Network Working Group                                         M. Daniele
Request for Comments: 4001                           SyAM Software, Inc.
Obsoletes: 3291                                              B. Haberman
Category: Standards Track                       Johns Hopkins University
                                                            S. Routhier
                                               Wind River Systems, Inc.
                                                       J. Schoenwaelder
                                        International University Bremen
                                                          February 2005


          Textual Conventions for Internet Network Addresses

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This MIB module defines textual conventions to represent commonly
  used Internet network layer addressing information.  The intent is
  that these textual conventions will be imported and used in MIB
  modules that would otherwise define their own representations.




















Daniele, et al.             Standards Track                     [Page 1]

RFC 4001          Internet Network Address Conventions     February 2005


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  The Internet-Standard Management Framework . . . . . . . . . .  4
  3.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . .  5
  4.  Usage Hints  . . . . . . . . . . . . . . . . . . . . . . . . . 13
      4.1.  Table Indexing . . . . . . . . . . . . . . . . . . . . . 14
      4.2.  Uniqueness of Addresses  . . . . . . . . . . . . . . . . 14
      4.3.  Multiple Addresses per Host  . . . . . . . . . . . . . . 15
      4.4.  Resolving DNS Names  . . . . . . . . . . . . . . . . . . 15
  5.  Table Indexing Example . . . . . . . . . . . . . . . . . . . . 15
  6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 17
  7.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 18
  8.  Changes from RFC 3291 to RFC 4001  . . . . . . . . . . . . . . 18
  9.  Changes from RFC 2851 to RFC 3291  . . . . . . . . . . . . . . 18
  10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19
      10.1. Normative References . . . . . . . . . . . . . . . . . . 19
      10.2. Informative References . . . . . . . . . . . . . . . . . 20
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 21
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 22

1.  Introduction

  Several standards-track MIB modules use the IpAddress SMIv2 base
  type.  This limits the applicability of these MIB modules to IP
  Version 4 (IPv4), as the IpAddress SMIv2 base type can only contain
  4-byte IPv4 addresses.  The IpAddress SMIv2 base type has become
  problematic with the introduction of IP Version 6 (IPv6) addresses
  [RFC3513].

  This document defines multiple textual conventions (TCs) as a means
  to express generic Internet network layer addresses within MIB module
  specifications.  The solution is compatible with SMIv2 (STD 58) and
  SMIv1 (STD 16).  New MIB definitions that have to express network
  layer Internet addresses SHOULD use the textual conventions defined
  in this memo.  New MIB modules SHOULD NOT use the SMIv2 IpAddress
  base type anymore.

  A generic Internet address consists of two objects: one whose syntax
  is InetAddressType, and another whose syntax is InetAddress.  The
  value of the first object determines how the value of the second is
  encoded.  The InetAddress textual convention represents an opaque
  Internet address value.  The InetAddressType enumeration is used to
  "cast" the InetAddress value into a concrete textual convention for
  the address type.  This usage of multiple textual conventions allows
  expression of the display characteristics of each address type and
  makes the set of defined Internet address types extensible.




Daniele, et al.             Standards Track                     [Page 2]

RFC 4001          Internet Network Address Conventions     February 2005


  The textual conventions for well-known transport domains support
  scoped Internet addresses.  The scope of an Internet address is a
  topological span within which the address may be used as a unique
  identifier for an interface or set of interfaces.  A scope zone (or,
  simply, a zone) is a concrete connected region of topology of a given
  scope.  Note that a zone is a particular instance of a topological
  region, whereas a scope is the size of a topological region
  [RFC4007].  Since Internet addresses on devices that connect multiple
  zones are not necessarily unique, an additional zone index is needed
  on these devices to select an interface.  The textual conventions
  InetAddressIPv4z and InetAddressIPv6z are provided to support
  Internet addresses that include a zone index.  To support arbitrary
  combinations of scoped Internet addresses, MIB authors SHOULD use a
  separate InetAddressType object for each InetAddress object.

  The textual conventions defined in this document can also be used to
  represent generic Internet subnets and Internet address ranges.  A
  generic Internet subnet is represented by three objects: one whose
  syntax is InetAddressType, a second one whose syntax is InetAddress,
  and a third one whose syntax is InetAddressPrefixLength.  The
  InetAddressType value again determines the concrete format of the
  InetAddress value, whereas the InetAddressPrefixLength identifies the
  Internet network address prefix.

  A generic range of consecutive Internet addresses is represented by
  three objects.  The first one has the syntax InetAddressType, and the
  remaining objects have the syntax InetAddress and specify the start
  and end of the address range.  Again, the InetAddressType value
  determines the format of the InetAddress values.

  The textual conventions defined in this document can be used to
  define Internet addresses by using DNS domain names in addition to
  IPv4 and IPv6 addresses.  A MIB designer can write compliance
  statements to express that only a subset of the possible address
  types must be supported by a compliant implementation.

  MIB developers who need to represent Internet addresses SHOULD use
  these definitions whenever applicable, as opposed to defining their
  own constructs.  Even MIB modules that only need to represent IPv4 or
  IPv6 addresses SHOULD use the InetAddressType/InetAddress textual
  conventions defined in this memo.

  There are many widely deployed MIB modules that use IPv4 addresses
  and that have to be revised to support IPv6.  These MIB modules can
  be categorized as follows:






Daniele, et al.             Standards Track                     [Page 3]

RFC 4001          Internet Network Address Conventions     February 2005


  1.  MIB modules that define management information that is, in
      principle, IP version neutral, but the MIB currently uses
      addressing constructs specific to a certain IP version.

  2.  MIB modules that define management information that is specific
      to a particular IP version (either IPv4 or IPv6) and that is very
      unlikely to ever be applicable to another IP version.

  MIB modules of the first type SHOULD provide object definitions
  (e.g., tables) that work with all versions of IP.  In particular,
  when revising a MIB module that contains IPv4 specific tables, it is
  suggested to define new tables using the textual conventions defined
  in this memo that support all versions of IP.  The status of the new
  tables SHOULD be "current", whereas the status of the old IP version
  specific tables SHOULD be changed to "deprecated".  The other
  approach, of having multiple similar tables for different IP
  versions, is strongly discouraged.

  MIB modules of the second type, which are inherently IP version
  specific, do not need to be redefined.  Note that even in this case,
  any additions to these MIB modules or to new IP version specific MIB
  modules SHOULD use the textual conventions defined in this memo.

  MIB developers SHOULD NOT use the textual conventions defined in this
  document to represent generic transport layer addresses.  A special
  set of textual conventions for this purpose is defined in RFC 3419
  [RFC3419].

  The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY",
  in this document are to be interpreted as described in RFC 2119
  [RFC2119].

2.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].





Daniele, et al.             Standards Track                     [Page 4]

RFC 4001          Internet Network Address Conventions     February 2005


3.  Definitions

INET-ADDRESS-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, mib-2, Unsigned32 FROM SNMPv2-SMI
   TEXTUAL-CONVENTION                 FROM SNMPv2-TC;

inetAddressMIB MODULE-IDENTITY
   LAST-UPDATED "200502040000Z"
   ORGANIZATION
       "IETF Operations and Management Area"
   CONTACT-INFO
       "Juergen Schoenwaelder (Editor)
        International University Bremen
        P.O. Box 750 561
        28725 Bremen, Germany

        Phone: +49 421 200-3587
        EMail: [email protected]

        Send comments to <[email protected]>."
   DESCRIPTION
       "This MIB module defines textual conventions for
        representing Internet addresses.  An Internet
        address can be an IPv4 address, an IPv6 address,
        or a DNS domain name.  This module also defines
        textual conventions for Internet port numbers,
        autonomous system numbers, and the length of an
        Internet address prefix.

        Copyright (C) The Internet Society (2005).  This version
        of this MIB module is part of RFC 4001, see the RFC
        itself for full legal notices."
   REVISION     "200502040000Z"
   DESCRIPTION
       "Third version, published as RFC 4001.  This revision
        introduces the InetZoneIndex, InetScopeType, and
        InetVersion textual conventions."
   REVISION     "200205090000Z"
   DESCRIPTION
       "Second version, published as RFC 3291.  This
        revision contains several clarifications and
        introduces several new textual conventions:
        InetAddressPrefixLength, InetPortNumber,
        InetAutonomousSystemNumber, InetAddressIPv4z,
        and InetAddressIPv6z."
   REVISION     "200006080000Z"



Daniele, et al.             Standards Track                     [Page 5]

RFC 4001          Internet Network Address Conventions     February 2005


   DESCRIPTION
       "Initial version, published as RFC 2851."
   ::= { mib-2 76 }

InetAddressType ::= TEXTUAL-CONVENTION
   STATUS      current
   DESCRIPTION
       "A value that represents a type of Internet address.

        unknown(0)  An unknown address type.  This value MUST
                    be used if the value of the corresponding
                    InetAddress object is a zero-length string.
                    It may also be used to indicate an IP address
                    that is not in one of the formats defined
                    below.

        ipv4(1)     An IPv4 address as defined by the
                    InetAddressIPv4 textual convention.

        ipv6(2)     An IPv6 address as defined by the
                    InetAddressIPv6 textual convention.

        ipv4z(3)    A non-global IPv4 address including a zone
                    index as defined by the InetAddressIPv4z
                    textual convention.

        ipv6z(4)    A non-global IPv6 address including a zone
                    index as defined by the InetAddressIPv6z
                    textual convention.

        dns(16)     A DNS domain name as defined by the
                    InetAddressDNS textual convention.

        Each definition of a concrete InetAddressType value must be
        accompanied by a definition of a textual convention for use
        with that InetAddressType.

        To support future extensions, the InetAddressType textual
        convention SHOULD NOT be sub-typed in object type definitions.
        It MAY be sub-typed in compliance statements in order to
        require only a subset of these address types for a compliant
        implementation.

        Implementations must ensure that InetAddressType objects
        and any dependent objects (e.g., InetAddress objects) are
        consistent.  An inconsistentValue error must be generated
        if an attempt to change an InetAddressType object would,
        for example, lead to an undefined InetAddress value.  In



Daniele, et al.             Standards Track                     [Page 6]

RFC 4001          Internet Network Address Conventions     February 2005


        particular, InetAddressType/InetAddress pairs must be
        changed together if the address type changes (e.g., from
        ipv6(2) to ipv4(1))."
   SYNTAX       INTEGER {
                    unknown(0),
                    ipv4(1),
                    ipv6(2),
                    ipv4z(3),
                    ipv6z(4),
                    dns(16)
                }

InetAddress ::= TEXTUAL-CONVENTION
   STATUS      current
   DESCRIPTION
       "Denotes a generic Internet address.

        An InetAddress value is always interpreted within the context
        of an InetAddressType value.  Every usage of the InetAddress
        textual convention is required to specify the InetAddressType
        object that provides the context.  It is suggested that the
        InetAddressType object be logically registered before the
        object(s) that use the InetAddress textual convention, if
        they appear in the same logical row.

        The value of an InetAddress object must always be
        consistent with the value of the associated InetAddressType
        object.  Attempts to set an InetAddress object to a value
        inconsistent with the associated InetAddressType
        must fail with an inconsistentValue error.

        When this textual convention is used as the syntax of an
        index object, there may be issues with the limit of 128
        sub-identifiers specified in SMIv2, STD 58.  In this case,
        the object definition MUST include a 'SIZE' clause to
        limit the number of potential instance sub-identifiers;
        otherwise the applicable constraints MUST be stated in
        the appropriate conceptual row DESCRIPTION clauses, or
        in the surrounding documentation if there is no single
        DESCRIPTION clause that is appropriate."
   SYNTAX       OCTET STRING (SIZE (0..255))

InetAddressIPv4 ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1d.1d.1d.1d"
   STATUS       current
   DESCRIPTION
       "Represents an IPv4 network address:




Daniele, et al.             Standards Track                     [Page 7]

RFC 4001          Internet Network Address Conventions     February 2005


          Octets   Contents         Encoding
           1-4     IPv4 address     network-byte order

        The corresponding InetAddressType value is ipv4(1).

        This textual convention SHOULD NOT be used directly in object
        definitions, as it restricts addresses to a specific format.
        However, if it is used, it MAY be used either on its own or in
        conjunction with InetAddressType, as a pair."
   SYNTAX       OCTET STRING (SIZE (4))

InetAddressIPv6 ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "2x:2x:2x:2x:2x:2x:2x:2x"
   STATUS       current
   DESCRIPTION
       "Represents an IPv6 network address:

          Octets   Contents         Encoding
           1-16    IPv6 address     network-byte order

        The corresponding InetAddressType value is ipv6(2).

        This textual convention SHOULD NOT be used directly in object
        definitions, as it restricts addresses to a specific format.
        However, if it is used, it MAY be used either on its own or in
        conjunction with InetAddressType, as a pair."
   SYNTAX       OCTET STRING (SIZE (16))

InetAddressIPv4z ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1d.1d.1d.1d%4d"
   STATUS       current
   DESCRIPTION
       "Represents a non-global IPv4 network address, together
        with its zone index:

          Octets   Contents         Encoding
           1-4     IPv4 address     network-byte order
           5-8     zone index       network-byte order

        The corresponding InetAddressType value is ipv4z(3).

        The zone index (bytes 5-8) is used to disambiguate identical
        address values on nodes that have interfaces attached to
        different zones of the same scope.  The zone index may contain
        the special value 0, which refers to the default zone for each
        scope.

        This textual convention SHOULD NOT be used directly in object



Daniele, et al.             Standards Track                     [Page 8]

RFC 4001          Internet Network Address Conventions     February 2005


        definitions, as it restricts addresses to a specific format.
        However, if it is used, it MAY be used either on its own or in
        conjunction with InetAddressType, as a pair."
   SYNTAX       OCTET STRING (SIZE (8))

InetAddressIPv6z ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "2x:2x:2x:2x:2x:2x:2x:2x%4d"
   STATUS       current
   DESCRIPTION
       "Represents a non-global IPv6 network address, together
        with its zone index:

          Octets   Contents         Encoding
           1-16    IPv6 address     network-byte order
          17-20    zone index       network-byte order

        The corresponding InetAddressType value is ipv6z(4).

        The zone index (bytes 17-20) is used to disambiguate
        identical address values on nodes that have interfaces
        attached to different zones of the same scope.  The zone index
        may contain the special value 0, which refers to the default
        zone for each scope.

        This textual convention SHOULD NOT be used directly in object
        definitions, as it restricts addresses to a specific format.
        However, if it is used, it MAY be used either on its own or in
        conjunction with InetAddressType, as a pair."
   SYNTAX       OCTET STRING (SIZE (20))

InetAddressDNS ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "255a"
   STATUS       current
   DESCRIPTION
       "Represents a DNS domain name.  The name SHOULD be fully
        qualified whenever possible.

        The corresponding InetAddressType is dns(16).

        The DESCRIPTION clause of InetAddress objects that may have
        InetAddressDNS values MUST fully describe how (and when)
        these names are to be resolved to IP addresses.

        The resolution of an InetAddressDNS value may require to
        query multiple DNS records (e.g., A for IPv4 and AAAA for
        IPv6).  The order of the resolution process and which DNS
        record takes precedence depends on the configuration of the
        resolver.



Daniele, et al.             Standards Track                     [Page 9]

RFC 4001          Internet Network Address Conventions     February 2005


        This textual convention SHOULD NOT be used directly in object
        definitions, as it restricts addresses to a specific format.
        However, if it is used, it MAY be used either on its own or in
        conjunction with InetAddressType, as a pair."
   SYNTAX       OCTET STRING (SIZE (1..255))

InetAddressPrefixLength ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS       current
   DESCRIPTION
       "Denotes the length of a generic Internet network address
        prefix.  A value of n corresponds to an IP address mask
        that has n contiguous 1-bits from the most significant
        bit (MSB), with all other bits set to 0.

        An InetAddressPrefixLength value is always interpreted within
        the context of an InetAddressType value.  Every usage of the
        InetAddressPrefixLength textual convention is required to
        specify the InetAddressType object that provides the
        context.  It is suggested that the InetAddressType object be
        logically registered before the object(s) that use the
        InetAddressPrefixLength textual convention, if they appear
        in the same logical row.

        InetAddressPrefixLength values larger than
        the maximum length of an IP address for a specific
        InetAddressType are treated as the maximum significant
        value applicable for the InetAddressType.  The maximum
        significant value is 32 for the InetAddressType
        'ipv4(1)' and 'ipv4z(3)' and 128 for the InetAddressType
        'ipv6(2)' and 'ipv6z(4)'.  The maximum significant value
        for the InetAddressType 'dns(16)' is 0.

        The value zero is object-specific and must be defined as
        part of the description of any object that uses this
        syntax.  Examples of the usage of zero might include
        situations where the Internet network address prefix
        is unknown or does not apply.

        The upper bound of the prefix length has been chosen to
        be consistent with the maximum size of an InetAddress."
   SYNTAX       Unsigned32 (0..2040)

InetPortNumber ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS       current
   DESCRIPTION
       "Represents a 16 bit port number of an Internet transport



Daniele, et al.             Standards Track                    [Page 10]

RFC 4001          Internet Network Address Conventions     February 2005


        layer protocol.  Port numbers are assigned by IANA.  A
        current list of all assignments is available from
        <http://www.iana.org/>.

        The value zero is object-specific and must be defined as
        part of the description of any object that uses this
        syntax.  Examples of the usage of zero might include
        situations where a port number is unknown, or when the
        value zero is used as a wildcard in a filter."
   REFERENCE   "STD 6 (RFC 768), STD 7 (RFC 793) and RFC 2960"
   SYNTAX       Unsigned32 (0..65535)

InetAutonomousSystemNumber ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS       current
   DESCRIPTION
       "Represents an autonomous system number that identifies an
        Autonomous System (AS).  An AS is a set of routers under a
        single technical administration, using an interior gateway
        protocol and common metrics to route packets within the AS,
        and using an exterior gateway protocol to route packets to
        other ASes'.  IANA maintains the AS number space and has
        delegated large parts to the regional registries.

        Autonomous system numbers are currently limited to 16 bits
        (0..65535).  There is, however, work in progress to enlarge the
        autonomous system number space to 32 bits.  Therefore, this
        textual convention uses an Unsigned32 value without a
        range restriction in order to support a larger autonomous
        system number space."
   REFERENCE   "RFC 1771, RFC 1930"
   SYNTAX       Unsigned32

InetScopeType ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
       "Represents a scope type.  This textual convention can be used
        in cases where a MIB has to represent different scope types
        and there is no context information, such as an InetAddress
        object, that implicitly defines the scope type.

        Note that not all possible values have been assigned yet, but
        they may be assigned in future revisions of this specification.
        Applications should therefore be able to deal with values
        not yet assigned."
   REFERENCE   "RFC 3513"
   SYNTAX       INTEGER {
                    -- reserved(0),



Daniele, et al.             Standards Track                    [Page 11]

RFC 4001          Internet Network Address Conventions     February 2005


                    interfaceLocal(1),
                    linkLocal(2),
                    subnetLocal(3),
                    adminLocal(4),
                    siteLocal(5), -- site-local unicast addresses
                                  -- have been deprecated by RFC 3879
                    -- unassigned(6),
                    -- unassigned(7),
                    organizationLocal(8),
                    -- unassigned(9),
                    -- unassigned(10),
                    -- unassigned(11),
                    -- unassigned(12),
                    -- unassigned(13),
                    global(14)
                    -- reserved(15)
                }

InetZoneIndex ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
   STATUS       current
   DESCRIPTION
       "A zone index identifies an instance of a zone of a
        specific scope.

        The zone index MUST disambiguate identical address
        values.  For link-local addresses, the zone index will
        typically be the interface index (ifIndex as defined in the
        IF-MIB) of the interface on which the address is configured.

        The zone index may contain the special value 0, which refers
        to the default zone.  The default zone may be used in cases
        where the valid zone index is not known (e.g., when a
        management application has to write a link-local IPv6
        address without knowing the interface index value).  The
        default zone SHOULD NOT be used as an easy way out in
        cases where the zone index for a non-global IPv6 address
        is known."
   REFERENCE   "RFC4007"
   SYNTAX       Unsigned32

InetVersion ::= TEXTUAL-CONVENTION
   STATUS  current
   DESCRIPTION
       "A value representing a version of the IP protocol.

        unknown(0)  An unknown or unspecified version of the IP
                    protocol.



Daniele, et al.             Standards Track                    [Page 12]

RFC 4001          Internet Network Address Conventions     February 2005


        ipv4(1)     The IPv4 protocol as defined in RFC 791 (STD 5).

        ipv6(2)     The IPv6 protocol as defined in RFC 2460.

        Note that this textual convention SHOULD NOT be used to
        distinguish different address types associated with IP
        protocols.  The InetAddressType has been designed for this
        purpose."
   REFERENCE   "RFC 791, RFC 2460"
   SYNTAX       INTEGER {
                    unknown(0),
                    ipv4(1),
                    ipv6(2)
                }
END

4.  Usage Hints

  The InetAddressType and InetAddress textual conventions have been
  introduced to avoid over-constraining an object definition by the use
  of the IpAddress SMI base type, which is IPv4 specific.  An
  InetAddressType/InetAddress pair can represent IP addresses in
  various formats.

  The InetAddressType and InetAddress objects SHOULD NOT be sub-typed
  in object definitions.  Sub-typing binds the MIB module to specific
  address formats, which may cause serious problems if new address
  formats need to be introduced.  Note that it is possible to write
  compliance statements indicating that only a subset of the defined
  address types must be implemented to be compliant.

  Every usage of the InetAddress or InetAddressPrefixLength textual
  conventions must specify which InetAddressType object provides the
  context for the interpretation of the InetAddress or
  InetAddressPrefixLength textual convention.

  It is suggested that the InetAddressType object is logically
  registered before the object(s) that use(s) the InetAddress or
  InetAddressPrefixLength textual convention.  An InetAddressType
  object is logically registered before an InetAddress or
  InetAddressPrefixLength object if it appears before the InetAddress
  or InetAddressPrefixLength object in the conceptual row (which
  includes any index objects).  This rule allows programs such as MIB
  compilers to identify the InetAddressType of a given InetAddress or
  InetAddressPrefixLength object by searching for the InetAddressType
  object, which precedes an InetAddress or InetAddressPrefixLength
  object.




Daniele, et al.             Standards Track                    [Page 13]

RFC 4001          Internet Network Address Conventions     February 2005


4.1.  Table Indexing

  When a generic Internet address is used as an index, both the
  InetAddressType and InetAddress objects MUST be used.  The
  InetAddressType object MUST be listed before the InetAddress object
  in the INDEX clause.

  The IMPLIED keyword MUST NOT be used for an object of type
  InetAddress in an INDEX clause.  Instance sub-identifiers are then of
  the form T.N.O1.O2...On, where T is the value of the InetAddressType
  object, O1...On are the octets in the InetAddress object, and N is
  the number of those octets.

  There is a meaningful lexicographical ordering to tables indexed in
  this fashion.  Command generator applications may look up specific
  addresses of known type and value, issue GetNext requests for
  addresses of a single type, or issue GetNext requests for a specific
  type and address prefix.

4.2.  Uniqueness of Addresses

  IPv4 addresses were intended to be globally unique, current usage
  notwithstanding.  IPv6 addresses were architected to have different
  scopes and hence uniqueness [RFC3513].  In particular, IPv6 "link-
  local" unicast addresses are not guaranteed to be unique on any
  particular node.  In such cases, the duplicate addresses must be
  configured on different interfaces.  So the combination of an IPv6
  address and a zone index is unique [RFC4007].

  The InetAddressIPv6 textual convention has been defined to represent
  global IPv6 addresses and non-global IPv6 addresses in cases where no
  zone index is needed (e.g., on end hosts with a single interface).
  The InetAddressIPv6z textual convention has been defined to represent
  non-global IPv6 addresses in cases where a zone index is needed
  (e.g., a router connecting multiple zones).  Therefore, MIB designers
  who use InetAddressType/InetAddress pairs do not need to define
  additional objects in order to support non-global addresses on nodes
  that connect multiple zones.

  The InetAddressIPv4z is intended for use in MIB modules (such as the
  TCP-MIB) which report addresses in the address family used on the
  wire, but where the entity instrumented obtains these addresses from
  applications or administrators in a form that includes a zone index,
  such as v4-mapped IPv6 addresses.







Daniele, et al.             Standards Track                    [Page 14]

RFC 4001          Internet Network Address Conventions     February 2005


  The size of the zone index has been chosen so that it is consistent
  with (i) the numerical zone index, defined in [RFC4007], and (ii) the
  sin6_scope_id field of the sockaddr_in6 structure, defined in RFC
  2553 [RFC2553].

4.3.  Multiple Addresses per Host

  A single host system may be configured with multiple addresses (IPv4
  or IPv6), and possibly with multiple DNS names.  Thus it is possible
  for a single host system to be accessible by multiple
  InetAddressType/InetAddress pairs.

  If this could be an implementation or usage issue, the DESCRIPTION
  clause of the relevant objects must fully describe which address is
  reported in a given InetAddressType/InetAddress pair.

4.4.  Resolving DNS Names

  DNS names MUST be resolved to IP addresses when communication with
  the named host is required.  This raises a temporal aspect to
  defining MIB objects whose value is a DNS name: When is the name
  translated to an address?

  For example, consider an object defined to indicate a forwarding
  destination, and whose value is a DNS name.  When does the forwarding
  entity resolve the DNS name? Each time forwarding occurs, or just
  once when the object was instantiated?

  The DESCRIPTION clause of these objects SHOULD precisely define how
  and when any required name to address resolution is done.

  Similarly, the DESCRIPTION clause of these objects SHOULD precisely
  define how and when a reverse lookup is being done, if an agent has
  accessed instrumentation that knows about an IP address, and if the
  MIB module or implementation requires it to map the IP address to a
  DNS name.

5.  Table Indexing Example

  This example shows a table listing communication peers that are
  identified by either an IPv4 address, an IPv6 address, or a DNS name.
  The table definition also prohibits entries with an empty address
  (whose type would be "unknown").  The size of a DNS name is limited
  to 64 characters in order to satisfy OID length constraints.







Daniele, et al.             Standards Track                    [Page 15]

RFC 4001          Internet Network Address Conventions     February 2005


peerTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF PeerEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A list of communication peers."
   ::= { somewhere 1 }

peerEntry OBJECT-TYPE
   SYNTAX      PeerEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "An entry containing information about a particular peer."
   INDEX       { peerAddressType, peerAddress }
   ::= { peerTable 1 }

PeerEntry ::= SEQUENCE {
   peerAddressType     InetAddressType,
   peerAddress         InetAddress,
   peerStatus          INTEGER
}

peerAddressType OBJECT-TYPE
   SYNTAX      InetAddressType
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The type of Internet address by which the peer
        is reachable."

   ::= { peerEntry 1 }

peerAddress OBJECT-TYPE
   SYNTAX      InetAddress (SIZE (1..64))
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "The Internet address for the peer.  The type of this
        address is determined by the value of the peerAddressType
        object.  Note that implementations must limit themselves
        to a single entry in this table per reachable peer.
        The peerAddress may not be empty due to the SIZE
        restriction.

        If a row is created administratively by an SNMP
        operation and the address type value is dns(16), then
        the agent stores the DNS name internally.  A DNS name



Daniele, et al.             Standards Track                    [Page 16]

RFC 4001          Internet Network Address Conventions     February 2005


        lookup must be performed on the internally stored DNS
        name whenever it is being used to contact the peer.

        If a row is created by the managed entity itself and
        the address type value is dns(16), then the agent
        stores the IP address internally.  A DNS reverse lookup
        must be performed on the internally stored IP address
        whenever the value is retrieved via SNMP."
   ::= { peerEntry 2 }


  The following compliance statement specifies that compliant
  implementations need only support IPv4/IPv6 addresses without zone
  indices.  Support for DNS names or IPv4/IPv6 addresses with zone
  indices is not required.

  peerCompliance MODULE-COMPLIANCE
      STATUS      current
      DESCRIPTION
          "The compliance statement of the peer MIB."

      MODULE      -- this module
      MANDATORY-GROUPS    { peerGroup }

      OBJECT  peerAddressType
      SYNTAX  InetAddressType { ipv4(1), ipv6(2) }
      DESCRIPTION
          "An implementation is only required to support IPv4
           and IPv6 addresses without zone indices."

      ::= { somewhere 2 }

  Note that the SMIv2 does not permit inclusion of objects that are not
  accessible in an object group (see section 3.1 in STD 58, RFC 2580
  [RFC2580]).  It is therefore not possible to refine the syntax of
  auxiliary objects that are not accessible.  It is suggested that the
  refinement be expressed informally in the DESCRIPTION clause of the
  MODULE-COMPLIANCE macro invocation.

6.  Security Considerations

  This module does not define any management objects.  Instead, it
  defines a set of textual conventions which may be used by other MIB
  modules to define management objects.







Daniele, et al.             Standards Track                    [Page 17]

RFC 4001          Internet Network Address Conventions     February 2005


  Meaningful security considerations can only be written in the MIB
  modules that define management objects.  This document has therefore
  no impact on the security of the Internet.

7.  Acknowledgments

  This document was produced by the Operations and Management Area
  "IPv6MIB" design team.  For their comments and suggestions, the
  authors would like to thank Fred Baker, Randy Bush, Richard Draves,
  Mark Ellison, Bill Fenner, Jun-ichiro Hagino, Mike Heard, Tim
  Jenkins, Allison Mankin, Glenn Mansfield, Keith McCloghrie, Thomas
  Narten, Erik Nordmark, Peder Chr.  Norgaard, Randy Presuhn, Andrew
  Smith, Dave Thaler, Kenneth White, Bert Wijnen, and Brian Zill.

8.  Changes from RFC 3291 to RFC 4001

  The following changes have been made relative to RFC 3291:

  o  Added a range restriction to the InetAddressPrefixLength textual
     convention.

  o  Added new textual conventions InetZoneIndex, InetScopeType, and
     InetVersion.

  o  Added explicit "d" DISPLAY-HINTs for textual conventions that did
     not have them.

  o  Updated boilerplate text and references.

9.  Changes from RFC 2851 to RFC 3291

  The following changes have been made relative to RFC 2851:

  o  Added new textual conventions InetAddressPrefixLength,
     InetPortNumber, and InetAutonomousSystemNumber.

  o  Rewrote the introduction to say clearly that, in general, one
     should define MIB tables that work with all versions of IP.  The
     other approach of multiple tables for different IP versions is
     strongly discouraged.

  o  Added text to the InetAddressType and InetAddress descriptions
     requiring that implementations must reject set operations with an
     inconsistentValue error if they lead to inconsistencies.

  o  Removed the strict ordering constraints.  Description clauses now
     must explain which InetAddressType object provides the context for
     an InetAddress or InetAddressPrefixLength object.



Daniele, et al.             Standards Track                    [Page 18]

RFC 4001          Internet Network Address Conventions     February 2005


  o  Aligned wordings with the IPv6 scoping architecture document.

  o  Split the InetAddressIPv6 textual convention into the two textual
     conventions (InetAddressIPv6 and InetAddressIPv6z) and introduced
     a new textual convention InetAddressIPv4z.  Added ipv4z(3) and
     ipv6z(4) named numbers to the InetAddressType enumeration.
     Motivations for this change: (i) to enable the introduction of a
     textual conventions for non-global IPv4 addresses, (ii) alignment
     with the textual conventions for transport addresses, (iii)
     simpler compliance statements in cases where support for IPv6
     addresses with zone indices is not required, and (iv) to simplify
     implementations for host systems that will never have to report
     zone indices.

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Structure of Management Information Version 2 (SMIv2)",
             STD 58, RFC 2578, April 1999.

  [RFC2579]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Textual Conventions for SMIv2", STD 58, RFC 2579, April
             1999.

  [RFC2580]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Conformance Statements for SMIv2", STD 58, RFC 2580,
             April 1999.

  [RFC3513]  Hinden, R. and S. Deering, "Internet Protocol Version 6
             (IPv6) Addressing Architecture", RFC 3513, April 2003.

  [RFC4007]  Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
             B.  Zill, "IPv6 Scoped Address Architecture", RFC 4007,
             February 2005.












Daniele, et al.             Standards Track                    [Page 19]

RFC 4001          Internet Network Address Conventions     February 2005


10.2.  Informative References

  [RFC2553]  Gilligan, R., Thomson, S., Bound, J., and W. Stevens,
             "Basic Socket Interface Extensions for IPv6", RFC 2553,
             March 1999.

  [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
             MIB", RFC 2863, June 2000.

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.

  [RFC3419]  Daniele, M. and J. Schoenwaelder, "Textual Conventions for
             Transport Addresses", RFC 3419, December 2002.




































Daniele, et al.             Standards Track                    [Page 20]

RFC 4001          Internet Network Address Conventions     February 2005


Authors' Addresses

  Michael Daniele
  SyAM Software, Inc.
  1 Chestnut St, Suite 3-I
  Nashua, NH 03060
  USA

  Phone: +1 603 598-9575
  EMail: [email protected]


  Brian Haberman
  Johns Hopkins University Applied Physics Laboratory
  11100 Johns Hopkins Road
  Laurel, MD  20723-6099
  USA

  Phone: +1-443-778-1319
  EMail: [email protected]


  Shawn A. Routhier
  Wind River Systems, Inc.
  500 Wind River Way
  Alameda, CA  94501
  USA

  Phone: +1 510 749-2095
  EMail: [email protected]


  Juergen Schoenwaelder
  International University Bremen
  P.O. Box 750 561
  28725 Bremen
  Germany

  Phone: +49 421 200-3587
  EMail: [email protected]











Daniele, et al.             Standards Track                    [Page 21]

RFC 4001          Internet Network Address Conventions     February 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and at www.rfc-editor.org, and except as set
  forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the ISOC's procedures with respect to rights in ISOC Documents can
  be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Daniele, et al.             Standards Track                    [Page 22]