Network Working Group                                        J. Lau, Ed.
Request for Comments: 3931                              M. Townsley, Ed.
Category: Standards Track                                  Cisco Systems
                                                         I. Goyret, Ed.
                                                    Lucent Technologies
                                                             March 2005


          Layer Two Tunneling Protocol - Version 3 (L2TPv3)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2005).

Abstract

  This document describes "version 3" of the Layer Two Tunneling
  Protocol (L2TPv3).  L2TPv3 defines the base control protocol and
  encapsulation for tunneling multiple Layer 2 connections between two
  IP nodes.  Additional documents detail the specifics for each data
  link type being emulated.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
      1.1.  Changes from RFC 2661. . . . . . . . . . . . . . . . . .  4
      1.2.  Specification of Requirements. . . . . . . . . . . . . .  4
      1.3.  Terminology. . . . . . . . . . . . . . . . . . . . . . .  5
  2.  Topology . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
  3.  Protocol Overview. . . . . . . . . . . . . . . . . . . . . . .  9
      3.1.  Control Message Types. . . . . . . . . . . . . . . . . . 10
      3.2.  L2TP Header Formats. . . . . . . . . . . . . . . . . . . 11
            3.2.1.  L2TP Control Message Header. . . . . . . . . . . 11
            3.2.2.  L2TP Data Message. . . . . . . . . . . . . . . . 12
      3.3.  Control Connection Management. . . . . . . . . . . . . . 13
            3.3.1.  Control Connection Establishment . . . . . . . . 14
            3.3.2.  Control Connection Teardown. . . . . . . . . . . 14
      3.4.  Session Management . . . . . . . . . . . . . . . . . . . 15
            3.4.1.  Session Establishment for an Incoming Call . . . 15
            3.4.2.  Session Establishment for an Outgoing Call . . . 15



Lau, et al.                 Standards Track                     [Page 1]

RFC 3931                         L2TPv3                       March 2005


            3.4.3.  Session Teardown . . . . . . . . . . . . . . . . 16
  4.  Protocol Operation . . . . . . . . . . . . . . . . . . . . . . 16
      4.1.  L2TP Over Specific Packet-Switched Networks (PSNs) . . . 16
            4.1.1.  L2TPv3 over IP . . . . . . . . . . . . . . . . . 17
            4.1.2.  L2TP over UDP. . . . . . . . . . . . . . . . . . 18
            4.1.3.  L2TP and IPsec . . . . . . . . . . . . . . . . . 20
            4.1.4.  IP Fragmentation Issues. . . . . . . . . . . . . 21
      4.2.  Reliable Delivery of Control Messages. . . . . . . . . . 23
      4.3.  Control Message Authentication . . . . . . . . . . . . . 25
      4.4.  Keepalive (Hello). . . . . . . . . . . . . . . . . . . . 26
      4.5.  Forwarding Session Data Frames . . . . . . . . . . . . . 26
      4.6.  Default L2-Specific Sublayer . . . . . . . . . . . . . . 27
            4.6.1.  Sequencing Data Packets. . . . . . . . . . . . . 28
      4.7.  L2TPv2/v3 Interoperability and Migration . . . . . . . . 28
            4.7.1.  L2TPv3 over IP . . . . . . . . . . . . . . . . . 29
            4.7.2.  L2TPv3 over UDP. . . . . . . . . . . . . . . . . 29
            4.7.3.  Automatic L2TPv2 Fallback. . . . . . . . . . . . 29
  5.  Control Message Attribute Value Pairs. . . . . . . . . . . . . 30
      5.1.  AVP Format . . . . . . . . . . . . . . . . . . . . . . . 30
      5.2.  Mandatory AVPs and Setting the M Bit . . . . . . . . . . 32
      5.3.  Hiding of AVP Attribute Values . . . . . . . . . . . . . 33
      5.4.  AVP Summary. . . . . . . . . . . . . . . . . . . . . . . 36
            5.4.1.  General Control Message AVPs . . . . . . . . . . 36
            5.4.2.  Result and Error Codes . . . . . . . . . . . . . 40
            5.4.3.  Control Connection Management AVPs . . . . . . . 43
            5.4.4.  Session Management AVPs. . . . . . . . . . . . . 48
            5.4.5.  Circuit Status AVPs. . . . . . . . . . . . . . . 57
  6.  Control Connection Protocol Specification. . . . . . . . . . . 59
      6.1.  Start-Control-Connection-Request (SCCRQ) . . . . . . . . 60
      6.2.  Start-Control-Connection-Reply (SCCRP) . . . . . . . . . 60
      6.3.  Start-Control-Connection-Connected (SCCCN) . . . . . . . 61
      6.4.  Stop-Control-Connection-Notification (StopCCN) . . . . . 61
      6.5.  Hello (HELLO). . . . . . . . . . . . . . . . . . . . . . 61
      6.6.  Incoming-Call-Request (ICRQ) . . . . . . . . . . . . . . 62
      6.7.  Incoming-Call-Reply (ICRP) . . . . . . . . . . . . . . . 63
      6.8.  Incoming-Call-Connected (ICCN) . . . . . . . . . . . . . 63
      6.9.  Outgoing-Call-Request (OCRQ) . . . . . . . . . . . . . . 64
      6.10. Outgoing-Call-Reply (OCRP) . . . . . . . . . . . . . . . 65
      6.11. Outgoing-Call-Connected (OCCN) . . . . . . . . . . . . . 65
      6.12. Call-Disconnect-Notify (CDN) . . . . . . . . . . . . . . 66
      6.13. WAN-Error-Notify (WEN) . . . . . . . . . . . . . . . . . 66
      6.14. Set-Link-Info (SLI). . . . . . . . . . . . . . . . . . . 67
      6.15. Explicit-Acknowledgement (ACK) . . . . . . . . . . . . . 67
  7.  Control Connection State Machines. . . . . . . . . . . . . . . 68
      7.1.  Malformed AVPs and Control Messages. . . . . . . . . . . 68
      7.2.  Control Connection States. . . . . . . . . . . . . . . . 69
      7.3.  Incoming Calls . . . . . . . . . . . . . . . . . . . . . 71
            7.3.1.  ICRQ Sender States . . . . . . . . . . . . . . . 72



Lau, et al.                 Standards Track                     [Page 2]

RFC 3931                         L2TPv3                       March 2005


            7.3.2.  ICRQ Recipient States. . . . . . . . . . . . . . 73
      7.4.  Outgoing Calls . . . . . . . . . . . . . . . . . . . . . 74
            7.4.1.  OCRQ Sender States . . . . . . . . . . . . . . . 75
            7.4.2.  OCRQ Recipient (LAC) States. . . . . . . . . . . 76
      7.5.  Termination of a Control Connection. . . . . . . . . . . 77
  8.  Security Considerations. . . . . . . . . . . . . . . . . . . . 78
      8.1.  Control Connection Endpoint and Message Security . . . . 78
      8.2.  Data Packet Spoofing . . . . . . . . . . . . . . . . . . 78
  9.  Internationalization Considerations. . . . . . . . . . . . . . 79
  10. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 80
      10.1. Control Message Attribute Value Pairs (AVPs) . . . . . . 80
      10.2. Message Type AVP Values. . . . . . . . . . . . . . . . . 81
      10.3. Result Code AVP Values . . . . . . . . . . . . . . . . . 81
      10.4. AVP Header Bits. . . . . . . . . . . . . . . . . . . . . 82
      10.5. L2TP Control Message Header Bits . . . . . . . . . . . . 82
      10.6. Pseudowire Types . . . . . . . . . . . . . . . . . . . . 83
      10.7. Circuit Status Bits. . . . . . . . . . . . . . . . . . . 83
      10.8. Default L2-Specific Sublayer bits. . . . . . . . . . . . 84
      10.9. L2-Specific Sublayer Type. . . . . . . . . . . . . . . . 84
      10.10 Data Sequencing Level. . . . . . . . . . . . . . . . . . 84
  11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 85
      11.1. Normative References . . . . . . . . . . . . . . . . . . 85
      11.2. Informative References . . . . . . . . . . . . . . . . . 85
  12. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 87
  Appendix A: Control Slow Start and Congestion Avoidance. . . . . . 89
  Appendix B: Control Message Examples . . . . . . . . . . . . . . . 90
  Appendix C: Processing Sequence Numbers. . . . . . . . . . . . . . 91
  Editors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 93
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 94

1.  Introduction

  The Layer Two Tunneling Protocol (L2TP) provides a dynamic mechanism
  for tunneling Layer 2 (L2) "circuits" across a packet-oriented data
  network (e.g., over IP).  L2TP, as originally defined in RFC 2661, is
  a standard method for tunneling Point-to-Point Protocol (PPP)
  [RFC1661] sessions.  L2TP has since been adopted for tunneling a
  number of other L2 protocols.  In order to provide greater
  modularity, this document describes the base L2TP protocol,
  independent of the L2 payload that is being tunneled.

  The base L2TP protocol defined in this document consists of (1) the
  control protocol for dynamic creation, maintenance, and teardown of
  L2TP sessions, and (2) the L2TP data encapsulation to multiplex and
  demultiplex L2 data streams between two L2TP nodes across an IP
  network.  Additional documents are expected to be published for each
  L2 data link emulation type (a.k.a. pseudowire-type) supported by
  L2TP (i.e., PPP, Ethernet, Frame Relay, etc.).  These documents will



Lau, et al.                 Standards Track                     [Page 3]

RFC 3931                         L2TPv3                       March 2005


  contain any pseudowire-type specific details that are outside the
  scope of this base specification.

  When the designation between L2TPv2 and L2TPv3 is necessary, L2TP as
  defined in RFC 2661 will be referred to as "L2TPv2", corresponding to
  the value in the Version field of an L2TP header.  (Layer 2
  Forwarding, L2F, [RFC2341] was defined as "version 1".)  At times,
  L2TP as defined in this document will be referred to as "L2TPv3".
  Otherwise, the acronym "L2TP" will refer to L2TPv3 or L2TP in
  general.

1.1.  Changes from RFC 2661

  Many of the protocol constructs described in this document are
  carried over from RFC 2661.  Changes include clarifications based on
  years of interoperability and deployment experience as well as
  modifications to either improve protocol operation or provide a
  clearer separation from PPP.  The intent of these modifications is to
  achieve a healthy balance between code reuse, interoperability
  experience, and a directed evolution of L2TP as it is applied to new
  tasks.

  Notable differences between L2TPv2 and L2TPv3 include the following:

     Separation of all PPP-related AVPs, references, etc., including a
     portion of the L2TP data header that was specific to the needs of
     PPP.  The PPP-specific constructs are described in a companion
     document.

     Transition from a 16-bit Session ID and Tunnel ID to a 32-bit
     Session ID and Control Connection ID, respectively.

     Extension of the Tunnel Authentication mechanism to cover the
     entire control message rather than just a portion of certain
     messages.

  Details of these changes and a recommendation for transitioning to
  L2TPv3 are discussed in Section 4.7.

1.2.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].







Lau, et al.                 Standards Track                     [Page 4]

RFC 3931                         L2TPv3                       March 2005


1.3.  Terminology

  Attribute Value Pair (AVP)

     The variable-length concatenation of a unique Attribute
     (represented by an integer), a length field, and a Value
     containing the actual value identified by the attribute.  Zero or
     more AVPs make up the body of control messages, which are used in
     the establishment, maintenance, and teardown of control
     connections.  This basic construct is sometimes referred to as a
     Type-Length-Value (TLV) in some specifications.  (See also:
     Control Connection, Control Message.)

  Call (Circuit Up)

     The action of transitioning a circuit on an L2TP Access
     Concentrator (LAC) to an "up" or "active" state.  A call may be
     dynamically established through signaling properties (e.g., an
     incoming or outgoing call through the Public Switched Telephone
     Network (PSTN)) or statically configured (e.g., provisioning a
     Virtual Circuit on an interface).  A call is defined by its
     properties (e.g., type of call, called number, etc.) and its data
     traffic.  (See also: Circuit, Session, Incoming Call, Outgoing
     Call, Outgoing Call Request.)

  Circuit

     A general term identifying any one of a wide range of L2
     connections.  A circuit may be virtual in nature (e.g., an ATM
     PVC, an IEEE 802 VLAN, or an L2TP session), or it may have direct
     correlation to a physical layer (e.g., an RS-232 serial line).
     Circuits may be statically configured with a relatively long-lived
     uptime, or dynamically established with signaling to govern the
     establishment, maintenance, and teardown of the circuit.  For the
     purposes of this document, a statically configured circuit is
     considered to be essentially the same as a very simple, long-
     lived, dynamic circuit.  (See also: Call, Remote System.)

  Client

     (See Remote System.)

  Control Connection

     An L2TP control connection is a reliable control channel that is
     used to establish, maintain, and release individual L2TP sessions
     as well as the control connection itself.  (See also: Control
     Message, Data Channel.)



Lau, et al.                 Standards Track                     [Page 5]

RFC 3931                         L2TPv3                       March 2005


  Control Message

     An L2TP message used by the control connection.  (See also:
     Control Connection.)

  Data Message

     Message used by the data channel.  (a.k.a. Data Packet, See also:
     Data Channel.)

  Data Channel

     The channel for L2TP-encapsulated data traffic that passes between
     two LCCEs over a Packet-Switched Network (i.e., IP).  (See also:
     Control Connection, Data Message.)

  Incoming Call

     The action of receiving a call (circuit up event) on an LAC.  The
     call may have been placed by a remote system (e.g., a phone call
     over a PSTN), or it may have been triggered by a local event
     (e.g., interesting traffic routed to a virtual interface).  An
     incoming call that needs to be tunneled (as determined by the LAC)
     results in the generation of an L2TP ICRQ message.  (See also:
     Call, Outgoing Call, Outgoing Call Request.)

  L2TP Access Concentrator (LAC)

     If an L2TP Control Connection Endpoint (LCCE) is being used to
     cross-connect an L2TP session directly to a data link, we refer to
     it as an L2TP Access Concentrator (LAC).  An LCCE may act as both
     an L2TP Network Server (LNS) for some sessions and an LAC for
     others, so these terms must only be used within the context of a
     given set of sessions unless the LCCE is in fact single purpose
     for a given topology.  (See also: LCCE, LNS.)

  L2TP Control Connection Endpoint (LCCE)

     An L2TP node that exists at either end of an L2TP control
     connection.  May also be referred to as an LAC or LNS, depending
     on whether tunneled frames are processed at the data link (LAC) or
     network layer (LNS).  (See also: LAC, LNS.)

  L2TP Network Server (LNS)

     If a given L2TP session is terminated at the L2TP node and the
     encapsulated network layer (L3) packet processed on a virtual
     interface, we refer to this L2TP node as an L2TP Network Server



Lau, et al.                 Standards Track                     [Page 6]

RFC 3931                         L2TPv3                       March 2005


     (LNS).  A given LCCE may act as both an LNS for some sessions and
     an LAC for others, so these terms must only be used within the
     context of a given set of sessions unless the LCCE is in fact
     single purpose for a given topology.  (See also: LCCE, LAC.)

  Outgoing Call

     The action of placing a call by an LAC, typically in response to
     policy directed by the peer in an Outgoing Call Request.  (See
     also: Call, Incoming Call, Outgoing Call Request.)

  Outgoing Call Request

     A request sent to an LAC to place an outgoing call.  The request
     contains specific information not known a priori by the LAC (e.g.,
     a number to dial).  (See also: Call, Incoming Call, Outgoing
     Call.)

  Packet-Switched Network (PSN)

     A network that uses packet switching technology for data delivery.
     For L2TPv3, this layer is principally IP.  Other examples include
     MPLS, Frame Relay, and ATM.

  Peer

     When used in context with L2TP, Peer refers to the far end of an
     L2TP control connection (i.e., the remote LCCE).  An LAC's peer
     may be either an LNS or another LAC.  Similarly, an LNS's peer may
     be either an LAC or another LNS.  (See also: LAC, LCCE, LNS.)

  Pseudowire (PW)

     An emulated circuit as it traverses a PSN.  There is one
     Pseudowire per L2TP Session.  (See also: Packet-Switched Network,
     Session.)

  Pseudowire Type

     The payload type being carried within an L2TP session.  Examples
     include PPP, Ethernet, and Frame Relay.  (See also: Session.)

  Remote System

     An end system or router connected by a circuit to an LAC.






Lau, et al.                 Standards Track                     [Page 7]

RFC 3931                         L2TPv3                       March 2005


  Session

     An L2TP session is the entity that is created between two LCCEs in
     order to exchange parameters for and maintain an emulated L2
     connection.  Multiple sessions may be associated with a single
     Control Connection.

  Zero-Length Body (ZLB) Message

     A control message with only an L2TP header.  ZLB messages are used
     only to acknowledge messages on the L2TP reliable control
     connection.  (See also: Control Message.)

2.  Topology

  L2TP operates between two L2TP Control Connection Endpoints (LCCEs),
  tunneling traffic across a packet network.  There are three
  predominant tunneling models in which L2TP operates: LAC-LNS (or vice
  versa), LAC-LAC, and LNS-LNS.  These models are diagrammed below.
  (Dotted lines designate network connections.  Solid lines designate
  circuit connections.)

                    Figure 2.0: L2TP Reference Models

  (a) LAC-LNS Reference Model: On one side, the LAC receives traffic
  from an L2 circuit, which it forwards via L2TP across an IP or other
  packet-based network.  On the other side, an LNS logically terminates
  the L2 circuit locally and routes network traffic to the home
  network.  The action of session establishment is driven by the LAC
  (as an incoming call) or the LNS (as an outgoing call).

   +-----+  L2  +-----+                        +-----+
   |     |------| LAC |.........[ IP ].........| LNS |...[home network]
   +-----+      +-----+                        +-----+
   remote
   system
                      |<-- emulated service -->|
         |<----------- L2 service ------------>|

  (b) LAC-LAC Reference Model: In this model, both LCCEs are LACs.
  Each LAC forwards circuit traffic from the remote system to the peer
  LAC using L2TP, and vice versa.  In its simplest form, an LAC acts as
  a simple cross-connect between a circuit to a remote system and an
  L2TP session.  This model typically involves symmetric establishment;
  that is, either side of the connection may initiate a session at any
  time (or simultaneously, in which a tie breaking mechanism is
  utilized).




Lau, et al.                 Standards Track                     [Page 8]

RFC 3931                         L2TPv3                       March 2005


  +-----+  L2  +-----+                      +-----+  L2  +-----+
  |     |------| LAC |........[ IP ]........| LAC |------|     |
  +-----+      +-----+                      +-----+      +-----+
  remote                                                 remote
  system                                                 system
                     |<- emulated service ->|
        |<----------------- L2 service ----------------->|

  (c) LNS-LNS Reference Model: This model has two LNSs as the LCCEs.  A
  user-level, traffic-generated, or signaled event typically drives
  session establishment from one side of the tunnel.  For example, a
  tunnel generated from a PC by a user, or automatically by customer
  premises equipment.

                  +-----+                      +-----+
 [home network]...| LNS |........[ IP ]........| LNS |...[home network]
                  +-----+                      +-----+
                        |<- emulated service ->|
                        |<---- L2 service ---->|

  Note: In L2TPv2, user-driven tunneling of this type is often referred
  to as "voluntary tunneling" [RFC2809].  Further, an LNS acting as
  part of a software package on a host is sometimes referred to as an
  "LAC Client" [RFC2661].

3.  Protocol Overview

  L2TP is comprised of two types of messages, control messages and data
  messages (sometimes referred to as "control packets" and "data
  packets", respectively).  Control messages are used in the
  establishment, maintenance, and clearing of control connections and
  sessions.  These messages utilize a reliable control channel within
  L2TP to guarantee delivery (see Section 4.2 for details).  Data
  messages are used to encapsulate the L2 traffic being carried over
  the L2TP session.  Unlike control messages, data messages are not
  retransmitted when packet loss occurs.

  The L2TPv3 control message format defined in this document borrows
  largely from L2TPv2.  These control messages are used in conjunction
  with the associated protocol state machines that govern the dynamic
  setup, maintenance, and teardown for L2TP sessions.  The data message
  format for tunneling data packets may be utilized with or without the
  L2TP control channel, either via manual configuration or via other
  signaling methods to pre-configure or distribute L2TP session
  information.  Utilization of the L2TP data message format with other
  signaling methods is outside the scope of this document.





Lau, et al.                 Standards Track                     [Page 9]

RFC 3931                         L2TPv3                       March 2005


                      Figure 3.0: L2TPv3 Structure

            +-------------------+    +-----------------------+
            | Tunneled Frame    |    | L2TP Control Message  |
            +-------------------+    +-----------------------+
            | L2TP Data Header  |    | L2TP Control Header   |
            +-------------------+    +-----------------------+
            | L2TP Data Channel |    | L2TP Control Channel  |
            | (unreliable)      |    | (reliable)            |
            +-------------------+----+-----------------------+
            | Packet-Switched Network (IP, FR, MPLS, etc.)   |
            +------------------------------------------------+

  Figure 3.0 depicts the relationship of control messages and data
  messages over the L2TP control and data channels, respectively.  Data
  messages are passed over an unreliable data channel, encapsulated by
  an L2TP header, and sent over a Packet-Switched Network (PSN) such as
  IP, UDP, Frame Relay, ATM, MPLS, etc.  Control messages are sent over
  a reliable L2TP control channel, which operates over the same PSN.

  The necessary setup for tunneling a session with L2TP consists of two
  steps: (1) Establishing the control connection, and (2) establishing
  a session as triggered by an incoming call or outgoing call.  An L2TP
  session MUST be established before L2TP can begin to forward session
  frames.  Multiple sessions may be bound to a single control
  connection, and multiple control connections may exist between the
  same two LCCEs.

3.1.  Control Message Types

  The Message Type AVP (see Section 5.4.1) defines the specific type of
  control message being sent.

  This document defines the following control message types (see
  Sections 6.1 through 6.15 for details on the construction and use of
  each message):

  Control Connection Management

      0  (reserved)
      1  (SCCRQ)    Start-Control-Connection-Request
      2  (SCCRP)    Start-Control-Connection-Reply
      3  (SCCCN)    Start-Control-Connection-Connected
      4  (StopCCN)  Stop-Control-Connection-Notification
      5  (reserved)
      6  (HELLO)    Hello
     20  (ACK)      Explicit Acknowledgement




Lau, et al.                 Standards Track                    [Page 10]

RFC 3931                         L2TPv3                       March 2005


  Call Management

      7  (OCRQ)     Outgoing-Call-Request
      8  (OCRP)     Outgoing-Call-Reply
      9  (OCCN)     Outgoing-Call-Connected
     10  (ICRQ)     Incoming-Call-Request
     11  (ICRP)     Incoming-Call-Reply
     12  (ICCN)     Incoming-Call-Connected
     13  (reserved)
     14  (CDN)      Call-Disconnect-Notify

  Error Reporting

     15  (WEN)      WAN-Error-Notify

  Link Status Change Reporting

     16  (SLI)      Set-Link-Info

3.2.  L2TP Header Formats

  This section defines header formats for L2TP control messages and
  L2TP data messages.  All values are placed into their respective
  fields and sent in network order (high-order octets first).

3.2.1.  L2TP Control Message Header

  The L2TP control message header provides information for the reliable
  transport of messages that govern the establishment, maintenance, and
  teardown of L2TP sessions.  By default, control messages are sent
  over the underlying media in-band with L2TP data messages.

  The L2TP control message header is formatted as follows:

                Figure 3.2.1: L2TP Control Message Header

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |T|L|x|x|S|x|x|x|x|x|x|x|  Ver  |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Control Connection ID                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Ns              |               Nr              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The T bit MUST be set to 1, indicating that this is a control
  message.



Lau, et al.                 Standards Track                    [Page 11]

RFC 3931                         L2TPv3                       March 2005


  The L and S bits MUST be set to 1, indicating that the Length field
  and sequence numbers are present.

  The x bits are reserved for future extensions.  All reserved bits
  MUST be set to 0 on outgoing messages and ignored on incoming
  messages.

  The Ver field indicates the version of the L2TP control message
  header described in this document.  On sending, this field MUST be
  set to 3 for all messages (unless operating in an environment that
  includes L2TPv2 [RFC2661] and/or L2F [RFC2341] as well, see Section
  4.1 for details).

  The Length field indicates the total length of the message in octets,
  always calculated from the start of the control message header itself
  (beginning with the T bit).

  The Control Connection ID field contains the identifier for the
  control connection.  L2TP control connections are named by
  identifiers that have local significance only.  That is, the same
  control connection will be given unique Control Connection IDs by
  each LCCE from within each endpoint's own Control Connection ID
  number space.  As such, the Control Connection ID in each message is
  that of the intended recipient, not the sender.  Non-zero Control
  Connection IDs are selected and exchanged as Assigned Control
  Connection ID AVPs during the creation of a control connection.

  Ns indicates the sequence number for this control message, beginning
  at zero and incrementing by one (modulo 2**16) for each message sent.
  See Section 4.2 for more information on using this field.

  Nr indicates the sequence number expected in the next control message
  to be received.  Thus, Nr is set to the Ns of the last in-order
  message received plus one (modulo 2**16).  See Section 4.2 for more
  information on using this field.

3.2.2.  L2TP Data Message

  In general, an L2TP data message consists of a (1) Session Header,
  (2) an optional L2-Specific Sublayer, and (3) the Tunnel Payload, as
  depicted below.










Lau, et al.                 Standards Track                    [Page 12]

RFC 3931                         L2TPv3                       March 2005


                 Figure 3.2.2: L2TP Data Message Header

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      L2TP Session Header                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      L2-Specific Sublayer                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Tunnel Payload                      ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The L2TP Session Header is specific to the encapsulating PSN over
  which the L2TP traffic is delivered.  The Session Header MUST provide
  (1) a method of distinguishing traffic among multiple L2TP data
  sessions and (2) a method of distinguishing data messages from
  control messages.

  Each type of encapsulating PSN MUST define its own session header,
  clearly identifying the format of the header and parameters necessary
  to setup the session.  Section 4.1 defines two session headers, one
  for transport over UDP and one for transport over IP.

  The L2-Specific Sublayer is an intermediary layer between the L2TP
  session header and the start of the tunneled frame.  It contains
  control fields that are used to facilitate the tunneling of each
  frame (e.g., sequence numbers or flags).  The Default L2-Specific
  Sublayer for L2TPv3 is defined in Section 4.6.

  The Data Message Header is followed by the Tunnel Payload, including
  any necessary L2 framing as defined in the payload-specific companion
  documents.

3.3.  Control Connection Management

  The L2TP control connection handles dynamic establishment, teardown,
  and maintenance of the L2TP sessions and of the control connection
  itself.  The reliable delivery of control messages is described in
  Section 4.2.

  This section describes typical control connection establishment and
  teardown exchanges.  It is important to note that, in the diagrams
  that follow, the reliable control message delivery mechanism exists
  independently of the L2TP state machine.  For instance, Explicit
  Acknowledgement (ACK) messages may be sent after any of the control
  messages indicated in the exchanges below if an acknowledgment is not
  piggybacked on a later control message.






Lau, et al.                 Standards Track                    [Page 13]

RFC 3931                         L2TPv3                       March 2005


  LCCEs are identified during control connection establishment either
  by the Host Name AVP, the Router ID AVP, or a combination of the two
  (see Section 5.4.3).  The identity of a peer LCCE is central to
  selecting proper configuration parameters (i.e., Hello interval,
  window size, etc.) for a control connection, as well as for
  determining how to set up associated sessions within the control
  connection, password lookup for control connection authentication,
  control connection level tie breaking, etc.

3.3.1.  Control Connection Establishment

  Establishment of the control connection involves an exchange of AVPs
  that identifies the peer and its capabilities.

  A three-message exchange is used to establish the control connection.
  The following is a typical message exchange:

     LCCE A      LCCE B
     ------      ------
     SCCRQ ->
                 <- SCCRP
     SCCCN ->

3.3.2.  Control Connection Teardown

  Control connection teardown may be initiated by either LCCE and is
  accomplished by sending a single StopCCN control message.  As part of
  the reliable control message delivery mechanism, the recipient of a
  StopCCN MUST send an ACK message to acknowledge receipt of the
  message and maintain enough control connection state to properly
  accept StopCCN retransmissions over at least a full retransmission
  cycle (in case the ACK message is lost).  The recommended time for a
  full retransmission cycle is at least 31 seconds (see Section 4.2).
  The following is an example of a typical control message exchange:

     LCCE A      LCCE B
     ------      ------
     StopCCN ->
     (Clean up)

                 (Wait)
                 (Clean up)

  An implementation may shut down an entire control connection and all
  sessions associated with the control connection by sending the
  StopCCN.  Thus, it is not necessary to clear each session
  individually when tearing down the whole control connection.




Lau, et al.                 Standards Track                    [Page 14]

RFC 3931                         L2TPv3                       March 2005


3.4.  Session Management

  After successful control connection establishment, individual
  sessions may be created.  Each session corresponds to a single data
  stream between the two LCCEs.  This section describes the typical
  call establishment and teardown exchanges.

3.4.1.  Session Establishment for an Incoming Call

  A three-message exchange is used to establish the session.  The
  following is a typical sequence of events:

     LCCE A      LCCE B
     ------      ------
     (Call
      Detected)

     ICRQ ->
                <- ICRP
     (Call
      Accepted)

     ICCN ->

3.4.2.  Session Establishment for an Outgoing Call

  A three-message exchange is used to set up the session.  The
  following is a typical sequence of events:

     LCCE A      LCCE B
     ------      ------
                <- OCRQ
     OCRP ->

     (Perform
      Call
      Operation)

     OCCN ->

     (Call Operation
      Completed
      Successfully)








Lau, et al.                 Standards Track                    [Page 15]

RFC 3931                         L2TPv3                       March 2005


3.4.3.  Session Teardown

  Session teardown may be initiated by either the LAC or LNS and is
  accomplished by sending a CDN control message.  After the last
  session is cleared, the control connection MAY be torn down as well
  (and typically is).  The following is an example of a typical control
  message exchange:

     LCCE A      LCCE B
     ------      ------
     CDN ->
     (Clean up)

                 (Clean up)

4.  Protocol Operation

4.1.  L2TP Over Specific Packet-Switched Networks (PSNs)

  L2TP may operate over a variety of PSNs.  There are two modes
  described for operation over IP, L2TP directly over IP (see Section
  4.1.1) and L2TP over UDP (see Section 4.1.2).  L2TPv3 implementations
  MUST support L2TP over IP and SHOULD support L2TP over UDP for better
  NAT and firewall traversal, and for easier migration from L2TPv2.

  L2TP over other PSNs may be defined, but the specifics are outside
  the scope of this document.  Examples of L2TPv2 over other PSNs
  include [RFC3070] and [RFC3355].

  The following field definitions are defined for use in all L2TP
  Session Header encapsulations.

  Session ID

     A 32-bit field containing a non-zero identifier for a session.
     L2TP sessions are named by identifiers that have local
     significance only.  That is, the same logical session will be
     given different Session IDs by each end of the control connection
     for the life of the session.  When the L2TP control connection is
     used for session establishment, Session IDs are selected and
     exchanged as Local Session ID AVPs during the creation of a
     session.  The Session ID alone provides the necessary context for
     all further packet processing, including the presence, size, and
     value of the Cookie, the type of L2-Specific Sublayer, and the
     type of payload being tunneled.






Lau, et al.                 Standards Track                    [Page 16]

RFC 3931                         L2TPv3                       March 2005


  Cookie

     The optional Cookie field contains a variable-length value
     (maximum 64 bits) used to check the association of a received data
     message with the session identified by the Session ID.  The Cookie
     MUST be set to the configured or signaled random value for this
     session.  The Cookie provides an additional level of guarantee
     that a data message has been directed to the proper session by the
     Session ID.  A well-chosen Cookie may prevent inadvertent
     misdirection of stray packets with recently reused Session IDs,
     Session IDs subject to packet corruption, etc.  The Cookie may
     also provide protection against some specific malicious packet
     insertion attacks, as described in Section 8.2.

     When the L2TP control connection is used for session
     establishment, random Cookie values are selected and exchanged as
     Assigned Cookie AVPs during session creation.

4.1.1.  L2TPv3 over IP

  L2TPv3 over IP (both versions) utilizes the IANA-assigned IP protocol
  ID 115.

4.1.1.1.  L2TPv3 Session Header Over IP

  Unlike L2TP over UDP, the L2TPv3 session header over IP is free of
  any restrictions imposed by coexistence with L2TPv2 and L2F.  As
  such, the header format has been designed to optimize packet
  processing.  The following session header format is utilized when
  operating L2TPv3 over IP:

              Figure 4.1.1.1: L2TPv3 Session Header Over IP

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Session ID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Cookie (optional, maximum 64 bits)...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Session ID and Cookie fields are as defined in Section 4.1.  The
  Session ID of zero is reserved for use by L2TP control messages (see
  Section 4.1.1.2).





Lau, et al.                 Standards Track                    [Page 17]

RFC 3931                         L2TPv3                       March 2005


4.1.1.2.  L2TP Control and Data Traffic over IP

  Unlike L2TP over UDP, which uses the T bit to distinguish between
  L2TP control and data packets, L2TP over IP uses the reserved Session
  ID of zero (0) when sending control messages.  It is presumed that
  checking for the zero Session ID is more efficient -- both in header
  size for data packets and in processing speed for distinguishing
  between control and data messages -- than checking a single bit.

  The entire control message header over IP, including the zero session
  ID, appears as follows:

          Figure 4.1.1.2: L2TPv3 Control Message Header Over IP

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      (32 bits of zeros)                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |T|L|x|x|S|x|x|x|x|x|x|x|  Ver  |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Control Connection ID                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Ns              |               Nr              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Named fields are as defined in Section 3.2.1.  Note that the Length
  field is still calculated from the beginning of the control message
  header, beginning with the T bit.  It does NOT include the "(32 bits
  of zeros)" depicted above.

  When operating directly over IP, L2TP packets lose the ability to
  take advantage of the UDP checksum as a simple packet integrity
  check, which is of particular concern for L2TP control messages.
  Control Message Authentication (see Section 4.3), even with an empty
  password field, provides for a sufficient packet integrity check and
  SHOULD always be enabled.

4.1.2.  L2TP over UDP

  L2TPv3 over UDP must consider other L2 tunneling protocols that may
  be operating in the same environment, including L2TPv2 [RFC2661] and
  L2F [RFC2341].

  While there are efficiencies gained by running L2TP directly over IP,
  there are possible side effects as well.  For instance, L2TP over IP
  is not as NAT-friendly as L2TP over UDP.




Lau, et al.                 Standards Track                    [Page 18]

RFC 3931                         L2TPv3                       March 2005


4.1.2.1.  L2TP Session Header Over UDP

  The following session header format is utilized when operating L2TPv3
  over UDP:

             Figure 4.1.2.1: L2TPv3 Session Header over UDP

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |T|x|x|x|x|x|x|x|x|x|x|x|  Ver  |          Reserved             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Session ID                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Cookie (optional, maximum 64 bits)...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The T bit MUST be set to 0, indicating that this is a data message.

  The x bits and Reserved field are reserved for future extensions.
  All reserved values MUST be set to 0 on outgoing messages and ignored
  on incoming messages.

  The Ver field MUST be set to 3, indicating an L2TPv3 message.

  Note that the initial bits 1, 4, 6, and 7 have meaning in L2TPv2
  [RFC2661], and are deprecated and marked as reserved in L2TPv3.
  Thus, for UDP mode on a system that supports both versions of L2TP,
  it is important that the Ver field be inspected first to determine
  the Version of the header before acting upon any of these bits.

  The Session ID and Cookie fields are as defined in Section 4.1.

4.1.2.2.  UDP Port Selection

  The method for UDP Port Selection defined in this section is
  identical to that defined for L2TPv2 [RFC2661].

  When negotiating a control connection over UDP, control messages MUST
  be sent as UDP datagrams using the registered UDP port 1701
  [RFC1700].  The initiator of an L2TP control connection picks an
  available source UDP port (which may or may not be 1701) and sends to
  the desired destination address at port 1701.  The recipient picks a
  free port on its own system (which may or may not be 1701) and sends
  its reply to the initiator's UDP port and address, setting its own
  source port to the free port it found.



Lau, et al.                 Standards Track                    [Page 19]

RFC 3931                         L2TPv3                       March 2005


  Any subsequent traffic associated with this control connection
  (either control traffic or data traffic from a session established
  through this control connection) must use these same UDP ports.

  It has been suggested that having the recipient choose an arbitrary
  source port (as opposed to using the destination port in the packet
  initiating the control connection, i.e., 1701) may make it more
  difficult for L2TP to traverse some NAT devices.  Implementations
  should consider the potential implication of this capability before
  choosing an arbitrary source port.  A NAT device that can pass TFTP
  traffic with variant UDP ports should be able to pass L2TP UDP
  traffic since both protocols employ similar policies with regard to
  UDP port selection.

4.1.2.3.  UDP Checksum

  The tunneled frames that L2TP carry often have their own checksums or
  integrity checks, rendering the UDP checksum redundant for much of
  the L2TP data message contents.  Thus, UDP checksums MAY be disabled
  in order to reduce the associated packet processing burden at the
  L2TP endpoints.

  The L2TP header itself does not have its own checksum or integrity
  check.  However, use of the L2TP Session ID and Cookie pair guards
  against accepting an L2TP data message if corruption of the Session
  ID or associated Cookie has occurred.  When the L2-Specific Sublayer
  is present in the L2TP header, there is no built-in integrity check
  for the information contained therein if UDP checksums or some other
  integrity check is not employed.  IPsec (see Section 4.1.3) may be
  used for strong integrity protection of the entire contents of L2TP
  data messages.

  UDP checksums MUST be enabled for L2TP control messages.

4.1.3.  L2TP and IPsec

  The L2TP data channel does not provide cryptographic security of any
  kind.  If the L2TP data channel operates over a public or untrusted
  IP network where privacy of the L2TP data is of concern or
  sophisticated attacks against L2TP are expected to occur, IPsec
  [RFC2401] MUST be made available to secure the L2TP traffic.

  Either L2TP over UDP or L2TP over IP may be secured with IPsec.
  [RFC3193] defines the recommended method for securing L2TPv2.  L2TPv3
  possesses identical characteristics to IPsec as L2TPv2 when running
  over UDP and implementations MUST follow the same recommendation.
  When operating over IP directly, [RFC3193] still applies, though
  references to UDP source and destination ports (in particular, those



Lau, et al.                 Standards Track                    [Page 20]

RFC 3931                         L2TPv3                       March 2005


  in Section 4, "IPsec Filtering details when protecting L2TP") may be
  ignored.  Instead, the selectors used to identify L2TPv3 traffic are
  simply the source and destination IP addresses for the tunnel
  endpoints together with the L2TPv3 IP protocol type, 115.

  In addition to IP transport security, IPsec defines a mode of
  operation that allows tunneling of IP packets.  The packet-level
  encryption and authentication provided by IPsec tunnel mode and that
  provided by L2TP secured with IPsec provide an equivalent level of
  security for these requirements.

  IPsec also defines access control features that are required of a
  compliant IPsec implementation.  These features allow filtering of
  packets based upon network and transport layer characteristics such
  as IP address, ports, etc.  In the L2TP tunneling model, analogous
  filtering may be performed at the network layer above L2TP.  These
  network layer access control features may be handled at an LCCE via
  vendor-specific authorization features, or at the network layer
  itself by using IPsec transport mode end-to-end between the
  communicating hosts.  The requirements for access control mechanisms
  are not a part of the L2TP specification, and as such, are outside
  the scope of this document.

  Protecting the L2TP packet stream with IPsec does, in turn, also
  protect the data within the tunneled session packets while
  transported from one LCCE to the other.  Such protection must not be
  considered a substitution for end-to-end security between
  communicating hosts or applications.

4.1.4.  IP Fragmentation Issues

  Fragmentation and reassembly in network equipment generally require
  significantly greater resources than sending or receiving a packet as
  a single unit.  As such, fragmentation and reassembly should be
  avoided whenever possible.  Ideal solutions for avoiding
  fragmentation include proper configuration and management of MTU
  sizes among the Remote System, the LCCE, and the IP network, as well
  as adaptive measures that operate with the originating host (e.g.,
  [RFC1191], [RFC1981]) to reduce the packet sizes at the source.

  An LCCE MAY fragment a packet before encapsulating it in L2TP.  For
  example, if an IPv4 packet arrives at an LCCE from a Remote System
  that, after encapsulation with its associated framing, L2TP, and IP,
  does not fit in the available path MTU towards its LCCE peer, the
  local LCCE may perform IPv4 fragmentation on the packet before tunnel
  encapsulation.  This creates two (or more) L2TP packets, each





Lau, et al.                 Standards Track                    [Page 21]

RFC 3931                         L2TPv3                       March 2005


  carrying an IPv4 fragment with its associated framing.  This
  ultimately has the effect of placing the burden of fragmentation on
  the LCCE, while reassembly occurs on the IPv4 destination host.

  If an IPv6 packet arrives at an LCCE from a Remote System that, after
  encapsulation with associated framing, L2TP and IP, does not fit in
  the available path MTU towards its L2TP peer, the Generic Packet
  Tunneling specification [RFC2473], Section 7.1 SHOULD be followed.
  In this case, the LCCE should either send an ICMP Packet Too Big
  message to the data source, or fragment the resultant L2TP/IP packet
  (for reassembly by the L2TP peer).

  If the amount of traffic requiring fragmentation and reassembly is
  rather light, or there are sufficiently optimized mechanisms at the
  tunnel endpoints, fragmentation of the L2TP/IP packet may be
  sufficient for accommodating mismatched MTUs that cannot be managed
  by more efficient means.  This method effectively emulates a larger
  MTU between tunnel endpoints and should work for any type of L2-
  encapsulated packet.  Note that IPv6 does not support "in-flight"
  fragmentation of data packets.  Thus, unlike IPv4, the MTU of the
  path towards an L2TP peer must be known in advance (or the last
  resort IPv6 minimum MTU of 1280 bytes utilized) so that IPv6
  fragmentation may occur at the LCCE.

  In summary, attempting to control the source MTU by communicating
  with the originating host, forcing that an MTU be sufficiently large
  on the path between LCCE peers to tunnel a frame from any other
  interface without fragmentation, fragmenting IP packets before
  encapsulation with L2TP/IP, or fragmenting the resultant L2TP/IP
  packet between the tunnel endpoints, are all valid methods for
  managing MTU mismatches.  Some are clearly better than others
  depending on the given deployment.  For example, a passive monitoring
  application using L2TP would certainly not wish to have ICMP messages
  sent to a traffic source.  Further, if the links connecting a set of
  LCCEs have a very large MTU (e.g., SDH/SONET) and it is known that
  the MTU of all links being tunneled by L2TP have smaller MTUs (e.g.,
  1500 bytes), then any IP fragmentation and reassembly enabled on the
  participating LCCEs would never be utilized.  An implementation MUST
  implement at least one of the methods described in this section for
  managing mismatched MTUs, based on careful consideration of how the
  final product will be deployed.

  L2TP-specific fragmentation and reassembly methods, which may or may
  not depend on the characteristics of the type of link being tunneled
  (e.g., judicious packing of ATM cells), may be defined as well, but
  these methods are outside the scope of this document.





Lau, et al.                 Standards Track                    [Page 22]

RFC 3931                         L2TPv3                       March 2005


4.2.  Reliable Delivery of Control Messages

  L2TP provides a lower level reliable delivery service for all control
  messages.  The Nr and Ns fields of the control message header (see
  Section 3.2.1) belong to this delivery mechanism.  The upper level
  functions of L2TP are not concerned with retransmission or ordering
  of control messages.  The reliable control messaging mechanism is a
  sliding window mechanism that provides control message retransmission
  and congestion control.  Each peer maintains separate sequence number
  state for each control connection.

  The message sequence number, Ns, begins at 0.  Each subsequent
  message is sent with the next increment of the sequence number.  The
  sequence number is thus a free-running counter represented modulo
  65536.  The sequence number in the header of a received message is
  considered less than or equal to the last received number if its
  value lies in the range of the last received number and the preceding
  32767 values, inclusive.  For example, if the last received sequence
  number was 15, then messages with sequence numbers 0 through 15, as
  well as 32784 through 65535, would be considered less than or equal.
  Such a message would be considered a duplicate of a message already
  received and ignored from processing.  However, in order to ensure
  that all messages are acknowledged properly (particularly in the case
  of a lost ACK message), receipt of duplicate messages MUST be
  acknowledged by the reliable delivery mechanism.  This acknowledgment
  may either piggybacked on a message in queue or sent explicitly via
  an ACK message.

  All control messages take up one slot in the control message sequence
  number space, except the ACK message.  Thus, Ns is not incremented
  after an ACK message is sent.

  The last received message number, Nr, is used to acknowledge messages
  received by an L2TP peer.  It contains the sequence number of the
  message the peer expects to receive next (e.g., the last Ns of a
  non-ACK message received plus 1, modulo 65536).  While the Nr in a
  received ACK message is used to flush messages from the local
  retransmit queue (see below), the Nr of the next message sent is not
  updated by the Ns of the ACK message.  Nr SHOULD be sanity-checked
  before flushing the retransmit queue.  For instance, if the Nr
  received in a control message is greater than the last Ns sent plus 1
  modulo 65536, the control message is clearly invalid.

  The reliable delivery mechanism at a receiving peer is responsible
  for making sure that control messages are delivered in order and
  without duplication to the upper level.  Messages arriving out-of-
  order may be queued for in-order delivery when the missing messages




Lau, et al.                 Standards Track                    [Page 23]

RFC 3931                         L2TPv3                       March 2005


  are received.  Alternatively, they may be discarded, thus requiring a
  retransmission by the peer.  When dropping out-of-order control
  packets, Nr MAY be updated before the packet is discarded.

  Each control connection maintains a queue of control messages to be
  transmitted to its peer.  The message at the front of the queue is
  sent with a given Ns value and is held until a control message
  arrives from the peer in which the Nr field indicates receipt of this
  message.  After a period of time (a recommended default is 1 second
  but SHOULD be configurable) passes without acknowledgment, the
  message is retransmitted.  The retransmitted message contains the
  same Ns value, but the Nr value MUST be updated with the sequence
  number of the next expected message.

  Each subsequent retransmission of a message MUST employ an
  exponential backoff interval.  Thus, if the first retransmission
  occurred after 1 second, the next retransmission should occur after 2
  seconds has elapsed, then 4 seconds, etc.  An implementation MAY
  place a cap upon the maximum interval between retransmissions.  This
  cap SHOULD be no less than 8 seconds per retransmission.  If no peer
  response is detected after several retransmissions (a recommended
  default is 10, but MUST be configurable), the control connection and
  all associated sessions MUST be cleared.  As it is the first message
  to establish a control connection, the SCCRQ MAY employ a different
  retransmission maximum than other control messages in order to help
  facilitate failover to alternate LCCEs in a timely fashion.

  When a control connection is being shut down for reasons other than
  loss of connectivity, the state and reliable delivery mechanisms MUST
  be maintained and operated for the full retransmission interval after
  the final message StopCCN message has been sent (e.g., 1 + 2 + 4 + 8
  + 8... seconds), or until the StopCCN message itself has been
  acknowledged.

  A sliding window mechanism is used for control message transmission
  and retransmission.  Consider two peers, A and B.  Suppose A
  specifies a Receive Window Size AVP with a value of N in the SCCRQ or
  SCCRP message.  B is now allowed to have a maximum of N outstanding
  (i.e., unacknowledged) control messages.  Once N messages have been
  sent, B must wait for an acknowledgment from A that advances the
  window before sending new control messages.  An implementation may
  advertise a non-zero receive window as small or as large as it
  wishes, depending on its own ability to process incoming messages
  before sending an acknowledgement.  Each peer MUST limit the number
  of unacknowledged messages it will send before receiving an
  acknowledgement by this Receive Window Size.  The actual internal





Lau, et al.                 Standards Track                    [Page 24]

RFC 3931                         L2TPv3                       March 2005


  unacknowledged message send-queue depth may be further limited by
  local resource allocation or by dynamic slow-start and congestion-
  avoidance mechanisms.

  When retransmitting control messages, a slow start and congestion
  avoidance window adjustment procedure SHOULD be utilized.  A
  recommended procedure is described in Appendix A.  A peer MAY drop
  messages, but MUST NOT actively delay acknowledgment of messages as a
  technique for flow control of control messages.  Appendix B contains
  examples of control message transmission, acknowledgment, and
  retransmission.

4.3.  Control Message Authentication

  L2TP incorporates an optional authentication and integrity check for
  all control messages.  This mechanism consists of a computed one-way
  hash over the header and body of the L2TP control message, a pre-
  configured shared secret, and a local and remote nonce (random value)
  exchanged via the Control Message Authentication Nonce AVP. This
  per-message authentication and integrity check is designed to perform
  a mutual authentication between L2TP nodes, perform integrity
  checking of all control messages, and guard against control message
  spoofing and replay attacks that would otherwise be trivial to mount.

  At least one shared secret (password) MUST exist between
  communicating L2TP nodes to enable Control Message Authentication.
  See Section 5.4.3 for details on calculation of the Message Digest
  and construction of the Control Message Authentication Nonce and
  Message Digest AVPs.

  L2TPv3 Control Message Authentication is similar to L2TPv2 [RFC2661]
  Tunnel Authentication in its use of a shared secret and one-way hash
  calculation.  The principal difference is that, instead of computing
  the hash over selected contents of a received control message (e.g.,
  the Challenge AVP and Message Type) as in L2TPv2, the entire message
  is used in the hash in L2TPv3.  In addition, instead of including the
  hash digest in just the SCCRP and SCCCN messages, it is now included
  in all L2TP messages.

  The Control Message Authentication mechanism is optional, and may be
  disabled if both peers agree.  For example, if IPsec is already being
  used for security and integrity checking between the LCCEs, the
  function of the L2TP mechanism becomes redundant and may be disabled.

  Presence of the Control Message Authentication Nonce AVP in an SCCRQ
  or SCCRP message serves as indication to a peer that Control Message
  Authentication is enabled.  If an SCCRQ or SCCRP contains a Control
  Message Authentication Nonce AVP, the receiver of the message MUST



Lau, et al.                 Standards Track                    [Page 25]

RFC 3931                         L2TPv3                       March 2005


  respond with a Message Digest AVP in all subsequent messages sent.
  Control Message Authentication is always bidirectional; either both
  sides participate in authentication, or neither does.

  If Control Message Authentication is disabled, the Message Digest AVP
  still MAY be sent as an integrity check of the message.  The
  integrity check is calculated as in Section 5.4.3, with an empty
  zero-length shared secret, local nonce, and remote nonce.  If an
  invalid Message Digest is received, it should be assumed that the
  message has been corrupted in transit and the message dropped
  accordingly.

  Implementations MAY rate-limit control messages, particularly SCCRQ
  messages, upon receipt for performance reasons or for protection
  against denial of service attacks.

4.4.  Keepalive (Hello)

  L2TP employs a keepalive mechanism to detect loss of connectivity
  between a pair of LCCEs.  This is accomplished by injecting Hello
  control messages (see Section 6.5) after a period of time has elapsed
  since the last data message or control message was received on an
  L2TP session or control connection, respectively.  As with any other
  control message, if the Hello message is not reliably delivered, the
  sending LCCE declares that the control connection is down and resets
  its state for the control connection.  This behavior ensures that a
  connectivity failure between the LCCEs is detected independently by
  each end of a control connection.

  Since the control channel is operated in-band with data traffic over
  the PSN, this single mechanism can be used to infer basic data
  connectivity between a pair of LCCEs for all sessions associated with
  the control connection.

  Periodic keepalive for the control connection MUST be implemented by
  sending a Hello if a period of time (a recommended default is 60
  seconds, but MUST be configurable) has passed without receiving any
  message (data or control) from the peer.  An LCCE sending Hello
  messages across multiple control connections between the same LCCE
  endpoints MUST employ a jittered timer mechanism to prevent grouping
  of Hello messages.

4.5.  Forwarding Session Data Frames

  Once session establishment is complete, circuit frames are received
  at an LCCE, encapsulated in L2TP (with appropriate attention to
  framing, as described in documents for the particular pseudowire
  type), and forwarded over the appropriate session.  For every



Lau, et al.                 Standards Track                    [Page 26]

RFC 3931                         L2TPv3                       March 2005


  outgoing data message, the sender places the identifier specified in
  the Local Session ID AVP (received from peer during session
  establishment) in the Session ID field of the L2TP data header.  In
  this manner, session frames are multiplexed and demultiplexed between
  a given pair of LCCEs.  Multiple control connections may exist
  between a given pair of LCCEs, and multiple sessions may be
  associated with a given control connection.

  The peer LCCE receiving the L2TP data packet identifies the session
  with which the packet is associated by the Session ID in the data
  packet's header.  The LCCE then checks the Cookie field in the data
  packet against the Cookie value received in the Assigned Cookie AVP
  during session establishment.  It is important for implementers to
  note that the Cookie field check occurs after looking up the session
  context by the Session ID, and as such, consists merely of a value
  match of the Cookie field and that stored in the retrieved context.
  There is no need to perform a lookup across the Session ID and Cookie
  as a single value.  Any received data packets that contain invalid
  Session IDs or associated Cookie values MUST be dropped.  Finally,
  the LCCE either forwards the network packet within the tunneled frame
  (e.g., as an LNS) or switches the frame to a circuit (e.g., as an
  LAC).

4.6.  Default L2-Specific Sublayer

  This document defines a Default L2-Specific Sublayer format (see
  Section 3.2.2) that a pseudowire may use for features such as
  sequencing support, L2 interworking, OAM, or other per-data-packet
  operations.  The Default L2-Specific Sublayer SHOULD be used by a
  given PW type to support these features if it is adequate, and its
  presence is requested by a peer during session negotiation.
  Alternative sublayers MAY be defined (e.g., an encapsulation with a
  larger Sequence Number field or timing information) and identified
  for use via the L2-Specific Sublayer Type AVP.

             Figure 4.6: Default L2-Specific Sublayer Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|x|x|x|x|              Sequence Number                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The S (Sequence) bit is set to 1 when the Sequence Number contains a
  valid number for this sequenced frame.  If the S bit is set to zero,
  the Sequence Number contents are undefined and MUST be ignored by the
  receiver.




Lau, et al.                 Standards Track                    [Page 27]

RFC 3931                         L2TPv3                       March 2005


  The Sequence Number field contains a free-running counter of 2^24
  sequence numbers.  If the number in this field is valid, the S bit
  MUST be set to 1.  The Sequence Number begins at zero, which is a
  valid sequence number.  (In this way, implementations inserting
  sequence numbers do not have to "skip" zero when incrementing.)  The
  sequence number in the header of a received message is considered
  less than or equal to the last received number if its value lies in
  the range of the last received number and the preceding (2^23-1)
  values, inclusive.

4.6.1.  Sequencing Data Packets

  The Sequence Number field may be used to detect lost, duplicate, or
  out-of-order packets within a given session.

  When L2 frames are carried over an L2TP-over-IP or L2TP-over-UDP/IP
  data channel, this part of the link has the characteristic of being
  able to reorder, duplicate, or silently drop packets.  Reordering may
  break some non-IP protocols or L2 control traffic being carried by
  the link.  Silent dropping or duplication of packets may break
  protocols that assume per-packet indications of error, such as TCP
  header compression.  While a common mechanism for packet sequence
  detection is provided, the sequence dependency characteristics of
  individual protocols are outside the scope of this document.

  If any protocol being transported by over L2TP data channels cannot
  tolerate misordering of data packets, packet duplication, or silent
  packet loss, sequencing may be enabled on some or all packets by
  using the S bit and Sequence Number field defined in the Default L2-
  Specific Sublayer (see Section 4.6).  For a given L2TP session, each
  LCCE is responsible for communicating to its peer the level of
  sequencing support that it requires of data packets that it receives.
  Mechanisms to advertise this information during session negotiation
  are provided (see Data Sequencing AVP in Section 5.4.4).

  When determining whether a packet is in or out of sequence, an
  implementation SHOULD utilize a method that is resilient to temporary
  dropouts in connectivity coupled with high per-session packet rates.
  The recommended method is outlined in Appendix C.

4.7.  L2TPv2/v3 Interoperability and Migration

  L2TPv2 and L2TPv3 environments should be able to coexist while a
  migration to L2TPv3 is made.  Migration issues are discussed for each
  media type in this section.  Most issues apply only to
  implementations that require both L2TPv2 and L2TPv3 operation.





Lau, et al.                 Standards Track                    [Page 28]

RFC 3931                         L2TPv3                       March 2005


  However, even L2TPv3-only implementations must at least be mindful of
  these issues in order to interoperate with implementations that
  support both versions.

4.7.1.  L2TPv3 over IP

  L2TPv3 implementations running strictly over IP with no desire to
  interoperate with L2TPv2 implementations may safely disregard most
  migration issues from L2TPv2.  All control messages and data messages
  are sent as described in this document, without normative reference
  to RFC 2661.

  If one wishes to tunnel PPP over L2TPv3, and fallback to L2TPv2 only
  if it is not available, then L2TPv3 over UDP with automatic fallback
  (see Section 4.7.3) MUST be used.  There is no deterministic method
  for automatic fallback from L2TPv3 over IP to either L2TPv2 or L2TPv3
  over UDP.  One could infer whether L2TPv3 over IP is supported by
  sending an SCCRQ and waiting for a response, but this could be
  problematic during periods of packet loss between L2TP nodes.

4.7.2.  L2TPv3 over UDP

  The format of the L2TPv3 over UDP header is defined in Section
  4.1.2.1.

  When operating over UDP, L2TPv3 uses the same port (1701) as L2TPv2
  and shares the first two octets of header format with L2TPv2.  The
  Ver field is used to distinguish L2TPv2 packets from L2TPv3 packets.
  If an implementation is capable of operating in L2TPv2 or L2TPv3
  modes, it is possible to automatically detect whether a peer can
  support L2TPv2 or L2TPv3 and operate accordingly.  The details of
  this fallback capability is defined in the following section.

4.7.3.  Automatic L2TPv2 Fallback

  When running over UDP, an implementation may detect whether a peer is
  L2TPv3-capable by sending a special SCCRQ that is properly formatted
  for both L2TPv2 and L2TPv3.  This is accomplished by sending an SCCRQ
  with its Ver field set to 2 (for L2TPv2), and ensuring that any
  L2TPv3-specific AVPs (i.e., AVPs present within this document and not
  defined within RFC 2661) in the message are sent with each M bit set
  to 0, and that all L2TPv2 AVPs are present as they would be for
  L2TPv2.  This is done so that L2TPv3 AVPs will be ignored by an
  L2TPv2-only implementation.  Note that, in both L2TPv2 and L2TPv3,
  the value contained in the space of the control message header
  utilized by the 32-bit Control Connection ID in L2TPv3, and the 16-
  bit Tunnel ID and




Lau, et al.                 Standards Track                    [Page 29]

RFC 3931                         L2TPv3                       March 2005


  16-bit Session ID in L2TPv2, are always 0 for an SCCRQ.  This
  effectively hides the fact that there are a pair of 16-bit fields in
  L2TPv2, and a single 32-bit field in L2TPv3.

  If the peer implementation is L2TPv3-capable, a control message with
  the Ver field set to 3 and an L2TPv3 header and message format will
  be sent in response to the SCCRQ.  Operation may then continue as
  L2TPv3.  If a message is received with the Ver field set to 2, it
  must be assumed that the peer implementation is L2TPv2-only, thus
  enabling fallback to L2TPv2 mode to safely occur.

  Note Well: The L2TPv2/v3 auto-detection mode requires that all L2TPv3
  implementations over UDP be liberal in accepting an SCCRQ control
  message with the Ver field set to 2 or 3 and the presence of L2TPv2-
  specific AVPs.  An L2TPv3-only implementation MUST ignore all L2TPv2
  AVPs (e.g., those defined in RFC 2661 and not in this document)
  within an SCCRQ with the Ver field set to 2 (even if the M bit is set
  on the L2TPv2-specific AVPs).

5.  Control Message Attribute Value Pairs

  To maximize extensibility while permitting interoperability, a
  uniform method for encoding message types is used throughout L2TP.
  This encoding will be termed AVP (Attribute Value Pair) for the
  remainder of this document.

5.1.  AVP Format

  Each AVP is encoded as follows:

                         Figure 5.1: AVP Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H| rsvd  |      Length       |           Vendor ID           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Attribute Type        |        Attribute Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      (until Length is reached)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The first six bits comprise a bit mask that describes the general
  attributes of the AVP.  Two bits are defined in this document; the
  remaining bits are reserved for future extensions.  Reserved bits
  MUST be set to 0 when sent and ignored upon receipt.





Lau, et al.                 Standards Track                    [Page 30]

RFC 3931                         L2TPv3                       March 2005


  Mandatory (M) bit: Controls the behavior required of an
  implementation that receives an unrecognized AVP.  The M bit of a
  given AVP MUST only be inspected and acted upon if the AVP is
  unrecognized (see Section 5.2).

  Hidden (H) bit: Identifies the hiding of data in the Attribute Value
  field of an AVP.  This capability can be used to avoid the passing of
  sensitive data, such as user passwords, as cleartext in an AVP.
  Section 5.3 describes the procedure for performing AVP hiding.

  Length: Contains the number of octets (including the Overall Length
  and bit mask fields) contained in this AVP.  The Length may be
  calculated as 6 + the length of the Attribute Value field in octets.

  The field itself is 10 bits, permitting a maximum of 1023 octets of
  data in a single AVP.  The minimum Length of an AVP is 6.  If the
  Length is 6, then the Attribute Value field is absent.

  Vendor ID: The IANA-assigned "SMI Network Management Private
  Enterprise Codes" [RFC1700] value.  The value 0, corresponding to
  IETF-adopted attribute values, is used for all AVPs defined within
  this document.  Any vendor wishing to implement its own L2TP
  extensions can use its own Vendor ID along with private Attribute
  values, guaranteeing that they will not collide with any other
  vendor's extensions or future IETF extensions.  Note that there are
  16 bits allocated for the Vendor ID, thus limiting this feature to
  the first 65,535 enterprises.

  Attribute Type: A 2-octet value with a unique interpretation across
  all AVPs defined under a given Vendor ID.

  Attribute Value: This is the actual value as indicated by the Vendor
  ID and Attribute Type.  It follows immediately after the Attribute
  Type field and runs for the remaining octets indicated in the Length
  (i.e., Length minus 6 octets of header).  This field is absent if the
  Length is 6.

  In the event that the 16-bit Vendor ID space is exhausted, vendor-
  specific AVPs with a 32-bit Vendor ID MUST be encapsulated in the
  following manner:











Lau, et al.                 Standards Track                    [Page 31]

RFC 3931                         L2TPv3                       March 2005


                Figure 5.2: Extended Vendor ID AVP Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |M|H| rsvd  |      Length       |               0               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              58               |       32-bit Vendor ID     ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |        Attribute Type         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Attribute Value                       ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   (until Length is reached)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This AVP encodes a vendor-specific AVP with a 32-bit Vendor ID space
  within the Attribute Value field.  Multiple AVPs of this type may
  exist in any message.  The 16-bit Vendor ID MUST be 0, indicating
  that this is an IETF-defined AVP, and the Attribute Type MUST be 58,
  indicating that what follows is a vendor-specific AVP with a 32-bit
  Vendor ID code.  This AVP MAY be hidden (the H bit MAY be 0 or 1).
  The M bit for this AVP MUST be set to 0.  The Length of the AVP is 12
  plus the length of the Attribute Value.

5.2.  Mandatory AVPs and Setting the M Bit

  If the M bit is set on an AVP that is unrecognized by its recipient,
  the session or control connection associated with the control message
  containing the AVP MUST be shut down.  If the control message
  containing the unrecognized AVP is associated with a session (e.g.,
  an ICRQ, ICRP, ICCN, SLI, etc.), then the session MUST be issued a
  CDN with a Result Code of 2 and Error Code of 8 (as defined in
  Section 5.4.2) and shut down.  If the control message containing the
  unrecognized AVP is associated with establishment or maintenance of a
  Control Connection (e.g., SCCRQ, SCCRP, SCCCN, Hello), then the
  associated Control Connection MUST be issued a StopCCN with Result
  Code of 2 and Error Code of 8 (as defined in Section 5.4.2) and shut
  down.  If the M bit is not set on an unrecognized AVP, the AVP MUST
  be ignored when received, processing the control message as if the
  AVP were not present.

  Receipt of an unrecognized AVP that has the M bit set is catastrophic
  to the session or control connection with which it is associated.
  Thus, the M bit should only be set for AVPs that are deemed crucial
  to proper operation of the session or control connection by the
  sender.  AVPs that are considered crucial by the sender may vary by
  application and configured options.  In no case shall a receiver of



Lau, et al.                 Standards Track                    [Page 32]

RFC 3931                         L2TPv3                       March 2005


  an AVP "validate" if the M bit is set on a recognized AVP.  If the
  AVP is recognized (as all AVPs defined in this document MUST be for a
  compliant L2TPv3 specification), then by definition, the M bit is of
  no consequence.

  The sender of an AVP is free to set its M bit to 1 or 0 based on
  whether the configured application strictly requires the value
  contained in the AVP to be recognized or not.  For example,
  "Automatic L2TPv2 Fallback" in Section 4.7.3 requires the setting of
  the M bit on all new L2TPv3 AVPs to zero if fallback to L2TPv2 is
  supported and desired, and 1 if not.

  The M bit is useful as extra assurance for support of critical AVP
  extensions.  However, more explicit methods may be available to
  determine support for a given feature rather than using the M bit
  alone.  For example, if a new AVP is defined in a message for which
  there is always a message reply (i.e., an ICRQ, ICRP, SCCRQ, or SCCRP
  message), rather than simply sending an AVP in the message with the M
  bit set, availability of the extension may be identified by sending
  an AVP in the request message and expecting a corresponding AVP in a
  reply message.  This more explicit method, when possible, is
  preferred.

  The M bit also plays a role in determining whether or not a malformed
  or out-of-range value within an AVP should be ignored or should
  result in termination of a session or control connection (see Section
  7.1 for more details).

5.3.  Hiding of AVP Attribute Values

  The H bit in the header of each AVP provides a mechanism to indicate
  to the receiving peer whether the contents of the AVP are hidden or
  present in cleartext.  This feature can be used to hide sensitive
  control message data such as user passwords, IDs, or other vital
  information.

  The H bit MUST only be set if (1) a shared secret exists between the
  LCCEs and (2) Control Message Authentication is enabled (see Section
  4.3).  If the H bit is set in any AVP(s) in a given control message,
  at least one Random Vector AVP must also be present in the message
  and MUST precede the first AVP having an H bit of 1.










Lau, et al.                 Standards Track                    [Page 33]

RFC 3931                         L2TPv3                       March 2005


  The shared secret between LCCEs is used to derive a unique shared key
  for hiding and unhiding calculations.  The derived shared key is
  obtained via an HMAC-MD5 keyed hash [RFC2104], with the key
  consisting of the shared secret, and with the data being hashed
  consisting of a single octet containing the value 1.

        shared_key = HMAC_MD5 (shared_secret, 1)

  Hiding an AVP value is done in several steps.  The first step is to
  take the length and value fields of the original (cleartext) AVP and
  encode them into the Hidden AVP Subformat, which appears as follows:

                    Figure 5.3: Hidden AVP Subformat

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Length of Original Value    |   Original Attribute Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                 ...              |             Padding ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Length of Original Attribute Value: This is length of the Original
  Attribute Value to be obscured in octets.  This is necessary to
  determine the original length of the Attribute Value that is lost
  when the additional Padding is added.

  Original Attribute Value: Attribute Value that is to be obscured.

  Padding: Random additional octets used to obscure length of the
  Attribute Value that is being hidden.

  To mask the size of the data being hidden, the resulting subformat
  MAY be padded as shown above.  Padding does NOT alter the value
  placed in the Length of Original Attribute Value field, but does
  alter the length of the resultant AVP that is being created.  For
  example, if an Attribute Value to be hidden is 4 octets in length,
  the unhidden AVP length would be 10 octets (6 + Attribute Value
  length).  After hiding, the length of the AVP would become 6 +
  Attribute Value length + size of the Length of Original Attribute
  Value field + Padding.  Thus, if Padding is 12 octets, the AVP length
  would be 6 + 4 + 2 + 12 = 24 octets.









Lau, et al.                 Standards Track                    [Page 34]

RFC 3931                         L2TPv3                       March 2005


  Next, an MD5 [RFC1321] hash is performed (in network byte order) on
  the concatenation of the following:

        + the 2-octet Attribute number of the AVP
        + the shared key
        + an arbitrary length random vector

  The value of the random vector used in this hash is passed in the
  value field of a Random Vector AVP.  This Random Vector AVP must be
  placed in the message by the sender before any hidden AVPs.  The same
  random vector may be used for more than one hidden AVP in the same
  message, but not for hiding two or more instances of an AVP with the
  same Attribute Type unless the Attribute Values in the two AVPs are
  also identical.  When a different random vector is used for the
  hiding of subsequent AVPs, a new Random Vector AVP MUST be placed in
  the control message before the first AVP to which it applies.

  The MD5 hash value is then XORed with the first 16-octet (or less)
  segment of the Hidden AVP Subformat and placed in the Attribute Value
  field of the Hidden AVP.  If the Hidden AVP Subformat is less than 16
  octets, the Subformat is transformed as if the Attribute Value field
  had been padded to 16 octets before the XOR.  Only the actual octets
  present in the Subformat are modified, and the length of the AVP is
  not altered.

  If the Subformat is longer than 16 octets, a second one-way MD5 hash
  is calculated over a stream of octets consisting of the shared key
  followed by the result of the first XOR.  That hash is XORed with the
  second 16-octet (or less) segment of the Subformat and placed in the
  corresponding octets of the Value field of the Hidden AVP.

  If necessary, this operation is repeated, with the shared key used
  along with each XOR result to generate the next hash to XOR the next
  segment of the value with.

  The hiding method was adapted from [RFC2865], which was taken from
  the "Mixing in the Plaintext" section in the book "Network Security"
  by Kaufman, Perlman and Speciner [KPS].  A detailed explanation of
  the method follows:

  Call the shared key S, the Random Vector RV, and the Attribute Type
  A.  Break the value field into 16-octet chunks p_1, p_2, etc., with
  the last one padded at the end with random data to a 16-octet
  boundary.  Call the ciphertext blocks c_1, c_2, etc.  We will also
  define intermediate values b_1, b_2, etc.






Lau, et al.                 Standards Track                    [Page 35]

RFC 3931                         L2TPv3                       March 2005


     b_1 = MD5 (A + S + RV)   c_1 = p_1 xor b_1
     b_2 = MD5 (S + c_1)      c_2 = p_2 xor b_2
               .                      .
               .                      .
               .                      .
     b_i = MD5 (S + c_i-1)    c_i = p_i xor b_i

  The String will contain c_1 + c_2 +...+ c_i, where "+" denotes
  concatenation.

  On receipt, the random vector is taken from the last Random Vector
  AVP encountered in the message prior to the AVP to be unhidden.  The
  above process is then reversed to yield the original value.

5.4.  AVP Summary

  The following sections contain a list of all L2TP AVPs defined in
  this document.

  Following the name of the AVP is a list indicating the message types
  that utilize each AVP.  After each AVP title follows a short
  description of the purpose of the AVP, a detail (including a graphic)
  of the format for the Attribute Value, and any additional information
  needed for proper use of the AVP.

5.4.1.  General Control Message AVPs

  Message Type (All Messages)

     The Message Type AVP, Attribute Type 0, identifies the control
     message herein and defines the context in which the exact meaning
     of the following AVPs will be determined.

     The Attribute Value field for this AVP has the following format:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Message Type          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Message Type is a 2-octet unsigned integer.

     The Message Type AVP MUST be the first AVP in a message,
     immediately following the control message header (defined in
     Section 3.2.1).  See Section 3.1 for the list of defined control
     message types and their identifiers.




Lau, et al.                 Standards Track                    [Page 36]

RFC 3931                         L2TPv3                       March 2005


     The Mandatory (M) bit within the Message Type AVP has special
     meaning.  Rather than an indication as to whether the AVP itself
     should be ignored if not recognized, it is an indication as to
     whether the control message itself should be ignored.  If the M
     bit is set within the Message Type AVP and the Message Type is
     unknown to the implementation, the control connection MUST be
     cleared.  If the M bit is not set, then the implementation may
     ignore an unknown message type.  The M bit MUST be set to 1 for
     all message types defined in this document.  This AVP MUST NOT be
     hidden (the H bit MUST be 0).  The Length of this AVP is 8.

     A vendor-specific control message may be defined by setting the
     Vendor ID of the Message Type AVP to a value other than the IETF
     Vendor ID of 0 (see Section 5.1).  The Message Type AVP MUST still
     be the first AVP in the control message.

  Message Digest (All Messages)

     The Message Digest AVP, Attribute Type 59 is used as an integrity
     and authentication check of the L2TP Control Message header and
     body.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Digest Type  | Message Digest ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                       ... (16 or 20 octets)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Digest Type is a one-octet integer indicating the Digest
     calculation algorithm:

        0 HMAC-MD5 [RFC2104]
        1 HMAC-SHA-1 [RFC2104]

     Digest Type 0 (HMAC-MD5) MUST be supported, while Digest Type 1
     (HMAC-SHA-1) SHOULD be supported.

     The Message Digest is of variable length and contains the result
     of the control message authentication and integrity calculation.
     For Digest Type 0 (HMAC-MD5), the length of the digest MUST be 16



Lau, et al.                 Standards Track                    [Page 37]

RFC 3931                         L2TPv3                       March 2005


     bytes.  For Digest Type 1 (HMAC-SHA-1) the length of the digest
     MUST be 20 bytes.

     If Control Message Authentication is enabled, at least one Message
     Digest AVP MUST be present in all messages and MUST be placed
     immediately after the Message Type AVP.  This forces the Message
     Digest AVP to begin at a well-known and fixed offset.  A second
     Message Digest AVP MAY be present in a message and MUST be placed
     directly after the first Message Digest AVP.

     The shared secret between LCCEs is used to derive a unique shared
     key for Control Message Authentication calculations.  The derived
     shared key is obtained via an HMAC-MD5 keyed hash [RFC2104], with
     the key consisting of the shared secret, and with the data being
     hashed consisting of a single octet containing the value 2.

        shared_key = HMAC_MD5 (shared_secret, 2)

     Calculation of the Message Digest is as follows for all messages
     other than the SCCRQ (where "+" refers to concatenation):

        Message Digest = HMAC_Hash (shared_key, local_nonce +
                                    remote_nonce + control_message)

        HMAC_Hash: HMAC Hashing algorithm identified by the Digest Type
        (MD5 or SHA1)

        local_nonce: Nonce chosen locally and advertised to the remote
        LCCE.

        remote_nonce: Nonce received from the remote LCCE

        (The local_nonce and remote_nonce are advertised via the
        Control Message Authentication Nonce AVP, also defined in this
        section.)

        shared_key: Derived shared key for this control connection

        control_message: The entire contents of the L2TP control
        message, including the control message header and all AVPs.
        Note that the control message header in this case begins after
        the all-zero Session ID when running over IP (see Section
        4.1.1.2), and after the UDP header when running over UDP (see
        Section 4.1.2.1).

     When calculating the Message Digest, the Message Digest AVP MUST
     be present within the control message with the Digest Type set to
     its proper value, but the Message Digest itself set to zeros.



Lau, et al.                 Standards Track                    [Page 38]

RFC 3931                         L2TPv3                       March 2005


     When receiving a control message, the contents of the Message
     Digest AVP MUST be compared against the expected digest value
     based on local calculation.  This is done by performing the same
     digest calculation above, with the local_nonce and remote_nonce
     reversed.  This message authenticity and integrity checking MUST
     be performed before utilizing any information contained within the
     control message.  If the calculation fails, the message MUST be
     dropped.

     The SCCRQ has special treatment as it is the initial message
     commencing a new control connection.  As such, there is only one
     nonce available.  Since the nonce is present within the message
     itself as part of the Control Message Authentication Nonce AVP,
     there is no need to use it in the calculation explicitly.
     Calculation of the SCCRQ Message Digest is performed as follows:

        Message Digest = HMAC_Hash (shared_key, control_message)

     To allow for graceful switchover to a new shared secret or hash
     algorithm, two Message Digest AVPs MAY be present in a control
     message, and two shared secrets MAY be configured for a given
     LCCE.  If two Message Digest AVPs are received in a control
     message, the message MUST be accepted if either Message Digest is
     valid.  If two shared secrets are configured, each (separately)
     MUST be used for calculating a digest to be compared to the
     Message Digest(s) received.  When calculating a digest for a
     control message, the Value field for both of the Message Digest
     AVPs MUST be set to zero.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length is 23 for Digest Type 1 (HMAC-MD5), and 27 for Digest Type
     2 (HMAC-SHA-1).

  Control Message Authentication Nonce (SCCRQ, SCCRP)

     The Control Message Authentication Nonce AVP, Attribute Type 73,
     MUST contain a cryptographically random value [RFC1750].  This
     value is used for Control Message Authentication.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Nonce ... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Lau, et al.                 Standards Track                    [Page 39]

RFC 3931                         L2TPv3                       March 2005


     The Nonce is of arbitrary length, though at least 16 octets is
     recommended.  The Nonce contains the random value for use in the
     Control Message Authentication hash calculation (see Message
     Digest AVP definition in this section).

     If Control Message Authentication is enabled, this AVP MUST be
     present in the SCCRQ and SCCRP messages.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 6 plus the length of the Nonce.

  Random Vector (All Messages)

     The Random Vector AVP, Attribute Type 36, MUST contain a
     cryptographically random value [RFC1750].  This value is used for
     AVP Hiding.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Random Octet String ... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Random Octet String is of arbitrary length, though at least 16
     octets is recommended.  The string contains the random vector for
     use in computing the MD5 hash to retrieve or hide the Attribute
     Value of a hidden AVP (see Section 5.3).

     More than one Random Vector AVP may appear in a message, in which
     case a hidden AVP uses the Random Vector AVP most closely
     preceding it.  As such, at least one Random Vector AVP MUST
     precede the first AVP with the H bit set.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 6 plus the length of the Random Octet
     String.

5.4.2.  Result and Error Codes

  Result Code (StopCCN, CDN)

     The Result Code AVP, Attribute Type 1, indicates the reason for
     terminating the control connection or session.




Lau, et al.                 Standards Track                    [Page 40]

RFC 3931                         L2TPv3                       March 2005


     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Result Code          |     Error Code (optional)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Error Message ... (optional, arbitrary number of octets)      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Result Code is a 2-octet unsigned integer.  The optional Error
     Code is a 2-octet unsigned integer.  An optional Error Message can
     follow the Error Code field.  Presence of the Error Code and
     Message is indicated by the AVP Length field.  The Error Message
     contains an arbitrary string providing further (human-readable)
     text associated with the condition.  Human-readable text in all
     error messages MUST be provided in the UTF-8 charset [RFC3629]
     using the Default Language [RFC2277].

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length is 8 if there is no Error Code or Message, 10 if there is
     an Error Code and no Error Message, or 10 plus the length of the
     Error Message if there is an Error Code and Message.

     Defined Result Code values for the StopCCN message are as follows:

        0 - Reserved.
        1 - General request to clear control connection.
        2 - General error, Error Code indicates the problem.
        3 - Control connection already exists.
        4 - Requester is not authorized to establish a control
            connection.
        5 - The protocol version of the requester is not supported,
            Error Code indicates highest version supported.
        6 - Requester is being shut down.
        7 - Finite state machine error or timeout

     General Result Code values for the CDN message are as follows:

        0 - Reserved.
        1 - Session disconnected due to loss of carrier or
            circuit disconnect.
        2 - Session disconnected for the reason indicated in Error
            Code.
        3 - Session disconnected for administrative reasons.
        4 - Session establishment failed due to lack of appropriate
            facilities being available (temporary condition).



Lau, et al.                 Standards Track                    [Page 41]

RFC 3931                         L2TPv3                       March 2005


        5 - Session establishment failed due to lack of appropriate
            facilities being available (permanent condition).
       13 - Session not established due to losing tie breaker.
       14 - Session not established due to unsupported PW type.
       15 - Session not established, sequencing required without
            valid L2-Specific Sublayer.
       16 - Finite state machine error or timeout.

     Additional service-specific Result Codes are defined outside this
     document.

     The Error Codes defined below pertain to types of errors that are
     not specific to any particular L2TP request, but rather to
     protocol or message format errors.  If an L2TP reply indicates in
     its Result Code that a General Error occurred, the General Error
     value should be examined to determine what the error was.  The
     currently defined General Error codes and their meanings are as
     follows:

     0 - No General Error.
     1 - No control connection exists yet for this pair of LCCEs.
     2 - Length is wrong.
     3 - One of the field values was out of range.
     4 - Insufficient resources to handle this operation now.
     5 - Invalid Session ID.
     6 - A generic vendor-specific error occurred.
     7 - Try another.  If initiator is aware of other possible
         responder destinations, it should try one of them.  This can
         be used to guide an LAC or LNS based on policy.
     8 - The session or control connection was shut down due to receipt
         of an unknown AVP with the M bit set (see Section 5.2).  The
         Error Message SHOULD contain the attribute of the offending
         AVP in (human-readable) text form.
     9 - Try another directed.  If an LAC or LNS is aware of other
         possible destinations, it should inform the initiator of the
         control connection or session.  The Error Message MUST contain
         a comma-separated list of addresses from which the initiator
         may choose.  If the L2TP data channel runs over IPv4, then
         this would be a comma-separated list of IP addresses in the
         canonical dotted-decimal format (e.g., "192.0.2.1, 192.0.2.2,
         192.0.2.3") in the UTF-8 charset [RFC3629] using the Default
         Language [RFC2277].  If there are no servers for the LAC or
         LNS to suggest, then Error Code 7 should be used.  For IPv4,
         the delimiter between addresses MUST be precisely a single
         comma and a single space.  For IPv6, each literal address MUST
         be enclosed in "[" and "]" characters, following the encoding
         described in [RFC2732].




Lau, et al.                 Standards Track                    [Page 42]

RFC 3931                         L2TPv3                       March 2005


     When a General Error Code of 6 is used, additional information
     about the error SHOULD be included in the Error Message field.  A
     vendor-specific AVP MAY be sent to more precisely detail a
     vendor-specific problem.

5.4.3.  Control Connection Management AVPs

  Control Connection Tie Breaker (SCCRQ)

     The Control Connection Tie Breaker AVP, Attribute Type 5,
     indicates that the sender desires a single control connection to
     exist between a given pair of LCCEs.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Control Connection Tie Breaker Value ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                ... (64 bits)        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Control Connection Tie Breaker Value is an 8-octet random
     value that is used to choose a single control connection when two
     LCCEs request a control connection concurrently.  The recipient of
     a SCCRQ must check to see if a SCCRQ has been sent to the peer; if
     so, a tie has been detected.  In this case, the LCCE must compare
     its Control Connection Tie Breaker value with the one received in
     the SCCRQ.  The lower value "wins", and the "loser" MUST discard
     its control connection.  A StopCCN SHOULD be sent by the winner as
     an explicit rejection for the losing SCCRQ.  In the case in which
     a tie breaker is present on both sides and the value is equal,
     both sides MUST discard their control connections and restart
     control connection negotiation with a new, random tie breaker
     value.

     If a tie breaker is received and an outstanding SCCRQ has no tie
     breaker value, the initiator that included the Control Connection
     Tie Breaker AVP "wins".  If neither side issues a tie breaker,
     then two separate control connections are opened.

     Applications that employ a distinct and well-known initiator have
     no need for tie breaking, and MAY omit this AVP or disable tie
     breaking functionality.  Applications that require tie breaking
     also require that an LCCE be uniquely identifiable upon receipt of
     an SCCRQ.  For L2TP over IP, this MUST be accomplished via the
     Router ID AVP.



Lau, et al.                 Standards Track                    [Page 43]

RFC 3931                         L2TPv3                       March 2005


     Note that in [RFC2661], this AVP is referred to as the "Tie
     Breaker AVP" and is applicable only to a control connection.  In
     L2TPv3, the AVP serves the same purpose of tie breaking, but is
     applicable to a control connection or a session.  The Control
     Connection Tie Breaker AVP (present only in Control Connection
     messages) and Session Tie Breaker AVP (present only in Session
     messages), are described separately in this document, but share
     the same Attribute type of 5.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     length of this AVP is 14.

  Host Name (SCCRQ, SCCRP)

     The Host Name AVP, Attribute Type 7, indicates the name of the
     issuing LAC or LNS, encoded in the US-ASCII charset.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Host Name ... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Host Name is of arbitrary length, but MUST be at least 1
     octet.

     This name should be as broadly unique as possible; for hosts
     participating in DNS [RFC1034], a host name with fully qualified
     domain would be appropriate.  The Host Name AVP and/or Router ID
     AVP MUST be used to identify an LCCE as described in Section 3.3.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 6 plus the length of the Host Name.

  Router ID (SCCRQ, SCCRP)

     The Router ID AVP, Attribute Type 60, is an identifier used to
     identify an LCCE for control connection setup, tie breaking,
     and/or tunnel authentication.








Lau, et al.                 Standards Track                    [Page 44]

RFC 3931                         L2TPv3                       March 2005


     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Router Identifier                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Router Identifier is a 4-octet unsigned integer.  Its value is
     unique for a given LCCE, per Section 8.1 of [RFC2072].  The Host
     Name AVP and/or Router ID AVP MUST be used to identify an LCCE as
     described in Section 3.3.

     Implementations MUST NOT assume that Router Identifier is a valid
     IP address.  The Router Identifier for L2TP over IPv6 can be
     obtained from an IPv4 address (if available) or via unspecified
     implementation-specific means.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 10.

  Vendor Name (SCCRQ, SCCRP)

     The Vendor Name AVP, Attribute Type 8, contains a vendor-specific
     (possibly human-readable) string describing the type of LAC or LNS
     being used.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Vendor Name ... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Vendor Name is the indicated number of octets representing the
     vendor string.  Human-readable text for this AVP MUST be provided
     in the US-ASCII charset [RFC1958, RFC2277].

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 6 plus the length of the
     Vendor Name.







Lau, et al.                 Standards Track                    [Page 45]

RFC 3931                         L2TPv3                       March 2005


  Assigned Control Connection ID (SCCRQ, SCCRP, StopCCN)

     The Assigned Control Connection ID AVP, Attribute Type 61,
     contains the ID being assigned to this control connection by the
     sender.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                Assigned Control Connection ID                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Assigned Control Connection ID is a 4-octet non-zero unsigned
     integer.

     The Assigned Control Connection ID AVP establishes the identifier
     used to multiplex and demultiplex multiple control connections
     between a pair of LCCEs.  Once the Assigned Control Connection ID
     AVP has been received by an LCCE, the Control Connection ID
     specified in the AVP MUST be included in the Control Connection ID
     field of all control packets sent to the peer for the lifetime of
     the control connection.  Before the Assigned Control Connection ID
     AVP is received from a peer, all control messages MUST be sent to
     that peer with a Control Connection ID value of 0 in the header.
     Because a Control Connection ID value of 0 is used in this special
     manner, the zero value MUST NOT be sent as an Assigned Control
     Connection ID value.

     Under certain circumstances, an LCCE may need to send a StopCCN to
     a peer without having yet received an Assigned Control Connection
     ID AVP from the peer (i.e., SCCRQ sent, no SCCRP received yet).
     In this case, the Assigned Control Connection ID AVP that had been
     sent to the peer earlier (i.e., in the SCCRQ) MUST be sent as the
     Assigned Control Connection ID AVP in the StopCCN.  This policy
     allows the peer to try to identify the appropriate control
     connection via a reverse lookup.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 10.

  Receive Window Size (SCCRQ, SCCRP)

     The Receive Window Size AVP, Attribute Type 10, specifies the
     receive window size being offered to the remote peer.




Lau, et al.                 Standards Track                    [Page 46]

RFC 3931                         L2TPv3                       March 2005


     The Attribute Value field for this AVP has the following format:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Window Size           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Window Size is a 2-octet unsigned integer.

     If absent, the peer must assume a Window Size of 4 for its
     transmit window.

     The remote peer may send the specified number of control messages
     before it must wait for an acknowledgment.  See Section 4.2 for
     more information on reliable control message delivery.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 8.

  Pseudowire Capabilities List (SCCRQ, SCCRP)

     The Pseudowire Capabilities List (PW Capabilities List) AVP,
     Attribute Type 62, indicates the L2 payload types the sender can
     support.  The specific payload type of a given session is
     identified by the Pseudowire Type AVP.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           PW Type 0           |             ...               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              ...              |          PW Type N            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Defined PW types that may appear in this list are managed by IANA
     and will appear in associated pseudowire-specific documents for
     each PW type.

     If a sender includes a given PW type in the PW Capabilities List
     AVP, the sender assumes full responsibility for supporting that
     particular payload, such as any payload-specific AVPs, L2-Specific
     Sublayer, or control messages that may be defined in the
     appropriate companion document.




Lau, et al.                 Standards Track                    [Page 47]

RFC 3931                         L2TPv3                       March 2005


     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 8 octets with one PW type
     specified, plus 2 octets for each additional PW type.

  Preferred Language (SCCRQ, SCCRP)

     The Preferred Language AVP, Attribute Type 72, provides a method
     for an LCCE to indicate to the peer the language in which human-
     readable messages it sends SHOULD be composed.  This AVP contains
     a single language tag or language range [RFC3066].

     The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Preferred Language... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Preferred Language is the indicated number of octets
     representing the language tag or language range, encoded in the
     US-ASCII charset.

     It is not required to send a Preferred Language AVP.  If (1) an
     LCCE does not signify a language preference by the inclusion of
     this AVP in the SCCRQ or SCCRP, (2) the Preferred Language AVP is
     unrecognized, or (3) the requested language is not supported by
     the peer LCCE, the default language [RFC2277] MUST be used for all
     internationalized strings sent by the peer.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 6 plus the length of the
     Preferred Language.

5.4.4.  Session Management AVPs

  Local Session ID (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN, CDN, WEN, SLI)

     The Local Session ID AVP (analogous to the Assigned Session ID in
     L2TPv2), Attribute Type 63, contains the identifier being assigned
     to this session by the sender.








Lau, et al.                 Standards Track                    [Page 48]

RFC 3931                         L2TPv3                       March 2005


     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Local Session ID                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Local Session ID is a 4-octet non-zero unsigned integer.

     The Local Session ID AVP establishes the two identifiers used to
     multiplex and demultiplex sessions between two LCCEs.  Each LCCE
     chooses any free value it desires, and sends it to the remote LCCE
     using this AVP.  The remote LCCE MUST then send all data packets
     associated with this session using this value.  Additionally, for
     all session-oriented control messages sent after this AVP is
     received (e.g., ICRP, ICCN, CDN, SLI, etc.), the remote LCCE MUST
     echo this value in the Remote Session ID AVP.

     Note that a Session ID value is unidirectional.  Because each LCCE
     chooses its Session ID independent of its peer LCCE, the value
     does not have to match in each direction for a given session.

     See Section 4.1 for additional information about the Session ID.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be 1 set to 1, but MAY vary (see Section 5.2).
     The Length (before hiding) of this AVP is 10.

  Remote Session ID (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN, CDN, WEN, SLI)

     The Remote Session ID AVP, Attribute Type 64, contains the
     identifier that was assigned to this session by the peer.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Remote Session ID                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Remote Session ID is a 4-octet non-zero unsigned integer.

     The Remote Session ID AVP MUST be present in all session-level
     control messages.  The AVP's value echoes the session identifier
     advertised by the peer via the Local Session ID AVP.  It is the
     same value that will be used in all transmitted data messages by



Lau, et al.                 Standards Track                    [Page 49]

RFC 3931                         L2TPv3                       March 2005


     this side of the session.  In most cases, this identifier is
     sufficient for the peer to look up session-level context for this
     control message.

     When a session-level control message must be sent to the peer
     before the Local Session ID AVP has been received, the value of
     the Remote Session ID AVP MUST be set to zero.  Additionally, the
     Local Session ID AVP (sent in a previous control message for this
     session) MUST be included in the control message.  The peer must
     then use the Local Session ID AVP to perform a reverse lookup to
     find its session context.  Session-level control messages defined
     in this document that might be subject to a reverse lookup by a
     receiving peer include the CDN, WEN, and SLI.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 10.

  Assigned Cookie (ICRQ, ICRP, OCRQ, OCRP)

     The Assigned Cookie AVP, Attribute Type 65, contains the Cookie
     value being assigned to this session by the sender.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |               Assigned Cookie (32 or 64 bits) ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Assigned Cookie is a 4-octet or 8-octet random value.

     The Assigned Cookie AVP contains the value used to check the
     association of a received data message with the session identified
     by the Session ID.  All data messages sent to a peer MUST use the
     Assigned Cookie sent by the peer in this AVP.  The value's length
     (0, 32, or 64 bits) is obtained by the length of the AVP.

     A missing Assigned Cookie AVP or Assigned Cookie Value of zero
     length indicates that the Cookie field should not be present in
     any data packets sent to the LCCE sending this AVP.

     See Section 4.1 for additional information about the Assigned
     Cookie.






Lau, et al.                 Standards Track                    [Page 50]

RFC 3931                         L2TPv3                       March 2005


     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP may be 6, 10, or 14 octets.

  Serial Number (ICRQ, OCRQ)

     The Serial Number AVP, Attribute Type 15, contains an identifier
     assigned by the LAC or LNS to this session.

     The Attribute Value field for this AVP has the following format:

      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Serial Number                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Serial Number is a 32-bit value.

     The Serial Number is intended to be an easy reference for
     administrators on both ends of a control connection to use when
     investigating session failure problems.  Serial Numbers should be
     set to progressively increasing values, which are likely to be
     unique for a significant period of time across all interconnected
     LNSs and LACs.

     Note that in RFC 2661, this value was referred to as the "Call
     Serial Number AVP".  It serves the same purpose and has the same
     attribute value and composition.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 10.

  Remote End ID (ICRQ, OCRQ)

     The Remote End ID AVP, Attribute Type 66, contains an identifier
     used to bind L2TP sessions to a given circuit, interface, or
     bridging instance.  It also may be used to detect session-level
     ties.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Remote End Identifier ... (arbitrary number of octets)
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Lau, et al.                 Standards Track                    [Page 51]

RFC 3931                         L2TPv3                       March 2005


     The Remote End Identifier field is a variable-length field whose
     value is unique for a given LCCE peer, as described in Section
     3.3.

     A session-level tie is detected if an LCCE receives an ICRQ or
     OCRQ with an End ID AVP whose value matches that which was just
     sent in an outgoing ICRQ or OCRQ to the same peer.  If the two
     values match, an LCCE recognizes that a tie exists (i.e., both
     LCCEs are attempting to establish sessions for the same circuit).
     The tie is broken by the Session Tie Breaker AVP.

     By default, the LAC-LAC cross-connect application (see Section
     2(b)) of L2TP over an IP network MUST utilize the Router ID AVP
     and Remote End ID AVP to associate a circuit to an L2TP session.
     Other AVPs MAY be used for LCCE or circuit identification as
     specified in companion documents.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 6 plus the length of the
     Remote End Identifier value.

  Session Tie Breaker (ICRQ, OCRQ)

     The Session Tie Breaker AVP, Attribute Type 5, is used to break
     ties when two peers concurrently attempt to establish a session
     for the same circuit.

     The Attribute Value field for this AVP has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Session Tie Breaker Value ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                ... (64 bits)        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Session Tie Breaker Value is an 8-octet random value that is
     used to choose a session when two LCCEs concurrently request a
     session for the same circuit.  A tie is detected by examining the
     peer's identity (described in Section 3.3) plus the per-session
     shared value communicated via the End ID AVP.  In the case of a
     tie, the recipient of an ICRQ or OCRQ must compare the received
     tie breaker value with the one that it sent earlier.  The LCCE
     with the lower value "wins" and MUST send a CDN with result code
     set to 13 (as defined in Section 5.4.2) in response to the losing
     ICRQ or OCRQ.  In the case in which a tie is detected, tie



Lau, et al.                 Standards Track                    [Page 52]

RFC 3931                         L2TPv3                       March 2005


     breakers are sent by both sides, and the tie breaker values are
     equal, both sides MUST discard their sessions and restart session
     negotiation with new random tie breaker values.

     If a tie is detected but only one side sends a Session Tie Breaker
     AVP, the session initiator that included the Session Tie Breaker
     AVP "wins".  If neither side issues a tie breaker, then both sides
     MUST tear down the session.

     This AVP MUST NOT be hidden (the H bit MUST be 0).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length of this AVP is 14.

  Pseudowire Type (ICRQ, OCRQ)

     The Pseudowire Type (PW Type) AVP, Attribute Type 68, indicates
     the L2 payload type of the packets that will be tunneled using
     this L2TP session.

     The Attribute Value field for this AVP has the following format:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           PW Type             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     A peer MUST NOT request an incoming or outgoing call with a PW
     Type AVP specifying a value not advertised in the PW Capabilities
     List AVP it received during control connection establishment.
     Attempts to do so MUST result in the call being rejected via a CDN
     with the Result Code set to 14 (see Section 5.4.2).

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 8.

  L2-Specific Sublayer (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN)

     The L2-Specific Sublayer AVP, Attribute Type 69, indicates the
     presence and format of the L2-Specific Sublayer the sender of this
     AVP requires on all incoming data packets for this L2TP session.

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   L2-Specific Sublayer Type   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Lau, et al.                 Standards Track                    [Page 53]

RFC 3931                         L2TPv3                       March 2005


     The L2-Specific Sublayer Type is a 2-octet unsigned integer with
     the following values defined in this document:

        0 - There is no L2-Specific Sublayer present.
        1 - The Default L2-Specific Sublayer (defined in Section 4.6)
            is used.

     If this AVP is received and has a value other than zero, the
     receiving LCCE MUST include the identified L2-Specific Sublayer in
     its outgoing data messages.  If the AVP is not received, it is
     assumed that there is no sublayer present.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 8.

  Data Sequencing (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN)

     The Data Sequencing AVP, Attribute Type 70, indicates that the
     sender requires some or all of the data packets that it receives
     to be sequenced.

     The Attribute Value field for this AVP has the following format:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Data Sequencing Level     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Data Sequencing Level is a 2-octet unsigned integer indicating
     the degree of incoming data traffic that the sender of this AVP
     wishes to be marked with sequence numbers.

     Defined Data Sequencing Levels are as follows:

        0 - No incoming data packets require sequencing.
        1 - Only non-IP data packets require sequencing.
        2 - All incoming data packets require sequencing.

     If a Data Sequencing Level of 0 is specified, there is no need to
     send packets with sequence numbers.  If sequence numbers are sent,
     they will be ignored upon receipt.  If no Data Sequencing AVP is
     received, a Data Sequencing Level of 0 is assumed.

     If a Data Sequencing Level of 1 is specified, only non-IP traffic
     carried within the tunneled L2 frame should have sequence numbers
     applied.  Non-IP traffic here refers to any packets that cannot be



Lau, et al.                 Standards Track                    [Page 54]

RFC 3931                         L2TPv3                       March 2005


     classified as an IP packet within their respective L2 framing
     (e.g., a PPP control packet or NETBIOS frame encapsulated by Frame
     Relay before being tunneled).  All traffic that can be classified
     as IP MUST be sent with no sequencing (i.e., the S bit in the L2-
     Specific Sublayer is set to zero).  If a packet is unable to be
     classified at all (e.g., because it has been compressed or
     encrypted at layer 2) or if an implementation is unable to perform
     such classification within L2 frames, all packets MUST be provided
     with sequence numbers (essentially falling back to a Data
     Sequencing Level of 2).

     If a Data Sequencing Level of 2 is specified, all traffic MUST be
     sequenced.

     Data sequencing may only be requested when there is an L2-Specific
     Sublayer present that can provide sequence numbers.  If sequencing
     is requested without requesting a L2-Specific Sublayer AVP, the
     session MUST be disconnected with a Result Code of 15 (see Section
     5.4.2).

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 8.

  Tx Connect Speed (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN)

     The Tx Connect Speed BPS AVP, Attribute Type 74, contains the
     speed of the facility chosen for the connection attempt.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Connect Speed in bps...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       ...Connect Speed in bps (64 bits)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The Tx Connect Speed BPS is an 8-octet value indicating the speed
     in bits per second.  A value of zero indicates that the speed is
     indeterminable or that there is no physical point-to-point link.

     When the optional Rx Connect Speed AVP is present, the value in
     this AVP represents the transmit connect speed from the
     perspective of the LAC (i.e., data flowing from the LAC to the
     remote system).  When the optional Rx Connect Speed AVP is NOT
     present, the connection speed between the remote system and LAC is



Lau, et al.                 Standards Track                    [Page 55]

RFC 3931                         L2TPv3                       March 2005


     assumed to be symmetric and is represented by the single value in
     this AVP.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 14.

  Rx Connect Speed (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN)

     The Rx Connect Speed AVP, Attribute Type 75, represents the speed
     of the connection from the perspective of the LAC (i.e., data
     flowing from the remote system to the LAC).

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Connect Speed in bps...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       ...Connect Speed in bps (64 bits)             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Connect Speed BPS is an 8-octet value indicating the speed in bits
     per second.  A value of zero indicates that the speed is
     indeterminable or that there is no physical point-to-point link.

     Presence of this AVP implies that the connection speed may be
     asymmetric with respect to the transmit connect speed given in the
     Tx Connect Speed AVP.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 14.

  Physical Channel ID (ICRQ, ICRP, OCRP)

     The Physical Channel ID AVP, Attribute Type 25, contains the
     vendor-specific physical channel number used for a call.

     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Physical Channel ID                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Lau, et al.                 Standards Track                    [Page 56]

RFC 3931                         L2TPv3                       March 2005


     Physical Channel ID is a 4-octet value intended to be used for
     logging purposes only.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 10.

5.4.5.  Circuit Status AVPs

  Circuit Status (ICRQ, ICRP, ICCN, OCRQ, OCRP, OCCN, SLI)

     The Circuit Status AVP, Attribute Type 71, indicates the initial
     status of or a status change in the circuit to which the session
     is bound.

     The Attribute Value field for this AVP has the following format:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Reserved          |N|A|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The A (Active) bit indicates whether the circuit is
     up/active/ready (1) or down/inactive/not-ready (0).

     The N (New) bit indicates whether the circuit status indication is
     for a new circuit (1) or an existing circuit (0).  Links that have
     a similar mechanism available (e.g., Frame Relay) MUST map the
     setting of this bit to the associated signaling for that link.
     Otherwise, the New bit SHOULD still be set the first time the L2TP
     session is established after provisioning.

     The remaining bits are reserved for future use.  Reserved bits
     MUST be set to 0 when sending and ignored upon receipt.

     The Circuit Status AVP is used to advertise whether a circuit or
     interface bound to an L2TP session is up and ready to send and/or
     receive traffic.  Different circuit types have different names for
     status types.  For example, HDLC primary and secondary stations
     refer to a circuit as being "Receive Ready" or "Receive Not
     Ready", while Frame Relay refers to a circuit as "Active" or
     "Inactive".  This AVP adopts the latter terminology, though the
     concept remains the same regardless of the PW type for the L2TP
     session.






Lau, et al.                 Standards Track                    [Page 57]

RFC 3931                         L2TPv3                       March 2005


     In the simplest case, the circuit to which this AVP refers is a
     single physical interface, port, or circuit, depending on the
     application and the session setup.  The status indication in this
     AVP may then be used to provide simple ILMI interworking for a
     variety of circuit types.  For virtual or multipoint interfaces,
     the Circuit Status AVP is still utilized, but in this case, it
     refers to the state of an internal structure or a logical set of
     circuits.  Each PW-specific companion document MUST specify
     precisely how this AVP is translated for each circuit type.

     If this AVP is received with a Not Active notification for a given
     L2TP session, all data traffic for that session MUST cease (or not
     begin) in the direction of the sender of the Circuit Status AVP
     until the circuit is advertised as Active.

     The Circuit Status MUST be advertised by this AVP in ICRQ, ICRP,
     OCRQ, and OCRP messages.  Often, the circuit type will be marked
     Active when initiated, but subsequently MAY be advertised as
     Inactive.  This indicates that an L2TP session is to be created,
     but that the interface or circuit is still not ready to pass
     traffic.  The ICCN, OCCN, and SLI control messages all MAY contain
     this AVP to update the status of the circuit after establishment
     of the L2TP session is requested.

     If additional circuit status information is needed for a given PW
     type, any new PW-specific AVPs MUST be defined in a separate
     document.  This AVP is only for general circuit status information
     generally applicable to all circuit/interface types.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 1, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 8.

  Circuit Errors (WEN)

     The Circuit Errors AVP, Attribute Type 34, conveys circuit error
     information to the peer.














Lau, et al.                 Standards Track                    [Page 58]

RFC 3931                         L2TPv3                       March 2005


     The Attribute Value field for this AVP has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
                                    |             Reserved           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Hardware Overruns                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Buffer Overruns                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Timeout Errors                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Alignment Errors                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The following fields are defined:

     Reserved: 2 octets of Reserved data is present (providing longword
        alignment within the AVP of the following values).  Reserved
        data MUST be zero on sending and ignored upon receipt.
     Hardware Overruns: Number of receive buffer overruns since call
        was established.
     Buffer Overruns: Number of buffer overruns detected since call was
        established.
     Timeout Errors: Number of timeouts since call was established.
     Alignment Errors: Number of alignment errors since call was
        established.

     This AVP MAY be hidden (the H bit MAY be 0 or 1).  The M bit for
     this AVP SHOULD be set to 0, but MAY vary (see Section 5.2).  The
     Length (before hiding) of this AVP is 32.

6.  Control Connection Protocol Specification

  The following control messages are used to establish, maintain, and
  tear down L2TP control connections.  All data packets are sent in
  network order (high-order octets first).  Any "reserved" or "empty"
  fields MUST be sent as 0 values to allow for protocol extensibility.

  The exchanges in which these messages are involved are outlined in
  Section 3.3.









Lau, et al.                 Standards Track                    [Page 59]

RFC 3931                         L2TPv3                       March 2005


6.1.  Start-Control-Connection-Request (SCCRQ)

  Start-Control-Connection-Request (SCCRQ) is a control message used to
  initiate a control connection between two LCCEs.  It is sent by
  either the LAC or the LNS to begin the control connection
  establishment process.

  The following AVPs MUST be present in the SCCRQ:

     Message Type
     Host Name
     Router ID
     Assigned Control Connection ID
     Pseudowire Capabilities List

  The following AVPs MAY be present in the SCCRQ:

     Random Vector
     Control Message Authentication Nonce
     Message Digest
     Control Connection Tie Breaker
     Vendor Name
     Receive Window Size
     Preferred Language

6.2.  Start-Control-Connection-Reply (SCCRP)

  Start-Control-Connection-Reply (SCCRP) is the control message sent in
  reply to a received SCCRQ message.  The SCCRP is used to indicate
  that the SCCRQ was accepted and that establishment of the control
  connection should continue.

  The following AVPs MUST be present in the SCCRP:

     Message Type
     Host Name
     Router ID
     Assigned Control Connection ID
     Pseudowire Capabilities List

  The following AVPs MAY be present in the SCCRP:

     Random Vector
     Control Message Authentication Nonce
     Message Digest
     Vendor Name
     Receive Window Size
     Preferred Language



Lau, et al.                 Standards Track                    [Page 60]

RFC 3931                         L2TPv3                       March 2005


6.3.  Start-Control-Connection-Connected (SCCCN)

  Start-Control-Connection-Connected (SCCCN) is the control message
  sent in reply to an SCCRP.  The SCCCN completes the control
  connection establishment process.

  The following AVP MUST be present in the SCCCN:

     Message Type

  The following AVP MAY be present in the SCCCN:

     Random Vector
     Message Digest

6.4.  Stop-Control-Connection-Notification (StopCCN)

  Stop-Control-Connection-Notification (StopCCN) is the control message
  sent by either LCCE to inform its peer that the control connection is
  being shut down and that the control connection should be closed.  In
  addition, all active sessions are implicitly cleared (without sending
  any explicit session control messages).  The reason for issuing this
  request is indicated in the Result Code AVP.  There is no explicit
  reply to the message, only the implicit ACK that is received by the
  reliable control message delivery layer.

  The following AVPs MUST be present in the StopCCN:

     Message Type
     Result Code

  The following AVPs MAY be present in the StopCCN:

     Random Vector
     Message Digest
     Assigned Control Connection ID

  Note that the Assigned Control Connection ID MUST be present if the
  StopCCN is sent after an SCCRQ or SCCRP message has been sent.

6.5.  Hello (HELLO)

  The Hello (HELLO) message is an L2TP control message sent by either
  peer of a control connection.  This control message is used as a
  "keepalive" for the control connection.  See Section 4.2 for a
  description of the keepalive mechanism.





Lau, et al.                 Standards Track                    [Page 61]

RFC 3931                         L2TPv3                       March 2005


  HELLO messages are global to the control connection.  The Session ID
  in a HELLO message MUST be 0.

  The following AVP MUST be present in the HELLO:

     Message Type

  The following AVP MAY be present in the HELLO:

     Random Vector
     Message Digest

6.6.  Incoming-Call-Request (ICRQ)

  Incoming-Call-Request (ICRQ) is the control message sent by an LCCE
  to a peer when an incoming call is detected (although the ICRQ may
  also be sent as a result of a local event).  It is the first in a
  three-message exchange used for establishing a session via an L2TP
  control connection.

  The ICRQ is used to indicate that a session is to be established
  between an LCCE and a peer.  The sender of an ICRQ provides the peer
  with parameter information for the session.  However, the sender
  makes no demands about how the session is terminated at the peer
  (i.e., whether the L2 traffic is processed locally, forwarded, etc.).

  The following AVPs MUST be present in the ICRQ:

     Message Type
     Local Session ID
     Remote Session ID
     Serial Number
     Pseudowire Type
     Remote End ID
     Circuit Status

  The following AVPs MAY be present in the ICRQ:

     Random Vector
     Message Digest
     Assigned Cookie
     Session Tie Breaker
     L2-Specific Sublayer
     Data Sequencing
     Tx Connect Speed
     Rx Connect Speed
     Physical Channel ID




Lau, et al.                 Standards Track                    [Page 62]

RFC 3931                         L2TPv3                       March 2005


6.7.  Incoming-Call-Reply (ICRP)

  Incoming-Call-Reply (ICRP) is the control message sent by an LCCE in
  response to a received ICRQ.  It is the second in the three-message
  exchange used for establishing sessions within an L2TP control
  connection.

  The ICRP is used to indicate that the ICRQ was successful and that
  the peer should establish (i.e., answer) the incoming call if it has
  not already done so.  It also allows the sender to indicate specific
  parameters about the L2TP session.

  The following AVPs MUST be present in the ICRP:

     Message Type
     Local Session ID
     Remote Session ID
     Circuit Status

  The following AVPs MAY be present in the ICRP:

     Random Vector
     Message Digest
     Assigned Cookie
     L2-Specific Sublayer
     Data Sequencing
     Tx Connect Speed
     Rx Connect Speed
     Physical Channel ID

6.8.  Incoming-Call-Connected (ICCN)

  Incoming-Call-Connected (ICCN) is the control message sent by the
  LCCE that originally sent an ICRQ upon receiving an ICRP from its
  peer.  It is the final message in the three-message exchange used for
  establishing L2TP sessions.

  The ICCN is used to indicate that the ICRP was accepted, that the
  call has been established, and that the L2TP session should move to
  the established state.  It also allows the sender to indicate
  specific parameters about the established call (parameters that may
  not have been available at the time the ICRQ was issued).

  The following AVPs MUST be present in the ICCN:

     Message Type
     Local Session ID
     Remote Session ID



Lau, et al.                 Standards Track                    [Page 63]

RFC 3931                         L2TPv3                       March 2005


  The following AVPs MAY be present in the ICCN:

     Random Vector
     Message Digest
     L2-Specific Sublayer
     Data Sequencing
     Tx Connect Speed
     Rx Connect Speed
     Circuit Status

6.9.  Outgoing-Call-Request (OCRQ)

  Outgoing-Call-Request (OCRQ) is the control message sent by an LCCE
  to an LAC to indicate that an outbound call at the LAC is to be
  established based on specific destination information sent in this
  message.  It is the first in a three-message exchange used for
  establishing a session and placing a call on behalf of the initiating
  LCCE.

  Note that a call may be any L2 connection requiring well-known
  destination information to be sent from an LCCE to an LAC.  This call
  could be a dialup connection to the PSTN, an SVC connection, the IP
  address of another LCCE, or any other destination dictated by the
  sender of this message.

  The following AVPs MUST be present in the OCRQ:

     Message Type
     Local Session ID
     Remote Session ID
     Serial Number
     Pseudowire Type
     Remote End ID
     Circuit Status

  The following AVPs MAY be present in the OCRQ:

     Random Vector
     Message Digest
     Assigned Cookie
     Tx Connect Speed
     Rx Connect Speed
     Session Tie Breaker
     L2-Specific Sublayer
     Data Sequencing






Lau, et al.                 Standards Track                    [Page 64]

RFC 3931                         L2TPv3                       March 2005


6.10.  Outgoing-Call-Reply (OCRP)

  Outgoing-Call-Reply (OCRP) is the control message sent by an LAC to
  an LCCE in response to a received OCRQ.  It is the second in a
  three-message exchange used for establishing a session within an L2TP
  control connection.

  OCRP is used to indicate that the LAC has been able to attempt the
  outbound call.  The message returns any relevant parameters regarding
  the call attempt.  Data MUST NOT be forwarded until the OCCN is
  received, which indicates that the call has been placed.

  The following AVPs MUST be present in the OCRP:

     Message Type
     Local Session ID
     Remote Session ID
     Circuit Status

  The following AVPs MAY be present in the OCRP:

     Random Vector
     Message Digest
     Assigned Cookie
     L2-Specific Sublayer
     Tx Connect Speed
     Rx Connect Speed
     Data Sequencing
     Physical Channel ID

6.11.  Outgoing-Call-Connected (OCCN)

  Outgoing-Call-Connected (OCCN) is the control message sent by an LAC
  to another LCCE after the OCRP and after the outgoing call has been
  completed.  It is the final message in a three-message exchange used
  for establishing a session.

  OCCN is used to indicate that the result of a requested outgoing call
  was successful.  It also provides information to the LCCE who
  requested the call about the particular parameters obtained after the
  call was established.

  The following AVPs MUST be present in the OCCN:

     Message Type
     Local Session ID
     Remote Session ID




Lau, et al.                 Standards Track                    [Page 65]

RFC 3931                         L2TPv3                       March 2005


  The following AVPs MAY be present in the OCCN:

     Random Vector
     Message Digest
     L2-Specific Sublayer
     Tx Connect Speed
     Rx Connect Speed
     Data Sequencing
     Circuit Status

6.12.  Call-Disconnect-Notify (CDN)

  The Call-Disconnect-Notify (CDN) is a control message sent by an LCCE
  to request disconnection of a specific session.  Its purpose is to
  inform the peer of the disconnection and the reason for the
  disconnection.  The peer MUST clean up any resources, and does not
  send back any indication of success or failure for such cleanup.

  The following AVPs MUST be present in the CDN:

     Message Type
     Result Code
     Local Session ID
     Remote Session ID

  The following AVP MAY be present in the CDN:

     Random Vector
     Message Digest

6.13.  WAN-Error-Notify (WEN)

  The WAN-Error-Notify (WEN) is a control message sent from an LAC to
  an LNS to indicate WAN error conditions.  The counters in this
  message are cumulative.  This message should only be sent when an
  error occurs, and not more than once every 60 seconds.  The counters
  are reset when a new call is established.

  The following AVPs MUST be present in the WEN:

     Message Type
     Local Session ID
     Remote Session ID
     Circuit Errors







Lau, et al.                 Standards Track                    [Page 66]

RFC 3931                         L2TPv3                       March 2005


  The following AVP MAY be present in the WEN:

     Random Vector
     Message Digest

6.14.  Set-Link-Info (SLI)

  The Set-Link-Info control message is sent by an LCCE to convey link
  or circuit status change information regarding the circuit associated
  with this L2TP session.  For example, if PPP renegotiates LCP at an
  LNS or between an LAC and a Remote System, or if a forwarded Frame
  Relay VC transitions to Active or Inactive at an LAC, an SLI message
  SHOULD be sent to indicate this event.  Precise details of when the
  SLI is sent, what PW type-specific AVPs must be present, and how
  those AVPs should be interpreted by the receiving peer are outside
  the scope of this document.  These details should be described in the
  associated pseudowire-specific documents that require use of this
  message.

  The following AVPs MUST be present in the SLI:

     Message Type
     Local Session ID
     Remote Session ID

  The following AVPs MAY be present in the SLI:

     Random Vector
     Message Digest
     Circuit Status

6.15.  Explicit-Acknowledgement (ACK)

  The Explicit Acknowledgement (ACK) message is used only to
  acknowledge receipt of a message or messages on the control
  connection (e.g., for purposes of updating Ns and Nr values).
  Receipt of this message does not trigger an event for the L2TP
  protocol state machine.

  A message received without any AVPs (including the Message Type AVP),
  is referred to as a Zero Length Body (ZLB) message, and serves the
  same function as the Explicit Acknowledgement.  ZLB messages are only
  permitted when Control Message Authentication defined in Section 4.3
  is not enabled.







Lau, et al.                 Standards Track                    [Page 67]

RFC 3931                         L2TPv3                       March 2005


  The following AVPs MAY be present in the ACK message:

     Message Type
     Message Digest

7.  Control Connection State Machines

  The state tables defined in this section govern the exchange of
  control messages defined in Section 6.  Tables are defined for
  incoming call placement and outgoing call placement, as well as for
  initiation of the control connection itself.  The state tables do not
  encode timeout and retransmission behavior, as this is handled in the
  underlying reliable control message delivery mechanism (see Section
  4.2).

7.1.  Malformed AVPs and Control Messages

  Receipt of an invalid or unrecoverable malformed control message
  SHOULD be logged appropriately and the control connection cleared to
  ensure recovery to a known state.  The control connection may then be
  restarted by the initiator.

  An invalid control message is defined as (1) a message that contains
  a Message Type marked as mandatory (see Section 5.4.1) but that is
  unknown to the implementation, or (2) a control message that is
  received in the wrong state.

  Examples of malformed control messages include (1) a message that has
  an invalid value in its header, (2) a message that contains an AVP
  that is formatted incorrectly or whose value is out of range, and (3)
  a message that is missing a required AVP.  A control message with a
  malformed header MUST be discarded.

  When possible, a malformed AVP should be treated as an unrecognized
  AVP (see Section 5.2).  Thus, an attempt to inspect the M bit SHOULD
  be made to determine the importance of the malformed AVP, and thus,
  the severity of the malformation to the entire control message.  If
  the M bit can be reasonably inspected within the malformed AVP and is
  determined to be set, then as with an unrecognized AVP, the
  associated session or control connection MUST be shut down.  If the M
  bit is inspected and is found to be 0, the AVP MUST be ignored
  (assuming recovery from the AVP malformation is indeed possible).

  This policy must not be considered as a license to send malformed
  AVPs, but rather, as a guide towards how to handle an improperly
  formatted message if one is received.  It is impossible to list all
  potential malformations of a given message and give advice for each.
  One example of a malformed AVP situation that should be recoverable



Lau, et al.                 Standards Track                    [Page 68]

RFC 3931                         L2TPv3                       March 2005


  is if the Rx Connect Speed AVP is received with a length of 10 rather
  than 14, implying that the connect speed bits-per-second is being
  formatted in 4 octets rather than 8.  If the AVP does not have its M
  bit set (as would typically be the case), this condition is not
  considered catastrophic.  As such, the control message should be
  accepted as though the AVP were not present (though a local error
  message may be logged).


  In several cases in the following tables, a protocol message is sent,
  and then a "clean up" occurs.  Note that, regardless of the initiator
  of the control connection destruction, the reliable delivery
  mechanism must be allowed to run (see Section 4.2) before destroying
  the control connection.  This permits the control connection
  management messages to be reliably delivered to the peer.

  Appendix B.1 contains an example of lock-step control connection
  establishment.

7.2.  Control Connection States

  The L2TP control connection protocol is not distinguishable between
  the two LCCEs but is distinguishable between the originator and
  receiver.  The originating peer is the one that first initiates
  establishment of the control connection.  (In a tie breaker
  situation, this is the winner of the tie.)  Since either the LAC or
  the LNS can be the originator, a collision can occur.  See the
  Control Connection Tie Breaker AVP in Section 5.4.3 for a description
  of this and its resolution.

  State           Event              Action              New State
  -----           -----              ------              ---------
  idle            Local open         Send SCCRQ          wait-ctl-reply
                  request

  idle            Receive SCCRQ,     Send SCCRP          wait-ctl-conn
                  acceptable

  idle            Receive SCCRQ,     Send StopCCN,       idle
                  not acceptable     clean up

  idle            Receive SCCRP      Send StopCCN,       idle
                                     clean up

  idle            Receive SCCCN      Send StopCCN,       idle
                                     clean up





Lau, et al.                 Standards Track                    [Page 69]

RFC 3931                         L2TPv3                       March 2005


  wait-ctl-reply  Receive SCCRP,     Send SCCCN,         established
                  acceptable         send control-conn
                                     open event to
                                     waiting sessions

  wait-ctl-reply  Receive SCCRP,     Send StopCCN,       idle
                  not acceptable     clean up

  wait-ctl-reply  Receive SCCRQ,     Send SCCRP,         wait-ctl-conn
                  lose tie breaker,  Clean up losing
                  SCCRQ acceptable   connection

  wait-ctl-reply  Receive SCCRQ,     Send StopCCN,       idle
                  lose tie breaker,  Clean up losing
                  SCCRQ unacceptable connection

  wait-ctl-reply  Receive SCCRQ,     Send StopCCN for    wait-ctl-reply
                  win tie breaker    losing connection

  wait-ctl-reply  Receive SCCCN      Send StopCCN,       idle
                                     clean up

  wait-ctl-conn   Receive SCCCN,     Send control-conn   established
                  acceptable         open event to
                                     waiting sessions

  wait-ctl-conn   Receive SCCCN,     Send StopCCN,       idle
                  not acceptable     clean up

  wait-ctl-conn   Receive SCCRQ,     Send StopCCN,       idle
                  SCCRP              clean up

  established     Local open         Send control-conn   established
                  request            open event to
                  (new call)         waiting sessions

  established     Administrative     Send StopCCN,       idle
                  control-conn       clean up
                  close event

  established     Receive SCCRQ,     Send StopCCN,       idle
                  SCCRP, SCCCN       clean up

  idle,           Receive StopCCN    Clean up            idle
  wait-ctl-reply,
  wait-ctl-conn,
  established




Lau, et al.                 Standards Track                    [Page 70]

RFC 3931                         L2TPv3                       March 2005


  The states associated with an LCCE for control connection
  establishment are as follows:

  idle
     Both initiator and recipient start from this state.  An initiator
     transmits an SCCRQ, while a recipient remains in the idle state
     until receiving an SCCRQ.

  wait-ctl-reply
     The originator checks to see if another connection has been
     requested from the same peer, and if so, handles the collision
     situation described in Section 5.4.3.

  wait-ctl-conn
     Awaiting an SCCCN.  If the SCCCN is valid, the control connection
     is established; otherwise, it is torn down (sending a StopCCN with
     the proper result and/or error code).

  established
     An established connection may be terminated by either a local
     condition or the receipt of a StopCCN.  In the event of a local
     termination, the originator MUST send a StopCCN and clean up the
     control connection.  If the originator receives a StopCCN, it MUST
     also clean up the control connection.

7.3.  Incoming Calls

  An ICRQ is generated by an LCCE, typically in response to an incoming
  call or a local event.  Once the LCCE sends the ICRQ, it waits for a
  response from the peer.  However, it may choose to postpone
  establishment of the call (e.g., answering the call, bringing up the
  circuit) until the peer has indicated with an ICRP that it will
  accept the call.  The peer may choose not to accept the call if, for
  instance, there are insufficient resources to handle an additional
  session.

  If the peer chooses to accept the call, it responds with an ICRP.
  When the local LCCE receives the ICRP, it attempts to establish the
  call.  A final call connected message, the ICCN, is sent from the
  local LCCE to the peer to indicate that the call states for both
  LCCEs should enter the established state.  If the call is terminated
  before the peer can accept it, a CDN is sent by the local LCCE to
  indicate this condition.

  When a call transitions to a "disconnected" or "down" state, the call
  is cleared normally, and the local LCCE sends a CDN.  Similarly, if
  the peer wishes to clear a call, it sends a CDN and cleans up its
  session.



Lau, et al.                 Standards Track                    [Page 71]

RFC 3931                         L2TPv3                       March 2005


7.3.1.  ICRQ Sender States

  State           Event              Action           New State
  -----           -----              ------           ---------

  idle            Call signal or     Initiate local   wait-control-conn
                  ready to receive   control-conn
                  incoming conn      open

  idle            Receive ICCN,      Clean up         idle
                  ICRP, CDN

  wait-control-   Bearer line drop   Clean up         idle
  conn            or local close
                  request

  wait-control-   control-conn-open  Send ICRQ        wait-reply
  conn

  wait-reply      Receive ICRP,      Send ICCN        established
                  acceptable

  wait-reply      Receive ICRP,      Send CDN,        idle
                  Not acceptable     clean up

  wait-reply      Receive ICRQ,      Process as       idle
                  lose tie breaker   ICRQ Recipient
                                     (Section 7.3.2)

  wait-reply      Receive ICRQ,      Send CDN         wait-reply
                  win tie breaker    for losing
                                     session

  wait-reply      Receive CDN,       Clean up         idle
                  ICCN

  wait-reply      Local close        Send CDN,        idle
                  request            clean up

  established     Receive CDN        Clean up         idle

  established     Receive ICRQ,      Send CDN,        idle
                  ICRP, ICCN         clean up

  established     Local close        Send CDN,        idle
                  request            clean up





Lau, et al.                 Standards Track                    [Page 72]

RFC 3931                         L2TPv3                       March 2005


  The states associated with the ICRQ sender are as follows:

  idle
     The LCCE detects an incoming call on one of its interfaces (e.g.,
     an analog PSTN line rings, or an ATM PVC is provisioned), or a
     local event occurs.  The LCCE initiates its control connection
     establishment state machine and moves to a state waiting for
     confirmation of the existence of a control connection.

  wait-control-conn
     In this state, the session is waiting for either the control
     connection to be opened or for verification that the control
     connection is already open.  Once an indication that the control
     connection has been opened is received, session control messages
     may be exchanged.  The first of these messages is the ICRQ.

  wait-reply
     The ICRQ sender receives either (1) a CDN indicating the peer is
     not willing to accept the call (general error or do not accept)
     and moves back into the idle state, or (2) an ICRP indicating the
     call is accepted.  In the latter case, the LCCE sends an ICCN and
     enters the established state.

  established
     Data is exchanged over the session.  The call may be cleared by
     any of the following:
        + An event on the connected interface: The LCCE sends a CDN.
        + Receipt of a CDN: The LCCE cleans up, disconnecting the call.
        + A local reason: The LCCE sends a CDN.

7.3.2.  ICRQ Recipient States

  State           Event              Action            New State
  -----           -----              ------            ---------
  idle            Receive ICRQ,      Send ICRP         wait-connect
                  acceptable

  idle            Receive ICRQ,      Send CDN,         idle
                  not acceptable     clean up

  idle            Receive ICRP       Send CDN          idle
                                     clean up

  idle            Receive ICCN       Clean up          idle

  wait-connect    Receive ICCN,      Prepare for       established
                  acceptable         data




Lau, et al.                 Standards Track                    [Page 73]

RFC 3931                         L2TPv3                       March 2005


  wait-connect    Receive ICCN,      Send CDN,         idle
                  not acceptable     clean up

  wait-connect    Receive ICRQ,      Send CDN,         idle
                  ICRP               clean up

  idle,           Receive CDN        Clean up          idle
  wait-connect,
  established

  wait-connect    Local close        Send CDN,         idle
  established     request            clean up

  established     Receive ICRQ,      Send CDN,         idle
                  ICRP, ICCN         clean up

  The states associated with the ICRQ recipient are as follows:

  idle
     An ICRQ is received.  If the request is not acceptable, a CDN is
     sent back to the peer LCCE, and the local LCCE remains in the idle
     state.  If the ICRQ is acceptable, an ICRP is sent.  The session
     moves to the wait-connect state.

  wait-connect
     The local LCCE is waiting for an ICCN from the peer.  Upon receipt
     of the ICCN, the local LCCE moves to established state.

  established
     The session is terminated either by sending a CDN or by receiving
     a CDN from the peer.  Clean up follows on both sides regardless of
     the initiator.

7.4.  Outgoing Calls

  Outgoing calls instruct an LAC to place a call.  There are three
  messages for outgoing calls: OCRQ, OCRP, and OCCN.  An LCCE first
  sends an OCRQ to an LAC to request an outgoing call.  The LAC MUST
  respond to the OCRQ with an OCRP once it determines that the proper
  facilities exist to place the call and that the call is
  administratively authorized.  Once the outbound call is connected,
  the LAC sends an OCCN to the peer indicating the final result of the
  call attempt.








Lau, et al.                 Standards Track                    [Page 74]

RFC 3931                         L2TPv3                       March 2005


7.4.1.  OCRQ Sender States

  State          Event              Action            New State
  -----          -----              ------            ---------
  idle           Local open         Initiate local    wait-control-conn
                 request            control-conn-open

  idle           Receive OCCN,      Clean up          idle
                 OCRP

  wait-control-  control-conn-open  Send OCRQ         wait-reply
  conn

  wait-reply     Receive OCRP,      none              wait-connect
                 acceptable

  wait-reply     Receive OCRP,      Send CDN,         idle
                 not acceptable     clean up

  wait-reply     Receive OCCN       Send CDN,         idle
                                    clean up

  wait-reply     Receive OCRQ,      Process as        idle
                 lose tie breaker   OCRQ Recipient
                                    (Section 7.4.2)

  wait-reply     Receive OCRQ,      Send CDN          wait-reply
                 win tie breaker    for losing
                                    session

  wait-connect   Receive OCCN       none              established

  wait-connect   Receive OCRQ,      Send CDN,         idle
                 OCRP               clean up

  idle,          Receive CDN        Clean up          idle
  wait-reply,
  wait-connect,
  established

  established    Receive OCRQ,      Send CDN,         idle
                 OCRP, OCCN         clean up

  wait-reply,    Local close        Send CDN,         idle
  wait-connect,  request            clean up
  established





Lau, et al.                 Standards Track                    [Page 75]

RFC 3931                         L2TPv3                       March 2005


  wait-control-  Local close        Clean up          idle
  conn           request

  The states associated with the OCRQ sender are as follows:

  idle, wait-control-conn
     When an outgoing call request is initiated, a control connection
     is created as described above, if not already present.  Once the
     control connection is established, an OCRQ is sent to the LAC, and
     the session moves into the wait-reply state.

  wait-reply
     If a CDN is received, the session is cleaned up and returns to
     idle state.  If an OCRP is received, the call is in progress, and
     the session moves to the wait-connect state.

  wait-connect
     If a CDN is received, the session is cleaned up and returns to
     idle state.  If an OCCN is received, the call has succeeded, and
     the session may now exchange data.

  established
     If a CDN is received, the session is cleaned up and returns to
     idle state.  Alternatively, if the LCCE chooses to terminate the
     session, it sends a CDN to the LAC, cleans up the session, and
     moves the session to idle state.

7.4.2.  OCRQ Recipient (LAC) States

  State           Event              Action            New State
  -----           -----              ------            ---------
  idle            Receive OCRQ,      Send OCRP,        wait-cs-answer
                  acceptable         Place call

  idle            Receive OCRQ,      Send CDN,         idle
                  not acceptable     clean up

  idle            Receive OCRP       Send CDN,         idle
                                     clean up

  idle            Receive OCCN,      Clean up          idle
                  CDN

  wait-cs-answer  Call placement     Send OCCN         established
                  successful

  wait-cs-answer  Call placement     Send CDN,         idle
                  failed             clean up



Lau, et al.                 Standards Track                    [Page 76]

RFC 3931                         L2TPv3                       March 2005


  wait-cs-answer  Receive OCRQ,      Send CDN,         idle
                  OCRP, OCCN         clean up

  established     Receive OCRQ,      Send CDN,         idle
                  OCRP, OCCN         clean up

  wait-cs-answer, Receive CDN        Clean up          idle
  established

  wait-cs-answer, Local close        Send CDN,         idle
  established     request            clean up

  The states associated with the LAC for outgoing calls are as follows:

  idle
     If the OCRQ is received in error, respond with a CDN.  Otherwise,
     place the call, send an OCRP, and move to the wait-cs-answer
     state.

  wait-cs-answer
     If the call is not completed or a timer expires while waiting for
     the call to complete, send a CDN with the appropriate error
     condition set, and go to idle state.  If a circuit-switched
     connection is established, send an OCCN indicating success, and go
     to established state.

  established
     If the LAC receives a CDN from the peer, the call MUST be released
     via appropriate mechanisms, and the session cleaned up.  If the
     call is disconnected because the circuit transitions to a
     "disconnected" or "down" state, the LAC MUST send a CDN to the
     peer and return to idle state.

7.5.  Termination of a Control Connection

  The termination of a control connection consists of either peer
  issuing a StopCCN.  The sender of this message SHOULD wait a full
  control message retransmission cycle (e.g., 1 + 2 + 4 + 8 ...
  seconds) for the acknowledgment of this message before releasing the
  control information associated with the control connection.  The
  recipient of this message should send an acknowledgment of the
  message to the peer, then release the associated control information.

  When to release a control connection is an implementation issue and
  is not specified in this document.  A particular implementation may
  use whatever policy is appropriate for determining when to release a
  control connection.  Some implementations may leave a control
  connection open for a period of time or perhaps indefinitely after



Lau, et al.                 Standards Track                    [Page 77]

RFC 3931                         L2TPv3                       March 2005


  the last session for that control connection is cleared.  Others may
  choose to disconnect the control connection immediately after the
  last call on the control connection disconnects.

8.  Security Considerations

  This section addresses some of the security issues that L2TP
  encounters in its operation.

8.1.  Control Connection Endpoint and Message Security

  If a shared secret (password) exists between two LCCEs, it may be
  used to perform a mutual authentication between the two LCCEs, and
  construct an authentication and integrity check of arriving L2TP
  control messages.  The mechanism provided by L2TPv3 is described in
  Section 4.3 and in the definition of the Message Digest and Control
  Message Authentication Nonce AVPs in Section 5.4.1.

  This control message security mechanism provides for (1) mutual
  endpoint authentication, and (2) individual control message integrity
  and authenticity checking.  Mutual endpoint authentication ensures
  that an L2TPv3 control connection is only established between two
  endpoints that are configured with the proper password.  The
  individual control message and integrity check guards against
  accidental or intentional packet corruption (i.e., those caused by a
  control message spoofing or man-in-the-middle attack).

  The shared secret that is used for all control connection, control
  message, and AVP security features defined in this document never
  needs to be sent in the clear between L2TP tunnel endpoints.

8.2.  Data Packet Spoofing

  Packet spoofing for any type of Virtual Private Network (VPN)
  protocol is of particular concern as insertion of carefully
  constructed rogue packets into the VPN transit network could result
  in a violation of VPN traffic separation, leaking data into a
  customer VPN.  This is complicated by the fact that it may be
  particularly difficult for the operator of the VPN to even be aware
  that it has become a point of transit into or between customer VPNs.

  L2TPv3 provides traffic separation for its VPNs via a 32-bit Session
  ID in the L2TPv3 data header.  When present, the L2TPv3 Cookie
  (described in Section 4.1), provides an additional check to ensure
  that an arriving packet is intended for the identified session.
  Thus, use of a Cookie with the Session ID provides an extra guarantee
  that the Session ID lookup was performed properly and that the
  Session ID itself was not corrupted in transit.



Lau, et al.                 Standards Track                    [Page 78]

RFC 3931                         L2TPv3                       March 2005


  In the presence of a blind packet spoofing attack, the Cookie may
  also provide security against inadvertent leaking of frames into a
  customer VPN.  To illustrate the type of security that it is provided
  in this case, consider comparing the validation of a 64-bit Cookie in
  the L2TPv3 header to the admission of packets that match a given
  source and destination IP address pair.  Both the source and
  destination IP address pair validation and Cookie validation consist
  of a fast check on cleartext header information on all arriving
  packets.  However, since L2TPv3 uses its own value, it removes the
  requirement for one to maintain a list of (potentially several)
  permitted or denied IP addresses, and moreover, to guard knowledge of
  the permitted IP addresses from hackers who may obtain and spoof
  them.  Further, it is far easier to change a compromised L2TPv3
  Cookie than a compromised IP address," and a cryptographically random
  [RFC1750] value is far less likely to be discovered by brute-force
  attacks compared to an IP address.

  For protection against brute-force, blind, insertion attacks, a 64-
  bit Cookie MUST be used with all sessions.  A 32-bit Cookie is
  vulnerable to brute-force guessing at high packet rates, and as such,
  should not be considered an effective barrier to blind insertion
  attacks (though it is still useful as an additional verification of a
  successful Session ID lookup).  The Cookie provides no protection
  against a sophisticated man-in-the-middle attacker who can sniff and
  correlate captured data between nodes for use in a coordinated
  attack.

  The Assigned Cookie AVP is used to signal the value and size of the
  Cookie that must be present in all data packets for a given session.
  Each Assigned Cookie MUST be selected in a cryptographically random
  manner [RFC1750] such that a series of Assigned Cookies does not
  provide any indication of what a future Cookie will be.

  The L2TPv3 Cookie must not be regarded as a substitute for security
  such as that provided by IPsec when operating over an open or
  untrusted network where packets may be sniffed, decoded, and
  correlated for use in a coordinated attack.  See Section 4.1.3 for
  more information on running L2TP over IPsec.

9.  Internationalization Considerations

  The Host Name and Vendor Name AVPs are not internationalized.  The
  Vendor Name AVP, although intended to be human-readable, would seem
  to fit in the category of "globally visible names" [RFC2277] and so
  is represented in US-ASCII.

  If (1) an LCCE does not signify a language preference by the
  inclusion of a Preferred Language AVP (see Section 5.4.3) in the



Lau, et al.                 Standards Track                    [Page 79]

RFC 3931                         L2TPv3                       March 2005


  SCCRQ or SCCRP, (2) the Preferred Language AVP is unrecognized, or
  (3) the requested language is not supported by the peer LCCE, the
  default language [RFC2277] MUST be used for all internationalized
  strings sent by the peer.

10.  IANA Considerations

  This document defines a number of "magic" numbers to be maintained by
  the IANA.  This section explains the criteria used by the IANA to
  assign additional numbers in each of these lists.  The following
  subsections describe the assignment policy for the namespaces defined
  elsewhere in this document.

  Sections 10.1 through 10.3 are requests for new values already
  managed by IANA according to [RFC3438].

  The remaining sections are for new registries that have been added to
  the existing L2TP registry and are maintained by IANA accordingly.

10.1.  Control Message Attribute Value Pairs (AVPs)

  This number space is managed by IANA as per [RFC3438].

  A summary of the new AVPs follows:

  Control Message Attribute Value Pairs

     Attribute
     Type        Description
     ---------   ------------------

        58       Extended Vendor ID AVP
        59       Message Digest
        60       Router ID
        61       Assigned Control Connection ID
        62       Pseudowire Capabilities List
        63       Local Session ID
        64       Remote Session ID
        65       Assigned Cookie
        66       Remote End ID
        68       Pseudowire Type
        69       L2-Specific Sublayer
        70       Data Sequencing
        71       Circuit Status
        72       Preferred Language
        73       Control Message Authentication Nonce
        74       Tx Connect Speed
        75       Rx Connect Speed



Lau, et al.                 Standards Track                    [Page 80]

RFC 3931                         L2TPv3                       March 2005


10.2.  Message Type AVP Values

  This number space is managed by IANA as per [RFC3438].  There is one
  new message type, defined in Section 3.1, that was allocated for this
  specification:

  Message Type AVP (Attribute Type 0) Values
  ------------------------------------------

    Control Connection Management

        20 (ACK)  Explicit Acknowledgement

10.3.  Result Code AVP Values

  This number space is managed by IANA as per [RFC3438].

  New Result Code values for the CDN message are defined in Section
  5.4.  The following is a summary:

  Result Code AVP (Attribute Type 1) Values
  -----------------------------------------

     General Error Codes

        13 - Session not established due to losing
             tie breaker (L2TPv3).
        14 - Session not established due to unsupported
             PW type (L2TPv3).
        15 - Session not established, sequencing required
             without valid L2-Specific Sublayer (L2TPv3).
        16 - Finite state machine error or timeout.



















Lau, et al.                 Standards Track                    [Page 81]

RFC 3931                         L2TPv3                       March 2005


10.4.  AVP Header Bits

  This is a new registry for IANA to maintain.

  Leading Bits of the L2TP AVP Header
  -----------------------------------

  There six bits at the beginning of the L2TP AVP header.  New bits are
  assigned via Standards Action [RFC2434].

  Bit 0 - Mandatory (M bit)
  Bit 1 - Hidden (H bit)
  Bit 2 - Reserved
  Bit 3 - Reserved
  Bit 4 - Reserved
  Bit 5 - Reserved

10.5.  L2TP Control Message Header Bits

  This is a new registry for IANA to maintain.

  Leading Bits of the L2TP Control Message Header
  -----------------------------------------------

  There are 12 bits at the beginning of the L2TP Control Message
  Header.  Reserved bits should only be defined by Standard
  Action [RFC2434].

  Bit  0 - Message Type (T bit)
  Bit  1 - Length Field is Present (L bit)
  Bit  2 - Reserved
  Bit  3 - Reserved
  Bit  4 - Sequence Numbers Present (S bit)
  Bit  5 - Reserved
  Bit  6 - Offset Field is Present [RFC2661]
  Bit  7 - Priority Bit (P bit) [RFC2661]
  Bit  8 - Reserved
  Bit  9 - Reserved
  Bit 10 - Reserved
  Bit 11 - Reserved











Lau, et al.                 Standards Track                    [Page 82]

RFC 3931                         L2TPv3                       March 2005


10.6.  Pseudowire Types

  This is a new registry for IANA to maintain, there are no values
  assigned within this document to maintain.

  L2TPv3 Pseudowire Types
  -----------------------

  The Pseudowire Type (PW Type, see Section 5.4) is a 2-octet value
  used in the Pseudowire Type AVP and Pseudowire Capabilities List AVP
  defined in Section 5.4.3.  0 to 32767 are assignable by Expert Review
  [RFC2434], while 32768 to 65535 are assigned by a First Come First
  Served policy [RFC2434].  There are no specific pseudowire types
  assigned within this document.  Each pseudowire-specific document
  must allocate its own PW types from IANA as necessary.

10.7.  Circuit Status Bits

  This is a new registry for IANA to maintain.

  Circuit Status Bits
  -------------------

  The Circuit Status field is a 16-bit mask, with the two low order
  bits assigned.  Additional bits may be assigned by IETF Consensus
  [RFC2434].

  Bit 14 - New (N bit)
  Bit 15 - Active (A bit)






















Lau, et al.                 Standards Track                    [Page 83]

RFC 3931                         L2TPv3                       March 2005


10.8.  Default L2-Specific Sublayer bits

  This is a new registry for IANA to maintain.

  Default L2-Specific Sublayer Bits
  ---------------------------------

  The Default L2-Specific Sublayer contains 8 bits in the low-order
  portion of the header.  Reserved bits may be assigned by IETF
  Consensus [RFC2434].

  Bit 0 - Reserved
  Bit 1 - Sequence (S bit)
  Bit 2 - Reserved
  Bit 3 - Reserved
  Bit 4 - Reserved
  Bit 5 - Reserved
  Bit 6 - Reserved
  Bit 7 - Reserved

10.9.  L2-Specific Sublayer Type

  This is a new registry for IANA to maintain.

  L2-Specific Sublayer Type
  -------------------------

  The L2-Specific Sublayer Type is a 2-octet unsigned integer.
  Additional values may be assigned by Expert Review [RFC2434].

  0 - No L2-Specific Sublayer
  1 - Default L2-Specific Sublayer present

10.10.  Data Sequencing Level

  This is a new registry for IANA to maintain.

  Data Sequencing Level
  ---------------------

  The Data Sequencing Level is a 2-octet unsigned integer
  Additional values may be assigned by Expert Review [RFC2434].

  0 - No incoming data packets require sequencing.
  1 - Only non-IP data packets require sequencing.
  2 - All incoming data packets require sequencing.





Lau, et al.                 Standards Track                    [Page 84]

RFC 3931                         L2TPv3                       March 2005


11.  References

11.1.  Normative References

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
            Languages", BCP 18, RFC 2277, January 1998.

  [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
            IANA Considerations section in RFCs", BCP 26, RFC 2434,
            October 1998.

  [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6
            Specification", RFC 2473, December 1998.

  [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G.,
            and Palter, B., "Layer Two Tunneling Layer Two Tunneling
            Protocol (L2TP)", RFC 2661, August 1999.

  [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
            "Remote Authentication Dial In User Service (RADIUS)", RFC
            2865, June 2000.

  [RFC3066] Alvestrand, H., "Tags for the Identification of Languages",
            BCP 47, RFC 3066, January 2001.

  [RFC3193] Patel, B., Aboba, B., Dixon, W., Zorn, G., and Booth, S.,
            "Securing L2TP using IPsec", RFC 3193, November 2001.

  [RFC3438] Townsley, W., "Layer Two Tunneling Protocol (L2TP) Internet
            Assigned Numbers Authority (IANA) Considerations Update",
            BCP 68, RFC 3438, December 2002.

  [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
            STD 63, RFC 3629, November 2003.

11.2.  Informative References

  [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
            STD 13, RFC 1034, November 1987.

  [RFC1191] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191,
            November 1990.

  [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
            April 1992.



Lau, et al.                 Standards Track                    [Page 85]

RFC 3931                         L2TPv3                       March 2005


  [RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD
            51, RFC 1661, July 1994.

  [RFC1700] Reynolds, J. and Postel, J., "Assigned Numbers", STD 2, RFC
            1700, October 1994.

  [RFC1750] Eastlake, D., Crocker, S., and Schiller, J., "Randomness
            Recommendations for Security", RFC 1750, December 1994.

  [RFC1958] Carpenter, B., Ed., "Architectural Principles of the
            Internet", RFC 1958, June 1996.

  [RFC1981] McCann, J., Deering, S., and Mogul, J., "Path MTU Discovery
            for IP version 6", RFC 1981, August 1996.

  [RFC2072] Berkowitz, H., "Router Renumbering Guide", RFC 2072,
            January 1997.

  [RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC:  Keyed-
            Hashing for Message Authentication", RFC 2104, February
            1997.

  [RFC2341] Valencia, A., Littlewood, M., and Kolar, T., "Cisco Layer
            Two Forwarding (Protocol) L2F", RFC 2341, May 1998.

  [RFC2401] Kent, S. and Atkinson, R., "Security Architecture for the
            Internet Protocol", RFC 2401, November 1998.

  [RFC2581] Allman, M., Paxson, V., and Stevens, W., "TCP Congestion
            Control", RFC 2581, April 1999.

  [RFC2637] Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W.,
            and Zorn, G., "Point-to-Point Tunneling Protocol (PPTP)",
            RFC 2637, July 1999.

  [RFC2732] Hinden, R., Carpenter, B., and Masinter, L., "Format for
            Literal IPv6 Addresses in URL's", RFC 2732, December 1999.

  [RFC2809] Aboba, B. and Zorn, G., "Implementation of L2TP Compulsory
            Tunneling via RADIUS", RFC 2809, April 2000.

  [RFC3070] Rawat, V., Tio, R., Nanji, S., and Verma, R., "Layer Two
            Tunneling Protocol (L2TP) over Frame Relay", RFC 3070,
            February 2001.







Lau, et al.                 Standards Track                    [Page 86]

RFC 3931                         L2TPv3                       March 2005


  [RFC3355] Singh, A., Turner, R., Tio, R., and Nanji, S., "Layer Two
            Tunnelling Protocol (L2TP) Over ATM Adaptation Layer 5
            (AAL5)", RFC 3355, August 2002.

  [KPS]     Kaufman, C., Perlman, R., and Speciner, M., "Network
            Security:  Private Communications in a Public World",
            Prentice Hall, March 1995, ISBN 0-13-061466-1.

  [STEVENS] Stevens, W. Richard, "TCP/IP Illustrated, Volume I: The
            Protocols", Addison-Wesley Publishing Company, Inc., March
            1996, ISBN 0-201-63346-9.

12.  Acknowledgments

  Many of the protocol constructs were originally defined in, and the
  text of this document began with, RFC 2661, "L2TPv2".  RFC 2661
  authors are W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn and
  B. Palter.

  The basic concept for L2TP and many of its protocol constructs were
  adopted from L2F [RFC2341] and PPTP [RFC2637].  Authors of these
  versions are A. Valencia, M. Littlewood, T. Kolar, K. Hamzeh, G.
  Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn.

  Danny Mcpherson and Suhail Nanji published the first "L2TP Service
  Type" version, which defined the use of L2TP for tunneling of various
  L2 payload types (initially, Ethernet and Frame Relay).

  The team for splitting RFC 2661 into this base document and the
  companion PPP document consisted of Ignacio Goyret, Jed Lau, Bill
  Palter, Mark Townsley, and Madhvi Verma.  Skip Booth also provided
  very helpful review and comment.

  Some constructs of L2TPv3 were based in part on UTI (Universal
  Transport Interface), which was originally conceived by Peter
  Lothberg and Tony Bates.

  Stewart Bryant and Simon Barber provided valuable input for the
  L2TPv3 over IP header.

  Juha Heinanen provided helpful review in the early stages of this
  effort.

  Jan Vilhuber, Scott Fluhrer, David McGrew, Scott Wainner, Skip Booth
  and Maria Dos Santos contributed to the Control Message
  Authentication Mechanism as well as general discussions of security.





Lau, et al.                 Standards Track                    [Page 87]

RFC 3931                         L2TPv3                       March 2005


  James Carlson, Thomas Narten, Maria Dos Santos, Steven Bellovin, Ted
  Hardie, and Pekka Savola provided very helpful review of the final
  versions of text.

  Russ Housley provided valuable review and comment on security,
  particularly with respect to the Control Message Authentication
  mechanism.

  Pekka Savola contributed to proper alignment with IPv6 and inspired
  much of Section 4.1.4 on fragmentation.

  Aside of his original influence and co-authorship of RFC 2661, Glen
  Zorn helped get all of the language and character references straight
  in this document.

  A number of people provided valuable input and effort for RFC 2661,
  on which this document was based:

  John Bray, Greg Burns, Rich Garrett, Don Grosser, Matt Holdrege,
  Terry Johnson, Dory Leifer, and Rich Shea provided valuable input and
  review at the 43rd IETF in Orlando, FL, which led to improvement of
  the overall readability and clarity of RFC 2661.

  Thomas Narten provided a great deal of critical review and
  formatting.  He wrote the first version of the IANA Considerations
  section.

  Dory Leifer made valuable refinements to the protocol definition of
  L2TP and contributed to the editing of early versions leading to RFC
  2661.

  Steve Cobb and Evan Caves redesigned the state machine tables.
  Barney Wolff provided a great deal of design input on the original
  endpoint authentication mechanism.

















Lau, et al.                 Standards Track                    [Page 88]

RFC 3931                         L2TPv3                       March 2005


Appendix A: Control Slow Start and Congestion Avoidance

  Although each side has indicated the maximum size of its receive
  window, it is recommended that a slow start and congestion avoidance
  method be used to transmit control packets.  The methods described
  here are based upon the TCP congestion avoidance algorithm as
  described in Section 21.6 of TCP/IP Illustrated, Volume I, by W.
  Richard Stevens [STEVENS] (this algorithm is also described in
  [RFC2581]).

  Slow start and congestion avoidance make use of several variables.
  The congestion window (CWND) defines the number of packets a sender
  may send before waiting for an acknowledgment.  The size of CWND
  expands and contracts as described below.  Note, however, that CWND
  is never allowed to exceed the size of the advertised window obtained
  from the Receive Window AVP.  (In the text below, it is assumed any
  increase will be limited by the Receive Window Size.)  The variable
  SSTHRESH determines when the sender switches from slow start to
  congestion avoidance.  Slow start is used while CWND is less than
  SSHTRESH.

  A sender starts out in the slow start phase.  CWND is initialized to
  one packet, and SSHTRESH is initialized to the advertised window
  (obtained from the Receive Window AVP).  The sender then transmits
  one packet and waits for its acknowledgment (either explicit or
  piggybacked).  When the acknowledgment is received, the congestion
  window is incremented from one to two.  During slow start, CWND is
  increased by one packet each time an ACK (explicit ACK message or
  piggybacked) is received.  Increasing CWND by one on each ACK has the
  effect of doubling CWND with each round trip, resulting in an
  exponential increase.  When the value of CWND reaches SSHTRESH, the
  slow start phase ends and the congestion avoidance phase begins.

  During congestion avoidance, CWND expands more slowly.  Specifically,
  it increases by 1/CWND for every new ACK received.  That is, CWND is
  increased by one packet after CWND new ACKs have been received.
  Window expansion during the congestion avoidance phase is effectively
  linear, with CWND increasing by one packet each round trip.

  When congestion occurs (indicated by the triggering of a
  retransmission) one-half of the CWND is saved in SSTHRESH, and CWND
  is set to one.  The sender then reenters the slow start phase.









Lau, et al.                 Standards Track                    [Page 89]

RFC 3931                         L2TPv3                       March 2005


Appendix B: Control Message Examples

B.1: Lock-Step Control Connection Establishment

  In this example, an LCCE establishes a control connection, with the
  exchange involving each side alternating in sending messages.  This
  example shows the final acknowledgment explicitly sent within an ACK
  message.  An alternative would be to piggyback the acknowledgment
  within a message sent as a reply to the ICRQ or OCRQ that will likely
  follow from the side that initiated the control connection.

     LCCE A                   LCCE B
     ------                   ------
     SCCRQ     ->
     Nr: 0, Ns: 0
                              <-     SCCRP
                              Nr: 1, Ns: 0
     SCCCN     ->
     Nr: 1, Ns: 1
                              <-       ACK
                              Nr: 2, Ns: 1

B.2: Lost Packet with Retransmission

  An existing control connection has a new session requested by LCCE A.
  The ICRP is lost and must be retransmitted by LCCE B.  Note that loss
  of the ICRP has two effects: It not only keeps the upper level state
  machine from progressing, but also keeps LCCE A from seeing a timely
  lower level acknowledgment of its ICRQ.

       LCCE A                           LCCE B
       ------                           ------
       ICRQ      ->
       Nr: 1, Ns: 2
                        (packet lost)   <-      ICRP
                                        Nr: 3, Ns: 1

     (pause; LCCE A's timer started first, so fires first)

      ICRQ      ->
      Nr: 1, Ns: 2

     (Realizing that it has already seen this packet,
      LCCE B discards the packet and sends an ACK message)

                                        <-       ACK
                                        Nr: 3, Ns: 2




Lau, et al.                 Standards Track                    [Page 90]

RFC 3931                         L2TPv3                       March 2005


     (LCCE B's retransmit timer fires)

                                        <-      ICRP
                                        Nr: 3, Ns: 1
      ICCN      ->
      Nr: 2, Ns: 3

                                        <-       ACK
                                        Nr: 4, Ns: 2

Appendix C: Processing Sequence Numbers

  The Default L2-Specific Sublayer, defined in Section 4.6, provides a
  24-bit field for sequencing of data packets within an L2TP session.
  L2TP data packets are never retransmitted, so this sequence is used
  only to detect packet order, duplicate packets, or lost packets.

  The 24-bit Sequence Number field of the Default L2-Specific Sublayer
  contains a packet sequence number for the associated session.  Each
  sequenced data packet that is sent must contain the sequence number,
  incremented by one, of the previous sequenced packet sent on a given
  L2TP session.  Upon receipt, any packet with a sequence number equal
  to or greater than the current expected packet (the last received
  in-order packet plus one) should be considered "new" and accepted.
  All other packets are considered "old" or "duplicate" and discarded.
  Note that the 24-bit sequence number space includes zero as a valid
  sequence number (as such, it may be implemented with a masked 32-bit
  counter if desired).  All new sessions MUST begin sending sequence
  numbers at zero.

  Larger or smaller sequence number fields are possible with L2TP if an
  alternative format to the Default L2-Specific Sublayer defined in
  this document is used.  While 24 bits may be adequate in a number of
  circumstances, a larger sequence number space will be less
  susceptible to sequence number wrapping problems for very high
  session data rates across long dropout periods.  The sequence number
  processing recommendations below should hold for any size sequence
  number field.

  When detecting whether a packet sequence number is "greater" or
  "less" than a given sequence number value, wrapping of the sequence
  number must be considered.  This is typically accomplished by keeping
  a window of sequence numbers beyond the current expected sequence
  number for determination of whether a packet is "new" or not.  The
  window may be sized based on the link speed and sequence number space
  and SHOULD be configurable with a default equal to one half the size
  of the available number space (e.g., 2^(n-1), where n is the number
  of bits available in the sequence number).



Lau, et al.                 Standards Track                    [Page 91]

RFC 3931                         L2TPv3                       March 2005


  Upon receipt, packets that exactly match the expected sequence number
  are processed immediately and the next expected sequence number
  incremented.  Packets that fall within the window for new packets may
  either be processed immediately and the next expected sequence number
  updated to one plus that received in the new packet, or held for a
  very short period of time in hopes of receiving the missing
  packet(s).  This "very short period" should be configurable, with a
  default corresponding to a time lapse that is at least an order of
  magnitude less than the retransmission timeout periods of higher
  layer protocols such as TCP.

  For typical transient packet mis-orderings, dropping out-of-order
  packets alone should suffice and generally requires far less
  resources than actively reordering packets within L2TP.  An exception
  is a case in which a pair of packet fragments are persistently
  retransmitted and sent out-of-order.  For example, if an IP packet
  has been fragmented into a very small packet followed by a very large
  packet before being tunneled by L2TP, it is possible (though
  admittedly wrong) that the two resulting L2TP packets may be
  consistently mis-ordered by the PSN in transit between L2TP nodes.
  If sequence numbers were being enforced at the receiving node without
  any buffering of out-of-order packets, then the fragmented IP packet
  may never reach its destination.  It may be worth noting here that
  this condition is true for any tunneling mechanism of IP packets that
  includes sequence number checking on receipt (i.e., GRE [RFC2890]).

  Utilization of a Data Sequencing Level (see Section 5.4.3) of 1 (only
  non-IP data packets require sequencing) allows IP data packets being
  tunneled by L2TP to not utilize sequence numbers, while utilizing
  sequence numbers and enforcing packet order for any remaining non-IP
  data packets.  Depending on the requirements of the link layer being
  tunneled and the network data traversing the data link, this is
  sufficient in many cases to enforce packet order on frames that
  require it (such as end-to-end data link control messages), while not
  on IP packets that are known to be resilient to packet reordering.

  If a large number of packets (i.e., more than one new packet window)
  are dropped due to an extended outage or loss of sequence number
  state on one side of the connection (perhaps as part of a forwarding
  plane reset or failover to a standby node), it is possible that a
  large number of packets will be sent in-order, but be wrongly
  detected by the peer as out-of-order.  This can be generally
  characterized for a window size, w, sequence number space, s, and
  number of packets lost in transit between L2TP endpoints, p, as
  follows:






Lau, et al.                 Standards Track                    [Page 92]

RFC 3931                         L2TPv3                       March 2005


  If s > p > w, then an additional (s - p) packets that were otherwise
  received in-order, will be incorrectly classified as out-of-order and
  dropped.  Thus, for a sequence number space, s = 128, window size, w
  = 64, and number of lost packets, p = 70; 128 - 70 = 58 additional
  packets would be dropped after the outage until the sequence number
  wrapped back to the current expected next sequence number.

  To mitigate this additional packet loss, one MUST inspect the
  sequence numbers of packets dropped due to being classified as "old"
  and reset the expected sequence number accordingly.  This may be
  accomplished by counting the number of "old" packets dropped that
  were in sequence among themselves and, upon reaching a threshold,
  resetting the next expected sequence number to that seen in the
  arriving data packets.  Packet timestamps may also be used as an
  indicator to reset the expected sequence number by detecting a period
  of time over which "old" packets have been received in-sequence.  The
  ideal thresholds will vary depending on link speed, sequence number
  space, and link tolerance to out-of-order packets, and MUST be
  configurable.

Editors' Addresses

  Jed Lau
  cisco Systems
  170 W. Tasman Drive
  San Jose, CA  95134

  EMail: [email protected]


  W. Mark Townsley
  cisco Systems

  EMail: [email protected]


  Ignacio Goyret
  Lucent Technologies

  EMail: [email protected]











Lau, et al.                 Standards Track                    [Page 93]

RFC 3931                         L2TPv3                       March 2005


Full Copyright Statement

  Copyright (C) The Internet Society (2005).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.







Lau, et al.                 Standards Track                    [Page 94]