Network Working Group                                           J. Arkko
Request for Comments: 3830                                    E. Carrara
Category: Standards Track                                    F. Lindholm
                                                             M. Naslund
                                                             K. Norrman
                                                      Ericsson Research
                                                            August 2004


                  MIKEY: Multimedia Internet KEYing

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).

Abstract

  This document describes a key management scheme that can be used for
  real-time applications (both for peer-to-peer communication and group
  communication).  In particular, its use to support the Secure Real-
  time Transport Protocol is described in detail.

  Security protocols for real-time multimedia applications have started
  to appear.  This has brought forward the need for a key management
  solution to support these protocols.


















Arkko, et al.               Standards Track                     [Page 1]

RFC 3830                         MIKEY                       August 2004


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
      1.1.  Existing Solutions . . . . . . . . . . . . . . . . . . .  4
      1.2.  Notational Conventions . . . . . . . . . . . . . . . . .  4
      1.3.  Definitions. . . . . . . . . . . . . . . . . . . . . . .  4
      1.4.  Abbreviations. . . . . . . . . . . . . . . . . . . . . .  6
      1.5.  Outline. . . . . . . . . . . . . . . . . . . . . . . . .  6
  2.  Basic Overview . . . . . . . . . . . . . . . . . . . . . . . .  7
      2.1.  Scenarios. . . . . . . . . . . . . . . . . . . . . . . .  7
      2.2.  Design Goals . . . . . . . . . . . . . . . . . . . . . .  8
      2.3.  System Overview. . . . . . . . . . . . . . . . . . . . .  8
      2.4.  Relation to GKMARCH. . . . . . . . . . . . . . . . . . . 10
  3.  Basic Key Transport and Exchange Methods . . . . . . . . . . . 10
      3.1.  Pre-shared Key . . . . . . . . . . . . . . . . . . . . . 12
      3.2.  Public-Key Encryption. . . . . . . . . . . . . . . . . . 13
      3.3.  Diffie-Hellman Key Exchange. . . . . . . . . . . . . . . 14
  4.  Selected Key Management Functions. . . . . . . . . . . . . . . 15
      4.1.  Key Calculation. . . . . . . . . . . . . . . . . . . . . 16
            4.1.1.  Assumptions. . . . . . . . . . . . . . . . . . . 16
            4.1.2.  Default PRF Description. . . . . . . . . . . . . 17
            4.1.3.  Generating keys from TGK . . . . . . . . . . . . 18
            4.1.4.  Generating keys for MIKEY Messages from
                    an Envelope/Pre-Shared Key . . . . . . . . . . . 19
      4.2 Pre-defined Transforms and Timestamp Formats . . . . . . . 19
            4.2.1.  Hash Functions . . . . . . . . . . . . . . . . . 19
            4.2.2.  Pseudo-Random Number Generator and PRF . . . . . 20
            4.2.3.  Key Data Transport Encryption. . . . . . . . . . 20
            4.2.4.  MAC and Verification Message Function. . . . . . 21
            4.2.5.  Envelope Key Encryption. . . . . . . . . . . . . 21
            4.2.6.  Digital Signatures . . . . . . . . . . . . . . . 21
            4.2.7.  Diffie-Hellman Groups. . . . . . . . . . . . . . 21
            4.2.8.  Timestamps . . . . . . . . . . . . . . . . . . . 21
            4.2.9.  Adding New Parameters to MIKEY . . . . . . . . . 22
      4.3.  Certificates, Policies and Authorization . . . . . . . . 22
            4.3.1.  Certificate Handling . . . . . . . . . . . . . . 22
            4.3.2.  Authorization. . . . . . . . . . . . . . . . . . 23
            4.3.3.  Data Policies. . . . . . . . . . . . . . . . . . 24
      4.4.  Retrieving the Data SA . . . . . . . . . . . . . . . . . 24
      4.5.  TGK Re-Keying and CSB Updating . . . . . . . . . . . . . 25
  5.  Behavior and Message Handling. . . . . . . . . . . . . . . . . 26
      5.1.  General. . . . . . . . . . . . . . . . . . . . . . . . . 26
            5.1.1.  Capability Discovery . . . . . . . . . . . . . . 26
            5.1.2.  Error Handling . . . . . . . . . . . . . . . . . 27
      5.2.  Creating a Message . . . . . . . . . . . . . . . . . . . 28
      5.3.  Parsing a Message. . . . . . . . . . . . . . . . . . . . 29
      5.4.  Replay Handling and Timestamp Usage. . . . . . . . . . . 30
  6.  Payload Encoding . . . . . . . . . . . . . . . . . . . . . . . 32



Arkko, et al.               Standards Track                     [Page 2]

RFC 3830                         MIKEY                       August 2004


      6.1.  Common Header Payload (HDR). . . . . . . . . . . . . . . 32
            6.1.1.  SRTP ID. . . . . . . . . . . . . . . . . . . . . 35
      6.2.  Key Data Transport Payload (KEMAC) . . . . . . . . . . . 36
      6.3.  Envelope Data Payload (PKE). . . . . . . . . . . . . . . 37
      6.4.  DH Data Payload (DH) . . . . . . . . . . . . . . . . . . 38
      6.5.  Signature Payload (SIGN) . . . . . . . . . . . . . . . . 39
      6.6.  Timestamp Payload (T). . . . . . . . . . . . . . . . . . 39
      6.7.  ID Payload (ID) / Certificate Payload (CERT) . . . . . . 40
      6.8.  Cert Hash Payload (CHASH). . . . . . . . . . . . . . . . 41
      6.9.  Ver msg payload (V). . . . . . . . . . . . . . . . . . . 42
      6.10. Security Policy Payload (SP) . . . . . . . . . . . . . . 42
            6.10.1. SRTP Policy. . . . . . . . . . . . . . . . . . . 44
      6.11. RAND Payload (RAND). . . . . . . . . . . . . . . . . . . 45
      6.12. Error Payload (ERR). . . . . . . . . . . . . . . . . . . 46
      6.13. Key Data Sub-Payload . . . . . . . . . . . . . . . . . . 46
      6.14. Key Validity Data. . . . . . . . . . . . . . . . . . . . 48
      6.15. General Extension Payload. . . . . . . . . . . . . . . . 50
  7.  Transport Protocols. . . . . . . . . . . . . . . . . . . . . . 50
  8.  Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
      8.1.  Simple One-to-Many . . . . . . . . . . . . . . . . . . . 51
      8.2.  Small-Size Interactive Group . . . . . . . . . . . . . . 51
  9.  Security Considerations. . . . . . . . . . . . . . . . . . . . 52
      9.1.  General. . . . . . . . . . . . . . . . . . . . . . . . . 52
      9.2.  Key Lifetime . . . . . . . . . . . . . . . . . . . . . . 54
      9.3.  Timestamps . . . . . . . . . . . . . . . . . . . . . . . 55
      9.4.  Identity Protection. . . . . . . . . . . . . . . . . . . 55
      9.5.  Denial of Service. . . . . . . . . . . . . . . . . . . . 56
      9.6.  Session Establishment. . . . . . . . . . . . . . . . . . 56
  10. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 57
      10.1. MIME Registration. . . . . . . . . . . . . . . . . . . . 59
  11. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 59
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 60
      12.1. Normative References . . . . . . . . . . . . . . . . . . 60
      12.2. Informative References . . . . . . . . . . . . . . . . . 61
  Appendix A. - MIKEY - SRTP Relation. . . . . . . . . . . . . . . . 63
  Author's Addresses . . . . . . . . . . . . . . . . . . . . . . . . 65
  Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 66

1.  Introduction

  There has recently been work to define a security protocol for the
  protection of real-time applications running over RTP, [SRTP].
  However, a security protocol needs a key management solution to
  exchange keys and related security parameters.  There are some
  fundamental properties that such a key management scheme has to
  fulfill to serve streaming and real-time applications (such as
  unicast and multicast), particularly in heterogeneous (mix of wired
  and wireless) networks.



Arkko, et al.               Standards Track                     [Page 3]

RFC 3830                         MIKEY                       August 2004


  This document describes a key management solution that addresses
  multimedia scenarios (e.g., SIP [SIP] calls and RTSP [RTSP]
  sessions).  The focus is on how to set up key management for secure
  multimedia sessions such that requirements in a heterogeneous
  environment are fulfilled.

1.1.  Existing Solutions

  There is work done in the IETF to develop key management schemes.
  For example, IKE [IKE] is a widely accepted unicast scheme for IPsec,
  and the MSEC WG is developing other schemes to address group
  communication [GDOI, GSAKMP].  However, for reasons discussed below,
  there is a need for a scheme with lower latency, suitable for
  demanding cases such as real-time data over heterogeneous networks
  and small interactive groups.

  An option in some cases might be to use [SDP], as SDP defines one
  field to transport keys, the "k=" field.  However, this field cannot
  be used for more general key management purposes, as it cannot be
  extended from the current definition.

1.2.  Notational Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].

1.3.  Definitions

  (Data) Security Protocol: the security protocol used to protect the
  actual data traffic.  Examples of security protocols are IPsec and
  SRTP.

  Data Security Association (Data SA): information for the security
  protocol, including a TEK and a set of parameters/policies.

  Crypto Session (CS): uni- or bi-directional data stream(s), protected
  by a single instance of a security protocol.  For example, when SRTP
  is used, the Crypto Session will often contain two streams, an RTP
  stream and the corresponding RTCP, which are both protected by a
  single SRTP Cryptographic Context, i.e., they share key data and the
  bulk of security parameters in the SRTP Cryptographic Context
  (default behavior in [SRTP]).  In the case of IPsec, a Crypto Session
  would represent an instantiation of an IPsec SA.  A Crypto Session
  can be viewed as a Data SA (as defined in [GKMARCH]) and could
  therefore be mapped to other security protocols if necessary.




Arkko, et al.               Standards Track                     [Page 4]

RFC 3830                         MIKEY                       August 2004


  Crypto Session Bundle (CSB): collection of one or more Crypto
  Sessions, which can have common TGKs (see below) and security
  parameters.

  Crypto Session ID: unique identifier for the CS within a CSB.

  Crypto Session Bundle ID (CSB ID): unique identifier for the CSB.

  TEK Generation Key (TGK): a bit-string agreed upon by two or more
  parties, associated with CSB.  From the TGK, Traffic-encrypting Keys
  can then be generated without needing further communication.

  Traffic-Encrypting Key (TEK): the key used by the security protocol
  to protect the CS (this key may be used directly by the security
  protocol or may be used to derive further keys depending on the
  security protocol).  The TEKs are derived from the CSB's TGK.

  TGK re-keying: the process of re-negotiating/updating the TGK (and
  consequently future TEK(s)).

  Initiator: the initiator of the key management protocol, not
  necessarily the initiator of the communication.

  Responder: the responder in the key management protocol.

  Salting key: a random or pseudo-random (see [RAND, HAC]) string used
  to protect against some off-line pre-computation attacks on the
  underlying security protocol.

  PRF(k,x):  a keyed pseudo-random function (see [HAC]).
  E(k,m):    encryption of m with the key k.
  PKx:       the public key of x
  []         an optional piece of information
  {}         denotes zero or more occurrences
  ||         concatenation
  |          OR (selection operator)
  ^          exponentiation
  XOR        exclusive or

  Bit and byte ordering: throughout the document bits and bytes are
  indexed, as usual, from left to right, with the leftmost bits/bytes
  being the most significant.









Arkko, et al.               Standards Track                     [Page 5]

RFC 3830                         MIKEY                       August 2004


1.4.  Abbreviations

  AES    Advanced Encryption Standard
  CM     Counter Mode (as defined in [SRTP])
  CS     Crypto Session
  CSB    Crypto Session Bundle
  DH     Diffie-Hellman
  DoS    Denial of Service
  MAC    Message Authentication Code
  MIKEY  Multimedia Internet KEYing
  PK     Public-Key
  PSK    Pre-Shared key
  RTP    Real-time Transport Protocol
  RTSP   Real Time Streaming Protocol
  SDP    Session Description Protocol
  SIP    Session Initiation Protocol
  SRTP   Secure RTP
  TEK    Traffic-encrypting key
  TGK    TEK Generation Key

1.5.  Outline

  Section 2 describes the basic scenarios and the design goals for
  which MIKEY is intended.  It also gives a brief overview of the
  entire solution and its relation to the group key management
  architecture [GKMARCH].

  The basic key transport/exchange mechanisms are explained in detail
  in Section 3.  The key derivation, and other general key management
  procedures are described in Section 4.

  Section 5 describes the expected behavior of the involved parties.
  This also includes message creation and parsing.

  All definitions of the payloads in MIKEY are described in Section 6.

  Section 7 deals with transport considerations, while Section 8
  focuses on how MIKEY is used in group scenarios.

  The Security Considerations section (Section 9), gives a deeper
  explanation of important security related topics.










Arkko, et al.               Standards Track                     [Page 6]

RFC 3830                         MIKEY                       August 2004


2.  Basic Overview

2.1.  Scenarios

  MIKEY is mainly intended to be used for peer-to-peer, simple one-to-
  many, and small-size (interactive) groups.  One of the main
  multimedia scenarios considered when designing MIKEY has been the
  conversational multimedia scenario, where users may interact and
  communicate in real-time.  In these scenarios it can be expected that
  peers set up multimedia sessions between each other, where a
  multimedia session may consist of one or more secured multimedia
  streams (e.g., SRTP streams).

  peer-to-peer/         many-to-many           many-to-many
   simple one-to-many           (distributed)          (centralized)
             ++++        ++++          ++++     ++++           ++++
             |. |        |A |          |B |     |A |----   ----|B |
           --| ++++      |  |----------|  |     |  |    \ /    |  |
  ++++    /  ++|. |      ++++          ++++     ++++    (S)    ++++
  |A |---------| ++++       \          /                 |
  |  |    \    ++|B |        \        /                  |
  ++++     \-----|  |         \ ++++ /                  ++++
                 ++++          \|C |/                   |C |
                                |  |                    |  |
                                ++++                    ++++

  Figure 2.1: Examples of the four scenarios: peer-to-peer, simple
  one-to-many, many-to-many without a centralized server (also denoted
  as small interactive group), and many-to-many with a centralized
  server.

  We identify in the following some typical scenarios which involve the
  multimedia applications we are dealing with (see also Figure 2.1).

  a) peer-to-peer (unicast), e.g., a SIP-based [SIP] call between two
     parties, where it may be desirable that the security is either set
     up by mutual agreement or that each party sets up the security for
     its own outgoing streams.

  b) simple one-to-many (multicast), e.g., real-time presentations,
     where the sender is in charge of setting up the security.

  c) many-to-many, without a centralized control unit, e.g., for
     small-size interactive groups where each party may set up the
     security for its own outgoing media.  Two basic models may be used
     here.  In the first model, the Initiator of the group acts as the





Arkko, et al.               Standards Track                     [Page 7]

RFC 3830                         MIKEY                       August 2004


     group server (and is the only one authorized to include new
     members).  In the second model, authorization information to
     include new members can be delegated to other participants.

  d) many-to-many, with a centralized control unit, e.g., for larger
     groups with some kind of Group Controller that sets up the
     security.

  The key management solutions may be different in the above scenarios.
  When designing MIKEY, the main focus has been on case a, b, and c.
  For scenario c, only the first model is covered by this document.

2.2.  Design Goals

  The key management protocol is designed to have the following
  characteristics:

  *  End-to-end security.  Only the participants involved in the
     communication have access to the generated key(s).

  *  Simplicity.

  *  Efficiency.  Designed to have:
     - low bandwidth consumption,
     - low computational workload,
     - small code size, and
     - minimal number of roundtrips.

  *  Tunneling.  Possibility to "tunnel"/integrate MIKEY in session
     establishment protocols (e.g., SDP and RTSP).

  *  Independence from any specific security functionality of the
     underlying transport.

2.3.  System Overview

  One objective of MIKEY is to produce a Data SA for the security
  protocol, including a traffic-encrypting key (TEK), which is derived
  from a TEK Generation Key (TGK), and used as input for the security
  protocol.

  MIKEY supports the possibility of establishing keys and parameters
  for more than one security protocol (or for several instances of the
  same security protocol) at the same time.  The concept of Crypto
  Session Bundle (CSB) is used to denote a collection of one or more
  Crypto Sessions that can have common TGK and security parameters, but
  which obtain distinct TEKs from MIKEY.




Arkko, et al.               Standards Track                     [Page 8]

RFC 3830                         MIKEY                       August 2004


  The procedure of setting up a CSB and creating a TEK (and Data SA),
  is done in accordance with Figure 2.2:

  1. A set of security parameters and TGK(s) are agreed upon for the
     Crypto Session Bundle (this is done by one of the three
     alternative key transport/exchange mechanisms, see Section 3).

  2. The TGK(s) is used to derive (in a cryptographically secure way) a
     TEK for each Crypto Session.

  3. The TEK, together with the security protocol parameters, represent
     the Data SA, which is used as the input to the security protocol.

       +-----------------+
       |       CSB       |
       |  Key transport  |                      (see Section 3)
       |    /exchange    |
       +-----------------+
                |      :
                | TGK  :
                v      :
          +----------+ :
  CS ID ->|   TEK    | : Security protocol      (see Section 4)
          |derivation| : parameters (policies)
          +----------+ :
             TEK |     :
                 v     v
                 Data SA
                   |
                   v
          +-------------------+
          |  Crypto Session   |
          |(Security Protocol)|
          +-------------------+

  Figure 2.2: Overview of MIKEY key management procedure.

  The security protocol can then either use the TEK directly, or, if
  supported, derive further session keys from the TEK (e.g., see SRTP
  [SRTP]).  It is however up to the security protocol to define how the
  TEK is used.

  MIKEY can be used to update TEKs and the Crypto Sessions in a current
  Crypto Session Bundle (see Section 4.5).  This is done by executing
  the transport/exchange phase once again to obtain a new TGK (and
  consequently derive new TEKs) or to update some other specific CS
  parameters.




Arkko, et al.               Standards Track                     [Page 9]

RFC 3830                         MIKEY                       August 2004


2.4.  Relation to GKMARCH

  The Group key management architecture (GKMARCH) [GKMARCH] describes a
  general architecture for group key management protocols.  MIKEY is a
  part of this architecture, and can be used as a so-called
  Registration protocol.  The main entities involved in the
  architecture are the group controller/key server (GCKS), the
  receiver(s), and the sender(s).

  In MIKEY, the sender could act as GCKS and push keys down to the
  receiver(s).

  Note that, for example, in a SIP-initiated call, the sender may also
  be a receiver.  As MIKEY addresses small interactive groups, a member
  may dynamically change between being a sender and receiver (or being
  both simultaneously).

3.  Basic Key Transport and Exchange Methods

  The following sub-sections define three different methods of
  transporting/establishing a TGK: with the use of a pre-shared key,
  public-key encryption, and Diffie-Hellman (DH) key exchange.  In the
  following, we assume unicast communication for simplicity.  In
  addition to the TGK, a random "nonce", denoted RAND, is also
  transported.  In all three cases, the TGK and RAND values are then
  used to derive TEKs as described in Section 4.1.3.  A timestamp is
  also sent to avoid replay attacks (see Section 5.4).

  The pre-shared key method and the public-key method are both based on
  key transport mechanisms, where the actual TGK is pushed (securely)
  to the recipient(s).  In the Diffie-Hellman method, the actual TGK is
  instead derived from the Diffie-Hellman values exchanged between the
  peers.

  The pre-shared case is, by far, the most efficient way to handle the
  key transport due to the use of symmetric cryptography only.  This
  approach also has the advantage that only a small amount of data has
  to be exchanged.  Of course, the problematic issue is scalability as
  it is not always feasible to share individual keys with a large group
  of peers.  Therefore, this case mainly addresses scenarios such as
  server-to-client and also those cases where the public-key modes have
  already been used, thus allowing for the "cache" of a symmetric key
  (see below and Section 3.2).

  Public-key cryptography can be used to create a scalable system.  A
  disadvantage with this approach is that it is more resource consuming
  than the pre-shared key approach.  Another disadvantage is that in
  most cases, a PKI (Public Key Infrastructure) is needed to handle the



Arkko, et al.               Standards Track                    [Page 10]

RFC 3830                         MIKEY                       August 2004


  distribution of public keys.  Of course, it is possible to use public
  keys as pre-shared keys (e.g., by using self-signed certificates).
  It should also be noted that, as mentioned above, this method may be
  used to establish a "cached" symmetric key that later can be used to
  establish subsequent TGKs by using the pre-shared key method (hence,
  the subsequent request can be executed more efficiently).

  In general, the Diffie-Hellman (DH) key agreement method has a higher
  resource consumption (both computationally and in bandwidth) than the
  previous ones, and needs certificates as in the public-key case.
  However, it has the advantage of providing perfect forward secrecy
  (PFS) and flexibility by allowing implementation in several different
  finite groups.

  Note that by using the DH method, the two involved parties will
  generate a unique unpredictable random key.  Therefore, it is not
  possible to use this DH method to establish a group TEK (as the
  different parties in the group would end up with different TEKs).  It
  is not the intention of the DH method to work in this scenario, but
  to be a good alternative in the special peer-to-peer case.

  The following general notation is used:

  HDR:  The general MIKEY header, which includes MIKEY CSB related data
  (e.g., CSB ID) and information mapping to the specific security
  protocol used.  See Section 6.1 for payload definition.

  T:    The timestamp, used mainly to prevent replay attacks.  See
  Section 6.6 for payload definition and also Section 5.4 for other
  timestamp related information.

  IDx:  The identity of entity x (IDi=Initiator, IDr=Responder).  See
  Section 6.7 for payload definition.

  RAND: Random/pseudo-random byte-string, which is always included in
  the first message from the Initiator.  RAND is used as a freshness
  value for the key generation.  It is not included in update messages
  of a CSB.  See Section 6.11 for payload definition.  For randomness
  recommendations for security, see [RAND].

  SP:   The security policies for the data security protocol.  See
  Section 6.10 for payload definition.









Arkko, et al.               Standards Track                    [Page 11]

RFC 3830                         MIKEY                       August 2004


3.1.  Pre-shared key

  In this method, the pre-shared secret key, s, is used to derive key
  material for both the encryption (encr_key) and the integrity
  protection (auth_key) of the MIKEY messages, as described in Section
  4.1.4.  The encryption and authentication transforms are described in
  Section 4.2.

  Initiator                                   Responder

     I_MESSAGE =
     HDR, T, RAND, [IDi],[IDr],
          {SP}, KEMAC                --->
                                                 R_MESSAGE =
                                    [<---]       HDR, T, [IDr], V

  The main objective of the Initiator's message (I_MESSAGE) is to
  transport one or more TGKs (carried into KEMAC) and a set of security
  parameters (SPs) to the Responder in a secure manner.  As the
  verification message from the Responder is optional, the Initiator
  indicates in the HDR whether it requires a verification message or
  not from the Responder.

  KEMAC = E(encr_key, {TGK}) || MAC

  The KEMAC payload contains a set of encrypted sub-payloads and a MAC.
  Each sub-payload includes a TGK randomly and independently chosen by
  the Initiator (and other possible related parameters, e.g., the key
  lifetime).  The MAC is a Message Authentication Code covering the
  entire MIKEY message using the authentication key, auth_key.  See
  Section 6.2 for payload definition and Section 5.2 for an exact
  definition of the MAC calculation.

  The main objective of the verification message from the Responder is
  to obtain mutual authentication.  The verification message, V, is a
  MAC computed over the Responder's entire message, the timestamp (the
  same as the one that was included in the Initiator's message), and
  the two parties identities, using the authentication key.  See also
  Section 5.2 for the exact definition of the Verification MAC
  calculation and Section 6.9 for payload definition.

  The ID fields SHOULD be included, but they MAY be left out when it
  can be expected that the peer already knows the other party's ID
  (otherwise it cannot look up the pre-shared key).  For example, this
  could be the case if the ID is extracted from SIP.

  It is MANDATORY to implement this method.




Arkko, et al.               Standards Track                    [Page 12]

RFC 3830                         MIKEY                       August 2004


3.2.  Public-key encryption

  Initiator                                        Responder

  I_MESSAGE =
  HDR, T, RAND, [IDi|CERTi], [IDr], {SP},
      KEMAC, [CHASH], PKE, SIGNi         --->
                                                  R_MESSAGE =
                                        [<---]    HDR, T, [IDr], V

  As in the previous case, the main objective of the Initiator's
  message is to transport one or more TGKs and a set of security
  parameters to the Responder in a secure manner.  This is done using
  an envelope approach where the TGKs are encrypted (and integrity
  protected) with keys derived from a randomly/pseudo-randomly chosen
  "envelope key".  The envelope key is sent to the Responder encrypted
  with the public key of the Responder.

  The PKE contains the encrypted envelope key: PKE = E(PKr, env_key).
  It is encrypted using the Responder's public key (PKr).  If the
  Responder possesses several public keys, the Initiator can indicate
  the key used in the CHASH payload (see Section 6.8).

  The KEMAC contains a set of encrypted sub-payloads and a MAC:

  KEMAC = E(encr_key, IDi || {TGK}) || MAC

  The first payload (IDi) in KEMAC is the identity of the Initiator
  (not a certificate, but generally the same ID as the one specified in
  the certificate).  Each of the following payloads (TGK) includes a
  TGK randomly and independently chosen by the Initiator (and possible
  other related parameters, e.g., the key lifetime).  The encrypted
  part is then followed by a MAC, which is calculated over the KEMAC
  payload.  The encr_key and the auth_key are derived from the envelope
  key, env_key, as specified in Section 4.1.4.  See also Section 6.2
  for payload definition.

  The SIGNi is a signature covering the entire MIKEY message, using the
  Initiator's signature key (see also Section 5.2 for the exact
  definition).

  The main objective of the verification message from the Responder is
  to obtain mutual authentication.  As the verification message V from
  the Responder is optional, the Initiator indicates in the HDR whether
  it requires a verification message or not from the Responder.  V is
  calculated in the same way as in the pre-shared key mode (see also
  Section 5.2 for the exact definition).  See Section 6.9 for payload
  definition.



Arkko, et al.               Standards Track                    [Page 13]

RFC 3830                         MIKEY                       August 2004


  Note that there will be one encrypted IDi and possibly also one
  unencrypted IDi.  The encrypted one is used together with the MAC as
  a countermeasure for certain man-in-the-middle attacks, while the
  unencrypted one is always useful for the Responder to immediately
  identify the Initiator.  The encrypted IDi MUST always be verified to
  be equal with the expected IDi.

  It is possible to cache the envelope key, so that it can be used as a
  pre-shared key.  It is not recommended for this key to be cached
  indefinitely (however it is up to the local policy to decide this).
  This function may be very convenient during the lifetime of a CSB, if
  a new crypto session needs to be added (or an expired one removed).
  Then, the pre-shared key can be used, instead of the public keys (see
  also Section 4.5).  If the Initiator indicates that the envelope key
  should be cached, the key is at least to be cached during the
  lifetime of the entire CSB.

  The cleartext ID fields and certificate SHOULD be included, but they
  MAY be left out when it can be expected that the peer already knows
  the other party's ID, or can obtain the certificate in some other
  manner.  For example, this could be the case if the ID is extracted
  from SIP.

  For certificate handling, authorization, and policies, see Section
  4.3.

  It is MANDATORY to implement this method.

3.3.  Diffie-Hellman key exchange

  For a fixed, agreed upon, cyclic group, (G,*), we let g denote a
  generator for this group.  Choices for the parameters are given in
  Section 4.2.7.  The other transforms below are described in Section
  4.2.

  This method creates a DH-key, which is used as the TGK.  This method
  cannot be used to create group keys; it can only be used to create
  single peer-to-peer keys.  It is OPTIONAL to implement this method.

  Initiator                                          Responder

  I_MESSAGE =
  HDR, T, RAND, [IDi|CERTi],[IDr]
       {SP}, DHi, SIGNi           --->
                                             R_MESSAGE =
                                  <---       HDR, T, [IDr|CERTr], IDi,
                                             DHr, DHi, SIGNr




Arkko, et al.               Standards Track                    [Page 14]

RFC 3830                         MIKEY                       August 2004


  The main objective of the Initiator's message is to, in a secure way,
  provide the Responder with its DH value (DHi) g^(xi), where xi MUST
  be randomly/pseudo-randomly and secretly chosen, and a set of
  security protocol parameters.

  The SIGNi is a signature covering the Initiator's MIKEY message,
  I_MESSAGE, using the Initiator's signature key (see Section 5.2 for
  the exact definition).

  The main objective of the Responder's message is to, in a secure way,
  provide the Initiator with the Responder's value (DHr) g^(xr), where
  xr MUST be randomly/pseudo-randomly and secretly chosen.  The
  timestamp that is included in the answer is the same as the one
  included in the Initiator's message.

  The SIGNr is a signature covering the Responder's MIKEY message,
  R_MESSAGE, using the Responder's signature key (see Section 5.2 for
  the exact definition).

  The DH group parameters (e.g., the group G, the generator g) are
  chosen by the Initiator and signaled to the Responder.  Both parties
  calculate the TGK, g^(xi*xr) from the exchanged DH-values.

  Note that this approach does not require that the Initiator has to
  possess any of the Responder's certificates before the setup.
  Instead, it is sufficient that the Responder includes its signing
  certificate in the response.

  The ID fields and certificate SHOULD be included, but they MAY be
  left out when it can be expected that the peer already knows the
  other party's ID (or can obtain the certificate in some other
  manner).  For example, this could be the case if the ID is extracted
  from SIP.

  For certificate handling, authorization, and policies, see Section
  4.3.

4.  Selected Key Management Functions

  MIKEY manages symmetric keys in two main ways.  First, following key
  transport or key exchange of TGK(s) (and other parameters) as defined
  by any of the above three methods, MIKEY maintains a mapping between
  Data SA identifiers and Data SAs, where the identifiers used depend
  on the security protocol in question, see Section 4.4.  Thus, when
  the security protocol requests a Data SA, given such a Data SA
  identifier, an up-to-date Data SA will be obtained.  In particular,





Arkko, et al.               Standards Track                    [Page 15]

RFC 3830                         MIKEY                       August 2004


  correct keying material, TEK(s), might need to be derived.  The
  derivation of TEK(s) (and other keying material) is done from a TGK
  and is described in Section 4.1.3.

  Second, for use within MIKEY itself, two key management procedures
  are needed:

  *  in the pre-shared case, deriving encryption and authentication key
     material from a single pre-shared key, and

  *  in the public key case, deriving similar key material from the
     transported envelope key.

  These two key derivation methods are specified in section 4.1.4.

  All the key derivation functionality mentioned above is based on a
  pseudo-random function, defined next.

4.1.  Key Calculation

  In the following, we define a general method (pseudo-random function)
  to derive one or more keys from a "master" key.  This method is used
  to derive:

  *  TEKs from a TGK and the RAND value,

  *  encryption, authentication, or salting key from a pre-shared/
     envelope key and the RAND value.

4.1.1.  Assumptions

  We assume that the following parameters are in place:

  csb_id : Crypto Session Bundle ID (32-bits unsigned integer)
  cs_id  : the Crypto Session ID (8-bits unsigned integer)
  RAND   : (at least) 128-bit (pseudo-)random bit-string sent by the
           Initiator in the initial exchange.

  The key derivation method has the following input parameters:

  inkey     : the input key to the derivation function
  inkey_len : the length in bits of the input key
  label     : a specific label, dependent on the type of the key to be
              derived, the RAND, and the session IDs
  outkey_len: desired length in bits of the output key.






Arkko, et al.               Standards Track                    [Page 16]

RFC 3830                         MIKEY                       August 2004


  The key derivation method has the following output:

  outkey: the output key of desired length.

4.1.2.  Default PRF Description

  Let HMAC be the SHA-1 based message authentication function, see
  [HMAC] [SHA-1].  Similarly to [TLS], we define:

     P (s, label, m) = HMAC (s, A_1 || label) ||
                       HMAC (s, A_2 || label) || ...
                       HMAC (s, A_m || label)
  where

     A_0 = label,
     A_i = HMAC (s, A_(i-1))
     s is a key (defined below)
     m is a positive integer (also defined below).

  Values of label depend on the case in which the PRF is invoked, and
  values are specified in the following for the default PRF.  Thus,
  note that other PRFs later added to MIKEY MAY specify different input
  parameters.

  The following procedure describes a pseudo-random function, denoted
  PRF(inkey,label), based on the above P-function, applied to compute
  the output key, outkey:

  *  let n = inkey_len / 256, rounded up to the nearest integer if not
     already an integer

  *   split the inkey into n blocks, inkey = s_1 || ... || s_n, where *
     all s_i, except possibly s_n, are 256 bits each

  *  let m = outkey_len / 160, rounded up to the nearest integer if not
     already an integer

  (The values "256" and "160" equals half the input block-size and full
  output hash size, respectively, of the SHA-1 hash as part of the P-
  function.)

  Then, the output key, outkey, is obtained as the outkey_len most
  significant bits of

  PRF(inkey, label) = P(s_1, label, m) XOR P(s_2, label, m) XOR ...
                      XOR P(s_n, label, m).





Arkko, et al.               Standards Track                    [Page 17]

RFC 3830                         MIKEY                       August 2004


4.1.3.  Generating keys from TGK

  In the following, we describe how keying material is derived from a
  TGK, thus assuming that a mapping of the Data SA identifier to the
  correct TGK has already been done according to Section 4.4.

  The key derivation method SHALL be executed using the above PRF with
  the following input parameters:

  inkey       : TGK
  inkey_len   : bit length of TGK
  label       : constant || cs_id || csb_id || RAND
  outkey_len  : bit length of the output key.

  The constant part of label depends on the type of key that is to be
  generated.  The constant 0x2AD01C64 is used to generate a TEK from
  TGK.  If the security protocol itself does not support key derivation
  for authentication and encryption from the TEK, separate
  authentication and encryption keys MAY be created directly for the
  security protocol by replacing 0x2AD01C64 with 0x1B5C7973 and
  0x15798CEF respectively, and outkey_len by the desired key-length(s)
  in each case.

  A salt key can be derived from the TGK as well, by using the constant
  0x39A2C14B.  Note that the Key data sub-payload (Section 6.13) can
  carry a salt.  The security protocol in need of the salt key SHALL
  use the salt key carried in the Key data sub-payload (in the pre-
  shared and public-key case), when present.  If that is not sent, then
  it is possible to derive the salt key via the key derivation
  function, as described above.

  The table below summarizes the constant values, used to generate keys
  from a TGK.

  constant    | derived key from the TGK
  --------------------------------------
  0x2AD01C64  | TEK
  0x1B5C7973  | authentication key
  0x15798CEF  | encryption key
  0x39A2C14B  | salting key

  Table 4.1.3: Constant values for the derivation of keys from TGK.

  Note that these 32-bit constant values (listed in the table above)
  are taken from the decimal digits of e (i.e., 2.7182...), where each
  constant consists of nine decimal digits (e.g., the first nine
  decimal digits 718281828 = 0x2AD01C64).  The strings of nine




Arkko, et al.               Standards Track                    [Page 18]

RFC 3830                         MIKEY                       August 2004


  decimal digits are not chosen at random, but as consecutive "chunks"
  from the decimal digits of e.

4.1.4.  Generating keys for MIKEY messages from an envelope/pre-shared
       key

  This derivation is to form the symmetric encryption key (and salting
  key) for the encryption of the TGK in the pre-shared key and public
  key methods.  This is also used to derive the symmetric key used for
  the message authentication code in these messages, and the
  corresponding verification messages.  Hence, this derivation is
  needed in order to get different keys for the encryption and the MAC
  (and in the case of the pre-shared key, it will result in fresh key
  material for each new CSB).  The parameters for the default PRF are
  here:

  inkey      : the envelope key or the pre-shared key
  inkey_len  : the bit length of inkey
  label      : constant || 0xFF || csb_id || RAND
  outkey_len : desired bit length of the output key.

  The constant part of label depends on the type of key that is to be
  generated from an envelope/pre-shared key, as summarized below.

  constant    | derived key
  --------------------------------------
  0x150533E1  | encryption key
  0x2D22AC75  | authentication key
  0x29B88916  | salt key

  Table 4.1.4: Constant values for the derivation of keys from an
  envelope/pre-shared key.

4.2.  Pre-defined Transforms and Timestamp Formats

  This section identifies default transforms for MIKEY.  It is
  mandatory to implement and support the following transforms in the
  respective case.  New transforms can be added in the future (see
  Section 4.2.9 for further guidelines).

4.2.1.  Hash functions

  In MIKEY, it is MANDATORY to implement SHA-1 as the default hash
  function.







Arkko, et al.               Standards Track                    [Page 19]

RFC 3830                         MIKEY                       August 2004


4.2.2.  Pseudo-random number generator and PRF

  A cryptographically secure random or pseudo-random number generator
  MUST be used for the generation of the keying material and nonces,
  e.g., [BMGL].  However, which one to use is implementation specific
  (as the choice will not affect the interoperability).

  For the key derivations, it is MANDATORY to implement the PRF
  specified in Section 4.1.  Other PRFs MAY be added by writing
  standard-track RFCs specifying the PRF constructions and their exact
  use within MIKEY.

4.2.3.  Key data transport encryption

  The default and mandatory-to-implement key transport encryption is
  AES in counter mode, as defined in [SRTP], using a 128-bit key as
  derived in Section 4.1.4, SRTP_PREFIX_LENGTH set to zero, and using
  the initialization vector

  IV = (S XOR (0x0000 || CSB ID || T)) || 0x0000,

  where S is a 112-bit salting key, also derived as in Section 4.1.4,
  and where T is the 64-bit timestamp sent by the Initiator.

  Note: this restricts the maximum size that can be encrypted to 2^23
  bits, which is still enough for all practical purposes [SRTP].

  The NULL encryption algorithm (i.e., no encryption) can be used (but
  implementation is OPTIONAL).  Note that this MUST NOT be used unless
  the underlying protocols can guarantee security.  The main reason for
  including this is for specific SIP scenarios, where SDP is protected
  end-to-end.  For this scenario, MIKEY MAY be used with the pre-shared
  key method, the NULL encryption, and NULL authentication algorithm
  (see Section 4.2.4) while relying on the security of SIP.  Use this
  option with caution!

  The AES key wrap function [AESKW] is included as an OPTIONAL
  implementation method.  If the key wrap function is used in the
  public key method, the NULL MAC is RECOMMENDED to be used, as the key
  wrap itself will provide integrity of the encrypted content (note
  though that the NULL MAC SHOULD NOT be used in the pre-shared key
  case, as the MAC in that case covers the entire message).  The 128-
  bit key and a 64-bit salt, S, are derived in accordance to Section
  4.1.4 and the key wrap IV is then set to S.







Arkko, et al.               Standards Track                    [Page 20]

RFC 3830                         MIKEY                       August 2004


4.2.4.  MAC and Verification Message function

  MIKEY uses a 160-bit authentication tag, generated by HMAC with SHA-1
  as the MANDATORY implementation method, see [HMAC].  Authentication
  keys are derived according to Section 4.1.4.  Note that the
  authentication key size SHOULD be equal to the size of the hash
  function's output (e.g., for HMAC-SHA-1, a 160-bit authentication key
  is used) [HMAC].

  The NULL authentication algorithm (i.e., no MAC) can be used together
  with the NULL encryption algorithm (but implementation is OPTIONAL).
  Note that this MUST NOT be used unless the underlying protocols can
  guarantee security.  The main reason for including this is for
  specific SIP scenarios, where SDP is protected end-to-end.  For this
  scenario, MIKEY MAY be used with the pre-shared key method and the
  NULL encryption and authentication algorithm, while relying on the
  security of SIP.  Use this option with caution!

4.2.5.  Envelope Key encryption

  The public key encryption algorithm applied is defined by, and
  dependent on the certificate used. It is MANDATORY to support RSA
  PKCS#1, v1.5, and it is RECOMMENDED to also support RSA OAEP [PSS].

4.2.6.  Digital Signatures

  The signature algorithm applied is defined by, and dependent on the
  certificate used. It is MANDATORY to support RSA PKCS#1, v1.5, and it
  is RECOMMENDED to also support RSA PSS [PSS].

4.2.7.  Diffie-Hellman Groups

  The Diffie-Hellman key exchange, when supported, uses OAKLEY 5
  [OAKLEY] as a mandatory implementation.  Both OAKLEY 1 and OAKLEY 2
  MAY be used (but these are OPTIONAL implementations).

  See Section 4.2.9 for the guidelines on specifying a new DH Group to
  be used within MIKEY.

4.2.8.  Timestamps

  The timestamp is as defined in NTP [NTP], i.e., a 64-bit number in
  seconds relative to 0h on 1 January 1900.  An implementation MUST be
  aware of (and take into account) the fact that the counter will
  overflow approximately every 136th year.  It is RECOMMENDED that the
  time always be specified in UTC.





Arkko, et al.               Standards Track                    [Page 21]

RFC 3830                         MIKEY                       August 2004


4.2.9.  Adding new parameters to MIKEY

  There are two different parameter sets that can be added to MIKEY.
  The first is a set of MIKEY transforms (needed for the exchange
  itself), and the second is the Data SAs.

  New transforms and parameters (including new policies) SHALL be added
  by registering with IANA (according to [RFC2434], see also Section
  10) a new number for the concerned payload, and also if necessary,
  documenting how the new transform/parameter is used.  Sometimes it
  might be enough to point to an already specified document for the
  usage, e.g., when adding a new, already standardized, hash function.

  In the case of adding a new DH group, the group MUST be specified in
  a companion standards-track RFC (it is RECOMMENDED that the specified
  group use the same format as used in [OAKLEY]).  A number can then be
  assigned by IANA for such a group to be used in MIKEY.

  When adding support for a new data security protocol, the following
  MUST be specified:

  *  A map sub-payload (see Section 6.1).  This is used to be able to
     map a crypto session to the right instance of the data security
     protocol and possibly also to provide individual parameters for
     each data security protocol.

  *  A policy payload, i.e., specification of parameters and supported
     values.

  *  General guidelines of usage.

4.3.  Certificates, Policies and Authorization

4.3.1.  Certificate handling

  Certificate handling may involve a number of additional tasks not
  shown here, and effect the inclusion of certain parts of the message
  (c.f. [X.509]).  However, the following observations can be made:

  *  The Initiator typically has to find the certificate of the
     Responder in order to send the first message.  If the Initiator
     does not already have the Responder's certificate, this may
     involve one or more roundtrips to a central directory agent.

  *  It will be possible for the Initiator to omit its own certificate
     and rely on the Responder getting this certificate using other
     means.  However, we only recommend doing this when it is
     reasonable to expect that the Responder has cached the certificate



Arkko, et al.               Standards Track                    [Page 22]

RFC 3830                         MIKEY                       August 2004


     from a previous connection.  Otherwise accessing the certificate
     would mean additional roundtrips for the Responder as well.

  *  Verification of the certificates using Certificate Revocation
     Lists (CRLs) [X.509] or protocols such as OCSP [OCSP] may be
     necessary.  All parties in a MIKEY exchange should have a local
     policy which dictates whether such checks are made, how they are
     made, and how often they are made.  Note that performing the
     checks may imply additional messaging.

4.3.2.  Authorization

  In general, there are two different models for making authorization
  decisions for both the Initiator and the Responder, in the context of
  the applications targeted by MIKEY:

  *  Specific peer-to-peer configuration.  The user has configured the
     application to trust a specific peer.

     When pre-shared secrets are used, this is pretty much the only
     available scheme.  Typically, the configuration/entering of the
     pre-shared secret is taken to mean that authorization is implied.

     In some cases, one could also use this with public keys, e.g., if
     two peers exchange keys offline and configure them to be used for
     the purpose of running MIKEY.

  *  Trusted root.  The user accepts all peers that prove to have a
     certificate issued by a specific CA.  The granularity of
     authorization decisions is not very precise in this method.

     In order to make this method possible, all participants in the
     MIKEY protocol need to configure one or more trusted roots.  The
     participants also need to be capable of performing certificate
     chain validation, and possibly transfer more than a single
     certificate in the MIKEY messages (see also Section 6.7).

  In practice, a combination of both mentioned methods might be
  advantageous.  Also, the possibility for a user to explicitly exclude
  a specific peer (or sub-tree) in a trust chain might be needed.

  These authorization policies address the MIKEY scenarios a-c of
  Section 2.1, where the Initiator acts as the group owner and is also
  the only one that can invite others.  This implies that for each
  Responder, the distributed keys MUST NOT be re-distributed to other
  parties.





Arkko, et al.               Standards Track                    [Page 23]

RFC 3830                         MIKEY                       August 2004


  In a many-to-many situation, where the group control functions are
  distributed (and/or where it is possible to delegate the group
  control function to others), a means of distributing authorization
  information about who may be added to the group MUST exist.  However,
  it is out of scope of this document to specify how this should be
  done.

  For any broader communication situation, an external authorization
  infrastructure may be used (following the assumptions of [GKMARCH]).

4.3.3.  Data Policies

  Included in the message exchange, policies (i.e., security
  parameters) for the Data security protocol are transmitted.  The
  policies are defined in a separate payload and are specific to the
  security protocol (see also Section 6.10).  Together with the keys,
  the validity period of these can also be specified.  For example,
  this can be done with an SPI (or SRTP MKI) or with an Interval (e.g.,
  a sequence number interval for SRTP), depending on the security
  protocol.

  New parameters can be added to a policy by documenting how they
  should be interpreted by MIKEY and by also registering new values in
  the appropriate name space in IANA.  If a completely new policy is
  needed, see Section 4.2.9 for guidelines.

4.4.  Retrieving the Data SA

  The retrieval of a Data SA will depend on the security protocol, as
  different security protocols will have different characteristics.
  When adding support for a security protocol to MIKEY, some interface
  of how the security protocol retrieves the Data SA from MIKEY MUST be
  specified (together with policies that can be negotiated).

  For SRTP, the SSRC (see [SRTP]) is one of the parameters used to
  retrieve the Data SA (while the MKI may be used to indicate the
  TGK/TEK used for the Data SA).  However, the SSRC is not sufficient.
  For the retrieval of the Data SA from MIKEY, it is RECOMMENDED that
  the MIKEY implementation support a lookup using destination network
  address and port together with SSRC.  Note that MIKEY does not send
  network addresses or ports.  One reason for this is that they may not
  be known in advance.  Also, if a NAT exists in-between, problems may
  arise.  When SIP or RTSP is used, the local view of the destination
  address and port can be obtained from either SIP or RTSP.  MIKEY can
  then use these addresses as the index for the Data SA lookup.






Arkko, et al.               Standards Track                    [Page 24]

RFC 3830                         MIKEY                       August 2004


4.5.  TGK re-keying and CSB updating

  MIKEY provides a means of updating the CSB (e.g., transporting a new
  TGK/TEK or adding a new Crypto Session to the CSB).  The updating of
  the CSB is done by executing MIKEY again, for example, before a TEK
  expires, or when a new Crypto Session is added to the CSB.  Note that
  MIKEY does not provide re-keying in the GKMARCH sense, only updating
  of the keys by normal unicast messages.

  When MIKEY is executed again to update the CSB, it is not necessary
  to include certificates and other information that was provided in
  the first exchange, for example, all payloads that are static or
  optionally included may be left out (see Figure 4.1).

  The new message exchange MUST use the same CSB ID as the initial
  exchange, but MUST use a new timestamp.  A new RAND MUST NOT be
  included in the message exchange (the RAND will only have effect in
  the Initial exchange).  If desired, new Crypto Sessions are added in
  the update message.  Note that a MIKEY update message does not need
  to contain new keying material (e.g., new TGK).  In this case, the
  crypto session continues to use the previously established keying
  material, while updating the new information.

  As explained in Section 3.2, the envelope key can be "cached" as a
  pre-shared key (this is indicated by the Initiator in the first
  message sent).  If so, the update message is a pre-shared key message
  with the cached envelope key as the pre-shared key; it MUST NOT be a
  public key message.  If the public key message is used, but the
  envelope key is not cached, the Initiator MUST provide a new
  encrypted envelope key that can be used in the verification message.
  However, the Initiator does not need to provide any other keys.

  Figure 4.1 visualizes the update messages that can be sent, including
  the optional parts.  The main difference from the original message is
  that it is optional to include TGKs (or DH values in the DH method).
  Also see Section 3 for more details on the specific methods.

  By definition, a CSB can contain several CSs.  A problem that then
  might occur is to synchronize the TGK re-keying if an SPI (or similar
  functionality, e.g., MKI in [SRTP]) is not used.  It is therefore
  RECOMMENDED that an SPI or MKI be used, if more than one CS is
  present.









Arkko, et al.               Standards Track                    [Page 25]

RFC 3830                         MIKEY                       August 2004


    Initiator                                       Responder

    Pre-shared key method:

    I_MESSAGE =
    HDR, T, [IDi], [IDr], {SP}, KEMAC   --->
                                                   R_MESSAGE =
                                       [<---]     HDR, T, [IDr], V

    Public key method:

    I_MESSAGE =
    HDR, T, [IDi|CERTi], [IDr], {SP},
         [KEMAC], [CHASH], PKE, SIGNi   --->
                                                R_MESSAGE =
                                       [<---]   HDR, T, [IDr], V

    DH method:

    I_MESSAGE =
    HDR, T, [IDi|CERTi], [IDr], {SP},
         [DHi], SIGNi                   --->
                                              R_MESSAGE =
                                        <---  HDR, T, [IDr|CERTr], IDi,
                                                  [DHr, DHi], SIGNr

  Figure 4.1: Update messages.

  Note that for the DH method, if the Initiator includes the DHi
  payload, then the Responder MUST include DHr and DHi.  If the
  Initiator does not include DHi, the Responder MUST NOT include DHr or
  DHi.

5.  Behavior and message handling

  Each message that is sent by the Initiator or the Responder is built
  by a set of payloads.  This section describes how messages are
  created and also when they can be used.

5.1.  General

5.1.1.  Capability Discovery

  The Initiator indicates the security policy to be used (i.e., in
  terms of security protocol algorithms).  If the Responder does not
  support it (for some reason), the Responder can together with an
  error message (indicating that it does not support the parameters),
  send back its own capabilities (negotiation) to let the Initiator



Arkko, et al.               Standards Track                    [Page 26]

RFC 3830                         MIKEY                       August 2004


  choose a common set of parameters.  This is done by including one or
  more security policy payloads in the error message sent in response
  (see Section 5.1.2.).  Multiple attributes can be provided in
  sequence in the response.  This is done to reduce the number of
  roundtrips as much as possible (i.e., in most cases, where the policy
  is accepted the first time, one roundtrip is enough).  If the
  Responder does not accept the offer, the Initiator must go out with a
  new MIKEY message.

  If the Responder is not willing/capable of providing security or the
  parties simply cannot agree, it is up to the parties' policies how to
  behave, for example, accepting or rejecting an insecure
  communication.

  Note that it is not the intention of this protocol to have a broad
  variety of options, as it is assumed that a denied offer should
  rarely occur.

  In the one-to-many and many-to-many scenarios using multicast
  communication, one issue is of course that there MUST be a common
  security policy for all the receivers.  This limits the possibility
  of negotiation.

5.1.2.  Error Handling

  Due to the key management protocol, all errors SHOULD be reported to
  the peer(s) by an error message.  The Initiator SHOULD therefore
  always be prepared to receive such a message from the Responder.

  If the Responder does not support the set of parameters suggested by
  the Initiator, the error message SHOULD include the supported
  parameters (see also Section 5.1.1).

  The error message is formed as:

  HDR, T, {ERR}, {SP}, [V|SIGNr]

  Note that if failure is due to the inability to authenticate the
  peer, the error message is OPTIONAL, and does not need to be
  authenticated.  It is up to local policy to determine how to treat
  this kind of message.  However, if in response to a failed
  authentication a signed error message is returned, this can be used
  for DoS purposes (against the Responder).  Similarly, an
  unauthenticated error message could be sent to the Initiator in order
  to fool the Initiator into tearing down the CSB.  It is highly
  RECOMMENDED that the local policy take this into consideration.
  Therefore, in case of authentication failure, one recommendation
  would be not to authenticate such an error message, and when



Arkko, et al.               Standards Track                    [Page 27]

RFC 3830                         MIKEY                       August 2004


  receiving an unauthenticated error message view it only as a
  recommendation of what may have gone wrong.

5.2.  Creating a message

  To create a MIKEY message, a Common Header payload is first created.
  This payload is then followed, depending on the message type, by a
  set of information payloads (e.g., DH-value payload, Signature
  payload, Security Policy payload).  The defined payloads and the
  exact encoding of each payload are described in Section 6.

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  version      !  data type    ! next payload  !               !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...            +
  ~                   Common Header...                            ~
  !                                                               !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! next payload  !   Payload 1 ...                               !
  +-+-+-+-+-+-+-+-+                                               +
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                             :                                 :
  :                             :                                 :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! next payload  !   Payload x ...                               !
  +-+-+-+-+-+-+-+-+                                               +
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                   MAC/Signature                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 5.1. MIKEY payload message example.  Note that the payloads
  are byte aligned and not 32-bit aligned.

  The process of generating a MIKEY message consists of the following
  steps:

  *  Create an initial MIKEY message starting with the Common Header
     payload.

  *  Concatenate necessary payloads of the MIKEY message (see the
     exchange definitions for payloads that may be included, and the
     recommended order).

  *  As a last step (for messages that must be authenticated, this also
     includes the verification message), create and concatenate the
     MAC/signature payload without the MAC/signature field filled in



Arkko, et al.               Standards Track                    [Page 28]

RFC 3830                         MIKEY                       August 2004


     (if a Next payload field is included in this payload, it is set to
     Last payload).

  *  Calculate the MAC/signature over the entire MIKEY message, except
     the MAC/Signature field, and add the MAC/signature in the field.
     In the case of the verification message, the Identity_i ||
     Identity_r || Timestamp MUST directly follow the MIKEY message in
     the Verification MAC calculation.  Note that the added identities
     and timestamp are identical to those transported in the ID and T
     payloads.

  In the public key case, the Key data transport payload is generated
  by concatenating the IDi with the TGKs.  This is then encrypted and
  placed in the data field.  The MAC is calculated over the entire Key
  data transport payload except the MAC field.  Before calculating the
  MAC, the Next payload field is set to zero.

  Note that all messages from the Initiator MUST use a unique
  timestamp.  The Responder does not create a new timestamp, but uses
  the timestamp used by the Initiator.

5.3.  Parsing a message

  In general, parsing of a MIKEY message is done by extracting payload
  by payload and checking that no errors occur.  The exact procedure is
  implementation specific; however, for the Responder, it is
  RECOMMENDED that the following procedure be followed:

  *  Extract the Timestamp and check that it is within the allowable
     clock skew (if not, discard the message).  Also check the replay
     cache (Section 5.4) so that the message is not replayed (see
     Section 5.4).  If the message is replayed, discard it.

  *  Extract the ID and authentication algorithm (if not included,
     assume the default).

  *  Verify the MAC/signature.

  *  If the authentication is not successful, an Auth failure Error
     message MAY be sent to the Initiator.  The message is then
     discarded from further processing.  See also Section 5.1.2 for
     treatment of errors.

  *  If the authentication is successful, the message is processed and
     also added to the replay cache; processing is implementation
     specific.  Note also that only successfully authenticated messages
     are stored in the replay cache.




Arkko, et al.               Standards Track                    [Page 29]

RFC 3830                         MIKEY                       August 2004


  *  If any unsupported parameters or errors occur during the
     processing, these MAY be reported to the Initiator by sending an
     error message.  The processing is then aborted.  The error message
     can also include payloads to describe the supported parameters.

  *  If the processing was successful and in case the Initiator
     requested it, a verification/response message MAY be created and
     sent to the Initiator.

5.4.  Replay handling and timestamp usage

  MIKEY does not use a challenge-response mechanism for replay
  handling; instead, timestamps are used.  This requires that the
  clocks are synchronized.  The required synchronization is dependent
  on the number of messages that can be cached (note though, that the
  replay cache only contains messages that have been successfully
  authenticated).  If we could assume an unlimited cache, the terminals
  would not need to be synchronized at all (as the cache could then
  contain all previous messages).  However, if there are restrictions
  on the size of the replay cache, the clocks will need to be
  synchronized to some extent.  In short, one can in general say that
  it is a tradeoff between the size of the replay cache and the
  required synchronization.

  Timestamp usage prevents replay attacks under the following
  assumptions:

  *  Each host has a clock which is at least "loosely synchronized"
     with the clocks of the other hosts.

  *  If the clocks are to be synchronized over the network, a secure
     network clock synchronization protocol SHOULD be used, e.g.,
     [ISO3].

  *  Each Responder utilizes a replay cache in order to remember the
     successfully authenticated messages presented within an allowable
     clock skew (which is set by the local policy).

  *  Replayed and outdated messages, for example, messages that can be
     found in the replay cache or which have an outdated timestamp are
     discarded and not processed.

  *  If the host loses track of the incoming requests (e.g., due to
     overload), it rejects all incoming requests until the clock skew
     interval has passed.






Arkko, et al.               Standards Track                    [Page 30]

RFC 3830                         MIKEY                       August 2004


  In a client-server scenario, servers may encounter a high workload,
  especially if a replay cache is necessary.  However, servers that
  assume the role of MIKEY Initiators will not need to manage any
  significant replay cache as they will refuse all incoming messages
  that are not a response to a message previously sent by the server.

  In general, a client may not expect a very high load of incoming
  messages and may therefore allow the degree of looseness to be on the
  order of several minutes to hours.  If a (D)DoS attack is launched
  and the replay cache grows too large, MIKEY MAY dynamically decrease
  the looseness so that the replay cache becomes manageable.  However,
  note that such (D)DoS attacks can only be performed by peers that can
  authenticate themselves.  Hence, such an attack is very easy to trace
  and mitigate.

  The maximum number of messages that a client will need to cache may
  vary depending on the capacity of the client itself and the network.
  The number of expected messages should be taken into account.

  For example, assume that we can at most spend 6kB on a replay cache.
  Assume further that we need to store 30 bytes for each incoming
  authenticated message (the hash of the message is 20 bytes).  This
  implies that it is possible to cache approximately 204 messages.  If
  the expected number of messages per minute can be estimated, the
  clock skew can easily be calculated.  For example, in a SIP scenario
  where the client is expected, in the most extreme case, to receive 10
  calls per minute, the clock skew needed is then approximately 20
  minutes.  In a not so extreme setting, where one could expect an
  incoming call every 5th minute, this would result in a clock skew on
  the order of 16.5 hours (approx 1000 minutes).

  Consider a very extreme case, where the maximum number of incoming
  messages are assumed to be on the order of 120 messages per minute,
  and a requirement that the clock skew is on the order of 10 minutes,
  a 48kB replay cache would be required.

  Hence, one can note that the required clock skew will depend largely
  on the setting in which MIKEY is used.  One recommendation is to fix
  a size for the replay cache, allowing the clock skew to be large (the
  initial clock skew can be set depending on the application in which
  it is used).  As the replay cache grows, the clock skew is decreased
  depending on the percentage of the used replay cache.  Note that this
  is locally handled, which will not require interaction with the peer
  (even though it may indirectly effect the peer).  However, exactly
  how to implement such functionality is out of the scope of this
  document and considered implementation specific.





Arkko, et al.               Standards Track                    [Page 31]

RFC 3830                         MIKEY                       August 2004


  In case of a DoS attack, the client will most likely be able to
  handle the replay cache.  A more likely (and serious) DoS attack is a
  CPU DoS attack where the attacker sends messages to the peer, which
  then needs to expend resources on verifying the MACs/signatures of
  the incoming messages.

6.  Payload Encoding

  This section describes, in detail, all the payloads.  For all
  encoding, network byte order is always used.  While defining
  supported types (e.g., which hash functions are supported) the
  mandatory-to-implement types are indicated (as Mandatory), as well as
  the default types (note, default also implies mandatory
  implementation).  Support for the other types are implicitly assumed
  to be optional.

  In the following, note that the support for SRTP [SRTP] as a security
  protocol is defined.  This will help us better understand the purpose
  of the different payloads and fields.  Other security protocols MAY
  be specified for use within MIKEY, see Section 10.

  In the following, the sign ~ indicates variable length field.

6.1.  Common Header payload (HDR)

  The Common Header payload MUST always be present as the first payload
  in each message.  The Common Header includes a general description of
  the exchange message.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  version      !  data type    ! next payload  !V! PRF func    !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                         CSB ID                                !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! #CS           ! CS ID map type! CS ID map info                ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  version (8 bits): the version number of MIKEY.

     version = 0x01 refers to MIKEY as defined in this document.

  *  data type (8 bits): describes the type of message (e.g., public-
     key transport message, verification message, error message).






Arkko, et al.               Standards Track                    [Page 32]

RFC 3830                         MIKEY                       August 2004


     Data type     | Value | Comment
     --------------------------------------
     Pre-shared    |     0 | Initiator's pre-shared key message
     PSK ver msg   |     1 | Verification message of a Pre-shared
                   |       | key message
     Public key    |     2 | Initiator's public-key transport message
     PK ver msg    |     3 | Verification message of a public-key
                   |       | message
     D-H init      |     4 | Initiator's DH exchange message
     D-H resp      |     5 | Responder's DH exchange message
     Error         |     6 | Error message

     Table 6.1.a

  *  next payload (8 bits): identifies the payload that is added after
     this payload.

     Next payload  | Value | Section
     ------------------------------
     Last payload  |     0 | -
     KEMAC         |     1 | 6.2
     PKE           |     2 | 6.3
     DH            |     3 | 6.4
     SIGN          |     4 | 6.5
     T             |     5 | 6.6
     ID            |     6 | 6.7
     CERT          |     7 | 6.7
     CHASH         |     8 | 6.8
     V             |     9 | 6.9
     SP            |    10 | 6.10
     RAND          |    11 | 6.11
     ERR           |    12 | 6.12
     Key data      |    20 | 6.13
     General Ext.  |    21 | 6.15

     Table 6.1.b

     Note that some of the payloads cannot directly follow the header
     (such as "Last payload", "Signature").  However, the Next payload
     field is generic for all payloads.  Therefore, a value is
     allocated for each payload.  The Next payload field is set to zero
     (Last payload) if the current payload is the last payload.

  *  V (1 bit): flag to indicate whether a verification message is
     expected or not (this only has meaning when it is set by the
     Initiator).  The V flag SHALL be ignored by the receiver in the DH
     method (as the response is MANDATORY).




Arkko, et al.               Standards Track                    [Page 33]

RFC 3830                         MIKEY                       August 2004


     V = 0  ==> no response expected
     V = 1  ==> response expected

  *  PRF func (7 bits): indicates the PRF function that has been/will
     be used for key derivation.

     PRF func      | Value | Comments
     --------------------------------------------------------
     MIKEY-1       |     0 | Mandatory (see Section 4.1.2)

     Table 6.1.c

  *  CSB ID (32 bits): identifies the CSB.  It is RECOMMENDED that the
     CSB ID be chosen at random by the Initiator.  This ID MUST be
     unique between each Initiator-Responder pair, i.e., not globally
     unique.  An Initiator MUST check for collisions when choosing the
     ID (if the Initiator already has one or more established CSBs with
     the Responder).  The Responder uses the same CSB ID in the
     response.

  *  #CS (8 bits): indicates the number of Crypto Sessions that will be
     handled within the CBS.  Note that even though it is possible to
     use 255 CSs, it is not likely that a CSB will include this many
     CSs.  The integer 0 is interpreted as no CS included.  This may be
     the case in an initial setup message.

  *  CS ID map type (8 bits): specifies the method of uniquely mapping
     Crypto Sessions to the security protocol sessions.

     CS ID map type | Value
     -----------------------
     SRTP-ID        |     0

     Table 6.1.d

  *  CS ID map info (16 bits): identifies the crypto session(s) for
     which the SA should be created.  The currently defined map type is
     the SRTP-ID (defined in Section 6.1.1).













Arkko, et al.               Standards Track                    [Page 34]

RFC 3830                         MIKEY                       August 2004


6.1.1.  SRTP ID

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Policy_no_1   ! SSRC_1                                        !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! SSRC_1 (cont) ! ROC_1                                         !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! ROC_1 (cont)  ! Policy_no_2   ! SSRC_2                        !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! SSRC_2 (cont)                 ! ROC_2                         !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! ROC_2 (cont)                  !                               :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ...
  :                               :                               :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Policy_no_#CS !           SSRC_#CS                            !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !SSRC_#CS (cont)!           ROC_#CS                             !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! ROC_#CS (cont)!
  +-+-+-+-+-+-+-+-+

  *  Policy_no_i (8 bits): The security policy applied for the stream
     with SSRC_i.  The same security policy may apply for all CSs.

  *  SSRC_i (32 bits): specifies the SSRC that MUST be used for the
     i-th SRTP stream.  Note that it is the sender of the streams that
     chooses the SSRC.  Therefore, it is possible that the Initiator of
     MIKEY cannot fill in all fields.  In this case, SSRCs that are not
     chosen by the Initiator are set to zero and the Responder fills in
     these fields in the response message.  Note that SRTP specifies
     requirements on the uniqueness of the SSRCs (to avoid two-time pad
     problems if the same TEK is used for more than one stream) [SRTP].

  *  ROC_i (32 bits): Current rollover counter used in SRTP.  If the
     SRTP session has not started, this field is set to 0.  This field
     is used to enable a member to join and synchronize with an already
     started stream.

  NOTE: The stream using SSRC_i will also have Crypto Session ID equal
  to no i (NOT to the SSRC).








Arkko, et al.               Standards Track                    [Page 35]

RFC 3830                         MIKEY                       August 2004


6.2.  Key data transport payload (KEMAC)

  The Key data transport payload contains encrypted Key data sub-
  payloads (see Section 6.13 for the definition of the Key data sub-
  payload).  It may contain one or more Key data payloads, each
  including, for example, a TGK.  The last Key data payload has its
  Next payload field set to Last payload.  For an update message (see
  also Section 4.5), it is allowed to skip the Key data sub-payloads
  (which will result in the Encr data len being equal to 0).

  Note that the MAC coverage depends on the method used, i.e., pre-
  shared vs public key, see below.

  If the transport method used is the pre-shared key method, this Key
  data transport payload is the last payload in the message (note that
  the Next payload field is set to Last payload).  The MAC is then
  calculated over the entire MIKEY message following the directives in
  Section 5.2.

  If the transport method used is the public-key method, the
  Initiator's identity is added in the encrypted data.  This is done by
  adding the ID payload as the first payload, which is then followed by
  the Key data sub-payloads.  Note that for an update message, the ID
  is still sent encrypted to the Responder (this is to avoid certain
  re-direction attacks) even though no Key data sub-payload is added
  after.

  In the public-key case, the coverage of the MAC field is over the Key
  data transport payload only, instead of the complete MIKEY message,
  as in the pre-shared case.  The MAC is therefore calculated over the
  Key data transport payload, except for the MAC field and where the
  Next payload field has been set to zero (see also Section 5.2).

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next payload  ! Encr alg      ! Encr data len                 !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                        Encr data                              ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Mac alg       !        MAC                                    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for defined values.

  *  Encr alg (8 bits): the encryption algorithm used to encrypt the
     Encr data field.



Arkko, et al.               Standards Track                    [Page 36]

RFC 3830                         MIKEY                       August 2004


     Encr alg      | Value | Comment
     -------------------------------------------
     NULL          |     0 | Very restricted usage, see Section 4.2.3!
     AES-CM-128    |     1 | Mandatory; AES-CM using a 128-bit key, see
                              Section 4.2.3)
     AES-KW-128    |     2 | AES Key Wrap using a 128-bit key, see
                              Section 4.2.3

     Table 6.2.a

  *  Encr data len (16 bits): length of Encr data (in bytes).

  *  Encr data (variable length): the encrypted key sub-payloads (see
     Section 6.13).

  *  MAC alg (8 bits): specifies the authentication algorithm used.

     MAC alg        | Value | Comments          | Length (bits)
     ----------------------------------------------------------
     NULL           |     0 | restricted usage  | 0
                    |       | Section 4.2.4     |
     HMAC-SHA-1-160 |     1 | Mandatory,        | 160
                    |       | Section 4.2.4     |

     Table 6.2.b

  *  MAC (variable length): the message authentication code of the
     entire message.

6.3.  Envelope data payload (PKE)

  The Envelope data payload contains the encrypted envelope key that is
  used in the public-key transport to protect the data in the Key data
  transport payload.  The encryption algorithm used is implicit from
  the certificate/public key used.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  ! C ! Data len                  ! Data          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  C (2 bits): envelope key cache indicator (Section 3.2).





Arkko, et al.               Standards Track                    [Page 37]

RFC 3830                         MIKEY                       August 2004


     Cache type    | Value | Comments
     --------------------------------------
     No cache      |     0 | The envelope key MUST NOT be cached
     Cache         |     1 | The envelope key MUST be cached
     Cache for CSB |     2 | The envelope key MUST be cached, but only
                   |       | to be used for the specific CSB.
     Table 6.3

  *  Data len (14 bits): the length of the data field (in bytes).

  *  Data (variable length): the encrypted envelope key.

6.4.  DH data payload (DH)

  The DH data payload carries the DH-value and indicates the DH-group
  used.  Notice that in this sub-section, "MANDATORY" is conditioned
  upon DH being supported.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  Next Payload ! DH-Group      !  DH-value                     ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Reserv! KV    ! KV data (optional)                            ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  DH-Group (8 bits): identifies the DH group used.

     DH-Group      | Value | Comment       | DH Value length (bits)
     --------------------------------------|---------------------
     OAKLEY 5      |     0 | Mandatory     |  1536
     OAKLEY 1      |     1 |               |   768
     OAKLEY 2      |     2 |               |  1024

     Table 6.4

  *  DH-value (variable length): the public DH-value (the length is
     implicit from the group used).

  *  KV (4 bits): indicates the type of key validity period specified.
     This may be done by using an SPI (alternatively an MKI in SRTP) or
     by providing an interval in which the key is valid (e.g., in the
     latter case, for SRTP this will be the index range where the key
     is valid).  See Section 6.13 for pre-defined values.




Arkko, et al.               Standards Track                    [Page 38]

RFC 3830                         MIKEY                       August 2004


  *  KV data (variable length): This includes either the SPI/MKI or an
     interval (see Section 6.14).  If KV is NULL, this field is not
     included.

6.5.  Signature payload (SIGN)

  The Signature payload carries the signature and its related data.
  The signature payload is always the last payload in the PK transport
  and DH exchange messages.  The signature algorithm used is implicit
  from the certificate/public key used.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! S type| Signature len         ! Signature                     ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  S type (4 bits): indicates the signature algorithm applied by the
     signer.

     S type        | Value | Comments
     -------------------------------------
     RSA/PKCS#1/1.5|     0 | Mandatory, PKCS #1 version 1.5 signature
                              [PSS]
     RSA/PSS       |     1 | RSASSA-PSS signature [PSS]

     Table 6.5

  *  Signature len (12 bits): the length of the signature field (in
     bytes).

  *  Signature (variable length): the signature (its formatting and
     padding depend on the type of signature).

6.6.  Timestamp payload (T)

  The timestamp payload carries the timestamp information.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  !   TS type     ! TS value                      ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  TS type (8 bits): specifies the timestamp type used.



Arkko, et al.               Standards Track                    [Page 39]

RFC 3830                         MIKEY                       August 2004


     TS type       | Value | Comments     | length of TS value
     -------------------------------------|-------------------
     NTP-UTC       |     0 | Mandatory    |   64-bits
     NTP           |     1 | Mandatory    |   64-bits
     COUNTER       |     2 | Optional     |   32-bits

     Table 6.6

     Note: COUNTER SHALL be padded (with leading zeros) to a 64-bit
     value when used as input for the default PRF.

  *  TS-value (variable length): The timestamp value of the specified
     TS type.

6.7.  ID payload (ID) / Certificate Payload (CERT)

  Note that the ID payload and the Certificate payload are two
  completely different payloads (having different payload identifiers).
  However, as they share the same payload structure, they are described
  in the same section.

  The ID payload carries a uniquely defined identifier.

  The certificate payload contains an indicator of the certificate
  provided as well as the certificate data.  If a certificate chain is
  to be provided, each certificate in the chain should be included in a
  separate CERT payload.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  Next Payload ! ID/Cert Type  ! ID/Cert len                   !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                       ID/Certificate Data                     ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  If the payload is an ID payload, the following values apply for the
  ID type field:

  *  ID Type (8 bits): specifies the identifier type used.








Arkko, et al.               Standards Track                    [Page 40]

RFC 3830                         MIKEY                       August 2004


     ID Type       | Value | Comments
     ----------------------------------------------
     NAI           |     0 | Mandatory (see [NAI])
     URI           |     1 | Mandatory (see [URI])

     Table 6.7.a

  If the payload is a Certificate payload, the following values applies
  for the Cert type field:

  *  Cert Type (8 bits): specifies the certificate type used.

    Cert Type     | Value | Comments
    ----------------------------------------------
    X.509v3       |     0 | Mandatory
    X.509v3 URL   |     1 | plain ASCII URL to the location of the Cert
    X.509v3 Sign  |     2 | Mandatory (used for signatures only)
    X.509v3 Encr  |     3 | Mandatory (used for encryption only)

    Table 6.7.b

  *  ID/Cert len (16 bits): the length of the ID or Certificate field
     (in bytes).

  *  ID/Certificate (variable length): The ID or Certificate data.  The
     X.509 [X.509] certificates are included as a bytes string using
     DER encoding as specified in X.509.

6.8.  Cert hash payload (CHASH)

  The Cert hash payload contains the hash of the certificate used.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  ! Hash func     ! Hash                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  Hash func (8 bits): indicates the hash function that is used (see
     also Section 4.2.1).








Arkko, et al.               Standards Track                    [Page 41]

RFC 3830                         MIKEY                       August 2004


     Hash func     | Value | Comment     | hash length (bits)
     -------------------------------------------------
     SHA-1         |     0 | Mandatory   |  160
     MD5           |     1 |             |  128

     Table 6.8

  *  Hash (variable length): the hash data.  The hash length is
     implicit from the hash function used.

6.9.  Ver msg payload (V)

  The Ver msg payload contains the calculated verification message in
  the pre-shared key and the public-key transport methods.  Note that
  the MAC is calculated over the entire MIKEY message, as well as the
  IDs and Timestamp (see also Section 5.2).

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next Payload  ! Auth alg      ! Ver data                      ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  Auth alg (8 bits): specifies the MAC algorithm used for the
     verification message.  See Section 6.2 for defined values.

  *  Ver data (variable length): the verification message data.  The
     length is implicit from the authentication algorithm used.

6.10.  Security Policy payload (SP)

  The Security Policy payload defines a set of policies that apply to a
  specific security protocol.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next payload  ! Policy no     ! Prot type     ! Policy param  ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~ length (cont) ! Policy param                                  ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.




Arkko, et al.               Standards Track                    [Page 42]

RFC 3830                         MIKEY                       August 2004


  *  Policy no (8 bits): each security policy payload must be given a
     distinct number for the current MIKEY session by the local peer.
     This number is used to map a crypto session to a specific policy
     (see also Section 6.1.1).

  *  Prot type (8 bits): defines the security protocol.

     Prot type     | Value |
     ---------------------------
     SRTP          |     0 |

     Table 6.10

  *  Policy param length (16 bits): defines the total length of the
     policy parameters for the specific security protocol.

  *  Policy param (variable length): defines the policy for the
     specific security protocol.

     The Policy param part is built up by a set of Type/Length/Value
     fields.  For each security protocol, a set of possible
     types/values that can be negotiated is defined.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! Type          ! Length        ! Value                         ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Type (8 bits): specifies the type of the parameter.

  *  Length (8 bits): specifies the length of the Value field (in
     bytes).

  *  Value (variable length): specifies the value of the parameter.
















Arkko, et al.               Standards Track                    [Page 43]

RFC 3830                         MIKEY                       August 2004


6.10.1.  SRTP policy

  This policy specifies the parameters for SRTP and SRTCP.  The
  types/values that can be negotiated are defined by the following
  table:

  Type | Meaning                     | Possible values
  ----------------------------------------------------
     0 | Encryption algorithm        | see below
     1 | Session Encr. key length    | depends on cipher used
     2 | Authentication algorithm    | see below
     3 | Session Auth. key length    | depends on MAC used
     4 | Session Salt key length     | see [SRTP] for recommendations
     5 | SRTP Pseudo Random Function | see below
     6 | Key derivation rate         | see [SRTP] for recommendations
     7 | SRTP encryption off/on      | 0 if off, 1 if on
     8 | SRTCP encryption off/on     | 0 if off, 1 if on
     9 | sender's FEC order          | see below
    10 | SRTP authentication off/on  | 0 if off, 1 if on
    11 | Authentication tag length   | in bytes
    12 | SRTP prefix length          | in bytes

  Table 6.10.1.a

  Note that if a Type/Value is not set, the default is used (according
  to SRTP's own criteria). Note also that, if "Session Encr. key
  length" is set, this should also be seen as the Master key length
  (otherwise, the SRTP default Master key length is used).

  For the Encryption algorithm, a one byte length is enough.  The
  currently defined possible Values are:

    SRTP encr alg | Value
    ---------------------
    NULL          |     0
    AES-CM        |     1
    AES-F8        |     2

    Table 6.10.1.b

  where AES-CM is AES in CM, and AES-F8 is AES in f8 mode [SRTP].










Arkko, et al.               Standards Track                    [Page 44]

RFC 3830                         MIKEY                       August 2004


  For the Authentication algorithm, a one byte length is enough.  The
  currently defined possible Values are:

    SRTP auth alg | Value
    ---------------------
    NULL          |     0
    HMAC-SHA-1    |     1

    Table 6.10.1.c

  For the SRTP pseudo-random function, a one byte length is also
  enough. The currently defined possible Values are:

    SRTP PRF      | Value
    ---------------------
    AES-CM        |     0

    Table 6.10.1.d

  If FEC is used at the same time SRTP is used, MIKEY can negotiate the
  order in which these should be applied at the sender side.

     FEC order     | Value | Comments
     --------------------------------
     FEC-SRTP      |     0 | First FEC, then SRTP

     Table 6.10.1.e

6.11.  RAND payload (RAND)

  The RAND payload consists of a (pseudo-)random bit-string.  The RAND
  MUST be independently generated per CSB (note that if the CSB has
  several members, the Initiator MUST use the same RAND for all the
  members).  For randomness recommendations for security, see [RAND].

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next payload  ! RAND len      ! RAND                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  RAND len (8 bits): length of the RAND (in bytes).  It SHOULD be at
     least 16.

  *  RAND (variable length): a (pseudo-)randomly chosen bit-string.



Arkko, et al.               Standards Track                    [Page 45]

RFC 3830                         MIKEY                       August 2004


6.12.  Error payload (ERR)

  The Error payload is used to specify the error(s) that may have
  occurred.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  Next Payload ! Error no      !           Reserved            !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  Error no (8 bits): indicates the type of error that was
     encountered.

     Error no          | Value | Comment
     -------------------------------------------------------
     Auth failure      |     0 | Authentication failure
     Invalid TS        |     1 | Invalid timestamp
     Invalid PRF       |     2 | PRF function not supported
     Invalid MAC       |     3 | MAC algorithm not supported
     Invalid EA        |     4 | Encryption algorithm not supported
     Invalid HA        |     5 | Hash function not supported
     Invalid DH        |     6 | DH group not supported
     Invalid ID        |     7 | ID not supported
     Invalid Cert      |     8 | Certificate not supported
     Invalid SP        |     9 | SP type not supported
     Invalid SPpar     |    10 | SP parameters not supported
     Invalid DT        |    11 | not supported Data type
     Unspecified error |    12 | an unspecified error occurred

     Table 6.12

6.13.  Key data sub-payload

  The Key data payload contains key material, e.g., TGKs.  The Key data
  payloads are never included in clear, but as an encrypted part of the
  Key data transport payload.

  Note that a Key data transport payload can contain multiple Key data
  sub-payloads.








Arkko, et al.               Standards Track                    [Page 46]

RFC 3830                         MIKEY                       August 2004


                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !  Next Payload ! Type  ! KV    ! Key data len                  !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                         Key data                              ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Salt len (optional)           ! Salt data (optional)          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  !                        KV data (optional)                     ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.  See Section 6.1 for values.

  *  Type (4 bits): indicates the type of key included in the payload.

     Type     | Value
     -----------------
     TGK      |     0
     TGK+SALT |     1
     TEK      |     2
     TEK+SALT |     3

     Table 6.13.a

     Note that the possibility of including a TEK (instead of using the
     TGK) is provided.  When sent directly, the TEK can generally not
     be shared between more than one Crypto Session (unless the
     Security protocol allows for this, e.g., [SRTP]).  The recommended
     use of sending a TEK, instead of a TGK, is when pre-encrypted
     material exists and therefore, the TEK must be known in advance.

  *  KV (4 bits): indicates the type of key validity period specified.
     This may be done by using an SPI (or MKI in the case of [SRTP]) or
     by providing an interval in which the key is valid (e.g., in the
     latter case, for SRTP this will be the index range where the key
     is valid).













Arkko, et al.               Standards Track                    [Page 47]

RFC 3830                         MIKEY                       August 2004


     KV            | Value | Comments
     -------------------------------------------
     Null          |     0 | No specific usage rule (e.g., a TEK
                   |       | that has no specific lifetime)
     SPI           |     1 | The key is associated with the SPI/MKI
     Interval      |     2 | The key has a start and expiration time
                   |       | (e.g., an SRTP TEK)

     Table 6.13.b

     Note that when NULL is specified, any SPI or Interval is valid.
     For an Interval, this means that the key is valid from the first
     observed sequence number until the key is replaced (or the
     security protocol is shutdown).

  *  Key data len (16 bits): the length of the Key data field (in
     bytes).  Note that the sum of the overall length of all the Key
     data payloads contained in a single Key data transport payload
     (KEMAC) MUST be such that the KEMAC payload does not exceed a
     length of 2^16 bytes (total length of KEMAC, see Section 6.2).

  *  Key data (variable length): The TGK or TEK data.

  *  Salt len (16 bits): The salt key length in bytes.  Note that this
     field is only included if the salt is specified in the Type-field.

  *  Salt data (variable length): The salt key data.  Note that this
     field is only included if the salt is specified in the Type-field.
     (For SRTP, this is the so-called master salt.)

  *  KV data (variable length): This includes either the SPI or an
     interval (see Section 6.14).  If KV is NULL, this field is not
     included.

6.14.  Key validity data

  The Key validity data is not a standalone payload, but part of either
  the Key data payload (see Section 6.13) or the DH payload (see
  Section 6.4).  The Key validity data gives a guideline of when the
  key should be used.  There are two KV types defined (see Section
  6.13), SPI/MKI (SPI) or a lifetime range (interval).










Arkko, et al.               Standards Track                    [Page 48]

RFC 3830                         MIKEY                       August 2004


  SPI/MKI
                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! SPI Length    ! SPI                                           ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  SPI Length (8 bits): the length of the SPI (or MKI) in bytes.

  *  SPI (variable length): the SPI (or MKI) value.

  Interval
                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! VF Length     ! Valid From                                    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! VT Length     ! Valid To (expires)                            ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  VF Length (8 bits): length of the Valid From field in bytes.

  *  Valid From (variable length): sequence number, index, timestamp,
     or other start value that the security protocol uses to identify
     the start position of the key usage.

  *  VT Length (8 bits): length of the Valid To field in bytes.

  *  Valid To (variable length): sequence number, index, timestamp, or
     other expiration value that the security protocol can use to
     identify the expiration of the key usage.

     Note that for SRTP usage, the key validity period for a TGK/TEK
     should be specified with either an interval, where the VF/VT
     Length is equal to 6 bytes (i.e., the size of the index), or with
     an MKI.  It is RECOMMENDED that if more than one SRTP stream is
     sharing the same keys and key update/re-keying is desired, this is
     handled using MKI rather than the From-To method.













Arkko, et al.               Standards Track                    [Page 49]

RFC 3830                         MIKEY                       August 2004


6.15.  General Extension Payload

  The General extensions payload is included to allow possible
  extensions to MIKEY without the need for defining a completely new
  payload each time.  This payload can be used in any MIKEY message and
  is part of the authenticated/signed data part.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Next payload  ! Type          ! Length                        !
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ! Data                                                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  *  Next payload (8 bits): identifies the payload that is added after
     this payload.

  *  Type (8 bits): identifies the type of general payload.

     Type      | Value | Comments
     ---------------------------------------
     Vendor ID |     0 | Vendor specific byte string
     SDP IDs   |     1 | List of SDP key mgmt IDs (allocated for use in
                          [KMASDP])

     Table 6.15

  *  Length (16 bits): the length in bytes of the Data field.

  *  Data (variable length): the general payload data.

7.  Transport protocols

  MIKEY MAY be integrated within session establishment protocols.
  Currently, integration of MIKEY within SIP/SDP and RTSP is defined in
  [KMASDP].  MIKEY MAY use other transports, in which case how MIKEY is
  transported over such a transport protocol has to be defined.

8.  Groups

  What has been discussed up to now is not limited to single peer-to-
  peer communication (except for the DH method), but can be used to
  distribute group keys for small-size interactive groups and simple
  one-to-many scenarios.  Section 2.1. describes the scenarios in the
  focus of MIKEY.  This section describes how MIKEY is used in a group
  scenario (though, see also Section 4.3 for issues related to
  authorization).



Arkko, et al.               Standards Track                    [Page 50]

RFC 3830                         MIKEY                       August 2004


8.1.  Simple one-to-many

                           ++++
                           |S |
                           |  |
                           ++++
                             |
                     --------+-------------- - -
                     |       |      |
                     v       v      v
                   ++++    ++++   ++++
                   |A |    |B |   |C |
                   |  |    |  |   |  |
                   ++++    ++++   ++++

  Figure 8.1. Simple one-to-many scenario.

  In the simple one-to-many scenario, a server is streaming to a small
  group of clients.  RTSP or SIP is used for the registration and the
  key management set up.  The streaming server acts as the Initiator of
  MIKEY.  In this scenario, the pre-shared key or public key transport
  mechanism will be appropriate in transporting the same TGK to all the
  clients (which will result in common TEKs for the group).

  Note, if the same TGK/TEK(s) should be used by all the group members,
  the streaming server MUST specify the same CSB_ID and CS_ID(s) for
  the session to all the group members.

  As the communication may be performed using multicast, the members
  need a common security policy if they want to be part of the group.
  This limits the possibility of negotiation.

  Furthermore, the Initiator should carefully consider whether to
  request the verification message in reply from each receiver, as this
  may result in a certain load for the Initiator itself as the group
  size increases.

8.2.  Small-size interactive group

  As described in the overview section, for small-size interactive
  groups, one may expect that each client will be in charge for setting
  up the security for its outgoing streams.  In these scenarios, the
  pre-shared key or the public-key transport method is used.








Arkko, et al.               Standards Track                    [Page 51]

RFC 3830                         MIKEY                       August 2004


                      ++++          ++++
                      |A | -------> |B |
                      |  | <------- |  |
                      ++++          ++++
                       ^ |          | ^
                       | |          | |
                       | |   ++++   | |
                       | --->|C |<--- |
                       ------|  |------
                             ++++

  Figure 8.2. Small-size group without a centralized controller.

  One scenario may then be that the client sets up a three-part call,
  using SIP.  Due to the small size of the group, unicast SRTP is used
  between the clients.  Each client sets up the security for its
  outgoing stream(s) to the others.

  As for the simple one-to-many case, the streaming client specifies
  the same CSB_ID and CS_ID(s) for its outgoing sessions if the same
  TGK/TEK(s) is used for all the group members.

9.  Security Considerations

9.1.  General

  Key management protocols based on timestamps/counters and one-
  roundtrip key transport have previously been standardized, for
  example ISO [ISO1, ISO2].  The general security of these types of
  protocols can be found in various articles and literature, c.f. [HAC,
  AKE, LOA].

  No chain is stronger than its weakest link.  If a given level of
  protection is wanted, then the cryptographic functions protecting the
  keys during transport/exchange MUST offer a security corresponding to
  at least that level.

  For instance, if a security against attacks with a complexity 2^96 is
  wanted, then one should choose a secure symmetric cipher supporting
  at least 96 bit keys (128 bits may be a practical choice) for the
  actual media protection, and a key transport mechanism that provides
  equivalent protection, e.g., MIKEY's pre-shared key transport with
  128 bit TGK, or RSA with 1024 bit keys (which according to [LV]
  corresponds to the desired 96 bit level, with some margin).

  In summary, key size for the key-exchange mechanism MUST be weighed
  against the size of the exchanged TGK so that it at least offers the
  required level.  For efficiency reasons, one SHOULD also avoid a



Arkko, et al.               Standards Track                    [Page 52]

RFC 3830                         MIKEY                       August 2004


  security overkill, e.g., by not using a public key transport with
  public keys giving a security level that is orders of magnitude
  higher than length of the transported TGK.  We refer to [LV] for
  concrete key size recommendations.

  Moreover, if the TGKs are not random (or pseudo-random), a brute
  force search may be facilitated, again lowering the effective key
  size.  Therefore, care MUST be taken when designing the (pseudo-)
  random generators for TGK generation, see [FIPS][RAND].

  For the selection of the hash function, SHA-1 with 160-bit output is
  the default one.  In general, hash sizes should be twice the
  "security level", indicating that SHA-1-256, [SHA256], should be used
  for the default 128-bit level.  However, due to the real-time aspects
  in the scenarios we are treating, hash sizes slightly below 256 are
  acceptable, as the normal "existential" collision probabilities would
  be of secondary importance.

  In a Crypto Session Bundle, the Crypto Sessions can share the same
  TGK as discussed earlier.  From a security point of view, to satisfy
  the criterion in case the TGK is shared, the encryption of the
  individual Crypto Sessions are performed "independently".  In MIKEY,
  this is accomplished by having unique Crypto Session identifiers (see
  also Section 4.1) and a TEK derivation method that provides
  cryptographically independent TEKs to distinct Crypto Sessions
  (within the Crypto Session Bundle), regardless of the security
  protocol used.

  Specifically, the key derivations, as specified in Section 4.1, are
  implemented by a pseudo-random function.  The one used here is a
  simplified version of that used in TLS [TLS].  Here, only one single
  hash function is used, whereas TLS uses two different functions.
  This choice is motivated by the high confidence in the SHA-1 hash
  function, and by efficiency and simplicity of design (complexity does
  not imply security).  Indeed, as shown in [DBJ], if one of the two
  hashes is severely broken, the TLS PRF is actually less secure than
  as if a single hash had been used on the whole key, as is done in
  MIKEY.

  In the pre-shared key and public-key schemes, the TGK is generated by
  a single party (Initiator).  This makes MIKEY somewhat more sensitive
  if the Initiator uses a bad random number generator.  It should also
  be noted that neither the pre-shared nor the public-key scheme
  provides perfect forward secrecy.  If mutual contribution or perfect
  forward secrecy is desired, the Diffie-Hellman method is to be used.
  Authentication (e.g., signatures) in the Diffie-Hellman method is
  required to prevent man-in-the-middle attacks.




Arkko, et al.               Standards Track                    [Page 53]

RFC 3830                         MIKEY                       August 2004


  Forward/backward security: if the TGK is exposed, all generated TEKs
  are compromised.  However, under the assumption that the derivation
  function is a pseudo-random function, disclosure of an individual TEK
  does not compromise other (previous or later) TEKs derived from the
  same TGK.  The Diffie-Hellman mode can be considered by cautious
  users, as it is the only one that supports so called perfect forward
  secrecy (PFS).  This is in contrast to a compromise of the pre-shared
  key (or the secret key of the public key mode), where future sessions
  and recorded sessions from the past are then also compromised.

  The use of random nonces (RANDs) in the key derivation is of utmost
  importance to counter off-line pre-computation attacks.  Note however
  that update messages re-use the old RAND.  This means that the total
  effective key entropy (relative to pre-computation attacks) for k
  consecutive key updates, assuming the TGKs and RAND are each n bits
  long, is about L = n*(k+1)/2 bits, compared to the theoretical
  maximum of n*k bits.  In other words, a 2^L work effort MAY enable an
  attacker to get all k n-bit keys, which is better than brute force
  (except when k = 1).  While this might seem like a defect, first note
  that for a proper choice of n, the 2^L complexity of the attack is
  way out of reach.  Moreover, the fact that more than one key can be
  compromised in a single attack is inherent to the key exchange
  problem.  Consider for instance a user who, using a fixed 1024-bit
  RSA key, exchanges keys and communicates during a one or two year
  lifetime of the public key.  Breaking this single RSA key will enable
  access to all exchanged keys and consequently the entire
  communication of that user over the whole period.

  All the pre-defined transforms in MIKEY use state-of-the-art
  algorithms that have undergone large amounts of public evaluation.
  One of the reasons for using the AES-CM from SRTP [SRTP], is to have
  the possibility of limiting the overall number of different
  encryption modes and algorithms, while offering a high level of
  security at the same time.

9.2.  Key lifetime

  Even if the lifetime of a TGK (or TEK) is not specified, it MUST be
  taken into account that the encryption transform in the underlying
  security protocol can in some way degenerate after a certain amount
  of encrypted data.  It is not possible to here state universally
  applicable, general key lifetime bounds; each security protocol
  should define such maximum amount and trigger a re-keying procedure
  before the "exhaustion" of the key.  For example, according to SRTP
  [SRTP] the TEK, together with the corresponding TGK, MUST be changed
  at least every 2^48 SRTP packet.





Arkko, et al.               Standards Track                    [Page 54]

RFC 3830                         MIKEY                       August 2004


  Still, the following can be said as a rule of thumb.  If the security
  protocol uses an "ideal" b-bit block cipher (in CBC mode, counter
  mode, or a feedback mode, e.g., OFB, with full b-bit feedback),
  degenerate behavior in the crypto stream, possibly useful for an
  attacker, is (with constant probability) expected to occur after a
  total of roughly 2^(b/2) encrypted b-bit blocks (using random IVs).
  For security margin, re-keying MUST be triggered well in advance
  compared to the above bound.  See [BDJR] for more details.

  For use of a dedicated stream cipher, we refer to the analysis and
  documentation of said cipher in each specific case.

9.3.  Timestamps

  The use of timestamps, instead of challenge-responses, requires the
  systems to have synchronized clocks.  Of course, if two clients are
  not synchronized, they will have difficulties in setting up the
  security.  The current timestamp based solution has been selected to
  allow a maximum of one roundtrip (i.e., two messages), but still
  provide a reasonable replay protection.  A (secure) challenge-
  response based version would require at least three messages.  For a
  detailed description of the timestamp and replay handling in MIKEY,
  see Section 5.4.

  Practical experiences of Kerberos and other timestamp-based systems
  indicate that it is not always necessary to synchronize the terminals
  over the network.  Manual configuration could be a feasible
  alternative in many cases (especially in scenarios where the degree
  of looseness is high).  However, the choice must be made carefully
  with respect to the usage scenario.

9.4.  Identity Protection

  User privacy is a complex matter that to some extent can be enforced
  by cryptographic mechanisms, but also requires policy enforcement and
  various other functionalities.  One particular facet of privacy is
  user identity protection.  However, identity protection was not a
  main design goal for MIKEY.  Such a feature will add more complexity
  to the protocol and was therefore not chosen to be included.  As
  MIKEY is anyway proposed to be transported over, e.g., SIP, the
  identity may be exposed by this.  However, if the transporting
  protocol is secured and also provides identity protection, MIKEY
  might inherit the same feature.  How this should be done is for
  future study.







Arkko, et al.               Standards Track                    [Page 55]

RFC 3830                         MIKEY                       August 2004


9.5.  Denial of Service

  This protocol is resistant to Denial of Service attacks in the sense
  that a Responder does not construct any state (at the key management
  protocol level) before it has authenticated the Initiator.  However,
  this protocol, like many others, is open to attacks that use spoofed
  IP addresses to create a large number of fake requests.  This may for
  example, be solved by letting the protocol transporting MIKEY do an
  IP address validity test.  The SIP protocol can provide this using
  the anonymous authentication challenge mechanism (specified in
  Section 22.1 of [SIP]).

  It is highly RECOMMENDED to include IDr in the Initiator's message.
  If not included, its absence can be used for DoS purposes (the
  largest DoS-impact being on the public key and DH methods), where a
  message intended for other entities is sent to the target.  In fact,
  the target may verify the signature correctly due to the fact that
  the Initiator's ID is correct and the message is actually signed by
  the claimed Initiator (e.g., by re-directing traffic from another
  session).

  However, in the public key method, the envelop key and the MAC will
  ensure that the message is not accepted (still, compared to a normal
  faked message, where the signature verification would detect the
  problem, one extra public key decryption is needed to detect the
  problem in this case).

  In the DH method, a message would be accepted (without detecting the
  error) and a response (and state) would be created for the malicious
  request.

  As also discussed in Section 5.4, the tradeoff between time
  synchronization and the size of the replay cache may be affected in
  case of for example, a flooding DoS attack.  However, if the
  recommendations of using a dynamic size of the replay cache are
  followed, it is believed that the client will in most cases be able
  to handle the replay cache.  Of course, as the replay cache decreases
  in size, the required time synchronization is more restricted.
  However, a bigger problem during such an attack would probably be to
  process the messages (e.g., verify signatures/MACs) due to the
  computational workload this implies.

9.6.  Session Establishment

  It should be noted that if the session establishment protocol is
  insecure, there may be attacks on this that will have indirect
  security implications on the secured media streams.  This however
  only applies to groups (and is not specific to MIKEY).  The threat is



Arkko, et al.               Standards Track                    [Page 56]

RFC 3830                         MIKEY                       August 2004


  that one group member may re-direct a stream from one group member to
  another.  This will have the same implication as when a member tries
  to impersonate another member, e.g., by changing its IP address.  If
  this is seen as a problem, it is RECOMMENDED that a Data Origin
  Authentication (DOA) scheme (e.g., digital signatures) be applied to
  the security protocol.

  Re-direction of streams can of course be done even if it is not a
  group.  However, the effect will not be the same as compared to a
  group where impersonation can be done if DOA is not used.  Instead,
  re-direction will only deny the receiver the possibility of receiving
  (or just delay) the data.

10.  IANA Considerations

  This document defines several new name spaces associated with the
  MIKEY payloads.  This section summarizes the name spaces for which
  IANA is requested to manage the allocation of values.  IANA is
  requested to record the pre-defined values defined in the given
  sections for each name space.  IANA is also requested to manage the
  definition of additional values in the future.  Unless explicitly
  stated otherwise, values in the range 0-240 for each name space
  SHOULD be approved by the process of IETF consensus and values in the
  range 241-255 are reserved for Private Use, according to [RFC2434].

  The name spaces for the following fields in the Common header payload
  (from Section 6.1) are requested to be managed by IANA (in bracket is
  the reference to the table with the initially registered values):

  *  version

  *  data type (Table 6.1.a)

  *  Next payload (Table 6.1.b)

  *  PRF func (Table 6.1.c).  This name space is between 0-127, where
     values between 0-111 should be approved by the process of IETF
     consensus and values between 112-127 are reserved for Private Use.

  *  CS ID map type (Table 6.1.d)

  The name spaces for the following fields in the Key data transport
  payload (from Section 6.2) are requested to be managed by IANA:

  *  Encr alg (Table 6.2.a)

  *  MAC alg (Table 6.2.b)




Arkko, et al.               Standards Track                    [Page 57]

RFC 3830                         MIKEY                       August 2004


  The name spaces for the following fields in the Envelope data payload
  (from Section 6.3) are requested to be managed by IANA:

  *  C (Table 6.3)

  The name spaces for the following fields in the DH data payload (from
  Section 6.4) are requested to be managed by IANA:

  *  DH-Group (Table 6.4)

  The name spaces for the following fields in the Signature payload
  (from Section 6.5) are requested to be managed by IANA:

  *  S type (Table 6.5)

  The name spaces for the following fields in the Timestamp payload
  (from Section 6.6) are requested to be managed by IANA:

  *  TS type (Table 6.6)

  The name spaces for the following fields in the ID payload and the
  Certificate payload (from Section 6.7) are requested to be managed by
  IANA:

  *  ID type (Table 6.7.a)

  *  Cert type (Table 6.7.b)

  The name spaces for the following fields in the Cert hash payload
  (from Section 6.8) are requested to be managed by IANA:

  *  Hash func (Table 6.8)

  The name spaces for the following fields in the Security policy
  payload (from Section 6.10) are requested to be managed by IANA:

  *  Prot type (Table 6.10)

  For each security protocol that uses MIKEY, a set of unique
  parameters MAY be registered.

  From Section 6.10.1.

  *  SRTP Type (Table 6.10.1.a)

  * SRTP encr alg (Table 6.10.1.b)

  * SRTP auth alg (Table 6.10.1.c)



Arkko, et al.               Standards Track                    [Page 58]

RFC 3830                         MIKEY                       August 2004


  * SRTP PRF (Table 6.10.1.d)

  * FEC order (Table 6.10.1.e)

  The name spaces for the following fields in the Error payload (from
  Section 6.12) are requested to be managed by IANA:

  *  Error no  (Table 6.12)

  The name spaces for the following fields in the Key data payload
  (from Section 6.13) are requested to be managed by IANA:

  *  Type (Table 6.13.a).  This name space is between 0-16, which
     should be approved by the process of IETF consensus.

  *  KV (Table 6.13.b).  This name space is between 0-16, which should
     be approved by the process of IETF consensus.

  The name spaces for the following fields in the General Extensions
  payload (from Section 6.15) are requested to be managed by IANA:

  *  Type (Table 6.15).

10.1.  MIME Registration

  This section gives instructions to IANA to register the
  application/mikey MIME media type.  This registration is as follows:

  MIME media type name              : application
  MIME subtype name                 : mikey
  Required parameters               : none
  Optional parameters               : version
            version: The MIKEY version number of the enclosed message
               (e.g., 1). If not present, the version defaults to 1.
  Encoding Considerations           : binary, base64 encoded
  Security Considerations           : see section 9 in this memo
  Interoperability considerations   : none
  Published specification           : this memo

11.  Acknowledgments

  The authors would like to thank Mark Baugher, Ran Canetti, Martin
  Euchner, Steffen Fries, Peter Barany, Russ Housley, Pasi Ahonen (with
  his group), Rolf Blom, Magnus Westerlund, Johan Bilien, Jon-Olov
  Vatn, Erik Eliasson, and Gerhard Strangar for their valuable
  feedback.





Arkko, et al.               Standards Track                    [Page 59]

RFC 3830                         MIKEY                       August 2004


12.  References

12.1.  Normative References

  [HMAC]    Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:  Keyed-
            Hashing for Message Authentication", RFC 2104, February
            1997.

  [NAI]     Aboba, B. and M. Beadles, "The Network Access Identifier",
            RFC 2486, January 1999.

  [OAKLEY]  Orman, H., "The OAKLEY Key Determination Protocol", RFC
            2412, November 1998.

  [PSS]     PKCS #1 v2.1 - RSA Cryptography Standard, RSA Laboratories,
            June 14, 2002, www.rsalabs.com

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
            IANA Considerations Section in RFCs", BCP 26, RFC 2434,
            October 1998.

  [SHA-1]   NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

  [SRTP]    Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
            Norrman, "The Secure Real Time Transport Protocol", RFC
            3711, March 2004.

  [URI]     Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
            Resource Identifiers (URI): Generic Syntax", RFC 2396,
            August 1998.

  [X.509]   Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
            X.509 Public Key Infrastructure Certificate and Certificate
            Revocation List (CRL) Profile", RFC 3280, April 2002.

  [AESKW]   Schaad, J. and R. Housley, "Advanced Encryption Standard
            (AES) Key Wrap Algorithm", RFC 3394, September 2002.











Arkko, et al.               Standards Track                    [Page 60]

RFC 3830                         MIKEY                       August 2004


12.2.  Informative References

  [AKE]     Canetti, R. and H. Krawczyk, "Analysis of Key-Exchange
            Protocols and their use for Building Secure Channels",
            Eurocrypt 2001, LNCS 2054, pp. 453-474, 2001.

  [BDJR]    Bellare, M., Desai, A., Jokipii, E., and P. Rogaway, "A
            Concrete Analysis of Symmetric Encryption: Analysis of the
            DES Modes of Operation", in Proceedings of the 38th
            Symposium on Foundations of Computer Science, IEEE, 1997,
            pp. 394-403.

  [BMGL]    Hastad, J. and M. Naslund: "Practical Construction and
            Analysis of Pseduo-randomness Primitives", Proceedings of
            Asiacrypt 2001, LNCS. vol 2248, pp. 442-459, 2001.

  [DBJ]     Johnson, D.B., "Theoretical Security Concerns with TLS use
            of MD5", Contribution to ANSI X9F1 WG, 2001.

  [FIPS]    "Security Requirements for Cryptographic Modules", Federal
            Information Processing Standard Publications (FIPS PUBS)
            140-2, December 2002.

  [GKMARCH] Baugher, M., Canetti, R., Dondeti, L., and F. Lindholm,
            "Group Key Management Architecture", Work in Progress.

  [GDOI]    Baugher, M., Weis, B., Hardjono, T., and H. Harney, "The
            Group Domain of Interpretation", RFC 3547, July 2003.

  [GSAKMP]  Harney, H., Colegrove, A., Harder, E., Meth, U., and R.
            Fleischer, "Group Secure Association Key Management
            Protocol", Work in Progress.

  [HAC]     Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
            of Applied Cryptography", CRC press, 1996.

  [IKE]     Harkins, D. and D. Carrel, "The Internet Key Exchange
            (IKE)", RFC 2409, November 1998.

  [ISO1]    ISO/IEC 9798-3: 1997, Information technology - Security
            techniques - Entity authentication - Part 3: Mechanisms
            using digital signature techniques.

  [ISO2]    ISO/IEC 11770-3: 1997, Information technology - Security
            techniques - Key management - Part 3: Mechanisms using
            digital signature techniques.





Arkko, et al.               Standards Track                    [Page 61]

RFC 3830                         MIKEY                       August 2004


  [ISO3]    ISO/IEC 18014 Information technology - Security techniques
            - Time-stamping services, Part 1-3.

  [KMASDP]  Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
            Norrman, "Key Management Extensions for SDP and RTSP", Work
            in Progress.

  [LOA]     Burrows, Abadi, and Needham, "A logic of authentication",
            ACM Transactions on Computer Systems 8 No.1 (Feb. 1990),
            18-36.

  [LV]      Lenstra, A. K. and E. R. Verheul, "Suggesting Key Sizes for
            Cryptosystems", http://www.cryptosavvy.com/suggestions.htm

  [NTP]     Mills, D., "Network Time Protocol (Version 3)
            Specification, Implementation and Analysis", RFC 1305,
            March 1992.

  [OCSP]    Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
            Adams, "X.509 Internet Public Key Infrastructure Online
            Certificate Status Protocol - OCSP", RFC 2560, June 1999.

  [RAND]    Eastlake, 3rd, D., Crocker, S., and J. Schiller,
            "Randomness Requirements for Security", RFC 1750, December
            1994.

  [RTSP]    Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
            Streaming Protocol (RTSP)", RFC 2326, April 1998.

  [SDP]     Handley, M. and V. Jacobson, "SDP: Session Description
            Protocol", RFC 2327, April 1998.

  [SHA256]  NIST, "Description of SHA-256, SHA-384, and SHA-512",
            http://csrc.nist.gov/encryption/shs/sha256-384-512.pdf

  [SIP]     Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
            A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
            "SIP: Session Initiation Protocol", RFC 3261, June 2002.

  [TLS]     Dierks, T. and C. Allen, "The TLS Protocol - Version 1.0",
            RFC 2246, January 1999.










Arkko, et al.               Standards Track                    [Page 62]

RFC 3830                         MIKEY                       August 2004


Appendix A.  MIKEY - SRTP Relation

  The terminology in MIKEY differs from the one used in SRTP as MIKEY
  needs to be more general, nor is tight to SRTP only.  Therefore, it
  might be hard to see the relations between keys and parameters
  generated in MIKEY and those used by SRTP.  This section provides
  some hints on their relation.

  MIKEY            | SRTP
  -------------------------------------------------
  Crypto Session   | SRTP stream (typically with related SRTCP stream)
  Data SA          | input to SRTP's crypto context
  TEK              | SRTP master key

  The Data SA is built up by a TEK and the security policy exchanged.
  SRTP may use an MKI to index the TEK or TGK (the TEK is then derived
  from the TGK that is associated with the corresponding MKI), see
  below.

A.1.  MIKEY-SRTP Interactions

  In the following, we give a brief outline of the interface between
  SRTP and MIKEY and the processing that takes place.  We describe the
  SRTP receiver side only, the sender side will require analogous
  interfacing.

  1. When an SRTP packet arrives at the receiver and is processed, the
     triple <SSRC, destination address, destination port> is extracted
     from the packet and used to retrieve the correct SRTP crypto
     context, hence the Data SA.  (The actual retrieval can, for
     example, be done by an explicit request from the SRTP
     implementation to MIKEY, or, by the SRTP implementation accessing
     a "database", maintained by MIKEY.  The application will typically
     decide which implementation is preferred.)

  2. If an MKI is present in the SRTP packet, it is used to point to
     the correct key within the SA.  Alternatively, if SRTP's <From,
     To> feature is used, the ROC||SEQ of the packet is used to
     determine the correct key.

  3. Depending on whether the key sent in MIKEY (as obtained in step 2)
     was a TEK or a TGK, there are now two cases.

     -  If the key obtained in step 2 is the TEK itself, it is used
        directly by SRTP as a master key.






Arkko, et al.               Standards Track                    [Page 63]

RFC 3830                         MIKEY                       August 2004


     -  If the key instead is a TGK, the mapping with the CS_ID
        (internal to MIKEY, Section 6.1.1) allows MIKEY to compute the
        correct TEK from the TGK as described in Section 4.1 before
        SRTP uses it.

  If multiple TGKs (or TEKs) are sent, it is RECOMMENDED that each TGK
  (or TEK) be associated with a distinct MKI.  It is RECOMMENDED that
  the use of <From, To> in this scenario be limited to very simple
  cases, e.g., one stream only.

  Besides the actual master key, other information in the Data SA
  (e.g., transform identifiers) will of course also be communicated
  from MIKEY to SRTP.






































Arkko, et al.               Standards Track                    [Page 64]

RFC 3830                         MIKEY                       August 2004


Authors' Addresses

  Jari Arkko
  Ericsson Research
  02420 Jorvas
  Finland

  Phone:  +358 40 5079256
  EMail:  [email protected]


  Elisabetta Carrara
  Ericsson Research
  SE-16480 Stockholm
  Sweden

  Phone:  +46 8 50877040
  EMail:  [email protected]


  Fredrik Lindholm
  Ericsson Research
  SE-16480 Stockholm
  Sweden

  Phone:  +46 8 58531705
  EMail:  [email protected]


  Mats Naslund
  Ericsson Research
  SE-16480 Stockholm
  Sweden

  Phone:  +46 8 58533739
  EMail:  [email protected]


  Karl Norrman
  Ericsson Research
  SE-16480 Stockholm
  Sweden

  Phone:  +46 8 4044502
  EMail:  [email protected]






Arkko, et al.               Standards Track                    [Page 65]

RFC 3830                         MIKEY                       August 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).  This document is subject
  to the rights, licenses and restrictions contained in BCP 78, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.









Arkko, et al.               Standards Track                    [Page 66]