader,
           body      PKIBody
       }

  There MAY be cases in which the PKIProtection BIT STRING is
  deliberately not used to protect a message (i.e., this OPTIONAL field
  is omitted) because other protection, external to PKIX, will be
  applied instead.  Such a choice is explicitly allowed in this
  specification.  Examples of such external protection include PKCS #7



Adams, et al.               Standards Track                    [Page 28]

RFC 4210                          CMP                     September 2005


  [PKCS7] and Security Multiparts [RFC1847] encapsulation of the
  PKIMessage (or simply the PKIBody (omitting the CHOICE tag), if the
  relevant PKIHeader information is securely carried in the external
  mechanism).  It is noted, however, that many such external mechanisms
  require that the end entity already possesses a public-key
  certificate, and/or a unique Distinguished Name, and/or other such
  infrastructure-related information.  Thus, they may not be
  appropriate for initial registration, key-recovery, or any other
  process with "boot-strapping" characteristics.  For those cases it
  may be necessary that the PKIProtection parameter be used.  In the
  future, if/when external mechanisms are modified to accommodate
  boot-strapping scenarios, the use of PKIProtection may become rare or
  non-existent.

  Depending on the circumstances, the PKIProtection bits may contain a
  Message Authentication Code (MAC) or signature.  Only the following
  cases can occur:

5.1.3.1.  Shared Secret Information

  In this case, the sender and recipient share secret information
  (established via out-of-band means or from a previous PKI management
  operation).  PKIProtection will contain a MAC value and the
  protectionAlg will be the following (see also Appendix D.2):

    id-PasswordBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 13}
    PBMParameter ::= SEQUENCE {
      salt                OCTET STRING,
      owf                 AlgorithmIdentifier,
      iterationCount      INTEGER,
      mac                 AlgorithmIdentifier
    }

  In the above protectionAlg, the salt value is appended to the shared
  secret input.  The OWF is then applied iterationCount times, where
  the salted secret is the input to the first iteration and, for each
  successive iteration, the input is set to be the output of the
  previous iteration.  The output of the final iteration (called
  "BASEKEY" for ease of reference, with a size of "H") is what is used
  to form the symmetric key.  If the MAC algorithm requires a K-bit key
  and K <= H, then the most significant K bits of BASEKEY are used.  If
  K > H, then all of BASEKEY is used for the most significant H bits of
  the key, OWF("1" || BASEKEY) is used for the next most significant H
  bits of the key, OWF("2" || BASEKEY) is used for the next most
  significant H bits of the key, and so on, until all K bits have been
  derived.  [Here "N" is the ASCII byte encoding the number N and "||"
  represents concatenation.]




Adams, et al.               Standards Track                    [Page 29]

RFC 4210                          CMP                     September 2005


  Note: it is RECOMMENDED that the fields of PBMParameter remain
  constant throughout the messages of a single transaction (e.g.,
  ir/ip/certConf/pkiConf) in order to reduce the overhead associated
  with PasswordBasedMac computation).

5.1.3.2.  DH Key Pairs

  Where the sender and receiver possess Diffie-Hellman certificates
  with compatible DH parameters, in order to protect the message the
  end entity must generate a symmetric key based on its private DH key
  value and the DH public key of the recipient of the PKI message.
  PKIProtection will contain a MAC value keyed with this derived
  symmetric key and the protectionAlg will be the following:

       id-DHBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 30}

       DHBMParameter ::= SEQUENCE {
           owf                 AlgorithmIdentifier,
           -- AlgId for a One-Way Function (SHA-1 recommended)
           mac                 AlgorithmIdentifier
           -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
       }   -- or HMAC [RFC2104, RFC2202])

  In the above protectionAlg, OWF is applied to the result of the
  Diffie-Hellman computation.  The OWF output (called "BASEKEY" for
  ease of reference, with a size of "H") is what is used to form the
  symmetric key.  If the MAC algorithm requires a K-bit key and K <= H,
  then the most significant K bits of BASEKEY are used.  If K > H, then
  all of BASEKEY is used for the most significant H bits of the key,
  OWF("1" || BASEKEY) is used for the next most significant H bits of
  the key, OWF("2" || BASEKEY) is used for the next most significant H
  bits of the key, and so on, until all K bits have been derived.
  [Here "N" is the ASCII byte encoding the number N and "||" represents
  concatenation.]

5.1.3.3.  Signature

  In this case, the sender possesses a signature key pair and simply
  signs the PKI message.  PKIProtection will contain the signature
  value and the protectionAlg will be an AlgorithmIdentifier for a
  digital signature (e.g., md5WithRSAEncryption or dsaWithSha-1).

5.1.3.4.  Multiple Protection

  In cases where an end entity sends a protected PKI message to an RA,
  the RA MAY forward that message to a CA, attaching its own protection
  (which MAY be a MAC or a signature, depending on the information and
  certificates shared between the RA and the CA).  This is accomplished



Adams, et al.               Standards Track                    [Page 30]

RFC 4210                          CMP                     September 2005


  by nesting the entire message sent by the end entity within a new PKI
  message.  The structure used is as follows.

         NestedMessageContent ::= PKIMessages

  (The use of PKIMessages, a SEQUENCE OF PKIMessage, lets the RA batch
  the requests of several EEs in a single new message.  For simplicity,
  all messages in the batch MUST be of the same type (e.g., ir).)  If
  the RA wishes to modify the message(s) in some way (e.g., add
  particular field values or new extensions), then it MAY create its
  own desired PKIBody.  The original PKIMessage from the EE MAY be
  included in the generalInfo field of PKIHeader (to accommodate, for
  example, cases in which the CA wishes to check POP or other
  information on the original EE message).  The infoType to be used in
  this situation is {id-it 15} (see Section 5.3.19 for the value of
  id-it) and the infoValue is PKIMessages (contents MUST be in the same
  order as the requests in PKIBody).

5.2.  Common Data Structures

  Before specifying the specific types that may be placed in a PKIBody,
  we define some data structures that are used in more than one case.

5.2.1.  Requested Certificate Contents

  Various PKI management messages require that the originator of the
  message indicate some of the fields that are required to be present
  in a certificate.  The CertTemplate structure allows an end entity or
  RA to specify as much as it wishes about the certificate it requires.
  CertTemplate is identical to a Certificate, but with all fields
  optional.

  Note that even if the originator completely specifies the contents of
  a certificate it requires, a CA is free to modify fields within the
  certificate actually issued.  If the modified certificate is
  unacceptable to the requester, the requester MUST send back a
  certConf message that either does not include this certificate (via a
  CertHash), or does include this certificate (via a CertHash) along
  with a status of "rejected".  See Section 5.3.18 for the definition
  and use of CertHash and the certConf message.

  See Appendix C and [CRMF] for CertTemplate syntax.

5.2.2.  Encrypted Values

  Where encrypted values (restricted, in this specification, to be
  either private keys or certificates) are sent in PKI messages, the
  EncryptedValue data structure is used.



Adams, et al.               Standards Track                    [Page 31]

RFC 4210                          CMP                     September 2005


  See [CRMF] for EncryptedValue syntax.

  Use of this data structure requires that the creator and intended
  recipient be able to encrypt and decrypt, respectively.  Typically,
  this will mean that the sender and recipient have, or are able to
  generate, a shared secret key.

  If the recipient of the PKIMessage already possesses a private key
  usable for decryption, then the encSymmKey field MAY contain a
  session key encrypted using the recipient's public key.

5.2.3.  Status codes and Failure Information for PKI Messages

  All response messages will include some status information.  The
  following values are defined.

       PKIStatus ::= INTEGER {
           accepted               (0),
           grantedWithMods        (1),
           rejection              (2),
           waiting                (3),
           revocationWarning      (4),
           revocationNotification (5),
           keyUpdateWarning       (6)
       }

  Responders may use the following syntax to provide more information
  about failure cases.

       PKIFailureInfo ::= BIT STRING {
           badAlg              (0),
           badMessageCheck     (1),
           badRequest          (2),
           badTime             (3),
           badCertId           (4),
           badDataFormat       (5),
           wrongAuthority      (6),
           incorrectData       (7),
           missingTimeStamp    (8),
           badPOP              (9),
           certRevoked         (10),
           certConfirmed       (11),
           wrongIntegrity      (12),
           badRecipientNonce   (13),
           timeNotAvailable    (14),
           unacceptedPolicy    (15),
           unacceptedExtension (16),
           addInfoNotAvailable (17),



Adams, et al.               Standards Track                    [Page 32]

RFC 4210                          CMP                     September 2005


           badSenderNonce      (18),
           badCertTemplate     (19),
           signerNotTrusted    (20),
           transactionIdInUse  (21),
           unsupportedVersion  (22),
           notAuthorized       (23),
           systemUnavail       (24),
           systemFailure       (25),
           duplicateCertReq    (26)
       }

       PKIStatusInfo ::= SEQUENCE {
           status        PKIStatus,
           statusString  PKIFreeText     OPTIONAL,
           failInfo      PKIFailureInfo  OPTIONAL
       }

5.2.4.  Certificate Identification

  In order to identify particular certificates, the CertId data
  structure is used.

  See [CRMF] for CertId syntax.

5.2.5.  Out-of-band root CA Public Key

  Each root CA must be able to publish its current public key via some
  "out-of-band" means.  While such mechanisms are beyond the scope of
  this document, we define data structures that can support such
  mechanisms.

  There are generally two methods available: either the CA directly
  publishes its self-signed certificate, or this information is
  available via the Directory (or equivalent) and the CA publishes a
  hash of this value to allow verification of its integrity before use.

       OOBCert ::= Certificate

  The fields within this certificate are restricted as follows:

  o  The certificate MUST be self-signed (i.e., the signature must be
     verifiable using the SubjectPublicKeyInfo field);

  o  The subject and issuer fields MUST be identical;

  o  If the subject field is NULL, then both subjectAltNames and
     issuerAltNames extensions MUST be present and have exactly the
     same value;



Adams, et al.               Standards Track                    [Page 33]

RFC 4210                          CMP                     September 2005


  o  The values of all other extensions must be suitable for a self-
     signed certificate (e.g., key identifiers for subject and issuer
     must be the same).

       OOBCertHash ::= SEQUENCE {
           hashAlg     [0] AlgorithmIdentifier     OPTIONAL,
           certId      [1] CertId                  OPTIONAL,
           hashVal         BIT STRING
       }

  The intention of the hash value is that anyone who has securely
  received the hash value (via the out-of-band means) can verify a
  self-signed certificate for that CA.

5.2.6.  Archive Options

  Requesters may indicate that they wish the PKI to archive a private
  key value using the PKIArchiveOptions structure.

  See [CRMF] for PKIArchiveOptions syntax.

5.2.7.  Publication Information

  Requesters may indicate that they wish the PKI to publish a
  certificate using the PKIPublicationInfo structure.

  See [CRMF] for PKIPublicationInfo syntax.

5.2.8.  Proof-of-Possession Structures

  If the certification request is for a signing key pair (i.e., a
  request for a verification certificate), then the proof-of-possession
  of the private signing key is demonstrated through use of the
  POPOSigningKey structure.

  See Appendix C and [CRMF] for POPOSigningKey syntax, but note that
  POPOSigningKeyInput has the following semantic stipulations in this
  specification.

       POPOSigningKeyInput ::= SEQUENCE {
           authInfo            CHOICE {
               sender              [0] GeneralName,
               publicKeyMAC            PKMACValue
           },
           publicKey           SubjectPublicKeyInfo
       }





Adams, et al.               Standards Track                    [Page 34]

RFC 4210                          CMP                     September 2005


  On the other hand, if the certification request is for an encryption
  key pair (i.e., a request for an encryption certificate), then the
  proof-of-possession of the private decryption key may be demonstrated
  in one of three ways.

5.2.8.1.  Inclusion of the Private Key

  By the inclusion of the private key (encrypted) in the CertRequest
  (in the thisMessage field of POPOPrivKey (see Appendix C) or in the
  PKIArchiveOptions control structure, depending upon whether or not
  archival of the private key is also desired).

5.2.8.2.  Indirect Method

  By having the CA return not the certificate, but an encrypted
  certificate (i.e., the certificate encrypted under a randomly-
  generated symmetric key, and the symmetric key encrypted under the
  public key for which the certification request is being made) -- this
  is the "indirect" method mentioned previously in Section 4.3.2. The
  end entity proves knowledge of the private decryption key to the CA
  by providing the correct CertHash for this certificate in the
  certConf message.  This demonstrates POP because the EE can only
  compute the correct CertHash if it is able to recover the
  certificate, and it can only recover the certificate if it is able to
  decrypt the symmetric key using the required private key.  Clearly,
  for this to work, the CA MUST NOT publish the certificate until the
  certConf message arrives (when certHash is to be used to demonstrate
  POP).  See Section 5.3.18 for further details.

5.2.8.3.  Challenge-Response Protocol

  By having the end entity engage in a challenge-response protocol
  (using the messages POPODecKeyChall and POPODecKeyResp; see below)
  between CertReqMessages and CertRepMessage -- this is the "direct"
  method mentioned previously in Section 4.3.2.  (This method would
  typically be used in an environment in which an RA verifies POP and
  then makes a certification request to the CA on behalf of the end
  entity.  In such a scenario, the CA trusts the RA to have done POP
  correctly before the RA requests a certificate for the end entity.)
  The complete protocol then looks as follows (note that req' does not
  necessarily encapsulate req as a nested message):










Adams, et al.               Standards Track                    [Page 35]

RFC 4210                          CMP                     September 2005


                  EE            RA            CA
                   ---- req ---->
                   <--- chall ---
                   ---- resp --->
                                 ---- req' --->
                                 <--- rep -----
                                 ---- conf --->
                                 <--- ack -----
                   <--- rep -----
                   ---- conf --->
                   <--- ack -----

  This protocol is obviously much longer than the 3-way exchange given
  in choice (2) above, but allows a local Registration Authority to be
  involved and has the property that the certificate itself is not
  actually created until the proof-of-possession is complete.  In some
  environments, a different order of the above messages may be
  required, such as the following (this may be determined by policy):

                  EE            RA            CA
                   ---- req ---->
                   <--- chall ---
                   ---- resp --->
                                 ---- req' --->
                                 <--- rep -----
                   <--- rep -----
                   ---- conf --->
                                 ---- conf --->
                                 <--- ack -----
                   <--- ack -----

  If the cert. request is for a key agreement key (KAK) pair, then the
  POP can use any of the 3 ways described above for enc. key pairs,
  with the following changes: (1) the parenthetical text of bullet 2)
  is replaced with "(i.e., the certificate encrypted under the
  symmetric key derived from the CA's private KAK and the public key
  for which the certification request is being made)"; (2) the first
  parenthetical text of the challenge field of "Challenge" below is
  replaced with "(using PreferredSymmAlg (see Section 5.3.19.4 and
  Appendix E.5) and a symmetric key derived from the CA's private KAK
  and the public key for which the certification request is being
  made)".  Alternatively, the POP can use the POPOSigningKey structure
  given in [CRMF] (where the alg field is DHBasedMAC and the signature
  field is the MAC) as a fourth alternative for demonstrating POP if
  the CA already has a D-H certificate that is known to the EE.






Adams, et al.               Standards Track                    [Page 36]

RFC 4210                          CMP                     September 2005


  The challenge-response messages for proof-of-possession of a private
  decryption key are specified as follows (see [MvOV97], p.404 for
  details).  Note that this challenge-response exchange is associated
  with the preceding cert. request message (and subsequent cert.
  response and confirmation messages) by the transactionID used in the
  PKIHeader and by the protection (MACing or signing) applied to the
  PKIMessage.

       POPODecKeyChallContent ::= SEQUENCE OF Challenge
       Challenge ::= SEQUENCE {
           owf                 AlgorithmIdentifier  OPTIONAL,
           witness             OCTET STRING,
           challenge           OCTET STRING
       }

  Note that the size of Rand needs to be appropriate for encryption
  under the public key of the requester.  Given that "int" will
  typically not be longer than 64 bits, this leaves well over 100 bytes
  of room for the "sender" field when the modulus is 1024 bits.  If, in
  some environment, names are so long that they cannot fit (e.g., very
  long DNs), then whatever portion will fit should be used (as long as
  it includes at least the common name, and as long as the receiver is
  able to deal meaningfully with the abbreviation).

       POPODecKeyRespContent ::= SEQUENCE OF INTEGER

5.2.8.4.  Summary of PoP Options

  The text in this section provides several options with respect to POP
  techniques.  Using "SK" for "signing key", "EK" for "encryption key",
  and "KAK" for "key agreement key", the techniques may be summarized
  as follows:

        RAVerified;
        SKPOP;
        EKPOPThisMessage;
        KAKPOPThisMessage;
        KAKPOPThisMessageDHMAC;
        EKPOPEncryptedCert;
        KAKPOPEncryptedCert;
        EKPOPChallengeResp; and
        KAKPOPChallengeResp.

  Given this array of options, it is natural to ask how an end entity
  can know what is supported by the CA/RA (i.e., which options it may
  use when requesting certificates).  The following guidelines should
  clarify this situation for EE implementers.




Adams, et al.               Standards Track                    [Page 37]

RFC 4210                          CMP                     September 2005


  RAVerified.  This is not an EE decision; the RA uses this if and only
  if it has verified POP before forwarding the request on to the CA, so
  it is not possible for the EE to choose this technique.

  SKPOP.  If the EE has a signing key pair, this is the only POP method
  specified for use in the request for a corresponding certificate.

  EKPOPThisMessage and KAKPOPThisMessage.  Whether or not to give up
  its private key to the CA/RA is an EE decision.  If the EE decides to
  reveal its key, then these are the only POP methods available in this
  specification to achieve this (and the key pair type will determine
  which of these two methods to use).

  KAKPOPThisMessageDHMAC.  The EE can only use this method if (1) the
  CA has a DH certificate available for this purpose, and (2) the EE
  already has a copy of this certificate.  If both these conditions
  hold, then this technique is clearly supported and may be used by the
  EE, if desired.

  EKPOPEncryptedCert, KAKPOPEncryptedCert, EKPOPChallengeResp,
  KAKPOPChallengeResp.  The EE picks one of these (in the
  subsequentMessage field) in the request message, depending upon
  preference and key pair type.  The EE is not doing POP at this point;
  it is simply indicating which method it wants to use.  Therefore, if
  the CA/RA replies with a "badPOP" error, the EE can re-request using
  the other POP method chosen in subsequentMessage.  Note, however,
  that this specification encourages the use of the EncryptedCert
  choice and, furthermore, says that the challenge-response would
  typically be used when an RA is involved and doing POP verification.
  Thus, the EE should be able to make an intelligent decision regarding
  which of these POP methods to choose in the request message.

5.3.  Operation-Specific Data Structures

5.3.1.  Initialization Request

  An Initialization request message contains as the PKIBody a
  CertReqMessages data structure, which specifies the requested
  certificate(s).  Typically, SubjectPublicKeyInfo, KeyId, and Validity
  are the template fields which may be supplied for each certificate
  requested (see Appendix D profiles for further information).  This
  message is intended to be used for entities when first initializing
  into the PKI.

  See Appendix C and [CRMF] for CertReqMessages syntax.






Adams, et al.               Standards Track                    [Page 38]

RFC 4210                          CMP                     September 2005


5.3.2.  Initialization Response

  An Initialization response message contains as the PKIBody an
  CertRepMessage data structure, which has for each certificate
  requested a PKIStatusInfo field, a subject certificate, and possibly
  a private key (normally encrypted with a session key, which is itself
  encrypted with the protocolEncrKey).

  See Section 5.3.4 for CertRepMessage syntax.  Note that if the PKI
  Message Protection is "shared secret information" (see Section
  5.1.3), then any certificate transported in the caPubs field may be
  directly trusted as a root CA certificate by the initiator.

5.3.3.  Certification Request

  A Certification request message contains as the PKIBody a
  CertReqMessages data structure, which specifies the requested
  certificates.  This message is intended to be used for existing PKI
  entities who wish to obtain additional certificates.

  See Appendix C and [CRMF] for CertReqMessages syntax.

  Alternatively, the PKIBody MAY be a CertificationRequest (this
  structure is fully specified by the ASN.1 structure
  CertificationRequest given in [PKCS10]).  This structure may be
  required for certificate requests for signing key pairs when
  interoperation with legacy systems is desired, but its use is
  strongly discouraged whenever not absolutely necessary.

5.3.4.  Certification Response

  A Certification response message contains as the PKIBody a
  CertRepMessage data structure, which has a status value for each
  certificate requested, and optionally has a CA public key, failure
  information, a subject certificate, and an encrypted private key.

    CertRepMessage ::= SEQUENCE {
        caPubs          [1] SEQUENCE SIZE (1..MAX) OF Certificate
                            OPTIONAL,
        response            SEQUENCE OF CertResponse
    }

    CertResponse ::= SEQUENCE {
        certReqId           INTEGER,
        status              PKIStatusInfo,
        certifiedKeyPair    CertifiedKeyPair    OPTIONAL,
        rspInfo             OCTET STRING        OPTIONAL
        -- analogous to the id-regInfo-utf8Pairs string defined



Adams, et al.               Standards Track                    [Page 39]

RFC 4210                          CMP                     September 2005


        -- for regInfo in CertReqMsg [CRMF]
    }

    CertifiedKeyPair ::= SEQUENCE {
        certOrEncCert       CertOrEncCert,
        privateKey      [0] EncryptedValue      OPTIONAL,
        -- see [CRMF] for comment on encoding
        publicationInfo [1] PKIPublicationInfo  OPTIONAL
    }

    CertOrEncCert ::= CHOICE {
        certificate     [0] Certificate,
        encryptedCert   [1] EncryptedValue
    }

  Only one of the failInfo (in PKIStatusInfo) and certificate (in
  CertifiedKeyPair) fields can be present in each CertResponse
  (depending on the status).  For some status values (e.g., waiting),
  neither of the optional fields will be present.

  Given an EncryptedCert and the relevant decryption key, the
  certificate may be obtained.  The purpose of this is to allow a CA to
  return the value of a certificate, but with the constraint that only
  the intended recipient can obtain the actual certificate.  The
  benefit of this approach is that a CA may reply with a certificate
  even in the absence of a proof that the requester is the end entity
  that can use the relevant private key (note that the proof is not
  obtained until the certConf message is received by the CA).  Thus,
  the CA will not have to revoke that certificate in the event that
  something goes wrong with the proof-of-possession (but MAY do so
  anyway, depending upon policy).

5.3.5.  Key Update Request Content

  For key update requests the CertReqMessages syntax is used.
  Typically, SubjectPublicKeyInfo, KeyId, and Validity are the template
  fields that may be supplied for each key to be updated.  This message
  is intended to be used to request updates to existing (non-revoked
  and non-expired) certificates (therefore, it is sometimes referred to
  as a "Certificate Update" operation).  An update is a replacement
  certificate containing either a new subject public key or the current
  subject public key (although the latter practice may not be
  appropriate for some environments).

  See Appendix C and [CRMF] for CertReqMessages syntax.






Adams, et al.               Standards Track                    [Page 40]

RFC 4210                          CMP                     September 2005


5.3.6.  Key Update Response Content

  For key update responses, the CertRepMessage syntax is used.  The
  response is identical to the initialization response.

  See Section 5.3.4 for CertRepMessage syntax.

5.3.7.  Key Recovery Request Content

  For key recovery requests the syntax used is identical to the
  initialization request CertReqMessages.  Typically,
  SubjectPublicKeyInfo and KeyId are the template fields that may be
  used to supply a signature public key for which a certificate is
  required (see Appendix D profiles for further information).

  See Appendix C and [CRMF] for CertReqMessages syntax.  Note that if a
  key history is required, the requester must supply a Protocol
  Encryption Key control in the request message.

5.3.8.  Key Recovery Response Content

  For key recovery responses, the following syntax is used.  For some
  status values (e.g., waiting) none of the optional fields will be
  present.

   KeyRecRepContent ::= SEQUENCE {
       status          PKIStatusInfo,
       newSigCert  [0] Certificate                   OPTIONAL,
       caCerts     [1] SEQUENCE SIZE (1..MAX) OF
                                    Certificate      OPTIONAL,
       keyPairHist [2] SEQUENCE SIZE (1..MAX) OF
                                    CertifiedKeyPair OPTIONAL
   }

5.3.9.  Revocation Request Content

  When requesting revocation of a certificate (or several
  certificates), the following data structure is used.  The name of the
  requester is present in the PKIHeader structure.

   RevReqContent ::= SEQUENCE OF RevDetails

   RevDetails ::= SEQUENCE {
       certDetails         CertTemplate,
       crlEntryDetails     Extensions       OPTIONAL
   }





Adams, et al.               Standards Track                    [Page 41]

RFC 4210                          CMP                     September 2005


5.3.10.  Revocation Response Content

  The revocation response is the response to the above message.  If
  produced, this is sent to the requester of the revocation.  (A
  separate revocation announcement message MAY be sent to the subject
  of the certificate for which revocation was requested.)

    RevRepContent ::= SEQUENCE {
        status        SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
        revCerts  [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL,
        crls      [1] SEQUENCE SIZE (1..MAX) OF CertificateList
                      OPTIONAL
    }

5.3.11.  Cross Certification Request Content

  Cross certification requests use the same syntax (CertReqMessages) as
  normal certification requests, with the restriction that the key pair
  MUST have been generated by the requesting CA and the private key
  MUST NOT be sent to the responding CA.  This request MAY also be used
  by subordinate CAs to get their certificates signed by the parent CA.

  See Appendix C and [CRMF] for CertReqMessages syntax.

5.3.12.  Cross Certification Response Content

  Cross certification responses use the same syntax (CertRepMessage) as
  normal certification responses, with the restriction that no
  encrypted private key can be sent.

  See Section 5.3.4 for CertRepMessage syntax.

5.3.13.  CA Key Update Announcement Content

  When a CA updates its own key pair, the following data structure MAY
  be used to announce this event.

   CAKeyUpdAnnContent ::= SEQUENCE {
      oldWithNew         Certificate,
      newWithOld         Certificate,
      newWithNew         Certificate
   }









Adams, et al.               Standards Track                    [Page 42]

RFC 4210                          CMP                     September 2005


5.3.14.  Certificate Announcement

  This structure MAY be used to announce the existence of certificates.

  Note that this message is intended to be used for those cases (if
  any) where there is no pre-existing method for publication of
  certificates; it is not intended to be used where, for example, X.500
  is the method for publication of certificates.

       CertAnnContent ::= Certificate

5.3.15.  Revocation Announcement

  When a CA has revoked, or is about to revoke, a particular
  certificate, it MAY issue an announcement of this (possibly upcoming)
  event.

       RevAnnContent ::= SEQUENCE {
           status              PKIStatus,
           certId              CertId,
           willBeRevokedAt     GeneralizedTime,
           badSinceDate        GeneralizedTime,
           crlDetails          Extensions  OPTIONAL
       }

  A CA MAY use such an announcement to warn (or notify) a subject that
  its certificate is about to be (or has been) revoked.  This would
  typically be used where the request for revocation did not come from
  the subject concerned.

  The willBeRevokedAt field contains the time at which a new entry will
  be added to the relevant CRLs.

5.3.16.  CRL Announcement

  When a CA issues a new CRL (or set of CRLs) the following data
  structure MAY be used to announce this event.

       CRLAnnContent ::= SEQUENCE OF CertificateList

5.3.17.  PKI Confirmation Content

  This data structure is used in the protocol exchange as the final
  PKIMessage.  Its content is the same in all cases -- actually there
  is no content since the PKIHeader carries all the required
  information.

       PKIConfirmContent ::= NULL



Adams, et al.               Standards Track                    [Page 43]

RFC 4210                          CMP                     September 2005


  Use of this message for certificate confirmation is NOT RECOMMENDED;
  certConf SHOULD be used instead.  Upon receiving a PKIConfirm for a
  certificate response, the recipient MAY treat it as a certConf with
  all certificates being accepted.

5.3.18.  Certificate Confirmation Content

  This data structure is used by the client to send a confirmation to
  the CA/RA to accept or reject certificates.

        CertConfirmContent ::= SEQUENCE OF CertStatus

        CertStatus ::= SEQUENCE {
           certHash    OCTET STRING,
           certReqId   INTEGER,
           statusInfo  PKIStatusInfo OPTIONAL
        }

  For any particular CertStatus, omission of the statusInfo field
  indicates ACCEPTANCE of the specified certificate.  Alternatively,
  explicit status details (with respect to acceptance or rejection) MAY
  be provided in the statusInfo field, perhaps for auditing purposes at
  the CA/RA.

  Within CertConfirmContent, omission of a CertStatus structure
  corresponding to a certificate supplied in the previous response
  message indicates REJECTION of the certificate.  Thus, an empty
  CertConfirmContent (a zero-length SEQUENCE) MAY be used to indicate
  rejection of all supplied certificates.  See Section 5.2.8, item (2),
  for a discussion of the certHash field with respect to proof-of-
  possession.

5.3.19.  PKI General Message Content

    InfoTypeAndValue ::= SEQUENCE {
        infoType               OBJECT IDENTIFIER,
        infoValue              ANY DEFINED BY infoType  OPTIONAL
    }
    -- where {id-it} = {id-pkix 4} = {1 3 6 1 5 5 7 4}
    GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

5.3.19.1.  CA Protocol Encryption Certificate

  This MAY be used by the EE to get a certificate from the CA to use to
  protect sensitive information during the protocol.






Adams, et al.               Standards Track                    [Page 44]

RFC 4210                          CMP                     September 2005


     GenMsg:    {id-it 1}, < absent >
     GenRep:    {id-it 1}, Certificate | < absent >

  EEs MUST ensure that the correct certificate is used for this
  purpose.

5.3.19.2.  Signing Key Pair Types

  This MAY be used by the EE to get the list of signature algorithms
  (e.g., RSA, DSA) whose subject public key values the CA is willing to
  certify.  Note that for the purposes of this exchange, rsaEncryption
  and rsaWithSHA1, for example, are considered to be equivalent; the
  question being asked is, "Is the CA willing to certify an RSA public
  key?"

     GenMsg:    {id-it 2}, < absent >
     GenRep:    {id-it 2}, SEQUENCE SIZE (1..MAX) OF
                           AlgorithmIdentifier

5.3.19.3.  Encryption/Key Agreement Key Pair Types

  This MAY be used by the client to get the list of encryption/key
  agreement algorithms whose subject public key values the CA is
  willing to certify.

     GenMsg:    {id-it 3}, < absent >
     GenRep:    {id-it 3}, SEQUENCE SIZE (1..MAX) OF
                           AlgorithmIdentifier

5.3.19.4.  Preferred Symmetric Algorithm

  This MAY be used by the client to get the CA-preferred symmetric
  encryption algorithm for any confidential information that needs to
  be exchanged between the EE and the CA (for example, if the EE wants
  to send its private decryption key to the CA for archival purposes).

     GenMsg:    {id-it 4}, < absent >
     GenRep:    {id-it 4}, AlgorithmIdentifier

5.3.19.5.  Updated CA Key Pair

  This MAY be used by the CA to announce a CA key update event.

     GenMsg:    {id-it 5}, CAKeyUpdAnnContent







Adams, et al.               Standards Track                    [Page 45]

RFC 4210                          CMP                     September 2005


5.3.19.6.  CRL

  This MAY be used by the client to get a copy of the latest CRL.

     GenMsg:    {id-it 6}, < absent >
     GenRep:    {id-it 6}, CertificateList

5.3.19.7.  Unsupported Object Identifiers

  This is used by the server to return a list of object identifiers
  that it does not recognize or support from the list submitted by the
  client.

     GenRep:    {id-it 7}, SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

5.3.19.8.  Key Pair Parameters

  This MAY be used by the EE to request the domain parameters to use
  for generating the key pair for certain public-key algorithms.  It
  can be used, for example, to request the appropriate P, Q, and G to
  generate the DH/DSA key, or to request a set of well-known elliptic
  curves.

     GenMsg:    {id-it 10}, OBJECT IDENTIFIER -- (Algorithm object-id)
     GenRep:    {id-it 11}, AlgorithmIdentifier | < absent >

  An absent infoValue in the GenRep indicates that the algorithm
  specified in GenMsg is not supported.

  EEs MUST ensure that the parameters are acceptable to it and that the
  GenRep message is authenticated (to avoid substitution attacks).

5.3.19.9.  Revocation Passphrase

  This MAY be used by the EE to send a passphrase to a CA/RA for the
  purpose of authenticating a later revocation request (in the case
  that the appropriate signing private key is no longer available to
  authenticate the request).  See Appendix B for further details on the
  use of this mechanism.

     GenMsg:    {id-it 12}, EncryptedValue
     GenRep:    {id-it 12}, < absent >

5.3.19.10.  ImplicitConfirm

  See Section 5.1.1.1 for the definition and use of {id-it 13}.





Adams, et al.               Standards Track                    [Page 46]

RFC 4210                          CMP                     September 2005


5.3.19.11.  ConfirmWaitTime

  See Section 5.1.1.2 for the definition and use of {id-it 14}.

5.3.19.12 Original PKIMessage

  See Section 5.1.3 for the definition and use of {id-it 15}.

5.3.19.13.  Supported Language Tags

  This MAY be used to determine the appropriate language tag to use in
  subsequent messages.  The sender sends its list of supported
  languages (in order, most preferred to least); the receiver returns
  the one it wishes to use.  (Note: each UTF8String MUST include a
  language tag.)  If none of the offered tags are supported, an error
  MUST be returned.

     GenMsg:    {id-it 16}, SEQUENCE SIZE (1..MAX) OF UTF8String
     GenRep:    {id-it 16}, SEQUENCE SIZE (1) OF UTF8String

5.3.20.  PKI General Response Content

     GenRepContent ::= SEQUENCE OF InfoTypeAndValue

  Examples of GenReps that MAY be supported include those listed in the
  subsections of Section 5.3.19.

5.3.21.  Error Message Content

  This data structure MAY be used by EE, CA, or RA to convey error
  info.

   ErrorMsgContent ::= SEQUENCE {
       pKIStatusInfo          PKIStatusInfo,
       errorCode              INTEGER           OPTIONAL,
       errorDetails           PKIFreeText       OPTIONAL
   }

  This message MAY be generated at any time during a PKI transaction.
  If the client sends this request, the server MUST respond with a
  PKIConfirm response, or another ErrorMsg if any part of the header is
  not valid.  Both sides MUST treat this message as the end of the
  transaction (if a transaction is in progress).

  If protection is desired on the message, the client MUST protect it
  using the same technique (i.e., signature or MAC) as the starting
  message of the transaction.  The CA MUST always sign it with a
  signature key.



Adams, et al.               Standards Track                    [Page 47]

RFC 4210                          CMP                     September 2005


5.3.22.  Polling Request and Response

  This pair of messages is intended to handle scenarios in which the
  client needs to poll the server in order to determine the status of
  an outstanding ir, cr, or kur transaction (i.e., when the "waiting"
  PKIStatus has been received).

   PollReqContent ::= SEQUENCE OF SEQUENCE {
       certReqId    INTEGER }

   PollRepContent ::= SEQUENCE OF SEQUENCE {
       certReqId    INTEGER,
       checkAfter   INTEGER,  -- time in seconds
       reason       PKIFreeText OPTIONAL }

  The following clauses describe when polling messages are used, and
  how they are used.  It is assumed that multiple certConf messages can
  be sent during transactions.  There will be one sent in response to
  each ip, cp, or kup that contains a CertStatus for an issued
  certificate.

  1.  In response to an ip, cp, or kup message, an EE will send a
      certConf for all issued certificates and, following the ack, a
      pollReq for all pending certificates.

  2.  In response to a pollReq, a CA/RA will return an ip, cp, or kup
      if one or more of the pending certificates is ready; otherwise,
      it will return a pollRep.

  3.  If the EE receives a pollRep, it will wait for at least as long
      as the checkAfter value before sending another pollReq.

  4.  If an ip, cp, or kup is received in response to a pollReq, then
      it will be treated in the same way as the initial response.

















Adams, et al.               Standards Track                    [Page 48]

RFC 4210                          CMP                     September 2005


                              START
                                |
                                v
                             Send ir
                                | ip
                                v
                           Check status
                           of returned <------------------------+
                              certs                             |
                                |                               |
      +------------------------>|<------------------+           |
      |                         |                   |           |
      |        (issued)         v       (waiting)   |           |
    Add to <----------- Check CertResponse ------> Add to       |
   conf list           for each certificate      pending list   |
                                /                               |
                               /                                |
                  (conf list) /     (empty conf list)           |
                             /                     ip           |
                            /                 +----------------+
     (empty pending list)  /                  |    pRep
       END <---- Send certConf         Send pReq------------>Wait
                        |                 ^   ^               |
                        |                 |   |               |
                        +-----------------+   +---------------+
                           (pending list)

























Adams, et al.               Standards Track                    [Page 49]

RFC 4210                          CMP                     September 2005


  In the following exchange, the end entity is enrolling for two
  certificates in one request.

   Step  End Entity                       PKI
   --------------------------------------------------------------------
   1   Format ir
   2                    -> ir      ->
   3                                    Handle ir
   4                                    Manual intervention is
                                        required for both certs.
   5                    <- ip      <-
   6   Process ip
   7   Format pReq
   8                    -> pReq     ->
   9                                    Check status of cert requests
   10                                   Certificates not ready
   11                                   Format pRep
   12                   <- pRep     <-
   13  Wait
   14  Format pReq
   15                   -> pReq     ->
   16                                   Check status of cert requests
   17                                   One certificate is ready
   18                                   Format ip
   19                   <- ip       <-
   20  Handle ip
   21  Format certConf
   22                   -> certConf ->
   23                                   Handle certConf
   24                                   Format ack
   25                   <- pkiConf   <-
   26  Format pReq
   27                   -> pReq     ->
   28                                   Check status of certificate
   29                                   Certificate is ready
   30                                   Format ip
   31                   <- ip       <-
   31  Handle ip
   32  Format certConf
   33                   -> certConf ->
   34                                   Handle certConf
   35                                   Format ack
   36                   <- pkiConf  <-








Adams, et al.               Standards Track                    [Page 50]

RFC 4210                          CMP                     September 2005


6.  Mandatory PKI Management Functions

  Some of the PKI management functions outlined in Section 3.1 above
  are described in this section.

  This section deals with functions that are "mandatory" in the sense
  that all end entity and CA/RA implementations MUST be able to provide
  the functionality described.  This part is effectively the profile of
  the PKI management functionality that MUST be supported.  Note,
  however, that the management functions described in this section do
  not need to be accomplished using the PKI messages defined in Section
  5 if alternate means are suitable for a given environment (see
  Appendix D for profiles of the PKIMessages that MUST be supported).

6.1.  Root CA Initialization

  [See Section 3.1.1.2 for this document's definition of "root CA".]

  A newly created root CA must produce a "self-certificate", which is a
  Certificate structure with the profile defined for the "newWithNew"
  certificate issued following a root CA key update.

  In order to make the CA's self certificate useful to end entities
  that do not acquire the self certificate via "out-of-band" means, the
  CA must also produce a fingerprint for its certificate.  End entities
  that acquire this fingerprint securely via some "out-of-band" means
  can then verify the CA's self-certificate and, hence, the other
  attributes contained therein.

  The data structure used to carry the fingerprint is the OOBCertHash.

6.2.  Root CA Key Update

  CA keys (as all other keys) have a finite lifetime and will have to
  be updated on a periodic basis.  The certificates NewWithNew,
  NewWithOld, and OldWithNew (see Section 4.4.1) MAY be issued by the
  CA to aid existing end entities who hold the current self-signed CA
  certificate (OldWithOld) to transition securely to the new self-
  signed CA certificate (NewWithNew), and to aid new end entities who
  will hold NewWithNew to acquire OldWithOld securely for verification
  of existing data.

6.3.  Subordinate CA Initialization

  [See Section 3.1.1.2 for this document's definition of "subordinate
  CA".]





Adams, et al.               Standards Track                    [Page 51]

RFC 4210                          CMP                     September 2005


  From the perspective of PKI management protocols, the initialization
  of a subordinate CA is the same as the initialization of an end
  entity.  The only difference is that the subordinate CA must also
  produce an initial revocation list.

6.4.  CRL production

  Before issuing any certificates, a newly established CA (which issues
  CRLs) must produce "empty" versions of each CRL which are to be
  periodically produced.

6.5.  PKI Information Request

  When a PKI entity (CA, RA, or EE) wishes to acquire information about
  the current status of a CA, it MAY send that CA a request for such
  information.

  The CA MUST respond to the request by providing (at least) all of the
  information requested by the requester.  If some of the information
  cannot be provided, then an error must be conveyed to the requester.

  If PKIMessages are used to request and supply this PKI information,
  then the request MUST be the GenMsg message, the response MUST be the
  GenRep message, and the error MUST be the Error message.  These
  messages are protected using a MAC based on shared secret information
  (i.e., PasswordBasedMAC) or using any other authenticated means (if
  the end entity has an existing certificate).

6.6.  Cross Certification

  The requester CA is the CA that will become the subject of the
  cross-certificate; the responder CA will become the issuer of the
  cross-certificate.

  The requester CA must be "up and running" before initiating the
  cross-certification operation.

6.6.1.  One-Way Request-Response Scheme:

  The cross-certification scheme is essentially a one way operation;
  that is, when successful, this operation results in the creation of
  one new cross-certificate.  If the requirement is that cross-
  certificates be created in "both directions", then each CA, in turn,
  must initiate a cross-certification operation (or use another
  scheme).






Adams, et al.               Standards Track                    [Page 52]

RFC 4210                          CMP                     September 2005


  This scheme is suitable where the two CAs in question can already
  verify each other's signatures (they have some common points of
  trust) or where there is an out-of-band verification of the origin of
  the certification request.

  Detailed Description:

  Cross certification is initiated at one CA known as the responder.
  The CA administrator for the responder identifies the CA it wants to
  cross certify and the responder CA equipment generates an
  authorization code.  The responder CA administrator passes this
  authorization code by out-of-band means to the requester CA
  administrator.  The requester CA administrator enters the
  authorization code at the requester CA in order to initiate the on-
  line exchange.

  The authorization code is used for authentication and integrity
  purposes.  This is done by generating a symmetric key based on the
  authorization code and using the symmetric key for generating Message
  Authentication Codes (MACs) on all messages exchanged.
  (Authentication may alternatively be done using signatures instead of
  MACs, if the CAs are able to retrieve and validate the required
  public keys by some means, such as an out-of-band hash comparison.)

  The requester CA initiates the exchange by generating a cross-
  certification request (ccr) with a fresh random number (requester
  random number).  The requester CA then sends the ccr message to the
  responder CA.  The fields in this message are protected from
  modification with a MAC based on the authorization code.

  Upon receipt of the ccr message, the responder CA validates the
  message and the MAC, saves the requester random number, and generates
  its own random number (responder random number).  It then generates
  (and archives, if desired) a new requester certificate that contains
  the requester CA public key and is signed with the responder CA
  signature private key.  The responder CA responds with the cross
  certification response (ccp) message.  The fields in this message are
  protected from modification with a MAC based on the authorization
  code.

  Upon receipt of the ccp message, the requester CA validates the
  message (including the received random numbers) and the MAC.  The
  requester CA responds with the certConf message.  The fields in this
  message are protected from modification with a MAC based on the
  authorization code.  The requester CA MAY write the requester
  certificate to the Repository as an aid to later certificate path
  construction.




Adams, et al.               Standards Track                    [Page 53]

RFC 4210                          CMP                     September 2005


  Upon receipt of the certConf message, the responder CA validates the
  message and the MAC, and sends back an acknowledgement using the
  PKIConfirm message.  It MAY also publish the requester certificate as
  an aid to later path construction.

  Notes:

  1.  The ccr message must contain a "complete" certification request;
      that is, all fields except the serial number (including, e.g., a
      BasicConstraints extension) must be specified by the requester
      CA.

  2.  The ccp message SHOULD contain the verification certificate of
      the responder CA; if present, the requester CA must then verify
      this certificate (for example, via the "out-of-band" mechanism).

  (A simpler, non-interactive model of cross-certification may also be
  envisioned, in which the issuing CA acquires the subject CA's public
  key from some repository, verifies it via some out-of-band mechanism,
  and creates and publishes the cross-certificate without the subject
  CA's explicit involvement.  This model may be perfectly legitimate
  for many environments, but since it does not require any protocol
  message exchanges, its detailed description is outside the scope of
  this specification.)

6.7.  End Entity Initialization

  As with CAs, end entities must be initialized.  Initialization of end
  entities requires at least two steps:

  o  acquisition of PKI information

  o  out-of-band verification of one root-CA public key

  (other possible steps include the retrieval of trust condition
  information and/or out-of-band verification of other CA public keys).

6.7.1.  Acquisition of PKI Information

  The information REQUIRED is:

  o  the current root-CA public key

  o  (if the certifying CA is not a root-CA) the certification path
     from the root CA to the certifying CA together with appropriate
     revocation lists





Adams, et al.               Standards Track                    [Page 54]

RFC 4210                          CMP                     September 2005


  o  the algorithms and algorithm parameters that the certifying CA
     supports for each relevant usage

  Additional information could be required (e.g., supported extensions
  or CA policy information) in order to produce a certification request
  that will be successful.  However, for simplicity we do not mandate
  that the end entity acquires this information via the PKI messages.
  The end result is simply that some certification requests may fail
  (e.g., if the end entity wants to generate its own encryption key,
  but the CA doesn't allow that).

  The required information MAY be acquired as described in Section 6.5.

6.7.2.  Out-of-Band Verification of Root-CA Key

  An end entity must securely possess the public key of its root CA.
  One method to achieve this is to provide the end entity with the CA's
  self-certificate fingerprint via some secure "out-of-band" means.
  The end entity can then securely use the CA's self-certificate.

  See Section 6.1 for further details.

6.8.  Certificate Request

  An initialized end entity MAY request an additional certificate at
  any time (for any purpose).  This request will be made using the
  certification request (cr) message.  If the end entity already
  possesses a signing key pair (with a corresponding verification
  certificate), then this cr message will typically be protected by the
  entity's digital signature.  The CA returns the new certificate (if
  the request is successful) in a CertRepMessage.

6.9.  Key Update

  When a key pair is due to expire, the relevant end entity MAY request
  a key update; that is, it MAY request that the CA issue a new
  certificate for a new key pair (or, in certain circumstances, a new
  certificate for the same key pair).  The request is made using a key
  update request (kur) message (referred to, in some environments, as a
  "Certificate Update" operation).  If the end entity already possesses
  a signing key pair (with a corresponding verification certificate),
  then this message will typically be protected by the entity's digital
  signature.  The CA returns the new certificate (if the request is
  successful) in a key update response (kup) message, which is
  syntactically identical to a CertRepMessage.






Adams, et al.               Standards Track                    [Page 55]

RFC 4210                          CMP                     September 2005


7.  Version Negotiation

  This section defines the version negotiation used to support older
  protocols between client and servers.

  If a client knows the protocol version(s) supported by the server
  (e.g., from a previous PKIMessage exchange or via some out-of-band
  means), then it MUST send a PKIMessage with the highest version
  supported by both it and the server.  If a client does not know what
  version(s) the server supports, then it MUST send a PKIMessage using
  the highest version it supports.

  If a server receives a message with a version that it supports, then
  the version of the response message MUST be the same as the received
  version.  If a server receives a message with a version higher or
  lower than it supports, then it MUST send back an ErrorMsg with the
  unsupportedVersion bit set (in the failureInfo field of the
  pKIStatusInfo).  If the received version is higher than the highest
  supported version, then the version in the error message MUST be the
  highest version the server supports; if the received version is lower
  than the lowest supported version then the version in the error
  message MUST be the lowest version the server supports.

  If a client gets back an ErrorMsgContent with the unsupportedVersion
  bit set and a version it supports, then it MAY retry the request with
  that version.

7.1.  Supporting RFC 2510 Implementations

  RFC 2510 did not specify the behaviour of implementations receiving
  versions they did not understand since there was only one version in
  existence.  With the introduction of the present revision of the
  specification, the following versioning behaviour is recommended.

7.1.1.  Clients Talking to RFC 2510 Servers

  If, after sending a cmp2000 message, a client receives an
  ErrorMsgContent with a version of cmp1999, then it MUST abort the
  current transaction.  It MAY subsequently retry the transaction using
  version cmp1999 messages.

  If a client receives a non-error PKIMessage with a version of
  cmp1999, then it MAY decide to continue the transaction (if the
  transaction hasn't finished) using RFC 2510 semantics.  If it does
  not choose to do so and the transaction is not finished, then it MUST
  abort the transaction and send an ErrorMsgContent with a version of
  cmp1999.




Adams, et al.               Standards Track                    [Page 56]

RFC 4210                          CMP                     September 2005


7.1.2.  Servers Receiving Version cmp1999 PKIMessages

  If a server receives a version cmp1999 message it MAY revert to RFC
  2510 behaviour and respond with version cmp1999 messages.  If it does
  not choose to do so, then it MUST send back an ErrorMsgContent as
  described above in Section 7.

8.  Security Considerations

8.1.  Proof-Of-Possession with a Decryption Key

  Some cryptographic considerations are worth explicitly spelling out.
  In the protocols specified above, when an end entity is required to
  prove possession of a decryption key, it is effectively challenged to
  decrypt something (its own certificate).  This scheme (and many
  others!) could be vulnerable to an attack if the possessor of the
  decryption key in question could be fooled into decrypting an
  arbitrary challenge and returning the cleartext to an attacker.
  Although in this specification a number of other failures in security
  are required in order for this attack to succeed, it is conceivable
  that some future services (e.g., notary, trusted time) could
  potentially be vulnerable to such attacks.  For this reason, we re-
  iterate the general rule that implementations should be very careful
  about decrypting arbitrary "ciphertext" and revealing recovered
  "plaintext" since such a practice can lead to serious security
  vulnerabilities.

8.2.  Proof-Of-Possession by Exposing the Private Key

  Note also that exposing a private key to the CA/RA as a proof-of-
  possession technique can carry some security risks (depending upon
  whether or not the CA/RA can be trusted to handle such material
  appropriately).  Implementers are advised to:

     Exercise caution in selecting and using this particular POP
     mechanism

     When appropriate, have the user of the application explicitly
     state that they are willing to trust the CA/RA to have a copy of
     their private key before proceeding to reveal the private key.

8.3.  Attack Against Diffie-Hellman Key Exchange

  A small subgroup attack during a Diffie-Hellman key exchange may be
  carried out as follows.  A malicious end entity may deliberately
  choose D-H parameters that enable him/her to derive (a significant
  number of bits of) the D-H private key of the CA during a key
  archival or key recovery operation.  Armed with this knowledge, the



Adams, et al.               Standards Track                    [Page 57]

RFC 4210                          CMP                     September 2005


  EE would then be able to retrieve the decryption private key of
  another unsuspecting end entity, EE2, during EE2's legitimate key
  archival or key recovery operation with that CA.  In order to avoid
  the possibility of such an attack, two courses of action are
  available.  (1) The CA may generate a fresh D-H key pair to be used
  as a protocol encryption key pair for each EE with which it

  interacts.  (2) The CA may enter into a key validation protocol (not
  specified in this document) with each requesting end entity to ensure
  that the EE's protocol encryption key pair will not facilitate this
  attack.  Option (1) is clearly simpler (requiring no extra protocol
  exchanges from either party) and is therefore RECOMMENDED.

9.  IANA Considerations

  The PKI General Message types are identified by object identifiers
  (OIDs).  The OIDs for the PKI General Message types defined in this
  document were assigned from an arc delegated by the IANA to the PKIX
  Working Group.

  The cryptographic algorithms referred to in this document are
  identified by object identifiers (OIDs).  The OIDs for cryptographic
  algorithms were assigned from several arcs owned by various
  organizations, including RSA Security, Entrust Technologies, IANA and
  IETF.

  Should additional encryption algorithms be introduced, the advocates
  for such algorithms are expected to assign the necessary OIDs from
  their own arcs.

  No further action by the IANA is necessary for this document or any
  anticipated updates.

Normative References

  [X509]       International Organization for Standardization and
               International Telecommunications Union, "Information
               technology - Open Systems Interconnection - The
               Directory:  Public-key and attribute certificate
               frameworks", ISO Standard 9594-8:2001, ITU-T
               Recommendation X.509, March 2000.

  [MvOV97]     Menezes, A., van Oorschot, P. and S. Vanstone, "Handbook
               of Applied Cryptography", CRC Press ISBN 0-8493-8523-7,
               1996.






Adams, et al.               Standards Track                    [Page 58]

RFC 4210                          CMP                     September 2005


  [RFC2104]    Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
               Keyed-Hashing for Message Authentication", RFC 2104,
               February 1997.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2202]    Cheng, P. and R. Glenn, "Test Cases for HMAC-MD5 and
               HMAC-SHA-1", RFC 2202, September 1997.

  [RFC3629]    Yergeau, F., "UTF-8, a transformation format of ISO
               10646", STD 63, RFC 3629, November 2003.

  [RFC2482]    Whistler, K. and G. Adams, "Language Tagging in Unicode
               Plain Text", RFC 2482, January 1999.

  [CRMF]       Schaad, J., "Internet X.509 Public Key Infrastructure
               Certificate Request Message Format (CRMF)", RFC 4211,
               September 2005.

  [RFC3066]    Alvestrand, H., "Tags for the Identification of
               Languages", BCP 47, RFC 3066, January 2001.

Informative References

  [CMPtrans]   Kapoor, A., Tschalar, R. and T. Kause, "Internet X.509
               Public Key Infrastructure -- Transport Protocols for
               CMP", Work in Progress.  2004.

  [PKCS7]      RSA Laboratories, "The Public-Key Cryptography Standards
               - Cryptographic Message Syntax Standard.  Version 1.5",
               PKCS 7, November 1993.

  [PKCS10]     Nystrom, M., and B. Kaliski, "The Public-Key
               Cryptography Standards - Certification Request Syntax
               Standard, Version 1.7", RFC 2986, May 2000.

  [PKCS11]     RSA Laboratories, "The Public-Key Cryptography Standards
               - Cryptographic Token Interface Standard.  Version
               2.10", PKCS 11, December 1999.

  [RFC1847]    Galvin, J., Murphy, S., Crocker, S., and N. Freed,
               "Security Multiparts for MIME: Multipart/Signed and
               Multipart/Encrypted", RFC 1847, October 1995.







Adams, et al.               Standards Track                    [Page 59]

RFC 4210                          CMP                     September 2005


  [RFC2559]    Boeyen, S., Howes, T. and P. Richard, "Internet X.509
               Public Key Infrastructure Operational Protocols -
               LDAPv2", RFC 2559, April 1999.

  [RFC2585]    Housley, R. and P. Hoffman, "Internet X.509 Public Key
               Infrastructure Operational Protocols: FTP and HTTP", RFC
               2585, May 1999.

  [FIPS-180]   National Institute of Standards and Technology, "Secure
               Hash Standard", FIPS PUB 180-1, May 1994.

  [FIPS-186]   National Institute of Standards and Technology, "Digital
               Signature Standard", FIPS PUB 186, May 1994.

  [ANSI-X9.42] American National Standards Institute, "Public Key
               Cryptography for The Financial Services Industry:
               Agreement of Symmetric Keys Using Discrete Logarithm
               Cryptography", ANSI X9.42, February 2000.

































Adams, et al.               Standards Track                    [Page 60]

RFC 4210                          CMP                     September 2005


Appendix A.  Reasons for the Presence of RAs

  The reasons that justify the presence of an RA can be split into
  those that are due to technical factors and those which are
  organizational in nature.  Technical reasons include the following.

  o  If hardware tokens are in use, then not all end entities will have
     the equipment needed to initialize these; the RA equipment can
     include the necessary functionality (this may also be a matter of
     policy).

  o  Some end entities may not have the capability to publish
     certificates; again, the RA may be suitably placed for this.

  o  The RA will be able to issue signed revocation requests on behalf
     of end entities associated with it, whereas the end entity may not
     be able to do this (if the key pair is completely lost).

  Some of the organizational reasons that argue for the presence of an
  RA are the following.

  o  It may be more cost effective to concentrate functionality in the
     RA equipment than to supply functionality to all end entities
     (especially if special token initialization equipment is to be
     used).

  o  Establishing RAs within an organization can reduce the number of
     CAs required, which is sometimes desirable.

  o  RAs may be better placed to identify people with their
     "electronic" names, especially if the CA is physically remote from
     the end entity.

  o  For many applications, there will already be in place some
     administrative structure so that candidates for the role of RA are
     easy to find (which may not be true of the CA).

Appendix B.  The Use of Revocation Passphrase

  A revocation request must incorporate suitable security mechanisms,
  including proper authentication, in order to reduce the probability
  of successful denial-of-service attacks.  A digital signature on the
  request -- MANDATORY to support within this specification if
  revocation requests are supported -- can provide the authentication
  required, but there are circumstances under which an alternative
  mechanism may be desirable (e.g., when the private key is no longer
  accessible and the entity wishes to request a revocation prior to
  re-certification of another key pair).  In order to accommodate such



Adams, et al.               Standards Track                    [Page 61]

RFC 4210                          CMP                     September 2005


  circumstances, a PasswordBasedMAC on the request is also MANDATORY to
  support within this specification (subject to local security policy
  for a given environment) if revocation requests are supported and if
  shared secret information can be established between the requester
  and the responder prior to the need for revocation.

  A mechanism that has seen use in some environments is "revocation
  passphrase", in which a value of sufficient entropy (i.e., a
  relatively long passphrase rather than a short password) is shared
  between (only) the entity and the CA/RA at some point prior to
  revocation; this value is later used to authenticate the revocation
  request.

  In this specification, the following technique to establish shared
  secret information (i.e., a revocation passphrase) is OPTIONAL to
  support.  Its precise use in CMP messages is as follows.

  o  The OID and value specified in Section 5.3.19.9 MAY be sent in a
     GenMsg message at any time, or MAY be sent in the generalInfo
     field of the PKIHeader of any PKIMessage at any time.  (In
     particular, the EncryptedValue may be sent in the header of the
     certConf message that confirms acceptance of certificates
     requested in an initialization request or certificate request
     message.)  This conveys a revocation passphrase chosen by the
     entity (i.e., the decrypted bytes of the encValue field) to the
     relevant CA/RA; furthermore, the transfer is accomplished with
     appropriate confidentiality characteristics (because the
     passphrase is encrypted under the CA/RA's protocolEncryptionKey).

  o  If a CA/RA receives the revocation passphrase (OID and value
     specified in Section 5.3.19.9) in a GenMsg, it MUST construct and
     send a GenRep message that includes the OID (with absent value)
     specified in Section 5.3.19.9. If the CA/RA receives the
     revocation passphrase in the generalInfo field of a PKIHeader of
     any PKIMessage, it MUST include the OID (with absent value) in the
     generalInfo field of the PKIHeader of the corresponding response
     PKIMessage.  If the CA/RA is unable to return the appropriate
     response message for any reason, it MUST send an error message
     with a status of "rejection" and, optionally, a failInfo reason
     set.

  o  The valueHint field of EncryptedValue MAY contain a key identifier
     (chosen by the entity, along with the passphrase itself) to assist
     in later retrieval of the correct passphrase (e.g., when the
     revocation request is constructed by the entity and received by
     the CA/RA).





Adams, et al.               Standards Track                    [Page 62]

RFC 4210                          CMP                     September 2005


  o  The revocation request message is protected by a PasswordBasedMAC,
     with the revocation passphrase as the key.  If appropriate, the
     senderKID field in the PKIHeader MAY contain the value previously
     transmitted in valueHint.

  Using the technique specified above, the revocation passphrase may be
  initially established and updated at any time without requiring extra
  messages or out-of-band exchanges.  For example, the revocation
  request message itself (protected and authenticated through a MAC
  that uses the revocation passphrase as a key) may contain, in the
  PKIHeader, a new revocation passphrase to be used for authenticating
  future revocation requests for any of the entity's other
  certificates.  In some environments this may be preferable to
  mechanisms that reveal the passphrase in the revocation request
  message, since this can allow a denial-of-service attack in which the
  revealed passphrase is used by an unauthorized third party to
  authenticate revocation requests on the entity's other certificates.
  However, because the passphrase is not revealed in the request
  message, there is no requirement that the passphrase must always be
  updated when a revocation request is made (that is, the same
  passphrase MAY be used by an entity to authenticate revocation
  requests for different certificates at different times).

  Furthermore, the above technique can provide strong cryptographic
  protection over the entire revocation request message even when a
  digital signature is not used.  Techniques that do authentication of
  the revocation request by simply revealing the revocation passphrase
  typically do not provide cryptographic protection over the fields of
  the request message (so that a request for revocation of one
  certificate may be modified by an unauthorized third party to a
  request for revocation of another certificate for that entity).

Appendix C.  Request Message Behavioral Clarifications

  In the case of updates to [CRMF], which cause interpretation or
  interoperability issues, [CRMF] SHALL be the normative document.

  The following definitions are from [CRMF].  They are included here in
  order to codify behavioral clarifications to that request message;
  otherwise, all syntax and semantics are identical to [CRMF].

  CertRequest ::= SEQUENCE {
      certReqId     INTEGER,
      certTemplate  CertTemplate,
      controls      Controls OPTIONAL }

  -- If certTemplate is an empty SEQUENCE (i.e., all fields
  -- omitted), then controls MAY contain the



Adams, et al.               Standards Track                    [Page 63]

RFC 4210                          CMP                     September 2005


  -- id-regCtrl-altCertTemplate control, specifying a template
  -- for a certificate other than an X.509v3 public-key
  -- certificate.  Conversely, if certTemplate is not empty
  -- (i.e., at least one field is present), then controls MUST
  -- NOT contain id-regCtrl- altCertTemplate.  The new control is
  -- defined as follows:

  id-regCtrl-altCertTemplate OBJECT IDENTIFIER ::= {id-regCtrl 7}
  AltCertTemplate ::= AttributeTypeAndValue

  POPOSigningKey ::= SEQUENCE {
      poposkInput           [0] POPOSigningKeyInput OPTIONAL,
      algorithmIdentifier   AlgorithmIdentifier,
      signature             BIT STRING }

  -- **********
  -- * For the purposes of this specification, the ASN.1 comment
  -- * given in [CRMF] pertains not only to certTemplate, but
  -- * also to the altCertTemplate control.  That is,
  -- **********
  -- * The signature (using "algorithmIdentifier") is on the
  -- * DER-encoded value of poposkInput (i.e., the "value" OCTETs
  -- * of the POPOSigningKeyInput DER).  NOTE: If CertReqMsg
  -- * certReq certTemplate (or the altCertTemplate control)
  -- * contains the subject and publicKey values, then poposkInput
  -- * MUST be omitted and the signature MUST be computed on the
  -- * DER-encoded value of CertReqMsg certReq (or the DER-
  -- * encoded value of AltCertTemplate).  If
  -- * certTemplate/altCertTemplate does not contain both the
  -- * subject and public key values (i.e., if it contains only
  -- * one of these, or neither), then poposkInput MUST be present
  -- * and MUST be signed.
  -- **********

  POPOPrivKey ::= CHOICE {
      thisMessage       [0] BIT STRING,

  -- **********
  -- * the type of "thisMessage" is given as BIT STRING in
  -- * [CRMF]; it should be "EncryptedValue" (in accordance
  -- * with Section 5.2.2, "Encrypted Values", of this specification).
  -- * Therefore, this document makes the behavioral clarification
  -- * of specifying that the contents of "thisMessage" MUST be encoded
  -- * as an EncryptedValue and then wrapped in a BIT STRING.  This
  -- * allows the necessary conveyance and protection of the
  -- * private key while maintaining bits-on-the-wire compatibility
  -- * with [CRMF].
  -- **********



Adams, et al.               Standards Track                    [Page 64]

RFC 4210                          CMP                     September 2005


      subsequentMessage [1] SubsequentMessage,
      dhMAC             [2] BIT STRING }

Appendix D.  PKI Management Message Profiles (REQUIRED).

  This appendix contains detailed profiles for those PKIMessages that
  MUST be supported by conforming implementations (see Section 6).

  Profiles for the PKIMessages used in the following PKI management
  operations are provided:

  o  initial registration/certification

  o  basic authenticated scheme

  o  certificate request

  o  key update

D.1.  General Rules for Interpretation of These Profiles.

  1.  Where OPTIONAL or DEFAULT fields are not mentioned in individual
      profiles, they SHOULD be absent from the relevant message (i.e.,
      a receiver can validly reject a message containing such fields as
      being syntactically incorrect).  Mandatory fields are not
      mentioned if they have an obvious value (e.g., in this version of
      the specification, pvno is always 2).

  2.  Where structures occur in more than one message, they are
      separately profiled as appropriate.

  3.  The algorithmIdentifiers from PKIMessage structures are profiled
      separately.

  4.  A "special" X.500 DN is called the "NULL-DN"; this means a DN
      containing a zero-length SEQUENCE OF RelativeDistinguishedNames
      (its DER encoding is then '3000'H).

  5.  Where a GeneralName is required for a field, but no suitable
      value is available (e.g., an end entity produces a request before
      knowing its name), then the GeneralName is to be an X.500 NULL-DN
      (i.e., the Name field of the CHOICE is to contain a NULL-DN).
      This special value can be called a "NULL-GeneralName".

  6.  Where a profile omits to specify the value for a GeneralName,
      then the NULL-GeneralName value is to be present in the relevant
      PKIMessage field.  This occurs with the sender field of the
      PKIHeader for some messages.



Adams, et al.               Standards Track                    [Page 65]

RFC 4210                          CMP                     September 2005


  7.  Where any ambiguity arises due to naming of fields, the profile
      names these using a "dot" notation (e.g., "certTemplate.subject"
      means the subject field within a field called certTemplate).

  8.  Where a "SEQUENCE OF types" is part of a message, a zero-based
      array notation is used to describe fields within the SEQUENCE OF
      (e.g., crm[0].certReq.certTemplate.subject refers to a subfield
      of the first CertReqMsg contained in a request message).

  9.  All PKI message exchanges in Appendix D.4 to D.6 require a
      certConf message to be sent by the initiating entity and a
      PKIConfirm to be sent by the responding entity.  The PKIConfirm
      is not included in some of the profiles given since its body is
      NULL and its header contents are clear from the context.  Any
      authenticated means can be used for the protectionAlg (e.g.,
      password-based MAC, if shared secret information is known, or
      signature).

D.2.  Algorithm Use Profile

  The following table contains definitions of algorithm uses within PKI
  management protocols.  The columns in the table are:

  Name: an identifier used for message profiles

  Use: description of where and for what the algorithm is used

  Mandatory: an AlgorithmIdentifier which MUST be supported by
     conforming implementations

  Others: alternatives to the mandatory AlgorithmIdentifier

   Name         Use                      Mandatory        Others

   MSG_SIG_ALG  Protection of PKI        DSA/SHA-1        RSA/MD5,
                messages using signature                  ECDSA, ...
   MSG_MAC_ALG  protection of PKI        PasswordBasedMac HMAC,
                messages using MACing                     X9.9...
   SYM_PENC_ALG symmetric encryption of  3-DES (3-key-    AES,RC5,
                an end entity's private  EDE, CBC mode)   CAST-128...
                key where symmetric
                key is distributed
                out-of-band
   PROT_ENC_ALG asymmetric algorithm     D-H              RSA,
                used for encryption of                    ECDH, ...
                (symmetric keys for
                encryption of) private
                keys transported in



Adams, et al.               Standards Track                    [Page 66]

RFC 4210                          CMP                     September 2005


                PKIMessages
   PROT_SYM_ALG symmetric encryption     3-DES (3-key-    AES,RC5,
                algorithm used for       EDE, CBC mode)   CAST-128...
                encryption of private
                key bits (a key of this
                type is encrypted using
                PROT_ENC_ALG)

  Mandatory AlgorithmIdentifiers and Specifications:

  DSA/SHA-1:
    AlgId: {1 2 840 10040 4 3};

  Digital Signature Standard [FIPS-186]

    Public Modulus size: 1024 bits.

  PasswordBasedMac:

    AlgId: {1 2 840 113533 7 66 13}, with SHA-1 {1 3 14 3 2 26} as the
           owf parameter and HMAC-SHA1 {1 3 6 1 5 5 8 1 2} as the mac
           parameter;

    (this specification), along with

  Secure Hash Standard [FIPS-180] and [RFC2104]

    HMAC key size:  160 bits (i.e., "K" = "H" in Section 5.1.3.1,
                              "Shared secret information")

  3-DES:

    AlgId: {1 2 840 113549 3 7};
    (used in RSA's BSAFE and in S/MIME).

  D-H:

    AlgId:  {1 2 840 10046 2 1};

  [ANSI-X9.42]

    Public Modulus Size:  1024 bits.
    DomainParameters ::= SEQUENCE {
       p       INTEGER, -- odd prime, p=jq +1
       g       INTEGER, -- generator, g^q = 1 mod p
       q       INTEGER, -- prime factor of p-1
       j       INTEGER OPTIONAL, -- cofactor, j>=2
       validationParms  ValidationParms OPTIONAL



Adams, et al.               Standards Track                    [Page 67]

RFC 4210                          CMP                     September 2005


    }
    ValidationParms ::= SEQUENCE {
       seed          BIT STRING, -- seed for prime generation
       pGenCounter   INTEGER     -- parameter verification
    }

D.3.  Proof-of-Possession Profile

  POP fields for use (in signature field of pop field of
  ProofOfPossession structure) when proving possession of a private
  signing key that corresponds to a public verification key for which a
  certificate has been requested.

   Field               Value         Comment

   algorithmIdentifier MSG_SIG_ALG   only signature protection is
                                     allowed for this proof

   signature           present       bits calculated using MSG_SIG_ALG

  Proof-of-possession of a private decryption key that corresponds to a
  public encryption key for which a certificate has been requested does
  not use this profile; the CertHash field of the certConf message is
  used instead.

  Not every CA/RA will do Proof-of-Possession (of signing key,
  decryption key, or key agreement key) in the PKIX-CMP in-band
  certification request protocol (how POP is done MAY ultimately be a
  policy issue that is made explicit for any given CA in its publicized
  Policy OID and Certification Practice Statement).  However, this
  specification MANDATES that CA/RA entities MUST do POP (by some
  means) as part of the certification process.  All end entities MUST
  be prepared to provide POP (i.e., these components of the PKIX-CMP
  protocol MUST be supported).

D.4.  Initial Registration/Certification (Basic Authenticated Scheme)

  An (uninitialized) end entity requests a (first) certificate from a
  CA.  When the CA responds with a message containing a certificate,
  the end entity replies with a certificate confirmation.  The CA sends
  a PKIConfirm back, closing the transaction.  All messages are
  authenticated.

  This scheme allows the end entity to request certification of a
  locally-generated public key (typically a signature key).  The end
  entity MAY also choose to request the centralized generation and
  certification of another key pair (typically an encryption key pair).




Adams, et al.               Standards Track                    [Page 68]

RFC 4210                          CMP                     September 2005


  Certification may only be requested for one locally generated public
  key (for more, use separate PKIMessages).

  The end entity MUST support proof-of-possession of the private key
  associated with the locally-generated public key.

  Preconditions:

  1.  The end entity can authenticate the CA's signature based on out-
      of-band means

  2.  The end entity and the CA share a symmetric MACing key

  Message flow:

   Step# End entity                           PKI
     1   format ir
     2                      ->   ir      ->
     3                                        handle ir
     4                                        format ip
     5                      <-   ip      <-
     6   handle ip
     7   format certConf
     8                      ->   certConf ->
     9                                        handle certConf
    10                                        format PKIConf
    11                      <-   PKIConf  <-
    12   handle PKIConf

  For this profile, we mandate that the end entity MUST include all
  (i.e., one or two) CertReqMsg in a single PKIMessage, and that the
  PKI (CA) MUST produce a single response PKIMessage that contains the
  complete response (i.e., including the OPTIONAL second key pair, if
  it was requested and if centralized key generation is supported).
  For simplicity, we also mandate that this message MUST be the final
  one (i.e., no use of "waiting" status value).

  The end entity has an out-of-band interaction with the CA/RA.  This
  transaction established the shared secret, the referenceNumber and
  OPTIONALLY the distinguished name used for both sender and subject
  name in the certificate template.  It is RECOMMENDED that the shared
  secret be at least 12 characters long.

  Initialization Request -- ir

  Field                Value

  recipient            CA name



Adams, et al.               Standards Track                    [Page 69]

RFC 4210                          CMP                     September 2005


    -- the name of the CA who is being asked to produce a certificate
  protectionAlg        MSG_MAC_ALG
    -- only MAC protection is allowed for this request, based
    -- on initial authentication key
  senderKID            referenceNum
    -- the reference number which the CA has previously issued
    -- to the end entity (together with the MACing key)
  transactionID        present
    -- implementation-specific value, meaningful to end
    -- entity.
    -- [If already in use at the CA, then a rejection message MUST
    -- be produced by the CA]

  senderNonce          present
    -- 128 (pseudo-)random bits
  freeText             any valid value
  body                 ir (CertReqMessages)
                       only one or two CertReqMsg
                       are allowed
    -- if more certificates are required, requests MUST be
    -- packaged in separate PKIMessages

  CertReqMsg           one or two present
    -- see below for details, note: crm[0] means the first
    -- (which MUST be present), crm[1] means the second (which
    -- is OPTIONAL, and used to ask for a centrally-generated key)

  crm[0].certReq.      fixed value of zero
     certReqId
    -- this is the index of the template within the message
  crm[0].certReq       present
     certTemplate
    -- MUST include subject public key value, otherwise unconstrained
  crm[0].pop...        optionally present if public key
     POPOSigningKey    from crm[0].certReq.certTemplate is
                       a signing key
    -- proof-of-possession MAY be required in this exchange
    -- (see Appendix D.3 for details)
  crm[0].certReq.      optionally present
     controls.archiveOptions
    -- the end entity MAY request that the locally-generated
    -- private key be archived

  crm[0].certReq.      optionally present
     controls.publicationInfo
    -- the end entity MAY ask for publication of resulting cert.

  crm[1].certReq       fixed value of one



Adams, et al.               Standards Track                    [Page 70]

RFC 4210                          CMP                     September 2005


     certReqId
    -- the index of the template within the message
  crm[1].certReq       present
     certTemplate
     -- MUST NOT include actual public key bits, otherwise
     -- unconstrained (e.g., the names need not be the same as in
     -- crm[0]).  Note that subjectPublicKeyInfo MAY be present
     -- and contain an AlgorithmIdentifier followed by a
     -- zero-length BIT STRING for the subjectPublicKey if it is
     -- desired to inform the CA/RA of algorithm and parameter
     -- preferences regarding the to-be-generated key pair.

  crm[1].certReq.      present [object identifier MUST be PROT_ENC_ALG]

     controls.protocolEncrKey
    -- if centralized key generation is supported by this CA,
    -- this short-term asymmetric encryption key (generated by
    -- the end entity) will be used by the CA to encrypt (a
    -- symmetric key used to encrypt) a private key generated by
    -- the CA on behalf of the end entity

  crm[1].certReq.      optionally present
     controls.archiveOptions
  crm[1].certReq.      optionally present
     controls.publicationInfo
  protection           present
    -- bits calculated using MSG_MAC_ALG

  Initialization Response -- ip

  Field                Value

  sender               CA name
    -- the name of the CA who produced the message
  messageTime          present
    -- time at which CA produced message
  protectionAlg        MS_MAC_ALG
    -- only MAC protection is allowed for this response
  senderKID             referenceNum
    -- the reference number that the CA has previously issued to the
    -- end entity (together with the MACing key)
  transactionID        present
    -- value from corresponding ir message
  senderNonce          present
    -- 128 (pseudo-)random bits
  recipNonce           present
    -- value from senderNonce in corresponding ir message
  freeText             any valid value



Adams, et al.               Standards Track                    [Page 71]

RFC 4210                          CMP                     September 2005


  body                 ip (CertRepMessage)
                       contains exactly one response
                       for each request

    -- The PKI (CA) responds to either one or two requests as
    -- appropriate.  crc[0] denotes the first (always present);
    -- crc[1] denotes the second (only present if the ir message
    -- contained two requests and if the CA supports centralized
    -- key generation).
  crc[0].              fixed value of zero
     certReqId
    -- MUST contain the response to the first request in the
    -- corresponding ir message

  crc[0].status.       present, positive values allowed:
     status               "accepted", "grantedWithMods"
                       negative values allowed:
                          "rejection"
  crc[0].status.       present if and only if
     failInfo          crc[0].status.status is "rejection"
  crc[0].              present if and only if
     certifiedKeyPair  crc[0].status.status is
                          "accepted" or "grantedWithMods"
  certificate          present unless end entity's public
                       key is an encryption key and POP
                       is done in this in-band exchange
  encryptedCert        present if and only if end entity's
                       public key is an encryption key and
                       POP done in this in-band exchange
  publicationInfo      optionally present

    -- indicates where certificate has been published (present
    -- at discretion of CA)

  crc[1].              fixed value of one
     certReqId
    -- MUST contain the response to the second request in the
    -- corresponding ir message
  crc[1].status.       present, positive values allowed:
     status               "accepted", "grantedWithMods"
                       negative values allowed:
                          "rejection"
  crc[1].status.       present if and only if
     failInfo          crc[0].status.status is "rejection"
  crc[1].              present if and only if
     certifiedKeyPair  crc[0].status.status is "accepted"
                       or "grantedWithMods"
  certificate          present



Adams, et al.               Standards Track                    [Page 72]

RFC 4210                          CMP                     September 2005


  privateKey           present
    -- see Appendix C, Request Message Behavioral Clarifications
  publicationInfo      optionally present
    -- indicates where certificate has been published (present
    -- at discretion of CA)

  protection           present
    -- bits calculated using MSG_MAC_ALG
  extraCerts           optionally present
    -- the CA MAY provide additional certificates to the end
    -- entity

  Certificate confirm; certConf

  Field                Value

  sender               present
    -- same as in ir
  recipient            CA name
    -- the name of the CA who was asked to produce a certificate
  transactionID        present
    -- value from corresponding ir and ip messages
  senderNonce          present
    -- 128 (pseudo-) random bits
  recipNonce           present
    -- value from senderNonce in corresponding ip message
  protectionAlg        MSG_MAC_ALG
    -- only MAC protection is allowed for this message.  The
    -- MAC is based on the initial authentication key shared
    -- between the EE and the CA.

  senderKID            referenceNum
    -- the reference number which the CA has previously issued
    -- to the end entity (together with the MACing key)

  body                 certConf
    -- see Section 5.3.18, "PKI Confirmation Content", for the
    -- contents of the certConf fields.
    -- Note: two CertStatus structures are required if both an
    -- encryption and a signing certificate were sent.

  protection           present
    -- bits calculated using MSG_MAC_ALG

  Confirmation; PKIConf

  Field                Value




Adams, et al.               Standards Track                    [Page 73]

RFC 4210                          CMP                     September 2005


  sender               present
    -- same as in ip
  recipient            present
    -- sender name from certConf
  transactionID        present
    -- value from certConf message
  senderNonce          present
    -- 128 (pseudo-) random bits
  recipNonce           present
    -- value from senderNonce from certConf message
  protectionAlg        MSG_MAC_ALG
    -- only MAC protection is allowed for this message.
  senderKID            referenceNum
  body                 PKIConf
  protection           present
    -- bits calculated using MSG_MAC_ALG

D.5.  Certificate Request

  An (initialized) end entity requests a certificate from a CA (for any
  reason).  When the CA responds with a message containing a
  certificate, the end entity replies with a certificate confirmation.
  The CA replies with a PKIConfirm, to close the transaction.  All
  messages are authenticated.

  The profile for this exchange is identical to that given in Appendix
  D.4, with the following exceptions:

  o  sender name SHOULD be present

  o  protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
     also be supported) in request, response, certConfirm, and
     PKIConfirm messages;

  o  senderKID and recipKID are only present if required for message
     verification;

  o  body is cr or cp;

  o  body may contain one or two CertReqMsg structures, but either
     CertReqMsg may be used to request certification of a locally-
     generated public key or a centrally-generated public key (i.e.,
     the position-dependence requirement of Appendix D.4 is removed);

  o  protection bits are calculated according to the protectionAlg
     field.





Adams, et al.               Standards Track                    [Page 74]

RFC 4210                          CMP                     September 2005


D.6.  Key Update Request

  An (initialized) end entity requests a certificate from a CA (to
  update the key pair and/or corresponding certificate that it already
  possesses).  When the CA responds with a message containing a
  certificate, the end entity replies with a certificate confirmation.
  The CA replies with a PKIConfirm, to close the transaction.  All
  messages are authenticated.

  The profile for this exchange is identical to that given in Appendix
  D.4, with the following exceptions:

  1.  sender name SHOULD be present

  2.  protectionAlg of MSG_SIG_ALG MUST be supported (MSG_MAC_ALG MAY
      also be supported) in request, response, certConfirm, and
      PKIConfirm messages;

  3.  senderKID and recipKID are only present if required for message
      verification;

  4.  body is kur or kup;

  5.  body may contain one or two CertReqMsg structures, but either
      CertReqMsg may be used to request certification of a locally-
      generated public key or a centrally-generated public key (i.e.,
      the position-dependence requirement of Appendix D.4 is removed);

  6.  protection bits are calculated according to the protectionAlg
      field;

  7.  regCtrl OldCertId SHOULD be used (unless it is clear to both
      sender and receiver -- by means not specified in this document --
      that it is not needed).

Appendix E.  PKI Management Message Profiles (OPTIONAL).

  This appendix contains detailed profiles for those PKIMessages that
  MAY be supported by implementations (in addition to the messages
  which MUST be supported; see Section 6 and Appendix D).

  Profiles for the PKIMessages used in the following PKI management
  operations are provided:

  o  root CA key update

  o  information request/response




Adams, et al.               Standards Track                    [Page 75]

RFC 4210                          CMP                     September 2005


  o  cross-certification request/response (1-way)

  o  in-band initialization using external identity certificate

  Later versions of this document may extend the above to include
  profiles for the operations listed below (along with other
  operations, if desired).

  o  revocation request

  o  certificate publication

  o  CRL publication

E.1.  General Rules for Interpretation of These Profiles.

  Identical to Appendix D.1.

E.2.  Algorithm Use Profile

  Identical to Appendix D.2.

E.3.  Self-Signed Certificates

  Profile of how a Certificate structure may be "self-signed".  These
  structures are used for distribution of CA public keys.  This can
  occur in one of three ways (see Section 4.4 above for a description
  of the use of these structures):

  Type          Function
  -----------------------------------------------------------------
  newWithNew a true "self-signed" certificate; the contained
             public key MUST be usable to verify the signature
             (though this provides only integrity and no
             authentication whatsoever)
  oldWithNew previous root CA public key signed with new private key
  newWithOld new root CA public key signed with previous private key

  Such certificates (including relevant extensions) must contain
  "sensible" values for all fields.  For example, when present,
  subjectAltName MUST be identical to issuerAltName, and, when present,
  keyIdentifiers must contain appropriate values, et cetera.









Adams, et al.               Standards Track                    [Page 76]

RFC 4210                          CMP                     September 2005


E.4.  Root CA Key Update

  A root CA updates its key pair.  It then produces a CA key update
  announcement message that can be made available (via some transport
  mechanism) to the relevant end entities.  A confirmation message is
  NOT REQUIRED from the end entities.

  ckuann message:

   Field        Value                        Comment
  --------------------------------------------------------------
   sender       CA name CA name
   body         ckuann(CAKeyUpdAnnContent)
   oldWithNew   present                  see Appendix E.3 above
   newWithOld   present                  see Appendix E.3 above
   newWithNew   present                  see Appendix E.3 above
   extraCerts   optionally present       can be used to "publish"
                                         certificates (e.g.,
                                         certificates signed using
                                         the new private key)

E.5.  PKI Information Request/Response

  The end entity sends a general message to the PKI requesting details
  that will be required for later PKI management operations.  RA/CA
  responds with a general response.  If an RA generates the response,
  then it will simply forward the equivalent message that it previously
  received from the CA, with the possible addition of certificates to
  the extraCerts fields of the PKIMessage.  A confirmation message is
  NOT REQUIRED from the end entity.

  Message Flows:

  Step# End entity                        PKI

     1  format genm
     2                ->   genm   ->
     3                                    handle genm
     4                                    produce genp
     5                <-   genp   <-
     6  handle genp

  genM:

  Field               Value

  recipient           CA name
    -- the name of the CA as contained in issuerAltName



Adams, et al.               Standards Track                    [Page 77]

RFC 4210                          CMP                     September 2005


    -- extensions or issuer fields within certificates
  protectionAlg       MSG_MAC_ALG or MSG_SIG_ALG
    -- any authenticated protection alg.
  SenderKID           present if required
    -- must be present if required for verification of message
    -- protection
  freeText            any valid value
  body                genr (GenReqContent)
  GenMsgContent       empty SEQUENCE
    -- all relevant information requested
  protection          present
    -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG

  genP:

  Field                Value

  sender               CA name
    -- name of the CA which produced the message
  protectionAlg        MSG_MAC_ALG or MSG_SIG_ALG
    -- any authenticated protection alg.
  senderKID            present if required
    -- must be present if required for verification of message
    -- protection
  body                 genp (GenRepContent)
  CAProtEncCert        present (object identifier one
                       of PROT_ENC_ALG), with relevant
                       value
    -- to be used if end entity needs to encrypt information for
    -- the CA (e.g., private key for recovery purposes)

  SignKeyPairTypes     present, with relevant value
    -- the set of signature algorithm identifiers that this CA will
    -- certify for subject public keys
  EncKeyPairTypes      present, with relevant value
    -- the set of encryption/key agreement algorithm identifiers that
    -- this CA will certify for subject public keys
  PreferredSymmAlg     present (object identifier one
                       of PROT_SYM_ALG) , with relevant
                       value
    -- the symmetric algorithm that this CA expects to be used
    -- in later PKI messages (for encryption)
  CAKeyUpdateInfo      optionally present, with
                       relevant value
    -- the CA MAY provide information about a relevant root CA
    -- key pair using this field (note that this does not imply
    -- that the responding CA is the root CA in question)
  CurrentCRL           optionally present, with relevant value



Adams, et al.               Standards Track                    [Page 78]

RFC 4210                          CMP                     September 2005


    -- the CA MAY provide a copy of a complete CRL (i.e.,
    -- fullest possible one)
  protection           present
    -- bits calculated using MSG_MAC_ALG or MSG_SIG_ALG
  extraCerts           optionally present
    -- can be used to send some certificates to the end
    -- entity. An RA MAY add its certificate here.

E.6.  Cross Certification Request/Response (1-way)

  Creation of a single cross-certificate (i.e., not two at once).  The
  requesting CA MAY choose who is responsible for publication of the
  cross-certificate created by the responding CA through use of the
  PKIPublicationInfo control.

  Preconditions:

  1.  Responding CA can verify the origin of the request (possibly
      requiring out-of-band means) before processing the request.

  2.  Requesting CA can authenticate the authenticity of the origin of
      the response (possibly requiring out-of-band means) before
      processing the response

  The use of certificate confirmation and the corresponding server
  confirmation is determined by the generalInfo field in the PKIHeader
  (see Section 5.1.1).  The following profile does not mandate support
  for either confirmation.

  Message Flows:

  Step# Requesting CA                       Responding CA
    1   format ccr
    2                   ->    ccr    ->
    3                                       handle ccr
    4                                       produce ccp
    5                   <-    ccp    <-
    6   handle ccp

  ccr:

  Field                 Value

  sender                Requesting CA name
    -- the name of the CA who produced the message
  recipient             Responding CA name
    -- the name of the CA who is being asked to produce a certificate
  messageTime           time of production of message



Adams, et al.               Standards Track                    [Page 79]

RFC 4210                          CMP                     September 2005


    -- current time at requesting CA
  protectionAlg         MSG_SIG_ALG
    -- only signature protection is allowed for this request
  senderKID             present if required
    -- must be present if required for verification of message
    -- protection
  recipKID             present if required
    -- must be present if required for verification of message
    -- protection
  transactionID         present
    -- implementation-specific value, meaningful to requesting CA.
    -- [If already in use at responding CA then a rejection message
    -- MUST be produced by responding CA]
  senderNonce           present
    -- 128 (pseudo-)random bits
  freeText              any valid value
  body                  ccr (CertReqMessages)
                        only one CertReqMsg
                        allowed
    -- if multiple cross certificates are required, they MUST be
    -- packaged in separate PKIMessages
  certTemplate          present
    -- details follow
  version               v1 or v3
    -- v3 STRONGLY RECOMMENDED
  signingAlg            present
    -- the requesting CA must know in advance with which algorithm it
    -- wishes the certificate to be signed

  subject               present
    -- may be NULL-DN only if subjectAltNames extension value proposed
  validity              present
    -- MUST be completely specified (i.e., both fields present)
  issuer                present
    -- may be NULL-DN only if issuerAltNames extension value proposed
  publicKey             present
    -- the key to be certified (which must be for a signing algorithm)
  extensions            optionally present
    -- a requesting CA must propose values for all extensions
    -- that it requires to be in the cross-certificate
  POPOSigningKey        present
    -- see Section D3: Proof-of-possession profile
  protection            present
    -- bits calculated using MSG_SIG_ALG
  extraCerts            optionally present
    -- MAY contain any additional certificates that requester wishes
    -- to include




Adams, et al.               Standards Track                    [Page 80]

RFC 4210                          CMP                     September 2005


  ccp:

  Field                 Value

  sender                Responding CA name
    -- the name of the CA who produced the message
  recipient             Requesting CA name
    -- the name of the CA who asked for production of a certificate
  messageTime           time of production of message
    -- current time at responding CA
  protectionAlg         MSG_SIG_ALG
    -- only signature protection is allowed for this message
  senderKID             present if required
    -- must be present if required for verification of message
    -- protection
  recipKID              present if required
  transactionID         present
    -- value from corresponding ccr message
  senderNonce           present
    -- 128 (pseudo-)random bits
  recipNonce            present
  -- senderNonce from corresponding ccr message
  freeText              any valid value
  body                  ccp (CertRepMessage)
                        only one CertResponse allowed
    -- if multiple cross certificates are required they MUST be
    -- packaged in separate PKIMessages
  response              present
  status                present

  PKIStatusInfo.status  present
    -- if PKIStatusInfo.status is one of:
    --   accepted, or
    --   grantedWithMods,
    -- then certifiedKeyPair MUST be present and failInfo MUST
    -- be absent

  failInfo              present depending on
                        PKIStatusInfo.status
    -- if PKIStatusInfo.status is:
    --   rejection
    -- then certifiedKeyPair MUST be absent and failInfo MUST be
    -- present and contain appropriate bit settings

  certifiedKeyPair      present depending on
                        PKIStatusInfo.status
  certificate           present depending on
                        certifiedKeyPair



Adams, et al.               Standards Track                    [Page 81]

RFC 4210                          CMP                     September 2005


    -- content of actual certificate must be examined by requesting CA
    -- before publication
  protection            present
    -- bits calculated using MSG_SIG_ALG
  extraCerts            optionally present
    -- MAY contain any additional certificates that responder wishes
    -- to include

E.7.  In-Band Initialization Using External Identity Certificate

  An (uninitialized) end entity wishes to initialize into the PKI with
  a CA, CA-1.  It uses, for authentication purposes, a pre-existing
  identity certificate issued by another (external) CA, CA-X.  A trust
  relationship must already have been established between CA-1 and CA-X
  so that CA-1 can validate the EE identity certificate signed by CA-X.
  Furthermore, some mechanism must already have been established within
  the Personal Security Environment (PSE) of the EE that would allow it
  to authenticate and verify PKIMessages signed by CA-1 (as one
  example, the PSE may contain a certificate issued for the public key
  of CA-1, signed by another CA that the EE trusts on the basis of
  out-of-band authentication techniques).

  The EE sends an initialization request to start the transaction.
  When CA-1 responds with a message containing the new certificate, the
  end entity replies with a certificate confirmation.  CA-1 replies
  with a PKIConfirm to close the transaction.  All messages are signed
  (the EE messages are signed using the private key that corresponds to
  the public key in its external identity certificate; the CA-1
  messages are signed using the private key that corresponds to the
  public key in a

  certificate that can be chained to a trust anchor in the EE's PSE).

  The profile for this exchange is identical to that given in Appendix
  D.4, with the following exceptions:

  o  the EE and CA-1 do not share a symmetric MACing key (i.e., there
     is no out-of-band shared secret information between these
     entities);

  o  sender name in ir MUST be present (and identical to the subject
     name present in the external identity certificate);

  o  protectionAlg of MSG_SIG_ALG MUST be used in all messages;

  o  external identity cert.  MUST be carried in ir extraCerts field

  o  senderKID and recipKID are not used;



Adams, et al.               Standards Track                    [Page 82]

RFC 4210                          CMP                     September 2005


  o  body is ir or ip;

  o  protection bits are calculated according to the protectionAlg
     field.

Appendix F.  Compilable ASN.1 Definitions

    PKIXCMP {iso(1) identified-organization(3)
          dod(6) internet(1) security(5) mechanisms(5) pkix(7)
          id-mod(0) id-mod-cmp2000(16)}

    DEFINITIONS EXPLICIT TAGS ::=

    BEGIN

    -- EXPORTS ALL --

    IMPORTS

        Certificate, CertificateList, Extensions, AlgorithmIdentifier,
        UTF8String -- if required; otherwise, comment out
               FROM PKIX1Explicit88 {iso(1) identified-organization(3)
               dod(6) internet(1) security(5) mechanisms(5) pkix(7)
               id-mod(0) id-pkix1-explicit-88(1)}

        GeneralName, KeyIdentifier
               FROM PKIX1Implicit88 {iso(1) identified-organization(3)
               dod(6) internet(1) security(5) mechanisms(5) pkix(7)
               id-mod(0) id-pkix1-implicit-88(2)}

        CertTemplate, PKIPublicationInfo, EncryptedValue, CertId,
        CertReqMessages
               FROM PKIXCRMF-2005 {iso(1) identified-organization(3)
               dod(6) internet(1) security(5) mechanisms(5) pkix(7)
               id-mod(0) id-mod-crmf2005(36)}

        -- see also the behavioral clarifications to CRMF codified in
        -- Appendix C of this specification

        CertificationRequest
               FROM PKCS-10 {iso(1) member-body(2)
                             us(840) rsadsi(113549)
                             pkcs(1) pkcs-10(10) modules(1) pkcs-10(1)}

        -- (specified in RFC 2986 with 1993 ASN.1 syntax and IMPLICIT
        -- tags).  Alternatively, implementers may directly include
        -- the [PKCS10] syntax in this module




Adams, et al.               Standards Track                    [Page 83]

RFC 4210                          CMP                     September 2005


        ;

  -- the rest of the module contains locally-defined OIDs and
  -- constructs

     CMPCertificate ::= CHOICE {
        x509v3PKCert        Certificate
     }
  -- This syntax, while bits-on-the-wire compatible with the
  -- standard X.509 definition of "Certificate", allows the
  -- possibility of future certificate types (such as X.509
  -- attribute certificates, WAP WTLS certificates, or other kinds
  -- of certificates) within this certificate management protocol,
  -- should a need ever arise to support such generality.  Those
  -- implementations that do not foresee a need to ever support
  -- other certificate types MAY, if they wish, comment out the
  -- above structure and "un-comment" the following one prior to
  -- compiling this ASN.1 module.  (Note that interoperability
  -- with implementations that don't do this will be unaffected by
  -- this change.)

  -- CMPCertificate ::= Certificate

     PKIMessage ::= SEQUENCE {
        header           PKIHeader,
        body             PKIBody,
        protection   [0] PKIProtection OPTIONAL,
        extraCerts   [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
                         OPTIONAL
    }

    PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage

    PKIHeader ::= SEQUENCE {
        pvno                INTEGER     { cmp1999(1), cmp2000(2) },
        sender              GeneralName,
        -- identifies the sender
        recipient           GeneralName,
        -- identifies the intended recipient
        messageTime     [0] GeneralizedTime         OPTIONAL,
        -- time of production of this message (used when sender
        -- believes that the transport will be "suitable"; i.e.,
        -- that the time will still be meaningful upon receipt)
        protectionAlg   [1] AlgorithmIdentifier     OPTIONAL,
        -- algorithm used for calculation of protection bits
        senderKID       [2] KeyIdentifier           OPTIONAL,
        recipKID        [3] KeyIdentifier           OPTIONAL,
        -- to identify specific keys used for protection



Adams, et al.               Standards Track                    [Page 84]

RFC 4210                          CMP                     September 2005


        transactionID   [4] OCTET STRING            OPTIONAL,
        -- identifies the transaction; i.e., this will be the same in
        -- corresponding request, response, certConf, and PKIConf
        -- messages
        senderNonce     [5] OCTET STRING            OPTIONAL,
        recipNonce      [6] OCTET STRING            OPTIONAL,
        -- nonces used to provide replay protection, senderNonce
        -- is inserted by the creator of this message; recipNonce
        -- is a nonce previously inserted in a related message by
        -- the intended recipient of this message
        freeText        [7] PKIFreeText             OPTIONAL,
        -- this may be used to indicate context-specific instructions
        -- (this field is intended for human consumption)
        generalInfo     [8] SEQUENCE SIZE (1..MAX) OF
                               InfoTypeAndValue     OPTIONAL
        -- this may be used to convey context-specific information
        -- (this field not primarily intended for human consumption)
    }

    PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
        -- text encoded as UTF-8 String [RFC3629] (note: each
        -- UTF8String MAY include an [RFC3066] language tag
        -- to indicate the language of the contained text
        -- see [RFC2482] for details)

    PKIBody ::= CHOICE {       -- message-specific body elements
        ir       [0]  CertReqMessages,        --Initialization Request
        ip       [1]  CertRepMessage,         --Initialization Response
        cr       [2]  CertReqMessages,        --Certification Request
        cp       [3]  CertRepMessage,         --Certification Response
        p10cr    [4]  CertificationRequest,   --imported from [PKCS10]
        popdecc  [5]  POPODecKeyChallContent, --pop Challenge
        popdecr  [6]  POPODecKeyRespContent,  --pop Response
        kur      [7]  CertReqMessages,        --Key Update Request
        kup      [8]  CertRepMessage,         --Key Update Response
        krr      [9]  CertReqMessages,        --Key Recovery Request
        krp      [10] KeyRecRepContent,       --Key Recovery Response
        rr       [11] RevReqContent,          --Revocation Request
        rp       [12] RevRepContent,          --Revocation Response
        ccr      [13] CertReqMessages,        --Cross-Cert. Request
        ccp      [14] CertRepMessage,         --Cross-Cert. Response
        ckuann   [15] CAKeyUpdAnnContent,     --CA Key Update Ann.
        cann     [16] CertAnnContent,         --Certificate Ann.
        rann     [17] RevAnnContent,          --Revocation Ann.
        crlann   [18] CRLAnnContent,          --CRL Announcement
        pkiconf  [19] PKIConfirmContent,      --Confirmation
        nested   [20] NestedMessageContent,   --Nested Message
        genm     [21] GenMsgContent,          --General Message



Adams, et al.               Standards Track                    [Page 85]

RFC 4210                          CMP                     September 2005


        genp     [22] GenRepContent,          --General Response
        error    [23] ErrorMsgContent,        --Error Message
        certConf [24] CertConfirmContent,     --Certificate confirm
        pollReq  [25] PollReqContent,         --Polling request
        pollRep  [26] PollRepContent          --Polling response
    }

    PKIProtection ::= BIT STRING

    ProtectedPart ::= SEQUENCE {
        header    PKIHeader,
        body      PKIBody
    }

    id-PasswordBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 13}
    PBMParameter ::= SEQUENCE {
        salt                OCTET STRING,
        -- note:  implementations MAY wish to limit acceptable sizes
        -- of this string to values appropriate for their environment
        -- in order to reduce the risk of denial-of-service attacks
        owf                 AlgorithmIdentifier,
        -- AlgId for a One-Way Function (SHA-1 recommended)
        iterationCount      INTEGER,
        -- number of times the OWF is applied
        -- note:  implementations MAY wish to limit acceptable sizes
        -- of this integer to values appropriate for their environment
        -- in order to reduce the risk of denial-of-service attacks
        mac                 AlgorithmIdentifier
        -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
    }   -- or HMAC [RFC2104, RFC2202])

    id-DHBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 30}
    DHBMParameter ::= SEQUENCE {
        owf                 AlgorithmIdentifier,
        -- AlgId for a One-Way Function (SHA-1 recommended)
        mac                 AlgorithmIdentifier
        -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
    }   -- or HMAC [RFC2104, RFC2202])


    NestedMessageContent ::= PKIMessages

    PKIStatus ::= INTEGER {
        accepted                (0),
        -- you got exactly what you asked for
        grantedWithMods        (1),
        -- you got something like what you asked for; the
        -- requester is responsible for ascertaining the differences



Adams, et al.               Standards Track                    [Page 86]

RFC 4210                          CMP                     September 2005


        rejection              (2),
        -- you don't get it, more information elsewhere in the message
        waiting                (3),
        -- the request body part has not yet been processed; expect to
        -- hear more later (note: proper handling of this status
        -- response MAY use the polling req/rep PKIMessages specified
        -- in Section 5.3.22; alternatively, polling in the underlying
        -- transport layer MAY have some utility in this regard)
        revocationWarning      (4),
        -- this message contains a warning that a revocation is
        -- imminent
        revocationNotification (5),
        -- notification that a revocation has occurred
        keyUpdateWarning       (6)
        -- update already done for the oldCertId specified in
        -- CertReqMsg
    }

    PKIFailureInfo ::= BIT STRING {
    -- since we can fail in more than one way!
    -- More codes may be added in the future if/when required.
        badAlg              (0),
        -- unrecognized or unsupported Algorithm Identifier
        badMessageCheck     (1),
        -- integrity check failed (e.g., signature did not verify)
        badRequest          (2),
        -- transaction not permitted or supported
        badTime             (3),
        -- messageTime was not sufficiently close to the system time,
        -- as defined by local policy
        badCertId           (4),
        -- no certificate could be found matching the provided criteria
        badDataFormat       (5),
        -- the data submitted has the wrong format
        wrongAuthority      (6),
        -- the authority indicated in the request is different from the
        -- one creating the response token
        incorrectData       (7),
        -- the requester's data is incorrect (for notary services)
        missingTimeStamp    (8),
        -- when the timestamp is missing but should be there
        -- (by policy)
        badPOP              (9),
        -- the proof-of-possession failed
        certRevoked         (10),
           -- the certificate has already been revoked
        certConfirmed       (11),
           -- the certificate has already been confirmed



Adams, et al.               Standards Track                    [Page 87]

RFC 4210                          CMP                     September 2005


        wrongIntegrity      (12),
           -- invalid integrity, password based instead of signature or
           -- vice versa
        badRecipientNonce   (13),
           -- invalid recipient nonce, either missing or wrong value
        timeNotAvailable    (14),
           -- the TSA's time source is not available
        unacceptedPolicy    (15),
           -- the requested TSA policy is not supported by the TSA.
        unacceptedExtension (16),
           -- the requested extension is not supported by the TSA.
        addInfoNotAvailable (17),
           -- the additional information requested could not be
           -- understood or is not available
        badSenderNonce      (18),
           -- invalid sender nonce, either missing or wrong size
        badCertTemplate     (19),
           -- invalid cert. template or missing mandatory information
        signerNotTrusted    (20),
           -- signer of the message unknown or not trusted
        transactionIdInUse  (21),
           -- the transaction identifier is already in use
        unsupportedVersion  (22),
           -- the version of the message is not supported
        notAuthorized       (23),
           -- the sender was not authorized to make the preceding
           -- request or perform the preceding action
        systemUnavail       (24),
        -- the request cannot be handled due to system unavailability
        systemFailure       (25),
        -- the request cannot be handled due to system failure
        duplicateCertReq    (26)
        -- certificate cannot be issued because a duplicate
        -- certificate already exists
    }

    PKIStatusInfo ::= SEQUENCE {
        status        PKIStatus,
        statusString  PKIFreeText     OPTIONAL,
        failInfo      PKIFailureInfo  OPTIONAL
    }

    OOBCert ::= CMPCertificate

    OOBCertHash ::= SEQUENCE {
        hashAlg     [0] AlgorithmIdentifier     OPTIONAL,
        certId      [1] CertId                  OPTIONAL,
        hashVal         BIT STRING



Adams, et al.               Standards Track                    [Page 88]

RFC 4210                          CMP                     September 2005


        -- hashVal is calculated over the DER encoding of the
        -- self-signed certificate with the identifier certID.
    }

    POPODecKeyChallContent ::= SEQUENCE OF Challenge
    -- One Challenge per encryption key certification request (in the
    -- same order as these requests appear in CertReqMessages).

    Challenge ::= SEQUENCE {
        owf                 AlgorithmIdentifier  OPTIONAL,

        -- MUST be present in the first Challenge; MAY be omitted in
        -- any subsequent Challenge in POPODecKeyChallContent (if
        -- omitted, then the owf used in the immediately preceding
        -- Challenge is to be used).

        witness             OCTET STRING,
        -- the result of applying the one-way function (owf) to a
        -- randomly-generated INTEGER, A.  [Note that a different
        -- INTEGER MUST be used for each Challenge.]
        challenge           OCTET STRING
        -- the encryption (under the public key for which the cert.
        -- request is being made) of Rand, where Rand is specified as
        --   Rand ::= SEQUENCE {
        --      int      INTEGER,
        --       - the randomly-generated INTEGER A (above)
        --      sender   GeneralName
        --       - the sender's name (as included in PKIHeader)
        --   }
    }

    POPODecKeyRespContent ::= SEQUENCE OF INTEGER
    -- One INTEGER per encryption key certification request (in the
    -- same order as these requests appear in CertReqMessages).  The
    -- retrieved INTEGER A (above) is returned to the sender of the
    -- corresponding Challenge.

    CertRepMessage ::= SEQUENCE {
        caPubs       [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate
                         OPTIONAL,
        response         SEQUENCE OF CertResponse
    }

    CertResponse ::= SEQUENCE {
        certReqId           INTEGER,
        -- to match this response with corresponding request (a value
        -- of -1 is to be used if certReqId is not specified in the
        -- corresponding request)



Adams, et al.               Standards Track                    [Page 89]

RFC 4210                          CMP                     September 2005


        status              PKIStatusInfo,
        certifiedKeyPair    CertifiedKeyPair    OPTIONAL,
        rspInfo             OCTET STRING        OPTIONAL
        -- analogous to the id-regInfo-utf8Pairs string defined
        -- for regInfo in CertReqMsg [CRMF]
    }

    CertifiedKeyPair ::= SEQUENCE {
        certOrEncCert       CertOrEncCert,
        privateKey      [0] EncryptedValue      OPTIONAL,
        -- see [CRMF] for comment on encoding
        publicationInfo [1] PKIPublicationInfo  OPTIONAL
    }

    CertOrEncCert ::= CHOICE {
        certificate     [0] CMPCertificate,
        encryptedCert   [1] EncryptedValue
    }

    KeyRecRepContent ::= SEQUENCE {
        status                  PKIStatusInfo,
        newSigCert          [0] CMPCertificate OPTIONAL,
        caCerts             [1] SEQUENCE SIZE (1..MAX) OF
                                            CMPCertificate OPTIONAL,
        keyPairHist         [2] SEQUENCE SIZE (1..MAX) OF
                                            CertifiedKeyPair OPTIONAL
    }

    RevReqContent ::= SEQUENCE OF RevDetails

    RevDetails ::= SEQUENCE {
        certDetails         CertTemplate,
        -- allows requester to specify as much as they can about
        -- the cert. for which revocation is requested
        -- (e.g., for cases in which serialNumber is not available)
        crlEntryDetails     Extensions       OPTIONAL
        -- requested crlEntryExtensions
    }

    RevRepContent ::= SEQUENCE {
        status       SEQUENCE SIZE (1..MAX) OF PKIStatusInfo,
        -- in same order as was sent in RevReqContent
        revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId
                                            OPTIONAL,
        -- IDs for which revocation was requested
        -- (same order as status)
        crls     [1] SEQUENCE SIZE (1..MAX) OF CertificateList
                                            OPTIONAL



Adams, et al.               Standards Track                    [Page 90]

RFC 4210                          CMP                     September 2005


        -- the resulting CRLs (there may be more than one)
    }

    CAKeyUpdAnnContent ::= SEQUENCE {
        oldWithNew   CMPCertificate, -- old pub signed with new priv
        newWithOld   CMPCertificate, -- new pub signed with old priv
        newWithNew   CMPCertificate  -- new pub signed with new priv
    }

    CertAnnContent ::= CMPCertificate

    RevAnnContent ::= SEQUENCE {
        status              PKIStatus,
        certId              CertId,
        willBeRevokedAt     GeneralizedTime,
        badSinceDate        GeneralizedTime,
        crlDetails          Extensions  OPTIONAL
        -- extra CRL details (e.g., crl number, reason, location, etc.)
    }

    CRLAnnContent ::= SEQUENCE OF CertificateList

    CertConfirmContent ::= SEQUENCE OF CertStatus

    CertStatus ::= SEQUENCE {
       certHash    OCTET STRING,
       -- the hash of the certificate, using the same hash algorithm
       -- as is used to create and verify the certificate signature
       certReqId   INTEGER,
       -- to match this confirmation with the corresponding req/rep
       statusInfo  PKIStatusInfo OPTIONAL
    }

    PKIConfirmContent ::= NULL

    InfoTypeAndValue ::= SEQUENCE {
        infoType               OBJECT IDENTIFIER,
        infoValue              ANY DEFINED BY infoType  OPTIONAL
    }
    -- Example InfoTypeAndValue contents include, but are not limited
    -- to, the following (un-comment in this ASN.1 module and use as
    -- appropriate for a given environment):
    --
    --   id-it-caProtEncCert    OBJECT IDENTIFIER ::= {id-it 1}
    --      CAProtEncCertValue      ::= CMPCertificate
    --   id-it-signKeyPairTypes OBJECT IDENTIFIER ::= {id-it 2}
    --      SignKeyPairTypesValue   ::= SEQUENCE OF AlgorithmIdentifier
    --   id-it-encKeyPairTypes  OBJECT IDENTIFIER ::= {id-it 3}



Adams, et al.               Standards Track                    [Page 91]

RFC 4210                          CMP                     September 2005


    --      EncKeyPairTypesValue    ::= SEQUENCE OF AlgorithmIdentifier
    --   id-it-preferredSymmAlg OBJECT IDENTIFIER ::= {id-it 4}
    --      PreferredSymmAlgValue   ::= AlgorithmIdentifier
    --   id-it-caKeyUpdateInfo  OBJECT IDENTIFIER ::= {id-it 5}
    --      CAKeyUpdateInfoValue    ::= CAKeyUpdAnnContent
    --   id-it-currentCRL       OBJECT IDENTIFIER ::= {id-it 6}
    --      CurrentCRLValue         ::= CertificateList
    --   id-it-unsupportedOIDs  OBJECT IDENTIFIER ::= {id-it 7}
    --      UnsupportedOIDsValue    ::= SEQUENCE OF OBJECT IDENTIFIER
    --   id-it-keyPairParamReq  OBJECT IDENTIFIER ::= {id-it 10}
    --      KeyPairParamReqValue    ::= OBJECT IDENTIFIER
    --   id-it-keyPairParamRep  OBJECT IDENTIFIER ::= {id-it 11}
    --      KeyPairParamRepValue    ::= AlgorithmIdentifer
    --   id-it-revPassphrase    OBJECT IDENTIFIER ::= {id-it 12}
    --      RevPassphraseValue      ::= EncryptedValue
    --   id-it-implicitConfirm  OBJECT IDENTIFIER ::= {id-it 13}
    --      ImplicitConfirmValue    ::= NULL
    --   id-it-confirmWaitTime  OBJECT IDENTIFIER ::= {id-it 14}
    --      ConfirmWaitTimeValue    ::= GeneralizedTime
    --   id-it-origPKIMessage   OBJECT IDENTIFIER ::= {id-it 15}
    --      OrigPKIMessageValue     ::= PKIMessages
    --   id-it-suppLangTags     OBJECT IDENTIFIER ::= {id-it 16}
    --      SuppLangTagsValue       ::= SEQUENCE OF UTF8String
    --
    -- where
    --
    --   id-pkix OBJECT IDENTIFIER ::= {
    --      iso(1) identified-organization(3)
    --      dod(6) internet(1) security(5) mechanisms(5) pkix(7)}
    -- and
    --   id-it   OBJECT IDENTIFIER ::= {id-pkix 4}
    --
    --
    -- This construct MAY also be used to define new PKIX Certificate
    -- Management Protocol request and response messages, or general-
    -- purpose (e.g., announcement) messages for future needs or for
    -- specific environments.

    GenMsgContent ::= SEQUENCE OF InfoTypeAndValue

    -- May be sent by EE, RA, or CA (depending on message content).
    -- The OPTIONAL infoValue parameter of InfoTypeAndValue will
    -- typically be omitted for some of the examples given above.
    -- The receiver is free to ignore any contained OBJ. IDs that it
    -- does not recognize. If sent from EE to CA, the empty set
    -- indicates that the CA may send
    -- any/all information that it wishes.




Adams, et al.               Standards Track                    [Page 92]

RFC 4210                          CMP                     September 2005


    GenRepContent ::= SEQUENCE OF InfoTypeAndValue
    -- Receiver MAY ignore any contained OIDs that it does not
    -- recognize.

    ErrorMsgContent ::= SEQUENCE {
        pKIStatusInfo          PKIStatusInfo,
        errorCode              INTEGER           OPTIONAL,
        -- implementation-specific error codes
        errorDetails           PKIFreeText       OPTIONAL
        -- implementation-specific error details
    }

    PollReqContent ::= SEQUENCE OF SEQUENCE {
        certReqId              INTEGER
    }

    PollRepContent ::= SEQUENCE OF SEQUENCE {
        certReqId              INTEGER,
        checkAfter             INTEGER,  -- time in seconds
        reason                 PKIFreeText OPTIONAL
    }

    END -- of CMP module

Appendix G.  Acknowledgements

  The authors gratefully acknowledge the contributions of various
  members of the IETF PKIX Working Group and the ICSA CA-talk mailing
  list (a list solely devoted to discussing CMP interoperability
  efforts).  Many of these contributions significantly clarified and
  improved the utility of this specification.  Tomi Kause thanks Vesa
  Suontama and Toni Tammisalo for review and comments.



















Adams, et al.               Standards Track                    [Page 93]

RFC 4210                          CMP                     September 2005


Authors' Addresses

  Carlisle Adams
  University of Ottawa
  800 King Edward Avenue
  P.O.Box 450, Station A
  Ottawa, Ontario  K1N 6N5
  CA

  Phone: (613) 562-5800 ext. 2345
  Fax:   (613) 562-5664
  EMail: [email protected]


  Stephen Farrell
  Trinity College Dublin
  Distributed Systems Group
  Computer Science Department
  Dublin
  IE

  Phone: +353-1-608-2945
  EMail: [email protected]


  Tomi Kause
  SSH Communications Security Corp
  Valimotie 17
  Helsinki  00380
  FI

  Phone: +358 20 500 7415
  EMail: [email protected]


  Tero Mononen
  SafeNet, Inc.
  Fredrikinkatu 47
  Helsinki  00100
  FI

  Phone: +358 20 500 7814
  EMail: [email protected]








Adams, et al.               Standards Track                    [Page 94]

RFC 4210                          CMP                     September 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Adams, et al.               Standards Track                    [Page 95]