Network Working Group                                           A. Adams
Request for Comments: 3973                          NextHop Technologies
Category: Experimental                                       J. Nicholas
                                                               ITT A/CD
                                                              W. Siadak
                                                   NextHop Technologies
                                                           January 2005


        Protocol Independent Multicast - Dense Mode (PIM-DM):
                   Protocol Specification (Revised)

Status of This Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document specifies Protocol Independent Multicast - Dense Mode
  (PIM-DM).  PIM-DM is a multicast routing protocol that uses the
  underlying unicast routing information base to flood multicast
  datagrams to all multicast routers.  Prune messages are used to
  prevent future messages from propagating to routers without group
  membership information.




















Adams, et al.                 Experimental                      [Page 1]

RFC 3973                   PIM - Dense Mode                 January 2005


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
  2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
      2.1.  Definitions  . . . . . . . . . . . . . . . . . . . . . .  4
      2.2.  Pseudocode Notation  . . . . . . . . . . . . . . . . . .  5
  3.  PIM-DM Protocol Overview . . . . . . . . . . . . . . . . . . .  5
  4.  Protocol Specification . . . . . . . . . . . . . . . . . . . .  6
      4.1.  PIM Protocol State . . . . . . . . . . . . . . . . . . .  7
            4.1.1.  General Purpose State  . . . . . . . . . . . . .  7
            4.1.2.  (S,G) State  . . . . . . . . . . . . . . . . . .  8
            4.1.3.  State Summarization Macros . . . . . . . . . . .  8
      4.2.  Data Packet Forwarding Rules . . . . . . . . . . . . . . 10
      4.3.  Hello Messages . . . . . . . . . . . . . . . . . . . . . 11
            4.3.1.  Sending Hello Messages . . . . . . . . . . . . . 11
            4.3.2.  Receiving Hello Messages . . . . . . . . . . . . 11
            4.3.3.  Hello Message Hold Time  . . . . . . . . . . . . 12
            4.3.4.  Handling Router Failures . . . . . . . . . . . . 12
            4.3.5.  Reducing Prune Propagation Delay on LANs . . . . 13
      4.4.  PIM-DM Prune, Join, and Graft Messages . . . . . . . . . 13
            4.4.1.  Upstream Prune, Join, and Graft Messages . . . . 14
                    4.4.1.1.  Transitions from the Forwarding
                              (F) State  . . . . . . . . . . . . . . 17
                    4.4.1.2.  Transitions from the Pruned
                              (P) State  . . . . . . . . . . . . . . 18
                    4.4.1.3.  Transitions from the AckPending
                              (AP) State . . . . . . . . . . . . . . 19
            4.4.2.  Downstream Prune, Join, and Graft Messages . . . 21
                    4.4.2.1.  Transitions from the NoInfo State  . . 23
                    4.4.2.2.  Transitions from the PrunePending
                              (PP) State . . . . . . . . . . . . . . 24
                    4.4.2.3.  Transitions from the Prune
                              (P) State  . . . . . . . . . . . . . . 25
      4.5.  State Refresh  . . . . . . . . . . . . . . . . . . . . . 26
            4.5.1.  Forwarding of State Refresh Messages . . . . . . 26
            4.5.2.  State Refresh Message Origination  . . . . . . . 28
                    4.5.2.1.  Transitions from the NotOriginator
                              (NO) State . . . . . . . . . . . . . . 29
                    4.5.2.2.  Transitions from the Originator
                              (O) State  . . . . . . . . . . . . . . 29











Adams, et al.                 Experimental                      [Page 2]

RFC 3973                   PIM - Dense Mode                 January 2005


      4.6.  PIM Assert Messages  . . . . . . . . . . . . . . . . . . 30
            4.6.1.  Assert Metrics . . . . . . . . . . . . . . . . . 30
            4.6.2.  AssertCancel Messages  . . . . . . . . . . . . . 31
            4.6.3.  Assert State Macros  . . . . . . . . . . . . . . 32
            4.6.4.  (S,G) Assert Message State Machine . . . . . . . 32
                    4.6.4.1.  Transitions from NoInfo State  . . . . 34
                    4.6.4.2.  Transitions from Winner State  . . . . 35
                    4.6.4.3.  Transitions from Loser State . . . . . 36
            4.6.5.  Rationale for Assert Rules . . . . . . . . . . . 38
      4.7.  PIM Packet Formats . . . . . . . . . . . . . . . . . . . 38
            4.7.1.  PIM Header . . . . . . . . . . . . . . . . . . . 38
            4.7.2.  Encoded Unicast Address  . . . . . . . . . . . . 39
            4.7.3.  Encoded Group Address  . . . . . . . . . . . . . 40
            4.7.4.  Encoded Source Address . . . . . . . . . . . . . 41
            4.7.5.  Hello Message Format . . . . . . . . . . . . . . 42
                    4.7.5.1.  Hello Hold Time Option . . . . . . . . 43
                    4.7.5.2.  LAN Prune Delay Option . . . . . . . . 43
                    4.7.5.3.  Generation ID Option . . . . . . . . . 44
                    4.7.5.4.  State Refresh Capable Option . . . . . 44
            4.7.6.  Join/Prune Message Format  . . . . . . . . . . . 45
            4.7.7.  Assert Message Format  . . . . . . . . . . . . . 47
            4.7.8.  Graft Message Format . . . . . . . . . . . . . . 48
            4.7.9.  Graft Ack Message Format . . . . . . . . . . . . 48
            4.7.10. State Refresh Message Format . . . . . . . . . . 48
      4.8.  PIM-DM Timers  . . . . . . . . . . . . . . . . . . . . . 50
  5.  Protocol Interaction Considerations  . . . . . . . . . . . . . 53
      5.1.  PIM-SM Interactions  . . . . . . . . . . . . . . . . . . 53
      5.2.  IGMP Interactions  . . . . . . . . . . . . . . . . . . . 54
      5.3.  Source Specific Multicast (SSM) Interactions . . . . . . 54
      5.4.  Multicast Group Scope Boundary Interactions  . . . . . . 54
  6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 54
      6.1.  PIM Address Family . . . . . . . . . . . . . . . . . . . 54
      6.2.  PIM Hello Options  . . . . . . . . . . . . . . . . . . . 55
  7.  Security Considerations. . . . . . . . . . . . . . . . . . . . 55
      7.1.  Attacks Based on Forged Messages . . . . . . . . . . . . 55
      7.2.  Non-cryptographic Authentication Mechanisms  . . . . . . 56
      7.3.  Authentication Using IPsec . . . . . . . . . . . . . . . 56
      7.4.  Denial of Service Attacks  . . . . . . . . . . . . . . . 58
  8.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 58
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 58
      9.1.  Normative References . . . . . . . . . . . . . . . . . . 58
      9.2.  Informative References . . . . . . . . . . . . . . . . . 59
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 60
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 61







Adams, et al.                 Experimental                      [Page 3]

RFC 3973                   PIM - Dense Mode                 January 2005


1.  Introduction

  This specification defines a multicast routing algorithm for
  multicast groups that are densely distributed across a network.  This
  protocol does not have a topology discovery mechanism often used by a
  unicast routing protocol.  It employs the same packet formats sparse
  mode PIM (PIM-SM) uses.  This protocol is called PIM - Dense Mode.
  The foundation of this design was largely built on Deering's early
  work on IP multicast routing [12].

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
  be interpreted as described in RFC 2119 [11] and indicate requirement
  levels for compliant PIM-DM implementations.

2.1.  Definitions

  Multicast Routing Information Base (MRIB)
    This is the multicast topology table, which is typically derived
    from the unicast routing table, or from routing protocols such as
    MBGP that carry multicast-specific topology information.  PIM-DM
    uses the MRIB to make decisions regarding RPF interfaces.

  Tree Information Base (TIB)
    This is the collection of state maintained by a PIM router and
    created by receiving PIM messages and IGMP information from local
    hosts.  It essentially stores the state of all multicast
    distribution trees at that router.

  Reverse Path Forwarding (RPF)
    RPF is a multicast forwarding mode in which a data packet is
    accepted for forwarding only if it is received on an interface used
    to reach the source in unicast.

  Upstream Interface
    Interface toward the source of the datagram.  Also known as the RPF
    Interface.

  Downstream Interface
    All interfaces that are not the upstream interface, including the
    router itself.

  (S,G) Pair
    Source S and destination group G associated with an IP packet.





Adams, et al.                 Experimental                      [Page 4]

RFC 3973                   PIM - Dense Mode                 January 2005


2.2.  Pseudocode Notation

  We use set notation in several places in this specification.

  A (+) B
    is the union of two sets, A and B.

  A (-) B
    are the elements of set A that are not in set B.

  NULL
    is the empty set or list.

  Note that operations MUST be conducted in the order specified.  This
  is due to the fact that (-) is not a true difference operator,
  because B is not necessarily a subset of A.  That is, A (+) B (-) C =
  A (-) C (+) B is not a true statement unless C is a subset of both A
  and B.

  In addition, we use C-like syntax:

    =   denotes assignment of a variable.
    ==  denotes a comparison for equality.
    !=  denotes a comparison for inequality.

  Braces { and } are used for grouping.

3.  PIM-DM Protocol Overview

  This section provides an overview of PIM-DM behavior.  It is intended
  as an introduction to how PIM-DM works and is NOT definitive.  For
  the definitive specification, see Section 4, Protocol Specification.

  PIM-DM assumes that when a source starts sending, all downstream
  systems want to receive multicast datagrams.  Initially, multicast
  datagrams are flooded to all areas of the network.  PIM-DM uses RPF
  to prevent looping of multicast datagrams while flooding.  If some
  areas of the network do not have group members, PIM-DM will prune off
  the forwarding branch by instantiating prune state.

  Prune state has a finite lifetime.  When that lifetime expires, data
  will again be forwarded down the previously pruned branch.

  Prune state is associated with an (S,G) pair.  When a new member for
  a group G appears in a pruned area, a router can "graft" toward the
  source S for the group, thereby turning the pruned branch back into a
  forwarding branch.




Adams, et al.                 Experimental                      [Page 5]

RFC 3973                   PIM - Dense Mode                 January 2005


  The broadcast of datagrams followed by pruning of unwanted branches
  is often referred to as a flood and prune cycle and is typical of
  dense mode protocols.

  To minimize repeated flooding of datagrams and subsequent pruning
  associated with a particular (S,G) pair, PIM-DM uses a state refresh
  message.  This message is sent by the router(s) directly connected to
  the source and is propagated throughout the network.  When received
  by a router on its RPF interface, the state refresh message causes an
  existing prune state to be refreshed.

  Compared with multicast routing protocols with built-in topology
  discovery mechanisms (e.g., DVMRP [13]), PIM-DM has a simplified
  design and is not hard-wired into a specific topology discovery
  protocol.  However, this simplification does incur more overhead by
  causing flooding and pruning to occur on some links that could be
  avoided if sufficient topology information were available; i.e., to
  decide whether an interface leads to any downstream members of a
  particular group.  Additional overhead is chosen in favor of the
  simplification and flexibility gained by not depending on a specific
  topology discovery protocol.

  PIM-DM differs from PIM-SM in two essential ways: 1) There are no
  periodic joins transmitted, only explicitly triggered prunes and
  grafts.  2) There is no Rendezvous Point (RP).  This is particularly
  important in networks that cannot tolerate a single point of failure.
  (An RP is the root of a shared multicast distribution tree.  For more
  details, see [4]).

4.  Protocol Specification

  The specification of PIM-DM is broken into several parts:

  * Section 4.1 details the protocol state stored.
  * Section 4.2 specifies the data packet forwarding rules.
  * Section 4.3 specifies generation and processing of Hello messages.
  * Section 4.4 specifies the Join, Prune, and Graft generation and
                processing rules.
  * Section 4.5 specifies the State Refresh generation and forwarding
                rules.
  * Section 4.6 specifies the Assert generation and processing rules.
  * Section 4.7 gives details on PIM-DM Packet Formats.
  * Section 4.8 summarizes PIM-DM timers and their defaults.








Adams, et al.                 Experimental                      [Page 6]

RFC 3973                   PIM - Dense Mode                 January 2005


4.1.  PIM Protocol State

  This section specifies all the protocol states that a PIM-DM
  implementation should maintain to function correctly.  We term this
  state the Tree Information Base or TIB, as it holds the state of all
  the multicast distribution trees at this router.  In this
  specification, we define PIM-DM mechanisms in terms of the TIB.
  However, only a very simple implementation would actually implement
  packet forwarding operations in terms of this state.  Most
  implementations will use this state to build a multicast forwarding
  table, which would then be updated when the relevant state in the TIB
  changes.

  Unlike PIM-SM, PIM-DM does not maintain a keepalive timer associated
  with each (S,G) route.  Within PIM-DM, route and state information
  associated with an (S,G) entry MUST be maintained as long as any
  timer associated with that (S,G) entry is active.  When no timer
  associated with an (S,G) entry is active, all information concerning
  that (S,G) route may be discarded.

  Although we precisely specify the state to be kept, this does not
  mean that an implementation of PIM-DM has to hold the state in this
  form.  This is actually an abstract state definition, which is needed
  in order to specify the router's behavior.  A PIM-DM implementation
  is free to hold whatever internal state it requires and will still be
  conformant with this specification as long as it results in the same
  externally visible protocol behavior as an abstract router that holds
  the following state.

4.1.1.  General Purpose State

  A router stores the following non-group-specific state:

  For each interface:
    Hello Timer (HT)
    State Refresh Capable
    LAN Delay Enabled
    Propagation Delay (PD)
    Override Interval (OI)

    Neighbor State:
      For each neighbor:
        Information from neighbor's Hello
        Neighbor's Gen ID.
        Neighbor's LAN Prune Delay
        Neighbor's Override Interval
        Neighbor's State Refresh Capability
        Neighbor Liveness Timer (NLT)



Adams, et al.                 Experimental                      [Page 7]

RFC 3973                   PIM - Dense Mode                 January 2005


4.1.2.  (S,G) State

  For every source/group pair (S,G), a router stores the following
  state:

  (S,G) state:
    For each interface:
      Local Membership:
        State: One of {"NoInfo", "Include"}

      PIM (S,G) Prune State:
        State: One of {"NoInfo" (NI), "Pruned" (P), "PrunePending"
                       (PP)}
                       Prune Pending Timer (PPT)
                       Prune Timer (PT)

      (S,G) Assert Winner State:
        State: One of {"NoInfo" (NI), "I lost Assert" (L), "I won
                       Assert" (W)}
        Assert Timer (AT)
        Assert winner's IP Address
        Assert winner's Assert Metric

    Upstream interface-specific:
      Graft/Prune State:
        State: One of {"NoInfo" (NI), "Pruned" (P), "Forwarding" (F),
                       "AckPending" (AP) }
        GraftRetry Timer (GRT)
        Override Timer (OT)
        Prune Limit Timer (PLT)

      Originator State:
        Source Active Timer (SAT)
        State Refresh Timer (SRT)

4.1.3.  State Summarization Macros

  Using the state defined above, the following "macros" are defined and
  will be used in the descriptions of the state machines and pseudocode
  in the following sections.

  The most important macros are those defining the outgoing interface
  list (or "olist") for the relevant state.

  immediate_olist(S,G) = pim_nbrs (-) prunes(S,G) (+)
                         (pim_include(*,G) (-) pim_exclude(S,G) ) (+)
                         pim_include(S,G) (-) lost_assert(S,G) (-)
                         boundary(G)



Adams, et al.                 Experimental                      [Page 8]

RFC 3973                   PIM - Dense Mode                 January 2005


  olist(S,G) = immediate_olist(S,G) (-) RPF_interface(S)

  The macros pim_include(*,G) and pim_include(S,G) indicate the
  interfaces to which traffic might or might not be forwarded because
  of hosts that are local members on those interfaces.

  pim_include(*,G) = {all interfaces I such that:
                      local_receiver_include(*,G,I)}
  pim_include(S,G) = {all interfaces I such that:
                      local_receiver_include(S,G,I)}
  pim_exclude(S,G) = {all interfaces I such that:
                      local_receiver_exclude(S,G,I)}

  The macro RPF_interface(S) returns the RPF interface for source S.
  That is to say, it returns the interface used to reach S as indicated
  by the MRIB.

  The macro local_receiver_include(S,G,I) is true if the IGMP module or
  other local membership mechanism ([1], [2], [3], [6]) has determined
  that there are local members on interface I that seek to receive
  traffic sent specifically by S to G.

  The macro local_receiver_include(*,G,I) is true if the IGMP module or
  other local membership mechanism has determined that there are local
  members on interface I that seek to receive all traffic sent to G.
  Note that this determination is expected to account for membership
  joins initiated on or by the router.

  The macro local_receiver_exclude(S,G,I) is true if
  local_receiver_include(*,G,I) is true but none of the local members
  seek to receive traffic from S.

  The set pim_nbrs is the set of all interfaces on which the router has
  at least one active PIM neighbor.

  The set prunes(S,G) is the set of all interfaces on which the router
  has received Prune(S,G) messages:

  prunes(S,G) = {all interfaces I such that
                 DownstreamPState(S,G,I) is in Pruned state}











Adams, et al.                 Experimental                      [Page 9]

RFC 3973                   PIM - Dense Mode                 January 2005


  The set lost_assert(S,G) is the set of all interfaces on which the
  router has lost an (S,G) Assert.

  lost_assert(S,G) = {all interfaces I such that
                      lost_assert(S,G,I) == TRUE}

  boundary(G) = {all interfaces I with an administratively scoped
                 boundary for group G}

  The following pseudocode macro definitions are also used in many
  places in the specification.  Basically RPF' is the RPF neighbor
  toward a source unless a PIM-DM Assert has overridden the normal
  choice of neighbor.

  neighbor RPF'(S,G) {
    if ( I_Am_Assert_loser(S, G, RPF_interface(S) )) {
      return AssertWinner(S, G, RPF_interface(S) )
    } else {
      return MRIB.next_hop( S )
    }
  }

  The macro I_Am_Assert_loser(S, G, I) is true if the Assert state
  machine (in Section 4.6) for (S,G) on interface I is in the "I am
  Assert Loser" state.

4.2.  Data Packet Forwarding Rules

  The PIM-DM packet forwarding rules are defined below in pseudocode.

  iif is the incoming interface of the packet.  S is the source address
  of the packet.  G is the destination address of the packet (group
  address).  RPF_interface(S) is the interface the MRIB indicates would
  be used to route packets to S.

  First, an RPF check MUST be performed to determine whether the packet
  should be accepted based on TIB state and the interface on which that
  the packet arrived.  Packets that fail the RPF check MUST NOT be
  forwarded, and the router will conduct an assert process for the
  (S,G) pair specified in the packet.  Packets for which a route to the
  source cannot be found MUST be discarded.

  If the RPF check has been passed, an outgoing interface list is
  constructed for the packet.  If this list is not empty, then the
  packet MUST be forwarded to all listed interfaces.  If the list is
  empty, then the router will conduct a prune process for the (S,G)
  pair specified in the packet.




Adams, et al.                 Experimental                     [Page 10]

RFC 3973                   PIM - Dense Mode                 January 2005


  Upon receipt of a data packet from S addressed to G on interface iif:

  if (iif == RPF_interface(S) AND UpstreamPState(S,G) != Pruned) {
      oiflist = olist(S,G)
  } else {
      oiflist = NULL
  }
  forward packet on all interfaces in oiflist

  This pseudocode employs the following "macro" definition:

  UpstreamPState(S,G) is the state of the Upstream(S,G) state machine
  in Section 4.4.1.

4.3.  Hello Messages

  This section describes the generation and processing of Hello
  messages.

4.3.1.  Sending Hello Messages

  PIM-DM uses Hello messages to detect other PIM routers.  Hello
  messages are sent periodically on each PIM enabled interface.  Hello
  messages are multicast to the ALL-PIM-ROUTERS group.  When PIM is
  enabled on an interface or when a router first starts, the Hello
  Timer (HT) MUST be set to random value between 0 and
  Triggered_Hello_Delay.  This prevents synchronization of Hello
  messages if multiple routers are powered on simultaneously.

  After the initial Hello message, a Hello message MUST be sent every
  Hello_Period.  A single Hello timer MAY be used to trigger sending
  Hello messages on all active interfaces.  The Hello Timer SHOULD NOT
  be reset except when it expires.

4.3.2.  Receiving Hello Messages

  When a Hello message is received, the receiving router SHALL record
  the receiving interface, the sender, and any information contained in
  recognized options.  This information is retained for a number of
  seconds in the Hold Time field of the Hello Message.  If a new Hello
  message is received from a particular neighbor N, the Neighbor
  Liveness Timer (NLT(N,I)) MUST be reset to the newly received Hello
  Holdtime.  If a Hello message is received from a new neighbor, the
  receiving router SHOULD send its own Hello message after a random
  delay between 0 and Triggered_Hello_Delay.






Adams, et al.                 Experimental                     [Page 11]

RFC 3973                   PIM - Dense Mode                 January 2005


4.3.3.  Hello Message Hold Time

  The Hold Time in the Hello Message should be set to a value that can
  reasonably be expected to keep the Hello active until a new Hello
  message is received.  On most links, this will be 3.5 times the value
  of Hello_Period.

  If the Hold Time is set to '0xffff', the receiving router MUST NOT
  time out that Hello message.  This feature might be used for on-
  demand links to avoid keeping the link up with periodic Hello
  messages.

  If a Hold Time of '0' is received, the corresponding neighbor state
  expires immediately.  When a PIM router takes an interface down or
  changes IP address, a Hello message with a zero Hold Time SHOULD be
  sent immediately (with the old IP address if the IP address is
  changed) to cause any PIM neighbors to remove the old information
  immediately.

4.3.4.  Handling Router Failures

  If a Hello message is received from an active neighbor with a
  different Generation ID (GenID), the neighbor has restarted and may
  not contain the correct (S,G) state.  A Hello message SHOULD be sent
  after a random delay between 0 and Triggered_Hello_Delay (see 4.8)
  before any other messages are sent.  If the neighbor is downstream,
  the router MAY replay the last State Refresh message for any (S,G)
  pairs for which it is the Assert Winner indicating Prune and Assert
  status to the downstream router.  These State Refresh messages SHOULD
  be sent out immediately after the Hello message.  If the neighbor is
  the upstream neighbor for an (S,G) entry, the router MAY cancel its
  Prune Limit Timer to permit sending a prune and reestablishing a
  Pruned state in the upstream router.

  Upon startup, a router MAY use any State Refresh messages received
  within Hello_Period of its first Hello message on an interface to
  establish state information.  The State Refresh source will be the
  RPF'(S), and Prune status for all interfaces will be set according to
  the Prune Indicator bit in the State Refresh message.  If the Prune
  Indicator is set, the router SHOULD set the PruneLimitTimer to
  Prune_Holdtime and set the PruneTimer on all downstream interfaces to
  the State Refresh's Interval times two.  The router SHOULD then
  propagate the State Refresh as described in Section 4.5.1.








Adams, et al.                 Experimental                     [Page 12]

RFC 3973                   PIM - Dense Mode                 January 2005


4.3.5.  Reducing Prune Propagation Delay on LANs

  If all routers on a LAN support the LAN Prune Delay option, then the
  PIM routers on that LAN will use the values received to adjust their
  J/P_Override_Interval on that interface and the interface is LAN
  Delay Enabled.  Briefly, to avoid synchronization of Prune Override
  (Join) messages when multiple downstream routers share a multi-access
  link, sending of these messages is delayed by a small random amount
  of time.  The period of randomization is configurable and has a
  default value of 3 seconds.

  Each router on the LAN expresses its view of the amount of
  randomization necessary in the Override Interval field of the LAN
  Prune Delay option.  When all routers on a LAN use the LAN Prune
  Delay Option, all routers on the LAN MUST set their Override_Interval
  to the largest Override value on the LAN.

  The LAN Delay inserted by a router in the LAN Prune Delay option
  expresses the expected message propagation delay on the link and
  SHOULD be configurable by the system administrator.  When all routers
  on a link use the LAN Prune Delay Option, all routers on the LAN MUST
  set Propagation Delay to the largest LAN Delay on the LAN.

  PIM implementers should enforce a lower bound on the permitted values
  for this delay to allow for scheduling and processing delays within
  their router.  Such delays may cause received messages to be
  processed later and triggered messages to be sent later than
  intended.  Setting this LAN Prune Delay to too low a value may result
  in temporary forwarding outages, because a downstream router will not
  be able to override a neighbor's prune message before the upstream
  neighbor stops forwarding.

4.4.  PIM-DM Prune, Join, and Graft Messages

  This section describes the generation and processing of PIM-DM Join,
  Prune, and Graft messages.  Prune messages are sent toward the
  upstream neighbor for S to indicate that traffic from S addressed to
  group G is not desired.  In the case of downstream routers A and B,
  where A wishes to continue receiving data and B does not, A will send
  a Join in response to B's Prune to override the Prune.  This is the
  only situation in PIM-DM in which a Join message is used.  Finally, a
  Graft message is used to re-join a previously pruned branch to the
  delivery tree.








Adams, et al.                 Experimental                     [Page 13]

RFC 3973                   PIM - Dense Mode                 January 2005


4.4.1.  Upstream Prune, Join, and Graft Messages

  The Upstream(S,G) state machine for sending Prune, Graft, and Join
  messages is given below.  There are three states.

    Forwarding (F)
      This is the starting state of the Upsteam(S,G) state machine.
      The state machine is in this state if it just started or if
      oiflist(S,G) != NULL.

    Pruned (P)
      The set, olist(S,G), is empty.  The router will not forward data
      from S addressed to group G.

    AckPending (AP)
      The router was in the Pruned(P) state, but a transition has
      occurred in the Downstream(S,G) state machine for one of this
      (S,G) entry's outgoing interfaces, indicating that traffic from S
      addressed to G should again be forwarded.  A Graft message has
      been sent to RPF'(S), but a Graft Ack message has not yet been
      received.

  In addition, there are three state-machine-specific timers:

    GraftRetry Timer (GRT(S,G))
      This timer is set when a Graft is sent upstream.  If a
      corresponding GraftAck is not received before the timer expires,
      then another Graft is sent, and the GraftRetry Timer is reset.
      The timer is stopped when a Graft Ack message is received.  This
      timer is normally set to Graft_Retry_Period (see 4.8).

    Override Timer (OT(S,G))
      This timer is set when a Prune(S,G) is received on the upstream
      interface where olist(S,G) != NULL.  When the timer expires, a
      Join(S,G) message is sent on the upstream interface.  This timer
      is normally set to t_override (see 4.8).

    Prune Limit Timer (PLT(S,G))
      This timer is used to rate-limit Prunes on a LAN.  It is only
      used when the Upstream(S,G) state machine is in the Pruned state.
      A Prune cannot be sent if this timer is running.  This timer is
      normally set to t_limit (see 4.8).









Adams, et al.                 Experimental                     [Page 14]

RFC 3973                   PIM - Dense Mode                 January 2005


         +-------------+                        +-------------+
         |             |     olist == NULL      |             |
         |   Forward   |----------------------->|   Pruned    |
         |             |                        |             |
         +-------------+                        +-------------+
              ^   |                                  ^   |
              |   |                                  |   |
              |   |RPF`(S) Changes      olist == NULL|   |
              |   |                                  |   |
              |   |         +-------------+          |   |
              |   +-------->|             |----------+   |
              |             | AckPending  |              |
              +-------------|             |<-------------+
            Rcv GraftAck OR +-------------+ olist != NULL
          Rcv State Refresh
             With (P==0) OR
         S Directly Connect

               Figure 1: Upstream Interface State Machine

  In tabular form, the state machine is defined as follows:

+-------------------------------+--------------------------------------+
|                               |            Previous State            |
|                               +------------+------------+------------+
|            Event              | Forwarding |   Pruned   | AckPending |
+-------------------------------+------------+------------+------------+
| Data packet arrives on        | ->P Send   | ->P Send   | N/A        |
| RPF_Interface(S) AND          | Prune(S,G) | Prune(S,G) |            |
| olist(S,G) == NULL AND        |Set PLT(S,G)|Set PLT(S,G)|            |
| PLT(S,G) not running          |            |            |            |
+-------------------------------+------------+------------+------------+
| State Refresh(S,G) received   | ->F  Set   | ->P Reset  |->AP  Set   |
| from RPF`(S) AND              |    OT(S,G) |  PLT(S,G)  |    OT(S,G) |
| Prune Indicator == 1          |            |            |            |
+-------------------------------+------------+------------+------------+
| State Refresh(S,G) received   | ->F        | ->P Send   |->F Cancel  |
| from RPF`(S) AND              |            | Prune(S,G) |  GRT(S,G)  |
| Prune Indicator == 0 AND      |            |Set PLT(S,G)|            |
| PLT(S,G) not running          |            |            |            |
+-------------------------------+------------+------------+------------+










Adams, et al.                 Experimental                     [Page 15]

RFC 3973                   PIM - Dense Mode                 January 2005


+-------------------------------+--------------------------------------+
|                               |            Previous State            |
+                               +------------+------------+------------+
|            Event              | Forwarding |   Pruned   | AckPending |
+-------------------------------+------------+------------+------------+
| See Join(S,G) to RPF'(S)      | ->F Cancel | ->P        |->AP Cancel |
|                               |    OT(S,G) |            |    OT(S,G) |
+-------------------------------+------------+------------+------------+
| See Prune(S,G)                | ->F Set    | ->P        |->AP Set    |
|                               |    OT(S,G) |            |    OT(S,G) |
+-------------------------------+------------+------------+------------+
| OT(S,G) Expires               | ->F Send   | N/A        |->AP Send   |
|                               |  Join(S,G) |            |  Join(S,G) |
+-------------------------------+------------+------------+------------+
| olist(S,G)->NULL              | ->P Send   | N/A        |->P Send    |
|                               | Prune(S,G) |            | Prune(S,G) |
|                               |Set PLT(S,G)|            |Set PLT(S,G)|
|                               |            |            | Cancel     |
|                               |            |            | GRT(S,G)   |
+-------------------------------+------------+------------+------------+
| olist(S,G)->non-NULL          | N/A        | ->AP Send  | N/A        |
|                               |            | Graft(S,G) |            |
|                               |            |Set GRT(S,G)|            |
+-------------------------------+------------+------------+------------+
| RPF'(S) Changes AND           | ->AP Send  | ->AP Send  |->AP Send   |
| olist(S,G) != NULL            | Graft(S,G) | Graft(S,G) | Graft(S,G) |
|                               |Set GRT(S,G)|Set GRT(S,G)|Set GRT(S,G)|
+-------------------------------+------------+------------+------------+
| RPF'(S) Changes AND           | ->P        | ->P Cancel |->P Cancel  |
| olist(S,G) == NULL            |            |  PLT(S,G)  |  GRT(S,G)  |
+-------------------------------+------------+------------+------------+
| S becomes directly connected  | ->F        | ->P        |->F Cancel  |
|                               |            |            |  GRT(S,G)  |
+-------------------------------+------------+------------+------------+
| GRT(S,G) Expires              | N/A        | N/A        |->AP Send   |
|                               |            |            | Graft(S,G) |
|                               |            |            |Set GRT(S,G)|
+-------------------------------+------------+------------+------------+
| Receive GraftAck(S,G) from    | ->F        | ->P        |->F Cancel  |
| RPF'(S)                       |            |            |  GRT(S,G)  |
+-------------------------------+------------+------------+------------+

  The transition event "RcvGraftAck(S,G)" implies receiving a Graft Ack
  message targeted to this router's address on the incoming interface
  for the (S,G) entry.  If the destination address is not correct, the
  state transitions in this state machine must not occur.





Adams, et al.                 Experimental                     [Page 16]

RFC 3973                   PIM - Dense Mode                 January 2005


4.4.1.1.  Transitions from the Forwarding (F) State

  When the Upstream(S,G) state machine is in the Forwarding (F) state,
  the following events may trigger a transition:

    Data Packet arrives on RPF_Interface(S) AND olist(S,G) == NULL AND
    S NOT directly connected
      The Upstream(S,G) state machine MUST transition to the Pruned (P)
      state, send a Prune(S,G) to RPF'(S), and set PLT(S,G) to t_limit
      seconds.

    State Refresh(S,G) Received from RPF'(S)
      The Upstream(S,G) state machine remains in a Forwarding state.
      If the received State Refresh has the Prune Indicator bit set to
      one, this router must override the upstream router's Prune state
      after a short random interval.  If OT(S,G) is not running and the
      Prune Indicator bit equals one, the router MUST set OT(S,G) to
      t_override seconds.

    See Join(S,G) to RPF'(S)
      This event is only relevant if RPF_interface(S) is a shared
      medium.  This router sees another router on RPF_interface(S) send
      a Join(S,G) to RPF'(S,G).  If the OT(S,G) is running, then it
      means that the router had scheduled a Join to override a
      previously received Prune.  Another router has responded more
      quickly with a Join, so the local router SHOULD cancel its
      OT(S,G), if it is running.  The Upstream(S,G) state machine
      remains in the Forwarding (F) state.

    See Prune(S,G) AND S NOT directly connected
      This event is only relevant if RPF_interface(S) is a shared
      medium.  This router sees another router on RPF_interface(S) send
      a Prune(S,G).  As this router is in Forwarding state, it must
      override the Prune after a short random interval.  If OT(S,G) is
      not running, the router MUST set OT(S,G) to t_override seconds.
      The Upstream(S,G) state machine remains in Forwarding (F) state.

    OT(S,G) Expires AND S NOT directly connected
      The OverrideTimer (OT(S,G)) expires.  The router MUST send a
      Join(S,G) to RPF'(S) to override a previously detected prune.
      The Upstream(S,G) state machine remains in the Forwarding (F)
      state.

    olist(S,G) -> NULL AND S NOT directly connected
      The Upstream(S,G) state machine MUST transition to the Pruned (P)
      state, send a Prune(S,G) to RPF'(S), and set PLT(S,G) to t_limit
      seconds.




Adams, et al.                 Experimental                     [Page 17]

RFC 3973                   PIM - Dense Mode                 January 2005


    RPF'(S) Changes AND olist(S,G) is non-NULL AND S NOT directly
    connected
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine MUST transition to the AckPending (AP) state, unicast a
      Graft to the new RPF'(S), and set the GraftRetry Timer (GRT(S,G))
      to Graft_Retry_Period.

    RPF'(S) Changes AND olist(S,G) is NULL
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine MUST transition to the Pruned (P) state.

4.4.1.2.  Transitions from the Pruned (P) State

  When the Upstream(S,G) state machine is in the Pruned (P) state, the
  following events may trigger a transition:

    Data arrives on RPF_interface(S) AND PLT(S,G) not running AND S NOT
    directly connected
      Either another router on the LAN desires traffic from S addressed
      to G or a previous Prune was lost.  To prevent generating a
      Prune(S,G) in response to every data packet, the PruneLimit Timer
      (PLT(S,G)) is used.  Once the PLT(S,G) expires, the router needs
      to send another prune in response to a data packet not received
      directly from the source.  A Prune(S,G) MUST be sent to RPF'(S),
      and the PLT(S,G) MUST be set to t_limit.

    State Refresh(S,G) Received from RPF'(S)
      The Upstream(S,G) state machine remains in a Pruned state.  If
      the State Refresh has its Prune Indicator bit set to zero and
      PLT(S,G) is not running, a Prune(S,G) MUST be sent to RPF'(S),
      and the PLT(S,G) MUST be set to t_limit.  If the State Refresh
      has its Prune Indicator bit set to one, the router MUST reset
      PLT(S,G) to t_limit.

    See Prune(S,G) to RPF'(S)
      A Prune(S,G) is seen on RPF_interface(S) to RPF'(S).  The
      Upstream(S,G) state machine stays in the Pruned (P) state.  The
      router MAY reset its PLT(S,G) to the value in the Holdtime field
      of the received message if it is greater than the current value
      of the PLT(S,G).

    olist(S,G)->non-NULL AND S NOT directly connected
      The set of interfaces defined by the olist(S,G) macro becomes
      non-empty, indicating that traffic from S addressed to group G
      must be forwarded.  The Upstream(S,G) state machine MUST cancel
      PLT(S,G), transition to the AckPending (AP) state and unicast a



Adams, et al.                 Experimental                     [Page 18]

RFC 3973                   PIM - Dense Mode                 January 2005


      Graft message to RPF'(S).  The Graft Retry Timer (GRT(S,G)) MUST
      be set to Graft_Retry_Period.

    RPF'(S) Changes AND olist(S,G) == non-NULL AND S NOT directly
    connected
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine MUST cancel PLT(S,G), transition to the AckPending (AP)
      state, send a Graft unicast to the new RPF'(S), and set the
      GraftRetry Timer (GRT(S,G)) to Graft_Retry_Period.

    RPF'(S) Changes AND olist(S,G) == NULL AND S NOT directly connected
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine stays in the Pruned (P) state and MUST cancel the
      PLT(S,G) timer.

    S becomes directly connected
      Unicast routing changed so that S is directly connected.  The
      Upstream(S,G) state machine remains in the Pruned (P) state.

4.4.1.3.  Transitions from the AckPending (AP) State

  When the Upstream(S,G) state machine is in the AckPending (AP) state,
  the following events may trigger a transition:

    State Refresh(S,G) Received from RPF'(S) with Prune Indicator == 1
      The Upstream(S,G) state machine remains in an AckPending state.
      The router must override the upstream router's Prune state after
      a short random interval.  If OT(S,G) is not running and the Prune
      Indicator bit equals one, the router MUST set OT(S,G) to
      t_override seconds.

    State Refresh(S,G) Received from RPF'(S) with Prune Indicator == 0
      The router MUST cancel its GraftRetry Timer (GRT(S,G)) and
      transition to the Forwarding (F) state.

    See Join(S,G) to RPF'(S,G)
      This event is only relevant if RPF_interface(S) is a shared
      medium.  This router sees another router on RPF_interface(S) send
      a Join(S,G) to RPF'(S,G).  If the OT(S,G) is running, then it
      means that the router had scheduled a Join to override a
      previously received Prune.  Another router has responded more
      quickly with a Join, so the local router SHOULD cancel its
      OT(S,G), if it is running.  The Upstream(S,G) state machine
      remains in the AckPending (AP) state.





Adams, et al.                 Experimental                     [Page 19]

RFC 3973                   PIM - Dense Mode                 January 2005


    See Prune(S,G)
      This event is only relevant if RPF_interface(S) is a shared
      medium.  This router sees another router on RPF_interface(S) send
      a Prune(S,G).  As this router is in AckPending (AP) state, it
      must override the Prune after a short random interval.  If
      OT(S,G) is not running, the router MUST set OT(S,G) to t_override
      seconds.  The Upstream(S,G) state machine remains in AckPending
      (AP) state.

    OT(S,G) Expires
      The OverrideTimer (OT(S,G)) expires.  The router MUST send a
      Join(S,G) to RPF'(S).  The Upstream(S,G) state machine remains in
      the AckPending (AP) state.

    olist(S,G) -> NULL
      The set of interfaces defined by the olist(S,G) macro becomes
      null, indicating that traffic from S addressed to group G should
      no longer be forwarded.  The Upstream(S,G) state machine MUST
      transition to the Pruned (P) state.  A Prune(S,G) MUST be
      multicast to the RPF_interface(S), with RPF'(S) named in the
      upstream neighbor field.  The GraftRetry Timer (GRT(S,G)) MUST be
      cancelled, and PLT(S,G) MUST be set to t_limit seconds.

    RPF'(S) Changes AND olist(S,G) does not become NULL AND S NOT
    directly connected
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine stays in the AckPending (AP) state.  A Graft MUST be
      unicast to the new RPF'(S) and the GraftRetry Timer (GRT(S,G))
      reset to Graft_Retry_Period.

    RPF'(S) Changes AND olist(S,G) == NULL AND S NOT directly connected
      Unicast routing or Assert state causes RPF'(S) to change,
      including changes to RPF_Interface(S).  The Upstream(S,G) state
      machine MUST transition to the Pruned (P) state.  The GraftRetry
      Timer (GRT(S,G)) MUST be cancelled.

    S becomes directly connected
      Unicast routing has changed so that S is directly connected.  The
      GraftRetry Timer MUST be cancelled, and the Upstream(S,G) state
      machine MUST transition to the Forwarding(F) state.










Adams, et al.                 Experimental                     [Page 20]

RFC 3973                   PIM - Dense Mode                 January 2005


    GRT(S,G) Expires
      The GraftRetry Timer (GRT(S,G)) expires for this (S,G) entry.
      The Upstream(S,G) state machine stays in the AckPending (AP)
      state.  Another Graft message for (S,G) SHOULD be unicast to
      RPF'(S) and the GraftRetry Timer (GRT(S,G)) reset to
      Graft_Retry_Period.  It is RECOMMENDED that the router retry a
      configured number of times before ceasing retries.

    See GraftAck(S,G) from RPF'(S)
      A GraftAck is received from  RPF'(S).  The GraftRetry Timer MUST
      be cancelled, and the Upstream(S,G) state machine MUST transition
      to the Forwarding(F) state.

4.4.2.  Downstream Prune, Join, and Graft Messages

  The Prune(S,G) Downstream state machine for receiving Prune, Join and
  Graft messages on interface I is given below.  This state machine
  MUST always be in the NoInfo state on the upstream interface.  It
  contains three states.

    NoInfo(NI)
      The interface has no (S,G) Prune state, and neither the Prune
      timer (PT(S,G,I)) nor the PrunePending timer ((PPT(S,G,I)) is
      running.

    PrunePending(PP)
      The router has received a Prune(S,G) on this interface from a
      downstream neighbor and is waiting to see whether the prune will
      be overridden by another downstream router.  For forwarding
      purposes, the PrunePending state functions exactly like the
      NoInfo state.

    Pruned(P)
      The router has received a Prune(S,G) on this interface from a
      downstream neighbor, and the Prune was not overridden.  Data from
      S addressed to group G is no longer being forwarded on this
      interface.

  In addition, there are two timers:

    PrunePending Timer (PPT(S,G,I))
      This timer is set when a valid Prune(S,G) is received.  Expiry of
      the PrunePending Timer (PPT(S,G,I)) causes the interface to
      transition to the Pruned state.







Adams, et al.                 Experimental                     [Page 21]

RFC 3973                   PIM - Dense Mode                 January 2005


    Prune Timer (PT(S,G,I))
      This timer is set when the PrunePending Timer (PT(S,G,I))
      expires.  Expiry of the Prune Timer (PT(S,G,I)) causes the
      interface to transition to the NoInfo (NI) state, thereby
      allowing data from S addressed to group G to be forwarded on the
      interface.

           +-------------+                        +-------------+
           |             |      PPT Expires       |             |
           |PrunePending |----------------------->|   Pruned    |
           |             |                        |             |
           +-------------+                        +-------------+
                |   ^                                      |
                |   |                                      |
                |   |Rcv Prune                             |
                |   |                                      |
                |   |         +-------------+              |
                |   +---------|             |              |
                |             |   NoInfo    |<-------------+
                +------------>|             | Rcv Join/Graft OR
            Rcv Join/Graft OR +-------------+ PT Expires OR
          RPF_Interface(S)->I                 RPF_Interface(S)->I

                Figure 2: Downstream Interface State Machine



























Adams, et al.                 Experimental                     [Page 22]

RFC 3973                   PIM - Dense Mode                 January 2005


  In tabular form, the state machine is as follows:

+-------------------------------+--------------------------------------+
|                               |            Previous State            |
+                               +------------+------------+------------+
|            Event              |  No Info   | PrunePend  |   Pruned   |
+-------------------------------+------------+------------+------------+
| Receive Prune(S,G)            |->PP  Set   |->PP        |->P Reset   |
|                               | PPT(S,G,I) |            |  PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Receive Join(S,G)             |->NI        |->NI Cancel |->NI Cancel |
|                               |            | PPT(S,G,I) |  PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Receive Graft(S,G)            |->NI Send   |->NI Send   |->NI Send   |
|                               |  GraftAck  |  GraftAck  |  GraftAck  |
|                               |            |  Cancel    |  Cancel    |
|                               |            | PPT(S,G,I) |  PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| PPT(S,G) Expires              | N/A        |->P Set     | N/A        |
|                               |            |  PT(S,G,I) |            |
+-------------------------------+------------+------------+------------+
| PT(S,G) Expires               | N/A        | N/A        |->NI        |
+-------------------------------+------------+------------+------------+
| RPF_Interface(S) becomes I    |->NI        |->NI Cancel |->NI Cancel |
|                               |            | PPT(S,G,I) |  PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Send State Refresh(S,G) out I |->NI        |->PP        |->P Reset   |
|                               |            |            |  PT(S,G,I) |
+-------------------------------+------------+------------+------------+

  The transition events "Receive Graft(S,G)", "Receive Prune(S,G)", and
  "Receive Join(S,G)" denote receiving a Graft, Prune, or Join message
  in which this router's address on I is contained in the message's
  upstream neighbor field.  If the upstream neighbor field does not
  match this router's address on I, then these state transitions in
  this state machine must not occur.

4.4.2.1.  Transitions from the NoInfo State

  When the Prune(S,G) Downstream state machine is in the NoInfo (NI)
  state, the following events may trigger a transition:

    Receive Prune(S,G)
      A Prune(S,G) is received on interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      PrunePending (PP) state.  The PrunePending Timer (PPT(S,G,I))
      MUST be set to J/P_Override_Interval if the router has more than



Adams, et al.                 Experimental                     [Page 23]

RFC 3973                   PIM - Dense Mode                 January 2005


      one neighbor on I.  If the router has only one neighbor on
      interface I, then it SHOULD set the PPT(S,G,I) to zero,
      effectively transitioning immediately to the Pruned (P) state.

    Receive Graft(S,G)
      A Graft(S,G) is received on the interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I stays in the NoInfo (NI)
      state.  A GraftAck(S,G) MUST be unicast to the originator of the
      Graft(S,G) message.

4.4.2.2.  Transitions from the PrunePending (PP) State

  When the Prune(S,G) downstream state machine is in the PrunePending
  (PP) state, the following events may trigger a transition.

    Receive Join(S,G)
      A Join(S,G) is received on interface I with the upstream neighbor
      field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      NoInfo (NI) state.  The PrunePending Timer (PPT(S,G,I)) MUST be
      cancelled.

    Receive Graft(S,G)
      A Graft(S,G) is received on interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      NoInfo (NI) state and MUST unicast a Graft Ack message to the
      Graft originator.  The PrunePending Timer (PPT(S,G,I)) MUST be
      cancelled.

    PPT(S,G,I) Expires
      The PrunePending Timer (PPT(S,G,I)) expires, indicating that no
      neighbors have overridden the previous Prune(S,G) message.  The
      Prune(S,G) Downstream state machine on interface I MUST
      transition to the Pruned (P) state.  The Prune Timer (PT(S,G,I))
      is started and MUST be initialized to the received
      Prune_Hold_Time minus J/P_Override_Interval.  A PruneEcho(S,G)
      MUST be sent on I if I has more than one PIM neighbor.  A
      PruneEcho(S,G) is simply a Prune(S,G) message multicast by the
      upstream router to a LAN, with itself as the Upstream Neighbor.
      Its purpose is to add additional reliability so that if a Join
      that should have overridden the Prune is lost locally on the LAN,
      the PruneEcho(S,G) may be received and trigger a new Join
      message.  A PruneEcho(S,G) is OPTIONAL on an interface with only
      one PIM neighbor.  In addition, the router MUST evaluate any
      possible transitions in the Upstream(S,G) state machine.




Adams, et al.                 Experimental                     [Page 24]

RFC 3973                   PIM - Dense Mode                 January 2005


    RPF_Interface(S) becomes interface I
      The upstream interface for S has changed.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      NoInfo (NI) state.  The PrunePending Timer (PPT(S,G,I)) MUST be
      cancelled.

4.4.2.3.  Transitions from the Prune (P) State

  When the Prune(S,G) Downstream state machine is in the Pruned (P)
  state, the following events may trigger a transition.

    Receive Prune(S,G)
      A Prune(S,G) is received on the interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I remains in the Pruned (P)
      state.  The Prune Timer (PT(S,G,I)) SHOULD be reset to the
      holdtime contained in the Prune(S,G) message if it is greater
      than the current value.

    Receive Join(S,G)
      A Join(S,G) is received on the interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      downstream state machine on interface I MUST transition to the
      NoInfo (NI) state.  The Prune Timer (PT(S,G,I)) MUST be
      cancelled.  The router MUST evaluate any possible transitions in
      the Upstream(S,G) state machine.

    Receive Graft(S,G)
      A Graft(S,G) is received on interface I with the upstream
      neighbor field set to the router's address on I.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      NoInfo (NI) state and send a Graft Ack back to the Graft's
      source.  The Prune Timer (PT(S,G,I)) MUST be cancelled.  The
      router MUST evaluate any possible transitions in the
      Upstream(S,G) state machine.

    PT(S,G,I) Expires
      The Prune Timer (PT(S,G,I)) expires, indicating that it is again
      time to flood data from S addressed to group G onto interface I.
      The Prune(S,G) Downstream state machine on interface I MUST
      transition to the NoInfo (NI) state.  The router MUST evaluate
      any possible transitions in the Upstream(S,G) state machine.

    RPF_Interface(S) becomes interface I
      The upstream interface for S has changed.  The Prune(S,G)
      Downstream state machine on interface I MUST transition to the
      NoInfo (NI) state.  The PruneTimer (PT(S,G,I)) MUST be cancelled.




Adams, et al.                 Experimental                     [Page 25]

RFC 3973                   PIM - Dense Mode                 January 2005


    Send State Refresh(S,G) out interface I
      The router has refreshed the Prune(S,G) state on interface I.
      The router MUST reset the Prune Timer (PT(S,G,I)) to the Holdtime
      from an active Prune received on interface I.  The Holdtime used
      SHOULD be the largest active one but MAY be the most recently
      received active Prune Holdtime.

4.5.  State Refresh

  This section describes the major portions of the state refresh
  mechanism.

4.5.1.  Forwarding of State Refresh Messages

  When a State Refresh message, SRM, is received, it is forwarded
  according to the following pseudo-code.

  if (iif != RPF_interface(S))
    return;
  if (RPF'(S) != srcaddr(SRM))
    return;
  if (StateRefreshRateLimit(S,G) == TRUE)
    return;

  for each interface I in pim_nbrs {
    if (TTL(SRM) == 0 OR (TTL(SRM) - 1) < Threshold(I))
      continue;     /* Out of TTL, skip this interface */
    if (boundary(I,G))
      continue;     /* This interface is scope boundary, skip it */
    if (I == iif)
      continue;     /* This is the incoming interface, skip it */
    if (lost_assert(S,G,I) == TRUE)
      continue;     /* Let the Assert Winner do State Refresh */

    Copy SRM to SRM';   /* Make a copy of SRM to forward */

    if (I contained in prunes(S,G)) {
      set Prune Indicator bit of SRM' to 1;

      if StateRefreshCapable(I) == TRUE
        set PT(S,G) to largest active holdtime read from a Prune
        message accepted on I;









Adams, et al.                 Experimental                     [Page 26]

RFC 3973                   PIM - Dense Mode                 January 2005


    } else {
      set Prune Indicator bit of SRM' to 0;
    }

    set srcaddr(SRM') to my_addr(I);
    set TTL of SRM' to TTL(SRM) - 1;
    set metric of SRM' to metric of unicast route used to reach S;
    set pref of SRM' to preference of unicast route used to reach S;
    set mask of SRM' to mask of route used to reach S;

    if (AssertState == NoInfo) {
      set Assert Override of SRM' to 1;
    } else {
      set Assert Override of SRM' to 0;
    }

    transmit SRM' on I;
  }

  The pseudocode above employs the following macro definitions.

  Boundary(I,G) is TRUE if an administratively scoped boundary for
  group G is configured on interface I.

  StateRefreshCapable(I) is TRUE if all neighbors on an interface use
  the State Refresh option.

  StateRefreshRateLimit(S,G) is TRUE if the time elapsed since the last
  received StateRefresh(S,G) is less than the configured
  RefreshLimitInterval.

  TTL(SRM) returns the TTL contained in the State Refresh Message, SRM.
  This is different from the TTL contained in the IP header.

  Threshold(I) returns the minimum TTL that a packet must have before
  it can be transmitted on interface I.

  srcaddr(SRM) returns the source address contained in the network
  protocol (e.g., IPv4) header of the State Refresh Message, SRM.

  my_addr(I) returns this node's network (e.g., IPv4) address on
  interface I.









Adams, et al.                 Experimental                     [Page 27]

RFC 3973                   PIM - Dense Mode                 January 2005


4.5.2.  State Refresh Message Origination

  This section describes the origination of State Refresh messages.
  These messages are generated periodically by the PIM-DM router
  directly connected to a source.  One Origination(S,G) state machine
  exists per (S,G) entry in a PIM-DM router.

  The Origination(S,G) state machine has the following states:

    NotOriginator(NO)
      This is the starting state of the Origination(S,G) state machine.
      While in this state, a router will not originate State Refresh
      messages for the (S,G) pair.

    Originator(O)
      When in this state the router will periodically originate State
      Refresh messages.  Only routers directly connected to S may
      transition to this state.

  In addition, there are two state machine specific timers:

    State Refresh Timer (SRT(S,G))
      This timer controls when State Refresh messages are generated.
      The timer is initially set when that Origination(S,G) state
      machine transitions to the O state.  It is cancelled when the
      Origination(S,G) state machine transitions to the NO state.  This
      timer is normally set to StateRefreshInterval (see 4.8).

    Source Active Timer (SAT(S,G))
      This timer is first set when the Origination(S,G) state machine
      transitions to the O state and is reset on the receipt of every
      data packet from S addressed to group G.  When it expires, the
      Origination(S,G) state machine transitions to the NO state.  This
      timer is normally set to SourceLifetime (see 4.8).

           +-------------+  Rcv Directly From S   +-------------+
           |             |----------------------->|             |
           |NotOriginator|                        | Originator  |
           |             |<-----------------------|             |
           +-------------+     SAT Expires OR     +-------------+
                            S NOT Direct Connect

                    Figure 3: State Refresh State Machine








Adams, et al.                 Experimental                     [Page 28]

RFC 3973                   PIM - Dense Mode                 January 2005


  In tabular form, the state machine is defined as follows:

+----------------------------------------------------------------------+
|                                  |           Previous State          |
|                                  +---------------+-------------------+
|            Event                 | NotOriginator |    Originator     |
+----------------------------------+---------------+-------------------+
| Receive Data from S AND          | ->O           | ->O Reset         |
| S directly connected             | Set SRT(S,G)  |     SAT(S,G)      |
|                                  | Set SAT(S,G)  |                   |
+----------------------------------+---------------+-------------------+
| SRT(S,G) Expires                 | N/A           | ->O    Send       |
|                                  |               | StateRefresh(S,G) |
|                                  |               |  Reset SRT(S,G)   |
+----------------------------------+---------------+-------------------+
| SAT(S,G) Expires                 | N/A           | ->NO  Cancel      |
|                                  |               |       SRT(S,G)    |
+----------------------------------+---------------+-------------------+
| S no longer directly connected   | ->NO          | ->NO              |
|                                  |               |   Cancel SRT(S,G) |
|                                  |               |   Cancel SAT(S,G) |
+----------------------------------+---------------+-------------------+

4.5.2.1.  Transitions from the NotOriginator (NO) State

  When the Originating(S,G) state machine is in the NotOriginator (NO)
  state, the following event may trigger a transition:

    Data Packet received from directly connected Source S addressed to
    group G
      The router MUST transition to an Originator (O) state, set
      SAT(S,G) to SourceLifetime, and set SRT(S,G) to
      StateRefreshInterval.  The router SHOULD record the TTL of the
      packet for use in State Refresh messages.

4.5.2.2.  Transitions from the Originator (O) State

  When the Originating(S,G) state machine is in the Originator (O)
  state, the following events may trigger a transition:

    Receive Data Packet from S addressed to G
      The router remains in the Originator (O) state and MUST reset
      SAT(S,G) to SourceLifetime.  The router SHOULD increase its
      recorded TTL to match the TTL of the packet, if the packet's TTL
      is larger than the previously recorded TTL.  A router MAY record
      the TTL based on an implementation specific sampling policy to
      avoid examining the TTL of every multicast packet it handles.




Adams, et al.                 Experimental                     [Page 29]

RFC 3973                   PIM - Dense Mode                 January 2005


    SRT(S,G) Expires
      The router remains in the Originator (O) state and MUST reset
      SRT(S,G) to StateRefreshInterval.  The router MUST also generate
      State Refresh messages for transmission, as described in the
      State Refresh Forwarding rules (Section 4.5.1), except for the
      TTL.  If the TTL of data packets from S to G are being recorded,
      then the TTL of each State Refresh message is set to the highest
      recorded TTL.  Otherwise, the TTL is set to the configured State
      Refresh TTL.  Let I denote the interface over which a State
      Refresh message is being sent.  If the Prune(S,G) Downstream
      state machine is in the Pruned (P) state, then the Prune-
      Indicator bit MUST be set to 1 in the State Refresh message being
      sent over I. Otherwise, the Prune-Indicator bit MUST be set to 0.

    SAT(S,G) Expires
      The router MUST cancel the SRT(S,G) timer and transition to the
      NotOriginator (NO) state.

    S is no longer directly connected
      The router MUST transition to the NotOriginator (NO) state and
      cancel both the SAT(S,G) and SRT(S,G).

4.6.  PIM Assert Messages

4.6.1.  Assert Metrics

  Assert metrics are defined as follows:

  struct assert_metric {
    metric_preference;
    route_metric;
    ip_address;
  };

  When assert_metrics are compared, the metric_preference and
  route_metric field are compared in order, where the first lower value
  wins.  If all fields are equal, the IP address of the router that
  sourced the Assert message is used as a tie-breaker, with the highest
  IP address winning.












Adams, et al.                 Experimental                     [Page 30]

RFC 3973                   PIM - Dense Mode                 January 2005


  An Assert metric for (S,G) to include in (or compare against) an
  Assert message sent on interface I should be computed by using the
  following pseudocode:

  assert_metric
  my_assert_metric(S,G,I) {
    if (CouldAssert(S,G,I) == TRUE) {
      return spt_assert_metric(S,G,I)
    } else {
      return infinite_assert_metric()
    }
  }

  spt_assert_metric(S,I) gives the Assert metric we use if we're
  sending an Assert based on active (S,G) forwarding state:

  assert_metric
  spt_assert_metric(S,I) {
    return {0,MRIB.pref(S),MRIB.metric(S),my_addr(I)}
  }

  MRIB.pref(X) and MRIB.metric(X) are the routing preference and
  routing metrics associated with the route to a particular (unicast)
  destination X, as determined by the MRIB.  my_addr(I) is simply the
  router's network (e.g., IP) address associated with the local
  interface I.

  infinite_assert_metric() gives the Assert metric we need to send an
  Assert but doesn't match (S,G) forwarding state:

  assert_metric
  infinite_assert_metric() {
    return {1,infinity,infinity,0}
  }

4.6.2.  AssertCancel Messages

  An AssertCancel(S,G) message is simply an Assert message for (S,G)
  with infinite metric.  The Assert winner sends this message when it
  changes its upstream interface to this interface.  Other routers will
  see this metric, causing those with forwarding state to send their
  own Asserts and re-establish an Assert winner.

  AssertCancel messages are simply an optimization.  The original
  Assert timeout mechanism will eventually allow a subnet to become
  consistent; the AssertCancel mechanism simply causes faster
  convergence.  No special processing is required for an AssertCancel
  message, as it is simply an Assert message from the current winner.



Adams, et al.                 Experimental                     [Page 31]

RFC 3973                   PIM - Dense Mode                 January 2005


4.6.3.  Assert State Macros

  The macro lost_assert(S,G,I), is used in the olist computations of
  Section 4.1.3, and is defined as follows:

  bool lost_assert(S,G,I) {
    if ( RPF_interface(S) == I ) {
      return FALSE
    } else {
      return (AssertWinner(S,G,I) != me  AND
              (AssertWinnerMetric(S,G,I) is better than
               spt_assert_metric(S,G,I)))
    }
  }

  AssertWinner(S,G,I) defaults to NULL, and AssertWinnerMetric(S,G,I)
  defaults to Infinity when in the NoInfo state.

4.6.4.  (S,G) Assert Message State Machine

  The (S,G) Assert state machine for interface I is shown in Figure 4.
  There are three states:

    NoInfo (NI)
      This router has no (S,G) Assert state on interface I.

    I am Assert Winner (W)
      This router has won an (S,G) Assert on interface I.  It is now
      responsible for forwarding traffic from S destined for G via
      interface I.

    I am Assert Loser (L)
      This router has lost an (S,G) Assert on interface I.  It must not
      forward packets from S destined for G onto interface I.

  In addition, an Assert Timer (AT(S,G,I)) is used to time out the
  Assert state.














Adams, et al.                 Experimental                     [Page 32]

RFC 3973                   PIM - Dense Mode                 January 2005


        +-------------+                        +-------------+
        |             | Rcv Pref Assert or SR  |             |
        |   Winner    |----------------------->|    Loser    |
        |             |                        |             |
        +-------------+                        +-------------+
             ^   |                                  ^   |
             |   |                Rcv Pref Assert or|   |
             |   |AT Expires OR        State Refresh|   |
             |   |CouldAssert->FALSE                |   |
             |   |                                  |   |
             |   |         +-------------+          |   |
             |   +-------->|             |----------+   |
             |             |   No Info   |              |
             +-------------|             |<-------------+
      Rcv Data from dnstrm +-------------+ Rcv Inf Assert from Win OR
    OR Rcv Inferior Assert                 Rcv Inf SR from Winner OR
        OR Rcv Inferior SR                 AT Expires OR
                                           CouldAssert Changes OR
                                           Winner's NLT Expires

                    Figure 4: Assert State Machine

  In tabular form, the state machine is defined as follows:

+-------------------------------+--------------------------------------+
|                               |            Previous State            |
|                               +------------+------------+------------+
|            Event              |  No Info   |   Winner   |    Loser   |
+-------------------------------+------------+------------+------------+
| An (S,G) Data packet received | ->W Send   | ->W Send   | ->L        |
| on downstream interface       | Assert(S,G)| Assert(S,G)|            |
|                               |    Set     |    Set     |            |
|                               |  AT(S,G,I) |  AT(S,G,I) |            |
+-------------------------------+--------------------------------------+
| Receive Inferior (Assert OR   | N/A        | N/A        |->NI Cancel |
| State Refresh) from Assert    |            |            |  AT(S,G,I) |
| Winner                        |            |            |            |
+-------------------------------+--------------------------------------+
| Receive Inferior (Assert OR   | ->W Send   | ->W Send   | ->L        |
| State Refresh) from non-Assert| Assert(S,G)| Assert(S,G)|            |
| Winner AND CouldAssert==TRUE  |    Set     |    Set     |            |
|                               |  AT(S,G,I) |  AT(S,G,I) |            |
+-------------------------------+--------------------------------------+








Adams, et al.                 Experimental                     [Page 33]

RFC 3973                   PIM - Dense Mode                 January 2005


+-------------------------------+--------------------------------------+
|                               |            Previous State            |
|                               +------------+------------+------------+
|            Event              |  No Info   |   Winner   |    Loser   |
+-------------------------------+------------+------------+------------+
| Receive Preferred Assert OR   | ->L Send   | ->L Send   | ->L  Set   |
| State Refresh                 | Prune(S,G) | Prune(S,G) |  AT(S,G,I) |
|                               |    Set     |    Set     |            |
|                               |  AT(S,G,I) |  AT(S,G,I) |            |
+-------------------------------+--------------------------------------+
| Send State Refresh            | ->NI       | ->W Reset  | N/A        |
|                               |            |  AT(S,G,I) |            |
+-------------------------------+--------------------------------------+
| AT(S,G) Expires               | N/A        | ->NI       | ->NI       |
+-------------------------------+--------------------------------------+
| CouldAssert -> FALSE          | ->NI       |->NI Cancel |->NI Cancel |
|                               |            |  AT(S,G,I) |  AT(S,G,I) |
+-------------------------------+--------------------------------------+
| CouldAssert -> TRUE           | ->NI       | N/A        |->NI Cancel |
|                               |            |            |  AT(S,G,I) |
+-------------------------------+--------------------------------------+
| Winner's NLT(N,I) Expires     | N/A        | N/A        |->NI Cancel |
|                               |            |            |  AT(S,G,I) |
+-------------------------------+--------------------------------------+
| Receive Prune(S,G), Join(S,G) | ->NI       | ->W        | ->L Send   |
| or Graft(S,G)                 |            |            | Assert(S,G)|
+-------------------------------+--------------------------------------+

  Terminology: A "preferred assert" is one with a better metric than
  the current winner.  An "inferior assert" is one with a worse metric
  than my_assert_metric(S,G,I).

  The state machine uses the following macro:

  CouldAssert(S,G,I) = (RPF_interface(S) != I)

4.6.4.1.  Transitions from NoInfo State

  In the NoInfo state, the following events may trigger transitions:

    An (S,G) data packet arrives on downstream interface I
      An (S,G) data packet arrived on a downstream interface.  It is
      optimistically assumed that this router will be the Assert winner
      for this (S,G).  The Assert state machine MUST transition to the
      "I am Assert Winner" state, send an Assert(S,G) to interface I,
      store its own address and metric as the Assert Winner, and set
      the Assert_Timer (AT(S,G,I) to Assert_Time, thereby initiating
      the Assert negotiation for (S,G).



Adams, et al.                 Experimental                     [Page 34]

RFC 3973                   PIM - Dense Mode                 January 2005


    Receive Inferior (Assert OR State Refresh) AND
    CouldAssert(S,G,I)==TRUE
      An Assert or State Refresh is received for (S,G) that is inferior
      to our own assert metric on interface I. The Assert state machine
      MUST transition to the "I am Assert Winner" state, send an
      Assert(S,G) to interface I, store its own address and metric as
      the Assert Winner, and set the Assert Timer (AT(S,G,I)) to
      Assert_Time.

    Receive Preferred Assert or State Refresh
      The received Assert or State Refresh has a better metric than
      this router's, and therefore the Assert state machine MUST
      transition to the "I am Assert Loser" state and store the Assert
      Winner's address and metric.  If the metric was received in an
      Assert, the router MUST set the Assert Timer (AT(S,G,I)) to
      Assert_Time.  If the metric was received in a State Refresh, the
      router MUST set the Assert Timer (AT(S,G,I)) to three times the
      received State Refresh Interval.  If CouldAssert(S,G,I) == TRUE,
      the router MUST also multicast a Prune(S,G) to the Assert winner
      with a Prune Hold Time equal to the Assert Timer and evaluate any
      changes in its Upstream(S,G) state machine.

4.6.4.2.  Transitions from Winner State

  When in "I am Assert Winner" state, the following events trigger
  transitions:

    An (S,G) data packet arrives on downstream interface I
      An (S,G) data packet arrived on a downstream interface.  The
      Assert state machine remains in the "I am Assert Winner" state.
      The router MUST send an Assert(S,G) to interface I and set the
      Assert Timer (AT(S,G,I) to Assert_Time.

    Receive Inferior Assert or State Refresh
      An (S,G) Assert is received containing a metric for S that is
      worse than this router's metric for S.  Whoever sent the Assert
      is in error.  The router MUST send an Assert(S,G) to interface I
      and reset the Assert Timer (AT(S,G,I)) to Assert_Time.

    Receive Preferred Assert or State Refresh
      An (S,G) Assert or State Refresh is received that has a better
      metric than this router's metric for S on interface I.  The
      Assert state machine MUST transition to "I am Assert Loser" state
      and store the new Assert Winner's address and metric.  If the
      metric was received in an Assert, the router MUST set the Assert
      Timer (AT(S,G,I)) to Assert_Time.  If the metric was received in
      a State Refresh, the router MUST set the Assert Timer (AT(S,G,I))
      to three times the State Refresh Interval.  The router MUST also



Adams, et al.                 Experimental                     [Page 35]

RFC 3973                   PIM - Dense Mode                 January 2005


      multicast a Prune(S,G) to the Assert winner, with a Prune Hold
      Time equal to the Assert Timer, and evaluate any changes in its
      Upstream(S,G) state machine.

    Send State Refresh
      The router is sending a State Refresh(S,G) message on interface
      I.  The router MUST set the Assert Timer (AT(S,G,I)) to three
      times the State Refresh Interval contained in the State
      Refresh(S,G) message.

    AT(S,G,I) Expires
      The (S,G) Assert Timer (AT(S,G,I)) expires.  The Assert state
      machine MUST transition to the NoInfo (NI) state.

    CouldAssert(S,G,I) -> FALSE
      This router's RPF interface changed, making CouldAssert(S,G,I)
      false.  This router can no longer perform the actions of the
      Assert winner, so the Assert state machine MUST transition to
      NoInfo (NI) state, send an AssertCancel(S,G) to interface I,
      cancel the Assert Timer (AT(S,G,I)), and remove itself as the
      Assert Winner.

4.6.4.3.  Transitions from Loser State

  When in "I am Assert Loser" state, the following transitions can
  occur:

    Receive Inferior Assert or State Refresh from Current Winner
      An Assert or State Refresh is received from the current Assert
      winner that is worse than this router's metric for S (typically,
      the winner's metric became worse).  The Assert state machine MUST
      transition to NoInfo (NI) state and cancel AT(S,G,I).  The router
      MUST delete the previous Assert Winner's address and metric and
      evaluate any possible transitions to its Upstream(S,G) state
      machine.  Usually this router will eventually re-assert and win
      when data packets from S have started flowing again.

    Receive Preferred Assert or State Refresh
      An Assert or State Refresh is received that has a metric better
      than or equal to that of the current Assert winner.  The Assert
      state machine remains in Loser (L) state.  If the metric was
      received in an Assert, the router MUST set the Assert Timer
      (AT(S,G,I)) to Assert_Time.  If the metric was received in a
      State Refresh, the router MUST set the Assert Timer (AT(S,G,I))
      to three times the received State Refresh Interval.  If the
      metric is better than the current Assert Winner, the router MUST





Adams, et al.                 Experimental                     [Page 36]

RFC 3973                   PIM - Dense Mode                 January 2005


      store the address and metric of the new Assert Winner, and if
      CouldAssert(S,G,I) == TRUE, the router MUST multicast a
      Prune(S,G) to the new Assert winner.

    AT(S,G,I) Expires
      The (S,G) Assert Timer (AT(S,G,I)) expires.  The Assert state
      machine MUST transition to NoInfo (NI) state.  The router MUST
      delete the Assert Winner's address and metric.  If CouldAssert ==
      TRUE, the router MUST evaluate any possible transitions to its
      Upstream(S,G) state machine.

    CouldAssert -> FALSE
      CouldAssert has become FALSE because interface I has become the
      RPF interface for S.  The Assert state machine MUST transition to
      NoInfo (NI) state, cancel AT(S,G,I), and delete information
      concerning the Assert Winner on I.

    CouldAssert -> TRUE
      CouldAssert has become TRUE because interface I used to be the
      RPF interface for S, and now it is not.  The Assert state machine
      MUST transition to NoInfo (NI) state, cancel AT(S,G,I), and
      delete information concerning the Assert Winner on I.

    Current Assert Winner's NeighborLiveness Timer Expires
      The current Assert winner's NeighborLiveness Timer (NLT(N,I)) has
      expired.  The Assert state machine MUST transition to the NoInfo
      (NI) state, delete the Assert Winner's address and metric, and
      evaluate any possible transitions to its Upstream(S,G) state
      machine.

    Receive Prune(S,G), Join(S,G), or Graft(S,G)
      A Prune(S,G), Join(S,G), or Graft(S,G) message was received on
      interface I with its upstream neighbor address set to the
      router's address on I.  The router MUST send an Assert(S,G) on
      the receiving interface I to initiate an Assert negotiation.  The
      Assert state machine remains in the Assert Loser(L) state.  If a
      Graft(S,G) was received, the router MUST respond with a
      GraftAck(S,G).













Adams, et al.                 Experimental                     [Page 37]

RFC 3973                   PIM - Dense Mode                 January 2005


4.6.5.  Rationale for Assert Rules

  The following is a summary of the rules for generating and processing
  Assert messages.  It is not intended to be definitive (the state
  machines and pseudocode provide the definitive behavior).  Instead,
  it provides some rationale for the behavior.

  1. The Assert winner for (S,G) must act as the local forwarder for
     (S,G) on behalf of all downstream members.
  2. PIM messages are directed to the RPF' neighbor and not to the
     regular RPF neighbor.
  3. An Assert loser that receives a Prune(S,G), Join(S,G), or
     Graft(S,G) directed to it initiates a new Assert negotiation so
     that the downstream router can correct its RPF'(S).
  4. An Assert winner for (S,G) sends a cancelling assert when it is
     about to stop forwarding on an (S,G) entry.  Example: If a router
     is being taken down, then a canceling assert is sent.

4.7.  PIM Packet Formats

  All PIM-DM packets use the same format as PIM-SM packets.  In the
  event of a discrepancy, PIM-SM [4] should be considered the
  definitive specification.  All PIM control messages have IP protocol
  number 103.  All PIM-DM messages MUST be sent with a TTL of 1.  All
  PIM-DM messages except Graft and Graft Ack messages MUST be sent to
  the ALL-PIM-ROUTERS group.  Graft messages SHOULD be unicast to the
  RPF'(S).  Graft Ack messages MUST be unicast to the sender of the
  Graft.

  The IPv4 ALL-PIM-ROUTERS group is 224.0.0.13.  The IPv6 ALL-PIM-
  ROUTERS group is 'ff02::d'.

4.7.1.  PIM Header

  All PIM control messages have the following header:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver PIM version number is 2.








Adams, et al.                 Experimental                     [Page 38]

RFC 3973                   PIM - Dense Mode                 January 2005


  Type
    Types for specific PIM messages.  Available types are as follows:
    0 = Hello
    1 = Register (PIM-SM only)
    2 = Register Stop (PIM-SM only)
    3 = Join/Prune
    4 = Bootstrap (PIM-SM only)
    5 = Assert
    6 = Graft
    7 = Graft Ack
    8 = Candidate RP Advertisement (PIM-SM only)
    9 = State Refresh

  Reserved
    Set to zero on transmission.  Ignored upon receipt.

  Checksum
    The checksum is the standard IP checksum; i.e., the 16 bit one's
    complement of the one's complement sum of the entire PIM message.
    For computing checksum, the checksum field is zeroed.

    For IPv6, the checksum also includes the IPv6 "pseudo-header", as
    specified in RFC 2460, Section 8.1 [5].

4.7.2.  Encoded Unicast Address

  An Encoded Unicast Address has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Addr Family  | Encoding Type |     Unicast Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

  Addr Family
    The PIM Address Family of the 'Unicast Address' field of this
    address.  Values 0 - 127 are as assigned by the IANA for Internet
    Address Families in [9].  Values 128 - 250 are reserved to be
    assigned by the IANA for PIM specific Address Families.  Values 251
    - 255 are designated for private use.  As there is no assignment
    authority for this space; collisions should be expected.

  Encoding Type
    The type of encoding used with a specific Address Family.  The
    value '0' is reserved for this field and represents the native
    encoding of the Address Family.





Adams, et al.                 Experimental                     [Page 39]

RFC 3973                   PIM - Dense Mode                 January 2005


  Unicast Address
    The unicast address as represented by the given Address Family and
    Encoding Type.

4.7.3.  Encoded Group Address

  An Encoded Group address has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Addr Family  | Encoding Type |B| Reserved  |Z|  Mask Len     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Group Multicast Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

  Addr Family
    As described above.

  Encoding Type
    As described above.

  B
    Indicates that the group range should use Bidirectional PIM [16].
    Transmitted as zero; ignored upon receipt.

  Reserved
    Transmitted as zero.  Ignored upon receipt.

  Z
    Indicates that the group range is an admin scope zone.  This is
    used in the Bootstrap Router Mechanism [18] only.  For all other
    purposes, this bit is set to zero and ignored on receipt.

  Mask Len
    The mask length field is 8 bits.  The value is the number of
    contiguous left justified one bits used as a mask, which, combined
    with the address, describes a range of addresses.  It is less than
    or equal to the address length in bits for the given Address Family
    and Encoding Type.  If the message is sent for a single address
    then the mask length MUST equal the address length.  PIM-DM routers
    MUST only send for a single address.

  Group Multicast Address
    The address of the multicast group.






Adams, et al.                 Experimental                     [Page 40]

RFC 3973                   PIM - Dense Mode                 January 2005


4.7.4.  Encoded Source Address

  An Encoded Source address has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Addr Family  | Encoding Type |  Rsrvd  |S|W|R|  Mask Len     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Source Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

  Addr Family
    As described above.

  Encoding Type
    As described above.

  Rsrvd
    Reserved.  Transmitted as zero.  Ignored upon receipt.

  S
    The Sparse Bit.  Set to 0 for PIM-DM.  Ignored upon receipt.

  W
    The Wild Card Bit.  Set to 0 for PIM-DM.  Ignored upon receipt.

  R
    The Rendezvous Point Tree bit.  Set to 0 for PIM-DM.  Ignored upon
    receipt.

  Mask Len
    As described above.  PIM-DM routers MUST only send for a single
    source address.

  Source Address
    The source address.














Adams, et al.                 Experimental                     [Page 41]

RFC 3973                   PIM - Dense Mode                 January 2005


4.7.5.  Hello Message Format

  The PIM Hello message, as defined by PIM-SM [4], has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Option Type          |         Option Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Option Value                          |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Option Type          |         Option Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Option Value                          |
  |                              ...                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver, Type, Reserved, Checksum
    Described above.

  Option Type
    The type of option given in the Option Value field.  Available
    types are as follows:

      0              Reserved
      1              Hello Hold Time
      2              LAN Prune Delay
      3 - 16         Reserved
      17             To be assigned by IANA
      18             Deprecated and SHOULD NOT be used
      19             DR Priority (PIM-SM Only)
      20             Generation ID
      21             State Refresh Capable
      22             Bidir Capable
      23 - 65000     To be assigned by IANA
      65001 - 65535  Reserved for Private Use [9]

    Unknown options SHOULD be ignored.





Adams, et al.                 Experimental                     [Page 42]

RFC 3973                   PIM - Dense Mode                 January 2005


4.7.5.1.  Hello Hold Time Option

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type = 1           |           Length = 2          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Hold Time          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Hold Time is the number of seconds a receiver MUST keep the neighbor
  reachable.  If the Hold Time is set to '0xffff', the receiver of this
  message never times out the neighbor.  This may be used with dial-
  on-demand links to avoid keeping the link up with periodic Hello
  messages.  Furthermore, if the Holdtime is set to '0', the
  information is timed out immediately.  The Hello Hold Time option
  MUST be used by PIM-DM routers.

4.7.5.2.  LAN Prune Delay Option

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Type = 2           |           Length = 4          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |T|       LAN Prune Delay       |       Override Interval       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The LAN_Prune_Delay option is used to tune the prune propagation
  delay on multi-access LANs.  The T bit is used by PIM-SM and SHOULD
  be set to 0 by PIM-DM routers and ignored upon receipt.  The LAN
  Delay and Override Interval fields are time intervals in units of
  milliseconds and are used to tune the value of the J/P Override
  Interval and its derived timer values.  Section 4.3.5 describes how
  these values affect the behavior of a router.  The LAN Prune Delay
  SHOULD be used by PIM-DM routers.















Adams, et al.                 Experimental                     [Page 43]

RFC 3973                   PIM - Dense Mode                 January 2005


4.7.5.3.  Generation ID Option

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Type = 20           |           Length = 4          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Generation ID                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Generation ID is a random value for the interface on which the Hello
  message is sent.  The Generation ID is regenerated whenever PIM
  forwarding is started or restarted on the interface.  The Generation
  ID option MAY be used by PIM-DM routers.

4.7.5.4.  State Refresh Capable Option

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Type = 21           |           Length = 4          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Version = 1  |   Interval    |            Reserved           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Interval field is the router's configured State Refresh Interval
  in seconds.  The Reserved field is set to zero and ignored upon
  receipt.  The State Refresh Capable option MUST be used by State
  Refresh capable PIM-DM routers.






















Adams, et al.                 Experimental                     [Page 44]

RFC 3973                   PIM - Dense Mode                 January 2005


4.7.6.  Join/Prune Message Format

  PIM Join/Prune messages, as defined in PIM-SM [4], have the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Upstream Neighbor Address (Encoded Unicast Format)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Reserved    |  Num Groups   |          Hold Time            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address 1 (Encoded Group Format)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Number of Joined Sources    |   Number of Pruned Sources    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Joined Source Address 1 (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Joined Source Address n (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Pruned Source Address 1 (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Pruned Source Address n (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address m (Encoded Group Format)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Number of Joined Sources    |   Number of Pruned Sources    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Joined Source Address 1 (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Adams, et al.                 Experimental                     [Page 45]

RFC 3973                   PIM - Dense Mode                 January 2005


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Joined Source Address n (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Pruned Source Address 1 (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               .                               |
  |                               .                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Pruned Source Address n (Encoded Source Format)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver, Type, Reserved, Checksum
    Described above.

  Upstream Neighbor Address
    The address of the upstream neighbor.  The format for this address
    is given in the Encoded Unicast address in Section 4.7.2.  PIM-DM
    routers MUST set this field to the RPF next hop.

  Reserved
    Transmitted as zero.  Ignored upon receipt.

  Hold Time
    The number of seconds a receiving PIM-DM router MUST keep a Prune
    state alive, unless removed by a Join or Graft message.  If the
    Hold Time is '0xffff', the receiver MUST NOT remove the Prune state
    unless a corresponding Join or Graft message is received.  The Hold
    Time is ignored in Join messages.

  Number of Groups
    Number of multicast group sets contained in the message.

  Multicast Group Address
    The multicast group address in the Encoded Multicast address format
    given in Section 4.7.3.

  Number of Joined Sources
    Number of Join source addresses listed for a given group.

  Number of Pruned Sources
    Number of Prune source addresses listed for a given group.








Adams, et al.                 Experimental                     [Page 46]

RFC 3973                   PIM - Dense Mode                 January 2005


  Join Source Address 1..n
    This list contains the sources from which the sending router wishes
    to continue to receive multicast messages for the given group on
    this interface.  The addresses use the Encoded Source address
    format given in Section 4.7.4.

  Prune Source Address 1..n
    This list contains the sources from which the sending router does
    not wish to receive multicast messages for the given group on this
    interface.  The addresses use the Encoded Source address format
    given in Section 4.7.4.

4.7.7.  Assert Message Format

  PIM Assert Messages, as defined in PIM-SM [4], have the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address (Encoded Group Format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Source Address (Encoded Unicast Format)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|                     Metric Preference                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Metric                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver, Type, Reserved, Checksum
    Described above.

  Multicast Group Address
    The multicast group address in the Encoded Multicast address format
    given in Section 4.7.3.

  Source Address
    The source address in the Encoded Unicast address format given in
    Section 4.7.2.

  R
    The Rendezvous Point Tree bit.  Set to 0 for PIM-DM.  Ignored upon
    receipt.






Adams, et al.                 Experimental                     [Page 47]

RFC 3973                   PIM - Dense Mode                 January 2005


  Metric Preference
    The preference value assigned to the unicast routing protocol that
    provided the route to the source.

  Metric
    The cost metric of the unicast route to the source.  The metric is
    in units applicable to the unicast routing protocol used.

4.7.8.  Graft Message Format

  PIM Graft messages use the same format as Join/Prune messages, except
  that the Type field is set to 6.  The source address MUST be in the
  Join section of the message.  The Hold Time field SHOULD be zero and
  SHOULD be ignored when a Graft is received.

4.7.9.  Graft Ack Message Format

  PIM Graft Ack messages are identical in format to the received Graft
  message, except that the Type field is set to 7.  The Upstream
  Neighbor Address field SHOULD be set to the sender of the Graft
  message and SHOULD be ignored upon receipt.

4.7.10.  State Refresh Message Format

  PIM State Refresh Messages have the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |PIM Ver| Type  |   Reserved    |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Multicast Group Address (Encoded Group Format)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Source Address (Encoded Unicast Format)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Originator Address (Encoded Unicast Format)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|                     Metric Preference                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Metric                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Masklen    |    TTL        |P|N|O|Reserved |   Interval    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PIM Ver, Type, Reserved, Checksum
    Described above.





Adams, et al.                 Experimental                     [Page 48]

RFC 3973                   PIM - Dense Mode                 January 2005


  Multicast Group Address
    The multicast group address in the Encoded Multicast address format
    given in Section 4.7.3.

  Source Address
    The address of the data source in the Encoded Unicast address
    format given in Section 4.7.2.

  Originator Address
    The address of the first hop router in the Encoded Unicast address
    format given in Section 4.7.2.

  R
    The Rendezvous Point Tree bit.  Set to 0 for PIM-DM.  Ignored upon
    receipt.

  Metric Preference
    The preference value assigned to the unicast routing protocol that
    provided the route to the source.

  Metric
    The cost metric of the unicast route to the source.  The metric is
    in units applicable to the unicast routing protocol used.

  Masklen
    The length of the address mask of the unicast route to the source.

  TTL
    Time To Live of the State Refresh message.  Decremented each time
    the message is forwarded.  Note that this is different from the IP
    Header TTL, which is always set to 1.

  P
    Prune indicator flag.  This MUST be set to 1 if the State Refresh
    is to be sent on a Pruned interface.  Otherwise, it MUST be set to
    0.

  N
    Prune Now flag.  This SHOULD be set to 1 by the State Refresh
    originator on every third State Refresh message and SHOULD be
    ignored upon receipt.  This is for compatibility with earlier
    versions of state refresh.

  O
    Assert Override flag.  This SHOULD be set to 1 by upstream routers
    on a LAN if the Assert Timer (AT(S,G)) is not running and SHOULD be
    ignored upon receipt.  This is for compatibility with earlier
    versions of state refresh.



Adams, et al.                 Experimental                     [Page 49]

RFC 3973                   PIM - Dense Mode                 January 2005


  Reserved
    Set to zero and ignored upon receipt.

  Interval
    Set by the originating router to the interval (in seconds) between
    consecutive State Refresh messages for this (S,G) pair.

4.8.  PIM-DM Timers

  PIM-DM maintains the following timers.  All timers are countdown
  timers -- they are set to a value and count down to zero, at which
  point they typically trigger an action.  Of course they can just as
  easily be implemented as count-up timers, where the absolute expiry
  time is stored and compared against a real-time clock, but the
  language in this specification assumes that they count downward
  towards zero.

  Global Timers
    Hello Timer: HT

    Per interface (I):
      Per neighbor (N):
        Neighbor Liveness Timer: NLT(N,I)

      Per (S,G) Pair:
        (S,G) Assert Timer: AT(S,G,I)
        (S,G) Prune Timer: PT(S,G,I)
        (S,G) PrunePending Timer: PPT(S,G,I)

      Per (S,G) Pair:
        (S,G) Graft Retry Timer: GRT(S,G)
        (S,G) Upstream Override Timer: OT(S,G)
        (S,G) Prune Limit Timer: PLT(S,G)
        (S,G) Source Active Timer: SAT(S,G)
        (S,G) State Refresh Timer: SRT(S,G)
















Adams, et al.                 Experimental                     [Page 50]

RFC 3973                   PIM - Dense Mode                 January 2005


  When timer values are started or restarted, they are set to default
  values.  The following tables summarize those default values.

Timer Name: Hello Timer (HT)
+----------------------+--------+--------------------------------------+
| Value Name           | Value  | Explanation                          |
+----------------------+--------+--------------------------------------+
|Hello_Period          | 30 sec | Periodic interval for hello messages |
+----------------------+--------+--------------------------------------+
|Triggered_Hello_Delay | 5 sec  | Random interval for initial Hello    |
|                      |        | message on bootup or triggered Hello |
|                      |        | message to a rebooting neighbor      |
+----------------------+--------+--------------------------------------+

  Hello messages are sent on every active interface once every
  Hello_Period seconds.  At system power-up, the timer is initialized
  to rand(0,Triggered_Hello_Delay) to prevent synchronization.  When a
  new or rebooting neighbor is detected, a responding Hello is sent
  within rand(0,Triggered_Hello_Delay).

Timer Name: Neighbor Liveness Timer (NLT(N,I))
+-------------------+-----------------+--------------------------------+
| Value Name        | Value           | Explanation                    |
+-------------------+-----------------+--------------------------------+
| Hello Holdtime    | From message    | Hold Time from Hello Message   |
+-------------------+-----------------+--------------------------------+

Timer Name: PrunePending Timer (PPT(S,G,I))
+-----------------------+---------------+------------------------------+
| Value Name            | Value         | Explanation                  |
+-----------------------+---------------+------------------------------+
| J/P_Override_Interval | OI(I) + PD(I) | Short time after a Prune to  |
|                       |               | allow other routers on the   |
|                       |               | LAN to send a Join           |
+-----------------------+---------------+------------------------------+

  The J/P_Override_Interval is the sum of the interface's
  Override_Interval (OI(I)) and Propagation_Delay (PD(I)).  If all
  routers on a LAN are using the LAN Prune Delay option, both
  parameters MUST be set to the largest value on the LAN.  Otherwise,
  the Override_Interval (OI(I)) MUST be set to 2.5 seconds, and the
  Propagation_Delay (PD(I)) MUST be set to 0.5 seconds.









Adams, et al.                 Experimental                     [Page 51]

RFC 3973                   PIM - Dense Mode                 January 2005


Timer Name: Prune Timer (PT(S,G,I))
+----------------+----------------+------------------------------------+
| Value Name     | Value          | Explanation                        |
+----------------+----------------+------------------------------------+
| Prune Holdtime | From message   | Hold Time read from Prune Message  |
+----------------+----------------+------------------------------------+

Timer Name: Assert Timer (AT(S,G,I))
+--------------------------+---------+---------------------------------+
| Value Name               | Value   | Explanation                     |
+--------------------------+---------+---------------------------------+
| Assert Time              | 180 sec | Period after last assert before |
|                          |         | assert state is timed out       |
+--------------------------+---------+---------------------------------+

  Note that, for historical reasons, the Assert message lacks a
  Holdtime field.  Thus, changing the Assert Time from the default
  value is not recommended.  If all members of a LAN are state refresh
  enabled, the Assert Time will be three times the received
  RefreshInterval(S,G).

Timer Name: Graft Retry Timer (GRT(S,G))
+--------------------+-------+-----------------------------------------+
| Value Name         | Value | Explanation                             |
+--------------------+-------+-----------------------------------------+
| Graft_Retry_Period | 3 sec | In the absence of receipt of a GraftAck |
|                    |       | message, the time before retransmission |
|                    |       | of a Graft message                      |
+--------------------+-------+-----------------------------------------+

Timer Name: Upstream Override Timer (OT(S,G))
+------------+----------------+----------------------------------------+
| Value Name | Value          | Explanation                            |
+------------+----------------+----------------------------------------|
| t_override | rand(0, OI(I)) | Randomized delay to prevent response   |
|            |                | implosion when sending a join message  |
|            |                | to override someone else's prune       |
+------------+----------------+----------------------------------------+

  t_override is a random value between 0 and the interface's
  Override_Interval (OI(I)).  If all routers on a LAN are using the LAN
  Prune Delay option, the Override_Interval (OI(I)) MUST be set to the
  largest value on the LAN.  Otherwise, the Override_Interval (OI(I))
  MUST be set to 2.5 seconds.







Adams, et al.                 Experimental                     [Page 52]

RFC 3973                   PIM - Dense Mode                 January 2005


Timer Name: Prune Limit Timer (PLT(S,G))
+------------+--------------------+------------------------------------+
| Value Name | Value              | Explanation                        |
+------------+--------------------+------------------------------------|
| t_limit    | Default: 210 secs  | Used to prevent Prune storms on a  |
|            |                    | LAN                                |
+------------+--------------------+------------------------------------+

Timer Name: Source Active Timer (SAT(S,G))
+----------------+-------------------+---------------------------------+
| Value Name     | Value             | Explanation                     |
+----------------+-------------------+---------------------------------+
| SourceLifetime | Default: 210 secs | Period of time after receiving  |
|                |                   | a multicast message a directly  |
|                |                   | attached router will continue   |
|                |                   | to send State Refresh messages  |
+----------------+-------------------+---------------------------------+

Timer Name: State Refresh Timer (SRT(S,G))
+-----------------+------------------+---------------------------------+
| Value Name      | Value            | Explanation                     |
+-----------------+------------------+---------------------------------+
| RefreshInterval | Default: 60 secs | Interval between successive     |
|                 |                  | state refresh messages          |
+-----------------+------------------+---------------------------------+

5.  Protocol Interaction Considerations

  PIM-DM is designed to be independent of underlying unicast routing
  protocols and will interact only to the extent needed to perform RPF
  checks.  It is generally assumed that multicast area and autonomous
  system boundaries will correspond to the same boundaries for unicast
  routing, though a deployment that does not follow this assumption is
  not precluded by this specification.

  In general, PIM-DM interactions with other multicast routing
  protocols should be in compliance with RFC 2715 [7].  Other specific
  interactions are noted below.

5.1.  PIM-SM Interactions

  PIM-DM is not intended to interact directly with PIM-SM, even though
  they share a common packet format.  It is particularly important to
  note that a router cannot differentiate between a PIM-DM neighbor and
  a PIM-SM neighbor based on Hello messages.






Adams, et al.                 Experimental                     [Page 53]

RFC 3973                   PIM - Dense Mode                 January 2005


  In the event that a PIM-DM router becomes a neighbor of a PIM-SM
  router, the two will effectively form a simplex link, with the PIM-DM
  router sending all multicast messages to the PIM-SM router while the
  PIM-SM router sends no multicast messages to the PIM-DM router.

  The common packet format permits a hybrid PIM-SM/DM implementation
  that would use PIM-SM when a rendezvous point is known and PIM-DM
  when one is not.  Such an implementation is outside the scope of this
  document.

5.2.  IGMP Interactions

  PIM-DM will forward received multicast data packets to neighboring
  host group members in all cases except when the PIM-DM router is in
  an Assert Loser state on that interface.  Note that a PIM Prune
  message is not permitted to prevent the delivery of messages to a
  network with group members.

  A PIM-DM Router MAY use the DR Priority option described in PIM-SM
  [14] to elect an IGMP v1 querier.

5.3.  Source Specific Multicast (SSM) Interactions

  PIM-DM makes no special considerations for SSM [15].  All Prunes and
  Grafts within the protocol are for a specific source, so no
  additional checks have to be made.

5.4.  Multicast Group Scope Boundary Interactions

  Although multicast group scope boundaries are generally identical to
  routing area boundaries, it is conceivable that a routing area might
  be partitioned for a particular multicast group.  PIM-DM routers MUST
  NOT send any messages concerning a particular group across that
  group's scope boundary.

6.  IANA Considerations

6.1.  PIM Address Family

  The PIM Address Family field was chosen to be 8 bits as a tradeoff
  between packet format and use of the IANA assigned numbers.  When the
  PIM packet format was designed, only 15 values were assigned for
  Address Families, and large numbers of new Address Families were not
  envisioned; 8 bits seemed large enough.  However, the IANA assigns
  Address Families in a 16 bit value.  Therefore, the PIM Address
  Family is allocated as follows:





Adams, et al.                 Experimental                     [Page 54]

RFC 3973                   PIM - Dense Mode                 January 2005


  Values 0 - 127 are designated to have the same meaning as IANA
  assigned Address Family Numbers [9].

  Values 128 - 250 are designated to be assigned by the IANA based on
  IESG approval, as defined in [8].

  Values 251 - 255 are designated for Private Use, as defined in [8].

6.2.  PIM Hello Options

  Values 17 - 65000 are to be assigned by the IANA.  Since the space is
  large, they may be assigned as First Come First Served, as defined in
  [8].  Assignments are valid for one year and may be renewed.
  Permanent assignments require a specification, as defined in [8].

7.  Security Considerations

  The IPsec authentication header [10] MAY be used to provide data
  integrity protection and groupwise data origin authentication of PIM
  protocol messages.  Authentication of PIM messages can protect
  against unwanted behaviors caused by unauthorized or altered PIM
  messages.  In any case, a PIM router SHOULD NOT accept and process
  PIM messages from neighbors unless a valid Hello message has been
  received from that neighbor.

  Note that PIM-DM has no rendezvous point, and therefore no single
  point of failure that may be vulnerable.  Because PIM-DM uses unicast
  routes provided by an unknown routing protocol, it may suffer
  collateral effects if the unicast routing protocol is attacked.

7.1.  Attacks Based on Forged Messages

  The extent of possible damage depends on the type of counterfeit
  messages accepted.  We next consider the impact of possible
  forgeries. A forged PIM-DM message is link local and can only reach a
  LAN if it was sent by a local host or if it was allowed onto the LAN
  by a compromised or non-compliant router.

  1. A forged Hello message can cause multicast traffic to be delivered
     to links where there are no legitimate requestors, potentially
     wasting bandwidth on that link.  On a multi-access LAN, the
     effects are limited without the capability to forge a Join
     message, as other routers will Prune the link if the traffic is
     not desired.

  2. A forged Join/Prune message can cause multicast traffic to be
     delivered to links where there are no legitimate requestors,
     potentially wasting bandwidth on that link.  A forged Prune



Adams, et al.                 Experimental                     [Page 55]

RFC 3973                   PIM - Dense Mode                 January 2005


     message on a multi-access LAN is generally not a significant
     attack in PIM, because any legitimately joined router on the LAN
     would override the Prune with a Join before the upstream router
     stops forwarding data to the LAN.

  3. A forged Graft message can cause multicast traffic to be delivered
     to links where there are no legitimate requestors, potentially
     wasting bandwidth on that link.  In principle, Graft messages
     could be sent multiple hops because they are unicast to the
     upstream router.  This should not be a problem, as the remote
     forger should have no way to get a Hello message to the target of
     the attack.  Without a valid Hello message, the receiving router
     SHOULD NOT accept the Graft.

  4. A forged GraftAck message has no impact, as it will be ignored
     unless the router has recently sent a Graft to its upstream
     router.

  5. By forging an Assert message on a multi-access LAN, an attacker
     could cause the legitimate forwarder to stop forwarding traffic to
     the LAN.  Such a forgery would prevent any hosts downstream of
     that LAN from receiving traffic.

  6. A forged State Refresh message on a multi-access LAN would have
     the same impact as a forged Assert message, having the same
     general functions.  In addition, forged State Refresh messages
     would be propagated downstream and might be used in a denial of
     service attack.  Therefore, a PIM-DM router SHOULD rate limit
     State Refresh messages propagated.

7.2.  Non-cryptographic Authentication Mechanisms

  A PIM-DM router SHOULD provide an option to limit the set of
  neighbors from which it will accept PIM-DM messages.  Either static
  configuration of IP addresses or an IPSec security association may be
  used.  All options that restrict the range of addresses from which
  packets are accepted MUST default to allowing all packets.

  Furthermore, a PIM router SHOULD NOT accept protocol messages from a
  router from which it has not yet received a valid Hello message.

7.3.  Authentication Using IPsec

  The IPSec [10] transport mode using the Authentication Header (AH) is
  the recommended method to prevent the above attacks in PIM.  The
  specific AH authentication algorithm and parameters, including the
  choice of authentication algorithm and the choice of key, are
  configured by the network administrator.  The Encapsulating Security



Adams, et al.                 Experimental                     [Page 56]

RFC 3973                   PIM - Dense Mode                 January 2005


  Payload (ESP) MAY also be used to provide both encryption and
  authentication of PIM protocol messages.  When IPsec authentication
  is used, a PIM router SHOULD reject (drop without processing) any
  unauthorized PIM protocol messages.

  To use IPSec, the administrator of a PIM network configures each PIM
  router with one or more Security Associations and associated Security
  Parameters Indices that are used by senders to authenticate PIM
  protocol messages and are used by receivers to authenticate received
  PIM protocol messages.  This document does not describe protocols for
  establishing Security Associations.  It assumes that manual
  configuration of Security Associations is performed, but it does not
  preclude the use of some future negotiation protocol such as GDOI
  [17] to establish Security Associations.

  The network administrator defines a Security Association (SA) and
  Security Parameters Index (SPI) to be used to authenticate all PIM-DM
  protocol messages from each router on each link in a PIM-DM domain.

  In order to avoid the problem of allocating individual keys for each
  neighbor on a link to each individual router, it is acceptable to
  establish only one authentication key for all PIM-DM routers on a
  link.  This will not specifically authenticate the individual router
  sending the message, but will ensure that the sender is a PIM-DM
  router on that link.  If this method is used, the receiver of the
  message MUST ignore the received sequence number, thus disabling
  anti-replay mechanisms.  The effects of disabling anti-replay
  mechanisms are essentially the same as the effects of forged
  messages, described in Section 7.1, with the additional protection
  that the forger can only reuse legitimate messages.

  The Security Policy Database at a PIM-DM router should be configured
  to ensure that all incoming and outgoing PIM-DM packets use the SA
  associated with the interface to which the packet is sent.  Note
  that, according to [10], there is nominally a different Security
  Association Database (SAD) for each router interface.  Thus, the
  selected Security Association for an inbound PIM-DM packet can vary
  depending on the interface on which the packet arrived.  This fact
  allows the network administrator to use different authentication
  methods for each link, even though the destination address is the
  same for most PIM-DM packets, regardless of interface.










Adams, et al.                 Experimental                     [Page 57]

RFC 3973                   PIM - Dense Mode                 January 2005


7.4.  Denial of Service Attacks

  There are a number of possible denial of service attacks against PIM
  that can be caused by generating false PIM protocol messages or even
  by generating false data traffic.  Authenticating PIM protocol
  traffic prevents some, but not all, of these attacks.  The possible
  attacks include the following:

  * Sending packets to many different group addresses quickly can
    amount to a denial of service attack in and of itself.  These
    messages will initially be flooded throughout the network before
    they are pruned back.  The maintenance of state machines and State
    Refresh messages will be a continual drain on network resources.

  * Forged State Refresh messages sent quickly could be propagated by
    downstream routers, creating a potential denial of service attack.
    Therefore, a PIM-DM router SHOULD limit the rate of State Refresh
    messages propagated.

8.  Acknowledgments

  The major features of PIM-DM were originally designed by Stephen
  Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ahmed Helmy,
  David Meyer, and Liming Wei.  Additional features for state refresh
  were designed by Dino Farinacci, Isidor Kouvelas, and Kurt Windisch.
  This revision was undertaken to incorporate some of the lessons
  learned during the evolution of the PIM-SM specification and early
  deployments of PIM-DM.

  Thanks the PIM Working Group for their comments.

9.  References

9.1.  Normative References

  [1]  Deering, S., "Host extensions for IP multicasting", STD 5, RFC
       1112, August 1989.

  [2]  Fenner, W., "Internet Group Management Protocol, Version 2", RFC
       2236, November 1997.

  [3]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
       Thyagarajan, "Internet Group Management Protocol, Version 3",
       RFC 3376, October 2002.







Adams, et al.                 Experimental                     [Page 58]

RFC 3973                   PIM - Dense Mode                 January 2005


  [4]  Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S.,
       Handley, M., Jacobson, V., Liu, C., Sharma, P., and L. Wei,
       "Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol
       Specification", RFC 2362, June 1998.

  [5]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
       Specification", RFC 2460, December 1998.

  [6]  Deering, S., Fenner, W., and B. Haberman, "Multicast Listener
       Discovery (MLD) for IPv6", RFC 2710, October 1999.

  [7]  Thaler, D., "Interoperability Rules for Multicast Routing
       Protocols", RFC 2715, October 1999.

  [8]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

  [9]  IANA, "Address Family Numbers", linked from
       http://www.iana.org/numbers.html.

  [10] Kent, S. and R. Atkinson, "Security Architecture for the
       Internet Protocol", RFC 2401, November 1998.

  [11] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

9.2.  Informative References

  [12] Deering, S.E., "Multicast Routing in a Datagram Internetwork",
       Ph.D. Thesis, Electrical Engineering Dept., Stanford University,
       December 1991.

  [13] Waitzman, D., Partridge, C., and S. Deering, "Distance Vector
       Multicast Routing Protocol", RFC 1075, November 1988.

  [14] Fenner,  W., Handley, M., Holbrook, H., and I. Kouvelas,
       "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol
       Specification (Revised)", Work in Progress.

  [15] Holbrook, H. and B. Cain, "Source Specific Multicast for IP",
       Work in Progress.

  [16] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bi-
       directional Protocol Independent Multicast", Work in Progress.

  [17] Baugher, M., Weis, B., Hardjono, T., and H. Harney, "The Group
       Domain of Interpretation", RFC 3547, July 2003.




Adams, et al.                 Experimental                     [Page 59]

RFC 3973                   PIM - Dense Mode                 January 2005


  [18] Fenner, W., Handley, M., Kermode, R., and D. Thaler, "Bootstrap
       Router (BSR) Mechanism for PIM Sparse Mode", Work in Progress.

Authors' Addresses

  Andrew Adams
  NextHop Technologies
  825 Victors Way, Suite 100
  Ann Arbor, MI 48108-2738

  EMail: [email protected]


  Jonathan Nicholas
  ITT Industries
  Aerospace/Communications Division
  100 Kingsland Rd
  Clifton, NJ  07014

  EMail: [email protected]


  William Siadak
  NextHop Technologies
  825 Victors Way, Suite 100
  Ann Arbor, MI 48108-2738

  EMail: [email protected]























Adams, et al.                 Experimental                     [Page 60]

RFC 3973                   PIM - Dense Mode                 January 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the IETF's procedures with respect to rights in IETF Documents can
  be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].


Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.






Adams, et al.                 Experimental                     [Page 61]