Network Working Group                                      S. Waldbusser
Request for Comments: 4011                                    Nextbeacon
Category: Standards Track                                     J. Saperia
                                                   JDS Consulting, Inc.
                                                              T. Hongal
                                              Riverstone Networks, Inc.
                                                             March 2005


                     Policy Based Management MIB

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in TCP/IP-based internets.
  In particular, this MIB defines objects that enable policy-based
  monitoring and management of Simple Network Management Protocol
  (SNMP) infrastructures, a scripting language, and a script execution
  environment.

Table of Contents

  1.  The Internet-Standard Management Framework ..................   3
  2.  Overview ....................................................   4
  3.  Policy-Based Management Architecture ........................   4
  4.  Policy-Based Management Execution Environment ...............  10
      4.1.  Terminology ...........................................  10
      4.2.  Execution Environment - Elements of Procedure .........  10
      4.3.  Element Discovery .....................................  11
            4.3.1.  Implementation Notes ..........................  12
      4.4.  Element Filtering .....................................  13
            4.4.1.  Implementation Notes ..........................  13
      4.5.  Policy Enforcement ....................................  13
            4.5.1.  Implementation Notes ..........................  14
  5.  The PolicyScript Language ...................................  14
      5.1.  Formal Definition .....................................  15



Waldbusser, et al.          Standards Track                     [Page 1]

RFC 4011              Policy Based Management MIB             March 2005


      5.2.  Variables .............................................  18
            5.2.1.  The Var Class .................................  19
      5.3.  PolicyScript QuickStart Guide .........................  23
            5.3.1.  Quickstart for C Programmers ..................  25
            5.3.2.  Quickstart for Perl Programmers ...............  25
            5.3.3.  Quickstart for TCL Programmers ................  25
            5.3.4.  Quickstart for Python Programmers .............  26
            5.3.5.  Quickstart for JavaScript/ECMAScript/JScript
                    Programmers ...................................  26
      5.4.  PolicyScript Script Return Values .....................  26
  6.  Index Information for `this element' ........................  27
  7.  Library Functions ...........................................  28
  8.  Base Function Library .......................................  29
      8.1.  SNMP Library Functions ................................  29
            8.1.1.  SNMP Operations on Non-Local Systems ..........  30
            8.1.2.  Form of SNMP Values ...........................  32
            8.1.3.  Convenience SNMP Functions ....................  34
                    8.1.3.1.  getVar() ............................  34
                    8.1.3.2.  exists() ............................  34
                    8.1.3.3.  setVar() ............................  35
                    8.1.3.4.  searchColumn() ......................  36
                    8.1.3.5.  setRowStatus() ......................  38
                    8.1.3.6.  createRow() .........................  39
                    8.1.3.7.  counterRate() .......................  42
            8.1.4.  General SNMP Functions ........................  44
                    8.1.4.1.  newPDU() ............................  45
                    8.1.4.2.  writeVar() ..........................  45
                    8.1.4.3.  readVar() ...........................  46
                    8.1.4.4.  snmpSend() ..........................  47
                    8.1.4.5.  readError() .........................  48
                    8.1.4.6.  writeBulkParameters() ...............  48
            8.1.5.  Constants for SNMP Library Functions ..........  49
      8.2.  Policy Library Functions ..............................  51
            8.2.1.  elementName() .................................  51
            8.2.2.  elementAddress() ..............................  51
            8.2.3.  elementContext() ..............................  52
            8.2.4.  ec() ..........................................  52
            8.2.5.  ev() ..........................................  52
            8.2.6.  roleMatch() ...................................  52
            8.2.7.  Scratchpad Functions ..........................  53
            8.2.8.  setScratchpad() ...............................  55
            8.2.9.  getScratchpad() ...............................  56
            8.2.10. signalError() .................................  57
            8.2.11. defer() .......................................  57
            8.2.12. fail() ........................................  58
            8.2.13. getParameters() ...............................  58
      8.3.  Utility Library Functions .............................  59
            8.3.1.  regexp() ......................................  59



Waldbusser, et al.          Standards Track                     [Page 2]

RFC 4011              Policy Based Management MIB             March 2005


            8.3.2.  regexpReplace() ...............................  60
            8.3.3.  oidlen() ......................................  60
            8.3.4.  oidncmp() .....................................  60
            8.3.5.  inSubtree() ...................................  60
            8.3.6.  subid() .......................................  61
            8.3.7.  subidWrite() ..................................  61
            8.3.8.  oidSplice() ...................................  61
            8.3.9.  parseIndex() ..................................  62
            8.3.10. stringToDotted() ..............................  63
            8.3.11. integer() .....................................  64
            8.3.12. string() ......................................  64
            8.3.13. type() ........................................  64
            8.3.14. chr() .........................................  64
            8.3.15. ord() .........................................  64
            8.3.16. substr() ......................................  65
      8.4.  General Functions .....................................  65
  9.  International String Library ................................  65
      9.1.  stringprep() ..........................................  66
            9.1.1.  Stringprep Profile ............................  66
      9.2.  utf8Strlen() ..........................................  67
      9.3.  utf8Chr() .............................................  68
      9.4.  utf8Ord() .............................................  68
      9.5.  utf8Substr() ..........................................  68
  10. Schedule Table ..............................................  69
  11. Definitions .................................................  70
  12. Relationship to Other MIB Modules ........................... 113
  13. Security Considerations ..................................... 114
  14. IANA Considerations ......................................... 117
  15. Acknowledgements ............................................ 118
  16. References .................................................. 118
      16.1. Normative References .................................. 118
      16.2. Informative References ................................ 119
  Authors' Addresses .............................................. 120
  Full Copyright Statement ........................................ 121

1.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [16].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [2], STD 58, RFC 2579 [3], and STD 58, RFC 2580 [4].



Waldbusser, et al.          Standards Track                     [Page 3]

RFC 4011              Policy Based Management MIB             March 2005


2.  Overview

  Large IT organizations have developed management strategies to cope
  with the extraordinarily large scale and complexity of today's
  networks.  In particular, they have tried to configure the network as
  a whole by describing and implementing high-level business policies,
  rather than manage device by device, where orders of magnitude more
  decisions (and mistakes) may be made.

  The following are examples of "business policies":

  - All routers will run code version 6.2.
  - On-site contractors will only be connected to ports that are
    configured with special security restrictions.
  - All voice over cable ports in California must provide free local
    calling.
  - Apply special forwarding to all ports whose customers have paid for
    premium service.

  Each of these policies could represent an action applied to hundreds
  of thousands of variables.

  To automate this practice, customers need software tools that will
  implement business policies across their networks, as well as
  standard protocols that will ensure that policies can be applied to
  all of their devices, regardless of the vendor.

  This practice is called Policy-Based Management.  This document
  defines managed objects for the Simple Network Management Protocol
  that are used to distribute policies in a common form throughout the
  network.

3.  Policy-Based Management Architecture

  Policy-based management is the practice of applying management
  operations globally on all managed elements that share certain
  attributes.

  Policies are intended to express a notion of:

     if (an element has certain characteristics) then (apply an
     operation to that element)









Waldbusser, et al.          Standards Track                     [Page 4]

RFC 4011              Policy Based Management MIB             March 2005


  Policies take the following normal form:

     if (policyCondition) then (policyAction)

  A policyCondition is a script that results in a boolean to determine
  whether an element is a member of a set of elements upon which an
  action is to be performed.

  A policyAction is an operation performed on an element or a set of
  elements.

  These policies are most often executed on or near managed devices
  where the elements live (and thus their characteristics may be easily
  inspected) and where operations on those elements will be performed.

  A management station is responsible for distributing an
  organization's policies to all the managed devices in the
  infrastructure.  The pmPolicyTable provides managed objects for
  representing a policy on a managed device.

  An element is an instance of a physical or logical entity and is
  embodied by a group of related MIB variables, such as all the
  variables for interface 7.  This enables policies to be expressed
  more efficiently and concisely.  Elements can also model circuits,
  CPUs, queues, processes, systems, etc.

  Conceptually, policies are executed in the following manner:

  for each element for which policyCondition returns true, execute
     policyAction on that element

  For example:

  If (interface is fast ethernet)       then (apply full-duplex mode)
  If (interface is access)              then (apply security filters)
  If (circuit w/gold service paid for)  then (apply special queuing)

  Each unique combination of policy and element is called an execution
  context.  Within a particular execution context, the phrase 'this
  element' is often used to refer to the associated element, as most
  policy operations will be applied to 'this element'.  The address of
  'this element' contains the object identifier of any attribute of the
  element, the SNMP context the element was discovered in, and the
  address of the system on which the element was discovered.







Waldbusser, et al.          Standards Track                     [Page 5]

RFC 4011              Policy Based Management MIB             March 2005


  Policies can manage elements on the same system:

        -----------------------------------------------------
        |                                                   |
        |              Managed System                       |
        |                                                   |
        |                                                   |
        |   ------------------             Managed Elements |
        |   |                |               interfaces     |
        |   | Policy Manager | manages...    circuits       |
        |   |                |               queues         |
        |   ------------------               processes      |
        |                                    ...            |
        |                                                   |
        -----------------------------------------------------

  or they can manage elements on other systems:

                                           --------------------------
                                           |  Managed System        |
    --------------------------             |    Managed Elements    |
    |                        |             |      interfaces        |
    |  Management Station or |             |      circuits          |
    |    Mid-Level Manager   |             |      ...               |
    |                        |             --------------------------
    |   ------------------   | manages...
    |   | Policy Manager |   |             --------------------------
    |   ------------------   |             |  Managed System        |
    |                        |             |    Managed Elements    |
    --------------------------             |      interfaces        |
                                           |      circuits          |
                                           |      ...               |
                                           --------------------------

                                           ...

  PolicyConditions have the capability of performing comparison
  operations on SNMP variables, logical expressions, and other
  functions.  Many device characteristics are already defined in MIB
  Modules and are easy to include in policyCondition expressions
  (ifType == ethernet, frCircuitCommittedBurst < 128K, etc).  However,
  there are important characteristics that aren't currently in MIB
  objects, and, worse, it is not current practice to store this
  information on managed devices.  Therefore, this document defines MIB
  objects for this information.  To meet today's needs there are three
  missing areas:  roles, capabilities, and time.





Waldbusser, et al.          Standards Track                     [Page 6]

RFC 4011              Policy Based Management MIB             March 2005


  Roles

  A role is an administratively specified characteristic of a managed
  element.  As a selector for policies, it determines the applicability
  of the policy to a particular managed element.

  Some examples of roles are political, financial, legal, geographical,
  or architectural characteristics, typically not directly derivable
  from information stored on the managed system.  For example, "paid
  for premium service" or "is plugged into a UPS" are examples of
  roles, whereas the "percent utilization of a link" would not be.

  Some types of information one would put into a role include the
  following:

  political - describes the role of a person or group of people, or of
              a service that a group of people uses.  Examples:
              executive, sales, outside-contractor, customer.
       If (attached user is executive) then (apply higher bandwidth)
       If (attached user is outside-contractor) then (restrict access)

  financial/legal - describes what financial consideration was
                    received.  Could also include contractual or legal
                    considerations.  Examples: paid, gold, free, trial,
                    demo, lifeline.
       If (gold service paid for) then (apply special queuing)

  geographical - describes the location of an element.  Examples:
                 California, Headquarters, insecure conduit.
       If (interface leaves the building) then (apply special security)

  architectural - describes the network architects "intent" for an
                  element.  Examples: backup, trunk.
       If (interface is backup) then (set ifAdminStatus = down)

     Roles in this model are human-defined strings that can be
     referenced by policy code.  The role table in this MIB may be used
     to assign role strings to elements and to view all role string
     assignments.  Implementation-specific mechanisms may also be used
     to assign role strings; however, these assignments must be visible
     in the role table.  Multiple roles may be assigned to each
     element.  Because policy code has access to data in MIB objects
     that represent the current state of the system and (in contrast)
     role strings are more static, it is recommended that role strings
     not duplicate information available in MIB objects.  Role strings
     generally should be used to describe information not accessible in
     MIB objects.




Waldbusser, et al.          Standards Track                     [Page 7]

RFC 4011              Policy Based Management MIB             March 2005


     Policy scripts may inspect role assignments to make decisions
     based on whether an element has a particular role assigned to it.

     The pmRoleTable allows a management station to learn what roles
     exist on a managed system.  The management station may choose not
     to install policies that depend on a role that does not exist on
     any elements in the system.  The management station can then
     register for notifications of new roles.  Upon receipt of a
     pmNewRoleNotification, it may choose to install new policies that
     make use of that new role.

  Capabilities

     The capabilities table allows a management station to learn what
     capabilities exist on a managed system.  The management station
     may choose not to install policies that depend on a capability
     that does not exist on any elements in the system.  The management
     station can then register for notifications of new capabilities.
     Upon receipt of a pmNewCapabilityNotification, it may choose to
     install new policies that make use of that new capability.

  Time

     Managers may wish to define policies that are intended to apply
     for certain periods of time.  This might mean that a policy is
     installed and is dormant for a period of time, becomes ready, and
     then later goes dormant again.  Sometimes these time periods will
     be regular (Monday-Friday 9-5), and sometimes ad hoc.  This MIB
     provides a schedule table that can schedule when a policy is ready
     and when it is dormant.





















Waldbusser, et al.          Standards Track                     [Page 8]

RFC 4011              Policy Based Management MIB             March 2005


  A policy manager contains the following:

        -------------------------------------------------------
        | Policy Manager                                      |
        |                                                     |
        |   ----------------------------------------          |
        |   | Agent                                |          |
        |   |                                      |          |
        |   |  ---------------------------------   |          |
        |   |  | Policy Download and Control   |   |          |
        |   |  |   pmPolicyTable               |   |          |
        |   |  |   pmElementTypeRegTable       |   |          |
        |   |  |   pmSchedTable                |   |          |
        |   |  ---------------------------------   |          |
        |   |                                      |          |
        |   |  ---------------------------------   |          |
        |   |  | Policy Environment Control    |   |          |
        |   |  |   pmRoleTable                 |   |          |
        |   |  |   pmCapabilitiesTables        |   |          |
        |   |  ---------------------------------   |          |
        |   |                                      |          |
        |   |  ---------------------------------   |          |
        |   |  | Policy Monitoring             |   |          |
        |   |  |   pmTrackingTables            |   |          |
        |   |  |   pmDebuggingTable            |   |          |
        |   |  ---------------------------------   |          |
        |   ----------------------------------------          |
        |                                                     |
        |   --------------------------------                  |
        |   | Execution Environment        |                  |
        |   |                              |                  |
        |   |  -----------------------     |                  |
        |   |  | Policy Scheduler    |     |                  |
        |   |  -----------------------     |                  |
        |   |  -----------------------     |                  |
        |   |  | Language            |     |                  |
        |   |  -----------------------     |                  |
        |   |  -----------------------     |                  |
        |   |  | Function Library    |     |                  |
        |   |  -----------------------     |                  |
        |   --------------------------------                  |
        -------------------------------------------------------









Waldbusser, et al.          Standards Track                     [Page 9]

RFC 4011              Policy Based Management MIB             March 2005


4.  Policy-Based Management Execution Environment

4.1.  Terminology

  Active Schedule - A schedule specifies certain times that it will be
     considered active.  A schedule is active during those times.

  Valid Policy - A valid policy is a policy that is fully configured
     and enabled to run.  A valid policy may run unless it is linked to
     a schedule entry that says the policy is not currently active.

  Ready Policy - A ready policy is a valid policy that either has no
     schedule or is linked to a schedule that is currently active.

  Precedence Group - Multiple policies can be assigned to a precedence
     group with the resulting behavior that for each element, of the
     ready policies that match the condition, only the one with the
     highest precedence value will be active.  For example, if there is
     a default bronze policy that applies to any interface and a
     special policy for gold interfaces, the higher precedence of the
     gold policy will ensure that it is run on gold ports and that the
     bronze policy isn't.

  Active Execution Context - An active execution context is a pairing
     of a ready policy with an element that matches the element type
     filter and the policy condition.  If there are multiple policies
     in the precedence group, it is also necessary that no higher
     precedence policy in the group match the policy condition.

  Run-Time Exception (RTE) - A run-time exception is a fatal error
     caused in language or function processing.  If, during the
     invocation of a script, a run-time exception occurs, execution of
     that script is immediately terminated.  If a policyCondition
     experiences a run-time exception while processing an element, the
     element is not matched by the condition and the associated action
     will not be run on that element.  A run-time exception can cause
     an entry to be added to the pmDebuggingTable and will be reflected
     in the pmTrackingPEInfo object.

4.2.  Execution Environment - Elements of Procedure

  There are several steps performed in order to execute policies in
  this environment:

     - Element Discovery
     - Element Filtering
     - Policy Enforcement




Waldbusser, et al.          Standards Track                    [Page 10]

RFC 4011              Policy Based Management MIB             March 2005


4.3.  Element Discovery

  An element is an instance of a physical or logical entity.  Examples
  of elements include interfaces, circuits, queues, CPUs, and
  processes.  Sometimes various attributes of an entity will be
  described through tables in several standard and proprietary MIB
  Modules.  As long as the indexing is consistent between these tables,
  the entity can be modeled as one element.  For example, the ifTable
  and the dot3Stats table both contain attributes of interfaces and
  share the same index (ifIndex), therefore they can be modeled as one
  element type.

  The Element Type Registration table allows the manager to learn what
  element types are being managed by the system and to register new
  types, if necessary.  An element type is registered by providing the
  OID of an SNMP object (i.e., without the instance).  Each SNMP
  instance that exists under that object is a distinct element.  The
  index part of the discovered OID will be supplied to policy
  conditions and actions so that this code can inspect and configure
  the element.  The agent can determine the index portion of discovered
  OIDs based on the length of the pmElementTypeRegOIDPrefix for the
  portion of the MIB that is being retrieved.  For example, if the
  OIDPrefix is 'ifEntry', which has 9 subids, the index starts on the
  11th subid (skipping the subidentifier for the column; e.g.,
  ifSpeed).

  For each element that is discovered, the policy condition is called
  with the element's name as an argument to see whether the element is
  a member of the set the policy acts upon.

  Note that agents may automatically configure entries in this table
  for frequently used element types (interfaces, circuits, etc.).  In
  particular, it may configure elements for which discovery is
  optimized in one or both of the following ways:

  1. The agent may discover elements by scanning internal data
     structures as opposed to issuing local SNMP requests.  It is
     possible to recreate the exact semantics described in this table
     even if local SNMP requests are not issued.

  2. The agent may receive asynchronous notification of new elements
     (for example, "card inserted") and use that information to create
     elements instantly rather than through polling.  A similar feature
     might be available for the deletion of elements.

  Note that upon restart, the disposition of agent-installed entries is
  described by the pmPolicyStorageType object.




Waldbusser, et al.          Standards Track                    [Page 11]

RFC 4011              Policy Based Management MIB             March 2005


  A special element type "0.0" represents the "system element".  "0.0"
  represents the single instance of the system itself and provides an
  execution context for policies to operate on "the system" and on MIB
  objects modeled as scalars.  For example, "0.0" gives an execution
  context for policy-based selection of the operating system code
  version (likely modeled as a scalar MIB object).  The element type
  "0.0" always exists.  As a consequence, no actual discovery will take
  place and the pmElementTypeRegMaxLatency object will have no effect
  for the "0.0" element type.  However, if the "0.0" element type is
  not registered in the table, policies will not be executed on the
  "0.0" element.

  If the agent is discovering elements by polling, it should check for
  new elements no less frequently than pmElementTypeRegMaxLatency would
  dictate.  When an element is first discovered, all policyConditions
  are run immediately, and policyConditions that match will have the
  associated policyAction run immediately.  Subsequently, the
  policyCondition will be run regularly for the element, with no more
  than pmPolicyConditionMaxLatency milliseconds elapsing between each
  invocation.  Note that if an implementation has the ability to be
  alerted immediately when a particular type of element is created, it
  is urged to discover that type of element in this fashion rather than
  through polling, resulting in immediate configuration of the
  discovered element.

4.3.1.  Implementation Notes

  Note that although the external behavior of this registration process
  is defined in terms of the walking of MIB tables, implementation
  strategies may differ.  For example, commonly used element types
  (such as interface) may have purpose-built element discovery
  capability built-in and advertised to managers through an entry in
  the pmElementTypeRegTable.

  Before registering an element type, a manager is responsible for
  inspecting the table to see whether it is already registered (either
  by the agent or by another manager).  Note that entries that differ
  only in the last subid (which specifies which object is an entry) are
  effectively duplicates and should be treated as such by the manager.

  The system that implements the Policy-Based Management MIB may not
  have knowledge of the format of object identifiers in other MIB
  Modules.  Therefore it is inappropriate for it to check these OIDs
  for errors.  It is the responsibility of the management station to
  register well-formed object identifiers.  For example, if an extra
  sub-identifier is supplied when the ifTable is registered, no





Waldbusser, et al.          Standards Track                    [Page 12]

RFC 4011              Policy Based Management MIB             March 2005


  elements will be discovered.  Similarly, if a sub-identifier is
  missing, every element will be discovered numerous times (once per
  column) and none of the element addresses will be well formed.

4.4.  Element Filtering

  The first step in executing a policy is to see whether the policy is
  ready to run based on its schedule.  If the pmPolicySchedule object
  is equal to zero, there is no schedule defined, and the policy is
  always ready.  If the pmPolicySchedule object is non-zero, then the
  policy is ready only if the referenced schedule group contains at
  least one valid schedule entry that is active at the current time.

  If the policy is ready, the next step in executing a policy is to see
  which elements match the policy condition.  The policy condition is
  called once for each element and runs to completion.  The element's
  name is the only argument that is passed to the condition code for
  each invocation.  No state is remembered within the policy script
  from the previous invocation of 'this element' or from the previous
  invocation of the policy condition, except for state accessible
  through library functions.  Two notable examples of these are the
  scratchpad functions, which explicitly provide for storing state, and
  the SNMP functions, which can store state in local or remote MIB
  objects.  If any run-time exception occurs, the condition will
  terminate immediately for 'this element'.  If the condition returns
  non-zero, the corresponding policy action will be executed for 'this
  element'.

  If an element matches a condition and it had not matched that
  condition the last time it was checked (or if it is a newly
  discovered element), the associated policyAction will be executed
  immediately.  If the element had matched the condition at the last
  check, it will remain in the set of elements whose policyAction will
  be run within the policyActionMaxLatency.

4.4.1.  Implementation Notes

  Whether policy conditions are multi-tasked is an implementation-
  dependent matter.  Each condition/element combination is conceptually
  its own process and can be scheduled sequentially, or two or more
  could be run simultaneously.

4.5.  Policy Enforcement

  For each element that has returned non-zero from the policy
  condition, the corresponding policy action is called.  The element's
  name is the only argument that is passed to the policy action for
  each invocation.  Except for state accessible from library functions,



Waldbusser, et al.          Standards Track                    [Page 13]

RFC 4011              Policy Based Management MIB             March 2005


  no state is remembered from the policy condition evaluation, or from
  the previous condition/action invocation of 'this element' or from
  the previous invocation of the policy condition or action on any
  other element.  If any run-time exception occurs, the action will
  terminate immediately for 'this element'.

4.5.1.  Implementation Notes

  How policy actions are multi-tasked is an implementation-dependent
  matter.  Each condition/element combination is conceptually its own
  process and can be scheduled sequentially, or two or more could be
  run simultaneously.

5.  The PolicyScript Language

  Policy conditions and policy actions are expressed with the
  PolicyScript language.  The PolicyScript language is designed to be a
  small interpreted language that is simple to understand and
  implement; it is designed to be appropriate for writing small scripts
  that make up policy conditions and actions.

  PolicyScript is intended to be familiar to programmers that know one
  of several common languages, including Perl and C.  Nominally,
  policyScript is a subset of the C language; however, it was desirable
  to have access to C++'s operator overloading (solely to aid in
  documenting the language).  Therefore, PolicyScript is defined
  formally as a subset of the C++ language in which many of the
  operators are overloaded as part of the "var" class.  Note, however,
  that a PolicyScript program cannot further overload operators, as the
  syntax to specify overloading is not part of the PolicyScript syntax.
  A subset was used to provide for easy development of low-cost
  interpreters of PolicyScript and to take away language constructs
  that are peculiar to the C/C++ languages.  For example, it is
  expected that both C and Perl programmers will understand the
  constructs allowed in PolicyScript.

  Some examples of the C/C++ features that are not available are
  function definitions, pointer variables, structures, enums, typedefs,
  floating point and pre-processor functions (except for comments).

  This language is formally defined as a subset of ISO C++ [10] but
  only allows constructs that may be expressed in the Extended Backus-
  Naur Form (EBNF) documented here.  This is because although EBNF
  doesn't fully specify syntactical rules (it allows constructs that
  are invalid) and doesn't specify semantic rules, it can successfully
  be used to define the subset of the language that is required for





Waldbusser, et al.          Standards Track                    [Page 14]

RFC 4011              Policy Based Management MIB             March 2005


  conformance to this specification.  Unless explicitly described
  herein, the meaning of any construct expressed in the EBNF can be
  found by reference to the ISO C++ standard.

  The use of comments and newlines are allowed and encouraged in order
  to promote readability of PolicyScript code.  Comments begin with
  '/*' and end with '*/' or begin with '//' and go until the end of the
  line.

  One subset is not expressible in the EBNF syntax: all variables
  within an instance of a PolicyScript script are within the same
  scope.  In other words, variables defined in a block delimited with
  '{' and '}' are not in a separate scope from variables in the
  enclosing block.

  PolicyScript code must be expressed in the ASCII character set.

  In the EBNF used here, terminals are character set members (singly or
  in a sequence) that are enclosed between two single-quote characters
  or described as a phrase between '<' and '>' characters.
  Nonterminals are a sequence of letters and underscore characters.  A
  colon (:) following a nonterminal introduces its definition, a
  production.  In a production, a '|' character separates alternatives.
  The '(' and ')' symbols group the enclosed items.  The '[' and ']'
  symbols indicate that the enclosed items are optional.  A '?'  symbol
  following an item indicates that the item is optional.  A '*' symbol
  following an item indicates that the item is repeated zero, one, or
  more times.  A '+' symbol following an item indicates that the item
  is repeated one or more times.  The symbol '--' begins a comment that
  ends at the end of the line.

5.1.  Formal Definition

  The PolicyScript language follows the syntax and semantics of ISO C++
  [10], but is limited to that which can be expressed in the EBNF
  below.

  The following keywords are reserved words and cannot be used in any
  policy script.  This prevents someone from using a common keyword in
  another language as an identifier in a script, thereby confusing the
  meaning of the script.  The reserved words are:

     auto, case, char, const, default, do, double, enum, extern, float,
     goto, inline, int, long, register, short, signed, sizeof, static,
     struct, switch, typedef, union, unsigned, void, and volatile.






Waldbusser, et al.          Standards Track                    [Page 15]

RFC 4011              Policy Based Management MIB             March 2005


  Any syntax error, use of a reserved keyword, reference to an unknown
  identifier, improper number of function arguments, error in coercing
  an argument to the proper type, exceeding local limitations on string
  length, or exceeding local limitations on the total amount of storage
  used by local variables will cause an RTE.

  PolicyScript permits comments using the comment delimiters, '/*' to
  '*/', or the start of comment symbol '//'.

-- Lexical Grammar

  letter:       '_' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'
              | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm'
              | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't'
              | 'u' | 'v' | 'w' | 'x' | 'y' | 'z'
              | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
              | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M'
              | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T'
              | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z'

  digit:        '0' | '1' | '2' | '3' | '4'
              | '5' | '6' | '7' | '8' | '9'

  non_zero:   '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

  oct_digit:  '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

  hex_digit:    digit | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'
                      | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'

  escape_seq:    '\''   |   '\"'   |   '\?'   |   '\\'
               | '\a'   |   '\b'   |   '\f'   |   '\n'
               | '\r'   |  '\t'    |   '\v'
               | '\' oct_digit+    | '\x' hex_digit+

  non_quote:  Any character in the ASCII character set
              except single quote ('), double quote ("),
              backslash ('\'), or newline.

  c_char:            non_quote | '"' | escape_seq

  string_literal:    '"' s_char* '"'

  s_char:            non_quote | ''' | escape_seq

  char_constant:     ''' c_char '''

  decimal_constant:  non_zero digit*



Waldbusser, et al.          Standards Track                    [Page 16]

RFC 4011              Policy Based Management MIB             March 2005


  octal_constant:    '0' oct_digit*

  hex_constant:      ( '0x' | '0X' ) hex_digit+

  integer_constant:  decimal_constant | octal_constant | hex_constant

  identifier:        letter ( letter | digit )*

-- Phrase Structure Grammar

  -- Expressions

  primary_expr:      identifier | integer_constant | char_constant
                   | string_literal  |  '(' expression ')'

  postfix_expr:      primary_expr
                   | identifier '(' argument_expression_list? ')'
                   | postfix_expr '++'
                   | postfix_expr '--'
                   | postfix_expr '[' expression ']'

  argument_expression_list:
                     assignment_expr
                   | argument_expression_list ',' assignment_expr

  unary_expr:        postfix_expr  |  unary_op unary_expr

  unary_op:          '+' | '-' | '~' | '!' | '++' | '--'

  binary_expr:  unary_expr | binary_expr binary_op unary_expr

  binary_op:       '||' | '&&' | '|'  | '^'  | '&'  | '!='
                 | '==' | '>=' | '<=' | '>'  | '<'  | '>>'
                 | '<<' |  '-' | '+'  | '%'  | '/'  |  '*'

  assignment_expr:      binary_expr
                      | unary_expr assignment_op assignment_expr

  assignment_op:     '=' | '*='  | '/=' | '%=' | '+=' | '-='
                 | '<<=' | '>>=' | '&=' | '^=' | '|='

  expression:    assignment_expr | expression ',' assignment_expr

  -- Declarations

  declaration:       'var' declarator_list ';'





Waldbusser, et al.          Standards Track                    [Page 17]

RFC 4011              Policy Based Management MIB             March 2005


  declarator_list:   init_declarator
                   | declarator_list ',' init_declarator

  init_declarator:   identifier [ '=' assignment_expr ]

  -- Statements

  statement:   declaration
             | compound_statement
             | expression_statement
             | selection_statement
             | iteration_statement
             | jump_statement

  compound_statement:    '{' statement* '}'

  expression_statement:  expression? ';'

  selection_statement:
          'if' '(' expression ')' statement
        | 'if' '(' expression ')' statement 'else' statement

  iteration_statement:
          'while' '(' expression ')' statement
        | 'for' '(' expression? ';' expression? ';' expression? ')'
              statement

  jump_statement:    'continue' ';'
                   | 'break' ';'
                   | 'return' expression? ';'

  -- Root production

  PolicyScript:     statement*

5.2.  Variables

  To promote shorter scripts and ease in writing them, PolicyScript
  provides a loosely typed data class, "var", that can store both
  integer and string values.  The native C++ types (char, int, etc.)
  are thus unnecessary and have not been carried into the subset that
  comprises this language.  The semantics of the "var" type are modeled
  after those of ECMAScript[17].

     For example:

        var number = 0, name = "IETF";




Waldbusser, et al.          Standards Track                    [Page 18]

RFC 4011              Policy Based Management MIB             March 2005


  This language will be executed in an environment where the following
  typedef is declared.  (Note that this typedef will not be visible in
  the policyCondition or policyAction code.)

     typedef ... var;

  Although this declaration is expressed here as a typedef, the
  'typedef' keyword itself is not available to be used in PolicyScript
  code.

5.2.1.  The Var Class

  A value is an entity that takes on one of two types: string or
  integer.

  The String type is the set of all finite ordered sequences of zero or
  more 8-bit unsigned integer values ("elements").  The string type can
  store textual data as well as binary data sequences.  Each element is
  considered to occupy a position within the sequence.  These positions
  are indexed with nonnegative integers.  The first element (if any) is
  at position 0, the next element (if any) at position 1, and so on.
  The length of a string is the number of elements (i.e., 8-bit values)
  within it.  The empty string has length zero and therefore contains
  no elements.

  The integer type is the set of all integer values in the range
  -9223372036854775808 (-2^63) to 18446744073709551615 (2^64-1).  If an
  integer operation would cause a (positive) overflow, then the result
  is returned modulo 2^64.  If an integer operation would cause a
  (negative) underflow, then the result is undefined.  Integer division
  rounds toward zero.

  Prior to initialization, a var object has type String and a length of
  zero.

  The policy script runtime system performs automatic type conversion
  as needed.  To clarify the semantics of certain constructs it is
  useful to define a set of conversion operators: ToInteger(),
  ToString(), ToBoolean(), and Type().  These operators are not a part
  of the language; they are defined here to aid the specification of
  the semantics of the language.  The conversion operators are
  polymorphic; that is, they can accept a value of any standard type.









Waldbusser, et al.          Standards Track                    [Page 19]

RFC 4011              Policy Based Management MIB             March 2005


  ToInteger

  The operator ToInteger converts its argument to a value of type
  Integer according to the following table:

        Integer            The result equals the input argument
                           (no conversion).
        String             See grammar and note below.
        integer_constant   The result equals the input argument
                           (no conversion).
        string_literal     See grammar and note below.
        char_constant      See grammar and note below.

  ToInteger Applied to Strings

  ToInteger applied to the String Type string_literal and to
  char_constants applies the following grammar to the input.  If the
  grammar cannot interpret the string as an expansion of
  numeric_string, then an RTE is generated.  Note that a numeric_string
  that is empty or contains only white space is converted to 0.

-- EBNF for numeric_string

  numeric_string : white_space* numeric? white_space*

  white_space :      <TAB> |  <SP> |  <NBSP> |  <FF> |  <VT>
                   | <CR>  |  <LF> |  <LS>   |  <PS> |  <USP>

  numeric :        signed_decimal |  hex_constant | octal_constant |
                   enum_decimal

  signed_decimal:  [ '-' | '+' ] decimal_constant

  enum_decimal:    [ letter | digit | '-' ]* '(' decimal_constant ')'

  -- decimal_constant, hex_constant, and octal_constant are defined
  -- in the PolicyScript EBNF described earlier.

  Note that when the enum_decimal form is converted, the sequence of
  characters before the parenthesis and the pair of parenthesis
  themselves are completely ignored, and the decimal_constant inside
  the parenthesis is converted.  Thus, "frame-relay(32)" translates to
  the integer 32.

  Although this will make the script more readable than using the
  constant "32", the burden is on the code writer to be accurate, as
  "ethernet-csmacd(32)" and "frame-relay(999)" will also be accepted.




Waldbusser, et al.          Standards Track                    [Page 20]

RFC 4011              Policy Based Management MIB             March 2005


  ToString

  The operator ToString converts its argument to a value of type String
  according to the following table:

     Integer           Return the string containing the decimal
                       representation of the input argument in
                       the form of signed_decimal, except that
                       no leading '+' will be used.
     String            Return the input argument (no conversion)
     integer_constant  Return the string containing the decimal
                       representation of the input argument in the
                       form of signed_decimal except that no
                       leading '+' will be used.
     string_literal    Return the input argument (no conversion)
     char_constant     Return the string of length one containing
                       the value of the input argument.

  ToBoolean

  The operator ToBoolean converts its argument to a value of type
  Integer according to the following table:

     Integer            The result is 0 if the argument is 0.
                        Otherwise the result is 1.
     String             The results is 0 if the argument is the
                        empty string.  Otherwise the result is 1.
     integer_constant   The result is 0 if the argument is 0.
                        Otherwise the result is 1.
     string_literal     The result is 0 if the argument is the
                        empty string.  Otherwise the result is 1.
     char_constant      The result is 1.

  Operators

  The rules below specify the type conversion rules for the various
  operators.

     A++:   A = ToInteger(A); A++;
     A--:   A = ToInteger(A); A--;
     ++A:   A = ToInteger(A); ++A;
     --A:   A = ToInteger(A); --A;
     +A:    ToInteger(A);
     -A:     -1 * ToInteger(A);
     ~A:    ToInteger(A);
     !A:    !ToBoolean(A);
     A * B, A - B, A & B, A ^ B , A | B, A << B, A >> B:
            ToInteger(A) <operator> ToInteger(B)



Waldbusser, et al.          Standards Track                    [Page 21]

RFC 4011              Policy Based Management MIB             March 2005


     A / B, A % B:
            if (ToInteger(B) == 0)
              RTE, terminate;
            else
              ToInteger(A) <operator> ToInteger(B)
     A + B:
            if (Type(A) == String || Type(B) == String)
              ToString(A) concatenated with ToString(B)
            else
              A + B
     Compound Assignment (<operator>=):
             Simply follow rules above.  Note that type of LHS (Left
             Hand Side) may be changed as a result.

     A < B, A > B, A <= B, A >= B, A == B, A != B:
            if (Type(A) == String && Type(B) == String)
                lexically compare strings with strcmp() logic
            else
                ToInteger(A) <operator> ToInteger(B)
      A && B:
             if (ToBoolean(A))
                 ToBoolean(B);
             else
                 false;
      A || B:
             if (ToBoolean(A))
                 true;

             else
                 ToBoolean(B);

      if(A):
             if (ToBoolean(A))
      while(A):
             while(ToBoolean(A))
      for(...; A; ...):
            for(...; ToBoolean(A); ...)

      A[B] as a RHS (Right Hand Side) value:
            if (Type(A) != String
                 || ToInteger(B) >= strlen(A))
               RTE, terminate;
            A[ ToInteger(B) ]
            The contents are returned as a string of length one

       A[B] = C as a LHS value:
            if (Type(A) != String
                 || ToInteger(B) >= strlen(A))



Waldbusser, et al.          Standards Track                    [Page 22]

RFC 4011              Policy Based Management MIB             March 2005


               RTE, terminate;
            if (strlen(ToString(C)) == 0)
               RTE, terminate
            A[ ToInteger(B) ] = First octet of ToString(C)

            Note that this is only applicable in a simple assignment.

  For example, in the expression

     "getVar("ifSpeed.1") < 128000"

  getVar always returns a string and '128000' is implicitly an integer.
  The rules for '<' dictate that if either argument is an integer then
  a 'numeric less than' is performed on ToInteger(A) and ToInteger(B).

  If "getVar("ifSpeed.1")" returns "64000", the expression can be
  translated to:

       ToInteger("64000") < ToInteger(128000); or,
       64000 < 128000; or,
       True

5.3.  PolicyScript QuickStart Guide

  PolicyScript is designed so that programmers fluent in other
  languages can quickly begin to write scripts.

  One way to become familiar with a language is to see it in action.
  The following nonsensical script exercises most of the PolicyScript
  constructs (though it skips some usage options and many arithmetic
  operators).

     var x, index = 7, str = "Hello World", oid = "ifSpeed.";

     x = 0;
     while(x < 10){
         if (str < "Goodbye") /* string comparison */
             continue;
         else
             break;
         x++;
     }
     if (oidlen(oid) == 10)
         oid += "." + index; // append index to oid
     for(x = 0; x < 7; x++){
           str += "a";





Waldbusser, et al.          Standards Track                    [Page 23]

RFC 4011              Policy Based Management MIB             March 2005


           var y = 12;
           index = ((x * 7) + y) % 3;
           if (str[6] == 'W')
               return index;
     }
     return;

  The following examples are more practical:

  For a condition:
     // Return 1 if this is an interface and it is tagged
     // with the role "gold"
     return (inSubtree(elementName(), "ifEntry")
         && roleMatch("gold"))

  A condition/action pair:
  First, register the Host Resources MIB hrSWRunEntry as a new element
  in the pmElementTypeRegTable.  This will cause the policy to run for
  every process on the system.  The token '$*' will be replaced by the
  script interpreter with a process index (see Section 7 for a
  definition of the '$*' token).

  The condition:
     // if it's a process and it's an application and it's
     // consumed more than 5 minutes of CPU time
     return (inSubtree(elementName(), "hrSWRunEntry")
             && getVar("hrSWRunType.$*") == 4  // app, not OS or driver
             && getVar("hrSWRunPerfCPU.$*") > 30000) // 300 seconds

  The action:
     // Kill it
     setVar("hrSWRunStatus.$*", 4, Integer); // invalid(4) kills it

  A more substantial action to start an RMON2 host table on interfaces
  that match the condition:

     var pdu, index;

     pdu = newPDU();
     writeVar(pdu, 0, "hlHostControlDataSource.*",
              "ifIndex." + ev(0), Oid);
     writeVar(pdu, 1, "hlHostControlNlMaxDesiredEntries.*", 1000,
              Integer);
     writeVar(pdu, 2, "hlHostControlAlMaxDesiredEntries.*", 1000,
              Integer);
     writeVar(pdu, 3, "hlHostControlOwner.*", "policy", String);





Waldbusser, et al.          Standards Track                    [Page 24]

RFC 4011              Policy Based Management MIB             March 2005


     writeVar(pdu, 4, "hlHostControlStatus.*", "active(1)", Integer);
     if (createRow(pdu, 5, 4, 20, 65535, index) == 0
         || index == -1)
         return;

  Because PolicyScript is a least common denominator, it contains
  nothing that would astonish programmers familiar with C, C++, Perl,
  Tcl, JavaScript, or Python.  Although a new programmer may attempt to
  use language constructs that aren't available in PolicyScript, s/he
  should be able to understand any existing PolicyScript and will
  likely know how to use anything that is valid in PolicyScript.  The
  lists below quickly enumerate the changes of note for programmers
  coming from some particular languages.  These lists won't describe
  the unavailable constructs, but it is easy to see from the definition
  above what is available.

5.3.1.  Quickstart for C Programmers

  - Character constants (i.e., 'c') are treated as one-character
    strings, not as integers.  So operations such as ('M' - 'A') or (x
    + 'A') will not perform as expected.
  - Functions can change the value of arguments even though they are
    not pointers (or called like '&arg').
  - All variables are in the same scope.

5.3.2.  Quickstart for Perl Programmers

  - Comments are '/* comment */' and '// till end of line', not '#'.
  - No need to put a '$' in front of variables.
  - Strings are compared with ==, <=, <, etc. (details in Sec. 6.2.1).
  - Strings are concatenated with '+' (details in Sec. 6.2.1).
  - No variable substitution in "" strings.  '' strings are 1 char
    only.
  - Variables must be declared before use (but no type is necessary).
  - All variables are in the same scope.

5.3.3.  Quickstart for TCL Programmers

  - Comments are '/* comment */' and '// till end of line', not '#'.
  - No need to put a '$' in front of variables.
  - Function calls are func-name(arg1, arg2, ...).
  - Square braces [] don't interpret their contents.
  - Double quotes "" surround a string, but no substitutions are
    performed ("" is like { } in TCL ).
  - Statements are terminated by a semicolon (;).
  - Instead of "Set a b", use "b = a;".
  - Strings are concatenated with '+' (details in Sec. 6.2.1).
  - All variables are in the same scope.



Waldbusser, et al.          Standards Track                    [Page 25]

RFC 4011              Policy Based Management MIB             March 2005


5.3.4.  Quickstart for Python Programmers

  - Comments are '/* comment */' and '// till end of line', not '#'.
  - Single quotes can be used only for single-character strings ('a').
  - Indentation doesn't matter.  Braces { } define blocks.
  - Variables must be declared before use (but no type is necessary).
  - The expressions for if and while are always surrounded by
    parenthesis, as in "if (x < 5)".
  - 'for' syntax is "for(expression; expression; expression)" (see
    EBNF).
  - All variables are in the same scope.

5.3.5.  Quickstart for JavaScript/ECMAScript/JScript Programmers

  - Variables must be declared before use.
  - Functions can change the value of arguments.
  - All variables are in the same scope.

5.4.  PolicyScript Script Return Values

  A PolicyScript script execution is normally ended by the execution of
  a return statement, or by having the flow of execution reach the end
  of the final statement in the script.  A normal script execution
  always returns a Boolean value.  If no explicit value is specified in
  the return statement, or if the flow of control proceeds through the
  end of the script, the return value is implicitly zero.  If an
  expression is provided with the return statement, the expression is
  evaluated, and the result of the expression is implicitly converted
  with the ToBoolean operator before being returned to the script
  execution environment.

  The return value of a policyCondition script is used to determine
  whether the associated policyAction script is executed.  If the
  returned value is zero, the associated policyAction script is not
  executed.  If the returned value is one, the associated policyAction
  script will be executed.

  The return value of a policyAction script is ignored.

  An RTE or invocation of the fail() function will cause the return
  value of the script to be set to zero.  Note however, that execution
  of the defer() or fail() functions may set the defer attribute so
  that the lower precedence script may be executed.  This is
  independent of the return value of the policy script execution.







Waldbusser, et al.          Standards Track                    [Page 26]

RFC 4011              Policy Based Management MIB             March 2005


6.  Index Information for 'this element'

  PolicyScript code needs a convenient way to get the components of the
  index for 'this element' so that they can perform SNMP operations on
  it or on related elements.

  Two mechanisms are provided.

  1. For all OID input parameters to all SNMP Library Functions (but
     not OID utility functions), the token "$n" ('$' followed by an
     integer between 0 and 128) can be used in place of any decimal
     sub-identifier.  This token is expanded by the agent at execution
     time to contain the nth subid of the index for the current
     element.  For example, if the element is interface 7, and the
     objectIdentifier is "1.3.6.1.2.1.2.2.1.3.$0", it will be expanded
     to "1.3.6.1.2.1.2.2.1.3.7".  The special token "$*" is expanded to
     contain all of the subidentifiers of the index of the current
     element, separated by '.' characters.

     It is an RTE if a token is specified that is beyond the length of
     the index for the current element.

     Note that the "$n" convention is only active within strings.

  2. The ec() and ev() functions allow access to the components of the
     index for 'this element'.  ec() takes no argument and returns the
     number of index components that exist.  ev() takes an integer
     argument specifying which component of the index (numbered
     starting at 0) and returns an integer containing the value of the
     n'th subidentifier.  Refer to the Library functions section for
     the complete definition of ec() and ev().

        For example, if 'this element' is frCircuitDLCI.5.57
                                          (ifIndex = 5, DLCI = 57)
              then ec()  returns 2
                   ev(0) returns 5
                   ev(1) returns 57

     This is helpful when one wishes to address a related element.
     Extending the previous example, to find the port speed of the
     port, the circuit (above) runs over:

        portSpeed = getVar("ifSpeed." + ev(0));

     A script may check the type of 'this element' by calling the
     elementName() function.  Although it is possible to write a script
     that will work with different types of elements, many scripts will




Waldbusser, et al.          Standards Track                    [Page 27]

RFC 4011              Policy Based Management MIB             March 2005


     assume a particular element type and will work incorrectly if used
     on different element types.

7.  Library Functions

  Library functions are built-in functions available primarily to
  provide access to information on the local system or to manipulate
  this information more efficiently.  A group of functions is organized
  into a library, the unit of conformance for function implementation.
  In order to claim conformance to a library, an implementation must
  implement all functions in a library to the specifications of the
  library.

  In order for a management station or a condition or action to
  understand whether a certain library of functions is implemented,
  each library will have a name that it registers in the role table as
  a characteristic of the system element ("0.0") in the default SNMP
  context.  Thus, conformance to a library can be tested with the
  roleMatch library function (in the base library) with the call
  roleMatch ("libraryName", "0.0").

  Note that in the descriptions of these functions below, the function
  prototype describes the type of argument expected.  Even though
  variables are not declared with a particular type, their contents
  must be appropriate for each function argument.  If the type is
  variable, the keyword 'var' will be used.  If only a string is
  appropriate, the keyword 'string' will be used.  If only an integer
  is appropriate, the keyword 'integer' will be used.  If the argument
  is declared as 'string' or 'integer' and a value of a different type
  is passed, the argument will be coerced with ToInteger() or
  ToString().  Any failure of this coercion will cause an RTE (in
  particular for ToInteger(), which will fail if its string-valued
  argument is not a well-formed integer).

  In the function prototype, if the '&' character precedes the
  identifier for an argument, that argument may be modified by the
  function (e.g., "integer &result, ...)").  Arguments without the '&'
  character cannot be modified by the function.  In a script,
  modifiable arguments don't have to be preceded by a '&'.  It is an
  RTE if a constant is passed to a modifiable function argument
  (regardless of whether the function actually writes to the argument).

  In the function prototype, the '[' and ']' characters surround
  arguments that are optional.  In PolicyScript code, the optional
  argument may only be included if all optional arguments to the left
  of it are included.  The function may place restrictions on when an
  optional argument must, or must not, be included.




Waldbusser, et al.          Standards Track                    [Page 28]

RFC 4011              Policy Based Management MIB             March 2005


  In the function prototype, if a type is listed before the name of the
  function, the function returns a value of that type.  If no type is
  listed, the function returns no value.

8.  Base Function Library

  A standard base library of functions is available to all systems that
  implement this specification.  This library is registered with the
  name "pmBaseFunctionLibrary".  Although the specification of this
  library is modularized into 4 separate sections, conformance to the
  library requires implementation of all functions in all sections.

  The sections are:

     - SNMP library functions
     - Policy library functions
     - Utility functions
     - Library Functions

8.1.  SNMP Library Functions

  Two sets of SNMP Library functions are available with different
  situations in mind:

  - Convenience SNMP Functions

    In an effort to keep simple things simple, these functions are easy
    to use and code that is easy to understand.  These functions will
    suffice for the majority of situations, where a single variable is
    referenced and the desired error recovery is simply (and
    immediately) to give up (and move to the next policy-element
    combination).  In more complex cases, the General SNMP Functions
    can be used at the cost of several times the code complexity.

    The convenience SNMP functions are getVar, exists, setVar,
    setRowStatus, createRow, counterRate, and searchColumn.

  - General SNMP Functions

    The General SNMP functions allow nearly any legal SNMP Message to
    be generated, including those with multiple varbinds, getNext
    operations, notifications, and messages with explicit addressing or
    security specifications.

    The general SNMP functions are writeVar, readVar, snmpSend,
    readError, and writeBulkParameters.





Waldbusser, et al.          Standards Track                    [Page 29]

RFC 4011              Policy Based Management MIB             March 2005


8.1.1.  SNMP Operations on Non-Local Systems

  From time to time, a script may have to perform an operation on a
  different SNMP system than that on which 'this element' resides.
  Scripts may also have to specify the use of alternate security
  parameters.  In order to do this, the following optional arguments
  are provided for the SNMP library functions:

  snmp-function(...[, integer mPModel,
                      string tDomain, string tAddress,
                      integer secModel, string secName,
                      integer secLevel, string contextEngineID
  ])

  For example:

      getVar("sysDescr.0", "", SNMPv3, "transportDomainUdpIpv4",
             "192.168.1.1:161", USM, "joe", NoAuthNoPriv);

  The use of these arguments is denoted in function definitions by the
  keyword 'NonLocalArgs'.  The definitions of these arguments are as
  follows:

     'mPModel' is the integer value of the SnmpMessageProcessingModel
     to use for this operation.

     'tDomain' is a string containing an ASCII dotted-decimal object
     identifier representing the transport domain to use for this
     operation.

     'tAddress' is a string containing the transport address formatted
     according to the 'tDomain' argument.  The ASCII formats for
     various values of 'tDomain' are defined by the DISPLAY-HINT for a
     TEXTUAL-CONVENTION that represents an address of that type.  The
     DISPLAY-HINTs used are:

        tDomain                    Source of DISPLAY-HINT [5] [11]
        -------                    ----------------------
        transportDomainUdpIpv4     TransportAddressIPv4
        transportDomainUdpIpv6     TransportAddressIPv6
        transportDomainUdpDns      TransportAddressDns
        snmpCLNSDomain             snmpOSIAddress
        snmpCONSDomain             snmpOSIAddress
        snmpDDPDomain              snmpNBPAddress
        snmpIPXDomain              snmpIPXAddress
        rfc1157Domain              snmpUDPAddress
        Other                      Use DISPLAY-HINT "1x:"




Waldbusser, et al.          Standards Track                    [Page 30]

RFC 4011              Policy Based Management MIB             March 2005


     'secModel' is the integer value of the SnmpSecurityModel to use
     for this operation.

     'secName' is a string value representing the SnmpSecurityName to
     use for this operation.

     'secLevel' is the integer value of the SnmpSecurityLevel to use
     for this operation.

     An SNMP operation will be sent to the target system by using
     security parameters retrieved from a local configuration datastore
     based on 'secModel', 'secName', and 'secLevel'.  It is the
     responsibility of the agent to ensure that sensitive information
     in the local configuration datastore is used on behalf of the
     correct principals, as identified by the security credentials of
     the last entity to modify the pmPolicyAdminStatus for a policy.

     To illustrate how this must be configured, consider an example in
     which 'joe' installs a policy on 'PMAgent' that will periodically
     configure objects on 'TargetAgent' with the credentials of
     'Operator'.  The following conditions must be true for this policy
     to execute with the proper privileges:

     - 'Operator's security credentials for TargetAgent must be
       installed in PMAgent's local configuration datastore (e.g.,
       usmUserTable [6]) indexed by TargetAgent's engineID and
       'Operator'.
     - VACM [9] must be configured on PMAgent so that 'joe' has access
       to the above entry in the appropriate MIB for the local
       configuration datastore (e.g., usmUserTable).
     - 'joe' must be the last user to modify the pmPolicyAdminStatus
       object for the policy.

     See the Security Considerations section for more information.

     For convenience, constants for 'mPModel', 'secModel', and
     'secLevel' are defined in the "Constants" section below.

     'contextEngineID' is a string representing the contextEngineID of
     the SNMP entity targeted by this operation.  It is encoded as a
     pair of hex digits (upper- and lowercase are valid) for each octet
     of the contextEngineID.  If 'tDomain' and 'tAddress' are provided
     but 'contextEngineID' is not, then the operation will be directed
     to the SNMP entity reachable at 'tDomain' and 'tAddress'.

     In order for PolicyScript code to use any of these arguments, all
     optional arguments to the left must be included.  'mPModel',
     'tDomain', 'tAddress', 'secModel', 'secName', and 'secLevel' must



Waldbusser, et al.          Standards Track                    [Page 31]

RFC 4011              Policy Based Management MIB             March 2005


     be used as a group; if one is specified, they must all be.
     'contextEngineID' may only be specified if all others are
     specified.

     Note that a function that uses NonLocalArgs must provide a
     parameter for the contextName that will be required when the
     NonLocalArgs are present.  Many functions will have the following
     logic:

     ContextName NonLocalArgs
     Supplied    Supplied

     No          No            Addressed to default context on
                               local system.
     Yes         No            Addressed to named context on
                               local system.
     Yes         Yes           Addressed to named context on
                               potentially remote system.
     No          Yes           Not allowed.

8.1.2.  Form of SNMP Values

  Many of the library functions have input or output parameters that
  may be one of the many SMI data types.  The actual type is not
  encoded in the value but is specified elsewhere, possibly by nature
  of the situation in which it is used.  The exact usage for input and
  output is as follows:

  Any Integer value
     (INTEGER, Integer32, Counter32, Counter64, Gauge32, Unsigned32,
     TimeTicks, Counter64):

     On input:
        An Integer or a String that can be successfully coerced to an
        Integer with the ToInteger() operator.  It is an RTE if a
        string is passed that cannot be converted by ToInteger() into
        an integer.

        A string of the form

          enum_decimal: [ letter | digit | '-' ]* '(' decimal_constant
        ')'

        will also be accepted.  In this case the sequence of characters
        before the parentheses and the parentheses themselves are
        completely ignored, and the decimal_constant inside the
        parentheses is converted.  Thus, "frame-relay(32)" translates
        to the integer 32.



Waldbusser, et al.          Standards Track                    [Page 32]

RFC 4011              Policy Based Management MIB             March 2005


     On output:
        An Integer containing the returned value.

  Octet String
     On input:
        Either a String or an Integer.  If an Integer, it will be
        coerced to a String with the ToString() function.  This string
        will be used as an unencoded representation of the octet string
        value.

     On output:
        A String containing the unencoded value of the octet string.

  Object Identifier
     On input and on output:
        A String containing a decimal ASCII encoded object identifier
        of the following form:

           oid:       subid [ '.' subid ]* [ '.' ]
           subid:     '0' | decimal_constant

     It is an RTE if an Object Identifier argument is not in the form
     above.  Note that a trailing '.' is acceptable and will simply be
     ignored.  (Note, however, that a trailing dot could cause a
     strncmp() comparison of two otherwise-identical OIDs to fail;
     instead, use oidncmp().)

     Note that ASCII descriptors (e.g., "ifIndex") are never used in
     these encodings "over the wire".  They are never returned from
     library functions; nor are they ever accepted by them.  NMS user
     interfaces are encouraged to allow humans to view object
     identifiers with ASCII descriptors, but they must translate those
     descriptors to dotted-decimal format before sending them in MIB
     objects to policy agents.

  Null
     On input:
        The input is ignored.

     On output:
        A zero length string.










Waldbusser, et al.          Standards Track                    [Page 33]

RFC 4011              Policy Based Management MIB             March 2005


8.1.3.  Convenience SNMP Functions

8.1.3.1.  getVar()

  The getVar() function is used to retrieve the value of an SNMP MIB
  object instance.

     string getVar(string oid [, string contextName, NonLocalArgs])

        'oid' is a string containing an ASCII dotted-decimal
        representation of an object identifier (e.g.,
        "1.3.6.1.2.1.1.1.0").

        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform an SNMP operation on a system different
        from that of 'this element'.

        It is an RTE if the queried object identifier value does not
        exist.

        This function returns a string containing the returned value,
        encoded according to the returned type.  Note that no actual
        SNMP PDU has to be generated and parsed when the policy MIB
        agent resides on the same system as the managed elements.

        It is recommended that NMS user interfaces display and allow
        input of MIB object names by their descriptor values, followed
        by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.2.  exists()

  The exists() function is used to verify the existence of an SNMP MIB
  object instance.

     integer exists(string oid [, string contextName, NonLocalArgs])

        'oid' is a string containing an ASCII dotted-decimal
        representation of an object identifier (e.g.,
        "1.3.6.1.2.1.1.1.0").







Waldbusser, et al.          Standards Track                    [Page 34]

RFC 4011              Policy Based Management MIB             March 2005


        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform an SNMP operation on a system different
        from that of 'this element'.

        This function returns the value 1 if the SNMP instance exists
        and 0 if it doesn't exist.  Note that no actual SNMP PDU has to
        be generated and parsed when the policy MIB agent resides on
        the same system as the managed elements.

        It is recommended that NMS user interfaces display and allow
        input of MIB object names by their descriptor values, followed
        by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.3.  setVar()

  The setVar() function is used to set a MIB object instance to a
  certain value.  The setVar() function is only valid in policyActions.

     setVar(string oid, var value, integer type
            [, string contextName, NonLocalArgs] )

        'oid' is a string containing an ASCII dotted-decimal
        representation of an object identifier (e.g.,
        "1.3.6.1.2.1.1.1.0").

        'value' is a string encoded in the format appropriate to the
        'type' parameter.  The agent will set the variable specified by
        'oid' to the value specified by 'value'.

        'type' will be the type of the 'value' parameter and will be
        set to one of the values for DataType Constants.

        The optional 'contextName' argument contains the SNMP context
        on which to operate.   If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform an SNMP operation on a system different
        from that of 'this element'.  Note that no actual SNMP PDU has
        to be generated and parsed when the policy MIB agent resides on
        the same system as the managed elements.




Waldbusser, et al.          Standards Track                    [Page 35]

RFC 4011              Policy Based Management MIB             March 2005


        It is an RTE if the set encounters any error.

        It is recommended that NMS user interfaces display and allow
        input of MIB object names by their descriptor values, followed
        by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.4.  searchColumn()

     integer searchColumn(string columnoid, string &oid,
                          string pattern, integer mode
                          [, string contextName, NonLocalArgs])

        searchColumn performs an SNMP walk on a portion of the MIB
        searching for objects with values equal to the 'pattern'
        parameter.

        'columnoid' constrains the search to those variables that share
        the same OID prefix (i.e., those that are beneath it in the OID
        tree).

        A getnext request will be sent requesting the object identifier
        'oid'.  If 'oid' is an empty string, the value of 'columnoid'
        will be sent.

        The value returned in each response packet will be transformed
        to a string representation of the value of the returned
        variable.  The string representation of the value will be
        formed by putting the value in the form dictated by the "Form
        of SNMP Values" rules, and then by performing the ToString()
        function on this value, forming 'SearchString'.

        The 'mode' value controls what type of match to perform on this
        'SearchString' value.  There are 6 possibilities for mode:

          Mode               Search Action
          ExactMatch         Case sensitive exact match of 'pattern'
                             and 'SearchString'.
          ExactCaseMatch     Case insensitive exact match of 'pattern'
                             and 'SearchString'.
          SubstringMatch     Case sensitive substring match, finding
                             'pattern' in 'SearchString'.
          SubstringCaseMatch Case insensitive substring match, finding
                             'pattern' in 'SearchString'.
          RegexpMatch        Case sensitive regular expression match,
                             searching 'SearchString' for the regular
                             expression given in 'pattern'.





Waldbusser, et al.          Standards Track                    [Page 36]

RFC 4011              Policy Based Management MIB             March 2005


          RegexpCaseMatch    Case insensitive regular expression match,
                             searching 'SearchString' for the regular
                             expression given in 'pattern'.

        Constants for the values of 'mode' are defined in the
        'Constants' section below.

        searchColumn uses the POSIX extended regular expressions
        defined in POSIX 1003.2.

        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform SNMP operations on a system different
        from that of 'this element'.

        If a match is found, 'oid' is set to the OID of the matched
        value, and 1 is returned.  If the search traverses beyond
        columnoid or returns an error without finding a match, zero is
        returned, and 'oid' isn't modified.

        To find the first match, the caller should set 'oid' to the
        empty string.  To find additional matches, subsequent calls to
        searchColumn should have 'oid' set to the OID of the last
        match, an operation that searchColumn performs automatically.

        For example:
            To find an ethernet interface
            oid = "";
            searchColumn("ifType", oid, "6", 0);

        This sends a getnext request for ifType and continues to walk
        the tree until a value matching 6 is found or a variable
        returns that is not in the 'ifType' subtree.

        To find the next ethernet interface, assuming that interface 3
        was discovered to be the first:

            oid = "ifType.3";
            searchColumn("ifType", oid, "6", 0);








Waldbusser, et al.          Standards Track                    [Page 37]

RFC 4011              Policy Based Management MIB             March 2005


        In a loop to determine all the ethernet interfaces, this looks
        as follows:

            oid = "";
            while(searchColumn("ifType", oid, "6", 0)){
              /* Do something with oid */
            }

        Note that in the preceding examples, "ifType" is used as a
        notational convenience, and the actual code downloaded to the
        policy MIB agent must use the string "1.3.6.1.2.1.2.2.1.3" as
        there may be no MIB compiler (or MIB file) available on the
        policy MIB agent.

        Note that if the value of 'columnoid' is too short and thus
        references too much of the object identifier tree (e.g.,
        "1.3.6"), 'columnoid' could end up searching a huge number of
        variables (if the value was "1.3.6", it would search ALL
        variables on the agent).  It is the responsibility of the
        caller to make sure that 'columnoid' is set appropriately.

8.1.3.5.  setRowStatus()

     integer setRowStatus(string oid, integer maxTries
                          [, integer freeOnException , integer seed
                           , string contextName, NonLocalArgs])

        setRowStatus is used to automate the process of finding an
        unused row in a read-create table that uses RowStatus whose
        index contains an arbitrary integer component for uniqueness.

        'oid' is a string containing an ASCII dotted-decimal
        representation of an object identifier, with one of the subids
        replaced with a '*' character (e.g.,
        "1.3.6.1.3.1.99.1.2.1.9.*").  'oid' must reference an
        'instance' of the RowStatus object, and the '*' must replace
        any integer index item that may be set to some random value.

        setRowStatus will come up with a number for the selected index
        item and will attempt to create the instance with the
        createAndWait state.  If the attempt fails, it will retry with
        a different random index value.  It will attempt this no more
        than 'maxTries' times.

        If the optional 'freeOnException' argument is present and equal
        to 1, the agent will free this row by setting RowStatus to
        'destroy' if, later in the same script invocation, this script




Waldbusser, et al.          Standards Track                    [Page 38]

RFC 4011              Policy Based Management MIB             March 2005


        dies with a run-time exception or by a call to fail().  Note
        that this does not apply to exceptions experienced in
        subsequent invocations of the script.

        If the optional 'seed' argument is present, the initial index
        will be set to 'seed'.  Otherwise it will be random.  'seed'
        may not be present if the 'freeOnException' argument is not
        present.

        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform an SNMP operation on a system different
        from that of 'this element'.

        setRowStatus returns the successful integer value for the
        index.  If it is unsuccessful after 'maxTries', or if zero or
        more than one '*' is in OID, -1 will be returned.

        The createRow function (below) can also be used when adding
        rows to tables.  Although createRow has more functionality,
        setRowStatus may be preferable in certain situations (for
        example, to have the opportunity to inspect default values
        created by the agent).

8.1.3.6.  createRow()

     integer createRow(integer reqPDU, integer reqNumVarbinds,
                       integer statusColumn, integer maxTries,
                       integer indexRange,
                       integer &respPDU, integer &respNumVarbinds,
                       integer &index
                       [, integer freeOnException, string contextName,
                       NonLocalArgs])

        createRow is used to automate the process of creating a row in
        a read-create table whose index contains an arbitrary integer
        component for uniqueness.  In particular, it encapsulates the
        algorithm behind either the createAndWait or createAndGo
        mechanism and the algorithm for finding an unused row in the
        table.  createRow is not useful for creating rows in tables
        whose indexes don't contain an arbitrary integer component.

        createRow will perform the operation by sending 'reqPDU' and
        returning the results in 'respPDU'.  Both 'reqPDU' and



Waldbusser, et al.          Standards Track                    [Page 39]

RFC 4011              Policy Based Management MIB             March 2005


        'respPDU' must previously have been allocated with newPDU.
        'reqPDU' and 'respPDU' may both contain the same PDU handle, in
        which case the 'reqPDU' is sent and then replaced with the
        contents of the received PDU.

        'reqNumVarbinds' is an integer greater than zero that specifies
        which varbinds in the PDU will be used in this operation.  The
        first 'reqNumVarbinds' in the PDU are used.  Each such varbind
        must be of a special form in which the object name must have
        one of its subids replaced with a '*' character (e.g.,
        "1.3.6.1.3.1.99.1.2.1.9.*").  The subid selected to be replaced
        will be an integer index item that may be set to some random
        value.  The same subid should be selected in each varbind in
        the PDU.

        'respNumVarbinds' will be modified to contain the number of
        varbinds received in the last response PDU.

        'statusColumn' identifies which varbind in 'pdu' should be
        treated as the RowStatus column, where 0 identifies the 1st
        varbind.

        createRow will come up with a random integer index value and
        will substitute that value in place of the '*' subid in each
        varbind.  It will then set the value of the RowStatus column to
        select the 'createAndGo' mechanism and execute the set.  If the
        attempt fails due to the unavailability of the 'createAndGo'
        mechanism, it will retry with the 'createAndWait' mechanism
        selected.  If the attempt fails because the chosen index value
        is already in use, the operation will be retried with a
        different random index value.  It will continue to retry
        different index values until it succeeds, until it has made
        'maxTries' attempts, or until it encounters an error.  The
        value of 'maxTries' should be chosen to be high enough to
        minimize the chance that as the table fills up an attempt to
        create a new entry will 'collide' too often and fail.

        All random index values must be between 1 and 'indexRange',
        inclusive.  This is so that values are not attempted for an
        index that fall outside of that index's restricted range (e.g.,
        1..65535).

        If the optional 'freeOnException' argument is present and equal
        to 1, the agent will free this row by setting RowStatus to
        'destroy' if, later in the same script invocation, this script
        dies with a run-time exception or by a call to fail().  Note
        that this does not apply to exceptions experienced in
        subsequent invocations of the script.



Waldbusser, et al.          Standards Track                    [Page 40]

RFC 4011              Policy Based Management MIB             March 2005


        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        The optional 'NonLocalArgs' provide addressing and security
        information to perform an SNMP operation on a system different
        from that of 'this element'.

        Note that no actual SNMP PDU has to be generated and parsed
        when the policy MIB agent resides on the same system as the
        managed elements.  If no PDU is generated, the agent must
        correctly simulate the behavior of the SNMP Response PDU,
        particularly in case of an error.

        This function returns zero unless an error occurs, in which
        case it returns the proper SNMP Error Constant.  If an error
        occurred, respPDU will contain the last response PDU as
        received from the agent unless no response PDU was received, in
        which case respNumVarbinds will be 0.  In any event, readError
        may be called on the PDU to determine error information for the
        transaction.

        The 'index' parameter returns the chosen index.  If successful,
        'index' will be set to the successful integer index.  If no
        SNMP error occurs but the operation does not succeed due to the
        following reasons, 'index' will be set to -1:

           1) Unsuccessful after 'maxTries'.
           2) An object name had no '*' in it.
           3) An object name had more than one '*' in it.

        For example, createRow() might be used as follows:

        var index, pdu = newPDU(), nVars = 0;

        writeVar(pdu, nVars++, "hlHostControlDataSource.*",
                 "ifIndex." + ev(0), Oid);
        writeVar(pdu, nVars++, "hlHostControlNlMaxDesiredEntries.*",
                 1000, Integer);
        writeVar(pdu, nVars++, "hlHostControlAlMaxDesiredEntries.*",
                 1000, Integer);
        writeVar(pdu, nVars++, "hlHostControlOwner.*", "policy",
                 String);
        writeVar(pdu, nVars++, "hlHostControlStatus.*", "active(1)",
                 Integer);
        if (createRow(pdu, nVars, 4, 20, 65535,
                      pdu, nVars, index) != 0



Waldbusser, et al.          Standards Track                    [Page 41]

RFC 4011              Policy Based Management MIB             March 2005


            || index == -1)
            return;
        // index now contains index of new row

8.1.3.7.  counterRate()

  When a policy wishes to make a decision based on the rate of a
  counter, it faces a couple of problems:

  1. It may have to run every X minutes but have to make decisions on
     rates calculated over at least Y minutes, where Y > X.  This would
     require the complexity of managing a queue of old counter values.

  2. The policy script has no control over exactly when it will run.

  The counterRate() function is designed to surmount these problems
  easily.

     integer counterRate(string oid, integer minInterval
                         [, integer 64bit,
                         string discOid, integer discMethod,
                         string contextName, NonLocalArgs])

        'counterRate' retrieves the variable specified by oid once per
        invocation.  It keeps track of timestamped values retrieved on
        previous invocations by this execution context so that it can
        calculate a rate over a period longer than that since the last
        invocation.

        'oid' is the object identifier of the counter value that will
        be retrieved.  The most recent previously saved value of the
        same object identifier that is at least 'minInterval' seconds
        old will be subtracted from the newly retrieved value, yielding
        a delta.  If 'minInterval' is zero, this delta will be
        returned.  Otherwise, this delta will be divided by the number
        of seconds elapsed between the two retrievals, and the
        integer-valued result will be returned (rounding down when
        necessary).

        If there was no previously saved retrieval older than
        'minInterval' seconds, then -1 will be returned.  It is an RTE
        if the query returns noSuchName, noSuchInstance, or
        noSuchObject or an object that is not of type Counter32 or
        Counter64.







Waldbusser, et al.          Standards Track                    [Page 42]

RFC 4011              Policy Based Management MIB             March 2005


        The delta calculation will allow for 32-bit counter semantics
        if it encounters rollover between the two retrievals, unless
        the optional argument '64bit' is present and equal to 1, in
        which case it will allow for 64-bit counter semantics.

        'discOid' and 'discMethod' may only be present together.
        'discOid' contains an object identifier of a discontinuity
        indicator value that will be retrieved simultaneously with each
        counter value:

           1. If 'discMethod' is equal to 1 and the discontinuity
              indicator is less than the last one retrieved, then a
              discontinuity is indicated.
           2. If 'discMethod' is equal to 2 and the discontinuity
              indicated is different from the last one retrieved, then
              a discontinuity is indicated.

        If this value indicates a discontinuity, this counter value
        (and its timestamp) will be stored, but all previously stored
        counter values will be invalidated and -1 will be returned.

        The implementation will have to store a number of timestamped
        counter values.  The implementation must keep all values that
        are newer than minInterval seconds, plus the newest value that
        is older than minInterval seconds.  Other than this one value
        that is older than minInterval seconds, the implementation
        should discard any older values.

        For example:
          Policy that executes every 60 seconds:
              rate = counterRate("ifInOctets.$*", 300);
              if (rate > 1000000)
                  ...

        Another example, with a discontinuity indicator:

          Policy that executes every 60 seconds:
              rate = counterRate("ifInOctets.$*", 300, 0,
                                 "sysUpTime.0", 1);
              if (rate > 1000000)
                  ...

        Another example, with zero minInterval:
          Policy that executes every 60 seconds:
              delta = counterRate("ifInErrors.$*", 0);
              if (delta > 100)
                  ...




Waldbusser, et al.          Standards Track                    [Page 43]

RFC 4011              Policy Based Management MIB             March 2005


        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

8.1.4.  General SNMP Functions

  It is desirable that a general SNMP interface have the ability to
  perform SNMP operations on multiple variables at once and that it
  allow multiple varbind lists to exist at once.  The newPdu, readVar,
  and writeVar functions exist to provide these facilities in a
  language without pointers, arrays, and memory allocators.

  newPDU is called to allocate a PDU and return an integer handle to
  it.  As PDUs are automatically freed when the script exits and can be
  reused during execution, there is no freePDU().

  readVar and writeVar access a variable length varbind list for a PDU.
  The PDU handle and the index of the variable within that PDU are
  specified in every readVar and writeVar operation.  Once a PDU has
  been fully specified by one or more calls to writeVar, it is passed
  to snmpSend (by referencing the PDU handle) and the number of
  varbinds to be included in the operation.  When a response is
  returned, the contents of the response are returned in another PDU
  and may be read by one or more calls to readVar.  Error information
  may be read from the PDU with the readError function.  Because
  GetBulk PDUs send additional information in the SNMP header, the
  writeBulkParameters function is provided to configure these
  parameters.

  Varbinds in this data store are created automatically whenever they
  are written by any writeVar or snmpSend operation.

  For example:
    var pdu = newPDU();
    var nVars = 0, oid, type, value;

    writeVar(pdu, nVars++, "sysDescr.0", "", Null);
    writeVar(pdu, nVars++, "sysOID.0", "", Null);
    writeVar(pdu, nVars++, "ifNumber.0", "", Null);
    if (snmpSend(pdu, nVars, Get, pdu, nVars))
        return;
    readVar(pdu, 0, oid, value, type);
    readVar(pdu, 1, oid, value, type);
    readVar(pdu, 2, oid, value, type);
    ...





Waldbusser, et al.          Standards Track                    [Page 44]

RFC 4011              Policy Based Management MIB             March 2005


  or,
    var pdu = newPDU();
    var nVars = 0, oid1, oid2;

    writeVar(pdu, nVars++, "ifIndex", "", Null);
    writeVar(pdu, nVars++, "ifType", "", Null);
    while(!done){
      if (snmpSend(pdu, nVars, Getnext, pdu, nVars))
          continue;
      readVar(pdu, 0, oid1, value, type);
      readVar(pdu, 1, oid2, value, type);
      /* leave OIDs alone, now PDU #0 is set up for next step
         in table walk. */
      if (oidncmp(oid1, "ifIndex", oidlen("ifIndex")))
        done = 0;
      ...
    }

  Note that in the preceding examples, descriptors such as ifType and
  sysDescr are used in object identifiers solely as a notational
  convenience.  The actual code downloaded to the policy MIB agent must
  use a dotted decimal notation only, as there may be no MIB compiler
  (or MIB file) available on the policy MIB agent.

  To conform to this specification, implementations must allow each
  policy script invocation to allocate at least 5 PDUs with at least 64
  varbinds per list.  It is suggested that implementations limit the
  total number of PDUs per invocation to protect other script
  invocations from a malfunctioning script (e.g., a script that calls
  newPDU() in a loop).

8.1.4.1.  newPDU()

     integer newPDU()

        newPDU will allocate a new PDU and return a handle to the PDU.
        If no PDU could be allocated, -1 will be returned.  The PDU's
        initial values of nonRepeaters and maxRepetitions will be zero.

8.1.4.2.  writeVar()

     writeVar(integer pdu, integer varBindIndex,
              string oid, var value, integer type)

        writeVar will store 'oid', 'value', and 'type' in the specified
        varbind.

        'pdu' is the handle to a PDU allocated by newPDU().



Waldbusser, et al.          Standards Track                    [Page 45]

RFC 4011              Policy Based Management MIB             March 2005


        'varBindIndex' is a non-negative integer that identifies the
        varbind within the specified PDU modified by this call.  The
        first varbind is number 0.

        'oid' is a string containing an ASCII dotted-decimal
        representation of an object identifier (e.g.,
        "1.3.6.1.2.1.1.1.0").

        'value' is the value to be stored, of a type appropriate to the
        'type' parameter.

        'type' will be the type of the value parameter and will be set
        to one of the values for DataType Constants.

        It is an RTE if any of the parameters don't conform to the
        rules above.

8.1.4.3.  readVar()

     readVar(integer pdu, integer varBindIndex, string &oid,
             var &value, integer &type)

        readVar will retrieve the oid, the value, and its type from the
        specified varbind.

        'pdu' is the handle to a PDU allocated by newPDU().

        'varBindIndex' is a non-negative integer that identifies the
        varbind within the specified PDU read by this call.  The first
        varbind is number 0.

        The object identifier value of the referenced varbind will be
        copied into the 'oid' parameter, formatted in an ASCII dotted-
        decimal representation (e.g., "1.3.6.1.2.1.1.1.0").

        'value' is the value retrieved, of a type appropriate to the
        'type' parameter.

        'type' is the type of the value parameter and will be set to
        one of the values for DataType Constants.

        It is an RTE if 'pdu' doesn't reference a valid PDU or
        'varBindIndex' doesn't reference a valid varbind.








Waldbusser, et al.          Standards Track                    [Page 46]

RFC 4011              Policy Based Management MIB             March 2005


8.1.4.4.  snmpSend()

     integer snmpSend(integer reqPDU, integer reqNumVarbinds,
                      integer opcode,
                      integer &respPDU, integer &respNumVarbinds,
                      [, string contextName , NonLocalArgs] )

        snmpSend will perform an SNMP operation by sending 'reqPDU' and
        returning the results in 'respPDU'.  Both 'reqPDU' and
        'respPDU' must previously have been allocated with newPDU.
        'reqPDU' and 'respPDU' may both contain the same PDU handle, in
        which case the 'reqPDU' is sent and then replaced with the
        contents of the received PDU.  If the opcode specifies a Trap
        or V2trap, 'respPDU' will not be modified.

        'reqNumVarbinds' is an integer greater than zero that specifies
        which varbinds in the PDU will be used in this operation.  The
        first 'reqNumVarbinds' in the PDU are used.  'respNumVarbinds'
        will be modified to contain the number of varbinds received in
        the response PDU, which, in the case of GetBulk or an error,
        may be substantially different from reqNumVarbinds.

        'opcode' is the type of SNMP operation to perform and must be
        one of the values for SNMP Operation Constants listed in the
        'Constants' section below.

        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.

        Note that no actual SNMP PDU has to be generated and parsed
        when the policy MIB agent resides on the same system as the
        managed elements.  If no PDU is generated, the agent must
        correctly simulate the behavior of the SNMP Response PDU,
        particularly in case of an error.

        This function returns zero unless an error occurs, in which
        case it returns the proper SNMP Error Constant.  If an error
        occurred, respPDU will contain the response PDU as received
        from the agent, unless no response PDU was received, in which
        case respNumVarbinds will be 0.  In any event, readError may be
        called on the PDU to determine error information for the
        transaction.

        If an SNMP Version 1 trap is requested (the opcode is Trap(4)),
        then SNMP Version 2 trap parameters are supplied and converted
        according to the rules of RFC 3584 [8], section 3.2.  The first



Waldbusser, et al.          Standards Track                    [Page 47]

RFC 4011              Policy Based Management MIB             March 2005


        variable binding must be sysUpTime.0, and the second must be
        snmpTrapOID.0, as per RFC 3416 [7], section 4.2.6.  Subsequent
        variable bindings are copied to the SNMP Version 1 trap PDU in
        the usual fashion.

8.1.4.5.  readError()

     readError(integer pdu, integer numVarbinds, integer &errorStatus,
               integer &errorIndex, integer &hasException)

        Returns the error information in a PDU.

        'errorStatus' contains the error-status field from the response
        PDU or a local error constant if the error was generated
        locally.  If no error was experienced or no PDU was ever copied
        into this PDU, this value will be 0.

        'errorIndex' contains the error-index field from the response
        PDU.  If no PDU was ever copied into this PDU, this value will
        be 0.

        'hasException' will be 1 if any of the first 'numVarbinds'
        varbinds in the PDU contain an exception (Nosuchobject,
        Nosuchinstance, Endofmibview); otherwise it will be 0.

        It is an RTE if 'pdu' does not reference a valid PDU or if
        'numVarbinds' references varbinds that aren't valid.

8.1.4.6.  writeBulkParameters()

     writeBulkParameters(integer pdu, integer nonRepeaters,
                         integer maxRepetitions)

        Modifies the parameters in a PDU in any subsequent GetBulk
        operation sent by the PDU.  'nonRepeaters' will be copied into
        the PDU's non-repeaters field, and 'maxRepetitions' into the
        max-repetitions field.

        This function may be called before or after writeVar is called
        to add varbinds to the PDU, but it must be called before the
        PDU is sent; otherwise, it will have no effect.  A new PDU is
        initialized with nonRepeaters set to zero and maxRepetitions
        set to zero.  If a Bulk PDU is sent before writeBulkParameters
        is called, these default values will be used.  If
        writeBulkParameters is called to modify a PDU, it is acceptable
        if this PDU is later sent as a type other than bulk.  The
        writeBulkParameters call will only affect subsequent sends of
        Bulk PDUs.  If a PDU is used to receive the contents of a



Waldbusser, et al.          Standards Track                    [Page 48]

RFC 4011              Policy Based Management MIB             March 2005


        response, the values of nonRepeaters and maxRepetitions are
        never modified.

8.1.5.  Constants for SNMP Library Functions

  The following constants are defined for use with all SNMP Library
  Functions.  Policy code will be executed in an environment where the
  following constants are declared.  (Note that the constant
  declarations below will not be visible in the policyCondition or
  policyAction code.)  These constants are reserved words and cannot be
  used for any variable or function name.

  Although these declarations are expressed here as C 'const's, the
  'const' construct itself is not available to be used in policy code.

  // Datatype Constants

  // From RFC 2578 [2]
  const integer Integer       = 2;
  const integer Integer32     = 2;
  const integer String        = 4;
  const integer Bits          = 4;
  const integer Null          = 5;
  const integer Oid           = 6;
  const integer IpAddress     = 64;
  const integer Counter32     = 65;
  const integer Gauge32       = 66;
  const integer Unsigned32    = 66;
  const integer TimeTicks     = 67;
  const integer Opaque        = 68;
  const integer Counter64     = 70;

  // SNMP Exceptions from RFC 3416 [7]
  const integer NoSuchObject         = 128;
  const integer NoSuchInstance       = 129;
  const integer EndOfMibView         = 130;

  // SNMP Error Constants from RFC 3416 [7]
  const integer NoError              = 0;
  const integer TooBig               = 1;
  const integer NoSuchName           = 2;
  const integer BadValue             = 3;
  const integer ReadOnly             = 4;
  const integer GenErr               = 5;
  const integer NoAccess             = 6;
  const integer WrongType            = 7;
  const integer WrongLength          = 8;
  const integer WrongEncoding        = 9;



Waldbusser, et al.          Standards Track                    [Page 49]

RFC 4011              Policy Based Management MIB             March 2005


  const integer WrongValue           = 10;
  const integer NoCreation           = 11;
  const integer InconsistentValue    = 12;
  const integer ResourceUnavailable  = 13;
  const integer CommitFailed         = 14;
  const integer UndoFailed           = 15;
  const integer AuthorizationError   = 16;
  const integer NotWritable          = 17;
  const integer InconsistentName     = 18;

  // "Local" Errors
  // These are also possible choices for errorStatus returns
  // For example: unknown PDU, maxVarbinds is bigger than number
  // written with writeVar, unknown opcode, etc.
  const integer BadParameter         = 1000;

  // Request would have created a PDU larger than local limitations
  const integer TooLong              = 1001;

  // A response to the request was received but errors were encountered
  // when parsing it.
  const integer ParseError           = 1002;

  // Local system has complained of an authentication failure
  const integer AuthFailure          = 1003;

  // No valid response was received in a timely fashion
  const integer TimedOut             = 1004;

  // General local failure including lack of resources
  const integer GeneralFailure       = 1005;

  // SNMP Operation Constants from RFC 3416 [7]
  const integer Get                  = 0;
  const integer Getnext              = 1;
  const integer Set                  = 3;
  const integer Trap                 = 4;
  const integer Getbulk              = 5;
  const integer Inform               = 6;
  const integer V2trap               = 7;

  // Constants from RFC 3411 [1] for SnmpMessageProcessingModel
  const integer SNMPv1              = 0;
  const integer SNMPv2c             = 1;
  const integer SNMPv3              = 3;






Waldbusser, et al.          Standards Track                    [Page 50]

RFC 4011              Policy Based Management MIB             March 2005


  // Constants from RFC 3411 [1] for SnmpSecurityModel
  const integer SNMPv1              = 1;
  const integer SNMPv2c             = 2;
  const integer USM                 = 3;

  // SnmpSecurityLevel Constants from RFC 3411 [1]
  const integer NoAuthNoPriv        = 1;
  const integer AuthNoPriv          = 2;
  const integer AuthPriv            = 3;

  // Constants for use with searchColumn
  const integer ExactMatch          = 0;
  const integer ExactCaseMatch      = 1;
  const integer SubstringMatch      = 2;
  const integer SubstringCaseMatch  = 3;
  const integer RegexpMatch         = 4;
  const integer RegexpCaseMatch     = 5;

8.2.  Policy Library Functions

  Policy Library Functions provide access to information specifically
  related to the execution of policies.

8.2.1.  elementName()

  The elementName() function is used to determine what the current
  element is and can be used to provide information about the type of
  element and how it is indexed.

     string elementName()

        elementName returns a string containing an ASCII dotted-decimal
        representation of an object identifier (e.g.,
        1.3.6.1.2.1.1.1.0).  This object identifier identifies an
        instance of a MIB object that is an attribute of 'this
        element'.

8.2.2.  elementAddress()

     elementAddress(&tDomain, &tAddress)

        elementAddress finds a domain/address pair that can be used to
        access 'this element' and returns the values in 'tDomain' and
        'tAddress'.







Waldbusser, et al.          Standards Track                    [Page 51]

RFC 4011              Policy Based Management MIB             March 2005


8.2.3.  elementContext()

     string elementContext()

        elementContext() returns a string containing the SNMP
        contextName of 'this element'.

8.2.4.  ec()

  The ec() (element count) and ev() (element value) functions provide
  convenient access to the components of the index for 'this element'.
  Typical uses will be in creating the index to other, related
  elements.

     integer ec()

        ec() returns an integer count of the number of index
        subidentifiers that exist in the index for 'this element'.

8.2.5.  ev()

     integer ev(integer n)

        ev() returns the value of the nth subidentifier in the index
        for 'this element'.  The first subidentifier is indexed at 0.
        It is an RTE if n specifies a subidentifier beyond the last
        subidentifier.

8.2.6.  roleMatch()

  The roleMatch() function is used to check whether an element has been
  assigned a particular role.

     integer roleMatch(string roleString [, string element,
                       string contextName, string contextEngineID])

        'roleString' is a string.  The optional argument 'element'
        contains the OID name of an element, defaulting to the current
        element if 'element' is not supplied.  If roleString exactly
        matches (content and length) any role assigned to the specified
        element, the function returns 1.  If no roles match, the
        function returns 0.

        The optional 'contextName' argument contains the SNMP context
        on which to operate.  If 'contextName' is not present, the
        contextName of 'this element' will be used.  If 'contextName'
        is the zero-length string, the default context is used.




Waldbusser, et al.          Standards Track                    [Page 52]

RFC 4011              Policy Based Management MIB             March 2005


        'contextEngineID' contains the contextEngineID of the remote
        system on which 'element' resides.  It is encoded as a pair of
        hex digits (upper- and lowercase are valid) for each octet of
        the contextEngineID.  If 'contextEngineID' is not present, the
        contextEngineID of 'this element' will be used.
        'contextEngineID' may only be present if the 'element' and
        'context' arguments are present.

8.2.7.  Scratchpad Functions

  Every maxLatency time period, every policy runs once for each
  element.  When the setScratchpad function executes, it stores a value
  named by a string that can be retrieved with getScratchpad() even
  after this policy execution code exits.  This allows sharing of data
  between a condition and an action, two conditions executing on
  different elements, or even different policies altogether.

  The value of 'scope' controls which policy/element combinations can
  retrieve this 'varName'/'value' pair.  The following are options for
  'scope':

     Global
        The 'varName'/'value' combination will be available in the
        condition or action of any policy while it is executing on any
        element.  Note that any information placed here will be visible
        to all other scripts on this system regardless of their
        authority.  Sensitive information should not be placed in
        global scratchpad variables.

     Policy
        The 'varName'/'value' combination will be available in any
        future execution of the condition or action of the current
        policy (regardless of what element the policy is executing on).
        If a policy is ever deleted, or if its condition or action code
        is modified, all values in its 'Policy' scope will be deleted.

     PolicyElement
        The 'varName'/'value' combination will be available in future
        executions of the condition or action of the current policy,
        but only when the policy is executing on the current element.
        If a policy is ever deleted, or if its condition or action code
        is modified, all values in its 'PolicyElement' scope will be
        deleted.  The agent may also periodically delete values in a
        'PolicyElement' scope if the corresponding element does not
        exist (in other words, if an element disappears for a period
        and reappears, values in its 'PolicyElement' scope may or may
        not be deleted).




Waldbusser, et al.          Standards Track                    [Page 53]

RFC 4011              Policy Based Management MIB             March 2005


  setScratchpad's 'storageType' argument allows the script to control
  the lifetime of a variable stored in the scratchpad.  If the
  storageType is equal to the constant 'volatile', then this variable
  must be deleted on a reboot.  If it is equal to 'nonVolatile', then
  this variable should be stored in non-volatile storage, where it will
  be available after a reboot.  If the 'storageType' argument is not
  present, the variable will be volatile and will be erased on reboot.

  If the optional 'freeOnException' argument is present and equal to 1,
  the agent will free this variable if, later in the same script
  invocation, this script dies with a run-time exception or by a call
  to fail().  (Note that this does not apply to exceptions experienced
  in subsequent invocations of the script.)

  Note that there may be implementation-specific limits on the number
  of scratchpad variables that can be allocated.  The limit of unique
  scratchpad variables may be different for each scope or storageType.
  It is suggested that implementations limit the total number of
  scratchpad variables per script to protect other scripts from a
  malfunctioning script.  In addition, compliant implementations must
  support at least 50 Global variables, 5 Policy variables per policy,
  and 5 PolicyElement variables per policy-element pair.

  Scratchpad Usage Examples

  Policy  Element    Action
  A       ifIndex.1  setScratchpad(Global, "foo", "55")
  A       ifIndex.1  getScratchpad(Global, "foo", val) --> 55
  A       ifIndex.2  getScratchpad(Global, "foo", val) --> 55
  B       ifIndex.2  getScratchpad(Global, "foo", val) --> 55
  B       ifIndex.2  setScratchpad(Global, "foo", "16")
  A       ifIndex.1  getScratchpad(Global, "foo", val) --> 16

  Policy  Element    Action
  A       ifIndex.1  setScratchpad(Policy, "bar", "75")
  A       ifIndex.1  getScratchpad(Policy, "bar", val) --> 75
  A       ifIndex.2  getScratchpad(Policy, "bar", val) --> 75
  B       ifIndex.1  getScratchpad(Policy, "bar", val) not found
  B       ifIndex.1  setScratchpad(Policy, "bar", "20")
  A       ifIndex.2  getScratchpad(Policy, "bar", val) --> 75
  B       ifIndex.2  getScratchpad(Policy, "bar", val) --> 20

  Policy  Element    Action
  A       ifIndex.1  setScratchpad(PolicyElement, "baz", "43")
  A       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 43
  A       ifIndex.2  getScratchpad(PolicyElement, "baz", val) not found
  B       ifIndex.1  getScratchpad(PolicyElement, "baz", val) not found
  A       ifIndex.2  setScratchpad(PolicyElement, "baz", "54")



Waldbusser, et al.          Standards Track                    [Page 54]

RFC 4011              Policy Based Management MIB             March 2005


  B       ifIndex.1  setScratchpad(PolicyElement, "baz", "65")
  A       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 43
  A       ifIndex.2  getScratchpad(PolicyElement, "baz", val) --> 54
  B       ifIndex.1  getScratchpad(PolicyElement, "baz", val) --> 65

  Policy  Element    Action
  A       ifIndex.1  setScratchpad(PolicyElement, "foo", "11")
  A       ifIndex.1  setScratchpad(Global,        "foo", "22")
  A       ifIndex.1  getScratchpad(PolicyElement, "foo", val) --> 11
  A       ifIndex.1  getScratchpad(Global,        "foo", val) --> 22

  Constants

  The following constants are defined for use with the scratchpad
  functions.  Policy code will be executed in an environment where the
  following constants are declared.  (Note that these constant
  declarations will not be visible in the policyCondition or
  policyAction MIB objects.)

  Although these declarations are expressed here as C 'const's, the
  'const' construct itself is not available to be used inside of policy
  code.

  // Scratchpad Constants

  // Values of scope
  const integer Global           = 0;
  const integer Policy           = 1;
  const integer PolicyElement    = 2;

  // Values of storageType
  const integer Volatile         = 0;
  const integer NonVolatile      = 1;

8.2.8.  setScratchpad()

     setScratchpad(integer scope, string varName [, string value,
                   integer storageType, integer freeOnException ])

        The setScratchpad function stores a value that can be retrieved
        even after this policy execution code exits.

        The value of 'scope' controls which policy/element combinations
        can retrieve this 'varName'/'value' pair.  The options for
        'scope' are Global, Policy, and PolicyElement.






Waldbusser, et al.          Standards Track                    [Page 55]

RFC 4011              Policy Based Management MIB             March 2005


        'varName' is a string used to identify the value.  Subsequent
        retrievals of the same 'varName' in the proper scope will
        return the value stored.  Note that the namespace for 'varName'
        is distinct for each scope.  'varName' is case sensitive.

        'value' is a string containing the value to be stored.
        ToString(value) is called on 'value' to convert it to a string
        before storage.

        If the 'value' argument is missing, the 'varName' in scope
        'scope' will be deleted if it exists.

        If the optional 'storageType' argument is present and is equal
        to the constant 'Volatile', then this variable must be deleted
        on a reboot.  If it is equal to 'NonVolatile', then this
        variable should be stored in non-volatile storage, where it
        will be available after a reboot.  If the 'storageType'
        argument is not present, the variable will be volatile and will
        be erased on reboot.  'storageType' may not be present if the
        'value' argument is not present.  If the variable already
        existed, its previous storageType is updated according to the
        current 'storageType' argument.

        If the optional 'freeOnException' argument is present and equal
        to 1, the agent will free this variable if, later in the same
        script invocation, this script dies with a run-time exception
        or by a call to fail().  (Note that this does not apply to
        exceptions experienced in subsequent invocations of the
        script.)

8.2.9.  getScratchpad()

     integer getScratchpad(integer scope, string varName,
                           string &value)

        The getScratchpad function allows the retrieval of values that
        were stored previously in this execution context or in other
        execution contexts.  The value of 'scope' controls which
        execution contexts can pass a value to this execution context.
        The options for 'scope' are Global, Policy, and PolicyElement.

        'varName' is a string used to identify the value.  Subsequent
        retrievals of the same 'varName' in the proper scope will
        return the value stored.  Note that the namespace for varName
        is distinct for each scope.  As a result, getScratchpad cannot
        force access to a variable in an inaccessible scope; it can
        only retrieve variables by referencing the proper scope in
        which they were set.  'varName' is case sensitive.



Waldbusser, et al.          Standards Track                    [Page 56]

RFC 4011              Policy Based Management MIB             March 2005


        On successful return, 'value' will be set to the value that was
        previously stored; otherwise, 'value' will not be modified.

        This function returns 1 if a value was previously stored and 0
        otherwise.

8.2.10.  signalError()

  The signalError() function is used by the script to indicate to a
  management station that it is experiencing abnormal behavior.
  signalError() turns on the conditionUserSignal(3) or
  actionUserSignal(5) bit in the associated pmTrackingPEInfo object
  (subsequent calls to signalError() have no additional effect).  This
  bit is initially cleared at the beginning of each execution.  If,
  upon a subsequent execution, the script finishes without calling
  signalError, the bit will be cleared.

     signalError()

        The signalException function takes no arguments and returns no
        value.

8.2.11.  defer()

  Precedence groups enforce the rule that for each element, of the
  ready policies that match the condition, only the one with the
  highest precedence value will be active.  Unfortunately, once the
  winning policy has been selected and the action begins running,
  situations can occur in which the policy script determines that it
  cannot complete its task.  In many such cases, it is desirable that
  the next runner-up ready policy be executed.  In the previous
  example, it would be desirable that at least bronze behavior be
  configured if gold is appropriate but gold isn't possible.

  When a policy defers, it exits, and the ready, condition-matching
  policy with the next-highest precedence is immediately run.  Because
  this might also defer, the execution environment must remember where
  it is in the precedence chain so that it can continue going down the
  chain until an action completes without deferring, or until no
  policies are left in the precedence group.  Once a policy finishes
  successfully, the next iteration will begin at the top of the
  precedence chain.

  There are two ways to defer.  A script can exit by calling fail() and
  specify that it should defer immediately.  Alternately, a script can
  instruct the execution environment to defer automatically in the
  event of a run-time exception.




Waldbusser, et al.          Standards Track                    [Page 57]

RFC 4011              Policy Based Management MIB             March 2005


     defer(integer deferOnRTE)

        The defer function changes the run-time exception behavior of a
        script.  By default, a script will not defer when it encounters
        an RTE.  If defer(1) is called, the exit behavior is changed so
        that the script will defer when it is terminated due to an RTE.
        If defer(0) is called, the script is reset to its default
        behavior and will not defer.

        Note that calling defer doesn't cause the script to exit.
        Defer only changes the default behavior if an RTE occurs later
        in this invocation.

8.2.12.  fail()

     fail(integer defer, integer free [, string message] )

        The fail function causes the script to optionally perform
        certain functions and then exit.

        If 'defer' is 1, this script will defer to the next lower
        precedence ready policy in the same precedence group whose
        condition matches.  If 'defer' isn't 1, it will not defer.
        Note that if a condition defers, it is functionally equivalent
        to the condition returning false.

        If 'free' is 1, certain registered resources will be freed.
        If, earlier in this script invocation, any rows were created by
        createRow with the 'freeOnException' option, the execution
        environment will set the RowStatus of each row to 'destroy' to
        delete the row.  Further, if earlier in this script invocation
        any scratchpad variables were created or modified with the
        'freeOnException' option, they will be deleted.

        If the optional 'message' argument is present, it will be
        logged to the debugging table if pmPolicyDebugging is turned on
        for this policy.

        This function does not return.  Instead, the script will
        terminate.

8.2.13.  getParameters()

  From time to time, policy scripts may be parameterized so that they
  are supplied with one or more parameters (e.g., site-specific
  constants).  These parameters may be installed in the
  pmPolicyParameters object and are accessible to the script via the
  getParameters() function.  If it is necessary for multiple parameters



Waldbusser, et al.          Standards Track                    [Page 58]

RFC 4011              Policy Based Management MIB             March 2005


  to be passed to the script, the script can choose whatever
  encoding/delimiting mechanism is most appropriate so that the
  multiple parameters can be stored in the associated instance of
  pmPolicyParameters.

     string getParameters()

        The getParameters function takes no arguments.  It returns a
        string containing the value of the pmPolicyParameters object
        for the running policy.

  For example, if a policy is to apply to "slow speed interfaces" and
  the cutoff point for slow speed should be parameterized, the policy
  filter should be:

     getVar("ifSpeed.$*") == getParameters()

  In this example, one can store the string "128000" in the policy's
  pmPolicyParameters object to cause this policy to act on all 128 Kbps
  interfaces.

8.3.  Utility Library Functions

  Utility Library Functions are provided to enable more efficient
  policy scripts.

8.3.1.  regexp()

     integer regexp(string pattern, string str,
                    integer case [, string &match])

        regexp searches 'str' for matches to the regular expression
        given in `pattern`.  regexp uses the POSIX extended regular
        expressions defined in POSIX 1003.2.

        If `case` is 0, the search will be case insensitive; otherwise,
        it will be case sensitive.

        If a match is found, 1 is returned, otherwise 0 is returned.

        If the optional argument 'match' is provided and a match is
        found, 'match' will be replaced with the text of the first
        substring of 'str' that matches 'pattern'.  If no match is
        found, it will be unchanged.







Waldbusser, et al.          Standards Track                    [Page 59]

RFC 4011              Policy Based Management MIB             March 2005


8.3.2.  regexpReplace()

     string regexpReplace(string pattern, string replacement,
                           string str, integer case)

        regexpReplace searches 'str' for matches to the regular
        expression given in 'pattern', replacing each occurrence of
        matched text with 'replacement'.  regexpReplace uses the POSIX
        extended regular expressions defined in POSIX 1003.2.

        If `case` is 0, the search will be case insensitive; otherwise,
        it will be case sensitive.

        The modified string is returned (it would be the same as the
        original string if no matches were found).

8.3.3.  oidlen()

     integer oidlen(string oid)

        oidlen returns the number of subidentifiers in 'oid'.  'oid' is
        a string containing an ASCII dotted-decimal representation of
        an object identifier (e.g., "1.3.6.1.2.1.1.1.0").

8.3.4.  oidncmp()

     integer oidncmp(string oid1, string oid2, integer n)

        Arguments 'oid1' and 'oid2' are strings containing ASCII
        dotted-decimal representations of object identifiers (e.g.,
        "1.3.6.1.2.1.1.1.0").

        oidcmp compares not more than n subidentifiers of 'oid1' and
        'oid2' and returns -1 if 'oid1' is less than 'oid2', 0 if they
        are equal, and 1 if 'oid1' is greater than 'oid2'.

8.3.5.  inSubtree()

     integer inSubtree(string oid, string prefix)

        Arguments 'oid' and 'prefix' are strings containing ASCII
        dotted-decimal representations of object identifiers (e.g.,
        "1.3.6.1.2.1.1.1.0").

        inSubtree returns 1 if every subidentifier in 'prefix' equals
        the corresponding subidentifier in 'oid', otherwise it returns
        0.  The is equivalent to oidncmp(oid1, prefix, oidlen(prefix))




Waldbusser, et al.          Standards Track                    [Page 60]

RFC 4011              Policy Based Management MIB             March 2005


        is provided because this is an idiom and because it avoids
        evaluating 'prefix' twice if it is an expression.

8.3.6.  subid()

     integer subid(string oid, integer n)

        subid returns the value of the nth (starting at zero)
        subidentifier of 'oid'.  'oid' is a string containing an ASCII
        dotted-decimal representation of an object identifier (e.g.,
        "1.3.6.1.2.1.1.1.0").

        If n specifies a subidentifier beyond the length of 'oid', a
        value of -1 is returned.

8.3.7.  subidWrite()

     integer subidWrite(string oid, integer n, integer subid)

        subidWrite sets the value of the nth (starting at zero)
        subidentifier of 'oid' to 'subid'.  'oid' is a string
        containing an ASCII dotted-decimal representation of an object
        identifier (e.g., "1.3.6.1.2.1.1.1.0").

        If n specifies a subidentifier beyond the length of 'oid', a
        value of -1 is returned.  Note that appending subidentifiers
        can be accomplished with the string concatenation '+' operator.
        If no error occurs, zero is returned.

8.3.8.  oidSplice()

     string oidSplice(string oid1, integer offset, integer len, string
        oid2)

        oidSplice returns an OID formed by replacing 'len'
        subidentifiers in 'oid1' with all of the subidentifiers from
        'oid2', starting at 'offset' in 'oid1' (the first subidentifier
        is at offset 0).  The OID length will be extended, if
        necessary, if 'offset' + 'len' extends beyond the end of
        'oid1'.  If 'offset' is larger than the length of oid1, then an
        RTE will occur.

        The resulting OID is returned.

        For example:
            oidSplice("1.3.6.1.2.1", 5, 1, "7")     => "1.3.6.1.2.7"
            oidSplice("1.3.6.1.2.1", 4, 2, "7.7")   => "1.3.6.1.7.7"
            oidSplice("1.3.6.1.2.1", 4, 3, "7.7.7") => "1.3.6.1.7.7.7"



Waldbusser, et al.          Standards Track                    [Page 61]

RFC 4011              Policy Based Management MIB             March 2005


8.3.9.  parseIndex()

  ParseIndex is provided to make it easy to pull index values from OIDs
  into variables.

     var parseIndex(string oid, integer &index, integer type,
                    integer len)

        parseIndex pulls values from the instance identification
        portion of 'oid', encoded as per Section 7.7, "Mapping of the
        INDEX Clause", of the SMIv2 [2].

        'oid' is the OID to be parsed.

        'index' describes which subid to begin parsing at.  'index'
        will be modified to indicate the subid after the last one
        parsed (even if this points past the last subid).  The first
        subid is index 0.  If any error occurs, 'index' will be set to
        -1 on return.  If the input index is less than 0 or refers past
        the end of the OID, 'index' will be set to -1 on return and the
        function will return 0.

        If 'type' is Integer, 'len' will not be consulted.  The return
        value is the integer value of the next subid.

        If 'type' is String and 'len' is greater than zero, 'len'
        subids will be parsed.  For each subid parsed, the chr() value
        of the subid will be appended to the returned string.  If any
        subid is greater than 255, 'index' will be set to -1 on return,
        and an empty string will be returned.  If there are fewer than
        'len' subids left in 'oid', 'index' will be set to -1 on
        return, but a string will be returned containing a character
        for each subid that was left.

        If 'type' is String and 'len' is zero, the next subid will be
        parsed to find N, the length of the string.  Then, that many
        subids will be parsed.  For each subid parsed, the chr() value
        of the subid will be appended to the returned string.  If any
        subid is greater than 255, 'index' will be set to -1 on return,
        and an empty string will be returned.  If there are fewer than
        N subids left in 'oid', 'index' will be set to -1 on return,
        but a string will be returned containing a character for each
        subid that was left.

        If 'type' is String and 'len' is -1, subids will be parsed
        until the end of 'oid'.  For each subid parsed, the chr() value
        of the subid will be appended to the returned string.  If any




Waldbusser, et al.          Standards Track                    [Page 62]

RFC 4011              Policy Based Management MIB             March 2005


        subid is greater than 255, 'index' will be set to -1 on return,
        and an empty string will be returned.

        If 'type' is Oid and 'len' is greater than zero, 'len' subids
        will be parsed.  For each subid parsed, the decimal-encoded
        value of the subid will be appended to the returned string,
        with a '.' character appended between each output subid, but
        not after the last subid.  If there are fewer than 'len' subids
        left in 'oid', 'index' will be set to -1 on return, but a
        string will be returned containing an encoding for each subid
        that was left.

        If 'type' is Oid and 'len' is zero, the next subid will be
        parsed to find N, the number of subids to parse.  For each
        subid parsed, the decimal-encoded value of the subid will be
        appended to the returned string, with a '.' character appended
        between each output subid but not after the last subid.  If
        there are fewer than N subids left in 'oid', 'index' will be
        set to -1 on return, but a string will be returned containing
        an encoding for each subid that was left.

        If 'type' is Oid and 'len' is -1, subids will be parsed until
        the end of 'oid'.  For each subid parsed, the decimal-encoded
        value of the subid will be appended to the returned string,
        with a '.' character appended between each output subid, but
        not after the last subid.

  For example, to decode the index component of an instance of the
  ipForward table:

     oid = "ipForwardIfIndex.0.0.0.0.13.0.192.168.1.1";
     index = 11;
     dest   =  parseIndex(oid, index, String, 4);
     proto  =  parseIndex(oid, index, Integer, 0);
     policy =  parseIndex(oid, index, Integer, 0);
     nextHop = parseIndex(oid, index, String, 4);
     // proto and policy now contain integer values
     // dest and nextHop now contain 4 byte IP addresses.  Use
     // stringToDotted to get them to dotted decimal notation:
     // e.g.: stringToDotted(nextHop) => "192.168.1.1"

8.3.10.  stringToDotted()

  stringToDotted() is provided to encode strings suitable for the index
  portion of an OID or to convert the binary encoding of an IP address
  to a dotted-decimal encoding.





Waldbusser, et al.          Standards Track                    [Page 63]

RFC 4011              Policy Based Management MIB             March 2005


     string stringToDotted(string value)

        If 'value' is the zero-length string, the zero-length string is
        returned.

        The decimal encoding of the first byte of 'value' is appended
        to the output string.  Then, for each additional byte in
        'value', a '.' is appended to the output string, followed by
        the decimal encoding of the additional byte.

8.3.11.  integer()

     integer integer(var input)

        integer converts 'input' into an integer by using the rules
        specified for ToInteger(), returning the integer-typed results.

8.3.12.  string()

     string string(var input)

        string converts 'input' into a string by using the rules
        specified for ToString(), returning the string-typed results.

8.3.13.  type()

     string type(var variable)

        type returns the type of its argument as either the string
        'String' or the string 'Integer'.

8.3.14.  chr()

     string chr(integer char)

        Returns a one-character string containing the character
        specified by the ASCII code contained in 'char'.

8.3.15.  ord()

     integer ord(string str)

        Returns the ASCII value of the first character of 'str'.  This
        function complements chr().







Waldbusser, et al.          Standards Track                    [Page 64]

RFC 4011              Policy Based Management MIB             March 2005


8.3.16.  substr()

     string substr(string &str, integer offset
                   [, integer len, string replacement])

        Extracts a substring out of 'str' and returns it.  The first
        octet is at offset 0.  If the offset is negative, the returned
        string starts that far from the end of 'str'.  If 'len' is
        positive, the returned string contains up to 'len' octets, up
        to the end of the string.  If 'len' is omitted, the returned
        string includes everything to the end of 'str'.  If 'len' is
        negative, abs(len) octets are left off the end of the string.

        If a substring is specified that is partly outside the string,
        the part within the string is returned.  If the substring is
        totally outside the string, a zero-length string is produced.

        If the optional 'replacement' argument is included, 'str' is
        modified.  'offset' and 'len' act as above to select a range of
        octets in 'str'.  These octets are replaced with octets from
        'replacement'.  If the replacement string is shorter or longer
        than the number of octets selected, 'str' will shrink or grow,
        respectively.  If 'replacement' is included, the 'len' argument
        must also be included.

        Note that to replace everything from offset to the end of the
        string, substr() should be called as follows:

           substr(str, offset, strlen(str) - offset, replacement)

8.4.  General Functions

  The following POSIX standard library functions are provided:

      strncmp()
      strncasecmp()
      strlen()
      random()
      sprintf()
      sscanf()

9.  International String Library

  This library is optional for systems that wish to have support for
  collating (sorting) and verifying equality of international strings
  in a manner that will be least surprising to humans.  International





Waldbusser, et al.          Standards Track                    [Page 65]

RFC 4011              Policy Based Management MIB             March 2005


  strings are encoded in the UTF-8 transformation format described in
  [14].  This library is registered with the name
  "pmInternationalStringLibrary".

  When verifying equality of international strings in the Unicode
  character set, it is recommended to normalize the strings with the
  stringprep() function before checking for equality.

  When attempting to sort international strings in the Unicode
  character set, normalization should also be performed, but note that
  the result is highly context dependent and hard to implement
  correctly.  Just ordering by Unicode Codepoint Value is in many cases
  not what the end user expects.  See Unicode technical note 9 for more
  information about sorting.

9.1.  stringprep()

     integer stringprep(string utf8Input, string &utf8Output)

        Performs the Stringprep [13] transformation for appropriate
        comparison of internationalized strings.  The transformation is
        performed on 'utf8Input'; if the transformation finishes
        without error, the resulting string is written to utf8Output.
        The stringprep profile used is specified below in Section 9.
        If it is successful, the function returns 1.

        If the stringprep transformation encounters an error, 0 is
        returned, and the utf8Output parameter remains unchanged.

        For example, to compare UTF8 strings 'one' and 'two':

        if (stringprep(one, a) && stringprep(two, b)){
            if (a == b){
               // strings are identical
            } else {
               // strings are different
            }
        } else {
            // strings couldn't be transformed for comparison
        }

        See Stringprep [13] for more information.

9.1.1.  Stringprep Profile

  The Stringprep specification [13] describes a framework for preparing
  Unicode text strings in order to increase the likelihood that string
  input and string comparison work in ways that make sense for typical



Waldbusser, et al.          Standards Track                    [Page 66]

RFC 4011              Policy Based Management MIB             March 2005


  users throughout the world.  Specifications that specify stringprep
  (as this one does) are required to fully specify stringprep's
  processing options by documenting a stringprep profile.

  This profile defines the following, as required by Stringprep:

  - The intended applicability of the profile: internationalized
    network management information.

  - The character repertoire that is the input and output to
    stringprep: Unicode 3.2, as defined in Stringprep [13], Appendix
    A.1.

  - The mapping tables used: Table B.1 from Stringprep [13].

  - Any additional mapping tables specific to the profile: None.

  - The Unicode normalization used: Form KC, as described in Stringprep
    [13].

  - The characters that are prohibited as output: As specified in the
    following tables from Stringprep [13]:

      Table C.2
      Table C.3
      Table C.4
      Table C.5
      Table C.6
      Table C.7
      Table C.8
      Table C.9

  - Bidirectional character handling: not performed.

  - Any additional characters that are prohibited as output:  None.

9.2.  utf8Strlen()

     integer utf8Strlen(string str)

        Returns the number of UTF-8 characters in 'str', which may be
        less than the number of octets in 'str' if one or more
        characters are multi-byte characters.








Waldbusser, et al.          Standards Track                    [Page 67]

RFC 4011              Policy Based Management MIB             March 2005


9.3.  utf8Chr()

     string utf8Chr(integer utf8)

        Returns a one-character string containing the character
        specified by the UTF-8 code contained in 'utf8'.  Although it
        contains only 1 UTF-8 character, the resulting string may be
        more than 1 octet in length.

9.4.  utf8Ord()

     integer utf8Ord(string str)

        Returns the UTF-8 code-point value of the first character of
        'str'.  Note that the first UTF-8 character in 'str' may be
        more than 1 octet in length.  This function complements chr().

9.5.  utf8Substr()

     string utf8Substr(string &str, integer offset
                   [, integer len, string replacement])

        Extracts a substring out of 'str' and returns it, keeping track
        of UTF-8 character boundaries and using them, instead of
        octets, as the basis for offset and length calculations.  The
        first character is at offset 0.  If offset is negative, the
        returned string starts that far from the end of 'str'.  If
        'len' is positive, the returned string contains up to 'len'
        characters, up to the end of the string.  If 'len' is omitted,
        the returned string includes everything to the end of 'str'.
        If 'len' is negative, abs(len) characters are left off the end
        of the string.

        If you specify a substring that is partly outside the string,
        the part within the string is returned.  If the substring is
        totally outside the string, a zero-length string is produced.

        If the optional 'replacement' argument is included, 'str' is
        modified.  'offset' and 'len' act as above to select a range of
        characters in 'str'.  These characters are replaced with
        characters from 'replacement'.  If the replacement string is
        shorter or longer than the number of characters selected, 'str'
        will shrink or grow, respectively.  If 'replacement' is
        included, the 'len' argument must also be included.







Waldbusser, et al.          Standards Track                    [Page 68]

RFC 4011              Policy Based Management MIB             March 2005


        Note that to replace everything from offset to the end of the
        string, substr() should be called as follows:

           substr(str, offset, strlen(str) - offset, replacement)

10.  Schedule Table

  This table is an adapted form of the policyTimePeriodCondition class
  defined in the Policy Core Information Model, RFC 3060 [18].  Some of
  the objects describing a schedule are expressed in formats defined in
  the iCalendar specification [15].

  The policy schedule table allows control over when a valid policy
  will be ready, based on the date and time.

  A policy's pmPolicySchedule variable refers to a group of one or more
  schedules in the schedule table.  At any given time, if any of these
  schedules are active, the policy will be ready (assuming that it is
  enabled and thus valid), and its conditions and actions will be
  executed, as appropriate.  At times when none of these schedules are
  active, the policy will not be ready and will have no effect.  A
  policy will always be ready if its pmPolicySchedule variable is 0.
  If a policy has a non-zero pmPolicySchedule that doesn't refer to a
  group that includes an active schedule, then the policy will not be
  ready, even if this is due to a misconfiguration of the
  pmPolicySchedule object or the pmSchedTable.

  A policy that is controlled by a schedule group immediately executes
  its policy condition (and conditionally the policyAction) when the
  schedule group becomes active, periodically re-executing these
  scripts as appropriate until the schedule group becomes inactive
  (i.e., all schedules are inactive).

  An individual schedule item is active at those times that match all
  the variables that define the schedule:  pmSchedTimePeriod,
  pmSchedMonth, pmSchedDay, pmSchedWeekDay, and pmSchedTimeOfDay.  It
  is possible to specify multiple values for each schedule item.  This
  provides a mechanism for defining complex schedules.  For example, a
  schedule that is active the entire workday each weekday could be
  defined.

  Months, days, and weekdays are specified by using the objects
  pmSchedMonth, pmSchedDay, and pmSchedWeekDay of type BITS.  Setting
  multiple bits in these objects causes an OR operation.  For example,
  setting the bits monday(1) and friday(5) in pmSchedWeekDay restricts
  the schedule to Mondays and Fridays.





Waldbusser, et al.          Standards Track                    [Page 69]

RFC 4011              Policy Based Management MIB             March 2005


  The matched times for pmSchedTimePeriod, pmSchedMonth, pmSchedDay
  pmSchedWeekDay, and pmSchedTimeOfDay are ANDed together to determine
  the time periods when the schedule will be active; in other words,
  the schedule is only active for those times when ALL of these
  schedule attributes match.  For example, a schedule with an overall
  validity range of January 1, 2000, through December 31, 2000; a month
  mask that selects March and April; a day-of-the-week mask that
  selects Fridays; and a time-of-day range of 0800 through 1600 would
  represent the following time periods:

     Friday, March  5, 2000, from 0800 through 1600
     Friday, March 12, 2000, from 0800 through 1600
     Friday, March 19, 2000, from 0800 through 1600
     Friday, March 26, 2000, from 0800 through 1600
     Friday, April  2, 2000, from 0800 through 1600
     Friday, April  9, 2000, from 0800 through 1600
     Friday, April 16, 2000, from 0800 through 1600
     Friday, April 23, 2000, from 0800 through 1600
     Friday, April 30, 2000, from 0800 through 1600

  Wildcarding of schedule attributes of type BITS is achieved by
  setting all bits to one.

  It is possible to define schedules that will never cause a policy to
  be activated.  For example, one can define a schedule that should be
  active on February 31st.

11.  Definitions

POLICY-BASED-MANAGEMENT-MIB DEFINITIONS ::= BEGIN
IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
   Counter32, Gauge32, Unsigned32,
   mib-2                                       FROM SNMPv2-SMI
   RowStatus, RowPointer, TEXTUAL-CONVENTION,
   DateAndTime, StorageType                    FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP,
   NOTIFICATION-GROUP                          FROM SNMPv2-CONF
   SnmpAdminString                             FROM SNMP-FRAMEWORK-MIB;

--  Policy-Based Management MIB

pmMib MODULE-IDENTITY
   LAST-UPDATED "200502070000Z"  -- February 7, 2005
   ORGANIZATION "IETF SNMP Configuration Working Group"
   CONTACT-INFO
       "




Waldbusser, et al.          Standards Track                    [Page 70]

RFC 4011              Policy Based Management MIB             March 2005


       Steve Waldbusser
       Phone: +1-650-948-6500
       Fax:   +1-650-745-0671
       Email: [email protected]

       Jon Saperia (WG Co-chair)
       JDS Consulting, Inc.
       84 Kettell Plain Road.
       Stow MA 01775
       USA
       Phone: +1-978-461-0249
       Fax:   +1-617-249-0874
       Email: [email protected]

       Thippanna Hongal
       Riverstone Networks, Inc.
       5200 Great America Parkway
       Santa Clara, CA, 95054
       USA

       Phone: +1-408-878-6562
       Fax:   +1-408-878-6501
       Email: [email protected]

       David Partain (WG Co-chair)
       Postal: Ericsson AB
               P.O. Box 1248
               SE-581 12 Linkoping
               Sweden
       Tel: +46 13 28 41 44
       E-mail: [email protected]

       Any questions or comments about this document can also be
       directed to the working group at [email protected]."
   DESCRIPTION
       "The MIB module for policy-based configuration of SNMP
       infrastructures.

       Copyright (C) The Internet Society (2005).  This version of
       this MIB module is part of RFC 4011; see the RFC itself for
       full legal notices."

   REVISION "200502070000Z"    -- February 7, 2005
   DESCRIPTION
       "The original version of this MIB, published as RFC4011."
   ::= { mib-2 124 }





Waldbusser, et al.          Standards Track                    [Page 71]

RFC 4011              Policy Based Management MIB             March 2005


PmUTF8String ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
       "An octet string containing information typically in
       human-readable form.

       To facilitate internationalization, this
       information is represented by using the ISO/IEC
       IS 10646-1 character set, encoded as an octet
       string using the UTF-8 transformation format
       described in RFC 3629.

       As additional code points are added by
       amendments to the 10646 standard from time
       to time, implementations must be prepared to
       encounter any code point from 0x00000000 to
       0x10FFFF.  Byte sequences that do not
       correspond to the valid UTF-8 encoding of a
       code point or that are outside this range are
       prohibited.

       The use of control codes should be avoided.

       When it is necessary to represent a newline,
       the control code sequence CR LF should be used.

       For code points not directly supported by user
       interface hardware or software, an alternative
       means of entry and display, such as hexadecimal,
       may be provided.

       For information encoded in 7-bit US-ASCII,
       the UTF-8 encoding is identical to the
       US-ASCII encoding.

       UTF-8 may require multiple bytes to represent a
       single character/code point; thus, the length
       of this object in octets may be different from
       the number of characters encoded.  Similarly,
       size constraints refer to the number of encoded
       octets, not the number of characters represented
       by an encoding.

       Note that when this TC is used for an object
       used or envisioned to be used as an index, then
       a SIZE restriction MUST be specified so that the
       number of sub-identifiers for any object instance
       does not exceed the limit of 128, as defined by



Waldbusser, et al.          Standards Track                    [Page 72]

RFC 4011              Policy Based Management MIB             March 2005


       RFC 3416.

       Note that the size of PmUTF8String object is
       measured in octets, not characters."
      SYNTAX       OCTET STRING (SIZE (0..65535))

-- The policy table

pmPolicyTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmPolicyEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The policy table.  A policy is a pairing of a
       policyCondition and a policyAction that is used to apply the
       action to a selected set of elements."
   ::= { pmMib 1 }

pmPolicyEntry OBJECT-TYPE
   SYNTAX      PmPolicyEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "An entry in the policy table representing one policy."
   INDEX { pmPolicyAdminGroup, pmPolicyIndex }
   ::= { pmPolicyTable 1 }

PmPolicyEntry ::= SEQUENCE {
   pmPolicyAdminGroup            PmUTF8String,
   pmPolicyIndex                 Unsigned32,
   pmPolicyPrecedenceGroup       PmUTF8String,
   pmPolicyPrecedence            Unsigned32,
   pmPolicySchedule              Unsigned32,
   pmPolicyElementTypeFilter     PmUTF8String,
   pmPolicyConditionScriptIndex  Unsigned32,
   pmPolicyActionScriptIndex     Unsigned32,
   pmPolicyParameters            OCTET STRING,
   pmPolicyConditionMaxLatency   Unsigned32,
   pmPolicyActionMaxLatency      Unsigned32,
   pmPolicyMaxIterations         Unsigned32,
   pmPolicyDescription           PmUTF8String,
   pmPolicyMatches               Gauge32,
   pmPolicyAbnormalTerminations  Gauge32,
   pmPolicyExecutionErrors       Counter32,
   pmPolicyDebugging             INTEGER,
   pmPolicyAdminStatus           INTEGER,
   pmPolicyStorageType           StorageType,
   pmPolicyRowStatus             RowStatus



Waldbusser, et al.          Standards Track                    [Page 73]

RFC 4011              Policy Based Management MIB             March 2005


}

pmPolicyAdminGroup OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE(0..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "An administratively assigned string that can be used to group
       policies for convenience, for readability, or to simplify
       configuration of access control.

       The value of this string does not affect policy processing in
       any way.  If grouping is not desired or necessary, this object
       may be set to a zero-length string."
   ::= { pmPolicyEntry 1 }

pmPolicyIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A unique index for this policy entry, unique among all
        policies regardless of administrative group."
   ::= { pmPolicyEntry 2 }

pmPolicyPrecedenceGroup OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..32))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "An administratively assigned string that is used to group
       policies.  For each element, only one policy in the same
       precedence group may be active on that element.  If multiple
       policies would be active on an element (because their
       conditions return non-zero), the execution environment will
       only allow the policy with the highest value of
       pmPolicyPrecedence to be active.

       All values of this object must have been successfully
       transformed by Stringprep RFC 3454.  Management stations
       must perform this translation and must only set this object to
       string values that have been transformed."
   ::= { pmPolicyEntry 3 }

pmPolicyPrecedence OBJECT-TYPE
   SYNTAX      Unsigned32 (0..65535)
   MAX-ACCESS  read-create
   STATUS      current



Waldbusser, et al.          Standards Track                    [Page 74]

RFC 4011              Policy Based Management MIB             March 2005


   DESCRIPTION
       "If, while checking to see which policy conditions match an
       element, 2 or more ready policies in the same precedence group
       match the same element, the pmPolicyPrecedence object provides
       the rule to arbitrate which single policy will be active on
       'this element'.  Of policies in the same precedence group, only
       the ready and matching policy with the highest precedence
       value (e.g., 2 is higher than 1) will have its policy action
       periodically executed on 'this element'.

       When a policy is active on an element but the condition ceases
       to match the element, its action (if currently running) will
       be allowed to finish and then the condition-matching ready
       policy with the next-highest precedence will immediately
       become active (and have its action run immediately).  If the
       condition of a higher-precedence ready policy suddenly begins
       matching an element, the previously-active policy's action (if
       currently running) will be allowed to finish and then the
       higher precedence policy will immediately become active.  Its
       action will run immediately, and any lower-precedence matching
       policy will not be active anymore.

       In the case where multiple ready policies share the highest
       value, it is an implementation-dependent matter as to which
       single policy action will be chosen.

       Note that if it is necessary to take certain actions after a
       policy is no longer active on an element, these actions should
       be included in a lower-precedence policy that is in the same
       precedence group."
   ::= { pmPolicyEntry 4 }

pmPolicySchedule OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "This policy will be ready if any of the associated schedule
        entries are active.

        If the value of this object is 0, this policy is always
        ready.

        If the value of this object is non-zero but doesn't
        refer to a schedule group that includes an active schedule,
        then the policy will not be ready, even if this is due to a
        misconfiguration of this object or the pmSchedTable."
   ::= { pmPolicyEntry 5 }



Waldbusser, et al.          Standards Track                    [Page 75]

RFC 4011              Policy Based Management MIB             March 2005


pmPolicyElementTypeFilter OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..128))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object specifies the element types for which this policy
       can be executed.

       The format of this object will be a sequence of
       pmElementTypeRegOIDPrefix values, encoded in the following
       BNF form:

       elementTypeFilter:   oid [ ';' oid ]*
                     oid:   subid [ '.' subid ]*
                   subid:   '0' | decimal_constant

       For example, to register for the policy to be run on all
       interface elements, the 'ifEntry' element type will be
       registered as '1.3.6.1.2.1.2.2.1'.

       If a value is included that does not represent a registered
       pmElementTypeRegOIDPrefix, then that value will be ignored."
   ::= { pmPolicyEntry 6 }

pmPolicyConditionScriptIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "A pointer to the row or rows in the pmPolicyCodeTable that
        contain the condition code for this policy.  When a policy
        entry is created, a pmPolicyCodeIndex value unused by this
        policy's adminGroup will be assigned to this object.

        A policy condition is one or more PolicyScript statements
        that result(s) in a boolean value that represents whether
        an element is a member of a set of elements upon which an
        action is to be performed.  If a policy is ready and the
        condition returns true for an element of a proper element
        type, and if no higher-precedence policy should be active,
        then the policy is active on that element.

        Condition evaluation stops immediately when any run-time
        exception is detected, and the policyAction is not executed.

        The policyCondition is evaluated for various elements.  Any
        element for which the policyCondition returns any nonzero value
        will match the condition and will have the associated



Waldbusser, et al.          Standards Track                    [Page 76]

RFC 4011              Policy Based Management MIB             March 2005


        policyAction executed on that element unless a
        higher-precedence policy in the same precedence group also
        matches 'this element'.

        If the condition object is empty (contains no code) or
        otherwise does not return a value, the element will not be
        matched.

        When this condition is executed, if SNMP requests are made to
        the local system and secModel/secName/secLevel aren't
        specified, access to objects is under the security
        credentials of the requester who most recently modified the
        associated pmPolicyAdminStatus object.  If SNMP requests are
        made in which secModel/secName/secLevel are specified, then
        the specified credentials are retrieved from the local
        configuration datastore only if VACM is configured to
        allow access to the requester who most recently modified the
        associated pmPolicyAdminStatus object.  See the Security
        Considerations section for more information."
   ::= { pmPolicyEntry 7 }

pmPolicyActionScriptIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "A pointer to the row or rows in the pmPolicyCodeTable that
        contain the action code for this policy.  When a policy entry
        is created, a pmPolicyCodeIndex value unused by this policy's
        adminGroup will be assigned to this object.

        A PolicyAction is an operation performed on a
        set of elements for which the policy is active.

        Action evaluation stops immediately when any run-time
        exception is detected.

        When this condition is executed, if SNMP requests are made to
        the local system and secModel/secName/secLevel aren't
        specified, access to objects is under the security
        credentials of the requester who most recently modified the
        associated pmPolicyAdminStatus object.  If SNMP requests are
        made in which secModel/secName/secLevel are specified, then
        the specified credentials are retrieved from the local
        configuration datastore only if VACM is configured to
        allow access to the requester who most recently modified the
        associated pmPolicyAdminStatus object.  See the Security
        Considerations section for more information."



Waldbusser, et al.          Standards Track                    [Page 77]

RFC 4011              Policy Based Management MIB             March 2005


   ::= { pmPolicyEntry 8 }

pmPolicyParameters OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE (0..65535))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "From time to time, policy scripts may seek one or more
       parameters (e.g., site-specific constants).  These parameters
       may be installed with the script in this object and are
       accessible to the script via the getParameters() function.  If
       it is necessary for multiple parameters to be passed to the
       script, the script can choose whatever encoding/delimiting
       mechanism is most appropriate."
   ::= { pmPolicyEntry 9 }

pmPolicyConditionMaxLatency OBJECT-TYPE
   SYNTAX      Unsigned32 (0..2147483647)
   UNITS       "milliseconds"
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Every element under the control of this agent is
       re-checked periodically to see whether it is under control
       of this policy by re-running the condition for this policy.
       This object lets the manager control the maximum amount of
       time that may pass before an element is re-checked.

       In other words, in any given interval of this duration, all
       elements must be re-checked.  Note that how the policy agent
       schedules the checking of various elements within this
       interval is an implementation-dependent matter.
       Implementations may wish to re-run a condition more
       quickly if they note a change to the role strings for an
       element."
   ::= { pmPolicyEntry 10 }

pmPolicyActionMaxLatency OBJECT-TYPE
   SYNTAX      Unsigned32 (0..2147483647)
   UNITS       "milliseconds"
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Every element that matches this policy's condition and is
       therefore under control of this policy will have this policy's
       action executed periodically to ensure that the element
       remains in the state dictated by the policy.
       This object lets the manager control the maximum amount of



Waldbusser, et al.          Standards Track                    [Page 78]

RFC 4011              Policy Based Management MIB             March 2005


       time that may pass before an element has the action run on
       it.

       In other words, in any given interval of this duration, all
       elements under control of this policy must have the action run
       on them.  Note that how the policy agent schedules the policy
       action on various elements within this interval is an
       implementation-dependent matter."
   ::= { pmPolicyEntry 11 }

pmPolicyMaxIterations OBJECT-TYPE
   SYNTAX      Unsigned32
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "If a condition or action script iterates in loops too many
       times in one invocation, the execution environment may
       consider it in an infinite loop or otherwise not acting
       as intended and may be terminated by the execution
       environment.  The execution environment will count the
       cumulative number of times all 'for' or 'while' loops iterated
       and will apply a threshold to determine when to terminate the
       script.  What threshold the execution environment uses is an
       implementation-dependent manner, but the value of
       this object SHOULD be the basis for choosing the threshold for
       each script.  The value of this object represents a
       policy-specific threshold and can be tuned for policies of
       varying workloads.  If this value is zero, no
       threshold will be enforced except for any
       implementation-dependent maximum.  Regardless of this value,
       the agent is allowed to terminate any script invocation that
       exceeds a local CPU or memory limitation.

       Note that the condition and action invocations are tracked
       separately."
   ::= { pmPolicyEntry 12 }

pmPolicyDescription OBJECT-TYPE
   SYNTAX      PmUTF8String
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "A description of this rule and its significance, typically
        provided by a human."
   ::= { pmPolicyEntry 13 }

pmPolicyMatches OBJECT-TYPE
   SYNTAX      Gauge32



Waldbusser, et al.          Standards Track                    [Page 79]

RFC 4011              Policy Based Management MIB             March 2005


   UNITS       "elements"
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "The number of elements that, in their most recent execution
        of the associated condition, were matched by the condition."
   ::= { pmPolicyEntry 14 }

pmPolicyAbnormalTerminations OBJECT-TYPE
   SYNTAX      Gauge32
   UNITS       "elements"
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "The number of elements that, in their most recent execution
        of the associated condition or action, have experienced a
        run-time exception and terminated abnormally.  Note that if a
        policy was experiencing a run-time exception while processing
        a particular element but runs normally on a subsequent
        invocation, this number can decline."
   ::= { pmPolicyEntry 15 }

pmPolicyExecutionErrors OBJECT-TYPE
   SYNTAX      Counter32
   UNITS       "errors"
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "The total number of times that execution of this policy's
        condition or action has been terminated due to run-time
        exceptions."
   ::= { pmPolicyEntry 16 }

pmPolicyDebugging OBJECT-TYPE
   SYNTAX      INTEGER {
                   off(1),
                   on(2)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The status of debugging for this policy.  If this is turned
        on(2), log entries will be created in the pmDebuggingTable
        for each run-time exception that is experienced by this
        policy."
   DEFVAL { off }
   ::= { pmPolicyEntry 17 }




Waldbusser, et al.          Standards Track                    [Page 80]

RFC 4011              Policy Based Management MIB             March 2005


pmPolicyAdminStatus OBJECT-TYPE
   SYNTAX      INTEGER {
                   disabled(1),
                   enabled(2),
                   enabledAutoRemove(3)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The administrative status of this policy.

        The policy will be valid only if the associated
        pmPolicyRowStatus is set to active(1) and this object is set
        to enabled(2) or enabledAutoRemove(3).

        If this object is set to enabledAutoRemove(3), the next time
        the associated schedule moves from the active state to the
        inactive state, this policy will immediately be deleted,
        including any associated entries in the pmPolicyCodeTable.

        The following related objects may not be changed unless this
        object is set to disabled(1):
            pmPolicyPrecedenceGroup, pmPolicyPrecedence,
            pmPolicySchedule, pmPolicyElementTypeFilter,
            pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
            pmPolicyParameters, and any pmPolicyCodeTable row
            referenced by this policy.
        In order to change any of these parameters, the policy must
        be moved to the disabled(1) state, changed, and then
        re-enabled.

        When this policy moves to either enabled state from the
        disabled state, any cached values of policy condition must be
        erased, and any Policy or PolicyElement scratchpad values for
        this policy should be removed.  Policy execution will begin by
        testing the policy condition on all appropriate elements."
   ::= { pmPolicyEntry 18 }

pmPolicyStorageType OBJECT-TYPE
   SYNTAX      StorageType
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object defines whether this policy and any associated
        entries in the pmPolicyCodeTable are kept in volatile storage
        and lost upon reboot or if this row is backed up by
        non-volatile or permanent storage.




Waldbusser, et al.          Standards Track                    [Page 81]

RFC 4011              Policy Based Management MIB             March 2005


        If the value of this object is 'permanent', the values for
        the associated pmPolicyAdminStatus object must remain
        writable."
   ::= { pmPolicyEntry 19 }

pmPolicyRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The row status of this pmPolicyEntry.

        The status may not be set to active if any of the related
        entries in the pmPolicyCode table do not have a status of
        active or if any of the objects in this row are not set to
        valid values.  Only the following objects may be modified
        while in the active state:
            pmPolicyParameters
            pmPolicyConditionMaxLatency
            pmPolicyActionMaxLatency
            pmPolicyDebugging
            pmPolicyAdminStatus

        If this row is deleted, any associated entries in the
        pmPolicyCodeTable will be deleted as well."
   ::= { pmPolicyEntry 20 }

-- Policy Code Table

pmPolicyCodeTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmPolicyCodeEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The pmPolicyCodeTable stores the code for policy conditions and
       actions.

       An example of the relationships between the code table and the
       policy table follows:

       pmPolicyTable
           AdminGroup  Index   ConditionScriptIndex  ActionScriptIndex
       A   ''          1       1                     2
       B   'oper'      1       1                     2
       C   'oper'      2       3                     4

       pmPolicyCodeTable
       AdminGroup  ScriptIndex  Segment    Note



Waldbusser, et al.          Standards Track                    [Page 82]

RFC 4011              Policy Based Management MIB             March 2005


       ''          1            1          Filter for policy A
       ''          2            1          Action for policy A
       'oper'      1            1          Filter for policy B
       'oper'      2            1          Action 1/2 for policy B
       'oper'      2            2          Action 2/2 for policy B
       'oper'      3            1          Filter for policy C
       'oper'      4            1          Action for policy C

       In this example, there are 3 policies: 1 in the '' adminGroup,
       and 2 in the 'oper' adminGroup.  Policy A has been assigned
       script indexes 1 and 2 (these script indexes are assigned out of
       a separate pool per adminGroup), with 1 code segment each for
       the filter and the action.  Policy B has been assigned script
       indexes 1 and 2 (out of the pool for the 'oper' adminGroup).
       While the filter has 1 segment, the action is longer and is
       loaded into 2 segments.  Finally, Policy C has been assigned
       script indexes 3 and 4, with 1 code segment each for the filter
       and the action."
   ::= { pmMib 2 }

pmPolicyCodeEntry OBJECT-TYPE
   SYNTAX      PmPolicyCodeEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "An entry in the policy code table representing one code
       segment.  Entries that share a common AdminGroup/ScriptIndex
       pair make up a single script.  Valid values of ScriptIndex are
       retrieved from pmPolicyConditionScriptIndex and
       pmPolicyActionScriptIndex after a pmPolicyEntry is
       created.  Segments of code can then be written to this table
       with the learned ScriptIndex values.

       The StorageType of this entry is determined by the value of
       the associated pmPolicyStorageType.

       The pmPolicyAdminGroup element of the index represents the
       administrative group of the policy of which this code entry is
       a part."
   INDEX { pmPolicyAdminGroup, pmPolicyCodeScriptIndex,
           pmPolicyCodeSegment }
   ::= { pmPolicyCodeTable 1 }

PmPolicyCodeEntry ::= SEQUENCE {
   pmPolicyCodeScriptIndex    Unsigned32,
   pmPolicyCodeSegment        Unsigned32,
   pmPolicyCodeText           PmUTF8String,
   pmPolicyCodeStatus         RowStatus



Waldbusser, et al.          Standards Track                    [Page 83]

RFC 4011              Policy Based Management MIB             March 2005


}

pmPolicyCodeScriptIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A unique index for each policy condition or action.  The code
        for each such condition or action may be composed of multiple
        entries in this table if the code cannot fit in one entry.
        Values of pmPolicyCodeScriptIndex may not be used unless
        they have previously been assigned in the
        pmPolicyConditionScriptIndex or pmPolicyActionScriptIndex
        objects."
   ::= { pmPolicyCodeEntry 1 }

pmPolicyCodeSegment OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A unique index for each segment of a policy condition or
        action.

        When a policy condition or action spans multiple entries in
        this table, the code of that policy starts from the
        lowest-numbered segment and continues with increasing segment
        values until it ends with the highest-numbered segment."
   ::= { pmPolicyCodeEntry 2 }

pmPolicyCodeText OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (1..1024))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "A segment of policy code (condition or action).  Lengthy
        Policy conditions or actions may be stored in multiple
        segments in this table that share the same value of
        pmPolicyCodeScriptIndex.  When multiple segments are used, it
        is recommended that each segment be as large as is practical.

        Entries in this table are associated with policies by values
        of the pmPolicyConditionScriptIndex and
        pmPolicyActionScriptIndex objects.  If the status of the
        related policy is active, then this object may not be
        modified."
   ::= { pmPolicyCodeEntry 3 }




Waldbusser, et al.          Standards Track                    [Page 84]

RFC 4011              Policy Based Management MIB             March 2005


pmPolicyCodeStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The status of this code entry.

        Entries in this table are associated with policies by values
        of the pmPolicyConditionScriptIndex and
        pmPolicyActionScriptIndex objects.  If the status of the
        related policy is active, then this object can not be
        modified (i.e., deleted or set to notInService), nor may new
        entries be created.

        If the status of this object is active, no objects in this
        row may be modified."
   ::= { pmPolicyCodeEntry 4 }

-- Element Type Registration Table

pmElementTypeRegTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmElementTypeRegEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A registration table for element types managed by this
       system.

       The Element Type Registration table allows the manager to
       learn what element types are being managed by the system and
       to register new types, if necessary.  An element type is
       registered by providing the OID of an SNMP object (i.e.,
       without the instance).  Each SNMP instance that exists under
       that object is a distinct element.  The index of the element is
       the index part of the discovered OID.  This index will be
       supplied to policy conditions and actions so that this code
       can inspect and configure the element.

       For example, this table might contain the following entries.
       The first three are agent-installed, and the 4th was
       downloaded by a management station:

 OIDPrefix        MaxLatency  Description               StorageType
 ifEntry          100 mS      interfaces - builtin      readOnly
 0.0              100 mS      system element - builtin  readOnly
 frCircuitEntry   100 mS      FR Circuits - builtin     readOnly
 hrSWRunEntry     60 sec      Running Processes         volatile




Waldbusser, et al.          Standards Track                    [Page 85]

RFC 4011              Policy Based Management MIB             March 2005


       Note that agents may automatically configure elements in this
       table for frequently used element types (interfaces, circuits,
       etc.).  In particular, it may configure elements for whom
       discovery is optimized in one or both of the following ways:

       1. The agent may discover elements by scanning internal data
          structures as opposed to issuing local SNMP requests.  It is
          possible to recreate the exact semantics described in this
          table even if local SNMP requests are not issued.

       2. The agent may receive asynchronous notification of new
          elements (for example, 'card inserted') and use that
          information to instantly create elements rather than
          through polling.  A similar feature might be available for
          the deletion of elements.

       Note that the disposition of agent-installed entries is
       described by the pmPolicyStorageType object."
   ::= { pmMib 3 }

pmElementTypeRegEntry OBJECT-TYPE
   SYNTAX      PmElementTypeRegEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A registration of an element type.

       Note that some values of this table's index may result in an
       instance name that exceeds a length of 128 sub-identifiers,
       which exceeds the maximum for the SNMP protocol.
       Implementations should take care to avoid such values."
   INDEX       { pmElementTypeRegOIDPrefix }
   ::= { pmElementTypeRegTable 1 }

PmElementTypeRegEntry ::= SEQUENCE {
   pmElementTypeRegOIDPrefix     OBJECT IDENTIFIER,
   pmElementTypeRegMaxLatency    Unsigned32,
   pmElementTypeRegDescription   PmUTF8String,
   pmElementTypeRegStorageType   StorageType,
   pmElementTypeRegRowStatus     RowStatus
}

pmElementTypeRegOIDPrefix OBJECT-TYPE
   SYNTAX      OBJECT IDENTIFIER
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "This OBJECT IDENTIFIER value identifies a table in which all



Waldbusser, et al.          Standards Track                    [Page 86]

RFC 4011              Policy Based Management MIB             March 2005


       elements of this type will be found.  Every row in the
       referenced table will be treated as an element for the
       period of time that it remains in the table.  The agent will
       then execute policy conditions and actions as appropriate on
       each of these elements.

       This object identifier value is specified down to the 'entry'
       component (e.g., ifEntry) of the identifier.

       The index of each discovered row will be passed to each
       invocation of the policy condition and policy action.

       The actual mechanism by which instances are discovered is
       implementation dependent.  Periodic walks of the table to
       discover the rows in the table is one such mechanism.  This
       mechanism has the advantage that it can be performed by an
       agent with no knowledge of the names, syntax, or semantics
       of the MIB objects in the table.  This mechanism also serves as
       the reference design.  Other implementation-dependent
       mechanisms may be implemented that are more efficient (perhaps
       because they are hard coded) or that don't require polling.
       These mechanisms must discover the same elements as would the
       table-walking reference design.

       This object can contain a OBJECT IDENTIFIER, '0.0'.
       '0.0' represents the single instance of the system
       itself and provides an execution context for policies to
       operate on the 'system element' and on MIB objects
       modeled as scalars.  For example, '0.0' gives an execution
       context for policy-based selection of the operating system
       code version (likely modeled as a scalar MIB object).  The
       element type '0.0' always exists; as a consequence, no actual
       discovery will take place, and the pmElementTypeRegMaxLatency
       object will have no effect for the '0.0' element
       type.  However, if the '0.0' element type is not registered in
       the table, policies will not be executed on the '0.0' element.

       When a policy is invoked on behalf of a '0.0' entry in this
       table, the element name will be '0.0', and there is no index
       of 'this element' (in other words, it has zero length).

       As this object is used in the index for the
       pmElementTypeRegTable, users of this table should be careful
       not to create entries that would result in instance names with
       more than 128 sub-identifiers."
   ::= { pmElementTypeRegEntry 2 }





Waldbusser, et al.          Standards Track                    [Page 87]

RFC 4011              Policy Based Management MIB             March 2005


pmElementTypeRegMaxLatency OBJECT-TYPE
   SYNTAX      Unsigned32
   UNITS       "milliseconds"
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The PM agent is responsible for discovering new elements of
       types that are registered.  This object lets the manager
       control the maximum amount of time that may pass between the
       time an element is created and when it is discovered.

       In other words, in any given interval of this duration, all
       new elements must be discovered.  Note that how the policy
       agent schedules the checking of various elements within this
       interval is an implementation-dependent matter."
   ::= { pmElementTypeRegEntry 3 }

pmElementTypeRegDescription OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..64))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "A descriptive label for this registered type."
   ::= { pmElementTypeRegEntry 4 }

pmElementTypeRegStorageType OBJECT-TYPE
   SYNTAX      StorageType
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object defines whether this row is kept
        in volatile storage and lost upon reboot or
        backed up by non-volatile or permanent storage.

        If the value of this object is 'permanent', no values in the
        associated row have to be writable."
   ::= { pmElementTypeRegEntry 5 }

pmElementTypeRegRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The status of this registration entry.

       If the value of this object is active, no objects in this row
       may be modified."
   ::= { pmElementTypeRegEntry 6 }



Waldbusser, et al.          Standards Track                    [Page 88]

RFC 4011              Policy Based Management MIB             March 2005


-- Role Table

pmRoleTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmRoleEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The pmRoleTable is a read-create table that organizes role
       strings sorted by element.  This table is used to create and
       modify role strings and their associations, as well as to allow
       a management station to learn about the existence of roles and
       their associations.

       It is the responsibility of the agent to keep track of any
       re-indexing of the underlying SNMP elements and to continue to
       associate role strings with the element with which they were
       initially configured.

       Policy MIB agents that have elements in multiple local SNMP
       contexts have to allow some roles to be assigned to elements
       in particular contexts.  This is particularly true when some
       elements have the same names in different contexts and the
       context is required to disambiguate them.  In those situations,
       a value for the pmRoleContextName may be provided.  When a
       pmRoleContextName value is not provided, the assignment is to
       the element in the default context.

       Policy MIB agents that discover elements on other systems and
       execute policies on their behalf need to have access to role
       information for these remote elements.  In such situations,
       role assignments for other systems can be stored in this table
       by providing values for the pmRoleContextEngineID parameters.

   For example:
   Example:
   element       role    context ctxEngineID   #comment
   ifindex.1     gold                          local, default context
   ifindex.2     gold                          local, default context
   repeaterid.1  foo     rptr1                 local, rptr1 context
   repeaterid.1  bar     rptr2                 local, rptr2 context
   ifindex.1     gold    ''      A             different system
   ifindex.1     gold    ''      B             different system

        The agent must store role string associations in non-volatile
        storage."
   ::= { pmMib 4 }





Waldbusser, et al.          Standards Track                    [Page 89]

RFC 4011              Policy Based Management MIB             March 2005


pmRoleEntry OBJECT-TYPE
   SYNTAX      PmRoleEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A role string entry associates a role string with an
        individual element.

        Note that some combinations of index values may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP
        protocol.  Implementations should take care to avoid such
        combinations."
   INDEX       { pmRoleElement, pmRoleContextName,
                 pmRoleContextEngineID, pmRoleString }
   ::= { pmRoleTable 1 }

PmRoleEntry ::= SEQUENCE {
   pmRoleElement          RowPointer,
   pmRoleContextName      SnmpAdminString,
   pmRoleContextEngineID  OCTET STRING,
   pmRoleString           PmUTF8String,
   pmRoleStatus           RowStatus
}

pmRoleElement OBJECT-TYPE
   SYNTAX      RowPointer
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The element with which this role string is associated.

        For example, if the element is interface 3, then this object
        will contain the OID for 'ifIndex.3'.

        If the agent assigns new indexes in the MIB table to
        represent the same underlying element (re-indexing), the
        agent will modify this value to contain the new index for the
        underlying element.

        As this object is used in the index for the pmRoleTable,
        users of this table should be careful not to create entries
        that would result in instance names with more than 128
        sub-identifiers."
   ::= { pmRoleEntry 1 }






Waldbusser, et al.          Standards Track                    [Page 90]

RFC 4011              Policy Based Management MIB             March 2005


pmRoleContextName OBJECT-TYPE
   SYNTAX      SnmpAdminString (SIZE (0..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is not in the default SNMP context
       for the target system, this object is used to identify the
       context.  If the element is in the default context, this object
       is equal to the empty string."
   ::= { pmRoleEntry 2 }

pmRoleContextEngineID OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE (0 | 5..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is on a remote system, this object
       is used to identify the remote system.  This object contains
       the contextEngineID of the system for which this role string
       assignment is valid.  If the element is on the local system
       this object will be the empty string."
   ::= { pmRoleEntry 3 }

pmRoleString OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..64))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The role string that is associated with an element through
        this table.  All role strings must have been successfully
        transformed by Stringprep RFC 3454.  Management stations
        must perform this translation and must only set this object
        to string values that have been transformed.

        A role string is an administratively specified characteristic
        of a managed element (for example, an interface).  It is a
        selector for policy rules, that determines the applicability of
        the rule to a particular managed element."
   ::= { pmRoleEntry 4 }

pmRoleStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The status of this role string.





Waldbusser, et al.          Standards Track                    [Page 91]

RFC 4011              Policy Based Management MIB             March 2005


        If the value of this object is active, no object in this row
        may be modified."
   ::= { pmRoleEntry 5 }

-- Capabilities table

pmCapabilitiesTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmCapabilitiesEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The pmCapabilitiesTable contains a description of
        the inherent capabilities of the system so that
        management stations can learn of an agent's capabilities and
        differentially install policies based on the capabilities.

        Capabilities are expressed at the system level.  There can be
        variation in how capabilities are realized from one vendor or
        model to the next.  Management systems should consider these
        differences before selecting which policy to install in a
        system."
   ::= { pmMib 5 }

pmCapabilitiesEntry OBJECT-TYPE
   SYNTAX      PmCapabilitiesEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A capabilities entry holds an OID indicating support for a
        particular capability.  Capabilities may include hardware and
        software functions and the implementation of MIB
        Modules.  The semantics of the OID are defined in the
        description of pmCapabilitiesType.

        Entries appear in this table if any element in the system has
        a specific capability.  A capability should appear in this
        table only once, regardless of the number of elements in the
        system with that capability.  An entry is removed from this
        table when the last element in the system that has the
        capability is removed.  In some cases, capabilities are
        dynamic and exist only in software.  This table should have an
        entry for the capability even if there are no current
        instances.  Examples include systems with database or WEB
        services.  While the system has the ability to create new
        databases or WEB services, the entry should exist.  In these
        cases, the ability to create these services could come from
        other processes that are running in the system, even though
        there are no currently open databases or WEB servers running.



Waldbusser, et al.          Standards Track                    [Page 92]

RFC 4011              Policy Based Management MIB             March 2005


        Capabilities may include the implementation of MIB Modules
        but need not be limited to those that represent MIB Modules
        with one or more configurable objects.  It may also be
        valuable to include entries for capabilities that do not
        include configuration objects, as that information, in
        combination with other entries in this table, might be used
        by the management software to determine whether to
        install a policy.

        Vendor software may also add entries in this table to express
        capabilities from their private branch.

        Note that some values of this table's index may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP
        protocol.  Implementations should take care to avoid such
        values."
   INDEX       { pmCapabilitiesType }
   ::= { pmCapabilitiesTable 1 }

PmCapabilitiesEntry ::= SEQUENCE {
   pmCapabilitiesType               OBJECT IDENTIFIER
}

pmCapabilitiesType OBJECT-TYPE
   SYNTAX      OBJECT IDENTIFIER
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "There are three types of OIDs that may be present in the
        pmCapabilitiesType object:

        1) The OID of a MODULE-COMPLIANCE macro that represents the
        highest level of compliance realized by the agent for that
        MIB Module.  For example, an agent that implements the OSPF
        MIB Module at the highest level of compliance would have the
        value of '1.3.6.1.2.1.14.15.2' in the pmCapabilitiesType
        object.  For software that realizes standard MIB
        Modules that do not have compliance statements, the base OID
        of the MIB Module should be used instead.  If the OSPF MIB
        Module had not been created with a compliance statement, then
        the correct value of the pmCapabilitiesType would be
        '1.3.6.1.2.1.14'.  In the cases where multiple compliance
        statements in a MIB Module are supported by the agent, and
        where one compliance statement does not by definition include
        the other, each of the compliance OIDs would have entries in
        this table.




Waldbusser, et al.          Standards Track                    [Page 93]

RFC 4011              Policy Based Management MIB             March 2005


        MIB Documents can contain more than one MIB Module.  In the
        case of OSPF, there is a second MIB Module
        that describes notifications for the OSPF Version 2 Protocol.
        If the agent also realizes these functions, an entry will
        also exist for those capabilities in this table.

        2) Vendors should install OIDs in this table that represent
        vendor-specific capabilities.  These capabilities can be
        expressed just as those described above for MIB Modules on
        the standards track.  In addition, vendors may install any
        OID they desire from their registered branch.  The OIDs may be
        at any level of granularity, from the root of their entire
        branch to an instance of a single OID.  There is no
        restriction on the number of registrations they may make,
        though care should be taken to avoid unnecessary entries.

        3) OIDs that represent one capability or a collection of
        capabilities that could be any collection of MIB Objects or
        hardware or software functions may be created in working
        groups and registered in a MIB Module.  Other entities (e.g.,
        vendors) may also make registrations.  Software will register
        these standard capability OIDs, as well as vendor specific
        OIDs.

        If the OID for a known capability is not present in the
        table, then it should be assumed that the capability is not
        implemented.

        As this object is used in the index for the
        pmCapabilitiesTable, users of this table should be careful
        not to create entries that would result in instance names
        with more than 128 sub-identifiers."
   ::= { pmCapabilitiesEntry 1 }

-- Capabilities override table

pmCapabilitiesOverrideTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmCapabilitiesOverrideEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The pmCapabilitiesOverrideTable allows management stations
        to override pmCapabilitiesTable entries that have been
        registered by the agent.  This facility can be used to avoid
        situations in which managers in the network send policies to
        a system that has advertised a capability in the
        pmCapabilitiesTable but that should not be installed on this
        particular system.  One example could be newly deployed



Waldbusser, et al.          Standards Track                    [Page 94]

RFC 4011              Policy Based Management MIB             March 2005


        equipment that is still in a trial state in a trial state or
        resources reserved for some other administrative reason.
        This table can also be used to override entries in the
        pmCapabilitiesTable through the use of the
        pmCapabilitiesOverrideState object.  Capabilities can also be
        declared available in this table that were not registered in
        the pmCapabilitiesTable.  A management application can make
        an entry in this table for any valid OID and declare the
        capability available by setting the
        pmCapabilitiesOverrideState for that row to valid(1)."
   ::= { pmMib 6 }

pmCapabilitiesOverrideEntry OBJECT-TYPE
   SYNTAX      PmCapabilitiesOverrideEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "An entry in this table indicates whether a particular
        capability is valid or invalid.

        Note that some values of this table's index may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP
        protocol.  Implementations should take care to avoid such
        values."
   INDEX       { pmCapabilitiesOverrideType }
   ::= { pmCapabilitiesOverrideTable 1 }

PmCapabilitiesOverrideEntry ::= SEQUENCE {
   pmCapabilitiesOverrideType               OBJECT IDENTIFIER,
   pmCapabilitiesOverrideState              INTEGER,
   pmCapabilitiesOverrideRowStatus          RowStatus
}

pmCapabilitiesOverrideType OBJECT-TYPE
   SYNTAX      OBJECT IDENTIFIER
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "This is the OID of the capability that is declared valid or
        invalid by the pmCapabilitiesOverrideState value for this
        row.  Any valid OID, as described in the pmCapabilitiesTable,
        is permitted in the pmCapabilitiesOverrideType object.  This
        means that capabilities can be expressed at any level, from a
        specific instance of an object to a table or entire module.
        There are no restrictions on whether these objects are from
        standards track MIB documents or in the private branch of the
        MIB.



Waldbusser, et al.          Standards Track                    [Page 95]

RFC 4011              Policy Based Management MIB             March 2005


        If an entry exists in this table for which there is a
        corresponding entry in the pmCapabilitiesTable, then this entry
        shall have precedence over the entry in the
        pmCapabilitiesTable.  All entries in this table must be
        preserved across reboots.

        As this object is used in the index for the
        pmCapabilitiesOverrideTable, users of this table should be
        careful not to create entries that would result in instance
        names with more than 128 sub-identifiers."
   ::= { pmCapabilitiesOverrideEntry 1 }

pmCapabilitiesOverrideState OBJECT-TYPE
   SYNTAX      INTEGER {
                   invalid(1),
                   valid(2)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "A pmCapabilitiesOverrideState of invalid indicates that
        management software should not send policies to this system
        for the capability identified in the
        pmCapabilitiesOverrideType for this row of the table.  This
        behavior is the same whether the capability represented by
        the pmCapabilitiesOverrideType exists only in this table
        (that is, it was installed by an external management
        application) or exists in this table as well as the
        pmCapabilitiesTable.  This would be the case when a manager
        wanted to disable a capability that the native management
        system found and registered in the pmCapabilitiesTable.

        An entry in this table that has a pmCapabilitiesOverrideState
        of valid should be treated as though it appeared in the
        pmCapabilitiesTable.  If the entry also exists in the
        pmCapabilitiesTable in the pmCapabilitiesType object, and if
        the value of this object is valid, then the system shall
        operate as though this entry did not exist and policy
        installations and executions will continue in a normal
        fashion."
   ::= { pmCapabilitiesOverrideEntry 2 }

pmCapabilitiesOverrideRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
        "The row status of this pmCapabilitiesOverrideEntry.



Waldbusser, et al.          Standards Track                    [Page 96]

RFC 4011              Policy Based Management MIB             March 2005


        If the value of this object is active, no object in this row
        may be modified."
   ::= { pmCapabilitiesOverrideEntry 3 }

-- The Schedule Group

pmSchedLocalTime OBJECT-TYPE
   SYNTAX      DateAndTime (SIZE (11))
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "The local time used by the scheduler.  Schedules that
        refer to calendar time will use the local time indicated
        by this object.  An implementation MUST return all 11 bytes
        of the DateAndTime textual-convention so that a manager
        may retrieve the offset from GMT time."
   ::= { pmMib 7 }

--
-- The schedule table that controls the scheduler.
--

pmSchedTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmSchedEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "This table defines schedules for policies."
   ::= { pmMib 8 }

pmSchedEntry OBJECT-TYPE
   SYNTAX      PmSchedEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "An entry describing a particular schedule.

       Unless noted otherwise, writable objects of this row can be
       modified independently of the current value of pmSchedRowStatus,
       pmSchedAdminStatus and pmSchedOperStatus.  In particular, it
       is legal to modify pmSchedWeekDay, pmSchedMonth, and
       pmSchedDay when pmSchedRowStatus is active."
   INDEX { pmSchedIndex }
   ::= { pmSchedTable 1 }







Waldbusser, et al.          Standards Track                    [Page 97]

RFC 4011              Policy Based Management MIB             March 2005


PmSchedEntry ::= SEQUENCE {
   pmSchedIndex          Unsigned32,
   pmSchedGroupIndex     Unsigned32,
   pmSchedDescr          PmUTF8String,
   pmSchedTimePeriod     PmUTF8String,
   pmSchedMonth          BITS,
   pmSchedDay            BITS,
   pmSchedWeekDay        BITS,
   pmSchedTimeOfDay      PmUTF8String,
   pmSchedLocalOrUtc     INTEGER,
   pmSchedStorageType    StorageType,
   pmSchedRowStatus      RowStatus
}

pmSchedIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The locally unique, administratively assigned index for this
       scheduling entry."
   ::= { pmSchedEntry 1 }

pmSchedGroupIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The locally unique, administratively assigned index for the
       schedule group this scheduling entry belongs to.

       To assign multiple schedule entries to the same group, the
       pmSchedGroupIndex of each entry in the group will be set to
       the same value.  This pmSchedGroupIndex value must be equal to
       the pmSchedIndex of one of the entries in the group.  If the
       entry whose pmSchedIndex equals the pmSchedGroupIndex
       for the group is deleted, the agent will assign a new
       pmSchedGroupIndex to all remaining members of the group.

       If an entry is not a member of a group, its pmSchedGroupIndex
       must be assigned to the value of its pmSchedIndex.

       Policies that are controlled by a group of schedule entries
       are active when any schedule in the group is active."
   ::= { pmSchedEntry 2 }






Waldbusser, et al.          Standards Track                    [Page 98]

RFC 4011              Policy Based Management MIB             March 2005


pmSchedDescr OBJECT-TYPE
   SYNTAX      PmUTF8String
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The human-readable description of the purpose of this
       scheduling entry."
   DEFVAL { ''H }
   ::= { pmSchedEntry 3 }

pmSchedTimePeriod OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..31))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The overall range of calendar dates and times over which this
       schedule is active.  It is stored in a slightly extended version
       of the format for a 'period-explicit' defined in RFC 2445.
       This format is expressed as a string representing the
       starting date and time, in which the character 'T' indicates
       the beginning of the time portion, followed by the solidus
       character, '/', followed by a similar string representing an
       end date and time.  The start of the period MUST be before the
       end of the period.  Date-Time values are expressed as
       substrings of the form 'yyyymmddThhmmss'.  For example:

           20000101T080000/20000131T130000

             January 1, 2000, 0800 through January 31, 2000, 1PM

       The 'Date with UTC time' format defined in RFC 2445 in which
       the Date-Time string ends with the character 'Z' is not
       allowed.

       This 'period-explicit' format is also extended to allow two
       special cases in which one of the Date-Time strings is
       replaced with a special string defined in RFC 2445:

       1. If the first Date-Time value is replaced with the string
          'THISANDPRIOR', then the value indicates that the schedule
          is active at any time prior to the Date-Time that appears
          after the '/'.

       2. If the second Date-Time is replaced with the string
          'THISANDFUTURE', then the value indicates that the schedule
          is active at any time after the Date-Time that appears
          before the '/'.




Waldbusser, et al.          Standards Track                    [Page 99]

RFC 4011              Policy Based Management MIB             March 2005


       Note that although RFC 2445 defines these two strings, they are
       not specified for use in the 'period-explicit' format.  The use
       of these strings represents an extension to the
       'period-explicit' format."
   ::= { pmSchedEntry 4 }

pmSchedMonth OBJECT-TYPE
   SYNTAX      BITS {
                   january(0),
                   february(1),
                   march(2),
                   april(3),
                   may(4),
                   june(5),
                   july(6),
                   august(7),
                   september(8),
                   october(9),
                   november(10),
                   december(11)
               }

   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Within the overall time period specified in the
       pmSchedTimePeriod object, the value of this object specifies
       the specific months within that time period when the schedule
       is active.  Setting all bits will cause the schedule to act
       independently of the month."
   DEFVAL { { january, february, march, april, may, june, july,
              august, september, october, november, december } }
   ::= { pmSchedEntry 5 }

pmSchedDay OBJECT-TYPE
   SYNTAX      BITS {
                   d1(0),   d2(1),   d3(2),   d4(3),   d5(4),
                   d6(5),   d7(6),   d8(7),   d9(8),   d10(9),
                   d11(10), d12(11), d13(12), d14(13), d15(14),
                   d16(15), d17(16), d18(17), d19(18), d20(19),
                   d21(20), d22(21), d23(22), d24(23), d25(24),
                   d26(25), d27(26), d28(27), d29(28), d30(29),
                   d31(30),
                   r1(31),  r2(32),  r3(33),  r4(34),  r5(35),
                   r6(36),  r7(37),  r8(38),  r9(39),  r10(40),
                   r11(41), r12(42), r13(43), r14(44), r15(45),
                   r16(46), r17(47), r18(48), r19(49), r20(50),
                   r21(51), r22(52), r23(53), r24(54), r25(55),



Waldbusser, et al.          Standards Track                   [Page 100]

RFC 4011              Policy Based Management MIB             March 2005


                   r26(56), r27(57), r28(58), r29(59), r30(60),
                   r31(61)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Within the overall time period specified in the
       pmSchedTimePeriod object, the value of this object specifies
       the specific days of the month within that time period when
       the schedule is active.

       There are two sets of bits one can use to define the day
       within a month:

       Enumerations starting with the letter 'd' indicate a
       day in a month relative to the first day of a month.
       The first day of the month can therefore be specified
       by setting the bit d1(0), and d31(30) means the last
       day of a month with 31 days.

       Enumerations starting with the letter 'r' indicate a
       day in a month in reverse order, relative to the last
       day of a month.  The last day in the month can therefore
       be specified by setting the bit r1(31), and r31(61) means
       the first day of a month with 31 days.

       Setting multiple bits will include several days in the set
       of possible days for this schedule.  Setting all bits starting
       with the letter 'd' or all bits starting with the letter 'r'
       will cause the schedule to act independently of the day of the
       month."
   DEFVAL { {  d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
               d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
               d21, d22, d23, d24, d25, d26, d27, d28, d29, d30,
               d31, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10,
               r11, r12, r13, r14, r15, r16, r17, r18, r19, r20,
               r21, r22, r23, r24, r25, r26, r27, r28, r29, r30,
               r31 } }
   ::= { pmSchedEntry 6 }

pmSchedWeekDay OBJECT-TYPE
   SYNTAX      BITS {
                   sunday(0),
                   monday(1),
                   tuesday(2),
                   wednesday(3),
                   thursday(4),
                   friday(5),



Waldbusser, et al.          Standards Track                   [Page 101]

RFC 4011              Policy Based Management MIB             March 2005


                   saturday(6)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Within the overall time period specified in the
       pmSchedTimePeriod object, the value of this object specifies
       the specific days of the week within that time period when
       the schedule is active.  Setting all bits will cause the
       schedule to act independently of the day of the week."
   DEFVAL { { sunday, monday, tuesday, wednesday, thursday,
              friday, saturday } }
   ::= { pmSchedEntry 7 }

pmSchedTimeOfDay OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..15))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION

       "Within the overall time period specified in the
       pmSchedTimePeriod object, the value of this object specifies
       the range of times in a day when the schedule is active.

       This value is stored in a format based on the RFC 2445 format
       for 'time': The character 'T' followed by a 'time' string,
       followed by the solidus character, '/', followed by the
       character 'T', followed by a second time string.  The first time
       indicates the beginning of the range, and the second time
       indicates the end.  Thus, this value takes the following
       form:

           'Thhmmss/Thhmmss'.

       The second substring always identifies a later time than the
       first substring.  To allow for ranges that span midnight,
       however, the value of the second string may be smaller than
       the value of the first substring.  Thus, 'T080000/T210000'
       identifies the range from 0800 until 2100, whereas
       'T210000/T080000' identifies the range from 2100 until 0800 of
       the following day.

       When a range spans midnight, by definition it includes parts
       of two successive days.  When one of these days is also
       selected by either the MonthOfYearMask, DayOfMonthMask, and/or
       DayOfWeekMask, but the other day is not, then the policy is
       active only during the portion of the range that falls on the
       selected day.  For example, if the range extends from 2100



Waldbusser, et al.          Standards Track                   [Page 102]

RFC 4011              Policy Based Management MIB             March 2005


       until 0800, and the day of week mask selects Monday and
       Tuesday, then the policy is active during the following three
       intervals:

           From midnight Sunday until 0800 Monday
           From 2100 Monday until 0800 Tuesday
           From 2100 Tuesday until 23:59:59 Tuesday

        Setting this value to 'T000000/T235959' will cause the
        schedule to act independently of the time of day."
   DEFVAL { '543030303030302F54323335393539'H } -- T000000/T235959
   ::= { pmSchedEntry 8 }

pmSchedLocalOrUtc OBJECT-TYPE
   SYNTAX      INTEGER {
                   localTime(1),
                   utcTime(2)
               }
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object indicates whether the times represented in the
       TimePeriod object and in the various Mask objects represent
       local times or UTC times."
   DEFVAL { utcTime }
   ::= { pmSchedEntry 9 }

pmSchedStorageType OBJECT-TYPE
   SYNTAX      StorageType
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object defines whether this schedule entry is kept
        in volatile storage and lost upon reboot or
        backed up by non-volatile or permanent storage.

        Conceptual rows having the value 'permanent' must allow write
        access to the columnar objects pmSchedDescr, pmSchedWeekDay,
        pmSchedMonth, and pmSchedDay.

        If the value of this object is 'permanent', no values in the
        associated row have to be writable."
   DEFVAL { volatile }
   ::= { pmSchedEntry 10 }







Waldbusser, et al.          Standards Track                   [Page 103]

RFC 4011              Policy Based Management MIB             March 2005


pmSchedRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The status of this schedule entry.

        If the value of this object is active, no object in this row
        may be modified."
   ::= { pmSchedEntry 11 }

-- Policy Tracking

-- The "policy to element" (PE) table and the "element to policy" (EP)
-- table track the status of execution contexts grouped by policy and
-- element respectively.

pmTrackingPETable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmTrackingPEEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The pmTrackingPETable describes what elements
        are active (under control of) a policy.  This table is indexed
        in order to optimize retrieval of the entire status for a
        given policy."
   ::= { pmMib 9 }

pmTrackingPEEntry OBJECT-TYPE
   SYNTAX      PmTrackingPEEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "An entry in the pmTrackingPETable.  The pmPolicyIndex in
        the index specifies the policy tracked by this entry.

        Note that some combinations of index values may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP
        protocol.  Implementations should take care to avoid such
        combinations."
   INDEX       { pmPolicyIndex, pmTrackingPEElement,
                 pmTrackingPEContextName, pmTrackingPEContextEngineID }
   ::= { pmTrackingPETable 1 }







Waldbusser, et al.          Standards Track                   [Page 104]

RFC 4011              Policy Based Management MIB             March 2005


PmTrackingPEEntry ::= SEQUENCE {
   pmTrackingPEElement          RowPointer,
   pmTrackingPEContextName      SnmpAdminString,
   pmTrackingPEContextEngineID  OCTET STRING,
   pmTrackingPEInfo             BITS
}

pmTrackingPEElement OBJECT-TYPE
   SYNTAX      RowPointer
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The element that is acted upon by the associated policy.

        As this object is used in the index for the
        pmTrackingPETable, users of this table should be careful not
        to create entries that would result in instance names with
        more than 128 sub-identifiers."
   ::= { pmTrackingPEEntry 1 }

pmTrackingPEContextName OBJECT-TYPE
   SYNTAX      SnmpAdminString (SIZE (0..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is not in the default SNMP context
       for the target system, this object is used to identify the
       context.  If the element is in the default context, this object
       is equal to the empty string."
   ::= { pmTrackingPEEntry 2 }

pmTrackingPEContextEngineID OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE (0 | 5..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is on a remote system, this object
       is used to identify the remote system.  This object contains
       the contextEngineID of the system on which the associated
       element resides.  If the element is on the local system,
       this object will be the empty string."
   ::= { pmTrackingPEEntry 3 }

pmTrackingPEInfo OBJECT-TYPE
   SYNTAX      BITS {
                   actionSkippedDueToPrecedence(0),
                   conditionRunTimeException(1),
                   conditionUserSignal(2),



Waldbusser, et al.          Standards Track                   [Page 105]

RFC 4011              Policy Based Management MIB             March 2005


                   actionRunTimeException(3),
                   actionUserSignal(4)
               }
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "This object returns information about the previous policy
        script executions.

        If the actionSkippedDueToPrecedence(1) bit is set, the last
        execution of the associated policy condition returned non-zero,
        but the action is not active, because it was trumped by a
        matching policy condition in the same precedence group with a
        higher precedence value.

        If the conditionRunTimeException(2) bit is set, the last
        execution of the associated policy condition encountered a
        run-time exception and aborted.

        If the conditionUserSignal(3) bit is set, the last
        execution of the associated policy condition called the
        signalError() function.

        If the actionRunTimeException(4) bit is set, the last
        execution of the associated policy action encountered a
        run-time exception and aborted.

        If the actionUserSignal(5) bit is set, the last
        execution of the associated policy action called the
        signalError() function.

        Entries will only exist in this table of one or more bits are
        set.  In particular, if an entry does not exist for a
        particular policy/element combination, it can be assumed that
        the policy's condition did not match 'this element'."
   ::= { pmTrackingPEEntry 4 }

-- Element to Policy Table

pmTrackingEPTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmTrackingEPEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The pmTrackingEPTable describes what policies
        are controlling an element.  This table is indexed in
        order to optimize retrieval of the status of all policies
        active for a given element."



Waldbusser, et al.          Standards Track                   [Page 106]

RFC 4011              Policy Based Management MIB             March 2005


   ::= { pmMib 10 }

pmTrackingEPEntry OBJECT-TYPE
   SYNTAX      PmTrackingEPEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "An entry in the pmTrackingEPTable.  Entries exist for all
        element/policy combinations for which the policy's condition
        matches and only if the schedule for the policy is active.

        The pmPolicyIndex in the index specifies the policy
        tracked by this entry.

        Note that some combinations of index values may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP protocol.
        Implementations should take care to avoid such combinations."
   INDEX       { pmTrackingEPElement, pmTrackingEPContextName,
                 pmTrackingEPContextEngineID, pmPolicyIndex }
   ::= { pmTrackingEPTable 1 }

PmTrackingEPEntry ::= SEQUENCE {
   pmTrackingEPElement          RowPointer,
   pmTrackingEPContextName      SnmpAdminString,
   pmTrackingEPContextEngineID  OCTET STRING,
   pmTrackingEPStatus           INTEGER
}

pmTrackingEPElement OBJECT-TYPE
   SYNTAX      RowPointer
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The element acted upon by the associated policy.

        As this object is used in the index for the
        pmTrackingEPTable, users of this table should be careful
        not to create entries that would result in instance names
        with more than 128 sub-identifiers."
   ::= { pmTrackingEPEntry 1 }

pmTrackingEPContextName OBJECT-TYPE
   SYNTAX      SnmpAdminString (SIZE (0..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is not in the default SNMP context



Waldbusser, et al.          Standards Track                   [Page 107]

RFC 4011              Policy Based Management MIB             March 2005


       for the target system, this object is used to identify the
       context.  If the element is in the default context, this object
       is equal to the empty string."
   ::= { pmTrackingEPEntry 2 }

pmTrackingEPContextEngineID OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE (0 | 5..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is on a remote system, this object
       is used to identify the remote system.  This object contains
       the contextEngineID of the system on which the associated
       element resides.  If the element is on the local system,
       this object will be the empty string."
   ::= { pmTrackingEPEntry 3 }

pmTrackingEPStatus OBJECT-TYPE
   SYNTAX      INTEGER {
                   on(1),
                   forceOff(2)
               }
   MAX-ACCESS  read-write
   STATUS      current
   DESCRIPTION
        "This entry will only exist if the calendar for the policy is
        active and if the associated policyCondition returned 1 for
        'this element'.

        A policy can be forcibly disabled on a particular element
        by setting this value to forceOff(2).  The agent should then
        act as though the policyCondition failed for 'this element'.
        The forceOff(2) state will persist (even across reboots) until
        this value is set to on(1) by a management request.  The
        forceOff(2) state may be set even if the entry does not
        previously exist so that future policy invocations can be
        avoided.

        Unless forcibly disabled, if this entry exists, its value
        will be on(1)."
   ::= { pmTrackingEPEntry 4 }

-- Policy Debugging Table

pmDebuggingTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PmDebuggingEntry
   MAX-ACCESS  not-accessible
   STATUS      current



Waldbusser, et al.          Standards Track                   [Page 108]

RFC 4011              Policy Based Management MIB             March 2005


   DESCRIPTION
        "Policies that have debugging turned on will generate a log
        entry in the policy debugging table for every runtime
        exception that occurs in either the condition or action
        code.

        The pmDebuggingTable logs debugging messages when
        policies experience run-time exceptions in either the condition
        or action code and the associated pmPolicyDebugging object
        has been turned on.

        The maximum number of debugging entries that will be stored
        and the maximum length of time an entry will be kept are an
        implementation-dependent manner.  If entries must
        be discarded to make room for new entries, the oldest entries
        must be discarded first.

        If the system restarts, all debugging entries may be deleted."
   ::= { pmMib 11 }

pmDebuggingEntry OBJECT-TYPE
   SYNTAX      PmDebuggingEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "An entry in the pmDebuggingTable.  The pmPolicyIndex in the
        index specifies the policy that encountered the exception
        that led to this log entry.

        Note that some combinations of index values may result in an
        instance name that exceeds a length of 128 sub-identifiers,
        which exceeds the maximum for the SNMP protocol.
        Implementations should take care to avoid such combinations."
   INDEX       { pmPolicyIndex, pmDebuggingElement,
                 pmDebuggingContextName, pmDebuggingContextEngineID,
                 pmDebuggingLogIndex }
   ::= { pmDebuggingTable 1 }

PmDebuggingEntry ::= SEQUENCE {
   pmDebuggingElement          RowPointer,
   pmDebuggingContextName      SnmpAdminString,
   pmDebuggingContextEngineID  OCTET STRING,
   pmDebuggingLogIndex         Unsigned32,
   pmDebuggingMessage          PmUTF8String
}






Waldbusser, et al.          Standards Track                   [Page 109]

RFC 4011              Policy Based Management MIB             March 2005


pmDebuggingElement OBJECT-TYPE
   SYNTAX      RowPointer
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "The element the policy was executing on when it encountered
        the error that led to this log entry.

        For example, if the element is interface 3, then this object
        will contain the OID for 'ifIndex.3'.

        As this object is used in the index for the
        pmDebuggingTable, users of this table should be careful
        not to create entries that would result in instance names
        with more than 128 sub-identifiers."
   ::= { pmDebuggingEntry 1 }

pmDebuggingContextName OBJECT-TYPE
   SYNTAX      SnmpAdminString (SIZE (0..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is not in the default SNMP context
       for the target system, this object is used to identify the
       context.  If the element is in the default context, this object
       is equal to the empty string."
   ::= { pmDebuggingEntry 2 }

pmDebuggingContextEngineID OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE (0 | 5..32))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "If the associated element is on a remote system, this object
       is used to identify the remote system.  This object contains
       the contextEngineID of the system on which the associated
       element resides.  If the element is on the local system,
       this object will be the empty string."
   ::= { pmDebuggingEntry 3 }

pmDebuggingLogIndex OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
        "A unique index for this log entry among other log entries
        for this policy/element combination."
   ::= { pmDebuggingEntry 4 }



Waldbusser, et al.          Standards Track                   [Page 110]

RFC 4011              Policy Based Management MIB             March 2005


pmDebuggingMessage OBJECT-TYPE
   SYNTAX      PmUTF8String (SIZE (0..128))
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
        "An error message generated by the policy execution
        environment.  It is recommended that this message include the
        time of day when the message was generated, if known."
   ::= { pmDebuggingEntry 5 }

-- Notifications

pmNotifications OBJECT IDENTIFIER ::= { pmMib 0 }

pmNewRoleNotification NOTIFICATION-TYPE
   OBJECTS     { pmRoleStatus }
   STATUS      current
   DESCRIPTION
       "The pmNewRoleNotification is sent when an agent is configured
       with its first instance of a previously unused role string
       (not every time a new element is given a particular role).

       An instance of the pmRoleStatus object is sent containing
       the new roleString in its index.  In the event that two or
       more elements are given the same role simultaneously, it is an
       implementation-dependent matter as to which pmRoleTable
       instance will be included in the notification."
   ::= { pmNotifications 1 }

pmNewCapabilityNotification NOTIFICATION-TYPE
   OBJECTS     { pmCapabilitiesType }
   STATUS      current
   DESCRIPTION
       "The pmNewCapabilityNotification is sent when an agent
       gains a new capability that did not previously exist in any
       element on the system (not every time an element gains a
       particular capability).

       An instance of the pmCapabilitiesType object is sent containing
       the identity of the new capability.  In the event that two or
       more elements gain the same capability simultaneously, it is an
       implementation-dependent matter as to which pmCapabilitiesType
       instance will be included in the notification."
   ::= { pmNotifications 2 }

pmAbnormalTermNotification NOTIFICATION-TYPE
   OBJECTS     { pmTrackingPEInfo }
   STATUS      current



Waldbusser, et al.          Standards Track                   [Page 111]

RFC 4011              Policy Based Management MIB             March 2005


   DESCRIPTION
       "The pmAbnormalTermNotification is sent when a policy's
       pmPolicyAbnormalTerminations gauge value changes from zero to
       any value greater than zero and no such notification has been
       sent for that policy in the last 5 minutes.

       The notification contains an instance of the pmTrackingPEInfo
       object where the pmPolicyIndex component of the index
       identifies the associated policy and the rest of the index
       identifies an element on which the policy failed."
   ::= { pmNotifications 3 }

-- Compliance Statements

   pmConformance   OBJECT IDENTIFIER ::= { pmMib 12 }
   pmCompliances   OBJECT IDENTIFIER ::= { pmConformance 1 }
   pmGroups        OBJECT IDENTIFIER ::= { pmConformance 2 }

pmCompliance MODULE-COMPLIANCE
   STATUS  current
   DESCRIPTION
       "Describes the requirements for conformance to
       the Policy-Based Management MIB"
   MODULE  -- this module
       MANDATORY-GROUPS { pmPolicyManagementGroup, pmSchedGroup,
                          pmNotificationGroup }
   ::= { pmCompliances 1 }

pmPolicyManagementGroup OBJECT-GROUP
   OBJECTS { pmPolicyPrecedenceGroup, pmPolicyPrecedence,
             pmPolicySchedule, pmPolicyElementTypeFilter,
             pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
             pmPolicyParameters,
             pmPolicyConditionMaxLatency, pmPolicyActionMaxLatency,
             pmPolicyMaxIterations,
             pmPolicyDescription, pmPolicyMatches,
             pmPolicyAbnormalTerminations,
             pmPolicyExecutionErrors, pmPolicyDebugging,
             pmPolicyStorageType, pmPolicyAdminStatus,
             pmPolicyRowStatus, pmPolicyCodeText, pmPolicyCodeStatus,
             pmElementTypeRegMaxLatency, pmElementTypeRegDescription,
             pmElementTypeRegStorageType, pmElementTypeRegRowStatus,
             pmRoleStatus,
             pmCapabilitiesType, pmCapabilitiesOverrideState,
             pmCapabilitiesOverrideRowStatus,
             pmTrackingPEInfo,
             pmTrackingEPStatus,
             pmDebuggingMessage }



Waldbusser, et al.          Standards Track                   [Page 112]

RFC 4011              Policy Based Management MIB             March 2005


   STATUS  current
   DESCRIPTION
       "Objects that allow for the creation and management of
       configuration policies."
   ::=  { pmGroups 1 }

pmSchedGroup OBJECT-GROUP
   OBJECTS { pmSchedLocalTime, pmSchedGroupIndex,
             pmSchedDescr, pmSchedTimePeriod,
             pmSchedMonth, pmSchedDay, pmSchedWeekDay,
             pmSchedTimeOfDay, pmSchedLocalOrUtc, pmSchedStorageType,
             pmSchedRowStatus
           }
   STATUS current
   DESCRIPTION
       "Objects that allow for the scheduling of policies."
   ::= { pmGroups 2 }

pmNotificationGroup NOTIFICATION-GROUP
   NOTIFICATIONS { pmNewRoleNotification,
                   pmNewCapabilityNotification,
                   pmAbnormalTermNotification }
   STATUS        current
   DESCRIPTION
       "Notifications sent by an Policy MIB agent."
   ::= { pmGroups 3 }

pmBaseFunctionLibrary OBJECT IDENTIFIER ::= { pmGroups 4 }

END

12.  Relationship to Other MIB Modules

  When policy-based management is used specifically for (policy-based)
  configuration, the "Configuring Networks and Devices With SNMP" RFC
  3512 [19] document describes configuration management practices,
  terminology, and an example of a MIB Module that may be helpful to
  those developing and using this technology.

  The Policy MIB accesses system instrumentation for the purposes of
  policy evaluation, control, notification, monitoring, and error
  reporting.  This information is available to managers in the form of
  MIB objects.  Information about system configuration is modified by
  the Policy MIB through MIB objects defined in other MIB Modules.

  Details about the operational or configuration details of a system
  are retrieved by the manager via access to the specific MIB objects
  available in a network element.  As such, the Policy MIB can use any



Waldbusser, et al.          Standards Track                   [Page 113]

RFC 4011              Policy Based Management MIB             March 2005


  standard or vendor-defined object that exists on a managed system.
  In particular, the Policy MIB may access standard or vendor specific
  objects that are instance-specific such as BGP timeout parameters and
  specific interface counters.

13.  Security Considerations

  This MIB contains no objects for which read access would disclose
  sensitive information.

  There are a number of management objects defined in this MIB that
  have a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.

  With the exception of pmPolicyDescription, pmPolicyDebugging,
  pmElementTypeRegDescription, and pmSchedDescr, EVERY read-create and
  read-write object in this MIB should be considered sensitive because
  if an unauthorized user could manipulate these objects, s/he could
  cause the Policy MIB system to use the stored credentials of an
  authorized user to perform unauthorized and potentially harmful
  operations.

  There are no read-only objects in this MIB that contain sensitive
  information.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPSec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [16], section 8), including
  full support for the SNMPv3 cryptographic mechanisms (for
  authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.





Waldbusser, et al.          Standards Track                   [Page 114]

RFC 4011              Policy Based Management MIB             March 2005


  An implementation must ensure that access control rules are applied
  when SNMP operations are performed in policy scripts.  To ensure
  this, an implementation must record and maintain the security
  credentials of the last entity to modify each policy's
  pmPolicyAdminStatus object.  The credentials to store are the
  securityModel, securityName, and securityLevel and will be used as
  input parameters for isAccessAllowed from the Architecture for
  Describing SNMP Management Frameworks [1].  This mechanism was first
  introduced in the DISMAN-SCHEDULE-MIB [12].

  SNMP requests made when secModel, secName, and secLevel are specified
  use credentials stored in the local configuration datastore.  Access
  to these credentials depends on the security credentials of the last
  entity to modify the policy's pmPolicyAdminStatus object.  To
  determine whether the credentials can be accessed, the
  isAccessAllowed abstract service interface defined in RFC 3411 [1] is
  called:

     statusInformation =          -- success or errorIndication
       isAccessAllowed(

       IN   securityModel         -- Security Model used
       IN   securityName          -- principal who wants to access
       IN   securityLevel         -- Level of Security used
       IN   viewType              -- write
       IN   contextName           -- context containing variableName
       IN   variableName          -- OID for an object in the proper
                                  -- LCD entry
            )

     The securityModel, securityName, and securityLevel parameters are
     set to the values that were recorded when the policy was modified.
     The viewType is set to write, and the contextName and variableName
     are set to select any read-create object in the appropriate LCD
     entry.

  Proper configuration of VACM requires that write access to an LCD
  entry not be given to entities that aren't authorized to use the
  credentials therein.

  Access control for SNMP requests made to the local system where
  secModel, secName, and secLevel aren't specified depends on the
  security credentials of the last entity to modify the policy's
  pmPolicyAdminStatus object.  To determine whether the operation
  should succeed, the isAccessAllowed abstract service interface
  defined in RFC 3411 [1] is called:





Waldbusser, et al.          Standards Track                   [Page 115]

RFC 4011              Policy Based Management MIB             March 2005


     statusInformation =          -- success or errorIndication
       isAccessAllowed(
       IN   securityModel         -- Security Model in use
       IN   securityName          -- principal who wants to access
       IN   securityLevel         -- Level of Security
       IN   viewType              -- read, write, or notify view
       IN   contextName           -- context as specified
       IN   variableName          -- OID for the managed object
            )

     The securityModel, securityName, and securityLevel parameters are
     set to the values that were recorded when the policy was modified.
     The viewType, contextName, and variableName parameters are set as
     appropriate for the requested SNMP operation.

  Unless all users who have write access to the pmPolicyTable and
  pmPolicyCodeTable have equivalent access to the managed system,
  policy scripts could be used by a user to gain the privileges of
  another user.  Therefore, when policy users have different access,
  access control should be applied so that a user's policies cannot be
  modified by another user.  To make this more convenient, a user can
  place all of his or her policies in the same pmPolicyAdminGroup so
  that a single access control view can apply to all of them.

  Some policies may be designed to ensure the security of a network.
  If these policies have not been installed pending the appearance of a
  role or capability, some delay will occur in their activation
  policies when the role or capability appears because a responsible
  manager must notice the change and install the policy.  This delay
  may expose the device or the network to unacceptable security
  vulnerabilities during this delay.  If the role or capability appears
  during a time of network stress or when the management station is
  unavailable, this delay could be extensive, further increasing the
  exposure.  It is recommended that management stations install any
  security-related policies that might ever be needed on a particular
  managed device, even if a nonexistent role or capability suggests
  that it is not needed at a given time.

  This MIB allows the delegation of access rights so that a user
  ("Joe") can instruct a Policy MIB agent to execute remote operations
  on his behalf that are authorized by keys stored by "Joe" into the
  usmUserTable.  Care needs to be taken to ensure that unauthorized
  users are unable to configure their policies to use Joe's keys.
  Although there are theoretically many ways to configure SNMP
  security, users are advised to follow the most straightforward way
  outlined below to minimize complexity and the resulting opportunity
  for errors.




Waldbusser, et al.          Standards Track                   [Page 116]

RFC 4011              Policy Based Management MIB             March 2005


     Assume that Joe has credentials that give him authority to manage
     agents A, B, and C, as well as the Policy MIB agent "P".  Joe will
     store credentials for Joe@A, Joe@B, and Joe@C in the usmUserTable
     of the Policy MIB agent.  Then the following VACM configuration
     will be used:

        VACM securityToGroupTable
        A single entry mapping user Joe@P to group JoesGroup

        VACM accessTable
        A single entry mapping group JoesGroup to write view JoesView

        VACM viewTreeFamilyTable
        ViewName        Subtree                             Type
        JoesView        points to Joe@A in usmUserTable     included
        JoesView        points to Joe@B in usmUserTable     included
        JoesView        points to Joe@C in usmUserTable     included

     In the preceding examples, the notation Joe@A represents the entry
     indexed by usmUserEngineID and usmUserName, where the SnmpEngineID
     is that of system A and the usmUserName is "Joe".

14.  IANA Considerations

  This is a profile of stringprep.  It has been registered by the IANA
  in the stringprep profile registry located at:

     http://www.iana.org/assignments/stringprep-profiles

     Name of this profile:
        Policy MIB Stringprep.

     RFC in which the profile is defined:
        This document.

        Indicator whether this is the newest version of the profile:

           This is the first version of Policy MIB Stringprep.













Waldbusser, et al.          Standards Track                   [Page 117]

RFC 4011              Policy Based Management MIB             March 2005


15.  Acknowledgements

  The authors gratefully acknowledge the significant contributions to
  this work made by Jeff Case, Patrik Falstrom, Joel Halpern, Pablo
  Halpern, Bob Moore, Steve Moulton, David Partain, and Walter Weiss.

  This MIB uses a security delegation mechanism that was first
  introduced in the DISMAN-SCHEDULE-MIB [12].  The Schedule table of
  this MIB borrows heavily from the PolicyTimePeriodCondition of the
  Policy Core Information Model (PCIM) [18] and from the DISMAN-
  SCHEDULE-MIB [12].

16.  References

16.1.  Normative References

  [1]  Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for
       Describing Simple Network Management Protocol (SNMP) Management
       Frameworks", STD 62, RFC 3411, December 2002.

  [2]  McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of
       Management Information Version 2 (SMIv2)", STD 58, RFC 2578,
       April 1999.

  [3]  McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual
       Conventions for SMIv2", STD 58, RFC 2579, April 1999.

  [4]  McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance
       Statements for SMIv2", STD 58, RFC 2580, April 1999.

  [5]  Presuhn, R., "Transport Mappings for the Simple Network
       Management Protocol (SNMP)", STD 62, RFC 3417, December 2002.

  [6]  Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
       for version 3 of the Simple Network Management Protocol
       (SNMPv3)", STD 62, RFC 3414, December 2002.

  [7]  Presuhn, R., "Version 2 of the Protocol Operations for the
       Simple Network Management Protocol (SNMP)", STD 62, RFC 3416,
       December 2002.

  [8]  Frye, R., Levi, D., Routhier, S., and B. Wijnen, "Coexistence
       between Version 1, Version 2, and Version 3 of the Internet-
       standard Network Management Framework", BCP 74, RFC 3584, August
       2003.






Waldbusser, et al.          Standards Track                   [Page 118]

RFC 4011              Policy Based Management MIB             March 2005


  [9]  Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access
       Control Model (VACM) for the Simple Network Management Protocol
       (SNMP)", STD 62, RFC 3415, December 2002.

  [10] International Standards Organization, "Information Technology -
       Programming Languages - C++", ISO/IEC 14882-1998

  [11] Daniele, M. and J. Schoenwaelder, "Textual Conventions for
       Transport Addresses", RFC 3419, December 2002.

  [12] Levi, D. and J. Schoenwaelder, "Definitions of Managed Objects
       for Scheduling Management Operations", RFC 3231, January 2002.

  [13] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
       Strings ("stringprep")", RFC 3454, December 2002.

  [14] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
       63, RFC 3629, November 2003.

  [15] Dawson, F. and D. Stenerson, "Internet Calendaring and
       Scheduling Core Object Specification (iCalendar)", RFC 2445,
       November 1998.

16.2.  Informative References

  [16] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction
       and Applicability Statements for Internet-Standard Management
       Framework", RFC 3410, December 2002.

  [17] ECMA, "ECMAScript Language Specification", ECMA-262, December
       1999

  [18] Moore, B., Ellesson, E., Strassner, J., and A. Westerinen,
       "Policy Core Information Model -- Version 1 Specification", RFC
       3060, February 2001.

  [19] MacFaden, M., Partain, D., Saperia, J., and W. Tackabury,
       "Configuring Networks and Devices with Simple Network Management
       Protocol (SNMP)", RFC 3512, April 2003.












Waldbusser, et al.          Standards Track                   [Page 119]

RFC 4011              Policy Based Management MIB             March 2005


Author's Addresses

  Steve Waldbusser

  Phone: +1-650-948-6500
  Fax:   +1-650-745-0671
  EMail: [email protected]


  Jon Saperia (WG Co-chair)
  JDS Consulting, Inc.
  84 Kettell Plain Road.
  Stow MA 01775
  USA

  Phone: +1-978-461--0249
  Fax:   +1-617-249-0874
  EMail: [email protected]


  Thippanna Hongal
  Riverstone Networks, Inc.
  5200 Great America Parkway
  Santa Clara, CA, 95054
  USA

  Phone: +1-408-878-6562
  Fax:   +1-408-878-6501
  EMail: [email protected]






















Waldbusser, et al.          Standards Track                   [Page 120]

RFC 4011              Policy Based Management MIB             March 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Waldbusser, et al.          Standards Track                   [Page 121]