Network Working Group                                    D. Eastlake 3rd
Request for Comments: 4051                         Motorola Laboratories
Category: Standards Track                                     April 2005


     Additional XML Security Uniform Resource Identifiers (URIs)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  A number of Uniform Resource Identifiers (URIs) intended for use with
  XML Digital Signatures, Encryption, and Canonicalization are defined.
  These URIs identify algorithms and types of keying information.

Table of Contents

  1.  Introduction..................................................  2
  2.  Algorithms....................................................  3
      2.1.  DigestMethod Algorithms.................................  3
            2.1.1.  MD5.............................................  3
            2.1.2.  SHA-224.........................................  3
            2.1.3.  SHA-384.........................................  4
      2.2.  SignatureMethod Message Authentication Code Algorithms..  4
            2.2.1.  HMAC-MD5........................................  4
            2.2.2.  HMAC SHA Variations.............................  5
            2.2.3.  HMAC-RIPEMD160..................................  6
      2.3.  SignatureMethod Public Key Signature Algorithms.........  6
            2.3.1.  RSA-MD5.........................................  6
            2.3.2.  RSA-SHA256......................................  7
            2.3.3.  RSA-SHA384......................................  7
            2.3.4.  RSA-SHA512......................................  7
            2.3.5.  RSA-RIPEMD160...................................  8
            2.3.6.  ECDSA-SHA*......................................  8
            2.3.7.  ESIGN-SHA1......................................  8
      2.4.  Minimal Canonicalization................................  9
      2.5.  Transform Algorithms....................................  9
            2.5.1.  XPointer........................................  9



Eastlake 3rd                Standards Track                     [Page 1]

RFC 4051              Additional XML Security URIs            April 2005


      2.6.  EncryptionMethod Algorithms............................. 10
            2.6.1.  ARCFOUR Encryption Algorithm.................... 10
            2.6.2.  Camellia Block Encryption....................... 10
            2.6.3.  Camellia Key Wrap............................... 11
            2.6.4.  PSEC-KEM........................................ 11
  3.  KeyInfo....................................................... 12
      3.1.  PKCS #7 Bag of Certificates and CRLs.................... 12
      3.2.  Additional RetrievalMethod Type Values.................. 12
  4.  IANA Considerations........................................... 13
  5.  Security Considerations....................................... 13
  Acknowledgements.................................................. 13
  Normative References.............................................. 13
  Informative References............................................ 15
  Author's Address.................................................. 16
  Full Copyright Statement.......................................... 17

1.  Introduction

  XML Digital Signatures, Canonicalization, and Encryption have been
  standardized by the W3C and the joint IETF/W3C XMLDSIG working group.
  All of these are now W3C Recommendations and IETF Informational or
  Standards Track documents.  They are available as follows:

  IETF level           W3C REC     Topic
  -----------          -------     -----
  [RFC3275]  Draft Std [XMLDSIG]   XML Digital Signatures
  [RFC3076]  Info      [CANON]     Canonical XML
   - - - - - -         [XMLENC]    XML Encryption
  [RFC3741]  Info      [EXCANON]   Exclusive XML Canonicalization

  All of these standards and recommendations use URIs [RFC2396] to
  identify algorithms and keying information types.  This document
  provides a convenient reference list of URIs and descriptions for
  algorithms in which there is substantial interest, but which cannot
  or have not been included in the main documents.  Note that raising
  XML digital signature to a Draft Standard in the IETF required
  removal of any algorithms for which interoperability from the main
  standards document has not been demonstrated.  This required removal
  of the Minimal Canonicalization algorithm, in which there appears to
  be a continued interest, to be dropped from the standards track
  specification.  It is included here.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].






Eastlake 3rd                Standards Track                     [Page 2]

RFC 4051              Additional XML Security URIs            April 2005


2.  Algorithms

  The URI [RFC2396] being dropped from the standard because of the
  transition from Proposed Standard to Draft Standard is included in
  Section 2.4 with its original prefix so as to avoid changing the
  XMLDSIG standard's namespace.

     http://www.w3.org/2000/09/xmldsig#

  Additional algorithms are given URIs that start with:

     http://www.w3.org/2001/04/xmldsig-more#

  An "xmldsig-more" URI does not imply any official W3C status for
  these algorithms or identifiers or that they are only useful in
  digital signatures.  Currently, dereferencing such URIs may or may
  not produce a temporary placeholder document.  Permission to use this
  URI prefix has been given by the W3C.

2.1.  DigestMethod Algorithms

  These algorithms are usable wherever a DigestMethod element occurs.

2.1.1.  MD5

  Identifier:

     http://www.w3.org/2001/04/xmldsig-more#md5

  The MD5 algorithm [RFC1321] takes no explicit parameters.  An example
  of an MD5 DigestAlgorithm element is:

  <DigestAlgorithm
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>

  An MD5 digest is a 128-bit string.  The content of the DigestValue
  element shall be the base64 [RFC2405] encoding of this bit string
  viewed as a 16-octet octet stream.

2.1.2.  SHA-224

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#sha224

  The SHA-224 algorithm [FIPS-180-2change, RFC3874] takes no explicit
  parameters.  An example of a SHA-224 DigestAlgorithm element is:





Eastlake 3rd                Standards Track                     [Page 3]

RFC 4051              Additional XML Security URIs            April 2005


  <DigestAlgorithm
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />

  A SHA-224 digest is a 224 bit string.  The content of the DigestValue
  element shall be the base64 [RFC2405] encoding of this string viewed
  as a 28-octet stream.  Because it takes roughly the same amount of
  effort to compute a SHA-224 message digest as a SHA-256 digest, and
  terseness is usually not a criteria in an XML application,
  consideration should be given to the use of SHA-256 as an
  alternative.

2.1.3.  SHA-384

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#sha384

  The SHA-384 algorithm [FIPS-180-2] takes no explicit parameters.  An
  example of a SHA-384 DigestAlgorithm element is:

  <DigestAlgorithm
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />

  A SHA-384 digest is a 384 bit string.  The content of the DigestValue
  element shall be the base64 [RFC2405] encoding of this string viewed
  as a 48-octet stream.  Because it takes roughly the same amount of
  effort to compute a SHA-384 message digest as a SHA-512 digest and
  terseness is usually not a criteria in XML application, consideration
  should be given to the use of SHA-512 as an alternative.

2.2.  SignatureMethod Message Authentication Code Algorithms

  Note: Some text in this section is duplicated from [RFC3275] for the
  convenience of the reader.  RFC 3275 is normative in case of
  conflict.

2.2.1.  HMAC-MD5

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#hmac-md5

  The HMAC algorithm [RFC2104] takes the truncation length in bits as a
  parameter; if the parameter is not specified then all the bits of the
  hash are output.  An example of an HMAC-MD5 SignatureMethod element
  is as follows:







Eastlake 3rd                Standards Track                     [Page 4]

RFC 4051              Additional XML Security URIs            April 2005


  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5">
     <HMACOutputLength>112</HMACOutputLength>
  </SignatureMethod>

  The output of the HMAC algorithm is ultimately the output (possibly
  truncated) of the chosen digest algorithm.  This value shall be
  base64 [RFC2405] encoded in the same straightforward fashion as the
  output of the digest algorithms.  For example, the SignatureValue
  element for the HMAC-MD5 digest

     9294727A 3638BB1C 13F48EF8 158BFC9D

  from the test vectors in [RFC2104] would be

     kpRyejY4uxwT9I74FYv8nQ==

  Schema Definition:

     <simpleType name="HMACOutputLength">
        <restriction base="integer" />
     </simpleType>

  DTD:

     <!ELEMENT HMACOutputLength (#PCDATA) >

  The Schema Definition and DTD immediately shown above are taken from
  [RFC3275].

  Although some cryptographic suspicions have recently been cast on MD5
  for use in signatures such as RSA-MD5 below, this does not effect use
  of MD5 in HMAC.

2.2.2.  HMAC SHA Variations

  Identifiers:
     http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
     http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
     http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
     http://www.w3.org/2001/04/xmldsig-more#hmac-sha512

  SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS-180-2, FIPS-180-2change,
  RFC3874] can also be used in HMAC as described in section 2.2.1 for
  HMAC-MD5.






Eastlake 3rd                Standards Track                     [Page 5]

RFC 4051              Additional XML Security URIs            April 2005


2.2.3.  HMAC-RIPEMD160

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160

  RIPEMD-160 [RIPEMD-160] can also be used in HMAC as described in
  section 2.2.1 for HMAC-MD5.

2.3.  SignatureMethod Public Key Signature Algorithms

  These algorithms are distinguished from those in Section 2.2 in that
  they use public key methods.  The verification key is different from
  and not feasibly derivable from the signing key.

2.3.1.  RSA-MD5

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#rsa-md5

  RSA-MD5 implies the PKCS#1 v1.5 padding algorithm described in
  [RFC3447].  An example of use is

  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />

  The SignatureValue content for an RSA-MD5 signature is the base64
  [RFC2405] encoding of the octet string computed as per [RFC3447],
  section 8.1.1, signature generation for the RSASSA-PKCS1-v1_5
  signature scheme.  As specified in the EMSA-PKCS1-V1_5-ENCODE
  function in [RFC3447, section 9.2.1], the value input to the
  signature function MUST contain a pre-pended algorithm object
  identifier for the hash function, but the availability of an ASN.1
  parser and recognition of OIDs are not required of a signature
  verifier.  The PKCS#1 v1.5 representation appears as:

     CRYPT (PAD (ASN.1 (OID, DIGEST (data))))

  Note that the padded ASN.1 will be of the following form:

     01 | FF* | 00 | prefix | hash

  Vertical bar ("|") represents concatenation.  "01", "FF", and "00"
  are fixed octets of the corresponding hexadecimal value and the
  asterisk ("*") after "FF" indicates repetition.  "hash" is the MD5
  digest of the data.  "prefix" is the ASN.1 BER MD5 algorithm
  designator prefix required in PKCS #1 [RFC3447], that is:

     hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10



Eastlake 3rd                Standards Track                     [Page 6]

RFC 4051              Additional XML Security URIs            April 2005


  This prefix is included to facilitate the use of standard
  cryptographic libraries.  The FF octet MUST be repeated enough times
  that the value of the quantity being CRYPTed is exactly one octet
  shorter than the RSA modulus.

  Due to increases in computer processor power and advances in
  cryptography, use of RSA-MD5 is NOT RECOMMENDED.

2.3.2.  RSA-SHA256

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

  This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
  in section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator
  prefix.  An example of use is:

  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

2.3.3 RSA-SHA384

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

  This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
  in section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator
  prefix.  An example of use is:

  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />

  Because it takes about the same effort to calculate a SHA-384 message
  digest as a SHA-512 message digest, it is suggested that RSA-SHA512
  be used in preference to RSA-SHA384 where possible.

2.3.4.  RSA-SHA512

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

  This implies the PKCS#1 v1.5 padding algorithm [RFC3447] as described
  in section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator
  prefix.  An example of use is:

  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />




Eastlake 3rd                Standards Track                     [Page 7]

RFC 4051              Additional XML Security URIs            April 2005


2.3.5.  RSA-RIPEMD160

  Identifier:
    http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160

  This implies the PKCS#1 v1.5 padding algorithm [RFC3447], as
  described in section 2.3.1, but with the ASN.1 BER RIPEMD160
  algorithm designator prefix.  An example of use is:

  <SignatureMethod
    Algorithm="http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />

2.3.6.  ECDSA-SHA*

  Identifiers
     http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
     http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224
     http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
     http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
     http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

  The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS-186-2]
  is the elliptic curve analogue of the DSA (DSS) signature method.
  For detailed specifications on how to use it with SHA hash functions
  and XML Digital Signature, please see [X9.62] and [ECDSA].

2.3.7.  ESIGN-SHA1

  Identifier
     http://www.w3.org/2001/04/xmldsig-more#esign-sha1
     http://www.w3.org/2001/04/xmldsig-more#esign-sha224
     http://www.w3.org/2001/04/xmldsig-more#esign-sha256
     http://www.w3.org/2001/04/xmldsig-more#esign-sha384
     http://www.w3.org/2001/04/xmldsig-more#esign-sha512

  The ESIGN algorithm specified in [IEEE-P1363a] is a signature scheme
  based on the integer factorization problem.  It is much faster than
  previous digital signature schemes so ESIGN can be implemented on
  smart cards without special co-processors.

  An example of use is:

  <SignatureMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1" />







Eastlake 3rd                Standards Track                     [Page 8]

RFC 4051              Additional XML Security URIs            April 2005


2.4.  Minimal Canonicalization

  Thus far two independent interoperable implementations of Minimal
  Canonicalization have not been announced.  Therefore, when XML
  Digital Signature was advanced from Proposed Standard [RFC3075] to
  Draft Standard [RFC3275], Minimal Canonicalization was dropped from
  the standards track documents.  However, there is still interest in
  Minimal Canonicalization, indicating its possible future use.  For
  its definition, see [RFC3075], Section 6.5.1.

  For reference, its identifier remains:
     http://www.w3.org/2000/09/xmldsig#minimal

2.5.  Transform Algorithms

  Note that all CanonicalizationMethod algorithms can also be used as
  transform algorithms.

2.5.1.  XPointer

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more/xptr

  This transform algorithm takes an [XPointer] as an explicit
  parameter.  An example of use is [RFC3092]:

  <Transform
     Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr">
     <XPointer
        xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr">
           xpointer(id("foo")) xmlns(bar=http://foobar.example)
           xpointer(//bar:Zab[@Id="foo"])
     </XPointer>
  </Transform>

  Schema Definition:

     <element name="XPointer" type="string">

  DTD:

     <!ELEMENT XPointer (#PCDATA) >

  Input to this transform is an octet stream (which is then parsed into
  XML).






Eastlake 3rd                Standards Track                     [Page 9]

RFC 4051              Additional XML Security URIs            April 2005


  Output from this transform is a node set; the results of the XPointer
  are processed as defined in the XMLDSIG specification [RFC3275] for a
  same document XPointer.

2.6.  EncryptionMethod Algorithms

  This subsection gives identifiers and information for several
  EncryptionMethod Algorithms.

2.6.1.  ARCFOUR Encryption Algorithm

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#arcfour

  ARCFOUR is a fast, simple stream encryption algorithm that is
  compatible with RSA Security's RC4 algorithm.  An example of the
  EncryptionMethod element using ARCFOUR is

  <EncryptionMethod
     Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour">
     <KeySize>40</KeySize>
  </EncryptionMethod>

  Note that Arcfour makes use of the generic KeySize parameter
  specified and defined in [XMLENC].

2.6.2.  Camellia Block Encryption

  Identifiers:
     http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc
     http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc
     http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc

  Camellia is an efficient and secure block cipher with the same
  interface as the AES [Camellia, RFC3713], that is 128-bit block size
  and 128, 192, and 256 bit key sizes.  In XML Encryption, Camellia is
  used in the same way as the AES: It is used in the Cipher Block
  Chaining (CBC) mode with a 128-bit initialization vector (IV).  The
  resulting cipher text is prefixed by the IV.  If included in XML
  output, it is then base64 encoded.  An example Camellia
  EncryptionMethod is as follows:

  <EncryptionMethod
     Algorithm=
     "http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc" />






Eastlake 3rd                Standards Track                    [Page 10]

RFC 4051              Additional XML Security URIs            April 2005


2.6.3.  Camellia Key Wrap

  Identifiers:
     http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
     http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
     http://www.w3.org/2001/04/xmldsig-more#kw-camellia256

  The Camellia [Camellia, RFC3713] key wrap is identical to the AES key
  wrap algorithm [RFC3394] specified in the XML Encryption standard
  with "AES" replaced by "Camellia".  As with AES key wrap, the check
  value is 0xA6A6A6A6A6A6A6A6.

  The algorithm is the same regardless of the size of the Camellia key
  used in wrapping (called the key encrypting key or KEK).  The
  implementation of Camellia is OPTIONAL.  However, if it is supported,
  the same implementation guidelines of which combinations of KEK size
  and wrapped key size should be required to be supported and which are
  optional to be supported should be followed as for AES.  That is to
  say, if Camellia key wrap is supported, then wrapping 128-bit keys
  with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK are
  REQUIRED and all other combinations are OPTIONAL.

  An example of use is:

  <EncryptionMethod
     Algorithm=
     "http://www.w3.org/2001/04/xmldsig-more#kw-camellia128" />

2.6.4.  PSEC-KEM

  Identifier:
     http://www.w3.org/2001/04/xmldsig-more#psec-kem

  The PSEC-KEM algorithm, specified in [ISO/IEC-18033-2], is a key
  encapsulation mechanism using elliptic curve encryption.

  An example of use is:

  <EncryptionMethod
     Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem">
     <ECParameters>
        <Version>version</Version>
        <FieldID>id</FieldID>
        <Curve>curve</Curve>
        <Base>base</Base>
        <Order>order</Order>
        <Cofactor>cofactor</Cofactor>
     </ECParameters>



Eastlake 3rd                Standards Track                    [Page 11]

RFC 4051              Additional XML Security URIs            April 2005


  </EncryptionMethod>

  See [ISO/IEC-18033-2] for information on the parameters above.

3.  KeyInfo

  In section 3.1 a new KeyInfo element child is specified, while in
  section 3.2 additional KeyInfo Type values for use in RetrievalMethod
  are specified.

3.1.  PKCS #7 Bag of Certificates and CRLs

  A PKCS #7 [RFC2315] "signedData" can also be used as a bag of
  certificates and/or certificate revocation lists (CRLs).  The
  PKCS7signedData element is defined to accommodate such structures
  within KeyInfo.  The binary PKCS #7 structure is base64 [RFC2405]
  encoded.  Any signer information present is ignored.  The following
  is an example, eliding the base64 data [RFC3092]:

  <foo:PKCS7signedData
     xmlns:foo="http://www.w3.org/2001/04/xmldsig-more">
     ...
  </foo:PKCS7signedData>

3.2.  Additional RetrievalMethod Type Values

  The Type attribute of RetrievalMethod is an optional identifier for
  the type of data to be retrieved.  The result of dereferencing a
  RetrievalMethod reference for all KeyInfo types with an XML structure
  is an XML element or document with that element as the root.  The
  various "raw" key information types return a binary value.  Thus,
  they require a Type attribute because they are not unambiguously
  parseable.

  Identifiers:
     http://www.w3.org/2001/04/xmldsig-more#KeyValue
     http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod
     http://www.w3.org/2001/04/xmldsig-more#KeyName
     http://www.w3.org/2001/04/xmldsig-more#rawX509CRL
     http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket
     http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp
     http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData
     http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData








Eastlake 3rd                Standards Track                    [Page 12]

RFC 4051              Additional XML Security URIs            April 2005


4.  IANA Considerations

  As it is easy for people to construct their own unique URIs [RFC2396]
  and possibly obtain a URI from the W3C if appropriate, it is not
  intended that any additional "http://www.w3.org/2001/04/xmldsig-
  more#" URIs be created beyond those enumerated in this document.
  (W3C Namespace stability rules prohibit the creation of new URIs
  under "http://www.w3.org/2000/09/xmldsig#".)

5.  Security Considerations

  Due to computer speed and cryptographic advances, the use of MD5 as a
  DigestMethod and the use of MD5 in the RSA-MD5 SignatureMethod is NOT
  RECOMMENDED.  The concerned cryptographic advances do not effect the
  security of HMAC-MD5; however, there is little reason not to use one
  of the SHA series of algorithms.

Acknowledgements

  Glenn Adams, Merlin Hughs, Gregor Karlinger, Brian LaMachia, Shiho
  Moriai, Joseph Reagle, Russ Housley, and Joel Halpern.

Normative References

  [Camellia]         "Camellia: A 128-bit Block Cipher Suitable for
                     Multiple Platforms - Design and Analysis -", K.
                     Aoki, T. Ichikawa, M. Matsui, S. Moriai, J.
                     Nakajima, T. Tokita, In Selected Areas in
                     Cryptography, 7th Annual International Workshop,
                     SAC 2000, August 2000, Proceedings, Lecture Notes
                     in Computer Science 2012, pp. 39-56, Springer-
                     Verlag, 2001.

  [ECDSA]            Blake-Wilson, S., Karlinger, G., Kobayashi, T.,
                     and Y. Wang, "Using the Elliptic Curve Signature
                     Algorithm (ECDSA) for XML Digital Signatures", RFC
                     4050, April 2005.

  [FIPS-180-2]       "Secure Hash Standard", (SHA-1/256/384/512) US
                     Federal Information Processing Standard, 1 August
                     2002.

  [FIPS-180-2change] "FIPS 180-2, Secure Hash Standard Change Notice
                     1", adds SHA-224 to [FIPS 180-2], 25 February
                     2004.

  [FIPS-186-2]       "Digital Signature Standard", National Institute
                     of Standards and Technology, 2000.



Eastlake 3rd                Standards Track                    [Page 13]

RFC 4051              Additional XML Security URIs            April 2005


  [IEEE-P1363a]      "Standard Specifications for Public Key
                     Cryptography:  Additional Techniques", October
                     2002.

  [ISO/IEC-18033-2]  "Information technology -- Security techniques --
                     Encryption algorithms -- Part 3: Asymmetric
                     ciphers", CD, October 2002.

  [RFC1321]          Rivest, R., "The MD5 Message-Digest Algorithm ",
                     RFC 1321, April 1992.

  [RFC2104]          Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
                     Keyed-Hashing for Message Authentication", RFC
                     2104, February 1997.

  [RFC2119]          Bradner, S., "Key words for use in RFCs to
                     Indicate Requirement Levels", BCP 14, RFC 2119,
                     March 1997.

  [RFC2396]          Berners-Lee, T., Fielding, R., and L. Masinter,
                     "Uniform Resource Identifiers (URI): Generic
                     Syntax", RFC 2396, August 1998.

  [RFC2405]          Madson, C. and N. Doraswamy, "The ESP DES-CBC
                     Cipher Algorithm With Explicit IV", RFC 2405,
                     November 1998.

  [RFC2315]          Kaliski, B., "PKCS #7: Cryptographic Message
                     Syntax Version 1.5", RFC 2315, March 1998.

  [RFC3075]          Eastlake 3rd, D., Reagle, J., and D. Solo, "XML-
                     Signature Syntax and Processing", RFC 3075, March
                     2001. (RFC 3075 was obsoleted by RFC 3275 but is
                     referenced in this document for its description of
                     Minimal Canonicalization which was dropped in RFC
                     3275.)

  [RFC3275]          Eastlake 3rd, D., Reagle, J., and D. Solo,
                     "(Extensible Markup Language) XML-Signature Syntax
                     and Processing", RFC 3275, March 2002.

  [RFC3394]          Schaad, J. and R. Housley, "Advanced Encryption
                     Standard (AES) Key Wrap Algorithm", RFC 3394,
                     September 2002.







Eastlake 3rd                Standards Track                    [Page 14]

RFC 4051              Additional XML Security URIs            April 2005


  [RFC3447]          Jonsson, J. and B. Kaliski, "Public-Key
                     Cryptography Standards (PKCS) #1: RSA Cryptography
                     Specifications Version 2.1", RFC 3447, February
                     2003.

  [RFC3713]          Matsui, M., Nakajima, J., and S. Moriai, "A
                     Description of the Camellia Encryption Algorithm",
                     RFC 3713, April 2004.

  [RFC3874]          Housley, R., "A 224-bit One-way Hash Function:
                     SHA-224", RFC 3874, September 2004.

  [RIPEMD-160]       ISO/IEC 10118-3:1998, "Information Technology -
                     Security techniques - Hash-functions - Part3:
                     Dedicated hash- functions", ISO, 1998.

  [X9.62]            X9.62-200X, "Public Key Cryptography for the
                     Financial Services Industry: The Elliptic Curve
                     Digital Signature Algorithm (ECDSA)", Accredited
                     Standards Committee X9, American National
                     Standards Institute.

  [XMLDSIG]          "XML-Signature Syntax and Processing", D. Eastlake
                     3rd, J. Reagle, & D. Solo, 12 February 2002.
                     <http://www.w3.org/TR/xmldsig-core/>

  [XMLENC]           "XML Encryption Syntax and Processing", J. Reagle,
                     D.  Eastlake, December 2002.
                     <http://www.w3.org/TR/2001/RED-xmlenc-core-
                     20021210/>

  [XPointer]         "XML Pointer Language (XPointer) Version 1.0", W3C
                     working draft, Steve DeRose, Eve Maler, Ron Daniel
                     Jr., January 2001.
                     <http://www.w3.org/TR/2001/WD-xptr-20010108>

Informative References

  [CANON]            "Canonical XML Version 1.0", John Boyer.
                     <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

  [EXCANON]          "Exclusive XML Canonicalization Version 1.0", D.
                     Eastlake, J. Reagle, 18 July 2002.
                     <http://www.w3.org/TR/REC-xml-enc-c14n-20020718/>.

  [RFC3076]          Boyer, J., "Canonical XML Version 1.0", RFC 3076,
                     March 2001.




Eastlake 3rd                Standards Track                    [Page 15]

RFC 4051              Additional XML Security URIs            April 2005


  [RFC3092]          Eastlake 3rd, D., Manros, C., and E. Raymond,
                     "Etymology of "Foo"", RFC 3092, 2001.

  [RFC3741]          Boyer, J., Eastlake 3rd, D., and J. Reagle,
                     "Exclusive XML Canonicalization, Version 1.0", RFC
                     3741, March 2004.

Author's Address

  Donald E. Eastlake 3rd
  Motorola Laboratories
  155 Beaver Street
  Milford, MA 01757 USA

  Phone: +1-508-786-7554 (w)
         +1-508-634-2066 (h)
  EMail: [email protected]


































Eastlake 3rd                Standards Track                    [Page 16]

RFC 4051              Additional XML Security URIs            April 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Eastlake 3rd                Standards Track                    [Page 17]