Network Working Group                                     R. Hinden, Ed.
Request for Comments: 3768                                         Nokia
Obsoletes: 2338                                               April 2004
Category: Standards Track


              Virtual Router Redundancy Protocol (VRRP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  This memo defines the Virtual Router Redundancy Protocol (VRRP).
  VRRP specifies an election protocol that dynamically assigns
  responsibility for a virtual router to one of the VRRP routers on a
  LAN.  The VRRP router controlling the IP address(es) associated with
  a virtual router is called the Master, and forwards packets sent to
  these IP addresses.  The election process provides dynamic fail over
  in the forwarding responsibility should the Master become
  unavailable.  This allows any of the virtual router IP addresses on
  the LAN to be used as the default first hop router by end-hosts.  The
  advantage gained from using VRRP is a higher availability default
  path without requiring configuration of dynamic routing or router
  discovery protocols on every end-host.

Table of Contents

  1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   2
      1.1.  Contributors. . . . . . . . . . . . . . . . . . . . . .   3
      1.2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . .   4
      1.3.  Definitions . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Required Features . . . . . . . . . . . . . . . . . . . . . .   5
      2.1.  IP Address Backup . . . . . . . . . . . . . . . . . . .   5
      2.2.  Preferred Path Indication . . . . . . . . . . . . . . .   5
      2.3.  Minimization of Unnecessary Service Disruptions . . . .   5
      2.4.  Efficient Operation over Extended LANs. . . . . . . . .   6
  3.  VRRP Overview . . . . . . . . . . . . . . . . . . . . . . . .   6
  4.  Sample Configurations . . . . . . . . . . . . . . . . . . . .   7



Hinden                      Standards Track                     [Page 1]

RFC 3768                          VRRP                        April 2004


      4.1.  Sample Configuration 1. . . . . . . . . . . . . . . . .   7
      4.2.  Sample Configuration 2. . . . . . . . . . . . . . . . .   9
  5.  Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . .  10
      5.1.  VRRP Packet Format. . . . . . . . . . . . . . . . . . .  10
      5.2.  IP Field Descriptions . . . . . . . . . . . . . . . . .  10
      5.3.  VRRP Field Descriptions . . . . . . . . . . . . . . . .  11
  6.  Protocol State Machine. . . . . . . . . . . . . . . . . . . .  13
      6.1.  Parameters per Virtual Router . . . . . . . . . . . . .  13
      6.2.  Timers. . . . . . . . . . . . . . . . . . . . . . . . .  14
      6.3.  State Transition Diagram. . . . . . . . . . . . . . . .  15
      6.4.  State Descriptions. . . . . . . . . . . . . . . . . . .  15
  7.  Sending and Receiving VRRP Packets. . . . . . . . . . . . . .  18
      7.1.  Receiving VRRP Packets. . . . . . . . . . . . . . . . .  18
      7.2.  Transmitting Packets. . . . . . . . . . . . . . . . . .  19
      7.3.  Virtual MAC Address . . . . . . . . . . . . . . . . . .  19
  8.  Operational Issues. . . . . . . . . . . . . . . . . . . . . .  20
      8.1.  ICMP Redirects. . . . . . . . . . . . . . . . . . . . .  20
      8.2.  Host ARP Requests . . . . . . . . . . . . . . . . . . .  20
      8.3.  Proxy ARP . . . . . . . . . . . . . . . . . . . . . . .  20
      8.4.  Potential Forwarding Loop . . . . . . . . . . . . . . .  21
  9.  Operation over FDDI, Token Ring, and ATM LANE . . . . . . . .  21
      9.1.  Operation over FDDI . . . . . . . . . . . . . . . . . .  21
      9.2.  Operation over Token Ring . . . . . . . . . . . . . . .  21
      9.3.  Operation over ATM LANE . . . . . . . . . . . . . . . .  23
  10. Security Considerations . . . . . . . . . . . . . . . . . . .  23
  11. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  24
  12. References. . . . . . . . . . . . . . . . . . . . . . . . . .  24
      12.1. Normative References. . . . . . . . . . . . . . . . . .  24
      12.2. Informative References. . . . . . . . . . . . . . . . .  25
  13. Changes from RFC2338. . . . . . . . . . . . . . . . . . . . .  25
  14. Editor's Address. . . . . . . . . . . . . . . . . . . . . . .  26
  15. Full Copyright Statement. . . . . . . . . . . . . . . . . . .  27

1.  Introduction

  There are a number of methods that an end-host can use to determine
  its first hop router towards a particular IP destination.  These
  include running (or snooping) a dynamic routing protocol such as
  Routing Information Protocol [RIP] or OSPF version 2 [OSPF], running
  an ICMP router discovery client [DISC] or using a statically
  configured default route.

  Running a dynamic routing protocol on every end-host may be
  infeasible for a number of reasons, including administrative
  overhead, processing overhead, security issues, or lack of a protocol
  implementation for some platforms.  Neighbor or router discovery
  protocols may require active participation by all hosts on a network,
  leading to large timer values to reduce protocol overhead in the face



Hinden                      Standards Track                     [Page 2]

RFC 3768                          VRRP                        April 2004


  of large numbers of hosts.  This can result in a significant delay in
  the detection of a lost (i.e., dead) neighbor, that may introduce
  unacceptably long "black hole" periods.

  The use of a statically configured default route is quite popular; it
  minimizes configuration and processing overhead on the end-host and
  is supported by virtually every IP implementation.  This mode of
  operation is likely to persist as dynamic host configuration
  protocols [DHCP] are deployed, which typically provide configuration
  for an end-host IP address and default gateway.  However, this
  creates a single point of failure.  Loss of the default router
  results in a catastrophic event, isolating all end-hosts that are
  unable to detect any alternate path that may be available.

  The Virtual Router Redundancy Protocol (VRRP) is designed to
  eliminate the single point of failure inherent in the static default
  routed environment.  VRRP specifies an election protocol that
  dynamically assigns responsibility for a virtual router to one of the
  VRRP routers on a LAN.  The VRRP router controlling the IP
  address(es) associated with a virtual router is called the Master,
  and forwards packets sent to these IP addresses.  The election
  process provides dynamic fail-over in the forwarding responsibility
  should the Master become unavailable.  Any of the virtual router's IP
  addresses on a LAN can then be used as the default first hop router
  by end-hosts.  The advantage gained from using VRRP is a higher
  availability default path without requiring configuration of dynamic
  routing or router discovery protocols on every end-host.

  VRRP provides a function similar to the proprietary protocols "Hot
  Standby Router Protocol (HSRP)" [HSRP] and "IP Standby Protocol"
  [IPSTB].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.1.  Contributors

  The following people, who are the authors of the RFC 2338 that this
  document is based on and replaces, contributed to the text in this
  document.  They are P. Higginson, R. Hinden, P. Hunt, S. Knight, A.
  Lindem, D. Mitzel, M. Shand, D. Weaver, and D. Whipple.  They are not
  listed as authors of the document due to current RFC-Editor policies.








Hinden                      Standards Track                     [Page 3]

RFC 3768                          VRRP                        April 2004


1.2.  Scope

  The remainder of this document describes the features, design goals,
  and theory of operation of VRRP.  The message formats, protocol
  processing rules and state machine that guarantee convergence to a
  single Virtual Router Master are presented.  Finally, operational
  issues related to MAC address mapping, handling of ARP requests,
  generation of ICMP redirect messages, and security issues are
  addressed.

  This protocol is intended for use with IPv4 routers only.  A separate
  specification will be produced if it is decided that similar
  functionality is desirable in an IPv6 environment.

1.3.  Definitions

  VRRP Router            A router running the Virtual Router Redundancy
                         Protocol.  It may participate in one or more
                         virtual routers.

  Virtual Router         An abstract object managed by VRRP that acts
                         as a default router for hosts on a shared LAN.
                         It consists of a Virtual Router Identifier and
                         a set of associated IP address(es) across a
                         common LAN.  A VRRP Router may backup one or
                         more virtual routers.

  IP Address Owner       The VRRP router that has the virtual router's
                         IP address(es) as real interface address(es).
                         This is the router that, when up, will respond
                         to packets addressed to one of these IP
                         addresses for ICMP pings, TCP connections,
                         etc.

  Primary IP Address     An IP address selected from the set of real
                         interface addresses.  One possible selection
                         algorithm is to always select the first
                         address.  VRRP advertisements are always sent
                         using the primary IP address as the source of
                         the IP packet.

  Virtual Router Master  The VRRP router that is assuming the
                         responsibility of forwarding packets sent to
                         the IP address(es) associated with the virtual
                         router, and answering ARP requests for these
                         IP addresses.  Note that if the IP address
                         owner is available, then it will always become
                         the Master.



Hinden                      Standards Track                     [Page 4]

RFC 3768                          VRRP                        April 2004


  Virtual Router Backup  The set of VRRP routers available to assume
                         forwarding responsibility for a virtual router
                         should the current Master fail.

2.  Required Features

  This section outlines the set of features that were considered
  mandatory and that guided the design of VRRP.

2.1.  IP Address Backup

  Backup of IP addresses is the primary function of the Virtual Router
  Redundancy Protocol.  While providing election of a Virtual Router
  Master and the additional functionality described below, the protocol
  should strive to:

  -  Minimize the duration of black holes.
  -  Minimize the steady state bandwidth overhead and processing
     complexity.
  -  Function over a wide variety of multiaccess LAN technologies
     capable of supporting IP traffic.
  -  Provide for election of multiple virtual routers on a network for
     load balancing.
  -  Support of multiple logical IP subnets on a single LAN segment.

2.2.  Preferred Path Indication

  A simple model of Master election among a set of redundant routers is
  to treat each router with equal preference and claim victory after
  converging to any router as Master.  However, there are likely to be
  many environments where there is a distinct preference (or range of
  preferences) among the set of redundant routers.  For example, this
  preference may be based upon access link cost or speed, router
  performance or reliability, or other policy considerations.  The
  protocol should allow the expression of this relative path preference
  in an intuitive manner, and guarantee Master convergence to the most
  preferential router currently available.

2.3.  Minimization of Unnecessary Service Disruptions

  Once Master election has been performed then any unnecessary
  transitions between Master and Backup routers can result in a
  disruption in service.  The protocol should ensure after Master
  election that no state transition is triggered by any Backup router
  of equal or lower preference as long as the Master continues to
  function properly.





Hinden                      Standards Track                     [Page 5]

RFC 3768                          VRRP                        April 2004


  Some environments may find it beneficial to avoid the state
  transition triggered when a router becomes available that is
  preferred over the current Master.  It may be useful to support an
  override of the immediate convergence to the preferred path.

2.4.  Efficient Operation over Extended LANs

  Sending IP packets on a multiaccess LAN requires mapping from an IP
  address to a MAC address.  The use of the virtual router MAC address
  in an extended LAN employing learning bridges can have a significant
  effect on the bandwidth overhead of packets sent to the virtual
  router.  If the virtual router MAC address is never used as the
  source address in a link level frame then the station location is
  never learned, resulting in flooding of all packets sent to the
  virtual router.  To improve the efficiency in this environment the
  protocol should: 1) use the virtual router MAC as the source in a
  packet sent by the Master to trigger station learning; 2) trigger a
  message immediately after transitioning to Master to update the
  station learning; and 3) trigger periodic messages from the Master to
  maintain the station learning cache.

3.  VRRP Overview

  VRRP specifies an election protocol to provide the virtual router
  function described earlier.  All protocol messaging is performed
  using IP multicast datagrams, thus the protocol can operate over a
  variety of multiaccess LAN technologies supporting IP multicast.
  Each VRRP virtual router has a single well-known MAC address
  allocated to it.  This document currently only details the mapping to
  networks using the IEEE 802 48-bit MAC address.  The virtual router
  MAC address is used as the source in all periodic VRRP messages sent
  by the Master router to enable bridge learning in an extended LAN.

  A virtual router is defined by its virtual router identifier (VRID)
  and a set of IP addresses.  A VRRP router may associate a virtual
  router with its real addresses on an interface, and may also be
  configured with additional virtual router mappings and priority for
  virtual routers it is willing to backup.  The mapping between VRID
  and addresses must be coordinated among all VRRP routers on a LAN.
  However, there is no restriction against reusing a VRID with a
  different address mapping on different LANs.  The scope of each
  virtual router is restricted to a single LAN.

  To minimize network traffic, only the Master for each virtual router
  sends periodic VRRP Advertisement messages.  A Backup router will not
  attempt to preempt the Master unless it has higher priority.  This
  eliminates service disruption unless a more preferred path becomes
  available.  It's also possible to administratively prohibit all



Hinden                      Standards Track                     [Page 6]

RFC 3768                          VRRP                        April 2004


  preemption attempts.  The only exception is that a VRRP router will
  always become Master of any virtual router associated with addresses
  it owns.  If the Master becomes unavailable then the highest priority
  Backup will transition to Master after a short delay, providing a
  controlled transition of the virtual router responsibility with
  minimal service interruption.

  The VRRP protocol design provides rapid transition from Backup to
  Master to minimize service interruption, and incorporates
  optimizations that reduce protocol complexity while guaranteeing
  controlled Master transition for typical operational scenarios.  The
  optimizations result in an election protocol with minimal runtime
  state requirements, minimal active protocol states, and a single
  message type and sender.  The typical operational scenarios are
  defined to be two redundant routers and/or distinct path preferences
  among each router.  A side effect when these assumptions are violated
  (i.e., more than two redundant paths all with equal preference) is
  that duplicate packets may be forwarded for a brief period during
  Master election.  However, the typical scenario assumptions are
  likely to cover the vast majority of deployments, loss of the Master
  router is infrequent, and the expected duration in Master election
  convergence is quite small ( << 1 second ).  Thus the VRRP
  optimizations represent significant simplifications in the protocol
  design while incurring an insignificant probability of brief network
  degradation.

4.  Sample Configurations

4.1.  Sample Configuration 1

  The following figure shows a simple network with two VRRP routers
  implementing one virtual router.  Note that this example is provided
  to help understand the protocol, but is not expected to occur in
  actual practice.

















Hinden                      Standards Track                     [Page 7]

RFC 3768                          VRRP                        April 2004


           +-----------+      +-----------+
           |   Rtr1    |      |   Rtr2    |
           |(MR VRID=1)|      |(BR VRID=1)|
           |           |      |           |
   VRID=1  +-----------+      +-----------+
   IP A ---------->*            *<--------- IP B
                   |            |
                   |            |
 ------------------+------------+-----+--------+--------+--------+--
                                      ^        ^        ^        ^
                                      |        |        |        |
                                    (IP A)   (IP A)   (IP A)   (IP A)
                                      |        |        |        |
                                   +--+--+  +--+--+  +--+--+  +--+--+
                                   |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                   +-----+  +-----+  +--+--+  +--+--+
    Legend:
             ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                          H  =  Host computer
                         MR  =  Master Router
                         BR  =  Backup Router
                          *  =  IP Address
                       (IP)  =  default router for hosts

  Eliminating all mention of VRRP (VRID=1) from the figure above leaves
  it as a typical IP deployment.  Each router is permanently assigned
  an IP address on the LAN interface (Rtr1 is assigned IP A and Rtr2 is
  assigned IP B), and each host installs a static default route through
  one of the routers (in this example they all use Rtr1's IP A).

  Moving to the VRRP environment, each router has the exact same
  permanently assigned IP address.  Rtr1 is said to be the IP address
  owner of IP A, and Rtr2 is the IP address owner of IP B.  A virtual
  router is then defined by associating a unique identifier (the
  virtual router ID) with the address owned by a router.  Finally, the
  VRRP protocol manages virtual router fail over to a backup router.

  The example above shows a virtual router configured to cover the IP
  address owned by Rtr1 (VRID=1,IP_Address=A).  When VRRP is enabled on
  Rtr1 for VRID=1 it will assert itself as Master, with priority=255,
  since it is the IP address owner for the virtual router IP address.
  When VRRP is enabled on Rtr2 for VRID=1 it will transition to Backup,
  with priority=100, since it is not the IP address owner.  If Rtr1
  should fail then the VRRP protocol will transition Rtr2 to Master,
  temporarily taking over forwarding responsibility for IP A to provide
  uninterrupted service to the hosts.





Hinden                      Standards Track                     [Page 8]

RFC 3768                          VRRP                        April 2004


  Note that in this example IP B is not backed up, it is only used by
  Rtr2 as its interface address.  In order to backup IP B, a second
  virtual router must be configured.  This is shown in the next
  section.

4.2.  Sample Configuration 2

  The following figure shows a configuration with two virtual routers
  with the hosts spitting their traffic between them.  This example is
  expected to be very common in actual practice.

           +-----------+      +-----------+
           |   Rtr1    |      |   Rtr2    |
           |(MR VRID=1)|      |(BR VRID=1)|
           |(BR VRID=2)|      |(MR VRID=2)|
   VRID=1  +-----------+      +-----------+  VRID=2
   IP A ---------->*            *<---------- IP B
                   |            |
                   |            |
 ------------------+------------+-----+--------+--------+--------+--
                                      ^        ^        ^        ^
                                      |        |        |        |
                                    (IP A)   (IP A)   (IP B)   (IP B)
                                      |        |        |        |
                                   +--+--+  +--+--+  +--+--+  +--+--+
                                   |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                   +-----+  +-----+  +--+--+  +--+--+
    Legend:
             ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                          H  =  Host computer
                         MR  =  Master Router
                         BR  =  Backup Router
                          *  =  IP Address
                       (IP)  =  default router for hosts

  In the example above, half of the hosts have configured a static
  route through Rtr1's IP A and half are using Rtr2's IP B.  The
  configuration of virtual router VRID=1 is exactly the same as in the
  first example (see section 4.1), and a second virtual router has been
  added to cover the IP address owned by Rtr2 (VRID=2, IP_Address=B).
  In this case Rtr2 will assert itself as Master for VRID=2 while Rtr1
  will act as a backup.  This scenario demonstrates a deployment
  providing load splitting when both routers are available while
  providing full redundancy for robustness.







Hinden                      Standards Track                     [Page 9]

RFC 3768                          VRRP                        April 2004


5.  Protocol

  The purpose of the VRRP packet is to communicate to all VRRP routers
  the priority and the state of the Master router associated with the
  Virtual Router ID.

  VRRP packets are sent encapsulated in IP packets.  They are sent to
  the IPv4 multicast address assigned to VRRP.

5.1.  VRRP Packet Format

  This section defines the format of the VRRP packet and the relevant
  fields in the IP header.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Version| Type  | Virtual Rtr ID|   Priority    | Count IP Addrs|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Auth Type   |   Adver Int   |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         IP Address (1)                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            .                                  |
  |                            .                                  |
  |                            .                                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         IP Address (n)                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Authentication Data (1)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Authentication Data (2)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.2.  IP Field Descriptions

5.2.1.  Source Address

  The primary IP address of the interface the packet is being sent
  from.











Hinden                      Standards Track                    [Page 10]

RFC 3768                          VRRP                        April 2004


5.2.2.  Destination Address

  The IP multicast address as assigned by the IANA for VRRP is:

     224.0.0.18

  This is a link local scope multicast address.  Routers MUST NOT
  forward a datagram with this destination address regardless of its
  TTL.

5.2.3.  TTL

  The TTL MUST be set to 255.  A VRRP router receiving a packet with
  the TTL not equal to 255 MUST discard the packet.

5.2.4.  Protocol

  The IP protocol number assigned by the IANA for VRRP is 112
  (decimal).

5.3.  VRRP Field Descriptions

5.3.1.  Version

  The version field specifies the VRRP protocol version of this packet.
  This document defines version 2.

5.3.2.  Type

  The type field specifies the type of this VRRP packet.  The only
  packet type defined in this version of the protocol is:

     1      ADVERTISEMENT

  A packet with unknown type MUST be discarded.

5.3.3.  Virtual Rtr ID (VRID)

  The Virtual Router Identifier (VRID) field identifies the virtual
  router this packet is reporting status for.  Configurable item in the
  range 1-255 (decimal).  There is no default.

5.3.4.  Priority

  The priority field specifies the sending VRRP router's priority for
  the virtual router.  Higher values equal higher priority.  This field
  is an 8 bit unsigned integer field.




Hinden                      Standards Track                    [Page 11]

RFC 3768                          VRRP                        April 2004


  The priority value for the VRRP router that owns the IP address(es)
  associated with the virtual router MUST be 255 (decimal).

  VRRP routers backing up a virtual router MUST use priority values
  between 1-254 (decimal).  The default priority value for VRRP routers
  backing up a virtual router is 100 (decimal).

  The priority value zero (0) has special meaning indicating that the
  current Master has stopped participating in VRRP.  This is used to
  trigger Backup routers to quickly transition to Master without having
  to wait for the current Master to timeout.

5.3.5.  Count IP Addrs

  The number of IP addresses contained in this VRRP advertisement.

5.3.6.  Authentication Type

  The authentication type field identifies the authentication method
  being utilized.  Authentication type is unique on a Virtual Router
  basis.  The authentication type field is an 8 bit unsigned integer.
  A packet with unknown authentication type or that does not match the
  locally configured authentication method MUST be discarded.

  Note:  Earlier version of the VRRP specification had several defined
  authentication types [RFC2338].  These were removed in this
  specification because operational experience showed that they did not
  provide any real security and would only cause multiple masters to be
  created.

  The authentication methods currently defined are:

     0 - No Authentication
     1 - Reserved
     2 - Reserved

5.3.6.1.  Authentication Type 0 - No Authentication

  The use of this authentication type means that VRRP protocol
  exchanges are not authenticated.  The contents of the Authentication
  Data field should be set to zero on transmission and ignored on
  reception.

5.3.6.2.  Authentication Type 1 - Reserved

  This authentication type is reserved to maintain backwards
  compatibility with RFC 2338.




Hinden                      Standards Track                    [Page 12]

RFC 3768                          VRRP                        April 2004


5.3.6.3.  Authentication Type 2 - Reserved

  This authentication type is reserved to maintain backwards
  compatibility with RFC 2338.

5.3.7.  Advertisement Interval (Adver Int)

  The Advertisement interval indicates the time interval (in seconds)
  between ADVERTISEMENTS.  The default is 1 second.  This field is used
  for troubleshooting misconfigured routers.

5.3.8.  Checksum

  The checksum field is used to detect data corruption in the VRRP
  message.

  The checksum is the 16-bit one's complement of the one's complement
  sum of the entire VRRP message starting with the version field.  For
  computing the checksum, the checksum field is set to zero.  See RFC
  1071 for more detail [CKSM].

5.3.9.  IP Address(es)

  One or more IP addresses that are associated with the virtual router.
  The number of addresses included is specified in the "Count IP Addrs"
  field.  These fields are used for troubleshooting misconfigured
  routers.

5.3.10.  Authentication Data

  The authentication string is currently only used to maintain
  backwards compatibility with RFC 2338.  It SHOULD be set to zero on
  transmission and ignored on reception.

6.  Protocol State Machine

6.1.  Parameters per Virtual Router

  VRID                    Virtual Router Identifier.  Configurable item
                          in the range 1-255 (decimal).  There is no
                          default.

  Priority                Priority value to be used by this VRRP router
                          in Master election for this virtual router.
                          The value of 255 (decimal) is reserved for
                          the router that owns the IP addresses
                          associated with the virtual router.  The
                          value of 0 (zero) is reserved for Master



Hinden                      Standards Track                    [Page 13]

RFC 3768                          VRRP                        April 2004


                          router to indicate it is releasing
                          responsibility for the virtual router.  The
                          range 1-254 (decimal) is available for VRRP
                          routers backing up the virtual router.  The
                          default value is 100 (decimal).

  IP_Addresses            One or more IP addresses associated with this
                          virtual router.  Configured item.  No
                          default.

  Advertisement_Interval  Time interval between ADVERTISEMENTS
                          (seconds).  Default is 1 second.

  Skew_Time               Time to skew Master_Down_Interval in seconds.
                          Calculated as:

                            ( (256 - Priority) / 256 )

  Master_Down_Interval    Time interval for Backup to declare Master
                          down (seconds).  Calculated as:

                            (3 * Advertisement_Interval) + Skew_time

  Preempt_Mode            Controls whether a higher priority Backup
                          router preempts a lower priority Master.
                          Values are True to allow preemption and False
                          to prohibit preemption.  Default is True.

                          Note: Exception is that the router that owns
                          the IP address(es) associated with the
                          virtual router always preempts independent of
                          the setting of this flag.

  Authentication_Type     Type of authentication being used.  Values
                          are defined in section 5.3.6.

  Authentication_Data     Authentication data specific to the
                          Authentication_Type being used.

6.2.  Timers

  Master_Down_Timer       Timer that fires when ADVERTISEMENT has not
                          been heard for Master_Down_Interval.

  Adver_Timer             Timer that fires to trigger sending of
                          ADVERTISEMENT based on
                          Advertisement_Interval.




Hinden                      Standards Track                    [Page 14]

RFC 3768                          VRRP                        April 2004


6.3.  State Transition Diagram

                     +---------------+
          +--------->|               |<-------------+
          |          |  Initialize   |              |
          |   +------|               |----------+   |
          |   |      +---------------+          |   |
          |   |                                 |   |
          |   V                                 V   |
  +---------------+                       +---------------+
  |               |---------------------->|               |
  |    Master     |                       |    Backup     |
  |               |<----------------------|               |
  +---------------+                       +---------------+

6.4.  State Descriptions

  In the state descriptions below, the state names are identified by
  {state-name}, and the packets are identified by all upper case
  characters.

  A VRRP router implements an instance of the state machine for each
  virtual router election it is participating in.

6.4.1.  Initialize

  The purpose of this state is to wait for a Startup event.  If a
  Startup event is received, then:

  -  If the Priority = 255 (i.e., the router owns the IP address(es)
     associated with the virtual router)

     o  Send an ADVERTISEMENT
     o  Broadcast a gratuitous ARP request containing the virtual
        router MAC address for each IP address associated with the
        virtual router.
     o  Set the Adver_Timer to Advertisement_Interval
     o  Transition to the {Master} state

     else

     o  Set the Master_Down_Timer to Master_Down_Interval
     o  Transition to the {Backup} state

     endif






Hinden                      Standards Track                    [Page 15]

RFC 3768                          VRRP                        April 2004


6.4.2.  Backup

  The purpose of the {Backup} state is to monitor the availability and
  state of the Master Router.

  While in this state, a VRRP router MUST do the following:

  -  MUST NOT respond to ARP requests for the IP address(s) associated
     with the virtual router.

  -  MUST discard packets with a destination link layer MAC address
     equal to the virtual router MAC address.

  -  MUST NOT accept packets addressed to the IP address(es) associated
     with the virtual router.

  -  If a Shutdown event is received, then:

     o  Cancel the Master_Down_Timer
     o  Transition to the {Initialize} state

        endif

  -  If the Master_Down_Timer fires, then:

     o  Send an ADVERTISEMENT
     o  Broadcast a gratuitous ARP request containing the virtual
        router MAC address for each IP address associated with the
        virtual router
     o  Set the Adver_Timer to Advertisement_Interval
     o  Transition to the {Master} state

        endif

  -  If an ADVERTISEMENT is received, then:

     If the Priority in the ADVERTISEMENT is Zero, then:

     o  Set the Master_Down_Timer to Skew_Time

        else:

           If Preempt_Mode is False, or If the Priority in the
           ADVERTISEMENT is greater than or equal to the local
           Priority, then:

            o Reset the Master_Down_Timer to Master_Down_Interval




Hinden                      Standards Track                    [Page 16]

RFC 3768                          VRRP                        April 2004


           else:

            o Discard the ADVERTISEMENT

           endif
        endif
     endif

6.4.3.  Master

  While in the {Master} state the router functions as the forwarding
  router for the IP address(es) associated with the virtual router.

  While in this state, a VRRP router MUST do the following:

  -  MUST respond to ARP requests for the IP address(es) associated
     with the virtual router.

  -  MUST forward packets with a destination link layer MAC address
     equal to the virtual router MAC address.

  -  MUST NOT accept packets addressed to the IP address(es) associated
     with the virtual router if it is not the IP address owner.

  -  MUST accept packets addressed to the IP address(es) associated
     with the virtual router if it is the IP address owner.

  -  If a Shutdown event is received, then:

     o  Cancel the Adver_Timer
     o  Send an ADVERTISEMENT with Priority = 0
     o  Transition to the {Initialize} state

        endif

     -  If the Adver_Timer fires, then:

     o  Send an ADVERTISEMENT o  Reset the Adver_Timer to
        Advertisement_Interval

        endif

     -  If an ADVERTISEMENT is received, then:

        If the Priority in the ADVERTISEMENT is Zero, then:

     o  Send an ADVERTISEMENT
     o  Reset the Adver_Timer to Advertisement_Interval



Hinden                      Standards Track                    [Page 17]

RFC 3768                          VRRP                        April 2004


        else:

           If the Priority in the ADVERTISEMENT is greater than the
           local Priority,
           or
           If the Priority in the ADVERTISEMENT is equal to the local
           Priority and the primary IP Address of the sender is greater
           than the local primary IP Address, then:

            o Cancel Adver_Timer
            o Set Master_Down_Timer to Master_Down_Interval
            o Transition to the {Backup} state

           else:

            o Discard ADVERTISEMENT

           endif
        endif
     endif

7.  Sending and Receiving VRRP Packets

7.1.  Receiving VRRP Packets

  Performed the following functions when a VRRP packet is received:

  -  MUST verify that the IP TTL is 255.
  -  MUST verify the VRRP version is 2.
  -  MUST verify that the received packet contains the complete VRRP
     packet (including fixed fields, IP Address(es), and Authentication
     Data).
  -  MUST verify the VRRP checksum.
  -  MUST verify that the VRID is configured on the receiving interface
     and the local router is not the IP Address owner (Priority equals
     255 (decimal)).
  -  MUST verify that the Auth Type matches the locally configured
     authentication method for the virtual router and perform that
     authentication method.

  If any one of the above checks fails, the receiver MUST discard the
  packet, SHOULD log the event and MAY indicate via network management
  that an error occurred.

  -  MAY verify that "Count IP Addrs" and the list of IP Address
     matches the IP_Addresses configured for the VRID





Hinden                      Standards Track                    [Page 18]

RFC 3768                          VRRP                        April 2004


  If the above check fails, the receiver SHOULD log the event and MAY
  indicate via network management that a misconfiguration was detected.
  If the packet was not generated by the address owner (Priority does
  not equal 255 (decimal)), the receiver MUST drop the packet,
  otherwise continue processing.

  -  MUST verify that the Adver Interval in the packet is the same as
     the locally configured for this virtual router

  If the above check fails, the receiver MUST discard the packet,
  SHOULD log the event and MAY indicate via network management that a
  misconfiguration was detected.

7.2.  Transmitting VRRP Packets

  The following operations MUST be performed when transmitting a VRRP
  packet.

  - Fill in the VRRP packet fields with the appropriate virtual router
     configuration state
  -  Compute the VRRP checksum
  -  Set the source MAC address to Virtual Router MAC Address
  -  Set the source IP address to interface primary IP address
  -  Set the IP protocol to VRRP
  -  Send the VRRP packet to the VRRP IP multicast group

  Note: VRRP packets are transmitted with the virtual router MAC
  address as the source MAC address to ensure that learning bridges
  correctly determine the LAN segment the virtual router is attached
  to.

7.3.  Virtual Router MAC Address

  The virtual router MAC address associated with a virtual router is an
  IEEE 802 MAC Address in the following format:

     00-00-5E-00-01-{VRID} (in hex in internet standard bit-order)

  The first three octets are derived from the IANA's OUI.  The next two
  octets (00-01) indicate the address block assigned to the VRRP
  protocol.  {VRID} is the VRRP Virtual Router Identifier.  This
  mapping provides for up to 255 VRRP routers on a network.









Hinden                      Standards Track                    [Page 19]

RFC 3768                          VRRP                        April 2004


8.  Operational Issues

8.1.  ICMP Redirects

  ICMP Redirects may be used normally when VRRP is running between a
  group of routers.  This allows VRRP to be used in environments where
  the topology is not symmetric.

  The IP source address of an ICMP redirect should be the address the
  end host used when making its next hop routing decision.  If a VRRP
  router is acting as Master for virtual router(s) containing addresses
  it does not own, then it must determine which virtual router the
  packet was sent to when selecting the redirect source address.  One
  method to deduce the virtual router used is to examine the
  destination MAC address in the packet that triggered the redirect.

  It may be useful to disable Redirects for specific cases where VRRP
  is being used to load share traffic between a number of routers in a
  symmetric topology.

8.2.  Host ARP Requests

  When a host sends an ARP request for one of the virtual router IP
  addresses, the Master virtual router MUST respond to the ARP request
  with the virtual MAC address for the virtual router.  The Master
  virtual router MUST NOT respond with its physical MAC address.  This
  allows the client to always use the same MAC address regardless of
  the current Master router.

  When a VRRP router restarts or boots, it SHOULD not send any ARP
  messages with its physical MAC address for the IP address it owns, it
  should only send ARP messages that include Virtual MAC addresses.
  This may entail:

  -  When configuring an interface, VRRP routers should broadcast a
     gratuitous ARP request containing the virtual router MAC address
     for each IP address on that interface.

  -  At system boot, when initializing interfaces for VRRP operation;
     delay gratuitous ARP requests and ARP responses until both the IP
     address and the virtual router MAC address are configured.

8.3.  Proxy ARP

  If Proxy ARP is to be used on a VRRP router, then the VRRP router
  must advertise the Virtual Router MAC address in the Proxy ARP
  message.  Doing otherwise could cause hosts to learn the real MAC
  address of the VRRP router.



Hinden                      Standards Track                    [Page 20]

RFC 3768                          VRRP                        April 2004


8.4.  Potential Forwarding Loop

  A VRRP router SHOULD not forward packets addressed to the IP
  Address(es) it becomes Master for if it is not the owner.  Forwarding
  these packets would result in unnecessary traffic.  Also in the case
  of LANs that receive packets they transmit (e.g., token ring) this
  can result in a forwarding loop that is only terminated when the IP
  TTL expires.

  One such mechanism for VRRP routers is to add/delete a reject host
  route for each adopted IP address when transitioning to/from MASTER
  state.

9.  Operation over FDDI, Token Ring, and ATM LANE

9.1.  Operation over FDDI

  FDDI interfaces remove from the FDDI ring frames that have a source
  MAC address matching the device's hardware address.  Under some
  conditions, such as router isolations, ring failures, protocol
  transitions, etc., VRRP may cause there to be more than one Master
  router.  If a Master router installs the virtual router MAC address
  as the hardware address on a FDDI device, then other Masters'
  ADVERTISEMENTS will be removed from the ring during the Master
  convergence, and convergence will fail.

  To avoid this an implementation SHOULD configure the virtual router
  MAC address by adding a unicast MAC filter in the FDDI device, rather
  than changing its hardware MAC address.  This will prevent a Master
  router from removing any ADVERTISEMENTS it did not originate.

9.2.  Operation over Token Ring

  Token ring has several characteristics that make running VRRP
  difficult.  These include:

  -  In order to switch to a new master located on a different bridge
     token ring segment from the previous master when using source
     route bridges, a mechanism is required to update cached source
     route information.

  -  No general multicast mechanism supported across old and new token
     ring adapter implementations.  While many newer token ring
     adapters support group addresses, token ring functional address
     support is the only generally available multicast mechanism.  Due
     to the limited number of token ring functional addresses these may
     collide with other usage of the same token ring functional
     addresses.



Hinden                      Standards Track                    [Page 21]

RFC 3768                          VRRP                        April 2004


  Due to these difficulties, the preferred mode of operation over token
  ring will be to use a token ring functional address for the VRID
  virtual MAC address.  Token ring functional addresses have the two
  high order bits in the first MAC address octet set to B'1'.  They
  range from 03-00-00-00-00-80 to 03-00-02-00-00-00 (canonical format).
  However, unlike multicast addresses, there is only one unique
  functional address per bit position.  The functional addresses
  03-00-00-10-00-00 through 03-00-02-00-00-00 are reserved by the Token
  Ring Architecture [TKARCH] for user-defined applications.  However,
  since there are only 12 user-defined token ring functional addresses,
  there may be other non-IP protocols using the same functional
  address.  Since the Novell IPX [IPX] protocol uses the
  03-00-00-10-00-00 functional address, operation of VRRP over token
  ring will avoid use of this functional address.  In general, token
  ring VRRP users will be responsible for resolution of other user-
  defined token ring functional address conflicts.

  VRIDs are mapped directly to token ring functional addresses.  In
  order to decrease the likelihood of functional address conflicts,
  allocation will begin with the largest functional address.  Most
  non-IP protocols use the first or first couple user-defined
  functional addresses and it is expected that VRRP users will choose
  VRIDs sequentially starting with 1.

     VRID      Token Ring Functional Address
     ----      -----------------------------
        1             03-00-02-00-00-00
        2             03-00-04-00-00-00
        3             03-00-08-00-00-00
        4             03-00-10-00-00-00
        5             03-00-20-00-00-00
        6             03-00-40-00-00-00
        7             03-00-80-00-00-00
        8             03-00-00-01-00-00
        9             03-00-00-02-00-00
       10             03-00-00-04-00-00
       11             03-00-00-08-00-00

  Or more succinctly, octets 3 and 4 of the functional address are
  equal to (0x4000 >> (VRID - 1)) in non-canonical format.

  Since a functional address cannot be used as a MAC level source
  address, the real MAC address is used as the MAC source address in
  VRRP advertisements.  This is not a problem for bridges since packets
  addressed to functional addresses will be sent on the spanning-tree
  explorer path [802.1D].





Hinden                      Standards Track                    [Page 22]

RFC 3768                          VRRP                        April 2004


  The functional address mode of operation MUST be implemented by
  routers supporting VRRP on token ring.

  Additionally, routers MAY support unicast mode of operation to take
  advantage of newer token ring adapter implementations that support
  non-promiscuous reception for multiple unicast MAC addresses and to
  avoid both the multicast traffic and usage conflicts associated with
  the use of token ring functional addresses.  Unicast mode uses the
  same mapping of VRIDs to virtual MAC addresses as Ethernet.  However,
  one important difference exists.  ARP request/reply packets contain
  the virtual MAC address as the source MAC address.  The reason for
  this is that some token ring driver implementations keep a cache of
  MAC address/source routing information independent of the ARP cache.
  Hence, these implementations need to receive a packet with the
  virtual MAC address as the source address in order to transmit to
  that MAC address in a source-route bridged network.

  Unicast mode on token ring has one limitation that should be
  considered.  If there are VRID routers on different source-route
  bridge segments and there are host implementations that keep their
  source-route information in the ARP cache and do not listen to
  gratuitous ARPs, these hosts will not update their ARP source-route
  information correctly when a switch-over occurs.  The only possible
  solution is to put all routers with the same VRID on the same
  source-bridge segment and use techniques to prevent that bridge
  segment from being a single point of failure.  These techniques are
  beyond the scope this document.

  For both the multicast and unicast mode of operation, VRRP
  advertisements sent to 224.0.0.18 should be encapsulated as described
  in [RFC1469].

9.3.  Operation over ATM LANE

  Operation of VRRP over ATM LANE on routers with ATM LANE interfaces
  and/or routers behind proxy LEC's are beyond the scope of this
  document.

10.  Security Considerations

  VRRP does not currently include any type of authentication.  Earlier
  versions of the VRRP specification included several types of
  authentication ranging from none to strong.  Operational experience
  and further analysis determined that these did not provide any real
  measure of security.  Due to the nature of the VRRP protocol, even if
  VRRP messages are cryptographically protected, it does not prevent
  hostile routers from behaving as if they are a VRRP master, creating
  multiple masters.  Authentication of VRRP messages could have



Hinden                      Standards Track                    [Page 23]

RFC 3768                          VRRP                        April 2004


  prevented a hostile router from causing all properly functioning
  routers from going into backup state.  However, having multiple
  masters can cause as much disruption as no routers, which
  authentication cannot prevent.  Also, even if a hostile router could
  not disrupt VRRP, it can disrupt ARP and create the same effect as
  having all routers go into backup.

  It should be noted that these attacks are not worse and are a subset
  of the attacks that any node attached to a LAN can do independently
  of VRRP.  The kind of attacks a malicious node on a LAN can do
  include promiscuously receiving packets for any routers MAC address,
  sending packets with the routers MAC address as the source MAC
  addresses in the L2 header to tell the L2 switches to send packets
  addressed to the router to the malicious node instead of the router,
  send redirects to tell the hosts to send their traffic somewhere
  else, send unsolicited ARP replies, answer ARP requests, etc., etc.
  All of this can be done independently of implementing VRRP.  VRRP
  does not add to these vulnerabilities.

  Independent of any authentication type VRRP includes a mechanism
  (setting TTL=255, checking on receipt) that protects against VRRP
  packets being injected from another remote network.  This limits most
  vulnerabilities to local attacks.

  VRRP does not provide any confidentiality.  Confidentiality is not
  necessary for the correct operation of VRRP and there is no
  information in the VRRP messages that must be kept secret from other
  nodes on the LAN.

11.  Acknowledgements

  The authors would like to thank Glen Zorn, and Michael Lane, Clark
  Bremer, Hal Peterson, Tony Li, Barbara Denny, Joel Halpern, Steve
  Bellovin, Thomas Narten, Rob Montgomery, Rob Coltun, Radia Perlman,
  Russ Housley, Harald Alvestrand, Steve Bellovin, Ned Freed, Ted
  Hardie, Russ Housley, Bert Wijnen, Bill Fenner, and Alex Zinin for
  their comments and suggestions.

12.  References

12.1.  Normative References

  [802.1D]  International Standard ISO/IEC 10038: 1993, ANSI/IEEE Std
            802.1D, 1993 edition.

  [CKSM]    Braden, R., Borman, D. and C. Partridge, "Computing the
            Internet checksum", RFC 1071, September 1988.




Hinden                      Standards Track                    [Page 24]

RFC 3768                          VRRP                        April 2004


  [HSRP]    Li, T., Cole, B., Morton, P. and D. Li, "Cisco Hot Standby
            Router Protocol (HSRP)", RFC 2281, March 1998.

  [IPSTB]   Higginson, P. and M. Shand, "Development of Router Clusters
            to Provide Fast Failover in IP Networks", Digital Technical
            Journal, Volume 9 Number 3, Winter 1997.

  [IPX]     Novell Incorporated., "IPX Router Specification", Version
            1.10, October 1992.

  [RFC1469] Pusateri, T., "IP Multicast over Token Ring Local Area
            Networks", RFC 1469, June 1993.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2338] Knight, S., Weaver, D., Whipple, D., Hinden, R., Mitzel,
            D., Hunt, P., Higginson, P., Shand, M. and A. Lindem,
            "Virtual Router Redundancy Protocol", RFC 2338, April 1998.

  [TKARCH]  IBM Token-Ring Network, Architecture Reference, Publication
            SC30-3374-02, Third Edition, (September, 1989).

12.2.  Informative References

  [DISC]    Deering, S., Ed., "ICMP Router Discovery Messages", RFC
            1256, September 1991.

  [DHCP]    Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
            March 1997.

  [OSPF]    Moy, J., "OSPF version 2", STD 54, RFC 2328, April 1998.

  [RIP]     Malkin, G., "RIP Version 2", STD 56, RFC 2453, November
            1998.

13.  Changes from RFC 2338

  -  Moved authors of RFC 2338 to new Contributers section to comply
     with RFC editor policy and listed R. Hinden as Editor.
  -  Removed authentication methods from VRRP.  Changes included:
     o  Removed the values for password and IPSEC based authentication.
        The fields and values are retained to keep backwards
        compatibility with RFC 2338.
     o  Removed section on extensible security
     o  Updated security consideration section to remove discussion of
        different authentication methods and added new text explaining
        motivation for change and describe vulnerabilities.



Hinden                      Standards Track                    [Page 25]

RFC 3768                          VRRP                        April 2004


  -  Revised the section 4 examples text with a clearer description of
     mapping of IP address owner, priorities, etc.
  -  Clarify the section 7.1 text describing address list validation.
  -  Corrected text in Preempt_Mode definition.
  -  Changed authentication to be per Virtual Router instead of per
     Interface.
  -  Added new subsection (9.3) stating that VRRP over ATM LANE is
     beyond the scope of this document.
  -  Clarified text describing received packet length check.
  -  Clarified text describing received authentication check.
  -  Clarified text describing VRID verification check.
  -  Added new subsection (8.4) describing need to not forward packets
     for adopted IP addresses.
  -  Added clarification to the security considerations section.
  -  Added reference for computing the internet checksum.
  -  Updated references and author information.
  -  Various small editorial changes.

14.  Editor's Address

  Robert Hinden
  Nokia
  313 Fairchild Drive
  Mountain View, CA 94043
  US

  Phone: +1 650 625-2004
  EMail: [email protected]























Hinden                      Standards Track                    [Page 26]

RFC 3768                          VRRP                        April 2004


15.  Full Copyright Statement

  Copyright (C) The Internet Society (2004).  This document is subject
  to the rights, licenses and restrictions contained in BCP 78, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
  REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
  INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
  IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed
  to pertain to the implementation or use of the technology
  described in this document or the extent to which any license
  under such rights might or might not be available; nor does it
  represent that it has made any independent effort to identify any
  such rights.  Information on the procedures with respect to
  rights in RFC documents can be found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use
  of such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository
  at http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention
  any copyrights, patents or patent applications, or other
  proprietary rights that may cover technology that may be required
  to implement this standard.  Please address the information to the
  IETF at [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.









Hinden                      Standards Track                    [Page 27]