Network Working Group                                             Q. Xie
Request for Comments: 4060                                     D. Pearce
Category: Standards Track                                       Motorola
                                                               May 2005


         RTP Payload Formats for European Telecommunications
             Standards Institute (ETSI) European Standard
                ES 202 050, ES 202 211, and ES 202 212
               Distributed Speech Recognition Encoding

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document specifies RTP payload formats for encapsulating
  European Telecommunications Standards Institute (ETSI) European
  Standard ES 202 050 DSR Advanced Front-end (AFE), ES 202 211 DSR
  Extended Front-end (XFE), and ES 202 212 DSR Extended Advanced
  Front-end (XAFE) signal processing feature streams for distributed
  speech recognition (DSR) systems.




















Xie & Pearce                Standards Track                     [Page 1]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


Table of Contents

  1. Introduction ....................................................2
     1.1. Conventions and Acronyms ...................................3
  2. ETSI DSR Front-end Codecs .......................................4
     2.1. ES 202 050 Advanced DSR Front-end Codec ....................4
     2.2. ES 202 211 Extended DSR Front-end Codec ....................4
     2.3. ES 202 212 Extended Advanced DSR Front-end Codec ...........5
  3. DSR RTP Payload Formats .........................................6
     3.1. Common Considerations of the Three DSR RTP Payload
          Formats ....................................................6
          3.1.1. Number of FPs in Each RTP Packet ....................6
          3.1.2. Support for Discontinuous Transmission ..............6
          3.1.3. RTP Header Usage ....................................6
     3.2. Payload Format for ES 202 050 DSR ..........................7
          3.2.1. Frame Pair Formats ..................................7
     3.3. Payload Format for ES 202 211 DSR ..........................9
          3.3.1. Frame Pair Formats ..................................9
     3.4. Payload Format for ES 202 212 DSR .........................11
          3.4.1. Frame Pair Formats .................................12
  4. IANA Considerations ............................................14
     4.1. Mapping MIME Parameters into SDP ..........................15
     4.2. Usage in Offer/Answer .....................................16
     4.3. Congestion Control ........................................16
  5. Security Considerations ........................................16
  6. Acknowledgments ................................................16
  7. References .....................................................16
     7.1. Normative References ......................................16
     7.2. Informative References ....................................17

1.  Introduction

  Distributed speech recognition (DSR) technology is intended for a
  remote device acting as a thin client (a.k.a. the front-end) to
  communicate with a speech recognition server (a.k.a. a speech
  engine), over a network connection to obtain speech recognition
  services.  More details on DSR over Internet can be found in RFC 3557
  [10].

  To achieve interoperability with different client devices and speech
  engines, the first ETSI standard DSR front-end ES 201 108 was
  published in early 2000 [11].  An RTP packetization for ES 201 108
  frames is defined in RFC 3557 [10] by IETF.

  In ES 202 050 [1], ETSI issues another standard for an Advanced DSR
  front-end that provides substantially improved recognition
  performance when background noise is present.  The codecs in ES 202




Xie & Pearce                Standards Track                     [Page 2]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  050 use a slightly different frame format from that of ES 201 108 and
  thus the two do not inter-operate with each other.

  The RTP packetization for ES 202 050 front-end defined in this
  document uses the same RTP packet format layout as that defined in
  RFC 3557 [10].  The differences are in the DSR codec frame bit
  definition and the payload type MIME registration.

  The two further standards, ES 202 211 and ES 202 212, provide
  extensions to each of the DSR front-end standards.  The extensions
  allow the speech waveform to be reconstructed for human audition and
  can also be used to improve recognition performance for tonal
  languages.  This is done by sending additional pitch and voicing
  information for each frame along with the recognition features.

  The RTP packet format for these extended standards is also defined in
  this document.

  It is worthwhile to note that the performance of most speech
  recognizers are extremely sensitive to consecutive frame losses and
  DSR speech recognizers are no exception.  If a DSR over RTP session
  is expected to endure high packet loss ratio between the front-end
  and the speech engine, one should consider limiting the maximum
  number of DSR frames allowed in a packet, or employing other loss
  management techniques, such as FEC or interleaving, to minimize the
  chance of losing consecutive frames.

1.1.  Conventions and Acronyms

  The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
  SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
  they appear in this document, are to be interpreted as described in
  RFC 2119 [4].

  The following acronyms are used in this document:

     DSR  - Distributed Speech Recognition
     ETSI - the European Telecommunications Standards Institute
     FP   - Frame Pair
     DTX  - Discontinuous Transmission
     VAD  - Voice Activity Detection










Xie & Pearce                Standards Track                     [Page 3]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


2.  ETSI DSR Front-end Codecs

  Some relevant characteristics of ES 202 050 Advanced, ES 202 211
  Extended, and ES 202 212 Extended Advanced DSR front-end codecs are
  summarized below.

2.1.  ES 202 050 Advanced DSR Front-end Codec

  The front-end calculation is a frame-based scheme that produces an
  output vector every 10 ms.  In the front-end feature extraction,
  noise reduction by two stages of Wiener filtering is performed first.
  Then, waveform processing is applied to the de-noised signal and
  mel-cepstral features are calculated.  At the end, blind equalization
  is applied to the cepstral features.  The front-end algorithm
  produces at its output a mel-cepstral representation in the same
  format as ES 210 108, i.e., 12 cepstral coefficients [C1 - C12], C0
  and log Energy.  Voice activity detection (VAD) for the
  classification of each frame as speech or non-speech is also
  implemented in Feature Extraction.  The VAD information is included
  in the payload format for each frame pair to be sent to the remote
  recognition engine as part of the payload.  This information may
  optionally be used by the receiving recognition engine to drop
  non-speech frames.  The front-end supports three raw sampling rates:
  8 kHz, 11 kHz, and 16 kHz (Note that unlike some other speech codecs,
  the feature frame size of DSR presented to RTP packetization is not
  dependent on the number of speech samples used in each 10 ms sample
  frame.  This will become more evident in the following sections).

  After calculation of the mel-cepstral representation, the
  representation is first quantized via split-vector quantization to
  reduce the data rate of the encoded stream.  Then, the quantized
  vectors from two consecutive frames are put into a FP, as described
  in more detail in Section 3.2.

2.2.  ES 202 211 Extended DSR Front-end Codec

  Some relevant characteristics of ES 202 211 Extended DSR front-end
  codec are summarized below.

  ES 202 211 is an extension of the mel-cepstrum DSR Front-end standard
  ES 201 108 [11].  The mel-cepstrum front-end provides the features
  for speech recognition but these are not available for human
  listening.  The purpose of the extension is allow the reconstruction
  of the speech waveform from these features so that they can be
  replayed.  The front-end feature extraction part of the processing is
  exactly the same as for ES 201 108.  To allow speech reconstruction
  additional fundamental frequency (perceived as pitch) and voicing
  class (e.g., non-speech, voiced, unvoiced and mixed) information is



Xie & Pearce                Standards Track                     [Page 4]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  needed.  This extra information is provided by the extended front-end
  processing algorithms at the device side.  It is compressed and
  transmitted along with the front-end features to the server.  This
  extra information may also be useful for improved speech recognition
  performance with tonal languages such as Mandarin, Cantonese and
  Thai.

  Full information about the client side signal processing algorithms
  used in the standard are described in the specification ES 202 211
  [2].

  The additional fundamental frequency and voicing class information is
  compressed for each frame pair.  The pitch for the first frame of the
  FP is quantized to 7 bits and the second frame is differentially
  quantized to 7 bits.  The voicing class is indicated with one bit for
  each frame.  The total for the extension information for a frame pair
  therefore consists of 14 bits plus an additional 2 bits of CRC error
  protection computed over these extension bits only.

  The total information for the frame pair is made up of 92 bits for
  the two compressed front-end feature frames (including 4 bits for
  their CRC) plus 16 bits for the extension (including 2 bits for their
  CRC) and 4 bits of null padding to give a total of 14 octets per
  frame pair.  As for ES 201 208 the extended frame pair also
  corresponds to 20ms of speech.  The extended front-end supports three
  raw sampling rates: 8 kHz, 11 kHz, and 16 kHz.

  The quantized vectors from two consecutive frames are put into an FP,
  as described in more detail in Section 3.3 below.

  The parameters received at the remote server from the RTP extended
  DSR payload specified here can be used to synthesize an intelligible
  speech waveform for replay.  The algorithms to do this are described
  in the specification ES 202 211 [2].

2.3.  ES 202 212 Extended Advanced DSR Front-end Codec

  ES 202 212 is the extension for the DSR Advanced Front-end ES 202 050
  [1].  It provides the same capabilities as the extended mel-cepstrum
  front-end described in Section 2.2 but for the DSR Advanced
  Front-end.










Xie & Pearce                Standards Track                     [Page 5]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


3.  DSR RTP Payload Formats

3.1.  Common Considerations of the Three DSR RTP Payload Formats

  The three DSR RTP payload formats defined in this document share the
  following consideration or behaviours.

3.1.1.  Number of FPs in Each RTP Packet

  Any number of FPs MAY be aggregate together in an RTP payload and
  they MUST be consecutive in time.  However, one SHOULD always keep
  the RTP payload size smaller than the MTU in order to avoid IP
  fragmentation and SHOULD follow the recommendations given in Section
  3.1 in RFC 3557 [10] when determining the proper number of FPs in an
  RTP payload.

3.1.2.  Support for Discontinuous Transmission

  Same considerations described in Section 3.2 of RFC 3557 [10] apply
  to all the three DSR RTP payloads defined in this document.

3.1.3.  RTP Header Usage

  The format of the RTP header is specified in RFC 3550 [8].  The three
  payload formats defined here use the fields of the header in a manner
  consistent with that specification.

  The RTP timestamp corresponds to the sampling instant of the first
  sample encoded for the first FP in the packet.  The timestamp clock
  frequency is the same as the sampling frequency, so the timestamp
  unit is in samples.

  As defined by all three front-end codecs, the duration of one FP is
  20 ms, corresponding to 160, 220, or 320 encoded samples with a
  sampling rate of 8, 11, or 16 kHz being used at the front-end,
  respectively.  Thus, the timestamp is increased by 160, 220, or 320
  for each consecutive FP, respectively.

  The DSR payload for all three front-end codecs is always an integral
  number of octets.  If additional padding is required for some other
  purpose, then the P bit in the RTP header may be set and padding
  appended as specified in RFC 3550 [8].

  The RTP header marker bit (M) MUST be set following the general rules
  for audio codecs, as defined in Section 4.1 in RFC 3551 [9].






Xie & Pearce                Standards Track                     [Page 6]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  This document does not specify the assignment of an RTP payload type
  for these three new packet formats.  It is expected that the RTP
  profile under which any of these payload formats is being used will
  assign a payload type for this encoding or will specify that the
  payload type is to be bound dynamically.

3.2.  Payload Format for ES 202 050 DSR

  An ES 202 050 DSR RTP payload datagram uses exactly the same layout
  as defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
  followed by a DSR payload containing a series of DSR FPs.

  The size of each ES 202 050 FP remains 96 bits or 12 octets, as
  defined in the following sections.  This ensures that a DSR RTP
  payload will always end on an octet boundary.

3.2.1.  Frame Pair Formats

3.2.1.1.  Format of Speech and Non-speech FPs

  The following mel-cepstral frame MUST be used, as defined in [1]:

  Pairs of the quantized 10ms mel-cepstral frames MUST be grouped
  together and protected with a 4-bit CRC forming a 92-bit long FP.  At
  the end, each FP MUST be padded with 4 zeros to the MSB 4 bits of the
  last octet in order to make the FP aligned to the octet boundary.

  The following diagram shows a complete ES 202 050 FP:

    Frame #1 in FP:
    ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(2,3) |            idx(0,1)               |    Octet 1
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |             idx(6,7)              |idx(4,5)(cont)  Octet 3
      +-----+-----+-----+-----+-----+-----+-----+-----+
  idx(10,11)| VAD |              idx(8,9)             |    Octet 4
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
      +-----+-----+-----+-----+-----+-----+-----+-----+
                              |   idx(12,13) (cont)   :    Octet 6/1
                              +-----+-----+-----+-----+





Xie & Pearce                Standards Track                     [Page 7]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


   Frame #2 in FP:
   ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+
      :        idx(0,1)       |                            Octet 6/2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |              idx(2,3)             |idx(0,1)(cont)  Octet 7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(6,7) |              idx(4,5)             |    Octet 8
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |          idx(10,11)         | VAD |idx(8,9)(cont)  Octet 10
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |                   idx(12,13)                  |    Octet 11
      +-----+-----+-----+-----+-----+-----+-----+-----+


   CRC for Frame #1 and Frame #2 and padding in FP:
   ================================================
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |  0  |  0  |  0  |  0  |          CRC          |    Octet 12
      +-----+-----+-----+-----+-----+-----+-----+-----+

  The 4-bit CRC in the FP MUST be calculated using the formula
  (including the bit-order rules) defined in 7.2 in [1].

  Therefore, each FP represents 20ms of original speech.  Note that
  each FP MUST be padded with 4 zeros to the MSB 4 bits of the last
  octet in order to make the FP aligned to the octet boundary, as shown
  above.  This makes the total size of an FP 96 bits, or 12 octets.
  Note that this padding is separate from padding indicated by the P
  bit in the RTP header.

  The definition of the indices and 'VAD' flag are described in [1] and
  their value is only set and examined by the codecs in the front-end
  client and the recognizer.

3.2.1.2.  Format of Null FP

  Null FPs are sent to mark the end of a transmission segment.  Details
  on transmission segment and the use of Null FPs can be found in RFC
  3557 [10].





Xie & Pearce                Standards Track                     [Page 8]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  A Null FP for the ES 202 050 front-end codec is defined by setting
  the content of the first and second frame in the FP to null (i.e.,
  filling the first 88 bits of the FP with zeros).  The 4-bit CRC MUST
  be calculated the same way as described in Section 7.2.4 of [1], and
  4 zeros MUST be padded to the end of the Null FP in order to make it
  aligned to the octet boundary.

3.3.  Payload Format for ES 202 211 DSR

  An ES 202 211 DSR RTP payload datagram is very similar to that
  defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
  followed by a DSR payload containing a series of DSR FPs.

  The size of each ES 202 211 FP is 112 bits or 14 octets, as defined
  in the following sections.  This ensures that a DSR RTP payload will
  always end on an octet boundary.

3.3.1.  Frame Pair Formats

3.3.1.1.  Format of Speech and Non-speech FPs

  The following mel-cepstral frame MUST be used, as defined in Section
  6.2.4 in [2]:

  Immediately following two frames (Frame #1 and Frame #2) worth of
  codebook indices (or 88 bits), there is a 4-bit CRC calculated on
  these 88 bits.  The pitch indices of the first frame (Pidx1: 7 bits)
  and the second frame (Pidx2: 5 bits) of the frame pair then follow.
  The class indices of the two frames in the frame pair worth 1 bit
  each (Cidx1 and Cidx2) next follow.  Finally, a 2-bit CRC calculated
  on the pitch and class bits (total: 14 bits) of the frame pair is
  included (PC-CRC).  The total number of bits in a frame pair packet
  is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108.  At the end, each
  FP MUST be padded with 4 zeros to the MSB 4 bits of the last octet in
  order to make the FP aligned to the octet boundary.
















Xie & Pearce                Standards Track                     [Page 9]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  The following diagram shows a complete ES 202 211 FP:

    Frame #1 in FP:
    ===============
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :  idx(2,3) |            idx(0,1)               |    Octet 1
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |             idx(6,7)              |idx(4,5)(cont)  Octet 3
     +-----+-----+-----+-----+-----+-----+-----+-----+
      idx(10,11) |              idx(8,9)             |    Octet 4
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
     +-----+-----+-----+-----+-----+-----+-----+-----+
                             |   idx(12,13) (cont)   :    Octet 6/1
                             +-----+-----+-----+-----+

   Frame #2 in FP:
   ===============
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+
     :        idx(0,1)       |                            Octet 6/2
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |              idx(2,3)             |idx(0,1)(cont)  Octet 7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :  idx(6,7) |              idx(4,5)             |    Octet 8
     +-----+-----+-----+-----+-----+-----+-----+-----+
     :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |          idx(10,11)               |idx(8,9)(cont)  Octet 10
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |                   idx(12,13)                  |    Octet 11
     +-----+-----+-----+-----+-----+-----+-----+-----+

   CRC for Frame #1 and Frame #2 in FP:
   ====================================
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
                             +-----+-----+-----+-----+
                             |          CRC          |    Octet 12/1
                             +-----+-----+-----+-----+






Xie & Pearce                Standards Track                    [Page 10]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


   Extension information and padding in FP:
   ========================================
      (MSB)                                     (LSB)
        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+
     :       Pidx1           |                            Octet 12/2
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |            Pidx2            |   Pidx1 (cont)  :    Octet 13
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |  0  |  0  |  0  |  0  |  PC-CRC   |Cidx2|Cidx1|    Octet 14
     +-----+-----+-----+-----+-----+-----+-----+-----+

  The 4-bit CRC and the 2-bit PC-CRC in the FP MUST be calculated using
  the formula (including the bit-order rules) defined in 6.2.4 in [2].

  Therefore, each FP represents 20ms of original speech.  Note, as
  shown above, each FP MUST be padded with 4 zeros to the MSB 4 bits of
  the last octet in order to make the FP aligned to the octet boundary.
  This makes the total size of an FP 112 bits, or 14 octets.  Note,
  this padding is separate from padding indicated by the P bit in the
  RTP header.

3.3.1.2.  Format of Null FP

  A Null FP for the ES 202 211 front-end codec is defined by setting
  all the 112 bits of the FP with zeros.  Null FPs are sent to mark the
  end of a transmission segment.  Details on transmission segment and
  the use of Null FPs can be found in RFC 3557 [10].

3.4.  Payload Format for ES 202 212 DSR

  Similar to other ETSI DSR front-end encoding schemes, the encoded DSR
  feature stream of ES 202 212 is transmitted in a sequence of FPs,
  where each FP represents two consecutive original voice frames.

  An ES 202 212 DSR RTP payload datagram is very similar to that
  defined in Section 3 of RFC 3557 [10], i.e., a standard RTP header
  followed by a DSR payload containing a series of DSR FPs.

  The size of each ES 202 212 FP is 112 bits or 14 octets, as defined
  in the following sections.  This ensures that an ES 202 212 DSR RTP
  payload will always end on an octet boundary.









Xie & Pearce                Standards Track                    [Page 11]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


3.4.1.  Frame Pair Formats

3.4.1.1.  Format of Speech and Non-speech FPs

  The following mel-cepstral frame MUST be used, as defined in Section
  7.2.4 of [3]:

  Immediately following two frames (Frame #1 and Frame #2) worth of
  codebook indices (or 88 bits), there is a 4-bit CRC calculated on
  these 88 bits.  The pitch indices of the first frame (Pidx1: 7 bits)
  and the second frame (Pidx2: 5 bits) of the frame pair then follow.
  The class indices of the two frames in the frame pair worth 1 bit
  each next follow (Cidx1 and Cidx2).  Finally, a 2-bit CRC (PC-CRC)
  calculated on the pitch and class bits (total: 14 bits) of the frame
  pair is included.  The total number of bits in frame pair packet is
  therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108.  At the end, each FP
  MUST be padded with 4 zeros to the MSB 4 bits of the last octet in
  order to make the FP aligned to the octet boundary.  The padding
  brings the total size of a FP to 112 bits, or 14 octets.  Note that
  this padding is separate from padding indicated by the P bit in the
  RTP header.

  The following diagram shows a complete ES 202 212 FP:

    Frame #1 in FP:
    ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(2,3) |            idx(0,1)               |    Octet 1
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(4,5)        |     idx(2,3) (cont)   :    Octet 2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |             idx(6,7)              |idx(4,5)(cont)  Octet 3
      +-----+-----+-----+-----+-----+-----+-----+-----+
  idx(10,11)| VAD |              idx(8,9)             |    Octet 4
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :       idx(12,13)      |   idx(10,11) (cont)   :    Octet 5
      +-----+-----+-----+-----+-----+-----+-----+-----+
                              |   idx(12,13) (cont)   :    Octet 6/1
                              +-----+-----+-----+-----+










Xie & Pearce                Standards Track                    [Page 12]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


   Frame #2 in FP:
   ===============
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+
      :        idx(0,1)       |                            Octet 6/2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |              idx(2,3)             |idx(0,1)(cont)  Octet 7
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :  idx(6,7) |              idx(4,5)             |    Octet 8
      +-----+-----+-----+-----+-----+-----+-----+-----+
      :        idx(8,9)       |      idx(6,7) (cont)  :    Octet 9
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |          idx(10,11)         | VAD |idx(8,9)(cont)  Octet 10
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |                   idx(12,13)                  |    Octet 11
      +-----+-----+-----+-----+-----+-----+-----+-----+


   CRC for Frame #1 and Frame #2 in FP:
   ====================================
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
                              +-----+-----+-----+-----+
                              |          CRC          |    Octet 12/1
                              +-----+-----+-----+-----+

   Extension information and padding in FP:
   ========================================
       (MSB)                                     (LSB)
         0     1     2     3     4     5     6     7
      +-----+-----+-----+-----+
      :       Pidx1           |                            Octet 12/2
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |            Pidx2            |   Pidx1 (cont)  :    Octet 13
      +-----+-----+-----+-----+-----+-----+-----+-----+
      |  0  |  0  |  0  |  0  |  PC-CRC   |Cidx2|Cidx1|    Octet 14
      +-----+-----+-----+-----+-----+-----+-----+-----+

  The codebook indices, VAD flag, pitch index, and class index are
  specified in Section 6 of [3].  The 4-bit CRC and the 2-bit PC-CRC in
  the FP MUST be calculated using the formula (including the bit-order
  rules) defined in 7.2.4 in [3].








Xie & Pearce                Standards Track                    [Page 13]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


3.4.1.2.  Format of Null FP

  A Null FP for the ES 202 212 front-end codec is defined by setting
  all 112 bits of the FP with zeros.  Null FPs are sent to mark the end
  of a transmission segment.  Details on transmission segments and the
  use of Null FPs can be found in RFC 3557 [10].

4.  IANA Considerations

  For each of the three ETSI DSR front-end codecs covered in this
  document, a new MIME subtype registration has been registered by the
  IANA for the corresponding payload type, as described below.

  Media Type name: audio

  Media subtype names:

        dsr-es202050 (for ES 202 050 front-end)

        dsr-es202211 (for ES 202 211 front-end)

        dsr-es202212 (for ES 202 212 front-end)

  Required parameters: none

  Optional parameters:

  rate: Indicates the sample rate of the speech.  Valid values include:
     8000, 11000, and 16000.  If this parameter is not present, 8000
     sample rate is assumed.

  maxptime: see RFC 3267 [7].  If this parameter is not present,
     maxptime is assumed to be 80ms.

     Note, since the performance of most speech recognizers are
     extremely sensitive to consecutive FP losses, if the user of the
     payload format expects a high packet loss ratio for the session,
     it MAY consider to explicitly choose a maxptime value for the
     session that is shorter than the default value.

  ptime: see RFC 2327 [5].

  Encoding considerations: These types are defined for transfer via RTP
     [8] as described in Section 3 of RFC 4060.

  Security considerations: See Section 5 of RFC 4060.





Xie & Pearce                Standards Track                    [Page 14]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  Person & email address to contact for further information:
     [email protected]

  Intended usage: COMMON.  It is expected that many VoIP applications
     (as well as mobile applications) will use this type.

  Author: [email protected]

  Change controller: IETF Audio/Video transport working group

4.1.  Mapping MIME Parameters into SDP

  The information carried in the MIME media type specification has a
  specific mapping to fields in the Session Description Protocol (SDP)
  [5], which is commonly used to describe RTP sessions.  When SDP is
  used to specify sessions employing ES 202 050, ES 202 211, or ES 202
  212 DSR codec, the mapping is as follows:

  o  The MIME type ("audio") goes in SDP "m=" as the media name.

  o  The MIME subtype ("dsr-es202050", "dsr-es202211", or
     "dsr-es202212") goes in SDP "a=rtpmap" as the encoding name.

  o  The optional parameter "rate" also goes in "a=rtpmap" as clock
     rate.  If no rate is given, then the default value (i.e., 8000) is
     used in SDP.

  o  The optional parameters "ptime" and "maxptime" go in the SDP
     "a=ptime" and "a=maxptime" attributes, respectively.

  Example of usage of ES 202 050 DSR:

    m=audio 49120 RTP/AVP 101
    a=rtpmap:101 dsr-es202050/8000
    a=maxptime:40

  Example of usage of ES 202 211 DSR:

    m=audio 49120 RTP/AVP 101
    a=rtpmap:101 dsr-es202211/8000
    a=maxptime:40

  Example of usage of ES 202 212 DSR:

    m=audio 49120 RTP/AVP 101
    a=rtpmap:101 dsr-es202212/8000
    a=maxptime:40




Xie & Pearce                Standards Track                    [Page 15]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


4.2.  Usage in Offer/Answer

  All SDP parameters in this payload format are declarative, and all
  reasonable values are expected to be supported.  Thus, the standard
  usage of Offer/Answer as described in RFC 3264 [6] should be
  followed.

4.3.  Congestion Control

  Congestion control for RTP MUST be used in accordance with RFC 3550
  [8], and in any applicable RTP profile, e.g., RFC 3551 [9].

5.  Security Considerations

  Implementations using the payload defined in this specification are
  subject to the security considerations discussed in the RTP
  specification RFC 3550 [8] and any RTP profile, e.g., RFC 3551 [9].
  This payload does not specify any different security services.

6.  Acknowledgments

  The design presented here is based on that of RFC 3557 [10].  The
  authors wish to thank Magnus Westerlund and others for their reviews
  and comments.

7.  References

7.1.  Normative References

  [1]   European Telecommunications Standards Institute (ETSI) Standard
        ES 202 050, "Speech Processing, Transmission and Quality
        Aspects (STQ); Distributed Speech Recognition; Advanced Front-
        end Feature Extraction Algorithm; Compression Algorithms",
        http://pda.etsi.org/pda/.

  [2]   European Telecommunications Standards Institute (ETSI) Standard
        ES 202 211, "Speech Processing, Transmission and Quality
        Aspects (STQ); Distributed Speech Recognition; Extended front-
        end feature extraction algorithm; Compression algorithms; Back-
        end speech reconstruction algorithm", http://pda.etsi.org/pda/.

  [3]   European Telecommunications Standards Institute (ETSI) Standard
        ES 202 212, "Speech Processing, Transmission and Quality
        aspects (STQ); Distributed speech recognition; Extended
        advanced front-end feature extraction algorithm; Compression
        algorithms; Back-end speech reconstruction algorithm",
        http://pda.etsi.org/pda/.




Xie & Pearce                Standards Track                    [Page 16]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


  [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

  [5]   Handley, M. and V. Jacobson, "SDP: Session Description
        Protocol", RFC 2327, April 1998.

  [6]   Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
        the Session Description Protocol (SDP)", RFC 3264, June 2002.

  [7]   Sjoberg, J., Westerlund, M., Lakaniemi, A., and Q. Xie,
        "Real-Time Transport Protocol (RTP) Payload Format and File
        Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive
        Multi-Rate Wideband (AMR-WB) Audio Codecs", RFC 3267,
        June 2002.

  [8]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
        "RTP: A Transport Protocol for Real-Time Applications", STD 64,
        RFC 3550, July 2003.

  [9]   Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
        Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

  [10]  Xie, Q., "RTP Payload Format for European Telecommunications
        Standards Institute (ETSI) European Standard ES 201 108
        Distributed Speech Recognition Encoding", RFC 3557, July 2003.

7.2.  Informative References

  [11]  European Telecommunications Standards Institute (ETSI) Standard
        ES 201 108, "Speech Processing, Transmission and Quality
        Aspects (STQ); Distributed Speech Recognition; Front-end
        Feature Extraction Algorithm; Compression Algorithms",
        http://pda.etsi.org/pda/.


















Xie & Pearce                Standards Track                    [Page 17]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


Authors' Addresses

  Qiaobing Xie
  Motorola, Inc.
  1501 W. Shure Drive, 2-F9
  Arlington Heights, IL  60004
  US

  Phone: +1-847-632-3028
  EMail: [email protected]


  David Pearce
  Motorola Labs
  UK Research Laboratory
  Jays Close
  Viables Industrial Estate
  Basingstoke, HANTS  RG22 4PD
  UK

  Phone: +44 (0)1256 484 436
  EMail: [email protected]





























Xie & Pearce                Standards Track                    [Page 18]

RFC 4060            RTP Payloads for ETSI DSR Codecs            May 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Xie & Pearce                Standards Track                    [Page 19]