Network Working Group                                   A. Fredette, Ed.
Request for Comments: 4209                             Hatteras Networks
Category: Standards Track                                   J. Lang, Ed.
                                                             Sonos Inc.
                                                           October 2005


                 Link Management Protocol (LMP) for
  Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  The Link Management Protocol (LMP) is defined to manage traffic
  engineering (TE) links.  In its present form, LMP focuses on peer
  nodes, i.e., nodes that peer in signaling and/or routing.  This
  document proposes extensions to LMP to allow it to be used between a
  peer node and an adjacent optical line system (OLS).  These
  extensions are intended to satisfy the "Optical Link Interface
  Requirements" described in a companion document.

1.  Introduction

  Networks are being developed with routers, switches, optical cross-
  connects (OXCs), dense wavelength division multiplexing (DWDM)
  optical line systems (OLSes), and add-drop multiplexors (ADMs) that
  use a common control plane (e.g., Generalized MPLS (GMPLS)) to
  dynamically provision resources and to provide network survivability
  using protection and restoration techniques.

  The Link Management Protocol (LMP) is being developed as part of the
  GMPLS protocol suite to manage traffic engineering (TE) links
  [RFC4204].  In its present form, LMP focuses on peer nodes, i.e.,
  nodes that peer in signaling and/or routing (e.g., OXC-to-OXC, as
  illustrated in Figure 1).  In this document, extensions to LMP are
  proposed to allow it to be used between a peer node and an adjacent
  optical line system (OLS).  These extensions are intended to satisfy



Fredette & Lang             Standards Track                     [Page 1]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  the "Optical Link Interface Requirements" described in [OLI].  It is
  assumed that the reader is familiar with LMP, as defined in
  [RFC4204].

        +------+       +------+       +------+       +------+
        |      | ----- |      |       |      | ----- |      |
        | OXC1 | ----- | OLS1 | ===== | OLS2 | ----- | OXC2 |
        |      | ----- |      |       |      | ----- |      |
        +------+       +------+       +------+       +------+
           ^                                             ^
           |                                             |
           +---------------------LMP---------------------+

                         Figure 1: LMP Model

  Consider two peer nodes (e.g., two OXCs) interconnected by a
  wavelength-multiplexed link, i.e., a DWDM optical link (see Figure 1
  above).  Information about the configuration of this link and its
  current state is known by the two OLSes (OLS1 and OLS2).  Allowing
  them to communicate this information to the corresponding peer nodes
  (OXC1 and OXC2) via LMP can improve network usability by reducing
  required manual configuration and by enhancing fault detection and
  recovery.

  Information about the state of LSPs using the DWDM optical link is
  known by the peer nodes (OXC1 and OXC2), and allowing them to
  communicate this information to the corresponding OLSes (OLS1 and
  OLS2) is useful for alarm management and link monitoring.  Alarm
  management is important because the administrative state of an LSP,
  known to the peer nodes (e.g., via the Admin Status object of GMPLS
  signaling [RFC3471]), can be used to suppress spurious alarm
  reporting from the OLSes.

  The model for extending LMP to OLSes is shown in Figure 2.

        +------+       +------+       +------+       +------+
        |      | ----- |      |       |      | ----- |      |
        | OXC1 | ----- | OLS1 | ===== | OLS2 | ----- | OXC2 |
        |      | ----- |      |       |      | ----- |      |
        +------+       +------+       +------+       +------+
          ^  ^             ^              ^             ^  ^
          |  |             |              |             |  |
          |  +-----LMP-----+              +-----LMP-----+  |
          |                                                |
          +----------------------LMP-----------------------+

                     Figure 2: Extended LMP Model




Fredette & Lang             Standards Track                     [Page 2]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  In this model, a peer node may have LMP sessions with adjacent OLSes,
  as well as adjacent peer nodes.  In Figure 2, for example, the OXC1-
  OXC2 LMP session can be used to build traffic-engineering (TE) links
  for GMPLS signaling and routing, as described in [RFC4204].  The
  OXC1-OLS1 and the OXC2-OLS2 LMP sessions are used to exchange
  information about the configuration of the DWDM optical link and its
  current state and information about the state of LSPs using that
  link.

  The latter type of LMP sessions is discussed in this document.  It is
  important to note that a peer node may have LMP sessions with one or
  more OLSes and an OLS may have LMP sessions with one or more peer
  nodes.

  Although there are many similarities between an LMP session between
  two peer nodes and an LMP session between a peer node and an OLS,
  there are some differences as well.  The former type of LMP session
  is used to provide the basis for GMPLS signaling and routing.  The
  latter type of LMP session is used to augment knowledge about the
  links between peer nodes.

  A peer node maintains its peer node-to-OLS LMP sessions and its peer
  node-to-peer node LMP sessions independently.  This means that it
  MUST be possible for LMP sessions to come up in any order.  In
  particular, it MUST be possible for a peer node-to-peer node LMP
  session to come up in the absence of any peer node-to-OLS LMP
  sessions, and vice versa.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  The reader is assumed to be familiar with the terminology in
  [RFC4204].

  DWDM: Dense wavelength division multiplexing

  OLS: Optical line system

  Opaque:

     A device is called X-opaque if it examines or modifies the X
     aspect of the signal while forwarding an incoming signal from
     input to output.

  OXC: Optical cross-connect



Fredette & Lang             Standards Track                     [Page 3]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  Transparent:

     As defined in [RFC4204], a device is called X-transparent if it
     forwards incoming signals from input to output without examining
     or modifying the X aspect of the signal.  For example, a Frame
     Relay switch is network-layer transparent; an all-optical switch
     is electrically transparent.

1.2.  Scope of LMP-WDM Protocol

  This document focuses on extensions required for use with opaque
  OLSes.  In particular, this document is intended for use with OLSes
  having SONET, SDH, and Ethernet user ports.

  At the time of this writing, work is ongoing in the area of fully
  transparent wavelength routing; however, it is premature to identify
  the necessary information to be exchanged between a peer node and an
  OLS in this context.  Nevertheless, the protocol described in this
  document provides the necessary framework in which to exchange
  additional information that is deemed appropriate.

2.  LMP Extensions for Optical Line Systems

  LMP currently consists of four main procedures, of which the first
  two are mandatory and the last two are optional:

     1. Control channel management
     2. Link property correlation
     3. Link verification
     4. Fault management

  All four functions are supported in LMP-WDM.

2.1.  Control Channel Management

  As in [RFC4204], we do not specify the exact implementation of the
  control channel; it could be, for example, a separate wavelength,
  fiber, Ethernet link, an IP tunnel routed over a separate management
  network, a multi-hop IP network, or the overhead bytes of a data
  link.

  The control channel management for a peer node-to-OLS link is the
  same as for a peer node-to-peer node link, as described in [RFC4204].

  To distinguish between a peer node-to-OLS LMP session and a peer
  node-to-peer node LMP session, a new LMP-WDM CONFIG object is defined
  (C-Type = 2).  The format of the CONFIG object is as follows:




Fredette & Lang             Standards Track                     [Page 4]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  Class = 6

  o     C-Type = 2, LMP-WDM_CONFIG

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |W|O|                      (Reserved)                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.

  WDM:  1 bit

        This bit indicates support for the LMP-WDM extensions defined
        in this document.

  OLS:  1 bit

        If set, this bit indicates that the sender is an optical line
        system (OLS).  If clear, this bit indicates that the sender is
        a peer node.

  The LMP-WDM extensions are designed for peer node-to-OLS LMP
  sessions.  The OLS bit allows a node to identify itself as an OLS or
  a peer node.  This is used to detect misconfiguration of a peer
  node-to-OLS LMP session between two peer nodes or a peer node-to-peer
  node LMP session between a peer node and an OLS.

  If the node does not support the LMP-WDM extensions, it MUST reply to
  the Config message with a ConfigNack message.

  If a peer node that is configured to run LMP-WDM receives a Config
  message with the OLS bit clear in LMP-WDM_CONFIG object, it MUST
  reply to the Config message with a ConfigNack message.

2.2.  Link Verification

  The Test procedure used with OLSes is the same as described in
  [RFC4204].  The VerifyTransportMechanism (included in the BeginVerify
  and BeginVerifyAck messages) is used to allow nodes to negotiate a
  link verification method and is essential for line systems that have
  access to overhead bytes rather than the payload.  The VerifyId
  (provided by the remote node in the BeginVerifyAck message and used
  in all subsequent Test messages) is used to differentiate Test
  messages from different LMP Link Verification procedures.  In





Fredette & Lang             Standards Track                     [Page 5]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  addition to the Test procedure described in [RFC4204], the trace
  monitoring function of [RFC4207] may be used for link verification
  when the OLS user ports are SONET or SDH.

  In a combined LMP and LMP-WDM context, there is an interplay between
  the data links being managed by peer node-to-peer node LMP sessions
  and peer node-to-OLS LMP sessions.  For example, in Figure 2, the
  OXC1-OLS1 LMP session manages the data links between OXC1 and OLS1,
  and the OXC2-OLS2 LMP session manages the data links between OXC2 and
  OLS2.  However, the OXC1-OXC2 LMP session manages the data links
  between OXC1 and OXC2, which are actually a concatenation of the data
  links between OXC1 and OLS1, the DWDM span between OLS1 and OLS2, and
  the data links between OXC2 and OLS2.  It is these concatenated links
  that comprise the TE links that are advertised in the GMPLS TE link
  state database.

  The implication of this is that when the data links between OXC1 and
  OXC2 are being verified, using the LMP link verification procedure,
  OLS1 and OLS2 need to make themselves transparent with respect to
  these concatenated data links.  The coordination of verification of
  OXC1-OLS1 and OXC2-OLS2 data links to ensure this transparency is the
  responsibility of the peer nodes, OXC1 and OXC2.

  It is also necessary for these peer nodes to understand the mappings
  between the data links of the peer node - OLS LMP session and the
  concatenated data links of the peer node - peer node LMP session.

2.3.  Link Summarization

  As in [RFC4204], the LinkSummary message is used to synchronize the
  Interface_Ids and correlate the properties of the TE link.  (Note
  that the term "TE link" originated from routing/signaling
  applications of LMP, and this concept does not necessarily apply to
  an OLS.  However, the term is used in this document to remain
  consistent with LMP terminology.)  The LinkSummary message includes
  one or more DATA_LINK objects.  The contents of the DATA_LINK object
  consist of a series of variable-length data items called Data Link
  sub-objects describing the capabilities of the data links.

  In this document, several additional Data Link sub-objects are
  defined to describe additional link characteristics.  The link
  characteristics are, in general, those needed by the CSPF to select
  the path for a particular LSP.  These link characteristics describe
  the specified peer node-to-OLS data link, as well as the associated
  DWDM span between the two OLSes.






Fredette & Lang             Standards Track                     [Page 6]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  The format of the Data Link sub-objects follows the format described
  in [RFC4204] and is shown below for readability:

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------//--------------+
  |    Type       |    Length     |     (Sub-object contents)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------//--------------+

  Type: 8 bits

        The Type indicates the type of contents of the sub-object.

  Length: 8 bits

        The Length field contains the total length of the sub-object in
        bytes, including the Type and Length fields.  The Length MUST
        be at least 4, and MUST be a multiple of 4.

  The following link characteristics are exchanged on a per data link
  basis.

2.3.1.  Link Group ID

  The main purpose of the Link Group ID is to reduce control traffic
  during failures that affect many data links.  A local ID may be
  assigned to a group of data links.  This ID can be used to reduce the
  control traffic in the event of a failure by enabling a single
  ChannelStatus message with the LINK GROUP CHANNEL_STATUS object (see
  Section 2.4.1) to be used for a group of data links instead of
  individual ChannelStatus messages for each data link.  A data link
  may be a member of multiple groups.  This is achieved by including
  multiple Link Group ID sub-objects in the LinkSummary message.

  The Link Group ID feature allows Link Groups to be assigned based on
  the types of fault correlation and aggregation supported by a given
  OLS.  From a practical perspective, the Link Group ID is used to map
  (or group) data links into "failable entities" known primarily to the
  OLS.  If one of those failable entities fails, all associated data
  links are failed and the peer node is notified with a single message.

  For example, an OLS could create a Link Group for each laser in the
  OLS.  The data links associated with each laser would then each be
  assigned the Link Group ID for that laser.  If a laser fails, the OLS
  would then report a single failure affecting all of the data links
  with a Link Group ID of the failed laser.  The peer node that
  receives the single failure notification then knows which data links
  are affected.  Similarly, an OLS could create a Link Group ID for a



Fredette & Lang             Standards Track                     [Page 7]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  fiber, to report a failure affecting all of the data links associated
  with that fiber if a loss-of-signal (LOS) is detected for that fiber.

  The format of the Link Group ID sub-object (Type = 3, Length = 8) is
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |           (Reserved)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Link Group ID                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.

  Link Group ID: 32 bits

        Link Group ID 0xFFFFFFFF is reserved and indicates all data
        links in a TE link.  All data links are members of Link Group
        0xFFFFFFFF by default.

2.3.2.  Shared Risk Link Group (SRLG) Identifier

  This identifies the SRLGs of which the data link is a member.  This
  information may be configured on an OLS by the user and used for
  diverse path computation (see [RFC4202]).

  The format of the SRLG sub-object (Type = 4, Length = (N+1)*4 where N
  is the number of SRLG values) is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |            (Reserved)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         SRLG value #1                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         SRLG value #2                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  //                             ...                              //
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       SRLG value #(N-1)                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         SRLG value #N                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.



Fredette & Lang             Standards Track                     [Page 8]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  Shared Risk Link Group Value: 32 bits

        See [RFC4202].  List as many SRLGs as apply.

2.3.3.  Bit Error Rate (BER) Estimate

  This object provides an estimate of the BER for the data link.

  The Bit Error Rate (BER) is the proportion of bits that have errors
  relative to the total number of bits received in a transmission,
  usually expressed as ten to a negative power.  For example, a
  transmission might have a BER of "10 to the minus 13", meaning that,
  out of every 10,000,000,000,000 bits transmitted, one bit may be in
  error.  The BER is an indication of overall signal quality.

  The format of the BER Estimate sub-object (Type = 5; Length = 4) is
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |      BER      |   (Reserved)  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.

  BER: 8 bits

        The exponent from the BER representation described above.  That
        is, if the BER is 10 to the minus X, the BER field is set to X.

2.3.4.  Optical Protection

  This indicates whether the link is protected by the OLS.  This
  information can be used as a measure of link capability.  It may be
  advertised by routing and used by signaling as a selection criterion,
  as described in [RFC3471].

  The format of the Optical Protection sub-object (Type = 6; Length =
  4) is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |     (Reserved)    | Link Flags|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.



Fredette & Lang             Standards Track                     [Page 9]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


  Link Flags: 6 bits

        Encoding for Link Flags is defined in Section 7 of [RFC3471].

2.3.5.  Total Span Length

  This indicates the total distance of fiber in the OLS.  This may be
  used as a routing metric or to estimate delay.

  The format of the Total Span Length sub-object (Type = 7, Length = 8)
  is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |           (Reserved)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Span Length                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.

  Span Length: 32 bits

        This value represents the total length of the WDM span in
        meters, expressed as an unsigned (long) integer.

2.3.6.  Administrative Group (Color)

  The administrative group (or Color) to which the data link belongs.

  The format of the Administrative Group sub-object (Type = 8, Length =
  8) is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Type       |    Length     |           (Reserved)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Administrative Group                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Reserved field should be sent as zero and ignored on receipt.

  Administrative Group: 32 bits

        A 32-bit value, as defined in [RFC3630].




Fredette & Lang             Standards Track                    [Page 10]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


2.4.  Fault Management

  The Fault Management procedure used between a peer and an OLS follows
  the procedures described in [RFC4204]; some further extensions are
  defined in this section.  The information learned from the OLS-peer
  fault management procedures may be used to trigger peer-peer LMP
  fault management, or may be used to trigger GMPLS signaling/routing
  procedures directly.

  Fault management consists of three major functions:

     1. Fault Detection
     2. Fault Localization
     3. Fault Notification

  The fault detection mechanisms are the responsibility of the
  individual nodes and are not specified as part of this protocol.

  Fault detection mechanisms may include a Bit Error Rate (BER)
  exceeding a threshold, and loss-of-signal (LOS) and SONET/SDH-level
  errors.  It is the responsibility of the OLS to translate these
  failures into (Signal) OK, Signal Failure (SF), or Signal Degrade
  (SD), as described in [RFC4204].

  That is, an OLS uses the messages defined in the LMP fault
  localization procedures (ChannelStatus, ChannelStatusAck,
  ChannelStatusRequest, and ChannelStatusResponse messages) to inform
  the adjacent peer node of failures it has detected, in order to
  initiate the LMP fault localization procedures between peer nodes,
  but it does not participate in those procedures.

  The OLS may also execute its own fault localization process to allow
  it to determine the location of the fault along the DWDM span.  For
  example, the OLS may be able to pinpoint the fault to a particular
  amplifier in a span of thousands of kilometers in length.

  To report data link failures and recovery conditions, LMP-WDM uses
  the ChannelStatus, ChannelStatusAck, ChannelStatusRequest, and
  ChannelStatusResponse messages defined in [RFC4204].

  Each data link is identified by an Interface_ID.  In addition, a Link
  Group ID may be assigned to a group of data links (see Section
  2.3.1).  The Link Group ID may be used to reduce the control traffic
  by providing channel status information for a group of data links.  A
  new LINK GROUP CHANNEL_STATUS object is defined below for this
  purpose.  This object may be used in place of the CHANNEL_STATUS
  objects described in [RFC4204] in the ChannelStatus message.




Fredette & Lang             Standards Track                    [Page 11]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


2.4.1.  LINK_GROUP CHANNEL_STATUS Object

  The LINK_GROUP CHANNEL_STATUS object is used to indicate the status
  of the data links belonging to a particular Link Group.  The
  correlation of data links to Group ID is made with the Link Group ID
  sub-object of the DATA_LINK object.

  The format of the LINK_GROUP CHANNEL_STATUS object is as follows
  (Class = 13, C-Type = 4):

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Link Group ID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |A|D|                    Channel Status                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              :                                |
  //                             :                               //
  |                              :                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Link Group ID                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |A|D|                    Channel Status                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Link Group ID: 32 bits

        The Link Group ID 0xFFFFFFFF is reserved and indicates all data
        links in a TE link.  All data links are members of the Link
        Group 0xFFFFFFFF by default.

  Channel Status: 32 bits

        The values for the Channel Status field are defined in
        [RFC4204].

  This object is non-negotiable.

3.  Security Considerations

  LMP message security uses IPsec, as described in [RFC4204].  This
  document only defines new LMP objects that are carried in existing
  LMP messages.  As such, this document introduces no other new
  security considerations not covered in [RFC4204].






Fredette & Lang             Standards Track                    [Page 12]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


4.  IANA Considerations

  LMP [RFC4204] defines the following name spaces and the ways in which
  IANA can make assignments to these namespaces:

  -  LMP Message Type
  -  LMP Object Class
  -  LMP Object Class type (C-Type) unique within the Object Class
  -  LMP Sub-object Class type (Type) unique within the Object Class

  This memo introduces the following new assignments:

  LMP Object Class Types:

     o  under CONFIG class name (as defined in [RFC4204])
        -  LMP-WDM_CONFIG       (C-Type = 2)

     o  under CHANNEL_STATUS class name (as defined in [RFC4204])
        -  LINK_GROUP           (C-Type = 4)

  LMP Sub-Object Class names:

     o  under DATA_LINK Class name (as defined in [RFC4204])
        -  Link_GroupId         (sub-object Type = 3)
        -  SRLG                 (sub-object Type = 4)
        -  BER_Estimate         (sub-object Type = 5)
        -  Optical_Protection   (sub-object Type = 6)
        -  Total_Span_Length    (sub-object Type = 7)
        -  Administrative_Group (sub-object Type = 8)

5.  Contributors

  The authors would like to acknowledge Osama S. Aboul-Magd, Stuart
  Brorson, Sudheer Dharanikota, John Drake, David Drysdale, W. L.
  Edwards, Adrian Farrel, Andre Fredette, Rohit Goyal, Hirokazu
  Ishimatsu, Monika Jaeger, Ram Krishnan, Jonathan P. Lang, Raghu
  Mannam, Eric Mannie, Dimitri Papadimitriou, Jagan Shantigram, Ed
  Snyder, George Swallow, Gopala Tumuluri, Yong Xue, Lucy Yong, and
  John Yu.












Fredette & Lang             Standards Track                    [Page 13]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


6.  References

6.1.  Normative References

  [RFC4202]   Kompella, K., Ed., and Y. Rekhter, Ed., "Routing
              Extensions in Support of Generalized Multi-Protocol Label
              Switching (GMPLS)", RFC 4202, September 2005.

  [RFC4204]   Lang, J., Ed., "The Link Management Protocol (LMP)", RFC
              4204, September 2005.

  [RFC4207]   Lang, J., and D. Papadimitriou, "Synchronous Optical
              Network (SONET)/Synchronous Digital Hierarchy (SDH)
              Encoding for Link Management Protocol (LMP) Test
              Messages", RFC 4207, September 2005.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3471]   Berger, L., "Generalized Multi-Protocol Label Switching
              (GMPLS) Signaling Functional Description", RFC 3471,
              January 2003.

  [RFC3630]   Katz, D., Kompella, K., and D. Yeung, "Traffic
              Engineering (TE) Extensions to OSPF Version 2", RFC 3630,
              September 2003.

6.2.  Informative References

  [OLI]       Fredette, A., Editor, "Optical Link Interface
              Requirements", Work in Progress.




















Fredette & Lang             Standards Track                    [Page 14]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


Editors' Addresses

  Andre Fredette
  Hatteras Networks
  P.O. Box 110025
  Research Triangle Park
  NC 27709-0025, USA

  EMail: [email protected]


  Jonathan P. Lang
  Sonos, Inc.
  223 E. De La Guerra St.
  Santa Barbara, CA 93101

  EMail: [email protected]


































Fredette & Lang             Standards Track                    [Page 15]

RFC 4209           LMP for DWDM Optical Line Systems        October 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Fredette & Lang             Standards Track                    [Page 16]