Network Working Group                                          J. Satran
Request for Comments: 3720                                       K. Meth
Category: Standards Track                                            IBM
                                                         C. Sapuntzakis
                                                          Cisco Systems
                                                         M. Chadalapaka
                                                    Hewlett-Packard Co.
                                                             E. Zeidner
                                                                    IBM
                                                             April 2004


          Internet Small Computer Systems Interface (iSCSI)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes a transport protocol for Internet Small
  Computer Systems Interface (iSCSI) that works on top of TCP.  The
  iSCSI protocol aims to be fully compliant with the standardized SCSI
  architecture model.

  SCSI is a popular family of protocols that enable systems to
  communicate with I/O devices, especially storage devices.  SCSI
  protocols are request/response application protocols with a common
  standardized architecture model and basic command set, as well as
  standardized command sets for different device classes (disks, tapes,
  media-changers etc.).

  As system interconnects move from the classical bus structure to a
  network structure, SCSI has to be mapped to network transport
  protocols.  IP networks now meet the performance requirements of fast
  system interconnects and as such are good candidates to "carry" SCSI.







Satran, et al.              Standards Track                     [Page 1]

RFC 3720                         iSCSI                        April 2004


Table of Contents

  1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   9
  2.  Definitions and Acronyms. . . . . . . . . . . . . . . . . . .  10
      2.1.   Definitions. . . . . . . . . . . . . . . . . . . . . .  10
      2.2.   Acronyms . . . . . . . . . . . . . . . . . . . . . . .  14
      2.3.   Conventions. . . . . . . . . . . . . . . . . . . . . .  16
             2.3.1.    Word Rule. . . . . . . . . . . . . . . . . .  16
             2.3.2.    Half-Word Rule . . . . . . . . . . . . . . .  17
             2.3.3.    Byte Rule. . . . . . . . . . . . . . . . . .  17
  3.  Overview. . . . . . . . . . . . . . . . . . . . . . . . . . .  17
      3.1.   SCSI Concepts. . . . . . . . . . . . . . . . . . . . .  17
      3.2.   iSCSI Concepts and Functional Overview . . . . . . . .  18
             3.2.1.    Layers and Sessions. . . . . . . . . . . . .  19
             3.2.2.    Ordering and iSCSI Numbering . . . . . . . .  19
                       3.2.2.1.   Command Numbering and
                                  Acknowledging . . . . . . . . . .  20
                       3.2.2.2.   Response/Status Numbering and
                                  Acknowledging . . . . . . . . . .  23
                       3.2.2.3.   Data Sequencing   . . . . . . . .  24
             3.2.3.    iSCSI Login. . . . . . . . . . . . . . . . .  24
             3.2.4.    iSCSI Full Feature Phase . . . . . . . . . .  25
                       3.2.4.1.   Command Connection Allegiance . .  26
                       3.2.4.2.   Data Transfer Overview. . . . . .  27
                       3.2.4.3.   Tags and Integrity Checks . . . .  28
                       3.2.4.4.   Task Management . . . . . . . . .  28
             3.2.5.    iSCSI Connection Termination . . . . . . . .  29
             3.2.6.    iSCSI Names. . . . . . . . . . . . . . . . .  29
                       3.2.6.1.   iSCSI Name Properties . . . . . .  30
                       3.2.6.2.   iSCSI Name Encoding . . . . . . .  31
                       3.2.6.3.   iSCSI Name Structure. . . . . . .  32
                                  3.2.6.3.1.  Type "iqn." (iSCSI
                                              Qualified Name) . . .  32
                                  3.2.6.3.2.  Type "eui." (IEEE
                                              EUI-64 format). . . .  34
             3.2.7.    Persistent State . . . . . . . . . . . . . .  34
             3.2.8.    Message Synchronization and Steering . . . .  35
                       3.2.8.1.   Sync/Steering and iSCSI PDU
                                  Length  . . . . . . . . . . . . .  36
      3.3.   iSCSI Session Types. . . . . . . . . . . . . . . . . .  36
      3.4.   SCSI to iSCSI Concepts Mapping Model . . . . . . . . .  37
             3.4.1.    iSCSI Architecture Model . . . . . . . . . .  37
             3.4.2.    SCSI Architecture Model. . . . . . . . . . .  39
             3.4.3.    Consequences of the Model. . . . . . . . . .  41
                       3.4.3.1.   I_T Nexus State . . . . . . . . .  42
      3.5.   Request/Response Summary . . . . . . . . . . . . . . .  42
             3.5.1.    Request/Response Types Carrying SCSI Payload  43
                       3.5.1.1.   SCSI-Command  . . . . . . . . . .  43



Satran, et al.              Standards Track                     [Page 2]

RFC 3720                         iSCSI                        April 2004


                       3.5.1.2.   SCSI-Response   . . . . . . . . .  43
                       3.5.1.3.   Task Management Function Request.  44
                       3.5.1.4.   Task Management Function Response  44
                       3.5.1.5.   SCSI Data-Out and SCSI Data-In. .  44
                       3.5.1.6.   Ready To Transfer (R2T) . . . . .  45
             3.5.2.    Requests/Responses carrying SCSI and iSCSI
                       Payload. . . . . . . . . . . . . . . . . . .  46
                       3.5.2.1.   Asynchronous Message. . . . . . .  46
             3.5.3.    Requests/Responses Carrying iSCSI Only
                       Payload. . . . . . . . . . . . . . . . . . .  46
                       3.5.3.1.   Text Request and Text Response. .  46
                       3.5.3.2.   Login Request and Login Response.  47
                       3.5.3.3.   Logout Request and Response . . .  47
                       3.5.3.4.   SNACK Request . . . . . . . . . .  48
                       3.5.3.5.   Reject. . . . . . . . . . . . . .  48
                       3.5.3.6.   NOP-Out Request and NOP-In
                                  Response  . . . . . . . . . . . .  48
  4.  SCSI Mode Parameters for iSCSI. . . . . . . . . . . . . . . .  48
  5.  Login and Full Feature Phase Negotiation. . . . . . . . . . .  48
      5.1.   Text Format. . . . . . . . . . . . . . . . . . . . . .  50
      5.2.   Text Mode Negotiation. . . . . . . . . . . . . . . . .  53
             5.2.1.    List negotiations. . . . . . . . . . . . . .  56
             5.2.2.    Simple-value Negotiations. . . . . . . . . .  56
      5.3.   Login Phase. . . . . . . . . . . . . . . . . . . . . .  57
             5.3.1.    Login Phase Start. . . . . . . . . . . . . .  60
             5.3.2.    iSCSI Security Negotiation . . . . . . . . .  62
             5.3.3.    Operational Parameter Negotiation During
                       the Login Phase. . . . . . . . . . . . . . .  63
             5.3.4.    Connection Reinstatement . . . . . . . . . .  64
             5.3.5.    Session Reinstatement, Closure, and Timeout.  64
                                  5 5.3.5.1.  Loss of Nexus
                                              Notification. . . . .  65
             5.3.6.    Session Continuation and Failure . . . . . .  65
      5.4.   Operational Parameter Negotiation Outside the Login
             Phase. . . . . . . . . . . . . . . . . . . . . . . . .  66
  6.  iSCSI Error Handling and Recovery . . . . . . . . . . . . . .  67
      6.1.   Overview . . . . . . . . . . . . . . . . . . . . . . .  67
             6.1.1.    Background . . . . . . . . . . . . . . . . .  67
             6.1.2.    Goals. . . . . . . . . . . . . . . . . . . .  67
             6.1.3.    Protocol Features and State Expectations . .  68
             6.1.4.    Recovery Classes . . . . . . . . . . . . . .  69
                       6.1.4.1.   Recovery Within-command . . . . .  69
                       6.1.4.2.   Recovery Within-connection. . . .  70
                       6.1.4.3.   Connection Recovery . . . . . . .  71
                       6.1.4.4.   Session Recovery. . . . . . . . .  72
             6.1.5.  Error Recovery Hierarchy . . . . . . . . . . .  72
      6.2.   Retry and Reassign in Recovery . . . . . . . . . . . .  74
             6.2.1.    Usage of Retry . . . . . . . . . . . . . . .  74



Satran, et al.              Standards Track                     [Page 3]

RFC 3720                         iSCSI                        April 2004


             6.2.2.    Allegiance Reassignment. . . . . . . . . . .  75
      6.3.   Usage Of Reject PDU in Recovery. . . . . . . . . . . .  76
      6.4.   Connection Timeout Management. . . . . . . . . . . . .  76
             6.4.1.    Timeouts on Transport Exception Events . . .  77
             6.4.2.    Timeouts on Planned Decommissioning. . . . .  77
      6.5.   Implicit Termination of Tasks. . . . . . . . . . . . .  77
      6.6.   Format Errors. . . . . . . . . . . . . . . . . . . . .  78
      6.7.   Digest Errors. . . . . . . . . . . . . . . . . . . . .  78
      6.8.   Sequence Errors. . . . . . . . . . . . . . . . . . . .  80
      6.9.   SCSI Timeouts. . . . . . . . . . . . . . . . . . . . .  81
      6.10.  Negotiation Failures . . . . . . . . . . . . . . . . .  81
      6.11.  Protocol Errors. . . . . . . . . . . . . . . . . . . .  82
      6.12.  Connection Failures. . . . . . . . . . . . . . . . . .  82
      6.13.  Session Errors . . . . . . . . . . . . . . . . . . . .  83
  7.  State Transitions . . . . . . . . . . . . . . . . . . . . . .  84
      7.1.   Standard Connection State Diagrams . . . . . . . . . .  84
             7.1.1.    State Descriptions for Initiators and
                       Targets. . . . . . . . . . . . . . . . . . .  84
             7.1.2.    State Transition Descriptions for Initiators
                       and Targets. . . . . . . . . . . . . . . . .  85
             7.1.3.    Standard Connection State Diagram for an
                       Initiator. . . . . . . . . . . . . . . . . .  88
             7.1.4.    Standard Connection State Diagram for a
                       Target . . . . . . . . . . . . . . . . . . .  90
      7.2.   Connection Cleanup State Diagram for Initiators and
             Targets. . . . . . . . . . . . . . . . . . . . . . . .  92
             7.2.1.    State Descriptions for Initiators and
                       Targets. . . . . . . . . . . . . . . . . . .  94
             7.2.2.    State Transition Descriptions for Initiators
                       and Targets. . . . . . . . . . . . . . . . .  94
      7.3.   Session State Diagrams . . . . . . . . . . . . . . . .  95
             7.3.1.    Session State Diagram for an Initiator . . .  95
             7.3.2.    Session State Diagram for a Target . . . . .  96
             7.3.3.    State Descriptions for Initiators and
                       Targets. . . . . . . . . . . . . . . . . . .  97
             7.3.4.    State Transition Descriptions for Initiators
                       and Targets. . . . . . . . . . . . . . . . .  98
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .  99
      8.1.   iSCSI Security Mechanisms. . . . . . . . . . . . . . . 100
      8.2.   In-band Initiator-Target Authentication. . . . . . . . 100
             8.2.1.    CHAP Considerations. . . . . . . . . . . . . 101
             8.2.2.    SRP Considerations . . . . . . . . . . . . . 103
      8.3.   IPsec. . . . . . . . . . . . . . . . . . . . . . . . . 104
             8.3.1.    Data Integrity and Authentication. . . . . . 104
             8.3.2.    Confidentiality. . . . . . . . . . . . . . . 105
             8.3.3.    Policy, Security Associations, and
                       Cryptographic Key Management . . . . . . . . 105
  9.  Notes to Implementers . . . . . . . . . . . . . . . . . . . . 106



Satran, et al.              Standards Track                     [Page 4]

RFC 3720                         iSCSI                        April 2004


      9.1.   Multiple Network Adapters. . . . . . . . . . . . . . . 106
             9.1.1.    Conservative Reuse of ISIDs. . . . . . . . . 107
             9.1.2.    iSCSI Name, ISID, and TPGT Use . . . . . . . 107
      9.2.   Autosense and Auto Contingent Allegiance (ACA) . . . . 109
      9.3.   iSCSI Timeouts . . . . . . . . . . . . . . . . . . . . 109
      9.4.   Command Retry and Cleaning Old Command Instances . . . 110
      9.5.   Synch and Steering Layer and Performance . . . . . . . 110
      9.6.   Considerations for State-dependent Devices and
             Long-lasting SCSI Operations . . . . . . . . . . . . . 111
             9.6.1.    Determining the Proper ErrorRecoveryLevel. . 112
  10. iSCSI PDU Formats . . . . . . . . . . . . . . . . . . . . . . 112
      10.1.  iSCSI PDU Length and Padding . . . . . . . . . . . . . 113
      10.2.  PDU Template, Header, and Opcodes. . . . . . . . . . . 113
             10.2.1.   Basic Header Segment (BHS) . . . . . . . . . 114
                       10.2.1.1.  I . . . . . . . . . . . . . . . . 115
                       10.2.1.2.  Opcode. . . . . . . . . . . . . . 115
                       10.2.1.3.  Final (F) bit . . . . . . . . . . 116
                       10.2.1.4.  Opcode-specific Fields. . . . . . 116
                       10.2.1.5.  TotalAHSLength. . . . . . . . . . 116
                       10.2.1.6.  DataSegmentLength . . . . . . . . 116
                       10.2.1.7.  LUN . . . . . . . . . . . . . . . 116
                       10.2.1.8.  Initiator Task Tag. . . . . . . . 117
             10.2.2.  Additional Header Segment (AHS) . . . . . . . 117
                       10.2.2.1.  AHSType . . . . . . . . . . . . . 117
                       10.2.2.2.  AHSLength . . . . . . . . . . . . 117
                       10.2.2.3.  Extended CDB AHS. . . . . . . . . 118
                       10.2.2.4.  Bidirectional Expected Read-Data
                                  Length AHS. . . . . . . . . . . . 118
             10.2.3.   Header Digest and Data Digest. . . . . . . . 118
             10.2.4.   Data Segment . . . . . . . . . . . . . . . . 119
      10.3.  SCSI Command . . . . . . . . . . . . . . . . . . . . . 119
             10.3.1.   Flags and Task Attributes (byte 1) . . . . . 120
             10.3.2.   CmdSN - Command Sequence Number. . . . . . . 120
             10.3.3.   ExpStatSN. . . . . . . . . . . . . . . . . . 120
             10.3.4.   Expected Data Transfer Length. . . . . . . . 121
             10.3.5.   CDB - SCSI Command Descriptor Block. . . . . 121
             10.3.6.   Data Segment - Command Data. . . . . . . . . 121
      10.4.  SCSI Response. . . . . . . . . . . . . . . . . . . . . 122
             10.4.1.   Flags (byte 1) . . . . . . . . . . . . . . . 123
             10.4.2.   Status . . . . . . . . . . . . . . . . . . . 123
             10.4.3.   Response . . . . . . . . . . . . . . . . . . 124
             10.4.4.   SNACK Tag. . . . . . . . . . . . . . . . . . 125
             10.4.5.   Residual Count . . . . . . . . . . . . . . . 125
             10.4.6.   Bidirectional Read Residual Count. . . . . . 125
             10.4.7.   Data Segment - Sense and Response Data
                       Segment. . . . . . . . . . . . . . . . . . . 125
                       10.4.7.1.  SenseLength . . . . . . . . . . . 126
                       10.4.7.2.  Sense Data. . . . . . . . . . . . 126



Satran, et al.              Standards Track                     [Page 5]

RFC 3720                         iSCSI                        April 2004


             10.4.8.   ExpDataSN. . . . . . . . . . . . . . . . . . 127
             10.4.9.   StatSN - Status Sequence Number. . . . . . . 127
             10.4.10.  ExpCmdSN - Next Expected CmdSN from this
                       Initiator. . . . . . . . . . . . . . . . . . 128
             10.4.11.  MaxCmdSN - Maximum CmdSN from this Initiator 128
      10.5.  Task Management Function Request . . . . . . . . . . . 129
             10.5.1.   Function . . . . . . . . . . . . . . . . . . 129
             10.5.2.   TotalAHSLength and DataSegmentLength . . . . 132
             10.5.3.   LUN. . . . . . . . . . . . . . . . . . . . . 132
             10.5.4.   Referenced Task Tag. . . . . . . . . . . . . 132
             10.5.5.   RefCmdSN . . . . . . . . . . . . . . . . . . 132
             10.5.6.   ExpDataSN. . . . . . . . . . . . . . . . . . 133
      10.6.  Task Management Function Response. . . . . . . . . . . 134
             10.6.1.   Response . . . . . . . . . . . . . . . . . . 134
             10.6.2.   Task Management Actions on Task Sets . . . . 136
             10.6.3.   TotalAHSLength and DataSegmentLength . . . . 137
      10.7.  SCSI Data-Out & SCSI Data-In . . . . . . . . . . . . . 137
             10.7.1.   F (Final) Bit. . . . . . . . . . . . . . . . 139
             10.7.2.   A (Acknowledge) Bit. . . . . . . . . . . . . 139
             10.7.3.   Flags (byte 1) . . . . . . . . . . . . . . . 140
             10.7.4.   Target Transfer Tag and LUN. . . . . . . . . 140
             10.7.5.   DataSN . . . . . . . . . . . . . . . . . . . 141
             10.7.6.   Buffer Offset. . . . . . . . . . . . . . . . 141
             10.7.7.   DataSegmentLength. . . . . . . . . . . . . . 141
      10.8.  Ready To Transfer (R2T). . . . . . . . . . . . . . . . 142
             10.8.1.   TotalAHSLength and DataSegmentLength . . . . 143
             10.8.2.   R2TSN. . . . . . . . . . . . . . . . . . . . 143
             10.8.3.   StatSN . . . . . . . . . . . . . . . . . . . 144
             10.8.4.   Desired Data Transfer Length and Buffer
                       Offset . . . . . . . . . . . . . . . . . . . 144
             10.8.5.   Target Transfer Tag. . . . . . . . . . . . . 144
      10.9.  Asynchronous Message . . . . . . . . . . . . . . . . . 145
             10.9.1.   AsyncEvent . . . . . . . . . . . . . . . . . 146
             10.9.2.   AsyncVCode . . . . . . . . . . . . . . . . . 147
             10.9.3.   LUN. . . . . . . . . . . . . . . . . . . . . 147
             10.9.4.   Sense Data and iSCSI Event Data. . . . . . . 148
                       10.9.4.1.  SenseLength . . . . . . . . . . . 148
      10.10. Text Request . . . . . . . . . . . . . . . . . . . . . 149
             10.10.1.  F (Final) Bit. . . . . . . . . . . . . . . . 150
             10.10.2.  C (Continue) Bit . . . . . . . . . . . . . . 150
             10.10.3.  Initiator Task Tag . . . . . . . . . . . . . 150
             10.10.4.  Target Transfer Tag. . . . . . . . . . . . . 150
             10.10.5.  Text . . . . . . . . . . . . . . . . . . . . 151
      10.11. Text Response. . . . . . . . . . . . . . . . . . . . . 152
             10.11.1.  F (Final) Bit. . . . . . . . . . . . . . . . 152
             10.11.2.  C (Continue) Bit . . . . . . . . . . . . . . 153
             10.11.3.  Initiator Task Tag . . . . . . . . . . . . . 153
             10.11.4.  Target Transfer Tag. . . . . . . . . . . . . 153



Satran, et al.              Standards Track                     [Page 6]

RFC 3720                         iSCSI                        April 2004


             10.11.5.  StatSN . . . . . . . . . . . . . . . . . . . 154
             10.11.6.  Text Response Data . . . . . . . . . . . . . 154
      10.12. Login Request. . . . . . . . . . . . . . . . . . . . . 154
             10.12.1.  T (Transit) Bit. . . . . . . . . . . . . . . 155
             10.12.2.  C (Continue) Bit . . . . . . . . . . . . . . 155
             10.12.3.  CSG and NSG. . . . . . . . . . . . . . . . . 156
             10.12.4.  Version. . . . . . . . . . . . . . . . . . . 156
                       10.12.4.1.  Version-max. . . . . . . . . . . 156
                       10.12.4.2.  Version-min. . . . . . . . . . . 156
             10.12.5.  ISID . . . . . . . . . . . . . . . . . . . . 157
             10.12.6.  TSIH . . . . . . . . . . . . . . . . . . . . 158
             10.12.7.  Connection ID - CID. . . . . . . . . . . . . 158
             10.12.8.  CmdSN. . . . . . . . . . . . . . . . . . . . 159
             10.12.9.  ExpStatSN. . . . . . . . . . . . . . . . . . 159
             10.12.10. Login Parameters . . . . . . . . . . . . . . 159
      10.13. Login Response . . . . . . . . . . . . . . . . . . . . 160
             10.13.1.  Version-max. . . . . . . . . . . . . . . . . 160
             10.13.2.  Version-active . . . . . . . . . . . . . . . 161
             10.13.3.  TSIH . . . . . . . . . . . . . . . . . . . . 161
             10.13.4.  StatSN . . . . . . . . . . . . . . . . . . . 161
             10.13.5.  Status-Class and Status-Detail . . . . . . . 161
             10.13.6.  T (Transit) Bit. . . . . . . . . . . . . . . 164
             10.13.7.  C (Continue) Bit . . . . . . . . . . . . . . 164
             10.13.8.  Login Parameters . . . . . . . . . . . . . . 164
      10.14. Logout Request . . . . . . . . . . . . . . . . . . . . 165
             10.14.1.  Reason Code. . . . . . . . . . . . . . . . . 167
             10.14.2.  TotalAHSLength and DataSegmentLength . . . . 168
             10.14.3.  CID. . . . . . . . . . . . . . . . . . . . . 168
             10.14.4.  ExpStatSN. . . . . . . . . . . . . . . . . . 168
             10.14.5.  Implicit termination of tasks. . . . . . . . 168
      10.15. Logout Response. . . . . . . . . . . . . . . . . . . . 169
             10.15.1.  Response . . . . . . . . . . . . . . . . . . 170
             10.15.2.  TotalAHSLength and DataSegmentLength . . . . 170
             10.15.3.  Time2Wait. . . . . . . . . . . . . . . . . . 170
             10.15.4.  Time2Retain. . . . . . . . . . . . . . . . . 170
      10.16. SNACK Request. . . . . . . . . . . . . . . . . . . . . 171
             10.16.1.  Type . . . . . . . . . . . . . . . . . . . . 172
             10.16.2.  Data Acknowledgement . . . . . . . . . . . . 173
             10.16.3.  Resegmentation . . . . . . . . . . . . . . . 173
             10.16.4.  Initiator Task Tag . . . . . . . . . . . . . 174
             10.16.5.  Target Transfer Tag or SNACK Tag . . . . . . 174
             10.16.6.  BegRun . . . . . . . . . . . . . . . . . . . 174
             10.16.7.  RunLength. . . . . . . . . . . . . . . . . . 174
      10.17. Reject . . . . . . . . . . . . . . . . . . . . . . . . 175
             10.17.1.  Reason . . . . . . . . . . . . . . . . . . . 176
             10.17.2.  DataSN/R2TSN . . . . . . . . . . . . . . . . 177
             10.17.3.  StatSN, ExpCmdSN and MaxCmdSN. . . . . . . . 177
             10.17.4.  Complete Header of Bad PDU . . . . . . . . . 177



Satran, et al.              Standards Track                     [Page 7]

RFC 3720                         iSCSI                        April 2004


      10.18. NOP-Out. . . . . . . . . . . . . . . . . . . . . . . . 178
             10.18.1.  Initiator Task Tag . . . . . . . . . . . . . 179
             10.18.2.  Target Transfer Tag. . . . . . . . . . . . . 179
             10.18.3.  Ping Data. . . . . . . . . . . . . . . . . . 179
      10.19. NOP-In . . . . . . . . . . . . . . . . . . . . . . . . 180
             10.19.1.  Target Transfer Tag. . . . . . . . . . . . . 181
             10.19.2.  StatSN . . . . . . . . . . . . . . . . . . . 181
             10.19.3.  LUN. . . . . . . . . . . . . . . . . . . . . 181
  11. iSCSI Security Text Keys and Authentication Methods . . . . . 181
      11.1.  AuthMethod . . . . . . . . . . . . . . . . . . . . . . 182
             11.1.1.   Kerberos . . . . . . . . . . . . . . . . . . 184
             11.1.2.   Simple Public-Key Mechanism (SPKM) . . . . . 184
             11.1.3.   Secure Remote Password (SRP) . . . . . . . . 185
             11.1.4.   Challenge Handshake Authentication Protocol
                       (CHAP) . . . . . . . . . . . . . . . . . . . 186
  12. Login/Text Operational Text Keys. . . . . . . . . . . . . . . 187
      12.1.  HeaderDigest and DataDigest. . . . . . . . . . . . . . 188
      12.2.  MaxConnections . . . . . . . . . . . . . . . . . . . . 190
      12.3.  SendTargets. . . . . . . . . . . . . . . . . . . . . . 191
      12.4.  TargetName . . . . . . . . . . . . . . . . . . . . . . 191
      12.5.  InitiatorName. . . . . . . . . . . . . . . . . . . . . 192
      12.6.  TargetAlias. . . . . . . . . . . . . . . . . . . . . . 192
      12.7.  InitiatorAlias . . . . . . . . . . . . . . . . . . . . 193
      12.8.  TargetAddress. . . . . . . . . . . . . . . . . . . . . 193
      12.9.  TargetPortalGroupTag . . . . . . . . . . . . . . . . . 194
      12.10. InitialR2T . . . . . . . . . . . . . . . . . . . . . . 194
      12.11. ImmediateData. . . . . . . . . . . . . . . . . . . . . 195
      12.12. MaxRecvDataSegmentLength . . . . . . . . . . . . . . . 196
      12.13. MaxBurstLength . . . . . . . . . . . . . . . . . . . . 196
      12.14. FirstBurstLength . . . . . . . . . . . . . . . . . . . 197
      12.15. DefaultTime2Wait . . . . . . . . . . . . . . . . . . . 197
      12.16. DefaultTime2Retain . . . . . . . . . . . . . . . . . . 198
      12.17. MaxOutstandingR2T. . . . . . . . . . . . . . . . . . . 198
      12.18. DataPDUInOrder . . . . . . . . . . . . . . . . . . . . 198
      12.19. DataSequenceInOrder. . . . . . . . . . . . . . . . . . 199
      12.20. ErrorRecoveryLevel . . . . . . . . . . . . . . . . . . 199
      12.21. SessionType. . . . . . . . . . . . . . . . . . . . . . 200
      12.22. The Private or Public Extension Key Format . . . . . . 200
  13. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 201
      13.1.  Naming Requirements. . . . . . . . . . . . . . . . . . 203
      13.2.  Mechanism Specification Requirements . . . . . . . . . 203
      13.3.  Publication Requirements . . . . . . . . . . . . . . . 203
      13.4.  Security Requirements. . . . . . . . . . . . . . . . . 203
      13.5.  Registration Procedure . . . . . . . . . . . . . . . . 204
             13.5.1.   Present the iSCSI extension item to the
                       Community. . . . . . . . . . . . . . . . . . 204
             13.5.2.   iSCSI extension item review and IESG
                       approval . . . . . . . . . . . . . . . . . . 204



Satran, et al.              Standards Track                     [Page 8]

RFC 3720                         iSCSI                        April 2004


             13.5.3.   IANA Registration. . . . . . . . . . . . . . 204
             13.5.4.   Standard iSCSI extension item-label format . 204
      13.6.  IANA Procedures for Registering iSCSI extension items. 205
  References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
  Appendix A. Sync and Steering with Fixed Interval Markers . . . . 209
      A.1.   Markers At Fixed Intervals . . . . . . . . . . . . . . 209
      A.2.   Initial Marker-less Interval . . . . . . . . . . . . . 210
      A.3.   Negotiation. . . . . . . . . . . . . . . . . . . . . . 210
             A.3.1.    OFMarker, IFMarker . . . . . . . . . . . . . 210
             A.3.2.    OFMarkInt, IFMarkInt . . . . . . . . . . . . 211
  Appendix B.  Examples . . . . . . . . . . . . . . . . . . . . . . 212
      B.1.   Read Operation Example . . . . . . . . . . . . . . . . 212
      B.2.   Write Operation Example. . . . . . . . . . . . . . . . 213
      B.3.   R2TSN/DataSN Use Examples. . . . . . . . . . . . . . . 214
      B.4.   CRC Examples . . . . . . . . . . . . . . . . . . . . . 217
  Appendix C.  Login Phase Examples . . . . . . . . . . . . . . . . 219
  Appendix D.  SendTargets Operation. . . . . . . . . . . . . . . . 229
  Appendix E.  Algorithmic Presentation of Error Recovery Classes . 233
      E.1.   General Data Structure and Procedure Description . . . 233
      E.2.   Within-command Error Recovery Algorithms . . . . . . . 234
             E.2.1.    Procedure Descriptions . . . . . . . . . . . 234
             E.2.2.    Initiator Algorithms . . . . . . . . . . . . 235
             E.2.3.    Target Algorithms. . . . . . . . . . . . . . 237
      E.3.   Within-connection Recovery Algorithms. . . . . . . . . 240
             E.3.1.    Procedure Descriptions . . . . . . . . . . . 240
             E.3.2.    Initiator Algorithms . . . . . . . . . . . . 241
             E.3.3.    Target Algorithms. . . . . . . . . . . . . . 243
      E.4.   Connection Recovery Algorithms . . . . . . . . . . . . 243
             E.4.1.    Procedure Descriptions . . . . . . . . . . . 243
             E.4.2.    Initiator Algorithms . . . . . . . . . . . . 244
             E.4.3.    Target Algorithms. . . . . . . . . . . . . . 246
  Appendix F.  Clearing Effects of Various Events on Targets. . . . 249
      F.1.   Clearing Effects on iSCSI Objects. . . . . . . . . . . 249
      F.2.   Clearing Effects on SCSI Objects . . . . . . . . . . . 253
  Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . 254
  Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . . . 256
  Full Copyright Statement. . . . . . . . . . . . . . . . . . . . . 257

1.  Introduction

  The Small Computer Systems Interface (SCSI) is a popular family of
  protocols for communicating with I/O devices, especially storage
  devices.  SCSI is a client-server architecture.  Clients of a SCSI
  interface are called "initiators".  Initiators issue SCSI "commands"
  to request services from components, logical units of a server known
  as a "target".  A "SCSI transport" maps the client-server SCSI
  protocol to a specific interconnect.  An Initiator is one endpoint of
  a SCSI transport and a target is the other endpoint.



Satran, et al.              Standards Track                     [Page 9]

RFC 3720                         iSCSI                        April 2004


  The SCSI protocol has been mapped over various transports, including
  Parallel SCSI, IPI, IEEE-1394 (firewire) and Fibre Channel.  These
  transports are I/O specific and have limited distance capabilities.

  The iSCSI protocol defined in this document describes a means of
  transporting SCSI packets over TCP/IP (see [RFC791], [RFC793],
  [RFC1035], [RFC1122]), providing for an interoperable solution which
  can take advantage of existing Internet infrastructure, Internet
  management facilities, and address distance limitations.

2.  Definitions and Acronyms

2.1.  Definitions

  - Alias: An alias string can also be associated with an iSCSI Node.
    The alias allows an organization to associate a user-friendly
    string with the iSCSI Name.  However, the alias string is not a
    substitute for the iSCSI Name.

  - CID (Connection ID): Connections within a session are identified by
    a connection ID.  It is a unique ID for this connection within the
    session for the initiator.  It is generated by the initiator and
    presented to the target during login requests and during logouts
    that close connections.

  - Connection: A connection is a TCP connection.  Communication
    between the initiator and target occurs over one or more TCP
    connections.  The TCP connections carry control messages, SCSI
    commands, parameters, and data within iSCSI Protocol Data Units
    (iSCSI PDUs).

  - iSCSI Device: A SCSI Device using an iSCSI service delivery
    subsystem.  Service Delivery Subsystem is defined by [SAM2] as a
    transport mechanism for SCSI commands and responses.

  - iSCSI Initiator Name: The iSCSI Initiator Name specifies the
    worldwide unique name of the initiator.

  - iSCSI Initiator Node: The "initiator".  The word "initiator" has
    been appropriately qualified as either a port or a device in the
    rest of the document when the context is ambiguous.  All
    unqualified usages of "initiator" refer to an initiator port (or
    device) depending on the context.

  - iSCSI Layer: This layer builds/receives iSCSI PDUs and
    relays/receives them to/from one or more TCP connections that form
    an initiator-target "session".




Satran, et al.              Standards Track                    [Page 10]

RFC 3720                         iSCSI                        April 2004


  - iSCSI Name: The name of an iSCSI initiator or iSCSI target.

  - iSCSI Node: The iSCSI Node represents a single iSCSI initiator or
    iSCSI target.  There are one or more iSCSI Nodes within a Network
    Entity.  The iSCSI Node is accessible via one or more Network
    Portals.  An iSCSI Node is identified by its iSCSI Name.  The
    separation of the iSCSI Name from the addresses used by and for the
    iSCSI Node allows multiple iSCSI Nodes to use the same address, and
    the same iSCSI Node to use multiple addresses.

  - iSCSI Target Name: The iSCSI Target Name specifies the worldwide
    unique name of the target.

  - iSCSI Target Node: The "target".

  - iSCSI Task: An iSCSI task is an iSCSI request for which a response
    is expected.

  - iSCSI Transfer Direction: The iSCSI transfer direction is defined
    with regard to the initiator.  Outbound or outgoing transfers are
    transfers from the initiator to the target, while inbound or
    incoming transfers are from the target to the initiator.

  - ISID: The initiator part of the Session Identifier.  It is
    explicitly specified by the initiator during Login.

  - I_T nexus: According to [SAM2], the I_T nexus is a relationship
    between a SCSI Initiator Port and a SCSI Target Port.  For iSCSI,
    this relationship is a session, defined as a relationship between
    an iSCSI Initiator's end of the session (SCSI Initiator Port) and
    the iSCSI Target's Portal Group.  The I_T nexus can be identified
    by the conjunction of the SCSI port names; that is, the I_T nexus
    identifier is the tuple (iSCSI Initiator Name + ',i,'+ ISID, iSCSI
    Target Name + ',t,'+ Portal Group Tag).

  - Network Entity: The Network Entity represents a device or gateway
    that is accessible from the IP network.  A Network Entity must have
    one or more Network Portals, each of which can be used to gain
    access to the IP network by some iSCSI Nodes contained in that
    Network Entity.

  - Network Portal: The Network Portal is a component of a Network
    Entity that has a TCP/IP network address and that may be used by an
    iSCSI Node within that Network Entity for the connection(s) within
    one of its iSCSI sessions.  A Network Portal in an initiator is
    identified by its IP address.  A Network Portal in a target is
    identified by its IP address and its listening TCP port.




Satran, et al.              Standards Track                    [Page 11]

RFC 3720                         iSCSI                        April 2004


  - Originator: In a negotiation or exchange, the party that initiates
    the negotiation or exchange.

  - PDU (Protocol Data Unit): The initiator and target divide their
    communications into messages.  The term "iSCSI protocol data unit"
    (iSCSI PDU) is used for these messages.

  - Portal Groups: iSCSI supports multiple connections within the same
    session; some implementations will have the ability to combine
    connections in a session across multiple Network Portals.  A Portal
    Group defines a set of Network Portals within an iSCSI Network
    Entity that collectively supports the capability of coordinating a
    session with connections spanning these portals.  Not all Network
    Portals within a Portal Group need participate in every session
    connected through that Portal Group.  One or more Portal Groups may
    provide access to an iSCSI Node.  Each Network Portal, as utilized
    by a given iSCSI Node, belongs to exactly one portal group within
    that node.

  - Portal Group Tag: This 16-bit quantity identifies a Portal Group
    within an iSCSI Node.  All Network Portals with the same portal
    group tag in the context of a given iSCSI Node are in the same
    Portal Group.

  - Recovery R2T: An R2T generated by a target upon detecting the loss
    of one or more Data-Out PDUs through one of the following means: a
    digest error, a sequence error, or a sequence reception timeout.  A
    recovery R2T carries the next unused R2TSN, but requests all or
    part of the data burst that an earlier R2T (with a lower R2TSN) had
    already requested.

  - Responder: In a negotiation or exchange, the party that responds to
    the originator of the negotiation or exchange.

  - SCSI Device: This is the SAM2 term for an entity that contains one
    or more SCSI ports that are connected to a service delivery
    subsystem and supports a SCSI application protocol.  For example, a
    SCSI Initiator Device contains one or more SCSI Initiator Ports and
    zero or more application clients.  A Target Device contains one or
    more SCSI Target Ports and one or more device servers and
    associated logical units.  For iSCSI, the SCSI Device is the
    component within an iSCSI Node that provides the SCSI
    functionality.  As such, there can be at most, one SCSI Device
    within a given iSCSI Node.  Access to the SCSI Device can only be
    achieved in an iSCSI normal operational session.  The SCSI Device
    Name is defined to be the iSCSI Name of the node.





Satran, et al.              Standards Track                    [Page 12]

RFC 3720                         iSCSI                        April 2004


  - SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor
    Blocks) and relays/receives them with the remaining command execute
    [SAM2] parameters to/from the iSCSI Layer.

  - Session: The group of TCP connections that link an initiator with a
    target form a session (loosely equivalent to a SCSI I-T nexus).
    TCP connections can be added and removed from a session.  Across
    all connections within a session, an initiator sees one and the
    same target.

  - SCSI Initiator Port: This maps to the endpoint of an iSCSI normal
    operational session.  An iSCSI normal operational session is
    negotiated through the login process between an iSCSI initiator
    node and an iSCSI target node.  At successful completion of this
    process, a SCSI Initiator Port is created within the SCSI Initiator
    Device.  The SCSI Initiator Port Name and SCSI Initiator Port
    Identifier are both defined to be the iSCSI Initiator Name together
    with (a) a label that identifies it as an initiator port
    name/identifier and (b) the ISID portion of the session identifier.

  - SCSI Port: This is the SAM2 term for an entity in a SCSI Device
    that provides the SCSI functionality to interface with a service
    delivery subsystem.  For iSCSI, the definition of the SCSI
    Initiator Port and the SCSI Target Port are different.

  - SCSI Port Name: A name made up as UTF-8 [RFC2279] characters and
    includes the iSCSI Name + 'i' or 't' + ISID or Portal Group Tag.


  - SCSI Target Port: This maps to an iSCSI Target Portal Group.

  - SCSI Target Port Name and SCSI Target Port Identifier: These are
    both defined to be the iSCSI Target Name together with (a) a label
    that identifies it as a target port name/identifier and (b) the
    portal group tag.

  - SSID (Session ID): A session between an iSCSI initiator and an
    iSCSI target is defined by a session ID that is a tuple composed of
    an initiator part (ISID) and a target part (Target Portal Group
    Tag).  The ISID is explicitly specified by the initiator at session
    establishment.  The Target Portal Group Tag is implied by the
    initiator through the selection of the TCP endpoint at connection
    establishment.  The TargetPortalGroupTag key must also be returned
    by the target as a confirmation during connection establishment
    when TargetName is given.

  - Target Portal Group Tag: A numerical identifier (16-bit) for an
    iSCSI Target Portal Group.



Satran, et al.              Standards Track                    [Page 13]

RFC 3720                         iSCSI                        April 2004


  - TSIH (Target Session Identifying Handle): A target assigned tag for
    a session with a specific named initiator.  The target generates it
    during session establishment.  Its internal format and content are
    not defined by this protocol, except for the value 0 that is
    reserved and used by the initiator to indicate a new session.  It
    is given to the target during additional connection establishment
    for the same session.

2.2.  Acronyms

  Acronym     Definition
  ------------------------------------------------------------
  3DES        Triple Data Encryption Standard
  ACA         Auto Contingent Allegiance
  AEN         Asynchronous Event Notification
  AES         Advanced Encryption Standard
  AH          Additional Header (not the IPsec AH!)
  AHS         Additional Header Segment
  API         Application Programming Interface
  ASC         Additional Sense Code
  ASCII       American Standard Code for Information Interchange
  ASCQ        Additional Sense Code Qualifier
  BHS         Basic Header Segment
  CBC         Cipher Block Chaining
  CD          Compact Disk
  CDB         Command Descriptor Block
  CHAP        Challenge Handshake Authentication Protocol
  CID         Connection ID
  CO          Connection Only
  CRC         Cyclic Redundancy Check
  CRL         Certificate Revocation List
  CSG         Current Stage
  CSM         Connection State Machine
  DES         Data Encryption Standard
  DNS         Domain Name Server
  DOI         Domain of Interpretation
  DVD         Digital Versatile Disk
  ESP         Encapsulating Security Payload
  EUI         Extended Unique Identifier
  FFP         Full Feature Phase
  FFPO        Full Feature Phase Only
  FIM         Fixed Interval Marker
  Gbps        Gigabits per Second
  HBA         Host Bus Adapter
  HMAC        Hashed Message Authentication Code
  I_T         Initiator_Target
  I_T_L       Initiator_Target_LUN
  IANA        Internet Assigned Numbers Authority



Satran, et al.              Standards Track                    [Page 14]

RFC 3720                         iSCSI                        April 2004


  ID          Identifier
  IDN         Internationalized Domain Name
  IEEE        Institute of Electrical & Electronics Engineers
  IETF        Internet Engineering Task Force
  IKE         Internet Key Exchange
  I/O         Input - Output
  IO          Initialize Only
  IP          Internet Protocol
  IPsec       Internet Protocol Security
  IPv4        Internet Protocol Version 4
  IPv6        Internet Protocol Version 6
  IQN         iSCSI Qualified Name
  ISID        Initiator Session ID
  ITN         iSCSI Target Name
  ITT         Initiator Task Tag
  KRB5        Kerberos V5
  LFL         Lower Functional Layer
  LTDS        Logical-Text-Data-Segment
  LO          Leading Only
  LU          Logical Unit
  LUN         Logical Unit Number
  MAC         Message Authentication Codes
  NA          Not Applicable
  NIC         Network Interface Card
  NOP         No Operation
  NSG         Next Stage
  OS          Operating System
  PDU         Protocol Data Unit
  PKI         Public Key Infrastructure
  R2T         Ready To Transfer
  R2TSN       Ready To Transfer Sequence Number
  RDMA        Remote Direct Memory Access
  RFC         Request For Comments
  SAM         SCSI Architecture Model
  SAM2        SCSI Architecture Model - 2
  SAN         Storage Area Network
  SCSI        Small Computer Systems Interface
  SN          Sequence Number
  SNACK       Selective Negative Acknowledgment - also
              Sequence Number Acknowledgement for data
  SPKM        Simple Public-Key Mechanism
  SRP         Secure Remote Password
  SSID        Session ID
  SW          Session Wide
  TCB         Task Control Block
  TCP         Transmission Control Protocol
  TPGT        Target Portal Group Tag
  TSIH        Target Session Identifying Handle



Satran, et al.              Standards Track                    [Page 15]

RFC 3720                         iSCSI                        April 2004


  TTT         Target Transfer Tag
  UFL         Upper Functional Layer
  ULP         Upper Level Protocol
  URN         Uniform Resource Names [RFC2396]
  UTF         Universal Transformation Format
  WG          Working Group

2.3.  Conventions

  In examples, "I->" and "T->" show iSCSI PDUs sent by the initiator
  and target respectively.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14 [RFC2119].

  iSCSI messages - PDUs - are represented by diagrams as in the
  following example:

   Byte/     0       |       1       |       2       |       3       |
      /              |               |               |               |
     |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
     +---------------+---------------+---------------+---------------+
    0| Basic Header Segment (BHS)                                    |
     +---------------+---------------+---------------+---------------+
   ----------
    +|                                                               |
     +---------------+---------------+---------------+---------------+

  The diagrams include byte and bit numbering.

  The following representation and ordering rules are observed in this
  document:

    - Word Rule
    - Half-word Rule
    - Byte Rule

2.3.1.  Word Rule

  A word holds four consecutive bytes.  Whenever a word has numeric
  content, it is considered an unsigned number in base 2 positional
  representation with the lowest numbered byte (e.g., byte 0) bit 0
  representing 2**31 and bit 1 representing 2**30 through lowest
  numbered byte + 3 (e.g., byte 3) bit 7 representing 2**0.

  Decimal and hexadecimal representation of word values map this
  representation to decimal or hexadecimal positional notation.



Satran, et al.              Standards Track                    [Page 16]

RFC 3720                         iSCSI                        April 2004


2.3.2.  Half-Word Rule

  A half-word holds two consecutive bytes.  Whenever a half-word has
  numeric content it is considered an unsigned number in base 2
  positional representation with the lowest numbered byte (e.g., byte
  0), bit 0 representing 2**15 and bit 1 representing 2**14 through
  lowest numbered byte + 1 (e.g., byte 1), bit 7 representing 2**0.

  Decimal and hexadecimal representation of half-word values map this
  representation to decimal or hexadecimal positional notation.

2.3.3.  Byte Rule

  For every PDU, bytes are sent and received in increasing numbered
  order (network order).

  Whenever a byte has numerical content, it is considered an unsigned
  number in base 2 positional representation with bit 0 representing
  2**7 and bit 1 representing 2**6 through bit 7 representing 2**0.

3.  Overview

3.1.  SCSI Concepts

  The SCSI Architecture Model-2 [SAM2] describes in detail the
  architecture of the SCSI family of I/O protocols.  This section
  provides a brief background of the SCSI architecture and is intended
  to familiarize readers with its terminology.

  At the highest level, SCSI is a family of interfaces for requesting
  services from I/O devices, including hard drives, tape drives, CD and
  DVD drives, printers, and scanners.  In SCSI terminology, an
  individual I/O device is called a "logical unit" (LU).

  SCSI is a client-server architecture.  Clients of a SCSI interface
  are called "initiators".  Initiators issue SCSI "commands" to request
  services from components, logical units, of a server known as a
  "target".  The "device server" on the logical unit accepts SCSI
  commands and processes them.

  A "SCSI transport" maps the client-server SCSI protocol to a specific
  interconnect.  Initiators are one endpoint of a SCSI transport.  The
  "target" is the other endpoint.  A target can contain multiple
  Logical Units (LUs).  Each Logical Unit has an address within a
  target called a Logical Unit Number (LUN).

  A SCSI task is a SCSI command or possibly a linked set of SCSI
  commands.  Some LUs support multiple pending (queued) tasks, but the



Satran, et al.              Standards Track                    [Page 17]

RFC 3720                         iSCSI                        April 2004


  queue of tasks is managed by the logical unit.  The target uses an
  initiator provided "task tag" to distinguish between tasks.  Only one
  command in a task can be outstanding at any given time.

  Each SCSI command results in an optional data phase and a required
  response phase.  In the data phase, information can travel from the
  initiator to target (e.g., WRITE), target to initiator (e.g., READ),
  or in both directions.  In the response phase, the target returns the
  final status of the operation, including any errors.

  Command Descriptor Blocks (CDB) are the data structures used to
  contain the command parameters that an initiator sends to a target.
  The CDB content and structure is defined by [SAM2] and device-type
  specific SCSI standards.

3.2.  iSCSI Concepts and Functional Overview

  The iSCSI protocol is a mapping of the SCSI remote procedure
  invocation model (see [SAM2]) over the TCP protocol.  SCSI commands
  are carried by iSCSI requests and SCSI responses and status are
  carried by iSCSI responses.  iSCSI also uses the request response
  mechanism for iSCSI protocol mechanisms.

  For the remainder of this document, the terms "initiator" and
  "target" refer to "iSCSI initiator node" and "iSCSI target node",
  respectively (see Section 3.4.1 iSCSI Architecture Model) unless
  otherwise qualified.

  In keeping with similar protocols, the initiator and target divide
  their communications into messages.  This document uses the term
  "iSCSI protocol data unit" (iSCSI PDU) for these messages.

  For performance reasons, iSCSI allows a "phase-collapse".  A command
  and its associated data may be shipped together from initiator to
  target, and data and responses may be shipped together from targets.

  The iSCSI transfer direction is defined with respect to the
  initiator.  Outbound or outgoing transfers are transfers from an
  initiator to a target, while inbound or incoming transfers are from a
  target to an initiator.

  An iSCSI task is an iSCSI request for which a response is expected.

  In this document "iSCSI request", "iSCSI command", request, or
  (unqualified) command have the same meaning.  Also, unless otherwise
  specified, status, response, or numbered response have the same
  meaning.




Satran, et al.              Standards Track                    [Page 18]

RFC 3720                         iSCSI                        April 2004


3.2.1.  Layers and Sessions

  The following conceptual layering model is used to specify initiator
  and target actions and the way in which they relate to transmitted
  and received Protocol Data Units:

     a) the SCSI layer builds/receives SCSI CDBs (Command Descriptor
        Blocks) and passes/receives them with the remaining command
        execute parameters ([SAM2]) to/from

     b) the iSCSI layer that builds/receives iSCSI PDUs and
        relays/receives them to/from one or more TCP connections; the
        group of connections form an initiator-target "session".

  Communication between the initiator and target occurs over one or
  more TCP connections.  The TCP connections carry control messages,
  SCSI commands, parameters, and data within iSCSI Protocol Data Units
  (iSCSI PDUs).  The group of TCP connections that link an initiator
  with a target form a session (loosely equivalent to a SCSI I_T nexus,
  see Section 3.4.2 SCSI Architecture Model).  A session is defined by
  a session ID that is composed of an initiator part and a target part.
  TCP connections can be added and removed from a session.  Each
  connection within a session is identified by a connection ID (CID).

  Across all connections within a session, an initiator sees one
  "target image".  All target identifying elements, such as LUN, are
  the same.  A target also sees one "initiator image" across all
  connections within a session.  Initiator identifying elements, such
  as the Initiator Task Tag, are global across the session regardless
  of the connection on which they are sent or received.

  iSCSI targets and initiators MUST support at least one TCP connection
  and MAY support several connections in a session.  For error recovery
  purposes, targets and initiators that support a single active
  connection in a session SHOULD support two connections during
  recovery.

3.2.2.  Ordering and iSCSI Numbering

  iSCSI uses Command and Status numbering schemes and a Data sequencing
  scheme.

  Command numbering is session-wide and is used for ordered command
  delivery over multiple connections.  It can also be used as a
  mechanism for command flow control over a session.






Satran, et al.              Standards Track                    [Page 19]

RFC 3720                         iSCSI                        April 2004


  Status numbering is per connection and is used to enable missing
  status detection and recovery in the presence of transient or
  permanent communication errors.

  Data sequencing is per command or part of a command (R2T triggered
  sequence) and is used to detect missing data and/or R2T PDUs due to
  header digest errors.

  Typically, fields in the iSCSI PDUs communicate the Sequence Numbers
  between the initiator and target.  During periods when traffic on a
  connection is unidirectional, iSCSI NOP-Out/In PDUs may be utilized
  to synchronize the command and status ordering counters of the target
  and initiator.

  The iSCSI session abstraction is equivalent to the SCSI I_T nexus,
  and the iSCSI session provides an ordered command delivery from the
  SCSI initiator to the SCSI target.  For detailed design
  considerations that led to the iSCSI session model as it is defined
  here and how it relates the SCSI command ordering features defined in
  SCSI specifications to the iSCSI concepts see [CORD].

3.2.2.1.  Command Numbering and Acknowledging

  iSCSI performs ordered command delivery within a session.  All
  commands (initiator-to-target PDUs) in transit from the initiator to
  the target are numbered.

  iSCSI considers a task to be instantiated on the target in response
  to every request issued by the initiator.  A set of task management
  operations including abort and reassign (see Section 10.5 Task
  Management Function Request) may be performed on any iSCSI task.

  Some iSCSI tasks are SCSI tasks, and many SCSI activities are related
  to a SCSI task ([SAM2]).  In all cases, the task is identified by the
  Initiator Task Tag for the life of the task.

  The command number is carried by the iSCSI PDU as CmdSN
  (Command Sequence Number).  The numbering is session-wide.  Outgoing
  iSCSI PDUs carry this number.  The iSCSI initiator allocates CmdSNs
  with a 32-bit unsigned counter (modulo 2**32).  Comparisons and
  arithmetic on CmdSN use Serial Number Arithmetic as defined in
  [RFC1982] where SERIAL_BITS = 32.

  Commands meant for immediate delivery are marked with an immediate
  delivery flag; they MUST also carry the current CmdSN.  CmdSN does
  not advance after a command marked for immediate delivery is sent.





Satran, et al.              Standards Track                    [Page 20]

RFC 3720                         iSCSI                        April 2004


  Command numbering starts with the first login request on the first
  connection of a session (the leading login on the leading connection)
  and command numbers are incremented by 1 for every non-immediate
  command issued afterwards.

  If immediate delivery is used with task management commands, these
  commands may reach the target before the tasks on which they are
  supposed to act.  However their CmdSN serves as a marker of their
  position in the stream of commands.  The initiator and target must
  ensure that the task management commands act as specified by [SAM2].
  For example, both commands and responses appear as if delivered in
  order.  Whenever CmdSN for an outgoing PDU is not specified by an
  explicit rule, CmdSN will carry the current value of the local CmdSN
  variable (see later in this section).

  The means by which an implementation decides to mark a PDU for
  immediate delivery or by which iSCSI decides by itself to mark a PDU
  for immediate delivery are beyond the scope of this document.

  The number of commands used for immediate delivery is not limited and
  their delivery for execution is not acknowledged through the
  numbering scheme.  Immediate commands MAY be rejected by the iSCSI
  target layer due to a lack of resources.  An iSCSI target MUST be
  able to handle at least one immediate task management command and one
  immediate non-task-management iSCSI command per connection at any
  time.

  In this document, delivery for execution means delivery to the SCSI
  execution engine or an iSCSI protocol specific execution engine
  (e.g., for text requests with public or private extension keys
  involving an execution component).  With the exception of the
  commands marked for immediate delivery, the iSCSI target layer MUST
  deliver the commands for execution in the order specified by CmdSN.
  Commands marked for immediate delivery may be delivered by the iSCSI
  target layer for execution as soon as detected.  iSCSI may avoid
  delivering some commands to the SCSI target layer if required by a
  prior SCSI or iSCSI action (e.g., CLEAR TASK SET Task Management
  request received before all the commands on which it was supposed to
  act).

  On any connection, the iSCSI initiator MUST send the commands in
  increasing order of CmdSN, except for commands that are retransmitted
  due to digest error recovery and connection recovery.

  For the numbering mechanism, the initiator and target maintain the
  following three variables for each session:





Satran, et al.              Standards Track                    [Page 21]

RFC 3720                         iSCSI                        April 2004


     -  CmdSN - the current command Sequence Number, advanced by 1 on
        each command shipped except for commands marked for immediate
        delivery.  CmdSN always contains the number to be assigned to
        the next Command PDU.
     -  ExpCmdSN - the next expected command by the target.  The target
        acknowledges all commands up to, but not including, this
        number.  The initiator treats all commands with CmdSN less than
        ExpCmdSN as acknowledged.  The target iSCSI layer sets the
        ExpCmdSN to the largest non-immediate CmdSN that it can deliver
        for execution plus 1 (no holes in the CmdSN sequence).
     -  MaxCmdSN - the maximum number to be shipped.  The queuing
        capacity of the receiving iSCSI layer is MaxCmdSN - ExpCmdSN +
        1.

  The initiator's ExpCmdSN and MaxCmdSN are derived from
  target-to-initiator PDU fields.  Comparisons and arithmetic on
  ExpCmdSN and MaxCmdSN MUST use Serial Number Arithmetic as defined in
  [RFC1982] where SERIAL_BITS = 32.

  The target MUST NOT transmit a MaxCmdSN that is less than
  ExpCmdSN-1.  For non-immediate commands, the CmdSN field can take any
  value from ExpCmdSN to MaxCmdSN inclusive.  The target MUST silently
  ignore any non-immediate command outside of this range or non-
  immediate duplicates within the range.  The CmdSN carried by
  immediate commands may lie outside the ExpCmdSN to MaxCmdSN range.
  For example, if the initiator has previously sent a non-immediate
  command carrying the CmdSN equal to MaxCmdSN, the target window is
  closed.  For group task management commands issued as immediate
  commands, CmdSN indicates the scope of the group action (e.g., on
  ABORT TASK SET indicates which commands are aborted).

  MaxCmdSN and ExpCmdSN fields are processed by the initiator as
  follows:

     -  If the PDU MaxCmdSN is less than the PDU ExpCmdSN-1 (in Serial
        Arithmetic Sense), they are both ignored.
     -  If the PDU MaxCmdSN is greater than the local MaxCmdSN (in
        Serial Arithmetic Sense), it updates the local MaxCmdSN;
        otherwise, it is ignored.
     -  If the PDU ExpCmdSN is greater than the local ExpCmdSN (in
        Serial Arithmetic Sense), it updates the local ExpCmdSN;
        otherwise, it is ignored.

  This sequence is required because updates may arrive out of order
  (e.g., the updates are sent on different TCP connections).

  iSCSI initiators and targets MUST support the command numbering
  scheme.



Satran, et al.              Standards Track                    [Page 22]

RFC 3720                         iSCSI                        April 2004


  A numbered iSCSI request will not change its allocated CmdSN,
  regardless of the number of times and circumstances in which it is
  reissued (see Section 6.2.1 Usage of Retry).  At the target, CmdSN is
  only relevant when the command has not created any state related to
  its execution (execution state); afterwards, CmdSN becomes
  irrelevant.  Testing for the execution state (represented by
  identifying the Initiator Task Tag) MUST precede any other action at
  the target.  If no execution state is found, it is followed by
  ordering and delivery.  If an execution state is found, it is
  followed by delivery.

  If an initiator issues a command retry for a command with CmdSN R on
  a connection when the session CmdSN value is Q, it MUST NOT advance
  the CmdSN past R + 2**31 -1 unless the connection is no longer
  operational (i.e., it has returned to the FREE state, see Section
  7.1.3 Standard Connection State Diagram for an Initiator), the
  connection has been reinstated (see Section 5.3.4 Connection
  Reinstatement), or a non-immediate command with CmdSN equal or
  greater than Q was issued subsequent to the command retry on the same
  connection and the reception of that command is acknowledged by the
  target (see Section 9.4 Command Retry and Cleaning Old Command
  Instances).

  A target MUST NOT issue a command response or Data-In PDU with status
  before acknowledging the command.  However, the acknowledgement can
  be included in the response or Data-In PDU.

3.2.2.2.  Response/Status Numbering and Acknowledging

  Responses in transit from the target to the initiator are numbered.
  The StatSN (Status Sequence Number) is used for this purpose.  StatSN
  is a counter maintained per connection.  ExpStatSN is used by the
  initiator to acknowledge status.  The status sequence number space is
  32-bit unsigned-integers and the arithmetic operations are the
  regular mod(2**32) arithmetic.

  Status numbering starts with the Login response to the first Login
  request of the connection.  The Login response includes an initial
  value for status numbering (any initial value is valid).

  To enable command recovery, the target MAY maintain enough state
  information for data and status recovery after a connection failure.
  A target doing so can safely discard all of the state information
  maintained for recovery of a command after the delivery of the status
  for the command (numbered StatSN) is acknowledged through ExpStatSN.

  A large absolute difference between StatSN and ExpStatSN may indicate
  a failed connection.  Initiators MUST undertake recovery actions if



Satran, et al.              Standards Track                    [Page 23]

RFC 3720                         iSCSI                        April 2004


  the difference is greater than an implementation defined constant
  that MUST NOT exceed 2**31-1.

  Initiators and Targets MUST support the response-numbering scheme.

3.2.2.3.  Data Sequencing

  Data and R2T PDUs transferred as part of some command execution MUST
  be sequenced.  The DataSN field is used for data sequencing.  For
  input (read) data PDUs, DataSN starts with 0 for the first data PDU
  of an input command and advances by 1 for each subsequent data PDU.
  For output data PDUs, DataSN starts with 0 for the first data PDU of
  a sequence (the initial unsolicited sequence or any data PDU sequence
  issued to satisfy an R2T) and advances by 1 for each subsequent data
  PDU.  R2Ts are also sequenced per command.  For example, the first
  R2T has an R2TSN of 0 and advances by 1 for each subsequent R2T.  For
  bidirectional commands, the target uses the DataSN/R2TSN to sequence
  Data-In and R2T PDUs in one continuous sequence (undifferentiated).
  Unlike command and status, data PDUs and R2Ts are not acknowledged by
  a field in regular outgoing PDUs.  Data-In PDUs can be acknowledged
  on demand by a special form of the SNACK PDU.  Data and R2T PDUs are
  implicitly acknowledged by status for the command.  The DataSN/R2TSN
  field enables the initiator to detect missing data or R2T PDUs.

  For any read or bidirectional command, a target MUST issue less than
  2**32 combined R2T and Data-In PDUs.  Any output data sequence MUST
  contain less than 2**32 Data-Out PDUs.

3.2.3.  iSCSI Login

  The purpose of the iSCSI login is to enable a TCP connection for
  iSCSI use, authentication of the parties, negotiation of the
  session's parameters and marking of the connection as belonging to an
  iSCSI session.

  A session is used to identify to a target all the connections with a
  given initiator that belong to the same I_T nexus.  (For more details
  on how a session relates to an I_T nexus, see Section 3.4.2 SCSI
  Architecture Model).

  The targets listen on a well-known TCP port or other TCP port for
  incoming connections.  The initiator begins the login process by
  connecting to one of these TCP ports.

  As part of the login process, the initiator and target SHOULD
  authenticate each other and MAY set a security association protocol
  for the session.  This can occur in many different ways and is
  subject to negotiation.



Satran, et al.              Standards Track                    [Page 24]

RFC 3720                         iSCSI                        April 2004


  To protect the TCP connection, an IPsec security association MAY be
  established before the Login request.  For information on using IPsec
  security for iSCSI see Chapter 8 and [RFC3723].

  The iSCSI Login Phase is carried through Login requests and
  responses.  Once suitable authentication has occurred and operational
  parameters have been set, the session transitions to the Full Feature
  Phase and the initiator may start to send SCSI commands.  The
  security policy for whether, and by what means, a target chooses to
  authorize an initiator is beyond the scope of this document.  For a
  more detailed description of the Login Phase, see Chapter 5.

  The login PDU includes the ISID part of the session ID (SSID).  The
  target portal group that services the login is implied by the
  selection of the connection endpoint.  For a new session, the TSIH is
  zero.  As part of the response, the target generates a TSIH.

  During session establishment, the target identifies the SCSI
  initiator port (the "I" in the "I_T nexus") through the value pair
  (InitiatorName, ISID).  We describe InitiatorName later in this
  section.  Any persistent state (e.g., persistent reservations) on the
  target that is associated with a SCSI initiator port is identified
  based on this value pair.  Any state associated with the SCSI target
  port (the "T" in the "I_T nexus") is identified externally by the
  TargetName and portal group tag (see Section 3.4.1 iSCSI Architecture
  Model).  ISID is subject to reuse restrictions because it is used to
  identify a persistent state (see Section 3.4.3 Consequences of the
  Model).

  Before the Full Feature Phase is established, only Login Request and
  Login Response PDUs are allowed.  Login requests and responses MUST
  be used exclusively during Login.  On any connection, the login phase
  MUST immediately follow TCP connection establishment and a subsequent
  Login Phase MUST NOT occur before tearing down a connection.

  A target receiving any PDU except a Login request before the Login
  phase is started MUST immediately terminate the connection on which
  the PDU was received.  Once the Login phase has started, if the
  target receives any PDU except a Login request, it MUST send a Login
  reject (with Status "invalid during login") and then disconnect.  If
  the initiator receives any PDU except a Login response, it MUST
  immediately terminate the connection.

3.2.4.  iSCSI Full Feature Phase

  Once the initiator is authorized to do so, the iSCSI session is in
  the iSCSI Full Feature Phase.  A session is in Full Feature Phase
  after successfully finishing the Login Phase on the first (leading)



Satran, et al.              Standards Track                    [Page 25]

RFC 3720                         iSCSI                        April 2004


  connection of a session.  A connection is in Full Feature Phase if
  the session is in Full Feature Phase and the connection login has
  completed successfully.  An iSCSI connection is not in Full Feature
  Phase

     a) when it does not have an established transport connection,

        OR

     b) when it has a valid transport connection, but a successful
        login was not performed or the connection is currently logged
        out.

  In a normal Full Feature Phase, the initiator may send SCSI commands
  and data to the various LUs on the target by encapsulating them in
  iSCSI PDUs that go over the established iSCSI session.

3.2.4.1.  Command Connection Allegiance

  For any iSCSI request issued over a TCP connection, the corresponding
  response and/or other related PDU(s) MUST be sent over the same
  connection.  We call this "connection allegiance".  If the original
  connection fails before the command is completed, the connection
  allegiance of the command may be explicitly reassigned to a different
  transport connection as described in detail in Section 6.2 Retry and
  Reassign in Recovery.

  Thus, if an initiator issues a READ command, the target MUST send the
  requested data, if any, followed by the status to the initiator over
  the same TCP connection that was used to deliver the SCSI command.
  If an initiator issues a WRITE command, the initiator MUST send the
  data, if any, for that command over the same TCP connection that was
  used to deliver the SCSI command.  The target MUST return Ready To
  Transfer (R2T), if any, and the status over the same TCP connection
  that was used to deliver the SCSI command.  Retransmission requests
  (SNACK PDUs) and the data and status that they generate MUST also use
  the same connection.

  However, consecutive commands that are part of a SCSI linked
  command-chain task (see [SAM2]) MAY use different connections.
  Connection allegiance is strictly per-command and not per-task.
  During the iSCSI Full Feature Phase, the initiator and target MAY
  interleave unrelated SCSI commands, their SCSI Data, and responses
  over the session.







Satran, et al.              Standards Track                    [Page 26]

RFC 3720                         iSCSI                        April 2004


3.2.4.2.  Data Transfer Overview

  Outgoing SCSI data (initiator to target user data or command
  parameters) is sent as either solicited data or unsolicited data.
  Solicited data are sent in response to R2T PDUs.  Unsolicited data
  can be sent as part of an iSCSI command PDU ("immediate data") or in
  separate iSCSI data PDUs.

  Immediate data are assumed to originate at offset 0 in the initiator
  SCSI write-buffer (outgoing data buffer).  All other Data PDUs have
  the buffer offset set explicitly in the PDU header.

  An initiator may send unsolicited data up to FirstBurstLength as
  immediate (up to the negotiated maximum PDU length), in a separate
  PDU sequence or both.  All subsequent data MUST be solicited.  The
  maximum length of an individual data PDU or the immediate-part of the
  first unsolicited burst MAY be negotiated at login.

  The maximum amount of unsolicited data that can be sent with a
  command is negotiated at login through the FirstBurstLength key.  A
  target MAY separately enable immediate data (through the
  ImmediateData key) without enabling the more general (separate data
  PDUs) form of unsolicited data (through the InitialR2T key).

  Unsolicited data on write are meant to reduce the effect of latency
  on throughput (no R2T is needed to start sending data).  In addition,
  immediate data is meant to reduce the protocol overhead (both
  bandwidth and execution time).

  An iSCSI initiator MAY choose not to send unsolicited data, only
  immediate data or FirstBurstLength bytes of unsolicited data with a
  command.  If any non-immediate unsolicited data is sent, the total
  unsolicited data MUST be either FirstBurstLength, or all of the data
  if the total amount is less than the FirstBurstLength.

  It is considered an error for an initiator to send unsolicited data
  PDUs to a target that operates in R2T mode (only solicited data are
  allowed).  It is also an error for an initiator to send more
  unsolicited data, whether immediate or as separate PDUs, than
  FirstBurstLength.

  An initiator MUST honor an R2T data request for a valid outstanding
  command (i.e., carrying a valid Initiator Task Tag) and deliver all
  the requested data provided the command is supposed to deliver
  outgoing data and the R2T specifies data within the command bounds.
  The initiator action is unspecified for receiving an R2T request that
  specifies data, all or part, outside of the bounds of the command.




Satran, et al.              Standards Track                    [Page 27]

RFC 3720                         iSCSI                        April 2004


  A target SHOULD NOT silently discard data and then request
  retransmission through R2T.  Initiators SHOULD NOT keep track of the
  data transferred to or from the target (scoreboarding).  SCSI targets
  perform residual count calculation to check how much data was
  actually transferred to or from the device by a command.  This may
  differ from the amount the initiator sent and/or received for reasons
  such as retransmissions and errors.  Read or bidirectional commands
  implicitly solicit the transmission of the entire amount of data
  covered by the command.  SCSI data packets are matched to their
  corresponding SCSI commands by using tags specified in the protocol.

  In addition, iSCSI initiators and targets MUST enforce some ordering
  rules.  When unsolicited data is used, the order of the unsolicited
  data on each connection MUST match the order in which the commands on
  that connection are sent.  Command and unsolicited data PDUs may be
  interleaved on a single connection as long as the ordering
  requirements of each are maintained (e.g., command N+1 MAY be sent
  before the unsolicited Data-Out PDUs for command N, but the
  unsolicited Data-Out PDUs for command N MUST precede the unsolicited
  Data-Out PDUs of command N+1).  A target that receives data out of
  order MAY terminate the session.

3.2.4.3.  Tags and Integrity Checks

  Initiator tags for pending commands are unique initiator-wide for a
  session.  Target tags are not strictly specified by the protocol.  It
  is assumed that target tags are used by the target to tag (alone or
  in combination with the LUN) the solicited data.  Target tags are
  generated by the target and "echoed" by the initiator.  These
  mechanisms are designed to accomplish efficient data delivery along
  with a large degree of control over the data flow.

  As the Initiator Task Tag is used to identify a task during its
  execution, the iSCSI initiator and target MUST verify that all other
  fields used in task-related PDUs have values that are consistent with
  the values used at the task instantiation based on the Initiator Task
  Tag (e.g., the LUN used in an R2T PDU MUST be the same as the one
  used in the SCSI command PDU used to instantiate the task).  Using
  inconsistent field values is considered a protocol error.

3.2.4.4.  Task Management

  SCSI task management assumes that individual tasks and task groups
  can be aborted solely based on the task tags (for individual tasks)
  or the timing of the task management command (for task groups), and
  that the task management action is executed synchronously - i.e., no
  message involving an aborted task will be seen by the SCSI initiator
  after receiving the task management response.  In iSCSI initiators



Satran, et al.              Standards Track                    [Page 28]

RFC 3720                         iSCSI                        April 2004


  and targets interact asynchronously over several connections.  iSCSI
  specifies the protocol mechanism and implementation requirements
  needed to present a synchronous view while using an asynchronous
  infrastructure.

3.2.5.  iSCSI Connection Termination

  An iSCSI connection may be terminated by use of a transport
  connection shutdown or a transport reset.  Transport reset is assumed
  to be an exceptional event.

  Graceful TCP connection shutdowns are done by sending TCP FINs.  A
  graceful transport connection shutdown SHOULD only be initiated by
  either party when the connection is not in iSCSI Full Feature Phase.
  A target MAY terminate a Full Feature Phase connection on internal
  exception events, but it SHOULD announce the fact through an
  Asynchronous Message PDU.  Connection termination with outstanding
  commands may require recovery actions.

  If a connection is terminated while in Full Feature Phase, connection
  cleanup (see section 7) is required prior to recovery.  By doing
  connection cleanup before starting recovery, the initiator and target
  will avoid receiving stale PDUs after recovery.

3.2.6.  iSCSI Names

  Both targets and initiators require names for the purpose of
  identification.  In addition, names enable iSCSI storage resources to
  be managed regardless of location (address).  An iSCSI node name is
  also the SCSI device name of an iSCSI device.  The iSCSI name of a
  SCSI device is the principal object used in authentication of targets
  to initiators and initiators to targets.  This name is also used to
  identify and manage iSCSI storage resources.

  iSCSI names must be unique within the operational domain of the end
  user.  However, because the operational domain of an IP network is
  potentially worldwide, the iSCSI name formats are architected to be
  worldwide unique.  To assist naming authorities in the construction
  of worldwide unique names, iSCSI provides two name formats for
  different types of naming authorities.

  iSCSI names are associated with iSCSI nodes, and not iSCSI network
  adapter cards, to ensure that the replacement of network adapter
  cards does not require reconfiguration of all SCSI and iSCSI resource
  allocation information.






Satran, et al.              Standards Track                    [Page 29]

RFC 3720                         iSCSI                        April 2004


  Some SCSI commands require that protocol-specific identifiers be
  communicated within SCSI CDBs.  See Section 3.4.2 SCSI Architecture
  Model for the definition of the SCSI port name/identifier for iSCSI
  ports.

  An initiator may discover the iSCSI Target Names to which it has
  access, along with their addresses, using the SendTargets text
  request, or other techniques discussed in [RFC3721].

3.2.6.1.  iSCSI Name Properties

  Each iSCSI node, whether an initiator or target, MUST have an iSCSI
  name.

  Initiators and targets MUST support the receipt of iSCSI names of up
  to the maximum length of 223 bytes.

  The initiator MUST present both its iSCSI Initiator Name and the
  iSCSI Target Name to which it wishes to connect in the first login
  request of a new session or connection.  The only exception is if a
  discovery session (see Section 2.3 iSCSI Session Types) is to be
  established.  In this case, the iSCSI Initiator Name is still
  required, but the iSCSI Target Name MAY be omitted.

  iSCSI names have the following properties:

     a) iSCSI names are globally unique.  No two initiators or targets
        can have the same name.
     b) iSCSI names are permanent.  An iSCSI initiator node or target
        node has the same name for its lifetime.
     c) iSCSI names do not imply a location or address.  An iSCSI
        initiator or target can move, or have multiple addresses.  A
        change of address does not imply a change of name.
     d) iSCSI names do not rely on a central name broker; the naming
        authority is distributed.
     e) iSCSI names support integration with existing unique naming
        schemes.
     f) iSCSI names rely on existing naming authorities.  iSCSI does
        not create any new naming authority.

  The encoding of an iSCSI name has the following properties:

     a) iSCSI names have the same encoding method regardless of the
        underlying protocols.
     b) iSCSI names are relatively simple to compare.  The algorithm
        for comparing two iSCSI names for equivalence does not rely on
        an external server.




Satran, et al.              Standards Track                    [Page 30]

RFC 3720                         iSCSI                        April 2004


     c) iSCSI names are composed only of displayable characters.  iSCSI
        names allow the use of international character sets but are not
        case sensitive.  No whitespace characters are used in iSCSI
        names.
     d) iSCSI names may be transported using both binary and
        ASCII-based protocols.

  An iSCSI name really names a logical software entity, and is not tied
  to a port or other hardware that can be changed.  For instance, an
  initiator name should name the iSCSI initiator node, not a particular
  NIC or HBA.  When multiple NICs are used, they should generally all
  present the same iSCSI initiator name to the targets, because they
  are simply paths to the same SCSI layer.  In most operating systems,
  the named entity is the operating system image.

  Similarly, a target name should not be tied to hardware interfaces
  that can be changed.  A target name should identify the logical
  target and must be the same for the target regardless of the physical
  portion being addressed.  This assists iSCSI initiators in
  determining that the two targets it has discovered are really two
  paths to the same target.

  The iSCSI name is designed to fulfill the functional requirements for
  Uniform Resource Names (URN) [RFC1737].  For example, it is required
  that the name have a global scope, be independent of address or
  location, and be persistent and globally unique.  Names must be
  extensible and scalable with the use of naming authorities.  The name
  encoding should be both human and machine readable.  See [RFC1737]
  for further requirements.

3.2.6.2.  iSCSI Name Encoding

  An iSCSI name MUST be a UTF-8 encoding of a string of Unicode
  characters with the following properties:

     -  It is in Normalization Form C (see "Unicode Normalization
        Forms" [UNICODE]).
     -  It only contains characters allowed by the output of the iSCSI
        stringprep template (described in [RFC3722]).
     -  The following characters are used for formatting iSCSI names:

           - dash ('-'=U+002d)
           - dot ('.'=U+002e)
           - colon (':'=U+003a)

     -  The UTF-8 encoding of the name is not larger than 223 bytes.





Satran, et al.              Standards Track                    [Page 31]

RFC 3720                         iSCSI                        April 2004


  The stringprep process is described in [RFC3454]; iSCSI's use of the
  stringprep process is described in [RFC3722].  Stringprep is a method
  designed by the Internationalized Domain Name (IDN) working group to
  translate human-typed strings into a format that can be compared as
  opaque strings.  Strings MUST NOT include punctuation, spacing,
  diacritical marks, or other characters that could get in the way of
  readability.  The stringprep process also converts strings into
  equivalent strings of lower-case characters.

  The stringprep process does not need to be implemented if the names
  are only generated using numeric and lower-case (any character set)
  alphabetic characters.

  Once iSCSI names encoded in UTF-8 are "normalized" they may be safely
  compared byte-for-byte.

3.2.6.3.  iSCSI Name Structure

  An iSCSI name consists of two parts--a type designator followed by a
  unique name string.

  The iSCSI name does not define any new naming authorities.  Instead,
  it supports two existing ways of designating naming authorities: an
  iSCSI-Qualified Name, using domain names to identify a naming
  authority, and the EUI format, where the IEEE Registration Authority
  assists in the formation of worldwide unique names (EUI-64 format).

  The type designator strings currently defined are:

    iqn.       - iSCSI Qualified name
    eui.       - Remainder of the string is an IEEE EUI-64
                 identifier, in ASCII-encoded hexadecimal.

  These two naming authority designators were considered sufficient at
  the time of writing this document.  The creation of additional naming
  type designators for iSCSI may be considered by the IETF and detailed
  in separate RFCs.

3.2.6.3.1.  Type "iqn." (iSCSI Qualified Name)

  This iSCSI name type can be used by any organization that owns a
  domain name.  This naming format is useful when an end user or
  service provider wishes to assign iSCSI names for targets and/or
  initiators.

  To generate names of this type, the person or organization generating
  the name must own a registered domain name.  This domain name does
  not have to be active, and does not have to resolve to an address; it



Satran, et al.              Standards Track                    [Page 32]

RFC 3720                         iSCSI                        April 2004


  just needs to be reserved to prevent others from generating iSCSI
  names using the same domain name.

  Since a domain name can expire, be acquired by another entity, or may
  be used to generate iSCSI names by both owners, the domain name must
  be additionally qualified by a date during which the naming authority
  owned the domain name.  For this reason, a date code is provided as
  part of the "iqn." format.

  The iSCSI qualified name string consists of:

     -  The string "iqn.", used to distinguish these names from "eui."
        formatted names.
     -  A date code, in yyyy-mm format.  This date MUST be a date
        during which the naming authority owned the domain name used in
        this format, and SHOULD be the first month in which the domain
        name was owned by this naming authority at 00:01 GMT of the
        first day of the month.  This date code uses the Gregorian
        calendar.  All four digits in the year must be present.  Both
        digits of the month must be present, with January == "01" and
        December == "12".  The dash must be included.
     -  A dot "."
     -  The reversed domain name of the naming authority (person or
        organization) creating this iSCSI name.
     -  An optional, colon (:) prefixed, string within the character
        set and length boundaries that the owner of the domain name
        deems appropriate.  This may contain product types, serial
        numbers, host identifiers, or software keys (e.g., it may
        include colons to separate organization boundaries).  With the
        exception of the colon prefix, the owner of the domain name can
        assign everything after the reversed domain name as desired.
        It is the responsibility of the entity that is the naming
        authority to ensure that the iSCSI names it assigns are
        worldwide unique.  For example, "Example Storage Arrays, Inc.",
        might own the domain name "example.com".

  The following are examples of iSCSI qualified names that might be
  generated by "EXAMPLE Storage Arrays, Inc."

                  Naming     String defined by
     Type  Date    Auth      "example.com" naming authority
    +--++-----+ +---------+ +--------------------------------+
    |  ||     | |         | |                                |

    iqn.2001-04.com.example:storage:diskarrays-sn-a8675309
    iqn.2001-04.com.example
    iqn.2001-04.com.example:storage.tape1.sys1.xyz
    iqn.2001-04.com.example:storage.disk2.sys1.xyz



Satran, et al.              Standards Track                    [Page 33]

RFC 3720                         iSCSI                        April 2004



3.2.6.3.2.  Type "eui." (IEEE EUI-64 format)

  The IEEE Registration Authority provides a service for assigning
  globally unique identifiers [EUI].  The EUI-64 format is used to
  build a global identifier in other network protocols.  For example,
  Fibre Channel defines a method of encoding it into a WorldWideName.
  For more information on registering for EUI identifiers, see [OUI].

  The format is "eui." followed by an EUI-64 identifier (16
  ASCII-encoded hexadecimal digits).

  Example iSCSI name:

       Type  EUI-64 identifier (ASCII-encoded hexadecimal)
       +--++--------------+
       |  ||              |
       eui.02004567A425678D

  The IEEE EUI-64 iSCSI name format might be used when a manufacturer
  is already registered with the IEEE Registration Authority and uses
  EUI-64 formatted worldwide unique names for its products.

  More examples of name construction are discussed in [RFC3721].

3.2.7.  Persistent State

  iSCSI does not require any persistent state maintenance across
  sessions.  However, in some cases, SCSI requires persistent
  identification of the SCSI initiator port name (See Section 3.4.2
  SCSI Architecture Model and Section 3.4.3 Consequences of the Model).

  iSCSI sessions do not persist through power cycles and boot
  operations.

  All iSCSI session and connection parameters are re-initialized upon
  session and connection creation.

  Commands persist beyond connection termination if the session
  persists and command recovery within the session is supported.
  However, when a connection is dropped, command execution, as
  perceived by iSCSI (i.e., involving iSCSI protocol exchanges for the
  affected task), is suspended until a new allegiance is established by
  the 'task reassign' task management function.  (See Section 10.5 Task
  Management Function Request.)






Satran, et al.              Standards Track                    [Page 34]

RFC 3720                         iSCSI                        April 2004


3.2.8.  Message Synchronization and Steering

  iSCSI presents a mapping of the SCSI protocol onto TCP.  This
  encapsulation is accomplished by sending iSCSI PDUs of varying
  lengths.  Unfortunately, TCP does not have a built-in mechanism for
  signaling message boundaries at the TCP layer.  iSCSI overcomes this
  obstacle by placing the message length in the iSCSI message header.
  This serves to delineate the end of the current message as well as
  the beginning of the next message.

  In situations where IP packets are delivered in order from the
  network, iSCSI message framing is not an issue and messages are
  processed one after the other.  In the presence of IP packet
  reordering (i.e., frames being dropped), legacy TCP implementations
  store the "out of order" TCP segments in temporary buffers until the
  missing TCP segments arrive, upon which the data must be copied to
  the application buffers.  In iSCSI, it is desirable to steer the SCSI
  data within these out of order TCP segments into the pre-allocated
  SCSI buffers rather than store them in temporary buffers.  This
  decreases the need for dedicated reassembly buffers as well as the
  latency and bandwidth related to extra copies.

  Relying solely on the "message length" information from the iSCSI
  message header may make it impossible to find iSCSI message
  boundaries in subsequent TCP segments due to the loss of a TCP
  segment that contains the iSCSI message length.  The missing TCP
  segment(s) must be received before any of the following segments can
  be steered to the correct SCSI buffers (due to the inability to
  determine the iSCSI message boundaries).  Since these segments cannot
  be steered to the correct location, they must be saved in temporary
  buffers that must then be copied to the SCSI buffers.

  Different schemes can be used to recover synchronization.  To make
  these schemes work, iSCSI implementations have to make sure that the
  appropriate protocol layers are provided with enough information to
  implement a synchronization and/or data steering mechanism.  One of
  these schemes is detailed in Appendix A.  - Sync and Steering with
  Fixed Interval Markers -.

  The Fixed Interval Markers (FIM) scheme works by inserting markers in
  the payload stream at fixed intervals that contain the offset for the
  start of the next iSCSI PDU.

  Under normal circumstances (no PDU loss or data reception out of
  order), iSCSI data steering can be accomplished by using the
  identifying tag and the data offset fields in the iSCSI header in
  addition to the TCP sequence number from the TCP header.  The




Satran, et al.              Standards Track                    [Page 35]

RFC 3720                         iSCSI                        April 2004


  identifying tag helps associate the PDU with a SCSI buffer address
  while the data offset and TCP sequence number are used to determine
  the offset within the buffer.

  When the part of the TCP data stream containing an iSCSI PDU header
  is delayed or lost, markers may be used to minimize the damage as
  follows:

    - Markers indicate where the next iSCSI PDU starts and enable
      continued processing when iSCSI headers have to be dropped due to
      data errors discovered at the iSCSI level (e.g., iSCSI header CRC
      errors).

    - Markers help minimize the amount of data that has to be kept by
      the TCP/iSCSI layer while waiting for a late TCP packet arrival
      or recovery, because later they might help find iSCSI PDU headers
      and use the information contained in those to steer data to SCSI
      buffers.

3.2.8.1.  Sync/Steering and iSCSI PDU Length

  When a large iSCSI message is sent, the TCP segment(s) that contain
  the iSCSI header may be lost.  The remaining TCP segment(s), up to
  the next iSCSI message, must be buffered (in temporary buffers)
  because the iSCSI header that indicates to which SCSI buffers the
  data are to be steered was lost.  To minimize the amount of
  buffering, it is recommended that the iSCSI PDU length be restricted
  to a small value (perhaps a few TCP segments in length).  During
  login, each end of the iSCSI session specifies the maximum iSCSI PDU
  length it will accept.

3.3.  iSCSI Session Types

  iSCSI defines two types of sessions:

      a) Normal operational session - an unrestricted session.
      b) Discovery-session - a session only opened for target
         discovery.  The target MUST ONLY accept text requests with the
         SendTargets key and a logout request with the reason "close
         the session".  All other requests MUST be rejected.

  The session type is defined during login with the key=value parameter
  in the login command.








Satran, et al.              Standards Track                    [Page 36]

RFC 3720                         iSCSI                        April 2004


3.4.  SCSI to iSCSI Concepts Mapping Model

  The following diagram shows an example of how multiple iSCSI Nodes
  (targets in this case) can coexist within the same Network Entity and
  can share Network Portals (IP addresses and TCP ports).  Other more
  complex configurations are also possible.  For detailed descriptions
  of the components of these diagrams, see Section 3.4.1 iSCSI
  Architecture Model.

                 +-----------------------------------+
                 |  Network Entity (iSCSI Client)    |
                 |                                   |
                 |         +-------------+           |
                 |         | iSCSI Node  |           |
                 |         | (Initiator) |           |
                 |         +-------------+           |
                 |            |       |              |
                 | +--------------+ +--------------+ |
                 | |Network Portal| |Network Portal| |
                 | |   10.1.30.4  | |   10.1.40.6  | |
                 +-+--------------+-+--------------+-+
                          |               |
                          |  IP Networks  |
                          |               |
                 +-+--------------+-+--------------+-+
                 | |Network Portal| |Network Portal| |
                 | |  10.1.30.21  | |   10.1.40.3  | |
                 | | TCP Port 3260| | TCP Port 3260| |
                 | +--------------+ +--------------+ |
                 |        |               |          |
                 |        -----------------          |
                 |           |         |             |
                 |  +-------------+ +--------------+ |
                 |  | iSCSI Node  | | iSCSI Node   | |
                 |  |  (Target)   | |  (Target)    | |
                 |  +-------------+ +--------------+ |
                 |                                   |
                 |   Network Entity (iSCSI Server)   |
                 +-----------------------------------+

3.4.1.  iSCSI Architecture Model

  This section describes the part of the iSCSI architecture model that
  has the most bearing on the relationship between iSCSI and the SCSI
  Architecture Model.






Satran, et al.              Standards Track                    [Page 37]

RFC 3720                         iSCSI                        April 2004


     a)  Network Entity - represents a device or gateway that is
         accessible from the IP network.  A Network Entity must have
         one or more Network Portals (see item d), each of which can be
         used by some iSCSI Nodes (see item (b)) contained in that
         Network Entity to gain access to the IP network.

     b)  iSCSI Node - represents a single iSCSI initiator or iSCSI
         target.  There are one or more iSCSI Nodes within a Network
         Entity.  The iSCSI Node is accessible via one or more Network
         Portals (see item d).  An iSCSI Node is identified by its
         iSCSI Name (see Section 3.2.6 iSCSI Names and Chapter 12).
         The separation of the iSCSI Name from the addresses used by
         and for the iSCSI node allows multiple iSCSI nodes to use the
         same addresses, and the same iSCSI node to use multiple
         addresses.

     c)  An alias string may also be associated with an iSCSI Node.
         The alias allows an organization to associate a user friendly
         string with the iSCSI Name.  However, the alias string is not
         a substitute for the iSCSI Name.

     d)  Network Portal - a component of a Network Entity that has a
         TCP/IP network address and that may be used by an iSCSI Node
         within that Network Entity for the connection(s) within one of
         its iSCSI sessions.  In an initiator, it is identified by its
         IP address.  In a target, it is identified by its IP address
         and its listening TCP port.

     e)  Portal Groups - iSCSI supports multiple connections within the
         same session; some implementations will have the ability to
         combine connections in a session across multiple Network
         Portals.  A Portal Group defines a set of Network Portals
         within an iSCSI Node that collectively supports the capability
         of coordinating a session with connections that span these
         portals.  Not all Network Portals within a Portal Group need
         to participate in every session connected through that Portal
         Group.  One or more Portal Groups may provide access to an
         iSCSI Node.  Each Network Portal, as utilized by a given iSCSI
         Node, belongs to exactly one portal group within that node.
         Portal Groups are identified within an iSCSI Node by a portal
         group tag, a simple unsigned-integer between 0 and 65535 (see
         Section 12.3 SendTargets).  All Network Portals with the same
         portal group tag in the context of a given iSCSI Node are in
         the same Portal Group.







Satran, et al.              Standards Track                    [Page 38]

RFC 3720                         iSCSI                        April 2004


         Both iSCSI Initiators and iSCSI Targets have portal groups,
         though only the iSCSI Target Portal Groups are used directly
         in the iSCSI protocol (e.g., in SendTargets).  For references
         to the initiator Portal Groups, see Section 9.1.1 Conservative
         Reuse of ISIDs.

     f)  Portals within a Portal Group should support similar session
         parameters, because they may participate in a common session.

  The following diagram shows an example of one such configuration on a
  target and how a session that shares Network Portals within a Portal
  Group may be established.

    ----------------------------IP Network---------------------
           |               |                    |
      +----|---------------|-----+         +----|---------+
      | +---------+  +---------+ |         | +---------+  |
      | | Network |  | Network | |         | | Network |  |
      | | Portal  |  | Portal  | |         | | Portal  |  |
      | +--|------+  +---------+ |         | +---------+  |
      |    |               |     |         |    |         |
      |    |    Portal     |     |         |    | Portal  |
      |    |    Group 1    |     |         |    | Group 2 |
      +--------------------------+         +--------------+
           |               |                    |
  +--------|---------------|--------------------|--------------------+
  |        |               |                    |                    |
  |  +----------------------------+  +-----------------------------+ |
  |  | iSCSI Session (Target side)|  | iSCSI Session (Target side) | |
  |  |                            |  |                             | |
  |  |       (TSIH = 56)          |  |       (TSIH = 48)           | |
  |  +----------------------------+  +-----------------------------+ |
  |                                                                  |
  |                     iSCSI Target Node                            |
  |             (within Network Entity, not shown)                   |
  +------------------------------------------------------------------+

3.4.2.  SCSI Architecture Model

  This section describes the relationship between the SCSI Architecture
  Model [SAM2] and the constructs of the SCSI device, SCSI port and I_T
  nexus, and the iSCSI constructs described in Section 3.4.1 iSCSI
  Architecture Model.

  This relationship implies implementation requirements in order to
  conform to the SAM2 model and other SCSI operational functions.
  These requirements are detailed in Section 3.4.3 Consequences of the
  Model.



Satran, et al.              Standards Track                    [Page 39]

RFC 3720                         iSCSI                        April 2004


  The following list outlines mappings of SCSI architectural elements
  to iSCSI.

     a)  SCSI Device - the SAM2 term for an entity that contains one or
         more SCSI ports that are connected to a service delivery
         subsystem and supports a SCSI application protocol.  For
         example, a SCSI Initiator Device contains one or more SCSI
         Initiator Ports and zero or more application clients.  A SCSI
         Target Device contains one or more SCSI Target Ports and one
         or more logical units.  For iSCSI, the SCSI Device is the
         component within an iSCSI Node that provides the SCSI
         functionality.  As such, there can be one SCSI Device, at
         most, within an iSCSI Node.  Access to the SCSI Device can
         only be achieved in an iSCSI normal operational session (see
         Section 3.3 iSCSI Session Types).  The SCSI Device Name is
         defined to be the iSCSI Name of the node and MUST be used in
         the iSCSI protocol.

     b)  SCSI Port - the SAM2 term for an entity in a SCSI Device that
         provides the SCSI functionality to interface with a service
         delivery subsystem or transport.  For iSCSI, the definition of
         SCSI Initiator Port and SCSI Target Port are different.

         SCSI Initiator Port: This maps to one endpoint of an iSCSI
         normal operational session (see Section 3.3 iSCSI Session
         Types).  An iSCSI normal operational session is negotiated
         through the login process between an iSCSI initiator node and
         an iSCSI target node.  At successful completion of this
         process, a SCSI Initiator Port is created within the SCSI
         Initiator Device.  The SCSI Initiator Port Name and SCSI
         Initiator Port Identifier are both defined to be the iSCSI
         Initiator Name together with (a) a label that identifies it as
         an initiator port name/identifier and (b) the ISID portion of
         the session identifier.

         SCSI Target Port: This maps to an iSCSI Target Portal Group.
         The SCSI Target Port Name and the SCSI Target Port Identifier
         are both defined to be the iSCSI Target Name together with (a)
         a label that identifies it as a target port name/identifier
         and (b) the portal group tag.

         The SCSI Port Name MUST be used in iSCSI.  When used in SCSI
         parameter data, the SCSI port name MUST be encoded as:
          - The iSCSI Name in UTF-8 format, followed by
          - a comma separator (1 byte), followed by
          - the ASCII character 'i' (for SCSI Initiator Port) or the
            ASCII character 't' (for SCSI Target Port) (1 byte),
            followed by



Satran, et al.              Standards Track                    [Page 40]

RFC 3720                         iSCSI                        April 2004


          - a comma separator (1 byte), followed by
          - a text encoding as a hex-constant (see Section 5.1 Text
            Format) of the ISID (for SCSI initiator port) or the portal
            group tag (for SCSI target port) including the initial 0X
            or 0x and the terminating null (15 bytes).

         The ASCII character 'i' or 't' is the label that identifies
         this port as either a SCSI Initiator Port or a SCSI Target
         Port.

     c)  I_T nexus - a relationship between a SCSI Initiator Port and a
         SCSI Target Port, according to [SAM2].  For iSCSI, this
         relationship is a session, defined as a relationship between
         an iSCSI Initiator's end of the session (SCSI Initiator Port)
         and the iSCSI Target's Portal Group.  The I_T nexus can be
         identified by the conjunction of the SCSI port names or by the
         iSCSI session identifier SSID.  iSCSI defines the I_T nexus
         identifier to be the tuple (iSCSI Initiator Name + 'i' + ISID,
         iSCSI Target Name + 't' + Portal Group Tag).

         NOTE: The I_T nexus identifier is not equal to the session
         identifier (SSID).

3.4.3.  Consequences of the Model

  This section describes implementation and behavioral requirements
  that result from the mapping of SCSI constructs to the iSCSI
  constructs defined above.  Between a given SCSI initiator port and a
  given SCSI target port, only one I_T nexus (session) can exist.  No
  more than one nexus relationship (parallel nexus) is allowed by
  [SAM2].  Therefore, at any given time, only one session can exist
  between a given iSCSI initiator node and an iSCSI target node, with
  the same session identifier (SSID).

  These assumptions lead to the following conclusions and requirements:

  ISID RULE: Between a given iSCSI Initiator and iSCSI Target Portal
  Group (SCSI target port), there can only be one session with a given
  value for ISID that identifies the SCSI initiator port.  See Section
  10.12.5 ISID.

  The structure of the ISID that contains a naming authority component
  (see Section 10.12.5 ISID and [RFC3721]) provides a mechanism to
  facilitate compliance with the ISID rule.  (See Section 9.1.1
  Conservative Reuse of ISIDs.)






Satran, et al.              Standards Track                    [Page 41]

RFC 3720                         iSCSI                        April 2004


  The iSCSI Initiator Node should manage the assignment of ISIDs prior
  to session initiation.  The "ISID RULE" does not preclude the use of
  the same ISID from the same iSCSI Initiator with different Target
  Portal Groups on the same iSCSI target or on other iSCSI targets (see
  Section 9.1.1 Conservative Reuse of ISIDs).  Allowing this would be
  analogous to a single SCSI Initiator Port having relationships
  (nexus) with multiple SCSI target ports on the same SCSI target
  device or SCSI target ports on other SCSI target devices.  It is also
  possible to have multiple sessions with different ISIDs to the same
  Target Portal Group.  Each such session would be considered to be
  with a different initiator even when the sessions originate from the
  same initiator device.  The same ISID may be used by a different
  iSCSI initiator because it is the iSCSI Name together with the ISID
  that identifies the SCSI Initiator Port.

  NOTE: A consequence of the ISID RULE and the specification for the
  I_T nexus identifier is that two nexus with the same identifier
  should never exist at the same time.

  TSIH RULE: The iSCSI Target selects a non-zero value for the TSIH at
  session creation (when an initiator presents a 0 value at Login).
  After being selected, the same TSIH value MUST be used whenever the
  initiator or target refers to the session and a TSIH is required.

3.4.3.1.  I_T Nexus State

  Certain nexus relationships contain an explicit state (e.g.,
  initiator-specific mode pages) that may need to be preserved by the
  device server [SAM2] in a logical unit through changes or failures in
  the iSCSI layer (e.g., session failures).  In order for that state to
  be restored, the iSCSI initiator should reestablish its session
  (re-login) to the same Target Portal Group using the previous ISID.
  That is, it should perform session recovery as described in Chapter
  6. This is because the SCSI initiator port identifier and the SCSI
  target port identifier (or relative target port) form the datum that
  the SCSI logical unit device server uses to identify the I_T nexus.

3.5.  Request/Response Summary

  This section lists and briefly describes all the iSCSI PDU types
  (request and responses).

  All iSCSI PDUs are built as a set of one or more header segments
  (basic and auxiliary) and zero or one data segments.  The header
  group and the data segment may each be followed by a CRC (digest).

  The basic header segment has a fixed length of 48 bytes.




Satran, et al.              Standards Track                    [Page 42]

RFC 3720                         iSCSI                        April 2004


3.5.1.  Request/Response Types Carrying SCSI Payload

3.5.1.1.  SCSI-Command

  This request carries the SCSI CDB and all the other SCSI execute
  command procedure call (see [SAM2]) IN arguments such as task
  attributes, Expected Data Transfer Length for one or both transfer
  directions (the latter for bidirectional commands), and Task Tag (as
  part of the I_T_L_x nexus).  The I_T_L nexus is derived by the
  initiator and target from the LUN field in the request and the I_T
  nexus is implicit in the session identification.

  In addition, the SCSI-command PDU carries information required for
  the proper operation of the iSCSI protocol - the command sequence
  number (CmdSN) for the session and the expected status number
  (ExpStatSN) for the connection.

  All or part of the SCSI output (write) data associated with the SCSI
  command may be sent as part of the SCSI-Command PDU as a data
  segment.

3.5.1.2.  SCSI-Response

  The SCSI-Response carries all the SCSI execute-command procedure call
  (see [SAM2]) OUT arguments and the SCSI execute-command procedure
  call return value.

  The SCSI-Response contains the residual counts from the operation, if
  any, an indication of whether the counts represent an overflow or an
  underflow, and the SCSI status if the status is valid or a response
  code (a non-zero return value for the execute-command procedure call)
  if the status is not valid.

  For a valid status that indicates that the command has been
  processed, but resulted in an exception (e.g., a SCSI CHECK
  CONDITION), the PDU data segment contains the associated sense data.
  The use of Autosense ([SAM2]) is REQUIRED by iSCSI.

  Some data segment content may also be associated (in the data
  segment) with a non-zero response code.

  In addition, the SCSI-Response PDU carries information required for
  the proper operation of the iSCSI protocol:

    - The number of Data-In PDUs that a target has sent (to enable
      the initiator to check that all have arrived).
    - StatSN - the Status Sequence Number on this connection.




Satran, et al.              Standards Track                    [Page 43]

RFC 3720                         iSCSI                        April 2004


    - ExpCmdSN - the next Expected Command Sequence Number at the
      target.
    - MaxCmdSN - the maximum CmdSN acceptable at the target from
      this initiator.

3.5.1.3  Task Management Function Request

  The Task Management function request provides an initiator with a way
  to explicitly control the execution of one or more SCSI Tasks or
  iSCSI functions.  The PDU carries a function identifier (which task
  management function to perform) and enough information to
  unequivocally identify the task or task-set on which to perform the
  action, even if the task(s) to act upon has not yet arrived or has
  been discarded due to an error.

  The referenced tag identifies an individual task if the function
  refers to an individual task.

  The I_T_L nexus identifies task sets.  In iSCSI the I_T_L nexus is
  identified by the LUN and the session identification (the session
  identifies an I_T nexus).

  For task sets, the CmdSN of the Task Management function request
  helps identify the tasks upon which to act, namely all tasks
  associated with a LUN and having a CmdSN preceding the Task
  Management function request CmdSN.

  For a Task Management function, the coordination between responses to
  the tasks affected and the Task Management function response is done
  by the target.

3.5.1.4.  Task Management Function Response

  The Task Management function response carries an indication of
  function completion for a Task Management function request including
  how it was completed (response and qualifier) and additional
  information for failure responses.

  After the Task Management response indicates Task Management function
  completion, the initiator will not receive any additional responses
  from the affected tasks.

3.5.1.5.  SCSI Data-Out and SCSI Data-In

  SCSI Data-Out and SCSI Data-In are the main vehicles by which SCSI
  data payload is carried between initiator and target.  Data payload
  is associated with a specific SCSI command through the Initiator Task
  Tag.  For target convenience, outgoing solicited data also carries a



Satran, et al.              Standards Track                    [Page 44]

RFC 3720                         iSCSI                        April 2004


  Target Transfer Tag (copied from R2T) and the LUN.  Each PDU contains
  the payload length and the data offset relative to the buffer address
  contained in the SCSI execute command procedure call.

  In each direction, the data transfer is split into "sequences".  An
  end-of-sequence is indicated by the F bit.

  An outgoing sequence is either unsolicited (only the first sequence
  can be unsolicited) or consists of all the Data-Out PDUs sent in
  response to an R2T.

  Input sequences are built to enable the direction switching for
  bidirectional commands.

  For input, the target may request positive acknowledgement of input
  data.  This is limited to sessions that support error recovery and is
  implemented through the A bit in the SCSI Data-In PDU header.

  Data-In and Data-Out PDUs also carry the DataSN to enable the
  initiator and target to detect missing PDUs (discarded due to an
  error).

  In addition, StatSN is carried by the Data-In PDUs.

  To enable a SCSI command to be processed while involving a minimum
  number of messages, the last SCSI Data-In PDU passed for a command
  may also contain the status if the status indicates termination with
  no exceptions (no sense or response involved).

3.5.1.6.  Ready To Transfer (R2T)

  R2T is the mechanism by which the SCSI target "requests" the
  initiator for output data.  R2T specifies to the initiator the offset
  of the requested data relative to the buffer address from the execute
  command procedure call and the length of the solicited data.

  To help the SCSI target associate the resulting Data-Out with an R2T,
  the R2T carries a Target Transfer Tag that will be copied by the
  initiator in the solicited SCSI Data-Out PDUs.  There are no protocol
  specific requirements with regard to the value of these tags, but it
  is assumed that together with the LUN, they will enable the target to
  associate data with an R2T.









Satran, et al.              Standards Track                    [Page 45]

RFC 3720                         iSCSI                        April 2004


  R2T also carries information required for proper operation of the
  iSCSI protocol, such as:

    - R2TSN (to enable an initiator to detect a missing R2T)
    - StatSN
    - ExpCmdSN
    - MaxCmdSN

3.5.2.  Requests/Responses carrying SCSI and iSCSI Payload

3.5.2.1.  Asynchronous Message

  Asynchronous Messages are used to carry SCSI asynchronous events
  (AEN) and iSCSI asynchronous messages.

  When carrying an AEN, the event details are reported as sense data in
  the data segment.

3.5.3.  Requests/Responses Carrying iSCSI Only Payload

3.5.3.1.  Text Request and Text Response

  Text requests and responses are designed as a parameter negotiation
  vehicle and as a vehicle for future extension.

  In the data segment, Text Requests/Responses carry text information
  using a simple "key=value" syntax.

  Text Request/Responses may form extended sequences using the same
  Initiator Task Tag.  The initiator uses the F (Final) flag bit in the
  text request header to indicate its readiness to terminate a
  sequence.  The target uses the F (Final) flag bit in the text
  response header to indicate its consent to sequence termination.

  Text Request and Responses also use the Target Transfer Tag to
  indicate continuation of an operation or a new beginning.  A target
  that wishes to continue an operation will set the Target Transfer Tag
  in a Text Response to a value different from the default 0xffffffff.
  An initiator willing to continue will copy this value into the Target
  Transfer Tag of the next Text Request.  If the initiator wants to
  restart the current target negotiation (start fresh) will set the
  Target Transfer Tag to 0xffffffff.

  Although a complete exchange is always started by the initiator,
  specific parameter negotiations may be initiated by the initiator or
  target.





Satran, et al.              Standards Track                    [Page 46]

RFC 3720                         iSCSI                        April 2004


3.5.3.2.  Login Request and Login Response

  Login Requests and Responses are used exclusively during the Login
  Phase of each connection to set up the session and connection
  parameters.  (The Login Phase consists of a sequence of login
  requests and responses carrying the same Initiator Task Tag.)

  A connection is identified by an arbitrarily selected connection-ID
  (CID) that is unique within a session.

  Similar to the Text Requests and Responses, Login Requests/Responses
  carry key=value text information with a simple syntax in the data
  segment.

  The Login Phase proceeds through several stages (security
  negotiation, operational parameter negotiation) that are selected
  with two binary coded fields in the header -- the "current stage"
  (CSG) and the "next stage" (NSG) with the appearance of the latter
  being signaled by the "transit" flag (T).

  The first Login Phase of a session plays a special role, called the
  leading login, which determines some header fields (e.g., the version
  number, the maximum number of connections, and the session
  identification).

  The CmdSN initial value is also set by the leading login.

  StatSN for each connection is initiated by the connection login.

  A login request may indicate an implied logout (cleanup) of the
  connection to be logged in (a connection restart) by using the same
  Connection ID (CID) as an existing connection, as well as the same
  session identifying elements of the session to which the old
  connection was associated.

3.5.3.3.  Logout Request and Response

  Logout Requests and Responses are used for the orderly closing of
  connections for recovery or maintenance.  The logout request may be
  issued following a target prompt (through an asynchronous message) or
  at an initiators initiative.  When issued on the connection to be
  logged out, no other request may follow it.

  The Logout Response indicates that the connection or session cleanup
  is completed and no other responses will arrive on the connection (if
  received on the logging out connection).  In addition, the Logout
  Response indicates how long the target will continue to hold
  resources for recovery (e.g., command execution that continues on a



Satran, et al.              Standards Track                    [Page 47]

RFC 3720                         iSCSI                        April 2004


  new connection) in the text key Time2Retain and how long the
  initiator must wait before proceeding with recovery in the text key
  Time2Wait.

3.5.3.4.  SNACK Request

  With the SNACK Request, the initiator requests retransmission of
  numbered-responses or data from the target.  A single SNACK request
  covers a contiguous set of missing items, called a run, of a given
  type of items.  The type is indicated in a type field in the PDU
  header.  The run is composed of an initial item (StatSN, DataSN,
  R2TSN) and the number of missed Status, Data, or R2T PDUs.  For long
  Data-In sequences, the target may request (at predefined minimum
  intervals) a positive acknowledgement for the data sent.  A SNACK
  request with a type field that indicates ACK and the number of
  Data-In PDUs acknowledged conveys this positive acknowledgement.

3.5.3.5.  Reject

  Reject enables the target to report an iSCSI error condition (e.g.,
  protocol, unsupported option) that uses a Reason field in the PDU
  header and includes the complete header of the bad PDU in the Reject
  PDU data segment.

3.5.3.6.  NOP-Out Request and NOP-In Response

  This request/response pair may be used by an initiator and target as
  a "ping" mechanism to verify that a connection/session is still
  active and all of its components are operational.  Such a ping may be
  triggered by the initiator or target.  The triggering party indicates
  that it wants a reply by setting a value different from the default
  0xffffffff in the corresponding Initiator/Target Transfer Tag.

  NOP-In/NOP-Out may also be used "unidirectional" to convey to the
  initiator/target command, status or data counter values when there is
  no other "carrier" and there is a need to update the initiator/
  target.

4.  SCSI Mode Parameters for iSCSI

  There are no iSCSI specific mode pages.

5.  Login and Full Feature Phase Negotiation

  iSCSI parameters are negotiated at session or connection
  establishment by using Login Requests and Responses (see Section
  3.2.3 iSCSI Login) and during the Full Feature Phase (Section 3.2.4
  iSCSI Full Feature Phase) by using Text Requests and Responses.  In



Satran, et al.              Standards Track                    [Page 48]

RFC 3720                         iSCSI                        April 2004


  both cases the mechanism used is an exchange of iSCSI-text-key=value
  pairs.  For brevity iSCSI-text-keys are called just keys in the rest
  of this document.

  Keys are either declarative or require negotiation and the key
  description indicates if the key is declarative or requires
  negotiation.

  For the declarative keys, the declaring party sets a value for the
  key.  The key specification indicates if the key can be declared by
  the initiator, target or both.

  For the keys that require negotiation one of the parties (the
  proposing party) proposes a value or set of values by including the
  key=value in the data part of a Login or Text Request or Response
  PDUs.  The other party (the accepting party) makes a selection based
  on the value or list of values proposed and includes the selected
  value in a key=value in the data part of one of the following Login
  or Text Response or Request PDUs.  For most of the keys both the
  initiator and target can be proposing parties.

  The login process proceeds in two stages - the security negotiation
  stage and the operational parameter negotiation stage.  Both stages
  are optional but at least one of them has to be present to enable the
  setting of some mandatory parameters.

  If present, the security negotiation stage precedes the operational
  parameter negotiation stage.

  Progression from stage to stage is controlled by the T (Transition)
  bit in the Login Request/Response PDU header.  Through the T bit set
  to 1, the initiator indicates that it would like to transition.  The
  target agrees to the transition (and selects the next stage) when
  ready.  A field in the Login PDU header indicates the current stage
  (CSG) and during transition, another field indicates the next stage
  (NSG) proposed (initiator) and selected (target).

  The text negotiation process is used to negotiate or declare
  operational parameters.  The negotiation process is controlled by the
  F (final) bit in the PDU header.  During text negotiations, the F bit
  is used by the initiator to indicate that it is ready to finish the
  negotiation and by the Target to acquiesce the end of negotiation.

  Since some key=value pairs may not fit entirely in a single PDU, the
  C (continuation) bit is used (both in Login and Text) to indicate
  that "more follows".





Satran, et al.              Standards Track                    [Page 49]

RFC 3720                         iSCSI                        April 2004


  The text negotiation uses an additional mechanism by which a target
  may deliver larger amounts of data to an enquiring initiator.  The
  target sets a Target Task Tag to be used as a bookmark that when
  returned by the initiator, means "go on".  If reset to a "neutral
  value", it means "forget about the rest".

  This chapter details types of keys and values used, the syntax rules
  for parameter formation, and the negotiation schemes to be used with
  different types of parameters.

5.1.  Text Format

  The initiator and target send a set of key=value pairs encoded in
  UTF-8 Unicode.  All the text keys and text values specified in this
  document are to be presented and interpreted in the case in which
  they appear in this document.  They are case sensitive.

  The following character symbols are used in this document for text
  items (the hexadecimal values represent Unicode code points):

  (a-z, A-Z) - letters
  (0-9) - digits
  " "  (0x20) - space
  "."  (0x2e) - dot
  "-"  (0x2d) - minus
  "+"  (0x2b) - plus
  "@"  (0x40) - commercial at
  "_"  (0x5f) - underscore
  "="  (0x3d) - equal
  ":"  (0x3a) - colon
  "/"  (0x2f) - solidus or slash
  "["  (0x5b) - left bracket
  "]"  (0x5d) - right bracket
  null (0x00) - null separator
  ","  (0x2c) - comma
  "~"  (0x7e) - tilde

  Key=value pairs may span PDU boundaries.  An initiator or target that
  sends partial key=value text within a PDU indicates that more text
  follows by setting the C bit in the Text or Login Request or Text or
  Login Response to 1.  Data segments in a series of PDUs that have the
  C bit set to 1 and end with a PDU that have the C bit set to 0, or
  include a single PDU that has the C bit set to 0, have to be
  considered as forming a single logical-text-data-segment (LTDS).

  Every key=value pair, including the last or only pair in a LTDS, MUST
  be followed by one null (0x00) delimiter.




Satran, et al.              Standards Track                    [Page 50]

RFC 3720                         iSCSI                        April 2004


  A key-name is whatever precedes the first "=" in the key=value pair.
  The term key is used frequently in this document in place of
  key-name.

  A value is whatever follows the first "=" in the key=value pair up to
  the end of the key=value pair, but not including the null delimiter.

  The following definitions will be used in the rest of this document:

    standard-label: A string of one or more characters that consist of
      letters, digits, dot, minus, plus, commercial at, or underscore.
      A standard-label MUST begin with a capital letter and must not
      exceed 63 characters.

    key-name: A standard-label.

    text-value: A string of zero or more characters that consist of
      letters, digits, dot, minus, plus, commercial at, underscore,
      slash, left bracket, right bracket, or colon.

    iSCSI-name-value: A string of one or more characters that consist
      of minus, dot, colon, or any character allowed by the output of
      the iSCSI string-prep template as specified in [RFC3722] (see
      also Section 3.2.6.2 iSCSI Name Encoding).

    iSCSI-local-name-value: A UTF-8 string; no null characters are
      allowed in the string.  This encoding is to be used for localized
      (internationalized) aliases.

    boolean-value: The string "Yes" or "No".

    hex-constant: A hexadecimal constant encoded as a string that
      starts with "0x" or "0X" followed by one or more digits or the
      letters a, b, c, d, e, f, A, B, C, D, E, or F.  Hex-constants are
      used to encode numerical values or binary strings.  When used to
      encode numerical values, the excessive use of leading 0 digits is
      discouraged.  The string following 0X (or 0x) represents a base16
      number that starts with the most significant base16 digit,
      followed by all other digits in decreasing order of significance
      and ending with the least-significant base16 digit.  When used to
      encode binary strings, hexadecimal constants have an implicit
      byte-length that includes four bits for every hexadecimal digit
      of the constant, including leading zeroes.  For example, a
      hex-constant of n hexadecimal digits has a byte-length of (the
      integer part of) (n+1)/2.






Satran, et al.              Standards Track                    [Page 51]

RFC 3720                         iSCSI                        April 2004


    decimal-constant: An unsigned decimal number with the digit 0 or a
      string of one or more digits that start with a non-zero digit.
      Decimal-constants are used to encode numerical values or binary
      strings.  Decimal constants can only be used to encode binary
      strings if the string length is explicitly specified.  There is
      no implicit length for decimal strings.  Decimal-constant MUST
      NOT be used for parameter values if the values can be equal or
      greater than 2**64 (numerical) or for binary strings that can be
      longer than 64 bits.

    base64-constant: base64 constant encoded as a string that starts
      with "0b" or "0B" followed by 1 or more digits or letters or plus
      or slash or equal.  The encoding is done according to [RFC2045]
      and each character, except equal, represents a base64 digit or a
      6-bit binary string.  Base64-constants are used to encode
      numerical-values or binary strings.  When used to encode
      numerical values, the excessive use of leading 0 digits (encoded
      as A) is discouraged.  The string following 0B (or 0b) represents
      a base64 number that starts with the most significant base64
      digit, followed by all other digits in decreasing order of
      significance and ending with the least-significant base64 digit;
      the least significant base64 digit may be optionally followed by
      pad digits (encoded as equal) that are not considered as part of
      the number.  When used to encode binary strings, base64-constants
      have an implicit
      byte-length that includes six bits for every character of the
      constant, excluding trailing equals (i.e., a base64-constant of n
      base64 characters excluding the trailing equals has a byte-length
      of ((the integer part of) (n*3/4)).  Correctly encoded base64
      strings cannot have n values of 1, 5 ... k*4+1.

    numerical-value: An unsigned integer always less than 2**64 encoded
      as a decimal-constant or a hex-constant.  Unsigned integer
      arithmetic applies to numerical-values.

    large-numerical-value: An unsigned integer that can be larger than
      or equal to 2**64 encoded as a hex constant, or
      base64-constant.  Unsigned integer arithmetic applies to
      large-numeric-values.

    numeric-range: Two numerical-values separated by a tilde where the
      value to the right of tilde must not be lower than the value to
      the left.

    regular-binary-value: A binary string not longer than 64 bits
      encoded as a decimal constant, hex constant, or base64-constant.
      The length of the string is either specified by the key
      definition or is the implicit byte-length of the encoded string.



Satran, et al.              Standards Track                    [Page 52]

RFC 3720                         iSCSI                        April 2004


    large-binary-value: A binary string longer than 64 bits encoded as
      a hex-constant or base64-constant.  The length of the string is
      either specified by the key definition or is the implicit
      byte-length of the encoded string.

    binary-value: A regular-binary-value or a large-binary-value.
      Operations on binary values are key specific.

    simple-value: Text-value, iSCSI-name-value, boolean-value,
      numeric-value, a numeric-range, or a binary-value.

    list-of-values: A sequence of text-values separated by a comma.

  If not otherwise specified, the maximum length of a simple-value (not
  its encoded representation) is 255 bytes, not including the delimiter
  (comma or zero byte).

  Any iSCSI target or initiator MUST support receiving at least 8192
  bytes of key=value data in a negotiation sequence.  When proposing or
  accepting authentication methods that explicitly require support for
  very long authentication items, the initiator and target MUST support
  receiving of at least 64 kilobytes of key=value data (see Appendix
  11.1.2 - Simple Public-Key Mechanism (SPKM) - that require support
  for public key certificates).

5.2.  Text Mode Negotiation

  During login, and thereafter, some session or connection parameters
  are either declared or negotiated through an exchange of textual
  information.

  The initiator starts the negotiation and/or declaration through a
  Text or Login Request and indicates when it is ready for completion
  (by setting the F bit to 1 and keeping it to 1 in a Text Request or
  the T bit in the Login Request).  As negotiation text may span PDU
  boundaries, a Text or Login Request or Text or Login Response PDU
  that has the C bit set to 1 MUST NOT have the F/T bit set to 1.

  A target receiving a Text or Login Request with the C bit set to 1
  MUST answer with a Text or Login Response with no data segment
  (DataSegmentLength 0).  An initiator receiving a Text or Login
  Response with the C bit set to 1 MUST answer with a Text or Login
  Request with no data segment (DataSegmentLength 0).

  A target or initiator SHOULD NOT use a Text or Login Response or Text
  or Login Request with no data segment (DataSegmentLength 0) unless
  explicitly required by a general or a key-specific negotiation rule.




Satran, et al.              Standards Track                    [Page 53]

RFC 3720                         iSCSI                        April 2004


  The format of a declaration is:

    Declarer-> <key>=<valuex>

  The general format of text negotiation is:

    Proposer-> <key>=<valuex>
    Acceptor-> <key>={<valuey>|NotUnderstood|Irrelevant|Reject}

  Thus a declaration is a one-way textual exchange while a negotiation
  is a two-way exchange.

  The proposer or declarer can either be the initiator or the target,
  and the acceptor can either be the target or initiator, respectively.
  Targets are not limited to respond to key=value pairs as proposed by
  the initiator.  The target may propose key=value pairs of its own.

  All negotiations are explicit (i.e., the result MUST only be based on
  newly exchanged or declared values).  There are no implicit
  proposals.  If a proposal is not made, then a reply cannot be
  expected.  Conservative design also requires that default values
  should not be relied upon when use of some other value has serious
  consequences.

  The value proposed or declared can be a numerical-value, a
  numerical-range defined by lower and upper values with both integers
  separated by a tilde, a binary value, a text-value, an
  iSCSI-name-value, an iSCSI-local-name-value, a boolean-value (Yes or
  No), or a list of comma separated text-values.  A range, a
  large-numerical-value, an iSCSI-name-value and an
  iSCSI-local-name-value MAY ONLY be used if it is explicitly allowed.
  An accepted value can be a numerical-value, a large-numerical-value,
  a text-value, or a boolean-value.

  If a specific key is not relevant for the current negotiation, the
  acceptor may answer with the constant "Irrelevant" for all types of
  negotiation.  However the negotiation is not considered as failed if
  the answer is "Irrelevant".  The "Irrelevant" answer is meant for
  those cases in which several keys are presented by a proposing party
  but the selection made by the acceptor for one of the keys makes
  other keys irrelevant.  The following example illustrates the use of
  "Irrelevant":

  I->T OFMarker=Yes,OFMarkInt=2048~8192
  T->I OFMarker=No,OFMarkInt=Irrelevant

  I->T X#vkey1=(bla,alb,None),X#vkey2=(bla,alb)
  T->I X#vkey1=None,X#vkey2=Irrelevant



Satran, et al.              Standards Track                    [Page 54]

RFC 3720                         iSCSI                        April 2004



  Any key not understood by the acceptor may be ignored by the acceptor
  without affecting the basic function.  However, the answer for a key
  not understood MUST be key=NotUnderstood.

  The constants "None", "Reject", "Irrelevant", and "NotUnderstood" are
  reserved and MUST ONLY be used as described here.  Violation of this
  rule is a protocol error (in particular the use of "Reject",
  "Irrelevant", and "NotUnderstood" as proposed values).

  Reject or Irrelevant are legitimate negotiation options where allowed
  but their excessive use is discouraged.  A negotiation is considered
  complete when the acceptor has sent the key value pair even if the
  value is "Reject", "Irrelevant", or "NotUnderstood.  Sending the key
  again would be a re-negotiation and is forbidden for many keys.

  If the acceptor sends "Reject" as an answer the negotiated key is
  left at its current value (or default if no value was set).  If the
  current value is not acceptable to the proposer on the connection or
  to the session it is sent, the proposer MAY choose to terminate the
  connection or session.

  All keys in this document, except for the X extension formats, MUST
  be supported by iSCSI initiators and targets when used as specified
  here.  If used as specified, these keys MUST NOT be answered with
  NotUnderstood.

  Implementers may introduce new keys by prefixing them with
  "X-", followed by their (reversed) domain name, or with new keys
  registered with IANA prefixing them with X#.  For example, the entity
  owning the domain example.com can issue:

        X-com.example.bar.foo.do_something=3

  or a new registered key may be used as in:

        X#SuperCalyPhraGilistic=Yes

  Implementers MAY also introduce new values, but ONLY for new keys or
  authentication methods (see Section 11 iSCSI Security Text Keys and
  Authentication Methods), or digests (see Section 12.1 HeaderDigest
  and DataDigest).

  Whenever parameter action or acceptance is dependent on other
  parameters, the dependency rules and parameter sequence must be
  specified with the parameters.





Satran, et al.              Standards Track                    [Page 55]

RFC 3720                         iSCSI                        April 2004


  In the Login Phase (see Section 5.3 Login Phase), every stage is a
  separate negotiation.  In the FullFeaturePhase, a Text Request
  Response sequence is a negotiation.  Negotiations MUST be handled as
  atomic operations.  For example, all negotiated values go into effect
  after the negotiation concludes in agreement or are ignored if the
  negotiation fails.

  Some parameters may be subject to integrity rules (e.g., parameter-x
  must not exceed parameter-y or parameter-u not 1 implies parameter-v
  be Yes).  Whenever required, integrity rules are specified with the
  keys.  Checking for compliance with the integrity rule must only be
  performed after all the parameters are available (the existent and
  the newly negotiated).  An iSCSI target MUST perform integrity
  checking before the new parameters take effect.  An initiator MAY
  perform integrity checking.

  An iSCSI initiator or target MAY terminate a negotiation that does
  not end within a reasonable time or number of exchanges.

5.2.1.  List negotiations

  In list negotiation, the originator sends a list of values (which may
  include "None") in its order of preference.

  The responding party MUST respond with the same key and the first
  value that it supports (and is allowed to use for the specific
  originator) selected from the originator list.

  The constant "None" MUST always be used to indicate a missing
  function.  However, "None" is only a valid selection if it is
  explicitly proposed.

  If an acceptor does not understand any particular value in a list, it
  MUST ignore it.  If an acceptor does not support, does not
  understand, or is not allowed to use any of the proposed options with
  a specific originator, it may use the constant "Reject" or terminate
  the negotiation.  The selection of a value not proposed MUST be
  handled as a protocol error.

5.2.2.  Simple-value Negotiations

  For simple-value negotiations, the accepting party MUST answer with
  the same key.  The value it selects becomes the negotiation result.

  Proposing a value not admissible (e.g., not within the specified
  bounds) MAY be answered with the constant "Reject" or the acceptor
  MAY select an admissible value.




Satran, et al.              Standards Track                    [Page 56]

RFC 3720                         iSCSI                        April 2004


  The selection by the acceptor, of a value not admissible under the
  selection rules is considered a protocol error.  The selection rules
  are key-specific.

  For a numerical range, the value selected must be an integer within
  the proposed range or "Reject" (if the range is unacceptable).

  In Boolean negotiations (i.e., those that result in keys taking the
  values Yes or No), the accepting party MUST answer with the same key
  and the result of the negotiation when the received value does not
  determine that result by itself.  The last value transmitted becomes
  the negotiation result.  The rules for selecting the value to answer
  with are expressed as Boolean functions of the value received, and
  the value that the accepting party would have selected if given a
  choice.

  Specifically, the two cases in which answers are OPTIONAL are:

     -  The Boolean function is "AND" and the value "No" is received.
        The outcome of the negotiation is "No".
     -  The Boolean function is "OR" and the value "Yes" is received.
        The outcome of the negotiation is "Yes".

  Responses are REQUIRED in all other cases, and the value chosen and
  sent by the acceptor becomes the outcome of the negotiation.

5.3.  Login Phase

  The Login Phase establishes an iSCSI connection between an initiator
  and a target; it also creates a new session or associates the
  connection to an existing session.  The Login Phase sets the iSCSI
  protocol parameters, security parameters, and authenticates the
  initiator and target to each other.

  The Login Phase is only implemented via Login Request and Responses.
  The whole Login Phase is considered as a single task and has a single
  Initiator Task Tag (similar to the linked SCSI commands).

  The default MaxRecvDataSegmentLength is used during Login.

  The Login Phase sequence of requests and responses proceeds as
  follows:

     - Login initial request
     - Login partial response (optional)
     - More Login Requests and Responses (optional)
     - Login Final-Response (mandatory)




Satran, et al.              Standards Track                    [Page 57]

RFC 3720                         iSCSI                        April 2004


  The initial Login Request of any connection MUST include the
  InitiatorName key=value pair.  The initial Login Request of the first
  connection of a session MAY also include the SessionType key=value
  pair.  For any connection within a session whose type is not
  "Discovery", the first Login Request MUST also include the TargetName
  key=value pair.

  The Login Final-response accepts or rejects the Login Request.

  The Login Phase MAY include a SecurityNegotiation stage and a
  LoginOperationalNegotiation stage or both, but MUST include at least
  one of them.  The included stage MAY be empty except for the
  mandatory names.

  The Login Requests and Responses contain a field (CSG) that indicates
  the current negotiation stage (SecurityNegotiation or
  LoginOperationalNegotiation).  If both stages are used, the
  SecurityNegotiation MUST precede the LoginOperationalNegotiation.

  Some operational parameters can be negotiated outside the login
  through Text Requests and Responses.

  Security MUST be completely negotiated within the Login Phase.  The
  use of underlying IPsec security is specified in Chapter 8 and in
  [RFC3723].  iSCSI support for security within the protocol only
  consists of authentication in the Login Phase.

  In some environments, a target or an initiator is not interested in
  authenticating its counterpart.  It is possible to bypass
  authentication through the Login Request and Response.

  The initiator and target MAY want to negotiate iSCSI authentication
  parameters.  Once this negotiation is completed, the channel is
  considered secure.

  Most of the negotiation keys are only allowed in a specific stage.
  The SecurityNegotiation keys appear in Chapter 11 and the
  LoginOperationalNegotiation keys appear in Chapter 12.  Only a
  limited set of keys (marked as Any-Stage in Chapter 12) may be used
  in any of the two stages.

  Any given Login Request or Response belongs to a specific stage; this
  determines the negotiation keys allowed with the request or response.
  It is considered to be a protocol error to send a key that is not
  allowed in the current stage.






Satran, et al.              Standards Track                    [Page 58]

RFC 3720                         iSCSI                        April 2004


  Stage transition is performed through a command exchange (request/
  response) that carries the T bit and the same CSG code.  During this
  exchange, the next stage is selected by the target through the "next
  stage" code (NSG).  The selected NSG MUST NOT exceed the value stated
  by the initiator.  The initiator can request a transition whenever it
  is ready, but a target can only respond with a transition after one
  is proposed by the initiator.

  In a negotiation sequence, the T bit settings in one pair of Login
  Request-Responses have no bearing on the T bit settings of the next
  pair.  An initiator that has a T bit set to 1 in one pair and is
  answered with a T bit setting of 0, may issue the next request with
  the T bit set to 0.

  When a transition is requested by the initiator and acknowledged by
  the target, both the initiator and target switch to the selected
  stage.

  Targets MUST NOT submit parameters that require an additional
  initiator Login Request in a Login Response with the T bit set to 1.

  Stage transitions during login (including entering and exit) are only
  possible as outlined in the following table:

  +-----------------------------------------------------------+
  |From     To ->   | Security    | Operational | FullFeature |
  | |               |             |             |             |
  | V               |             |             |             |
  +-----------------------------------------------------------+
  | (start)         |  yes        |  yes        |  no         |
  +-----------------------------------------------------------+
  | Security        |  no         |  yes        |  yes        |
  +-----------------------------------------------------------+
  | Operational     |  no         |  no         |  yes        |
  +-----------------------------------------------------------+

  The Login Final-Response that accepts a Login Request can only come
  as a response to a Login Request with the T bit set to 1, and both
  the request and response MUST indicate FullFeaturePhase as the next
  phase via the NSG field.

  Neither the initiator nor the target should attempt to declare or
  negotiate a parameter more than once during login except for
  responses to specific keys that explicitly allow repeated key
  declarations (e.g., TargetAddress).  An attempt to
  renegotiate/redeclare parameters not specifically allowed MUST be
  detected by the initiator and target.  If such an attempt is detected




Satran, et al.              Standards Track                    [Page 59]

RFC 3720                         iSCSI                        April 2004


  by the target, the target MUST respond with Login reject (initiator
  error); if detected by the initiator, the initiator MUST drop the
  connection.

5.3.1.  Login Phase Start

  The Login Phase starts with a Login Request from the initiator to the
  target.  The initial Login Request includes:

     - Protocol version supported by the initiator.
     - iSCSI Initiator Name and iSCSI Target Name
     - ISID, TSIH, and connection Ids
     - Negotiation stage that the initiator is ready to enter.

  A login may create a new session or it may add a connection to an
  existing session.  Between a given iSCSI Initiator Node (selected
  only by an InitiatorName) and a given iSCSI target defined by an
  iSCSI TargetName and a Target Portal Group Tag, the login results are
  defined by the following table:


  +------------------------------------------------------------------+
  |ISID      | TSIH        | CID    |     Target action              |
  +------------------------------------------------------------------+
  |new       | non-zero    | any    |     fail the login             |
  |          |             |        |     ("session does not exist") |
  +------------------------------------------------------------------+
  |new       | zero        | any    |     instantiate a new session  |
  +------------------------------------------------------------------+
  |existing  | zero        | any    |     do session reinstatement   |
  |          |             |        |     (see section 5.3.5)        |
  +------------------------------------------------------------------+
  |existing  | non-zero    | new    |     add a new connection to    |
  |          | existing    |        |     the session                |
  +------------------------------------------------------------------+
  |existing  | non-zero    |existing|     do connection reinstatement|
  |          | existing    |        |    (see section 5.3.4)         |
  +------------------------------------------------------------------+
  |existing  | non-zero    | any    |         fail the login         |
  |          | new         |        |     ("session does not exist") |
  +------------------------------------------------------------------+

  Determination of "existing" or "new" are made by the target.








Satran, et al.              Standards Track                    [Page 60]

RFC 3720                         iSCSI                        April 2004


  Optionally, the Login Request may include:

     - Security parameters
     OR
     - iSCSI operational parameters
     AND/OR
     - The next negotiation stage that the initiator is ready to
     enter.

  The target can answer the login in the following ways:

    - Login Response with Login reject.  This is an immediate rejection
      from the target that causes the connection to terminate and the
      session to terminate if this is the first (or only) connection of
      a new session.  The T bit and the CSG and NSG fields are
      reserved.
    - Login Response with Login Accept as a final response (T bit set
      to 1 and the NSG in both request and response are set to
      FullFeaturePhase).  The response includes the protocol version
      supported by the target and the session ID, and may include iSCSI
      operational or security parameters (that depend on the current
      stage).
    - Login Response with Login Accept as a partial response (NSG not
      set to FullFeaturePhase in both request and response) that
      indicates the start of a negotiation sequence.  The response
      includes the protocol version supported by the target and either
      security or iSCSI parameters (when no security mechanism is
      chosen) supported by the target.

  If the initiator decides to forego the SecurityNegotiation stage, it
  issues the Login with the CSG set to LoginOperationalNegotiation and
  the target may reply with a Login Response that indicates that it is
  unwilling to accept the connection (see Section 10.13 Login Response)
  without SecurityNegotiation and will terminate the connection with a
  response of Authentication failure (see Section 10.13.5 Status-Class
  and Status-Detail).

  If the initiator is willing to negotiate iSCSI security, but is
  unwilling to make the initial parameter proposal and may accept a
  connection without iSCSI security, it issues the Login with the T bit
  set to 1, the CSG set to SecurityNegotiation, and the NSG set to
  LoginOperationalNegotiation.  If the target is also ready to skip
  security, the Login Response only contains the TargetPortalGroupTag
  key (see Section 12.9 TargetPortalGroupTag), the T bit set to 1, the
  CSG set to SecurityNegotiation, and the NSG set to
  LoginOperationalNegotiation.





Satran, et al.              Standards Track                    [Page 61]

RFC 3720                         iSCSI                        April 2004


  An initiator that chooses to operate without iSCSI security, with all
  the operational parameters taking the default values, issues the
  Login with the T bit set to 1, the CSG set to
  LoginOperationalNegotiation, and the NSG set to FullFeaturePhase.  If
  the target is also ready to forego security and can finish its
  LoginOperationalNegotiation, the Login Response has T bit set to 1,
  the CSG set to LoginOperationalNegotiation, and the NSG set to
  FullFeaturePhase in the next stage.

  During the Login Phase the iSCSI target MUST return the
  TargetPortalGroupTag key with the first Login Response PDU with which
  it is allowed to do so (i.e., the first Login Response issued after
  the first Login Request with the C bit set to 0) for all session
  types when TargetName is given and the response is not a redirection.
  The TargetPortalGroupTag key value indicates the iSCSI portal group
  servicing the Login Request PDU.  If the reconfiguration of iSCSI
  portal groups is a concern in a given environment, the iSCSI
  initiator should use this key to ascertain that it had indeed
  initiated the Login Phase with the intended target portal group.

5.3.2.  iSCSI Security Negotiation

  The security exchange sets the security mechanism and authenticates
  the initiator user and the target to each other.  The exchange
  proceeds according to the authentication method chosen in the
  negotiation phase and is conducted using the Login Requests' and
  responses' key=value parameters.

  An initiator directed negotiation proceeds as follows:

    - The initiator sends a Login Request with an ordered list of the
      options it supports (authentication algorithm).  The options are
      listed in the initiator's order of preference.  The initiator MAY
      also send private or public extension options.

    - The target MUST reply with the first option in the list it
      supports and is allowed to use for the specific initiator unless
      it does not support any, in which case it MUST answer with
      "Reject" (see Section 5.2 Text Mode Negotiation).  The parameters
      are encoded in UTF8 as key=value.  For security parameters, see
      Chapter 11.

    - When the initiator considers that it is ready to conclude the
      SecurityNegotiation stage, it sets the T bit to 1 and the NSG to
      what it would like the next stage to be.  The target will then
      set the T bit to 1 and set the NSG to the next stage in the Login
      Response when it finishes sending its security keys.  The next




Satran, et al.              Standards Track                    [Page 62]

RFC 3720                         iSCSI                        April 2004


      stage selected will be the one the target selected.  If the next
      stage is FullFeaturePhase, the target MUST respond with a Login
      Response with the TSIH value.

  If the security negotiation fails at the target, then the target MUST
  send the appropriate Login Response PDU.  If the security negotiation
  fails at the initiator, the initiator SHOULD close the connection.

  It should be noted that the negotiation might also be directed by the
  target if the initiator does support security, but is not ready to
  direct the negotiation (propose options).

5.3.3.  Operational Parameter Negotiation During the Login Phase

  Operational parameter negotiation during the login MAY be done:

    - Starting with the first Login Request if the initiator does not
      propose any security/integrity option.

    - Starting immediately after the security negotiation if the
      initiator and target perform such a negotiation.

  Operational parameter negotiation MAY involve several Login
  Request-Response exchanges started and terminated by the initiator.
  The initiator MUST indicate its intent to terminate the negotiation
  by setting the T bit to 1; the target sets the T bit to 1 on the last
  response.

  If the target responds to a Login Request that has the T bit set to 1
  with a Login Response that has the T bit set to 0, the initiator
  should keep sending the Login Request (even empty) with the T bit set
  to 1, while it still wants to switch stage, until it receives the
  Login Response that has the T bit set to 1 or it receives a key that
  requires it to set the T bit to 0.

  Some session specific parameters can only be specified during the
  Login Phase of the first connection of a session (i.e., begun by a
  Login Request that contains a zero-valued TSIH) - the leading Login
  Phase (e.g., the maximum number of connections that can be used for
  this session).

  A session is operational once it has at least one connection in
  FullFeaturePhase.  New or replacement connections can only be added
  to a session after the session is operational.

  For operational parameters, see Chapter 12.





Satran, et al.              Standards Track                    [Page 63]

RFC 3720                         iSCSI                        April 2004


5.3.4.  Connection Reinstatement

  Connection reinstatement is the process of an initiator logging in
  with an ISID-TSIH-CID combination that is possibly active from the
  target's perspective, which causes the implicit logging out of the
  connection corresponding to the CID,  and reinstating a new Full
  Feature Phase iSCSI connection in its place (with the same CID).
  Thus, the TSIH in the Login PDU MUST be non-zero and the CID does not
  change during a connection reinstatement.  The Login Request performs
  the logout function of the old connection if an explicit logout was
  not performed earlier.  In sessions with a single connection, this
  may imply the opening of a second connection with the sole purpose of
  cleaning up the first.  Targets MUST support opening a second
  connection even when they do not support multiple connections in Full
  Feature Phase if ErrorRecoveryLevel is 2 and SHOULD support opening a
  second connection if ErrorRecoveryLevel is less than 2.

  If the operational ErrorRecoveryLevel is 2, connection reinstatement
  enables future task reassignment.  If the operational
  ErrorRecoveryLevel is less than 2, connection reinstatement is the
  replacement of the old CID without enabling task reassignment.  In
  this case, all the tasks that were active on the old CID must be
  immediately terminated without further notice to the initiator.

  The initiator connection state MUST be CLEANUP_WAIT (section 7.1.3)
  when the initiator attempts a connection reinstatement.

  In practical terms, in addition to the implicit logout of the old
  connection, reinstatement is equivalent to a new connection login.

5.3.5.  Session Reinstatement, Closure, and Timeout

  Session reinstatement is the process of the initiator logging in with
  an ISID that is possibly active from the target's perspective.  Thus
  implicitly logging out the session that corresponds to the ISID and
  reinstating a new iSCSI session in its place (with the same ISID).
  Therefore, the TSIH in the Login PDU MUST be zero to signal session
  reinstatement.  Session reinstatement causes all the tasks that were
  active on the old session to be immediately terminated by the target
  without further notice to the initiator.

  The initiator session state MUST be FAILED (Section 7.3 Session State
  Diagrams) when the initiator attempts a session reinstatement.








Satran, et al.              Standards Track                    [Page 64]

RFC 3720                         iSCSI                        April 2004


  Session closure is an event defined to be one of the following:

    - A successful "session close" logout.
    - A successful "connection close" logout for the last Full Feature
      Phase connection when no other connection in the session is
      waiting for cleanup (Section 7.2 Connection Cleanup State Diagram
      for Initiators and Targets) and no tasks in the session are
      waiting for reassignment.

  Session timeout is an event defined to occur when the last connection
  state timeout expires and no tasks are waiting for reassignment.
  This takes the session to the FREE state (N6 transition in the
  session state diagram).

5.3.5.1.  Loss of Nexus Notification

  The iSCSI layer provides the SCSI layer with the "I_T nexus loss"
  notification when any one of the following events happens:

     a)  Successful completion of session reinstatement.
     b)  Session closure event.
     c)  Session timeout event.

  Certain SCSI object clearing actions may result due to the
  notification in the SCSI end nodes, as documented in Appendix F.
  - Clearing Effects of Various Events on Targets -.

5.3.6.  Session Continuation and Failure

  Session continuation is the process by which the state of a
  preexisting session continues to be used by connection reinstatement
  (Section 5.3.4 Connection Reinstatement), or by adding a connection
  with a new CID.  Either of these actions associates the new transport
  connection with the session state.

  Session failure is an event where the last Full Feature Phase
  connection reaches the CLEANUP_WAIT state (Section 7.2 Connection
  Cleanup State Diagram for Initiators and Targets), or completes a
  successful recovery logout, thus causing all active tasks (that are
  formerly allegiant to the connection) to start waiting for task
  reassignment.










Satran, et al.              Standards Track                    [Page 65]

RFC 3720                         iSCSI                        April 2004


5.4.  Operational Parameter Negotiation Outside the Login Phase

  Some operational parameters MAY be negotiated outside (after) the
  Login Phase.

  Parameter negotiation in Full Feature Phase is done through Text
  requests and responses.  Operational parameter negotiation MAY
  involve several Text request-response exchanges, which the initiator
  always starts and terminates using the same Initiator Task Tag.  The
  initiator MUST indicate its intent to terminate the negotiation by
  setting the F bit to 1; the target sets the F bit to 1 on the last
  response.

  If the target responds to a Text request with the F bit set to 1 and
  with a Text response with the F bit set to 0, the initiator should
  keep sending the Text request (even empty) with the F bit set to 1,
  while it still wants to finish the negotiation, until it receives the
  Text response with the F bit set to 1.  Responding to a Text request
  with the F bit set to 1 with an empty (no key=value pairs) response
  with the F bit set to 0 is discouraged.

  Targets MUST NOT submit parameters that require an additional
  initiator Text request in a Text response with the F bit set to 1.

  In a negotiation sequence, the F bit settings in one pair of Text
  request-responses have no bearing on the F bit settings of the next
  pair.  An initiator that has the F bit set to 1 in a request and is
  being answered with an F bit setting of 0 may issue the next request
  with the F bit set to 0.

  Whenever the target responds with the F bit set to 0, it MUST set the
  Target Transfer Tag to a value other than the default 0xffffffff.

  An initiator MAY reset an operational parameter negotiation by
  issuing a Text request with the Target Transfer Tag set to the value
  0xffffffff after receiving a response with the Target Transfer Tag
  set to a value other than 0xffffffff.  A target may reset an
  operational parameter negotiation by answering a Text request with a
  Reject PDU.

  Neither the initiator nor the target should attempt to declare or
  negotiate a parameter more than once during any negotiation sequence
  without an intervening operational parameter negotiation reset,
  except for responses to specific keys that explicitly allow repeated
  key declarations (e.g., TargetAddress).  If detected by the target,
  this MUST result in a Reject PDU with a reason of "protocol error".
  The initiator MUST reset the negotiation as outlined above.




Satran, et al.              Standards Track                    [Page 66]

RFC 3720                         iSCSI                        April 2004


  Parameters negotiated by a text exchange negotiation sequence only
  become effective after the negotiation sequence is completed.

6.  iSCSI Error Handling and Recovery

6.1.  Overview

6.1.1.  Background

  The following two considerations prompted the design of much of the
  error recovery functionality in iSCSI:

     i)  An iSCSI PDU may fail the digest check and be dropped, despite
         being received by the TCP layer.  The iSCSI layer must
         optionally be allowed to recover such dropped PDUs.
     ii) A TCP connection may fail at any time during the data
         transfer.  All the active tasks must optionally be allowed to
         continue on a different TCP connection within the same
         session.

  Implementations have considerable flexibility in deciding what degree
  of error recovery to support, when to use it and by which mechanisms
  to achieve the required behavior.  Only the externally visible
  actions of the error recovery mechanisms must be standardized to
  ensure interoperability.

  This chapter describes a general model for recovery in support of
  interoperability.  See Appendix E.  - Algorithmic Presentation of
  Error Recovery Classes - for further detail on how the described
  model may be implemented.  Compliant implementations do not have to
  match the implementation details of this model as presented, but the
  external behavior of such implementations must correspond to the
  externally observable characteristics of the presented model.

6.1.2.  Goals

  The major design goals of the iSCSI error recovery scheme are as
  follows:

     a)  Allow iSCSI implementations to meet different requirements by
         defining a collection of error recovery mechanisms that
         implementations may choose from.
     b)  Ensure interoperability between any two implementations
         supporting different sets of error recovery capabilities.
     c)  Define the error recovery mechanisms to ensure command
         ordering even in the face of errors, for initiators that
         demand ordering.




Satran, et al.              Standards Track                    [Page 67]

RFC 3720                         iSCSI                        April 2004


     d)  Do not make additions in the fast path, but allow moderate
         complexity in the error recovery path.
     e)  Prevent both the initiator and target from attempting to
         recover the same set of PDUs at the same time.  For example,
         there must be a clear "error recovery functionality
         distribution" between the initiator and target.

6.1.3.  Protocol Features and State Expectations

  The initiator mechanisms defined in connection with error recovery
  are:

     a)  NOP-OUT to probe sequence numbers of the target (section
         10.18)
     b)  Command retry (section 6.2.1)
     c)  Recovery R2T support (section 6.7)
     d)  Requesting retransmission of status/data/R2T using the SNACK
         facility (section 10.16)
     e)  Acknowledging the receipt of the data (section 10.16)
     f)  Reassigning the connection allegiance of a task to a different
         TCP connection (section 6.2.2)
     g)  Terminating the entire iSCSI session to start afresh (section
         6.1.4.4)

  The target mechanisms defined in connection with error recovery are:

     a)  NOP-IN to probe sequence numbers of the initiator (section
         10.19)
     b)  Requesting retransmission of data using the recovery R2T
         feature (section 6.7)
     c)  SNACK support (section 10.16) d)  Requesting that parts of
         read data be acknowledged (section 10.7.2)
     e)  Allegiance reassignment support (section 6.2.2)
     f)  Terminating the entire iSCSI session to force the initiator to
         start over (section 6.1.4.4)

  For any outstanding SCSI command, it is assumed that iSCSI, in
  conjunction with SCSI at the initiator, is able to keep enough
  information to be able to rebuild the command PDU, and that outgoing
  data is available (in host memory) for retransmission while the
  command is outstanding.  It is also assumed that at the target,
  incoming data (read data) MAY be kept for recovery or it can be
  reread from a device server.

  It is further assumed that a target will keep the "status & sense"
  for a command it has executed if it supports status retransmission.
  A target that agrees to support data retransmission is expected to be
  prepared to retransmit the outgoing data (i.e., Data-In) on request



Satran, et al.              Standards Track                    [Page 68]

RFC 3720                         iSCSI                        April 2004


  until either the status for the completed command is acknowledged, or
  the data in question has been separately acknowledged.

6.1.4.  Recovery Classes

  iSCSI enables the following classes of recovery (in the order of
  increasing scope of affected iSCSI tasks):

     - Within a command (i.e., without requiring command restart).
     - Within a connection (i.e., without requiring the connection to
       be rebuilt, but perhaps requiring command restart).
     - Connection recovery (i.e., perhaps requiring connections to be
       rebuilt and commands to be reissued).
     - Session recovery.

  The recovery scenarios detailed in the rest of this section are
  representative rather than exclusive.  In every case, they detail the
  lowest class recovery that MAY be attempted.  The implementer is left
  to decide under which circumstances to escalate to the next recovery
  class and/or what recovery classes to implement.  Both the iSCSI
  target and initiator MAY escalate the error handling to an error
  recovery class, which impacts a larger number of iSCSI tasks in any
  of the cases identified in the following discussion.

  In all classes, the implementer has the choice of deferring errors to
  the SCSI initiator (with an appropriate response code), in which case
  the task, if any, has to be removed from the target and all the side
  effects, such as ACA, must be considered.

  Use of within-connection and within-command recovery classes MUST NOT
  be attempted before the connection is in Full Feature Phase.

  In the detailed description of the recovery classes, the mandating
  terms (MUST, SHOULD, MAY, etc.) indicate normative actions to be
  executed if the recovery class is supported and used.

6.1.4.1.  Recovery Within-command

  At the target, the following cases lend themselves to
  within-command recovery:

   -  Lost data PDU - realized through one of the following:

      a)  Data digest error - dealt with as specified in Section 6.7
          Digest Errors, using the option of a recovery R2T.






Satran, et al.              Standards Track                    [Page 69]

RFC 3720                         iSCSI                        April 2004


      b)  Sequence reception timeout (no data or
          partial-data-and-no-F-bit) - considered an implicit sequence
          error and dealt with as specified in Section 6.8 Sequence
          Errors, using the option of a recovery R2T.
      c)  Header digest error, which manifests as a sequence reception
          timeout or a sequence error - dealt with as specified in
          Section 6.8 Sequence Errors, using the option of a recovery
          R2T.

  At the initiator, the following cases lend themselves to
  within-command recovery:

      Lost data PDU or lost R2T - realized through one of the
      following:

      a)  Data digest error - dealt with as specified in Section 6.7
          Digest Errors, using the option of a SNACK.
      b)  Sequence reception timeout (no status) or response reception
          timeout - dealt with as specified in Section 6.8 Sequence
          Errors, using the option of a SNACK.
      c)  Header digest error, which manifests as a sequence reception
          timeout or a sequence error - dealt with as specified in
          Section 6.8 Sequence Errors, using the option of a SNACK.

  To avoid a race with the target, which may already have a recovery
  R2T or a termination response on its way, an initiator SHOULD NOT
  originate a SNACK for an R2T based on its internal timeouts (if any).
  Recovery in this case is better left to the target.

  The timeout values used by the initiator and target are outside the
  scope of this document.  Sequence reception timeout is generally a
  large enough value to allow the data sequence transfer to be
  complete.

6.1.4.2.  Recovery Within-connection

  At the initiator, the following cases lend themselves to
  within-connection recovery:

   -  Requests not acknowledged for a long time.  Requests are
      acknowledged explicitly through ExpCmdSN or implicitly by
      receiving data and/or status.  The initiator MAY retry
      non-acknowledged commands as specified in Section 6.2 Retry and
      Reassign in Recovery.







Satran, et al.              Standards Track                    [Page 70]

RFC 3720                         iSCSI                        April 2004


   -  Lost iSCSI numbered Response.  It is recognized by either
      identifying a data digest error on a Response PDU or a Data-In
      PDU carrying the status, or by receiving a Response PDU with a
      higher StatSN than expected.  In the first case, digest error
      handling is done as specified in Section 6.7 Digest Errors using
      the option of a SNACK.  In the second case, sequence error
      handling is done as specified in Section 6.8 Sequence Errors,
      using the option of a SNACK.

  At the target, the following cases lend themselves to
  within-connection recovery:

   -  Status/Response not acknowledged for a long time.  The target MAY
      issue a NOP-IN (with a valid Target Transfer Tag or otherwise)
      that carries the next status sequence number it is going to use
      in the StatSN field.  This helps the initiator detect any missing
      StatSN(s) and issue a SNACK for the status.

  The timeout values used by the initiator and the target are outside
  the scope of this document.

6.1.4.3.  Connection Recovery

  At an iSCSI initiator, the following cases lend themselves to
  connection recovery:

   - TCP connection failure: The initiator MUST close the connection.
     It then MUST either implicitly or explicitly logout the failed
     connection with the reason code "remove the connection for
     recovery" and reassign connection allegiance for all commands
     still in progress associated with the failed connection on one or
     more connections (some or all of which MAY be newly established
     connections) using the "Task reassign" task management function
     (see Section 10.5.1 Function). For an initiator, a command is in
     progress as long as it has not received a response or a Data-In
     PDU including status.

     Note: The logout function is mandatory. However, a new connection
     establishment is only mandatory if the failed connection was the
     last or only connection in the session.

   - Receiving an Asynchronous Message that indicates one or all
     connections in a session has been dropped.  The initiator MUST
     handle it as a TCP connection failure for the connection(s)
     referred to in the Message.






Satran, et al.              Standards Track                    [Page 71]

RFC 3720                         iSCSI                        April 2004


  At an iSCSI target, the following cases lend themselves to connection
  recovery:

   - TCP connection failure. The target MUST close the connection and,
     if more than one connection is available, the target SHOULD send
     an Asynchronous Message that indicates it has dropped the
     connection. Then, the target will wait for the initiator to
     continue recovery.

6.1.4.4.  Session Recovery

  Session recovery should be performed when all other recovery attempts
  have failed.  Very simple initiators and targets MAY perform session
  recovery on all iSCSI errors and rely on recovery on the SCSI layer
  and above.

  Session recovery implies the closing of all TCP connections,
  internally aborting all executing and queued tasks for the given
  initiator at the target, terminating all outstanding SCSI commands
  with an appropriate SCSI service response at the initiator, and
  restarting a session on a new set of connection(s) (TCP connection
  establishment and login on all new connections).

  For possible clearing effects of session recovery on SCSI and iSCSI
  objects, refer to Appendix F. - Clearing Effects of Various Events on
  Targets -.

6.1.5.  Error Recovery Hierarchy

  The error recovery classes described so far are organized into a
  hierarchy for ease in understanding and to limit the implementation
  complexity. With few and well defined recovery levels
  interoperability is easier to achieve.  The attributes of this
  hierarchy are as follows:

     a)  Each level is a superset of the capabilities of the previous
         level. For example, Level 1 support implies supporting all
         capabilities of Level 0 and more.
     b)  As a corollary, supporting a higher error recovery level means
         increased sophistication and possibly an increase in resource
         requirements.
     c)  Supporting error recovery level "n" is advertised and
         negotiated by each iSCSI entity by exchanging the text key
         "ErrorRecoveryLevel=n".  The lower of the two exchanged values
         is the operational ErrorRecoveryLevel for the session.






Satran, et al.              Standards Track                    [Page 72]

RFC 3720                         iSCSI                        April 2004


  The following diagram represents the error recovery hierarchy.

                        +
                       /
                      / 2 \       <-- Connection recovery
                     +-----+
                    /   1   \     <-- Digest failure recovery
                   +---------+
                  /     0     \   <-- Session failure recovery
                 +-------------+

  The following table lists the error recovery capabilities expected
  from the implementations that support each error recovery level.

  +-------------------+--------------------------------------------+
  |ErrorRecoveryLevel |  Associated Error recovery capabilities    |
  +-------------------+--------------------------------------------+
  |        0          |  Session recovery class                    |
  |                   |  (Section 6.1.4.4 Session Recovery)        |
  +-------------------+--------------------------------------------+
  |        1          |  Digest failure recovery (See Note below.) |
  |                   |  plus the capabilities of ER Level 0       |
  +-------------------+--------------------------------------------+
  |        2          |  Connection recovery class                 |
  |                   |  (Section 6.1.4.3 Connection Recovery)     |
  |                   |  plus the capabilities of ER Level 1       |
  +-------------------+--------------------------------------------+

  Note: Digest failure recovery is comprised of two recovery classes:
  Within-Connection recovery class (Section 6.1.4.2 Recovery Within-
  connection) and Within-Command recovery class (Section 6.1.4.1
  Recovery Within-command).

  When a defined value of ErrorRecoveryLevel is proposed by an
  originator in a text negotiation, the originator MUST support the
  functionality defined for the proposed value and additionally, the
  functionality corresponding to any defined value numerically less
  than the proposed.  When a defined value of ErrorRecoveryLevel is
  returned by a responder in a text negotiation, the responder MUST
  support the functionality corresponding to the ErrorRecoveryLevel it
  is accepting.

  When either party attempts to use error recovery functionality beyond
  what is negotiated, the recovery attempts MAY fail unless an a priori
  agreement outside the scope of this document exists between the two
  parties to provide such support.





Satran, et al.              Standards Track                    [Page 73]

RFC 3720                         iSCSI                        April 2004


  Implementations MUST support error recovery level "0", while the rest
  are OPTIONAL to implement.  In implementation terms, the above
  striation means that the following incremental sophistication with
  each level is required.

  +-------------------+---------------------------------------------+
  |Level transition   |  Incremental requirement                    |
  +-------------------+---------------------------------------------+
  |        0->1       |  PDU retransmissions on the same connection |
  +-------------------+---------------------------------------------+
  |        1->2       |  Retransmission across connections and      |
  |                   |  allegiance reassignment                    |
  +-------------------+---------------------------------------------+

6.2.  Retry and Reassign in Recovery

  This section summarizes two important and somewhat related iSCSI
  protocol features used in error recovery.

6.2.1.  Usage of Retry

  By resending the same iSCSI command PDU ("retry") in the absence of a
  command acknowledgement (by way of an ExpCmdSN update) or a response,
  an initiator attempts to "plug" (what it thinks are) the
  discontinuities in CmdSN ordering on the target end.  Discarded
  command PDUs, due to digest errors, may have created these
  discontinuities.

  Retry MUST NOT be used for reasons other than plugging command
  sequence gaps, and in particular, cannot be used for requesting PDU
  retransmissions from a target.  Any such PDU retransmission requests
  for a currently allegiant command in progress may be made using the
  SNACK mechanism described in section 10.16, although the usage of
  SNACK is OPTIONAL.

  If initiators, as part of plugging command sequence gaps as described
  above, inadvertently issue retries for allegiant commands already in
  progress (i.e., targets did not see the discontinuities in CmdSN
  ordering), the duplicate commands are silently ignored by targets as
  specified in section 3.2.2.1.

  When an iSCSI command is retried, the command PDU MUST carry the
  original Initiator Task Tag and the original operational attributes
  (e.g., flags, function names, LUN, CDB etc.) as well as the original
  CmdSN.  The command being retried MUST be sent on the same connection
  as the original command unless the original connection was already
  successfully logged out.




Satran, et al.              Standards Track                    [Page 74]

RFC 3720                         iSCSI                        April 2004


6.2.2.  Allegiance Reassignment

  By issuing a "task reassign" task management request (Section 10.5.1
  Function), the initiator signals its intent to continue an already
  active command (but with no current connection allegiance) as part of
  connection recovery.  This means that a new connection allegiance is
  requested for the command, which seeks to associate it to the
  connection on which the task management request is being issued.
  Before the allegiance reassignment is attempted for a task, an
  implicit or explicit Logout with the reason code "remove the
  connection for recovery" ( see section 10.14) MUST be successfully
  completed for the previous connection to which the task was
  allegiant.

  In reassigning connection allegiance for a command, the targets
  SHOULD continue the command from its current state.  For example,
  when reassigning read commands, the target SHOULD take advantage of
  the ExpDataSN field provided by the Task Management function request
  (which must be set to zero if there was no data transfer) and bring
  the read command to completion by sending the remaining data and
  sending (or resending) the status.  ExpDataSN acknowledges all data
  sent up to, but not including, the Data-In PDU and or R2T with DataSN
  (or R2TSN) equal to ExpDataSN.  However, targets may choose to
  send/receive all unacknowledged data or all of the data on a
  reassignment of connection allegiance if unable to recover or
  maintain an accurate state.  Initiators MUST not subsequently request
  data retransmission through Data SNACK for PDUs numbered less than
  ExpDataSN (i.e., prior to the acknowledged sequence number).  For all
  types of commands, a reassignment request implies that the task is
  still considered in progress by the initiator and the target must
  conclude the task appropriately if the target returns the "Function
  Complete" response to the reassignment request.  This might possibly
  involve retransmission of data/R2T/status PDUs as necessary, but MUST
  involve the (re)transmission of the status PDU.

  It is OPTIONAL for targets to support the allegiance reassignment.
  This capability is negotiated via the ErrorRecoveryLevel text key
  during the login time.  When a target does not support allegiance
  reassignment, it MUST respond with a Task Management response code of
  "Allegiance reassignment not supported".  If allegiance reassignment
  is supported by the target, but the task is still allegiant to a
  different connection, or a successful recovery Logout of the
  previously allegiant connection was not performed, the target MUST
  respond with a Task Management response code of "Task still
  allegiant".






Satran, et al.              Standards Track                    [Page 75]

RFC 3720                         iSCSI                        April 2004


  If allegiance reassignment is supported by the target, the Task
  Management response to the reassignment request MUST be issued before
  the reassignment becomes effective.

  If a SCSI Command that involves data input is reassigned, any SNACK
  Tag it holds for a final response from the original connection is
  deleted and the default value of 0 MUST be used instead.

6.3.  Usage Of Reject PDU in Recovery

  Targets MUST NOT implicitly terminate an active task by sending a
  Reject PDU for any PDU exchanged during the life of the task.  If the
  target decides to terminate the task, a Response PDU (SCSI, Text,
  Task, etc.) must be returned by the target to conclude the task.  If
  the task had never been active before the Reject (i.e., the Reject is
  on the command PDU), targets should not send any further responses
  because the command itself is being discarded.

  The above rule means that the initiator can eventually expect a
  response on receiving Rejects, if the received Reject is for a PDU
  other than the command PDU itself.  The non-command Rejects only have
  diagnostic value in logging the errors, and they can be used for
  retransmission decisions by the initiators.

  The CmdSN of the rejected command PDU (if it is a non-immediate
  command) MUST NOT be considered received by the target (i.e., a
  command sequence gap must be assumed for the CmdSN), even though the
  CmdSN of the rejected command PDU may be reliably ascertained.  Upon
  receiving the Reject, the initiator MUST plug the CmdSN gap in order
  to continue to use the session.  The gap may be plugged either by
  transmitting a command PDU with the same CmdSN, or by aborting the
  task (see section 6.9 on how an abort may plug a CmdSN gap).

  When a data PDU is rejected and its DataSN can be ascertained, a
  target MUST advance ExpDataSN for the current data burst if a
  recovery R2T is being generated.  The target MAY advance its
  ExpDataSN if it does not attempt to recover the lost data PDU.

6.4.  Connection Timeout Management

  iSCSI defines two session-global timeout values (in seconds)
  - Time2Wait and Time2Retain - that are applicable when an iSCSI Full
  Feature Phase connection is taken out of service either intentionally
  or by an exception.  Time2Wait is the initial "respite time" before
  attempting an explicit/implicit Logout for the CID in question or
  task reassignment for the affected tasks (if any).  Time2Retain is
  the maximum time after the initial respite interval that the task
  and/or connection state(s) is/are guaranteed to be maintained on the



Satran, et al.              Standards Track                    [Page 76]

RFC 3720                         iSCSI                        April 2004


  target to cater to a possible recovery attempt.  Recovery attempts
  for the connection and/or task(s) SHOULD NOT be made before Time2Wait
  seconds, but MUST be completed within Time2Retain seconds after that
  initial Time2Wait waiting period.

6.4.1.  Timeouts on Transport Exception Events

  A transport connection shutdown or a transport reset without any
  preceding iSCSI protocol interactions informing the end-points of the
  fact causes a Full Feature Phase iSCSI connection to be abruptly
  terminated.  The timeout values to be used in this case are the
  negotiated values of defaultTime2Wait (Section 12.15
  DefaultTime2Wait) and DefaultTime2Retain (Section 12.16
  DefaultTime2Retain) text keys for the session.

6.4.2.  Timeouts on Planned Decommissioning

  Any planned decommissioning of a Full Feature Phase iSCSI connection
  is preceded by either a Logout Response PDU, or an Async Message PDU.
  The Time2Wait and Time2Retain field values (section 10.15) in a
  Logout Response PDU, and the Parameter2 and Parameter3 fields of an
  Async Message (AsyncEvent types "drop the connection" or "drop all
  the connections"; section 10.9.1) specify the timeout values to be
  used in each of these cases.

  These timeout values are only applicable for the affected connection,
  and the tasks active on that connection.  These timeout values have
  no bearing on initiator timers (if any) that are already running on
  connections or tasks associated with that session.

6.5.  Implicit Termination of Tasks

  A target implicitly terminates the active tasks due to iSCSI protocol
  dynamics in the following cases:

     a)  When a connection is implicitly or explicitly logged out with
         the reason code of "Close the connection" and there are active
         tasks allegiant to that connection.

     b)  When a connection fails and the connection state eventually
         times out (state transition M1 in Section 7.2.2 State
         Transition Descriptions for Initiators and Targets) and there
         are active tasks allegiant to that connection.

     c)  When a successful Logout with the reason code of "remove the
         connection for recovery" is performed while there are active
         tasks allegiant to that connection, and those tasks eventually




Satran, et al.              Standards Track                    [Page 77]

RFC 3720                         iSCSI                        April 2004


         time out after the Time2Wait and Time2Retain periods without
         allegiance reassignment.

     d)  When a connection is implicitly or explicitly logged out with
         the reason code of "Close the session" and there are active
         tasks in that session.

  If the tasks terminated in the above cases a), b, c) and d)are SCSI
  tasks, they must be internally terminated as if with CHECK CONDITION
  status.  This status is only meaningful for appropriately handling
  the internal SCSI state and SCSI side effects with respect to
  ordering because this status is never communicated back as a
  terminating status to the initiator.  However additional actions may
  have to be taken at SCSI level depending on the SCSI context as
  defined by the SCSI standards (e.g., queued commands and ACA, in
  cases a), b), and c), after the tasks are terminated, the target MUST
  report a Unit Attention condition on the next command processed on
  any connection for each affected I_T_L nexus with the status of CHECK
  CONDITION, and the ASC/ASCQ value of 47h/7Fh - "SOME COMMANDS CLEARED
  BY ISCSI PROTOCOL EVENT" , etc. - see [SAM2] and [SPC3]).

6.6.  Format Errors

  The following two explicit violations of PDU layout rules are format
  errors:

     a)  Illegal contents of any PDU header field except the Opcode
         (legal values are specified in Section 10 iSCSI PDU Formats).
     b)  Inconsistent field contents (consistent field contents are
         specified in Section 10 iSCSI PDU Formats).

  Format errors indicate a major implementation flaw in one of the
  parties.

  When a target or an initiator receives an iSCSI PDU with a format
  error, it MUST immediately terminate all transport connections in the
  session either with a connection close or with a connection reset and
  escalate the format error to session recovery (see Section 6.1.4.4
  Session Recovery).

6.7.  Digest Errors

  The discussion of the legal choices in handling digest errors below
  excludes session recovery as an explicit option, but either party
  detecting a digest error may choose to escalate the error to session
  recovery.





Satran, et al.              Standards Track                    [Page 78]

RFC 3720                         iSCSI                        April 2004


  When a target or an initiator receives any iSCSI PDU, with a header
  digest error, it MUST either discard the header and all data up to
  the beginning of a later PDU or close the connection.  Because the
  digest error indicates that the length field of the header may have
  been corrupted, the location of the beginning of a later PDU needs to
  be reliably ascertained by other means such as the operation of a
  sync and steering layer.

  When a target receives any iSCSI PDU with a payload digest error, it
  MUST answer with a Reject PDU with a reason code of
  Data-Digest-Error and discard the PDU.

     -  If the discarded PDU is a solicited or unsolicited iSCSI data
        PDU (for immediate data in a command PDU, non-data PDU rule
        below applies), the target MUST do one of the following:
        a) Request retransmission with a recovery R2T.
        b) Terminate the task with a response PDU with a CHECK
           CONDITION Status and an iSCSI Condition of "protocol service
           CRC error" (Section 10.4.7.2 Sense Data).  If the target
           chooses to implement this option, it MUST wait to receive
           all the data (signaled by a Data PDU with the final bit set
           for all outstanding R2Ts) before sending the response PDU.
           A task management command (such as an abort task) from the
           initiator during this wait may also conclude the task.
     -  No further action is necessary for targets if the discarded PDU
        is a non-data PDU.  In case of immediate data being present on
        a discarded command, the immediate data is implicitly recovered
        when the task is retried (see section 6.2.1), followed by the
        entire data transfer for the task.

  When an initiator receives any iSCSI PDU with a payload digest error,
  it MUST discard the PDU.

  -  If the discarded PDU is an iSCSI data PDU, the initiator MUST do
     one of the following:

     a) Request the desired data PDU through SNACK.  In response to the
        SNACK, the target MUST either resend the data PDU or reject the
        SNACK with a Reject PDU with a reason code of "SNACK reject" in
        which case:
        i)  If the status has not already been sent for the command,
            the target MUST terminate the command with a CHECK
            CONDITION Status and an iSCSI Condition of "SNACK rejected"
            (Section 10.4.7.2 Sense Data).
        ii) If the status was already sent, no further action is
            necessary for the target.  The initiator in this case MUST
            wait for the status to be received and then discard it, so
            as to internally signal the completion with CHECK CONDITION



Satran, et al.              Standards Track                    [Page 79]

RFC 3720                         iSCSI                        April 2004


            Status and an iSCSI Condition of "protocol service CRC
            error" (Section 10.4.7.2 Sense Data).
     b) Abort the task and terminate the command with an error.

  -  If the discarded PDU is a response PDU, the initiator MUST do one
     of the following:

     a) Request PDU retransmission with a status SNACK.
     b) Logout the connection for recovery and continue the tasks on a
        different connection instance as described in Section 6.2 Retry
        and Reassign in Recovery.
     c) Logout to close the connection (abort all the commands
        associated with the connection).

  -  No further action is necessary for initiators if the discarded PDU
     is an unsolicited PDU (e.g., Async, Reject).  Task timeouts as in
     the initiator waiting for a command completion, or process
     timeouts, as in the target waiting for a Logout, will ensure that
     the correct operational behavior will result in these cases
     despite the discarded PDU.

6.8.  Sequence Errors

  When an initiator receives an iSCSI R2T/data PDU with an out of order
  R2TSN/DataSN or a SCSI response PDU with an ExpDataSN that implies
  missing data PDU(s), it means that the initiator must have detected a
  header or payload digest error on one or more earlier R2T/data PDUs.
  The initiator MUST address these implied digest errors as described
  in Section 6.7 Digest Errors.  When a target receives a data PDU with
  an out of order DataSN, it means that the target must have hit a
  header or payload digest error on at least one of the earlier data
  PDUs.  The target MUST address these implied digest errors as
  described in Section 6.7 Digest Errors.

  When an initiator receives an iSCSI status PDU with an out of order
  StatSN that implies missing responses, it MUST address the one or
  more missing status PDUs as described in Section 6.7 Digest Errors.
  As a side effect of receiving the missing responses, the initiator
  may discover missing data PDUs.  If the initiator wants to recover
  the missing data for a command, it MUST NOT acknowledge the received
  responses that start from the StatSN of the relevant command, until
  it has completed receiving all the data PDUs of the command.

  When an initiator receives duplicate R2TSNs (due to proactive
  retransmission of R2Ts by the target) or duplicate DataSNs (due to
  proactive SNACKs by the initiator), it MUST discard the duplicates.





Satran, et al.              Standards Track                    [Page 80]

RFC 3720                         iSCSI                        April 2004


6.9.  SCSI Timeouts

  An iSCSI initiator MAY attempt to plug a command sequence gap on the
  target end (in the absence of an acknowledgement of the command by
  way of ExpCmdSN) before the ULP timeout by retrying the
  unacknowledged command, as described in Section 6.2 Retry and
  Reassign in Recovery.

  On a ULP timeout for a command (that carried a CmdSN of n), if the
  iSCSI initiator intends to continue the session, it MUST abort the
  command by either using an appropriate Task Management function
  request for the specific command, or a "close the connection" Logout.
  When using an ABORT TASK, if the ExpCmdSN is still less than (n+1),
  the target may see the abort request while missing the original
  command itself due to one of the following reasons:

     -  Original command was dropped due to digest error.
     -  Connection on which the original command was sent was
        successfully logged out.  Upon logout, the unacknowledged
        commands issued on the connection being logged out are
        discarded.

  If the abort request is received and the original command is missing,
  targets MUST consider the original command with that RefCmdSN to be
  received and issue a Task Management response with the response code:
  "Function Complete".  This response concludes the task on both ends.
  If the abort request is received and the target can determine (based
  on the Referenced Task Tag) that the command was received and
  executed and also that the response was sent prior to the abort, then
  the target MUST respond with the response code of "Task Does Not
  Exist".

6.10.  Negotiation Failures

  Text request and response sequences, when used to set/negotiate
  operational parameters, constitute the negotiation/parameter setting.
  A negotiation failure is considered to be one or more of the
  following:

     -  None of the choices, or the stated value, is acceptable to one
        of the sides in the negotiation.
     -  The text request timed out and possibly terminated.
     -  The text request was answered with a Reject PDU.








Satran, et al.              Standards Track                    [Page 81]

RFC 3720                         iSCSI                        April 2004


  The following two rules should be used to address negotiation
  failures:

     -  During Login, any failure in negotiation MUST be considered a
        login process failure and the Login Phase must be terminated,
        and with it, the connection.  If the target detects the
        failure, it must terminate the login with the appropriate Login
        Response code.

     -  A failure in negotiation, while in the Full Feature Phase, will
        terminate the entire negotiation sequence that may consist of a
        series of text requests that use the same Initiator Task Tag.
        The operational parameters of the session or the connection
        MUST continue to be the values agreed upon during an earlier
        successful negotiation (i.e., any partial results of this
        unsuccessful negotiation MUST NOT take effect and MUST be
        discarded).

6.11.  Protocol Errors

  Mapping framed messages over a "stream" connection, such as TCP,
  makes the proposed mechanisms vulnerable to simple software framing
  errors.  On the other hand, the introduction of framing mechanisms to
  limit the effects of these errors may be onerous on performance for
  simple implementations.  Command Sequence Numbers and the above
  mechanisms for connection drop and reestablishment help handle this
  type of mapping errors.

  All violations of iSCSI PDU exchange sequences specified in this
  document are also protocol errors.  This category of errors can only
  be addressed by fixing the implementations; iSCSI defines Reject and
  response codes to enable this.

6.12.  Connection Failures

  iSCSI can keep a session in operation if it is able to
  keep/establish at least one TCP connection between the initiator and
  the target in a timely fashion.  Targets and/or initiators may
  recognize a failing connection by either transport level means (TCP),
  a gap in the command sequence number, a response stream that is not
  filled for a long time, or by a failing iSCSI NOP (acting as a ping).
  The latter MAY be used periodically to increase the speed and
  likelihood of detecting connection failures.  Initiators and targets
  MAY also use the keep-alive option on the TCP connection to enable
  early link failure detection on otherwise idle links.






Satran, et al.              Standards Track                    [Page 82]

RFC 3720                         iSCSI                        April 2004


  On connection failure, the initiator and target MUST do one of the
  following:

     -  Attempt connection recovery within the session (Section 6.1.4.3
        Connection Recovery).

     -  Logout the connection with the reason code "closes the
        connection" (Section 10.14.5 Implicit termination of tasks),
        re-issue missing commands, and implicitly terminate all active
        commands.  This option requires support for the
        within-connection recovery class (Section 6.1.4.2 Recovery
        Within-connection).

     -  Perform session recovery (Section 6.1.4.4 Session Recovery).

  Either side may choose to escalate to session recovery (via the
  initiator dropping all the connections, or via an Async Message that
  announces the similar intent from a target), and the other side MUST
  give it precedence.  On a connection failure, a target MUST terminate
  and/or discard all of the active immediate commands regardless of
  which of the above options is used (i.e., immediate commands are not
  recoverable across connection failures).

6.13.  Session Errors

  If all of the connections of a session fail and cannot be
  reestablished in a short time, or if initiators detect protocol
  errors repeatedly, an initiator may choose to terminate a session and
  establish a new session.

  In this case, the initiator takes the following actions:

     -  Resets or closes all the transport connections.
     -  Terminates all outstanding requests with an appropriate
        response before initiating a new session.  If the same I_T
        nexus is intended to be reestablished, the initiator MUST
        employ session reinstatement (see section 5.3.5).

  When the session timeout (the connection state timeout for the last
  failed connection) happens on the target, it takes the following
  actions:

     -  Resets or closes the TCP connections (closes the session).
     -  Terminates all active tasks that were allegiant to the
        connection(s) that constituted the session.

  A target MUST also be prepared to handle a session reinstatement
  request from the initiator, that may be addressing session errors.



Satran, et al.              Standards Track                    [Page 83]

RFC 3720                         iSCSI                        April 2004


7.  State Transitions

  iSCSI connections and iSCSI sessions go through several well-defined
  states from the time they are created to the time they are cleared.

  The connection state transitions are described in two separate but
  dependent state diagrams for ease in understanding.  The first
  diagram, "standard connection state diagram", describes the
  connection state transitions when the iSCSI connection is not waiting
  for, or undergoing, a cleanup by way of an explicit or implicit
  Logout.  The second diagram, "connection cleanup state diagram",
  describes the connection state transitions while performing the iSCSI
  connection cleanup.

  The "session state diagram" describes the state transitions an iSCSI
  session would go through during its lifetime, and it depends on the
  states of possibly multiple iSCSI connections that participate in the
  session.

  States and state transitions are described in the text, tables and
  diagrams.  The diagrams are used for illustration.  The text and the
  tables are the governing specification.

7.1.  Standard Connection State Diagrams

7.1.1.  State Descriptions for Initiators and Targets

  State descriptions for the standard connection state diagram are as
  follows:

  -S1: FREE
       -initiator: State on instantiation, or after successful
        connection closure.
       -target: State on instantiation, or after successful connection
        closure.
  -S2: XPT_WAIT
       -initiator: Waiting for a response to its transport connection
        establishment request.
       -target: Illegal
  -S3: XPT_UP
       -initiator: Illegal
       -target: Waiting for the Login process to commence.
  -S4: IN_LOGIN
       -initiator: Waiting for the Login process to conclude, possibly
        involving several PDU exchanges.
       -target: Waiting for the Login process to conclude, possibly
        involving several PDU exchanges.




Satran, et al.              Standards Track                    [Page 84]

RFC 3720                         iSCSI                        April 2004


  -S5: LOGGED_IN
       -initiator: In Full Feature Phase, waiting for all internal,
        iSCSI, and transport events.
       -target: In Full Feature Phase, waiting for all internal, iSCSI,
        and transport events.
  -S6: IN_LOGOUT
       -initiator: Waiting for a Logout response.
       -target: Waiting for an internal event signaling completion of
        logout processing.
  -S7: LOGOUT_REQUESTED
       -initiator: Waiting for an internal event signaling readiness to
        proceed with Logout.
       -target: Waiting for the Logout process to start after having
        requested a Logout via an Async Message.
  -S8: CLEANUP_WAIT
       -initiator: Waiting for the context and/or resources to initiate
        the cleanup processing for this CSM.
       -target: Waiting for the cleanup process to start for this CSM.

7.1.2.  State Transition Descriptions for Initiators and Targets

  -T1:
       -initiator: Transport connect request was made (e.g., TCP SYN
           sent).
       -target: Illegal
  -T2:
       -initiator: Transport connection request timed out, a transport
           reset was received, or an internal event of receiving a
           Logout response (success) on another connection for a
           "close the session"  Logout request was received.
       -target:Illegal
  -T3:
       -initiator: Illegal
       -target: Received a valid transport connection request that
           establishes the transport connection.
  -T4:
       -initiator: Transport connection established, thus prompting the
           initiator to start the iSCSI Login.
       -target: Initial iSCSI Login Request was received.
  -T5:
       -initiator: The final iSCSI Login Response with a Status-Class
           of zero was received.
       -target: The final iSCSI Login Request to conclude the Login
           Phase was received, thus prompting the target to send the
           final iSCSI Login Response with a Status-Class of zero.






Satran, et al.              Standards Track                    [Page 85]

RFC 3720                         iSCSI                        April 2004


  -T6:
       -initiator: Illegal
       -target: Timed out waiting for an iSCSI Login, transport
           disconnect indication was received, transport reset was
           received, or an internal event indicating a transport
           timeout was received.  In all these cases, the connection is
           to be closed.
  -T7:
       -initiator - one of the following events caused the transition:
           - The final iSCSI Login Response was received with a
             non-zero Status-Class.
           - Login timed out.
           - A transport disconnect indication was received.
           - A transport reset was received.
           - An internal event was received indicating a transport
             timeout.
           - An internal event of receiving a Logout response (success)
             on another connection for a "close the session" Logout
             request was received.

       In all these cases, the transport connection is closed.

       -target - one of the following events caused the transition:
           - The final iSCSI Login Request to conclude the Login Phase
             was received, prompting the target to send the final iSCSI
             Login Response with a non-zero Status-Class.
           - Login timed out.
           - Transport disconnect indication was received.
           - Transport reset was received.
           - An internal event indicating a transport timeout was
             received.
           - On another connection a "close the session" Logout request
             was received.
       In all these cases, the connection is to be closed.
  -T8:
       -initiator: An internal event of receiving a Logout response
           (success) on another connection for a "close the session"
           Logout request was received, thus closing this connection
           requiring no further cleanup.
       -target: An internal event of sending a Logout response
           (success) on another connection for a "close the session"
           Logout request was received, or an internal event of a
           successful connection/session reinstatement is received,
           thus prompting the target to close this connection cleanly.







Satran, et al.              Standards Track                    [Page 86]

RFC 3720                         iSCSI                        April 2004


  -T9, T10:
       -initiator: An internal event that indicates the readiness to
           start the Logout process was received, thus prompting an
           iSCSI Logout to be sent by the initiator.
       -target: An iSCSI Logout request was received.
  -T11, T12:
       -initiator: Async PDU with AsyncEvent "Request Logout" was
           received.
       -target: An internal event that requires the decommissioning of
           the connection is received, thus causing an Async PDU with
           an AsyncEvent "Request Logout" to be sent.
  -T13:
       -initiator: An iSCSI Logout response (success) was received, or
           an internal event of receiving a Logout response (success)
           on another connection for a "close the session" Logout
           request was received.
       -target: An internal event was received that indicates
           successful processing of the Logout, which prompts an iSCSI
           Logout response (success) to be sent; an internal event of
           sending a Logout response (success) on another connection
           for a "close the session" Logout request was received; or an
           internal event of a successful connection/session
           reinstatement is received.  In all these cases, the
           transport connection is closed.

  -T14:
       -initiator: Async PDU with AsyncEvent "Request Logout" was
           received again.
       -target: Illegal
  -T15, T16:
       -initiator: One or more of the following events caused this
           transition:
           -Internal event that indicates a transport connection
              timeout was received thus prompting transport RESET or
              transport connection closure.
           -A transport RESET.
           -A transport disconnect indication.
           -Async PDU with AsyncEvent "Drop connection" (for this CID).
           -Async PDU with AsyncEvent "Drop all connections".
       -target: One or more of the following events caused this
           transition:
           -Internal event that indicates a transport connection
              timeout was received, thus prompting transport RESET or
              transport connection closure.
           -An internal event of a failed connection/session
              reinstatement is received.
           -A transport RESET.
           -A transport disconnect indication.



Satran, et al.              Standards Track                    [Page 87]

RFC 3720                         iSCSI                        April 2004


           -Internal emergency cleanup event was received which prompts
              an Async PDU with AsyncEvent "Drop connection" (for this
              CID), or event "Drop all connections".
  -T17:
       -initiator: One or more of the following events caused this
           transition:
           -Logout response, (failure i.e., a non-zero status) was
              received, or Logout timed out.
           -Any of the events specified for T15 and T16.
       -target:  One or more of the following events caused this
           transition:
           -Internal event that indicates a failure of the Logout
              processing was received, which prompts a Logout response
              (failure, i.e., a non-zero status) to be sent.
           -Any of the events specified for T15 and T16.
  -T18:
       -initiator: An internal event of receiving a Logout response
           (success) on another connection for a "close the session"
           Logout request was received.
       -target: An internal event of sending a Logout response
           (success) on another connection for a "close the session"
           Logout request was received, or an internal event of a
           successful connection/session reinstatement is received.  In
           both these cases, the connection is closed.

  The CLEANUP_WAIT state (S8) implies that there are possible iSCSI
  tasks that have not reached conclusion and are still considered busy.

7.1.3.  Standard Connection State Diagram for an Initiator

  Symbolic names for States:

     S1: FREE
     S2: XPT_WAIT
     S4: IN_LOGIN
     S5: LOGGED_IN
     S6: IN_LOGOUT
     S7: LOGOUT_REQUESTED
     S8: CLEANUP_WAIT












Satran, et al.              Standards Track                    [Page 88]

RFC 3720                         iSCSI                        April 2004


  States S5, S6, and S7 constitute the Full Feature Phase operation of
  the connection.

  The state diagram is as follows:

                    -------<-------------+
        +--------->/ S1    \<----+       |
     T13|       +->\       /<-+   \      |
        |      /    ---+---    \   \     |
        |     /        |     T2 \   |    |
        |  T8 |        |T1       |  |    |
        |     |        |        /   |T7  |
        |     |        |       /    |    |
        |     |        |      /     |    |
        |     |        V     /     /     |
        |     |     ------- /     /      |
        |     |    / S2    \     /       |
        |     |    \       /    /        |
        |     |     ---+---    /         |
        |     |        |T4    /          |
        |     |        V     /           | T18
        |     |     ------- /            |
        |     |    / S4    \             |
        |     |    \       /             |
        |     |     ---+---              |         T15
        |     |        |T5      +--------+---------+
        |     |        |       /T16+-----+------+  |
        |     |        |      /   -+-----+--+   |  |
        |     |        |     /   /  S7   \  |T12|  |
        |     |        |    / +->\       /<-+   V  V
        |     |        |   / /    -+-----       -------
        |     |        |  / /T11   |T10        /  S8   \
        |     |        V / /       V  +----+   \       /
        |     |      ---+-+-      ----+--  |    -------
        |     |     / S5    \T9  / S6    \<+    ^
        |     +-----\       /--->\       / T14  |
        |            -------      --+----+------+T17
        +---------------------------+













Satran, et al.              Standards Track                    [Page 89]

RFC 3720                         iSCSI                        April 2004


  The following state transition table represents the above diagram.
  Each row represents the starting state for a given transition, which
  after taking a transition marked in a table cell would end in the
  state represented by the column of the cell.  For example, from state
  S1, the connection takes the T1 transition to arrive at state S2.
  The fields marked "-" correspond to undefined transitions.

        +----+---+---+---+---+----+---+
        |S1  |S2 |S4 |S5 |S6 |S7  |S8 |
     ---+----+---+---+---+---+----+---+
      S1| -  |T1 | - | - | - | -  | - |
     ---+----+---+---+---+---+----+---+
      S2|T2  |-  |T4 | - | - | -  | - |
     ---+----+---+---+---+---+----+---+
      S4|T7  |-  |-  |T5 | - | -  | - |
     ---+----+---+---+---+---+----+---+
      S5|T8  |-  |-  | - |T9 |T11 |T15|
     ---+----+---+---+---+---+----+---+
      S6|T13 |-  |-  | - |T14|-   |T17|
     ---+----+---+---+---+---+----+---+
      S7|T18 |-  |-  | - |T10|T12 |T16|
     ---+----+---+---+---+---+----+---+
      S8| -  |-  |-  | - | - | -  | - |
     ---+----+---+---+---+---+----+---+

7.1.4.  Standard Connection State Diagram for a Target

  Symbolic names for States:

     S1: FREE
     S3: XPT_UP
     S4: IN_LOGIN
     S5: LOGGED_IN
     S6: IN_LOGOUT
     S7: LOGOUT_REQUESTED
     S8: CLEANUP_WAIT

  States S5, S6, and S7 constitute the Full Feature Phase operation of
  the connection.












Satran, et al.              Standards Track                    [Page 90]

RFC 3720                         iSCSI                        April 2004


  The state diagram is as follows:

                       -------<-------------+
           +--------->/ S1    \<----+       |
        T13|       +->\       /<-+   \      |
           |      /    ---+---    \   \     |
           |     /        |     T6 \   |    |
           |  T8 |        |T3       |  |    |
           |     |        |        /   |T7  |
           |     |        |       /    |    |
           |     |        |      /     |    |
           |     |        V     /     /     |
           |     |     ------- /     /      |
           |     |    / S3    \     /       |
           |     |    \       /    /        | T18
           |     |     ---+---    /         |
           |     |        |T4    /          |
           |     |        V     /           |
           |     |     ------- /            |
           |     |    / S4    \             |
           |     |    \       /             |
           |     |     ---+---         T15  |
           |     |        |T5      +--------+---------+
           |     |        |       /T16+-----+------+  |
           |     |        |      /  -+-----+---+   |  |
           |     |        |     /   /  S7   \  |T12|  |
           |     |        |    / +->\       /<-+   V  V
           |     |        |   / /    -+-----       -------
           |     |        |  / /T11   |T10        /  S8   \
           |     |        V / /       V           \       /
           |     |      ---+-+-      -------       -------
           |     |     / S5    \T9  / S6    \        ^
           |     +-----\       /--->\       /        |
           |            -------      --+----+--------+T17
           +---------------------------+

  The following state transition table represents the above diagram,
  and follows the conventions described for the initiator diagram.













Satran, et al.              Standards Track                    [Page 91]

RFC 3720                         iSCSI                        April 2004


     +----+---+---+---+---+----+---+
     |S1  |S3 |S4 |S5 |S6 |S7  |S8 |
  ---+----+---+---+---+---+----+---+
   S1| -  |T3 | - | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S3|T6  |-  |T4 | - | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S4|T7  |-  |-  |T5 | - | -  | - |
  ---+----+---+---+---+---+----+---+
   S5|T8  |-  |-  | - |T9 |T11 |T15|
  ---+----+---+---+---+---+----+---+
   S6|T13 |-  |-  | - |-  |-   |T17|
  ---+----+---+---+---+---+----+---+
   S7|T18 |-  |-  | - |T10|T12 |T16|
  ---+----+---+---+---+---+----+---+
   S8| -  |-  |-  | - | - | -  | - |
  ---+----+---+---+---+---+----+---+

7.2.  Connection Cleanup State Diagram for Initiators and Targets

  Symbolic names for states:

     R1: CLEANUP_WAIT (same as S8)
     R2: IN_CLEANUP
     R3: FREE (same as S1)

  Whenever a connection state machine (e.g., CSM-C) enters the
  CLEANUP_WAIT state (S8), it must go through the state transitions
  described in the connection cleanup state diagram either a) using a
  separate full-feature phase connection (let's call it CSM-E) in the
  LOGGED_IN state in the same session, or b) using a new transport
  connection (let's call it CSM-I) in the FREE state that is to be
  added to the same session.  In the CSM-E case, an explicit logout for
  the CID that corresponds to CSM-C (either as a connection or session
  logout) needs to be performed to complete the cleanup.  In the CSM-I
  case, an implicit logout for the CID that corresponds to CSM-C needs
  to be performed by way of connection reinstatement (section 5.3.4)
  for that CID.  In either case, the protocol exchanges on CSM-E or
  CSM-I determine the state transitions for CSM-C.  Therefore, this
  cleanup state diagram is only applicable to the instance of the
  connection in cleanup (i.e., CSM-C).  In the case of an implicit
  logout for example, CSM-C reaches FREE (R3) at the time CSM-I reaches
  LOGGED_IN.  In the case of an explicit logout, CSM-C reaches FREE
  (R3) when CSM-E receives a successful logout response while
  continuing to be in the LOGGED_IN state.






Satran, et al.              Standards Track                    [Page 92]

RFC 3720                         iSCSI                        April 2004


  An initiator must initiate an explicit or implicit connection logout
  for a connection in the CLEANUP_WAIT state, if the initiator intends
  to continue using the associated iSCSI session.

  The following state diagram applies to both initiators and targets.

                       -------
                      / R1    \
                   +--\       /<-+
                  /    ---+---
                 /        |        \ M3
              M1 |        |M2       |
                 |        |        /
                 |        |       /
                 |        |      /
                 |        V     /
                 |     ------- /
                 |    / R2    \
                 |    \       /
                 |     -------
                 |        |
                 |        |M4
                 |        |
                 |        |
                 |        |
                 |        V
                 |      -------
                 |     / R3    \
                 +---->\       /
                        -------

  The following state transition table represents the above diagram,
  and follows the same conventions as in earlier sections.

       +----+----+----+
       |R1  |R2  |R3  |
  -----+----+----+----+
   R1  | -  |M2  |M1  |
  -----+----+----+----+
   R2  |M3  | -  |M4  |
  -----+----+----+----+
   R3  | -  | -  | -  |
  -----+----+----+----+








Satran, et al.              Standards Track                    [Page 93]

RFC 3720                         iSCSI                        April 2004


7.2.1.  State Descriptions for Initiators and Targets

  -R1: CLEANUP_WAIT (Same as S8)
       -initiator: Waiting for the internal event to initiate the
           cleanup processing for CSM-C.
       -target: Waiting for the cleanup process to start for CSM-C.
  -R2: IN_CLEANUP
       -initiator: Waiting for the connection cleanup process to
           conclude for CSM-C.
       -target: Waiting for the connection cleanup process to conclude
           for CSM-C.
  -R3: FREE (Same as S1)
       -initiator: End state for CSM-C.
       -target: End state for CSM-C.

7.2.2.  State Transition Descriptions for Initiators and Targets

  -M1: One or more of the following events was received:
       -initiator:
           -An internal event that indicates connection state timeout.
           -An internal event of receiving a successful Logout response
              on a different connection for a "close the session"
              Logout.
       -target:
           -An internal event that indicates connection state timeout.
           -An internal event of sending a Logout response (success) on
              a different connection for a "close the session" Logout
              request.

  -M2: An implicit/explicit logout process was initiated by the
       initiator.
       -In CSM-I usage:
           -initiator: An internal event requesting the connection (or
              session) reinstatement was received, thus prompting a
              connection (or session) reinstatement Login to be sent
              transitioning CSM-I to state IN_LOGIN.
           -target: A connection/session reinstatement Login was
              received while in state XPT_UP.
       -In CSM-E usage:
           -initiator: An internal event that indicates that an
              explicit logout was sent for this CID in state LOGGED_IN.
           -target: An explicit logout was received for this CID in
              state LOGGED_IN.








Satran, et al.              Standards Track                    [Page 94]

RFC 3720                         iSCSI                        April 2004


  -M3: Logout failure detected
       -In CSM-I usage:
           -initiator: CSM-I failed to reach LOGGED_IN and arrived into
              FREE instead.
           -target: CSM-I failed to reach LOGGED_IN and arrived into
              FREE instead.
       -In CSM-E usage:
           -initiator: CSM-E either moved out of LOGGED_IN, or Logout
              timed out and/or aborted, or Logout response (failure)
              was received.
           -target: CSM-E either moved out of LOGGED_IN,  Logout timed
              out and/or aborted, or an internal event that indicates a
              failed Logout processing was received.  A Logout response
              (failure) was sent in the last case.

  -M4: Successful implicit/explicit logout was performed.

       - In CSM-I usage:
           -initiator: CSM-I reached state LOGGED_IN, or an internal
              event of receiving a Logout response (success) on another
              connection for a "close the session" Logout request was
              received.
           -target: CSM-I reached state LOGGED_IN, or an internal event
              of sending a Logout response (success) on a different
              connection for a "close the session" Logout request was
              received.
       - In CSM-E usage:
           -initiator: CSM-E stayed in LOGGED_IN and received a Logout
              response (success), or an internal event of receiving a
              Logout response (success) on another connection for a
              "close the session" Logout request was received.
           -target: CSM-E stayed in LOGGED_IN and an internal event
              indicating a successful Logout processing was received,
              or an internal event of sending a Logout response
              (success) on a different connection for a "close the
              session" Logout request was received.

7.3.  Session State Diagrams

7.3.1.  Session State Diagram for an Initiator

  Symbolic Names for States:

       Q1: FREE
       Q3: LOGGED_IN
       Q4: FAILED

  State Q3 represents the Full Feature Phase operation of the session.



Satran, et al.              Standards Track                    [Page 95]

RFC 3720                         iSCSI                        April 2004


  The state diagram is as follows:

                         -------
                        / Q1    \
                +------>\       /<-+
               /         ---+---   |
              /             |      |N3
          N6 |              |N1    |
             |              |      |
             |    N4        |      |
             |  +--------+  |     /
             |  |        |  |    /
             |  |        |  |   /
             |  |        V  V  /
            -+--+--      -----+-
           / Q4    \ N5 / Q3    \
           \       /<---\       /
            -------      -------

  The state transition table is as follows:

       +----+----+----+
       |Q1  |Q3  |Q4  |
  -----+----+----+----+
   Q1  | -  |N1  | -  |
  -----+----+----+----+
   Q3  |N3  | -  |N5  |
  -----+----+----+----+
   Q4  |N6  |N4  | -  |
  -----+----+----+----+

7.3.2.  Session State Diagram for a Target

  Symbolic Names for States:

    Q1: FREE
    Q2: ACTIVE
    Q3: LOGGED_IN
    Q4: FAILED
    Q5: IN_CONTINUE

  State Q3 represents the Full Feature Phase operation of the session.









Satran, et al.              Standards Track                    [Page 96]

RFC 3720                         iSCSI                        April 2004


  The state diagram is as follows:

                                   -------
              +------------------>/ Q1    \
             /    +-------------->\       /<-+
             |    |                ---+---   |
             |    |                ^  |      |N3
          N6 |    |N11           N9|  V N1   |
             |    |                +------   |
             |    |               / Q2    \  |
             |    |               \       /  |
             |  --+----            +--+---   |
             | / Q5    \              |      |
             | \       / N10          |      |
             |  +-+---+------------+  |N2   /
             |  ^ |                |  |    /
             |N7| |N8              |  |   /
             |  | |                |  V  /
            -+--+-V                V----+-
           / Q4    \ N5           / Q3    \
           \       /<-------------\       /
            -------                -------

  The state transition table is as follows:

       +----+----+----+----+----+
       |Q1  |Q2  |Q3  |Q4  |Q5  |
  -----+----+----+----+----+----+
   Q1  | -  |N1  | -  | -  | -  |
  -----+----+----+----+----+----+
   Q2  |N9  | -  |N2  | -  | -  |
  -----+----+----+----+----+----+
   Q3  |N3  | -  | -  |N5  | -  |
  -----+----+----+----+----+----+
   Q4  |N6  | -  | -  | -  |N7  |
  -----+----+----+----+----+----+
   Q5  |N11 | -  |N10 |N8  | -  |
  -----+----+----+----+----+----+

7.3.3.  State Descriptions for Initiators and Targets

  -Q1: FREE
       -initiator: State on instantiation or after cleanup.
       -target: State on instantiation or after cleanup.







Satran, et al.              Standards Track                    [Page 97]

RFC 3720                         iSCSI                        April 2004


  -Q2: ACTIVE
       -initiator: Illegal.
       -target: The first iSCSI connection in the session transitioned
           to IN_LOGIN, waiting for it to complete the login process.

  -Q3: LOGGED_IN
       -initiator: Waiting for all session events.
       -target: Waiting for all session events.

  -Q4: FAILED
       -initiator: Waiting for session recovery or session
           continuation.
       -target: Waiting for session recovery or session continuation.

  -Q5: IN_CONTINUE
       -initiator: Illegal.
       -target: Waiting for session continuation attempt to reach a
           conclusion.

7.3.4.  State Transition Descriptions for Initiators and Targets

  -N1:
       -initiator: At least one transport connection reached the
           LOGGED_IN state.
       -target: The first iSCSI connection in the session had reached
           the IN_LOGIN state.

  -N2:
       -initiator: Illegal.
       -target: At least one iSCSI connection reached the LOGGED_IN
           state.

  -N3:
       -initiator: Graceful closing of the session via session closure
           (Section 5.3.6 Session Continuation and Failure).
       -target: Graceful closing of the session via session closure
           (Section 5.3.6 Session Continuation and Failure) or a
           successful session reinstatement cleanly closed the session.

  -N4:
       -initiator: A session continuation attempt succeeded.
       -target: Illegal.

  -N5:
       -initiator: Session failure (Section 5.3.6 Session Continuation
           and Failure) occurred.
       -target: Session failure (Section 5.3.6 Session Continuation and
           Failure) occurred.



Satran, et al.              Standards Track                    [Page 98]

RFC 3720                         iSCSI                        April 2004


  -N6:
       -initiator: Session state timeout occurred, or a session
           reinstatement cleared this session instance.  This results
           in the freeing of all associated resources and the session
           state is discarded.
       -target: Session state timeout occurred, or a session
           reinstatement cleared this session instance.  This results
           in the freeing of all associated resources and the session
           state is discarded.

  -N7:
       -initiator: Illegal.
       -target: A session continuation attempt is initiated.

  -N8:
       -initiator: Illegal.
       -target: The last session continuation attempt failed.

  -N9:
       -initiator: Illegal.
       -target: Login attempt on the leading connection failed.

  -N10:
       -initiator: Illegal.
       -target: A session continuation attempt succeeded.

  -N11:
       -initiator: Illegal.
       -target: A successful session reinstatement cleanly closed the
           session.

8.  Security Considerations

  Historically, native storage systems have not had to consider
  security because their environments offered minimal security risks.
  That is, these environments consisted of storage devices either
  directly attached to hosts or connected via a Storage Area Network
  (SAN) distinctly separate from the communications network.  The use
  of storage protocols, such as SCSI, over IP-networks requires that
  security concerns be addressed.  iSCSI implementations MUST provide
  means of protection against active attacks (e.g., pretending to be
  another identity, message insertion, deletion, modification, and
  replaying) and passive attacks (e.g., eavesdropping, gaining
  advantage by analyzing the data sent over the line).







Satran, et al.              Standards Track                    [Page 99]

RFC 3720                         iSCSI                        April 2004


  Although technically possible, iSCSI SHOULD NOT be configured without
  security.  iSCSI configured without security should be confined, in
  extreme cases, to closed environments without any security risk.
  [RFC3723] specifies the mechanisms that must be used in order to
  mitigate risks fully described in that document.

  The following section describes the security mechanisms provided by
  an iSCSI implementation.

8.1.  iSCSI Security Mechanisms

  The entities involved in iSCSI security are the initiator, target,
  and the IP communication end points.  iSCSI scenarios in which
  multiple initiators or targets share a single communication end point
  are expected.  To accommodate such scenarios, iSCSI uses two separate
  security mechanisms: In-band authentication between the initiator and
  the target at the iSCSI connection level (carried out by exchange of
  iSCSI Login PDUs), and packet protection (integrity, authentication,
  and confidentiality) by IPsec at the IP level.  The two security
  mechanisms complement each other.  The in-band authentication
  provides end-to-end trust (at login time) between the iSCSI initiator
  and the target while IPsec provides a secure channel between the IP
  communication end points.

  Further details on typical iSCSI scenarios and the relation between
  the initiators, targets, and the communication end points can be
  found in [RFC3723].

8.2.  In-band Initiator-Target Authentication

  During login, the target MAY authenticate the initiator and the
  initiator MAY authenticate the target.  The authentication is
  performed on every new iSCSI connection by an exchange of iSCSI Login
  PDUs using a negotiated authentication method.

  The authentication method cannot assume an underlying IPsec
  protection, because IPsec is optional to use.  An attacker should
  gain as little advantage as possible by inspecting the authentication
  phase PDUs.  Therefore, a method using clear text (or equivalent)
  passwords is not acceptable; on the other hand, identity protection
  is not strictly required.

  The authentication mechanism protects against an unauthorized login
  to storage resources by using a false identity (spoofing).  Once the
  authentication phase is completed, if the underlying IPsec is not
  used, all PDUs are sent and received in clear.  The authentication





Satran, et al.              Standards Track                   [Page 100]

RFC 3720                         iSCSI                        April 2004


  mechanism alone (without underlying IPsec) should only be used when
  there is no risk of eavesdropping, message insertion, deletion,
  modification, and replaying.

  Section 11 iSCSI Security Text Keys and Authentication Methods
  defines several authentication methods and the exact steps that must
  be followed in each of them, including the iSCSI-text-keys and their
  allowed values in each step.  Whenever an iSCSI initiator gets a
  response whose keys, or their values, are not according to the step
  definition, it MUST abort the connection.  Whenever an iSCSI target
  gets a response whose keys, or their values, are not according to the
  step definition, it MUST answer with a Login reject with the
  "Initiator Error" or "Missing Parameter" status.  These statuses are
  not intended for cryptographically incorrect values such as the CHAP
  response, for which "Authentication Failure" status MUST be
  specified.  The importance of this rule can be illustrated in CHAP
  with target authentication (see Section 11.1.4 Challenge Handshake
  Authentication Protocol (CHAP)) where the initiator would have been
  able to conduct a reflection attack by omitting his response key
  (CHAP_R) using the same CHAP challenge as the target and reflecting
  the target's response back to the target.  In CHAP, this is prevented
  because the target must answer the missing CHAP_R key with a Login
  reject with the "Missing Parameter" status.

  For some of the authentication methods, a key specifies the identity
  of the iSCSI initiator or target for authentication purposes.  The
  value associated with that key MAY be different from the iSCSI name
  and SHOULD be configurable.  (CHAP_N, see Section 11.1.4 Challenge
  Handshake Authentication Protocol (CHAP) and SRP_U, see Section
  11.1.3 Secure Remote Password (SRP)).

8.2.1.  CHAP Considerations

  Compliant iSCSI initiators and targets MUST implement the CHAP
  authentication method [RFC1994] (according to Section 11.1.4
  Challenge Handshake Authentication Protocol (CHAP) including the
  target authentication option).

  When CHAP is performed over a non-encrypted channel, it is vulnerable
  to an off-line dictionary attack.  Implementations MUST support use
  of up to 128 bit random CHAP secrets, including the means to generate
  such secrets and to accept them from an external generation source.
  Implementations MUST NOT provide secret generation (or expansion)
  means other than random generation.

  An administrative entity of an environment in which CHAP is used with
  a secret that has less than 96 random bits MUST enforce IPsec
  encryption (according to the implementation requirements in Section



Satran, et al.              Standards Track                   [Page 101]

RFC 3720                         iSCSI                        April 2004


  8.3.2 Confidentiality) to protect the connection.  Moreover, in this
  case IKE authentication with group pre-shared cryptographic keys
  SHOULD NOT be used unless it is not essential to protect group
  members against off-line dictionary attacks by other members.

  CHAP secrets MUST be an integral number of bytes (octets). A
  compliant implementation SHOULD NOT continue with the login step in
  which it should send a CHAP response (CHAP_R, Section 11.1.4
  Challenge Handshake Authentication Protocol (CHAP)) unless it can
  verify that the CHAP secret is at least 96 bits, or that IPsec
  encryption is being used to protect the connection.

  Any CHAP secret used for initiator authentication MUST NOT be
  configured for authentication of any target, and any CHAP secret used
  for target authentication MUST NOT be configured for authentication
  of any initiator.  If the CHAP response received by one end of an
  iSCSI connection is the same as the CHAP response that the receiving
  endpoint would have generated for the same CHAP challenge, the
  response MUST be treated as an authentication failure and cause the
  connection to close (this ensures that the same CHAP secret is not
  used for authentication in both directions).  Also, if an iSCSI
  implementation can function as both initiator and target, different
  CHAP secrets and identities MUST be configured for these two roles.
  The following is an example of the attacks prevented by the above
  requirements:

    Rogue wants to impersonate Storage to Alice, and knows that a
     single secret is used for both directions of Storage-Alice
     authentication.

    Rogue convinces Alice to open two connections to Rogue, and Rogue
     identifies itself as Storage on both connections.

    Rogue issues a CHAP challenge on connection 1, waits for Alice to
     respond, and then reflects Alice's challenge as the initial
     challenge to Alice on connection 2.

    If Alice doesn't check for the reflection across connections,
     Alice's response on connection 2 enables Rogue to impersonate
     Storage on connection 1, even though Rogue does not know the
     Alice-Storage CHAP secret.

  Originators MUST NOT reuse the CHAP challenge sent by the Responder
  for the other direction of a bidirectional authentication.
  Responders MUST check for this condition and close the iSCSI TCP
  connection if it occurs.





Satran, et al.              Standards Track                   [Page 102]

RFC 3720                         iSCSI                        April 2004


  The same CHAP secret SHOULD NOT be configured for authentication of
  multiple initiators or multiple targets, as this enables any of them
  to impersonate any other one of them, and compromising one of them
  enables the attacker to impersonate any of them.  It is recommended
  that iSCSI implementations check for use of identical CHAP secrets by
  different peers when this check is feasible, and take appropriate
  measures to warn users and/or administrators when this is detected.

  When an iSCSI initiator or target authenticates itself to
  counterparts in multiple administrative domains, it SHOULD use a
  different CHAP secret for each administrative domain to avoid
  propagating security compromises across domains.

  Within a single administrative domain:
  - A single CHAP secret MAY be used for authentication of an initiator
  to multiple targets.
  - A single CHAP secret MAY be used for an authentication of a target
  to multiple initiators when the initiators use an external server
  (e.g., RADIUS) to verify the target's CHAP responses and do not know
  the target's CHAP secret.

  If an external response verification server (e.g., RADIUS) is not
  used, employing a single CHAP secret for authentication of a target
  to multiple initiators requires that all such initiators know that
  target secret.  Any of these initiators can impersonate the target to
  any other such initiator, and compromise of such an initiator enables
  an attacker to impersonate the target to all such initiators.
  Targets SHOULD use separate CHAP secrets for authentication to each
  initiator when such risks are of concern; in this situation it may be
  useful to configure a separate logical iSCSI target with its own
  iSCSI Node Name for each initiator or group of initiators among which
  such separation is desired.

8.2.2.  SRP Considerations

  The strength of the SRP authentication method (specified in
  [RFC2945]) is dependent on the characteristics of the group being
  used (i.e., the prime modulus N and generator g).  As described in
  [RFC2945], N is required to be a Sophie-German prime (of the form
  N = 2q + 1, where q is also prime) and the generator g is a primitive
  root of GF(n).  In iSCSI authentication, the prime modulus N MUST be
  at least 768 bits.

  The list of allowed SRP groups is provided in [RFC3723].







Satran, et al.              Standards Track                   [Page 103]

RFC 3720                         iSCSI                        April 2004


8.3.  IPsec

  iSCSI uses the IPsec mechanism for packet protection (cryptographic
  integrity, authentication, and confidentiality) at the IP level
  between the iSCSI communicating end points.  The following sections
  describe the IPsec protocols that must be implemented for data
  integrity and authentication, confidentiality, and cryptographic key
  management.

  An iSCSI initiator or target may provide the required IPsec support
  fully integrated or in conjunction with an IPsec front-end device.
  In the latter case, the compliance requirements with regard to IPsec
  support apply to the "combined device".  Only the "combined device"
  is to be considered an iSCSI device.

  Detailed considerations and recommendations for using IPsec for iSCSI
  are provided in [RFC3723].

8.3.1.  Data Integrity and Authentication

  Data authentication and integrity is provided by a cryptographic
  keyed Message Authentication Code in every sent packet.  This code
  protects against message insertion, deletion, and modification.
  Protection against message replay is realized by using a sequence
  counter.

  An iSCSI compliant initiator or target MUST provide data integrity
  and authentication by implementing IPsec [RFC2401] with ESP [RFC2406]
  in tunnel mode and MAY provide data integrity and authentication by
  implementing IPsec with ESP in transport mode.  The IPsec
  implementation MUST fulfill the following iSCSI specific
  requirements:

    - HMAC-SHA1 MUST be implemented [RFC2404].
    - AES CBC MAC with XCBC extensions SHOULD be implemented
      [RFC3566].

  The ESP anti-replay service MUST also be implemented.

  At the high speeds iSCSI is expected to operate, a single IPsec SA
  could rapidly cycle through the 32-bit IPsec sequence number space.
  In view of this, it may be desirable in the future for an iSCSI
  implementation that operates at speeds of 1 Gbps or greater to
  implement the IPsec sequence number extension [SEQ-EXT].







Satran, et al.              Standards Track                   [Page 104]

RFC 3720                         iSCSI                        April 2004


8.3.2.  Confidentiality

  Confidentiality is provided by encrypting the data in every packet.
  When confidentiality is used it MUST be accompanied by data integrity
  and authentication to provide comprehensive protection against
  eavesdropping, message insertion, deletion, modification, and
  replaying.

  An iSCSI compliant initiator or target MUST provide confidentiality
  by implementing IPsec [RFC2401] with ESP [RFC2406] in tunnel mode and
  MAY provide confidentiality by implementing IPsec with ESP in
  transport mode, with the following iSCSI specific requirements:

    - 3DES in CBC mode MUST be implemented [RFC2451].
    - AES in Counter mode SHOULD be implemented [RFC3686].

  DES in CBC mode SHOULD NOT be used due to its inherent weakness.  The
  NULL encryption algorithm MUST also be implemented.

8.3.3.  Policy, Security Associations, and Cryptographic Key Management

  A compliant iSCSI implementation MUST meet the cryptographic key
  management requirements of the IPsec protocol suite.  Authentication,
  security association negotiation, and cryptographic key management
  MUST be provided by implementing IKE [RFC2409] using the IPsec DOI
  [RFC2407] with the following iSCSI specific requirements:

   -  Peer authentication using a pre-shared cryptographic key MUST be
      supported.  Certificate-based peer authentication using digital
      signatures MAY be supported.  Peer authentication using the
      public key encryption methods outlined in IKE sections 5.2 and
      5.3[7] SHOULD NOT be used.

   -  When digital signatures are used to achieve authentication, an
      IKE negotiator SHOULD use IKE Certificate Request Payload(s) to
      specify the certificate authority.  IKE negotiators SHOULD check
      the pertinent Certificate Revocation List (CRL) before accepting
      a PKI certificate for use in IKE authentication procedures.

   -  Conformant iSCSI implementations MUST support IKE Main Mode and
      SHOULD support Aggressive Mode.  IKE main mode with pre-shared
      key authentication method SHOULD NOT be used when either the
      initiator or the target uses dynamically assigned IP addresses.
      While in many cases pre-shared keys offer good security,
      situations in which dynamically assigned addresses are used force
      the use of a group pre-shared key, which creates vulnerability to
      a man-in-the-middle attack.




Satran, et al.              Standards Track                   [Page 105]

RFC 3720                         iSCSI                        April 2004


   -  In the IKE Phase 2 Quick Mode, exchanges for creating the Phase 2
      SA, the Identity Payload, fields MUST be present.  ID_IPV4_ADDR,
      ID_IPV6_ADDR (if the protocol stack supports IPv6) and ID_FQDN
      Identity payloads MUST be supported; ID_USER_FQDN SHOULD be
      supported.  The IP Subnet, IP Address Range, ID_DER_ASN1_DN, and
      ID_DER_ASN1_GN formats SHOULD NOT be used.  The ID_KEY_ID
      Identity Payload MUST NOT be used.

  Manual cryptographic keying MUST NOT be used because it does not
  provide the necessary re-keying support.

  When IPsec is used, the receipt of an IKE Phase 2 delete message
  SHOULD NOT be interpreted as a reason for tearing down the iSCSI TCP
  connection.  If additional traffic is sent on it, a new IKE Phase 2
  SA will be created to protect it.

  The method used by the initiator to determine whether the target
  should be connected using IPsec is regarded as an issue of IPsec
  policy administration, and thus not defined in the iSCSI standard.

  If an iSCSI target is discovered via a SendTargets request in a
  discovery session not using IPsec, the initiator should assume that
  it does not need IPsec to establish a session to that target.  If an
  iSCSI target is discovered using a discovery session that does use
  IPsec, the initiator SHOULD use IPsec when establishing a session to
  that target.

9.  Notes to Implementers

  This section notes some of the performance and reliability
  considerations of the iSCSI protocol.  This protocol was designed to
  allow efficient silicon and software implementations.  The iSCSI task
  tag mechanism was designed to enable Direct Data Placement (DDP - a
  DMA form) at the iSCSI level or lower.

  The guiding assumption made throughout the design of this protocol is
  that targets are resource constrained relative to initiators.

  Implementers are also advised to consider the implementation
  consequences of the iSCSI to SCSI mapping model as outlined in
  Section 3.4.3 Consequences of the Model.

9.1.  Multiple Network Adapters

  The iSCSI protocol allows multiple connections, not all of which need
  to go over the same network adapter.  If multiple network connections
  are to be utilized with hardware support, the iSCSI protocol




Satran, et al.              Standards Track                   [Page 106]

RFC 3720                         iSCSI                        April 2004


  command-data-status allegiance to one TCP connection ensures that
  there is no need to replicate information across network adapters or
  otherwise require them to cooperate.

  However, some task management commands may require some loose form of
  cooperation or replication at least on the target.

9.1.1.  Conservative Reuse of ISIDs

  Historically, the SCSI model (and implementations and applications
  based on that model) has assumed that SCSI ports are static, physical
  entities.  Recent extensions to the SCSI model have taken advantage
  of persistent worldwide unique names for these ports.  In iSCSI
  however, the SCSI initiator ports are the endpoints of dynamically
  created sessions, so the presumptions of "static and physical" do not
  apply.  In any case, the model clauses (particularly, Section 3.4.2
  SCSI Architecture Model) provide for persistent, reusable names for
  the iSCSI-type SCSI initiator ports even though there does not need
  to be any physical entity bound to these names.

  To both minimize the disruption of legacy applications and to better
  facilitate the SCSI features that rely on persistent names for SCSI
  ports, iSCSI implementations SHOULD attempt to provide a stable
  presentation of SCSI Initiator Ports (both to the upper OS-layers and
  to the targets to which they connect).  This can be achieved in an
  initiator implementation by conservatively reusing ISIDs.  In other
  words, the same ISID should be used in the Login process to multiple
  target portal groups (of the same iSCSI Target or different iSCSI
  Targets).  The ISID RULE (Section 3.4.3 Consequences of the Model)
  only prohibits reuse to the same target portal group.  It does not
  "preclude" reuse to other target portal groups.  The principle of
  conservative reuse "encourages" reuse to other target portal groups.
  When a SCSI target device sees the same (InitiatorName, ISID) pair in
  different sessions to different target portal groups, it can identify
  the underlying SCSI Initiator Port on each session as the same SCSI
  port.  In effect, it can recognize multiple paths from the same
  source.

9.1.2.  iSCSI Name, ISID, and TPGT Use

  The designers of the iSCSI protocol envisioned there being one iSCSI
  Initiator Node Name per operating system image on a machine.  This
  enables SAN resource configuration and authentication schemes based
  on a  system's identity.  It supports the notion that it should be
  possible to assign access to storage resources based on "initiator
  device" identity.





Satran, et al.              Standards Track                   [Page 107]

RFC 3720                         iSCSI                        April 2004


  When there are multiple hardware or software components coordinated
  as a single iSCSI Node, there must be some (logical) entity that
  represents the iSCSI Node that makes the iSCSI Node Name available to
  all components involved in session creation and login.  Similarly,
  this entity that represents the iSCSI Node must be able to coordinate
  session identifier resources (ISID for initiators) to enforce both
  the ISID and TSIH RULES (see Section 3.4.3 Consequences of the
  Model).

  For targets, because of the closed environment, implementation of
  this entity should be straightforward.  However, vendors of iSCSI
  hardware (e.g., NICs or HBAs) intended for targets, SHOULD provide
  mechanisms for configuration of the iSCSI Node Name across the portal
  groups instantiated by multiple instances of these components within
  a target.

  However, complex targets making use of multiple Target Portal Group
  Tags may reconfigure them to achieve various quality goals.  The
  initiators have two mechanisms at their disposal to discover and/or
  check reconfiguring targets - the discovery session type and a key
  returned by the target during login to confirm the TPGT.  An
  initiator should attempt to "rediscover" the target configuration
  anytime a session is terminated unexpectedly.

  For initiators, in the long term, it is expected that operating
  system vendors will take on the role of this entity and provide
  standard APIs that can inform components of their iSCSI Node Name and
  can configure and/or coordinate ISID allocation, use, and reuse.

  Recognizing that such initiator APIs are not available today, other
  implementations of the role of this entity are possible.  For
  example, a human may instantiate the (common) Node name as part of
  the installation process of each iSCSI component involved in session
  creation and login.  This may be done either by pointing the
  component to a vendor-specific location for this datum or to a
  system-wide location.  The structure of the ISID namespace (see
  Section 10.12.5 ISID and [RFC3721]) facilitates implementation of the
  ISID coordination by allowing each component vendor to independently
  (of other vendor's components) coordinate allocation, use, and reuse
  of its own partition of the ISID namespace in a vendor-specific
  manner.  Partitioning of the ISID namespace within initiator portal
  groups managed by that vendor allows each such initiator portal group
  to act independently of all other portal groups when selecting an
  ISID for a login; this facilitates enforcement of the ISID RULE (see
  Section 3.4.3 Consequences of the Model) at the initiator.






Satran, et al.              Standards Track                   [Page 108]

RFC 3720                         iSCSI                        April 2004


  A vendor of iSCSI hardware (e.g., NICs or HBAs) intended for use in
  initiators MUST implement a mechanism for configuring the iSCSI Node
  Name.  Vendors, and administrators must ensure that iSCSI Node Names
  are unique worldwide.  It is therefore important that when one
  chooses to reuse the iSCSI Node Name of a disabled unit, not to
  re-assign that name to the original unit unless its worldwide
  uniqueness can be ascertained again.

  In addition, a vendor of iSCSI hardware must implement a mechanism to
  configure and/or coordinate ISIDs for all sessions managed by
  multiple instances of that hardware within a given iSCSI Node.  Such
  configuration might be either permanently pre-assigned at the factory
  (in a necessarily globally unique way), statically assigned (e.g.,
  partitioned across all the NICs at initialization in a locally unique
  way), or dynamically assigned (e.g., on-line allocator, also in a
  locally unique way).  In the latter two cases, the configuration may
  be via public APIs (perhaps driven by an independent vendor's
  software, such as the OS vendor) or via private APIs driven by the
  vendor's own software.

9.2.  Autosense and Auto Contingent Allegiance (ACA)

  Autosense refers to the automatic return of sense data to the
  initiator in case a command did not complete successfully.  iSCSI
  initiators and targets MUST support and use autosense.

  ACA helps preserve ordered command execution in the presence of
  errors.  As iSCSI can have many commands in-flight between initiator
  and target, iSCSI initiators and targets SHOULD support ACA.

9.3.  iSCSI Timeouts

  iSCSI recovery actions are often dependent on iSCSI time-outs being
  recognized and acted upon before SCSI time-outs.  Determining the
  right time-outs to use for various iSCSI actions (command
  acknowledgements expected, status acknowledgements, etc.) is very
  much dependent on infrastructure (hardware, links, TCP/IP stack,
  iSCSI driver).  As a guide, the implementer may use an average
  Nop-Out/Nop-In turnaround delay multiplied by a "safety factor"
  (e.g., 4) as a good estimate for the basic delay of the iSCSI stack
  for a given connection.  The safety factor should account for the
  network load variability.  For connection teardown the implementer
  may want to consider also the TCP common practice for the given
  infrastructure.







Satran, et al.              Standards Track                   [Page 109]

RFC 3720                         iSCSI                        April 2004


  Text negotiations MAY also be subject to either time-limits or limits
  in the number of exchanges.  Those SHOULD be generous enough to avoid
  affecting interoperability (e.g., allowing each key to be negotiated
  on a separate exchange).

  The relation between iSCSI timeouts and SCSI timeouts should also be
  considered.  SCSI timeouts should be longer than iSCSI timeouts plus
  the time required for iSCSI recovery whenever iSCSI recovery is
  planned.  Alternatively, an implementer may choose to interlock iSCSI
  timeouts and recovery with SCSI timeouts so that SCSI recovery will
  become active only where iSCSI is not planned to, or failed to,
  recover.

  The implementer may also want to consider the interaction between
  various iSCSI exception events - such as a digest failure - and
  subsequent timeouts.  When iSCSI error recovery is active, a digest
  failure is likely to result in discovering a missing command or data
  PDU.  In these cases, an implementer may want to lower the timeout
  values to enable faster initiation for recovery procedures.

9.4.  Command Retry and Cleaning Old Command Instances

  To avoid having old, retried command instances appear in a valid
  command window after a command sequence number wrap around, the
  protocol requires (see Section 3.2.2.1 Command Numbering and
  Acknowledging) that on every connection on which a retry has been
  issued, a non-immediate command be issued and acknowledged within a
  2**31-1 commands interval from the CmdSN of the retried command.
  This requirement can be fulfilled by an implementation in several
  ways.

  The simplest technique to use is to send a (non-retry) non-immediate
  SCSI command (or a NOP if no SCSI command is available for a while)
  after every command retry on the connection on which the retry was
  attempted.  As errors are deemed rare events, this technique is
  probably the most effective, as it does not involve additional checks
  at the initiator when issuing commands.

9.5.  Synch and Steering Layer and Performance

  While a synch and steering layer is optional, an initiator/target
  that does not have it working against a target/initiator that demands
  synch and steering may experience performance degradation caused by
  packet reordering and loss.  Providing a synch and steering mechanism
  is recommended for all high-speed implementations.






Satran, et al.              Standards Track                   [Page 110]

RFC 3720                         iSCSI                        April 2004


9.6.  Considerations for State-dependent Devices and Long-lasting SCSI
     Operations

  Sequential access devices operate on the principle that the position
  of the device is based on the last command processed.  As such,
  command processing order and knowledge of whether or not the previous
  command was processed is of the utmost importance to maintain data
  integrity.  For example, inadvertent retries of SCSI commands when it
  is not known if the previous SCSI command was processed is a
  potential data integrity risk.

  For a sequential access device, consider the scenario in which a SCSI
  SPACE command to backspace one filemark is issued and then re-issued
  due to no status received for the command.  If the first SPACE
  command was actually processed, the re-issued SPACE command, if
  processed, will cause the position to change.  Thus, a subsequent
  write operation will write data to the wrong position and any
  previous data at that position will be overwritten.

  For a medium changer device, consider the scenario in which an
  EXCHANGE MEDIUM command (the SOURCE ADDRESS and DESTINATION ADDRESS
  are the same thus performing a swap) is issued and then re-issued due
  to no status received for the command.  If the first EXCHANGE MEDIUM
  command was actually processed, the re-issued EXCHANGE MEDIUM
  command, if processed, will perform the swap again.  The net effect
  is that a swap was not performed thus leaving a data integrity
  exposure.

  All commands that change the state of the device (as in SPACE
  commands for sequential access devices, and EXCHANGE MEDIUM for
  medium changer device), MUST be issued as non-immediate commands for
  deterministic and in order delivery to iSCSI targets.

  For many of those state changing commands, the execution model also
  assumes that the command is executed exactly once.  Devices
  implementing READ POSITION and LOCATE provide a means for SCSI level
  command recovery and new tape-class  devices should support those
  commands.  In their absence a retry at SCSI level is difficult and
  error recovery at iSCSI level is advisable.

  Devices operating on long latency delivery subsystems and performing
  long lasting SCSI operations may need mechanisms that enable
  connection replacement while commands are running (e.g., during an
  extended copy operation).







Satran, et al.              Standards Track                   [Page 111]

RFC 3720                         iSCSI                        April 2004


9.6.1.  Determining the Proper ErrorRecoveryLevel

  The implementation and use of a specific ErrorRecoveryLevel should be
  determined based on the deployment scenarios of a given iSCSI
  implementation.  Generally, the following factors must be considered
  before deciding on the proper level of recovery:

     a)  Application resilience to I/O failures.
     b)  Required level of availability in the face of transport
         connection failures.
     c)  Probability of transport layer "checksum escape".  This in
         turn decides the iSCSI digest failure frequency, and thus the
         criticality of iSCSI-level error recovery.  The details of
         estimating this probability are outside the scope of this
         document.


  A consideration of the above factors for SCSI tape devices as an
  example suggests that implementations SHOULD use ErrorRecoveryLevel=1
  when transport connection failure is not a concern and SCSI level
  recovery is unavailable, and ErrorRecoveryLevel=2 when the connection
  failure is also of high likelihood during a backup/retrieval.

  For extended copy operations, implementations SHOULD use
  ErrorRecoveryLevel=2 whenever there is a relatively high likelihood
  of connection failure.

10.  iSCSI PDU Formats

  All multi-byte integers that are specified in formats defined in this
  document are to be represented in network byte order (i.e., big
  endian).  Any field that appears in this document assumes that the
  most significant byte is the lowest numbered byte and the most
  significant bit (within byte or field) is the lowest numbered bit
  unless specified otherwise.

  Any compliant sender MUST set all bits not defined and all reserved
  fields to zero unless specified otherwise.  Any compliant receiver
  MUST ignore any bit not defined and all reserved fields unless
  specified otherwise.  Receipt of reserved code values in defined
  fields MUST be reported as a protocol error.

  Reserved fields are marked by the word "reserved", some abbreviation
  of "reserved", or by "." for individual bits when no other form of
  marking is technically feasible.






Satran, et al.              Standards Track                   [Page 112]

RFC 3720                         iSCSI                        April 2004


10.1.  iSCSI PDU Length and Padding

  iSCSI PDUs are padded to the closest integer number of four byte
  words.  The padding bytes SHOULD be sent as 0.

10.2.  PDU Template, Header, and Opcodes

  All iSCSI PDUs have one or more header segments and, optionally, a
  data segment.  After the entire header segment group a header-digest
  MAY follow.  The data segment MAY also be followed by a data-digest.

  The Basic Header Segment (BHS) is the first segment in all of the
  iSCSI PDUs.  The BHS is a fixed-length 48-byte header segment.  It
  MAY be followed by Additional Header Segments (AHS), a Header-Digest,
  a Data Segment, and/or a Data-Digest.




































Satran, et al.              Standards Track                   [Page 113]

RFC 3720                         iSCSI                        April 2004


  The overall structure of an iSCSI  PDU is as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0/ Basic Header Segment (BHS)                                    /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ Additional Header Segment 1 (AHS)  (optional)                 /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    / Additional Header Segment 2 (AHS)  (optional)                 /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  ----
    +---------------+---------------+---------------+---------------+
    / Additional Header Segment n (AHS)  (optional)                 /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  ----
    +---------------+---------------+---------------+---------------+
   k/ Header-Digest (optional)                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   l/ Data Segment(optional)                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   m/ Data-Digest (optional)                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

  All PDU segments and digests are padded to the closest integer number
  of four byte words.  For example, all PDU segments and digests start
  at a four byte word boundary and the padding ranges from 0 to 3
  bytes.  The padding bytes SHOULD be sent as 0.

  iSCSI response PDUs do not have AH Segments.

10.2.1.  Basic Header Segment (BHS)

  The BHS is 48 bytes long.  The Opcode and DataSegmentLength fields
  appear in all iSCSI PDUs.  In addition, when used, the Initiator Task
  Tag and Logical Unit Number always appear in the same location in the
  header.






Satran, et al.              Standards Track                   [Page 114]

RFC 3720                         iSCSI                        April 2004


  The format of the BHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| Opcode    |F|  Opcode-specific fields                     |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Opcode-specific fields                                 |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20/ Opcode-specific fields                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48

10.2.1.1  I

  For request PDUs, the I bit set to 1 is an immediate delivery marker.

10.2.1.2.  Opcode

  The Opcode indicates the type of iSCSI PDU the header encapsulates.

  The Opcodes are divided into two categories: initiator opcodes and
  target opcodes.  Initiator opcodes are in PDUs sent by the initiator
  (request PDUs).  Target opcodes are in PDUs sent by the target
  (response PDUs).

  Initiators MUST NOT use target opcodes and targets MUST NOT use
  initiator opcodes.

  Initiator opcodes defined in this specification are:

    0x00 NOP-Out
    0x01 SCSI Command (encapsulates a SCSI Command Descriptor Block)
    0x02 SCSI Task Management function request
    0x03 Login Request
    0x04 Text Request
    0x05 SCSI Data-Out (for WRITE operations)
    0x06 Logout Request
    0x10 SNACK Request
    0x1c-0x1e Vendor specific codes



Satran, et al.              Standards Track                   [Page 115]

RFC 3720                         iSCSI                        April 2004



  Target opcodes are:

    0x20 NOP-In
    0x21 SCSI Response - contains SCSI status and possibly sense
     information or other response information.
    0x22 SCSI Task Management function response
    0x23 Login Response
    0x24 Text Response
    0x25 SCSI Data-In - for READ operations.
    0x26 Logout Response
    0x31 Ready To Transfer (R2T) - sent by target when it is ready
     to receive data.
    0x32 Asynchronous Message - sent by target to indicate certain
     special conditions.
    0x3c-0x3e Vendor specific codes
    0x3f Reject

  All other opcodes are reserved.

10.2.1.3.  Final (F) bit

  When set to 1 it indicates the final (or only) PDU of a sequence.

10.2.1.4.  Opcode-specific Fields

  These fields have different meanings for different opcode types.

10.2.1.5.  TotalAHSLength

  Total length of all AHS header segments in units of four byte words
  including padding, if any.

  The TotalAHSLength is only used in PDUs that have an AHS and MUST be
  0 in all other PDUs.

10.2.1.6.  DataSegmentLength

  This is the data segment payload length in bytes (excluding padding).
  The DataSegmentLength MUST be 0 whenever the PDU has no data segment.

10.2.1.7.  LUN

  Some opcodes operate on a specific Logical Unit.  The Logical Unit
  Number (LUN) field identifies which Logical Unit.  If the opcode does
  not relate to a Logical Unit, this field is either ignored or may be
  used in an opcode specific way.  The LUN field is 64-bits and should




Satran, et al.              Standards Track                   [Page 116]

RFC 3720                         iSCSI                        April 2004


  be formatted in accordance with [SAM2].  For example, LUN[0] from
  [SAM2] is BHS byte 8 and so on up to LUN[7] from [SAM2], which is BHS
  byte 15.

10.2.1.8.  Initiator Task Tag

  The initiator assigns a Task Tag to each iSCSI task it issues.  While
  a task exists, this tag MUST uniquely identify the task session-wide.
  SCSI may also use the initiator task tag as part of the SCSI task
  identifier when the timespan during which an iSCSI initiator task tag
  must be unique extends over the timespan during which a SCSI task tag
  must be unique.  However, the iSCSI Initiator Task Tag must exist and
  be unique even for untagged SCSI commands.

10.2.2.  Additional Header Segment (AHS)

  The general format of an AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength                     | AHSType       | AHS-Specific  |
    +---------------+---------------+---------------+---------------+
   4/ AHS-Specific                                                  /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   x

10.2.2.1.  AHSType

  The AHSType field is coded as follows:

      bit 0-1 - Reserved

      bit 2-7 - AHS code

       0 - Reserved
       1 - Extended CDB
       2 - Expected Bidirectional Read Data Length
       3 - 63 Reserved

10.2.2.2.  AHSLength

  This field contains the effective length in bytes of the AHS
  excluding AHSType and AHSLength and padding, if any.  The AHS is
  padded to the smallest integer number of 4 byte words (i.e., from 0
  up to 3 padding bytes).



Satran, et al.              Standards Track                   [Page 117]

RFC 3720                         iSCSI                        April 2004


10.2.2.3.  Extended CDB AHS

  The format of the Extended CDB AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength (CDBLength-15)      | 0x01          | Reserved      |
    +---------------+---------------+---------------+---------------+
   4/ ExtendedCDB...+padding                                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   x

  This type of AHS MUST NOT be used if the CDBLength is less than 17.
  The length includes the reserved byte 3.

10.2.2.4.  Bidirectional Expected Read-Data Length AHS

  The format of the Bidirectional Read Expected Data Transfer Length
  AHS is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| AHSLength (0x0005)            | 0x02          | Reserved      |
    +---------------+---------------+---------------+---------------+
   4| Expected Read-Data Length                                     |
    +---------------+---------------+---------------+---------------+
   8

10.2.3.  Header Digest and Data Digest

  Optional header and data digests protect the integrity of the header
  and data, respectively.  The digests, if present, are located,
  respectively, after the header and PDU-specific data, and cover
  respectively the header and the PDU data, each including the padding
  bytes, if any.

  The existence and type of digests are negotiated during the Login
  Phase.

  The separation of the header and data digests is useful in iSCSI
  routing applications, in which only the header changes when a message
  is forwarded.  In this case, only the header digest should be
  recalculated.



Satran, et al.              Standards Track                   [Page 118]

RFC 3720                         iSCSI                        April 2004


  Digests are not included in data or header length fields.

  A zero-length Data Segment also implies a zero-length data-digest.

10.2.4.  Data Segment

  The (optional) Data Segment contains PDU associated data.  Its
  payload effective length is provided in the BHS field -
  DataSegmentLength.  The Data Segment is also padded to an integer
  number of 4 byte words.

10.3.  SCSI Command

  The format of the SCSI Command PDU is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x01      |F|R|W|. .|ATTR | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Logical Unit Number (LUN)                                     |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Expected Data Transfer Length                                 |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ SCSI Command Descriptor Block (CDB)                           /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ AHS (Optional)                                                /
    +---------------+---------------+---------------+---------------+
   x/ Header Digest (Optional)                                      /
    +---------------+---------------+---------------+---------------+
   y/ (DataSegment, Command Data) (Optional)                        /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
   z/ Data Digest (Optional)                                        /
    +---------------+---------------+---------------+---------------+




Satran, et al.              Standards Track                   [Page 119]

RFC 3720                         iSCSI                        April 2004


10.3.1.  Flags and Task Attributes (byte 1)

  The flags for a SCSI Command are:

  bit 0   (F) is set to 1 when no unsolicited SCSI Data-Out PDUs follow
           this PDU.  When F=1 for a write and if Expected Data
           Transfer Length is larger than the DataSegmentLength, the
           target may solicit additional data through R2T.

  bit 1   (R) is set to 1 when the command is expected to input data.

  bit 2   (W) is set to 1 when the command is expected to output data.

  bit 3-4 Reserved.

  bit 5-7 contains Task Attributes.

  Task Attributes (ATTR) have one of the following integer values (see
  [SAM2] for details):

    0 - Untagged
    1 - Simple
    2 - Ordered
    3 - Head of Queue
    4 - ACA
    5-7 - Reserved

  Setting both the W and the F bit to 0 is an error.  Either or both of
  R and W MAY be 1 when either the Expected Data Transfer Length and/or
  Bidirectional Read Expected Data Transfer Length are 0, but they MUST
  NOT both be 0 when the Expected Data Transfer Length and/or
  Bidirectional Read Expected Data Transfer Length are not 0 (i.e.,
  when some data transfer is expected the transfer direction is
  indicated by the R and/or W bit).

10.3.2.  CmdSN - Command Sequence Number

  Enables ordered delivery across multiple connections in a single
  session.

10.3.3.  ExpStatSN

  Command responses up to ExpStatSN-1 (mod 2**32) have been received
  (acknowledges status) on the connection.







Satran, et al.              Standards Track                   [Page 120]

RFC 3720                         iSCSI                        April 2004


10.3.4.  Expected Data Transfer Length

  For unidirectional operations, the Expected Data Transfer Length
  field contains the number of bytes of data involved in this SCSI
  operation.  For a unidirectional write operation (W flag set to 1 and
  R flag set to 0), the initiator uses this field to specify the number
  of bytes of data it expects to transfer for this operation.  For a
  unidirectional read operation (W flag set to 0 and R flag set to 1),
  the initiator uses this field to specify the number of bytes of data
  it expects the target to transfer to the initiator.  It corresponds
  to the SAM2 byte count.

  For bidirectional operations (both R and W flags are set to 1), this
  field contains the number of data bytes involved in the write
  transfer.  For bidirectional operations, an additional header segment
  MUST be present in the header sequence that indicates the
  Bidirectional Read Expected Data Transfer Length.  The Expected Data
  Transfer Length field and the Bidirectional Read Expected Data
  Transfer Length field correspond to the SAM2 byte count

  If the Expected Data Transfer Length for a write and the length of
  the immediate data part that follows the command (if any) are the
  same, then no more data PDUs are expected to follow.  In this case,
  the F bit MUST be set to 1.

  If the Expected Data Transfer Length is higher than the
  FirstBurstLength (the negotiated maximum amount of unsolicited data
  the target will accept), the initiator MUST send the maximum amount
  of unsolicited data OR ONLY the immediate data, if any.

  Upon completion of a data transfer, the target informs the initiator
  (through residual counts) of how many bytes were actually processed
  (sent and/or received) by the target.

10.3.5.  CDB - SCSI Command Descriptor Block

  There are 16 bytes in the CDB field to accommodate the commonly used
  CDBs.  Whenever the CDB is larger than 16 bytes, an Extended CDB AHS
  MUST be used to contain the CDB spillover.

10.3.6.  Data Segment - Command Data

  Some SCSI commands require additional parameter data to accompany the
  SCSI command.  This data may be placed beyond the boundary of the
  iSCSI header in a data segment.  Alternatively, user data (e.g., from
  a WRITE operation) can be placed in the data segment (both cases are





Satran, et al.              Standards Track                   [Page 121]

RFC 3720                         iSCSI                        April 2004


  referred to as immediate data).  These data are governed by the rules
  for solicited vs. unsolicited data outlined in Section 3.2.4.2 Data
  Transfer Overview.

10.4.  SCSI Response

  The format of the SCSI Response PDU is:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x21      |1|. .|o|u|O|U|.| Response      | Status        |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Reserved                                                      |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| SNACK Tag or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| ExpDataSN or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  40| Bidirectional Read Residual Count or Reserved                 |
    +---------------+---------------+---------------+---------------+
  44| Residual Count or Reserved                                    |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / Data Segment (Optional)                                       /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+








Satran, et al.              Standards Track                   [Page 122]

RFC 3720                         iSCSI                        April 2004


10.4.1.  Flags (byte 1)

    bit 1-2 Reserved.

    bit 3 - (o) set for Bidirectional Read Residual Overflow.  In this
      case, the Bidirectional Read Residual Count indicates the number
      of bytes that were not transferred to the initiator because the
      initiator's Expected Bidirectional Read Data Transfer Length was
      not sufficient.

    bit 4 - (u) set for Bidirectional Read Residual Underflow.  In this
      case, the Bidirectional Read Residual Count indicates the number
      of bytes that were not transferred to the initiator out of the
      number of bytes expected to be transferred.

    bit 5 - (O) set for Residual Overflow.  In this case, the Residual
      Count indicates the number of bytes that were not transferred
      because the initiator's Expected Data Transfer Length was not
      sufficient.  For a bidirectional operation, the Residual Count
      contains the residual for the write operation.

    bit 6 - (U) set for Residual Underflow.  In this case, the Residual
      Count indicates the number of bytes that were not transferred out
      of the number of bytes that were expected to be transferred.  For
      a bidirectional operation, the Residual Count contains the
      residual for the write operation.

    bit 7 - (0) Reserved.

  Bits O and U and bits o and u are mutually exclusive (i.e., having
  both o and u or O and U set to 1 is a protocol error).  For a
  response other than "Command Completed at Target", bits 3-6 MUST be
  0.

10.4.2.  Status

  The Status field is used to report the SCSI status of the command (as
  specified in [SAM2]) and is only valid if the Response Code is
  Command Completed at target.












Satran, et al.              Standards Track                   [Page 123]

RFC 3720                         iSCSI                        April 2004


  Some of the status codes defined in [SAM2] are:

    0x00 GOOD
    0x02 CHECK CONDITION
    0x08 BUSY
    0x18 RESERVATION CONFLICT
    0x28 TASK SET FULL
    0x30 ACA ACTIVE
    0x40 TASK ABORTED

  See [SAM2] for the complete list and definitions.

  If a SCSI device error is detected while data from the initiator is
  still expected (the command PDU did not contain all the data and the
  target has not received a Data PDU with the final bit Set), the
  target MUST wait until it receives a Data PDU with the F bit set in
  the last expected sequence before sending the Response PDU.

10.4.3.  Response

  This field contains the iSCSI service response.

  iSCSI service response codes defined in this specification are:

    0x00 - Command Completed at Target
    0x01 - Target Failure
    0x80-0xff - Vendor specific

  All other response codes are reserved.

  The Response is used to report a Service Response.  The mapping of
  the response code into a SCSI service response code value, if needed,
  is outside the scope of this document.  However, in symbolic terms
  response value 0x00 maps to the SCSI service response (see [SAM2] and
  [SPC3]) of TASK COMPLETE or LINKED COMMAND COMPLETE.  All other
  Response values map to the SCSI service response of SERVICE DELIVERY
  OR TARGET FAILURE.

  If a PDU that includes SCSI status (Response PDU or Data-In PDU
  including status) does not arrive before the session is terminated,
  the SCSI service response is SERVICE DELIVERY OR TARGET FAILURE.

  A non-zero Response field indicates a failure to execute the command
  in which case the Status and Flag fields are undefined.







Satran, et al.              Standards Track                   [Page 124]

RFC 3720                         iSCSI                        April 2004


10.4.4.  SNACK Tag

  This field contains a copy of the SNACK Tag of the last SNACK Tag
  accepted by the target on the same connection and for the command for
  which the response is issued.  Otherwise it is reserved and should be
  set to 0.

  After issuing a R-Data SNACK the initiator must discard any SCSI
  status unless contained in an SCSI Response PDU carrying the same
  SNACK Tag as the last issued R-Data SNACK for the SCSI command on the
  current connection.

  For a detailed discussion on R-Data SNACK see Section 10.16 SNACK
  Request.

10.4.5.  Residual Count

  The Residual Count field MUST be valid in the case where either the U
  bit or the O bit is set.  If neither bit is set, the Residual Count
  field is reserved.  Targets may set the residual count and initiators
  may use it when the response code is "completed at target" (even if
  the status returned is not GOOD).  If the O bit is set, the Residual
  Count indicates the number of bytes that were not transferred because
  the initiator's Expected Data Transfer Length was not sufficient.  If
  the U bit is set, the Residual Count indicates the number of bytes
  that were not transferred out of the number of bytes expected to be
  transferred.

10.4.6.  Bidirectional Read Residual Count

  The Bidirectional Read Residual Count field MUST be valid in the case
  where either the u bit or the o bit is set.  If neither bit is set,
  the Bidirectional Read Residual Count field is reserved.  Targets may
  set the Bidirectional Read Residual Count and initiators may use it
  when the response code is "completed at target".  If the o bit is
  set, the Bidirectional Read Residual Count indicates the number of
  bytes that were not transferred to the initiator because the
  initiator's Expected Bidirectional Read Transfer Length was not
  sufficient.  If the u bit is set, the Bidirectional Read Residual
  Count indicates the number of bytes that were not transferred to the
  initiator out of the number of bytes expected to be transferred.

10.4.7.  Data Segment - Sense and Response Data Segment

  iSCSI targets MUST support and enable autosense.  If Status is CHECK
  CONDITION (0x02), then the Data Segment MUST contain sense data for
  the failed command.




Satran, et al.              Standards Track                   [Page 125]

RFC 3720                         iSCSI                        April 2004


  For some iSCSI responses, the response data segment MAY contain some
  response related information, (e.g., for a target failure, it may
  contain a vendor specific detailed description of the failure).

  If the DataSegmentLength is not 0, the format of the Data Segment is
  as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|SenseLength                    | Sense Data                    |
    +---------------+---------------+---------------+---------------+
   x/ Sense Data                                                    /
    +---------------+---------------+---------------+---------------+
   y/ Response Data                                                 /
    /                                                               /
    +---------------+---------------+---------------+---------------+
   z|

10.4.7.1.  SenseLength

  Length of Sense Data.

10.4.7.2.  Sense Data

  The Sense Data contains detailed information about a check condition
  and [SPC3] specifies the format and content of the Sense Data.

  Certain iSCSI conditions result in the command being terminated at
  the target (response Command Completed at Target) with a SCSI Check
  Condition Status as outlined in the next table:



















Satran, et al.              Standards Track                   [Page 126]

RFC 3720                         iSCSI                        April 2004


  +--------------------------+----------+---------------------------+
  | iSCSI Condition          |Sense     | Additional Sense Code &   |
  |                          |Key       | Qualifier                 |
  +--------------------------+----------+---------------------------+
  | Unexpected unsolicited   |Aborted   | ASC = 0x0c ASCQ = 0x0c    |
  | data                     |Command-0B| Write Error               |
  +--------------------------+----------+---------------------------+
  | Incorrect amount of data |Aborted   | ASC = 0x0c ASCQ = 0x0d    |
  |                          |Command-0B| Write Error               |
  +--------------------------+----------+---------------------------+
  | Protocol Service CRC     |Aborted   | ASC = 0x47 ASCQ = 0x05    |
  | error                    |Command-0B| CRC Error Detected        |
  +--------------------------+----------+---------------------------+
  | SNACK rejected           |Aborted   | ASC = 0x11 ASCQ = 0x13    |
  |                          |Command-0B| Read Error                |
  +--------------------------+----------+---------------------------+

  The target reports the "Incorrect amount of data" condition if during
  data output the total data length to output is greater than
  FirstBurstLength and the initiator sent unsolicited non-immediate
  data but the total amount of unsolicited data is different than
  FirstBurstLength.  The target reports the same error when the amount
  of data sent as a reply to an R2T does not match the amount
  requested.

10.4.8.  ExpDataSN

  The number of R2T and Data-In (read) PDUs the target has sent for the
  command.

  This field MUST be 0 if the response code is not Command Completed at
  Target or the target sent no Data-In PDUs for the command.

10.4.9.  StatSN - Status Sequence Number

  StatSN is a Sequence Number that the target iSCSI layer generates per
  connection and that in turn, enables the initiator to acknowledge
  status reception.  StatSN is incremented by 1 for every
  response/status sent on a connection except for responses sent as a
  result of a retry or SNACK.  In the case of responses sent due to a
  retransmission request, the StatSN MUST be the same as the first time
  the PDU was sent unless the connection has since been restarted.









Satran, et al.              Standards Track                   [Page 127]

RFC 3720                         iSCSI                        April 2004


10.4.10.  ExpCmdSN - Next Expected CmdSN from this Initiator

  ExpCmdSN is a Sequence Number that the target iSCSI returns to the
  initiator to acknowledge command reception.  It is used to update a
  local variable with the same name.  An ExpCmdSN equal to MaxCmdSN+1
  indicates that the target cannot accept new commands.

10.4.11.  MaxCmdSN - Maximum CmdSN from this Initiator

  MaxCmdSN is a Sequence Number that the target iSCSI returns to the
  initiator to indicate the maximum CmdSN the initiator can send.  It
  is used to update a local variable with the same name.  If MaxCmdSN
  is equal to ExpCmdSN-1, this indicates to the initiator that the
  target cannot receive any additional commands.  When MaxCmdSN changes
  at the target while the target has no pending PDUs to convey this
  information to the initiator, it MUST generate a NOP-IN to carry the
  new MaxCmdSN.


































Satran, et al.              Standards Track                   [Page 128]

RFC 3720                         iSCSI                        April 2004


10.5.  Task Management Function Request

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x02      |1| Function    | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| Logical Unit Number (LUN) or Reserved                         |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Referenced Task Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32| RefCmdSN or Reserved                                          |
    +---------------+---------------+---------------+---------------+
  36| ExpDataSN or Reserved                                         |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+

10.5.1.  Function

  The Task Management functions provide an initiator with a way to
  explicitly control the execution of one or more Tasks (SCSI and iSCSI
  tasks).  The Task Management function codes are listed below.  For a
  more detailed description of SCSI task management, see [SAM2].

  1 -  ABORT TASK - aborts the task identified by the Referenced Task
       Tag field.

  2 -  ABORT TASK SET - aborts all Tasks issued via this session on the
       logical unit.

  3 -  CLEAR ACA - clears the Auto Contingent Allegiance condition.





Satran, et al.              Standards Track                   [Page 129]

RFC 3720                         iSCSI                        April 2004


  4 -  CLEAR TASK SET - aborts all Tasks in the appropriate task set as
       defined by the TST field in the Control mode page (see [SPC3]).

  5 -  LOGICAL UNIT RESET

  6 -  TARGET WARM RESET

  7 -  TARGET COLD RESET

  8 -  TASK REASSIGN - reassigns connection allegiance for the task
       identified by the Referenced Task Tag field to this connection,
       thus resuming the iSCSI exchanges for the task.

  For all these functions, the Task Management function response MUST
  be returned as detailed in Section 10.6 Task Management Function
  Response.  All these functions apply to the referenced tasks
  regardless of whether they are proper SCSI tasks or tagged iSCSI
  operations.  Task management requests must act on all the commands
  from the same session having a CmdSN lower than the task management
  CmdSN.  LOGICAL UNIT RESET, TARGET WARM RESET and TARGET COLD RESET
  may affect commands from other sessions or commands from the same
  session with CmdSN equal or exceeding CmdSN.

  If the task management request is marked for immediate delivery, it
  must be considered immediately for execution, but the operations
  involved (all or part of them) may be postponed to allow the target
  to receive all relevant tasks.  According to [SAM2], for all the
  tasks covered by the Task Management response (i.e., with CmdSN lower
  than the task management command CmdSN) but except the Task
  Management response to a TASK REASSIGN, additional responses MUST NOT
  be delivered to the SCSI layer after the Task Management response.
  The iSCSI initiator MAY deliver to the SCSI layer all responses
  received before the Task Management response (i.e., it is a matter of
  implementation if the SCSI responses, received before the Task
  Management response but after the task management request was issued,
  are delivered to the SCSI layer by the iSCSI layer in the initiator).
  The iSCSI target MUST ensure that no responses for the tasks covered
  by a task management function are delivered to the iSCSI initiator
  after the Task Management response except for a task covered by a
  TASK REASSIGN.

  For ABORT TASK SET and CLEAR TASK SET, the issuing initiator MUST
  continue to respond to all valid target transfer tags (received via
  R2T, Text Response, NOP-In, or SCSI Data-In PDUs) related to the
  affected task set, even after issuing the task management request.
  The issuing initiator SHOULD however terminate (i.e., by setting the
  F-bit to 1) these response sequences as quickly as possible.  The
  target on its part MUST wait for responses on all affected target



Satran, et al.              Standards Track                   [Page 130]

RFC 3720                         iSCSI                        April 2004


  transfer tags before acting on either of these two task management
  requests.  In case all or part of the response sequence is not
  received (due to digest errors) for a valid TTT, the target MAY treat
  it as a case of within-command error recovery class (see Section
  6.1.4.1 Recovery Within-command) if it is supporting
  ErrorRecoveryLevel >= 1, or alternatively may drop the connection to
  complete the requested task set function.

  If an ABORT TASK is issued for a task created by an immediate command
  then RefCmdSN MUST be that of the Task Management request itself
  (i.e., CmdSN and RefCmdSN are equal); otherwise RefCmdSN MUST be set
  to the CmdSN of the task to be aborted (lower than CmdSN).

  If the connection is still active (it is not undergoing an implicit
  or explicit logout), ABORT TASK MUST be issued on the same connection
  to which the task to be aborted is allegiant at the time the Task
  Management Request is issued.  If the connection is implicitly or
  explicitly logged out (i.e., no other request will be issued on the
  failing connection and no other response will be received on the
  failing connection), then an ABORT TASK function request may be
  issued on another connection.  This Task Management request will then
  establish a new allegiance for the command to be aborted as well as
  abort it (i.e., the task to be aborted will not have to be retried or
  reassigned, and its status, if issued but not acknowledged, will be
  reissued followed by the Task Management response).

  At the target an ABORT TASK function MUST NOT be executed on a Task
  Management request; such a request MUST result in Task Management
  response of "Function rejected".

  For the LOGICAL UNIT RESET function, the target MUST behave as
  dictated by the Logical Unit Reset function in [SAM2].

  The implementation of the TARGET WARM RESET function and the TARGET
  COLD RESET function is OPTIONAL and when implemented, should act as
  described below.  The TARGET WARM RESET is also subject to SCSI
  access controls on the requesting initiator as defined in [SPC3].
  When authorization fails at the target, the appropriate response as
  described in Section 10.6 Task Management Function Response MUST be
  returned by the target.  The TARGET COLD RESET function is not
  subject to SCSI access controls, but its execution privileges may be
  managed by iSCSI mechanisms such as login authentication.

  When executing the TARGET WARM RESET and TARGET COLD RESET functions,
  the target cancels all pending operations on all Logical Units known
  by the issuing initiator.  Both functions are equivalent to the
  Target Reset function specified by [SAM2].  They can affect many
  other initiators logged in with the servicing SCSI target port.



Satran, et al.              Standards Track                   [Page 131]

RFC 3720                         iSCSI                        April 2004


  The target MUST treat the TARGET COLD RESET function additionally as
  a power on event, thus terminating all of its TCP connections to all
  initiators (all sessions are terminated).  For this reason, the
  Service Response (defined by [SAM2]) for this SCSI task management
  function may not be reliably delivered to the issuing initiator port.

  For the TASK REASSIGN function, the target should reassign the
  connection allegiance to this new connection (and thus resume iSCSI
  exchanges for the task).  TASK REASSIGN MUST ONLY be received by the
  target after the connection on which the command was previously
  executing has been successfully logged-out.  The Task Management
  response MUST be issued before the reassignment becomes effective.
  For additional usage semantics see Section 6.2 Retry and Reassign in
  Recovery.

  At the target a TASK REASSIGN function request MUST NOT be executed
  to reassign the connection allegiance of a Task Management function
  request, an active text negotiation task, or a Logout task; such a
  request MUST result in Task Management response of "Function
  rejected".

  TASK REASSIGN MUST be issued as an immediate command.

10.5.2.  TotalAHSLength and DataSegmentLength

  For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

10.5.3.  LUN

  This field is required for functions that address a specific LU
  (ABORT TASK, CLEAR TASK SET, ABORT TASK SET, CLEAR ACA, LOGICAL UNIT
  RESET) and is reserved in all others.

10.5.4.  Referenced Task Tag

  The Initiator Task Tag of the task to be aborted for the ABORT TASK
  function or reassigned for the TASK REASSIGN function.  For all the
  other functions this field MUST be set to the reserved value
  0xffffffff.

10.5.5.  RefCmdSN

  If an ABORT TASK is issued for a task created by an immediate command
  then RefCmdSN MUST be that of the Task Management request itself
  (i.e., CmdSN and RefCmdSN are equal).






Satran, et al.              Standards Track                   [Page 132]

RFC 3720                         iSCSI                        April 2004


  For an ABORT TASK of a task created by non-immediate command RefCmdSN
  MUST be set to the CmdSN of the task identified by the Referenced
  Task Tag field.  Targets must use this field as described in section
  10.6.1 when the task identified by the Referenced Task Tag field is
  not with the target.

  Otherwise, this field is reserved.

10.5.6.  ExpDataSN

  For recovery purposes, the iSCSI target and initiator maintain a data
  acknowledgement reference number - the first input DataSN number
  unacknowledged by the initiator.  When issuing a new command, this
  number is set to 0.  If the function is TASK REASSIGN, which
  establishes a new connection allegiance for a previously issued Read
  or Bidirectional command, ExpDataSN will contain  an updated data
  acknowledgement reference number or the value 0; the latter
  indicating that the data acknowledgement reference number is
  unchanged.  The initiator MUST discard any data PDUs from the
  previous execution that it did not acknowledge and the target MUST
  transmit all Data-In PDUs (if any) starting with the data
  acknowledgement reference number.  The number of retransmitted PDUs
  may or may not be the same as the original transmission depending on
  if there was a change in MaxRecvDataSegmentLength in the
  reassignment.  The target MAY also send no more Data-In PDUs if all
  data has been acknowledged.

  The value of ExpDataSN  MUST be 0 or higher than the DataSN of the
  last acknowledged Data-In PDU, but not larger than DataSN+1 of the
  last Data-In PDU sent by the target.  Any other value MUST be ignored
  by the target.

  For other functions this field is reserved.


















Satran, et al.              Standards Track                   [Page 133]

RFC 3720                         iSCSI                        April 2004


10.6.  Task Management Function Response

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x22      |1| Reserved    | Response      | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
    /                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+

  For the functions ABORT TASK, ABORT TASK SET, CLEAR ACA, CLEAR TASK
  SET, LOGICAL UNIT RESET, TARGET COLD RESET, TARGET WARM RESET and
  TASK REASSIGN, the target performs the requested Task Management
  function and sends a Task Management response back to the initiator.
  For TASK REASSIGN, the new connection allegiance MUST ONLY become
  effective at the target after the target issues the Task Management
  Response.

10.6.1.  Response

  The target provides a Response, which may take on the following
  values:

     a)    0 - Function complete.
     b)    1 - Task does not exist.
     c)    2 - LUN does not exist.
     d)    3 - Task still allegiant.
     e)    4 - Task allegiance reassignment not supported.




Satran, et al.              Standards Track                   [Page 134]

RFC 3720                         iSCSI                        April 2004


     f)    5 - Task management function not supported.
     g)    6 - Function authorization failed.
     h)  255 - Function rejected.

  All other values are reserved.

  For a discussion on usage of response codes 3 and 4, see Section
  6.2.2 Allegiance Reassignment.

  For the TARGET COLD RESET and TARGET WARM RESET functions, the target
  cancels all pending operations across all Logical Units known to the
  issuing initiator.  For the TARGET COLD RESET function, the target
  MUST then close all of its TCP connections to all initiators
  (terminates all sessions).

  The mapping of the response code into a SCSI service response code
  value, if needed, is outside the scope of this document.  However, in
  symbolic terms Response values 0 and 1 map to the SCSI service
  response of FUNCTION COMPLETE.  All other Response values map to the
  SCSI service response of FUNCTION REJECTED.  If a Task Management
  function response PDU does not arrive before the session is
  terminated, the SCSI service response is SERVICE DELIVERY OR TARGET
  FAILURE.

  The response to ABORT TASK SET and CLEAR TASK SET MUST only be issued
  by the target after all of the commands affected have been received
  by the target, the corresponding task management functions have been
  executed by the SCSI target, and the delivery of all responses
  delivered until the task management function completion have been
  confirmed (acknowledged through ExpStatSN) by the initiator on all
  connections of this session.  For the exact timeline of events, refer
  to Section 10.6.2 Task Management Actions on Task Sets.

  For the ABORT TASK function,

     a)  If the Referenced Task Tag identifies a valid task leading to
         a successful termination, then targets must return the
         "Function complete" response.
     b)  If the Referenced Task Tag does not identify an existing task,
         but if the CmdSN indicated by the RefCmdSN field in the Task
         Management function request is within the valid CmdSN window
         and less than the CmdSN of the Task Management function
         request itself, then targets must consider the CmdSN received
         and return the "Function complete" response.







Satran, et al.              Standards Track                   [Page 135]

RFC 3720                         iSCSI                        April 2004


     c)  If the Referenced Task Tag does not identify an existing task
         and if the CmdSN indicated by the RefCmdSN field in the Task
         Management function request is outside the valid CmdSN window,
         then targets must return the "Task does not exist" response.

10.6.2.  Task Management Actions on Task Sets

  The execution of ABORT TASK SET and CLEAR TASK SET Task Management
  function requests consists of the following sequence of events in the
  specified order on each of the entities.

  The initiator:

        a) Issues ABORT TASK SET/CLEAR TASK SET request.
        b) Continues to respond to each target transfer tag received
           for the affected task set.
        c) Receives any responses for the tasks in the affected task
           set (may process them as usual because they are guaranteed
           to be valid).
        d) Receives the task set management response, thus concluding
           all the tasks in the affected task set.

  The target:

        a) Receives the ABORT TASK SET/CLEAR TASK SET request.
        b) Waits for all target transfer tags to be responded to and
           for all affected tasks in the task set to be received.
        c) Propagates the command to and receives the response from the
           target SCSI layer.
        d) Takes note of last-sent StatSN on each of the connections in
           the iSCSI sessions (one or more) sharing the affected task
           set, and waits for acknowledgement of each StatSN (may
           solicit for acknowledgement by way of a NOP-In).  If some
           tasks originate from non-iSCSI I_T_L nexi then the means by
           which the target insures that all affected tasks have
           returned their status to the initiator are defined by the
           specific protocol.

        e) Sends the task set management response to the issuing
           initiator.











Satran, et al.              Standards Track                   [Page 136]

RFC 3720                         iSCSI                        April 2004


10.6.3.  TotalAHSLength and DataSegmentLength

  For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

10.7.  SCSI Data-Out & SCSI Data-In

  The SCSI Data-Out PDU for WRITE operations has the following format:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x05      |F| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN                                                        |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment                                                   /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+








Satran, et al.              Standards Track                   [Page 137]

RFC 3720                         iSCSI                        April 2004


  The SCSI Data-In PDU for READ operations has the following format:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x25      |F|A|0 0 0|O|U|S| Reserved      |Status or Rsvd |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN or Reserved                                            |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN                                                        |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Residual Count                                                |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment                                                   /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  Status can accompany the last Data-In PDU if the command did not end
  with an exception (i.e., the status is "good status" - GOOD,
  CONDITION MET or INTERMEDIATE CONDITION MET).  The presence of status
  (and of a residual count) is signaled though the S flag bit.
  Although targets MAY choose to send even non-exception status in
  separate responses, initiators MUST support non-exception status in
  Data-In PDUs.






Satran, et al.              Standards Track                   [Page 138]

RFC 3720                         iSCSI                        April 2004


10.7.1.  F (Final) Bit

  For outgoing data, this bit is 1 for the last PDU of unsolicited data
  or the last PDU of a sequence that answers an R2T.

  For incoming data, this bit is 1 for the last input (read) data PDU
  of a sequence.  Input can be split into several sequences, each
  having its own F bit.  Splitting the data stream into sequences does
  not affect DataSN counting on Data-In PDUs.  It MAY be used as a
  "change direction" indication for Bidirectional operations that need
  such a change.

  DataSegmentLength MUST not exceed MaxRecvDataSegmentLength for the
  direction it is sent and the total of all the DataSegmentLength of
  all PDUs in a sequence MUST not exceed MaxBurstLength (or
  FirstBurstLength for unsolicited data).  However the number of
  individual PDUs in a sequence (or in total) may be higher than the
  MaxBurstLength (or FirstBurstLength) to MaxRecvDataSegmentLength
  ratio (as PDUs may be limited in length by the sender capabilities).
  Using DataSegmentLength of 0 may increase beyond what is reasonable
  for the number of PDUs and should therefore be avoided.

  For Bidirectional operations, the F bit is 1 for both the end of the
  input sequences and the end of the output sequences.

10.7.2.  A (Acknowledge) Bit

  For sessions with ErrorRecoveryLevel 1 or higher, the target sets
  this bit to 1 to indicate that it requests a positive acknowledgement
  from the initiator for the data received.  The target should use the
  A bit moderately; it MAY only set the A bit to 1 once every
  MaxBurstLength bytes, or on the last Data-In PDU that concludes the
  entire requested read data transfer for the task from the target's
  perspective, and it MUST NOT do so more frequently.  The target MUST
  NOT set to 1 the A bit for sessions with ErrorRecoveryLevel=0.  The
  initiator MUST ignore the A bit set to 1 for sessions with
  ErrorRecoveryLevel=0.

  On receiving a Data-In PDU with the A bit set to 1 on a session with
  ErrorRecoveryLevel greater than 0, if there are no holes in the read
  data until that Data-In PDU, the initiator MUST issue a SNACK of type
  DataACK except when it is able to acknowledge the status for the task
  immediately via ExpStatSN on other outbound PDUs if the status for
  the task is also received.  In the latter case (acknowledgement
  through ExpStatSN), sending a SNACK of type DataACK in response to
  the A bit is OPTIONAL, but if it is done, it must not be sent after
  the status acknowledgement through ExpStatSN.  If the initiator has
  detected holes in the read data prior to that Data-In PDU, it MUST



Satran, et al.              Standards Track                   [Page 139]

RFC 3720                         iSCSI                        April 2004


  postpone issuing the SNACK of type DataACK until the holes are
  filled.  An initiator also MUST NOT acknowledge the status for the
  task before those holes are filled.  A status acknowledgement for a
  task that generated the Data-In PDUs is considered by the target as
  an implicit acknowledgement of the Data-In PDUs if such an
  acknowledgement was requested by the target.

10.7.3.  Flags (byte 1)

  The last SCSI Data packet sent from a target to an initiator for a
  SCSI command that completed successfully (with a status of GOOD,
  CONDITION MET, INTERMEDIATE or INTERMEDIATE CONDITION MET) may also
  optionally contain the Status for the data transfer.  As Sense Data
  cannot be sent together with the Command Status, if the command is
  completed with an error, then the response and sense data MUST be
  sent in a SCSI Response PDU (i.e., MUST NOT be sent in a SCSI Data
  packet).  If Status is sent with the data, then a SCSI Response PDU
  MUST NOT be sent as this would violate SCSI rules (a single status).
  For Bidirectional commands, the status MUST be sent in a SCSI
  Response PDU.

     bit 2-4 - Reserved.

     bit 5-6 - used the same as in a SCSI Response.  These bits are
               only valid when S is set to 1.  For details see Section
               10.4.1 Flags (byte 1).

     bit 7 S (status)- set to indicate that the Command Status field
               contains status.  If this bit is set to 1, the F bit
               MUST also be set to 1.

  The fields StatSN, Status, and Residual Count only have meaningful
  content if the S bit is set to 1 and their values are defined in
  Section 10.4 SCSI Response.

10.7.4.  Target Transfer Tag and LUN

  On outgoing data, the Target Transfer Tag is provided to the target
  if the transfer is honoring an R2T.  In this case, the Target
  Transfer Tag field is a replica of the Target Transfer Tag provided
  with the R2T.

  On incoming data, the Target Transfer Tag and LUN MUST be provided by
  the target if the A bit is set to 1; otherwise they are reserved.
  The Target Transfer Tag and LUN are copied by the initiator into the
  SNACK  of type DataACK that it issues as a result of receiving a SCSI
  Data-In PDU with the A bit set to 1.




Satran, et al.              Standards Track                   [Page 140]

RFC 3720                         iSCSI                        April 2004


  The Target Transfer Tag values are not specified by this protocol
  except that the value 0xffffffff is reserved and means that the
  Target Transfer Tag is not supplied.  If the Target Transfer Tag is
  provided, then the LUN field MUST hold a valid value and be
  consistent with whatever was specified with the command; otherwise,
  the LUN field is reserved.

10.7.5.  DataSN

  For input (read) or bidirectional Data-In PDUs, the DataSN is the
  input PDU number within the data transfer for the command identified
  by the Initiator Task Tag.

  R2T and Data-In PDUs, in the context of bidirectional commands, share
  the numbering sequence (see Section 3.2.2.3 Data Sequencing).

  For output (write) data PDUs, the DataSN is the Data-Out PDU number
  within the current output sequence.  The current output sequence is
  either identified by the Initiator Task Tag (for unsolicited data) or
  is a data sequence generated for one R2T (for data solicited through
  R2T).

10.7.6.  Buffer Offset

  The Buffer Offset field contains the offset of this PDU payload data
  within the complete data transfer.  The sum of the buffer offset and
  length should not exceed the expected transfer length for the
  command.

  The order of data PDUs within a sequence is determined by
  DataPDUInOrder.  When set to Yes, it means that PDUs have to be in
  increasing Buffer Offset order and overlays are forbidden.

  The ordering between sequences is determined by DataSequenceInOrder.
  When set to Yes, it means that sequences have to be in increasing
  Buffer Offset order and overlays are forbidden.

10.7.7.  DataSegmentLength

  This is the data payload length of a SCSI Data-In or SCSI Data-Out
  PDU.  The sending of 0 length data segments should be avoided, but
  initiators and targets MUST be able to properly receive 0 length data
  segments.

  The Data Segments of Data-In and Data-Out PDUs SHOULD be filled to
  the integer number of 4 byte words (real payload) unless the F bit is
  set to 1.




Satran, et al.              Standards Track                   [Page 141]

RFC 3720                         iSCSI                        April 2004


10.8.  Ready To Transfer (R2T)

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x31      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN                                                           |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag                                           |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| R2TSN                                                         |
    +---------------+---------------+---------------+---------------+
  40| Buffer Offset                                                 |
    +---------------+---------------+---------------+---------------+
  44| Desired Data Transfer Length                                  |
    +---------------------------------------------------------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+

  When an initiator has submitted a SCSI Command with data that passes
  from the initiator to the target (WRITE), the target may specify
  which blocks of data it is ready to receive.  The target may request
  that the data blocks be delivered in whichever order is convenient
  for the target at that particular instant.  This information is
  passed from the target to the initiator in the Ready To Transfer
  (R2T) PDU.

  In order to allow write operations without an explicit initial R2T,
  the initiator and target MUST have negotiated the key InitialR2T to
  No during Login.

  An R2T MAY be answered with one or more SCSI Data-Out PDUs with a
  matching Target Transfer Tag.  If an R2T is answered with a single
  Data-Out PDU, the Buffer Offset in the Data PDU MUST be the same as



Satran, et al.              Standards Track                   [Page 142]

RFC 3720                         iSCSI                        April 2004


  the one specified by the R2T, and the data length of the Data PDU
  MUST be the same as the Desired Data Transfer Length specified in the
  R2T.  If the R2T is answered with a sequence of Data PDUs, the Buffer
  Offset and Length MUST be within the range of those specified by R2T,
  and the last PDU MUST have the F bit set to 1.  If the last PDU
  (marked with the F bit) is received before the Desired Data Transfer
  Length is transferred, a target MAY choose to Reject that

  PDU with "Protocol error" reason code.  DataPDUInOrder governs the
  Data-Out PDU ordering.  If DataPDUInOrder is set to Yes, the Buffer
  Offsets and Lengths for consecutive PDUs MUST form a continuous
  non-overlapping range and the PDUs MUST be sent in increasing offset
  order.

  The target may send several R2T PDUs.  It, therefore, can have a
  number of pending data transfers.  The number of outstanding R2T PDUs
  are limited by the value of the negotiated key MaxOutstandingR2T.
  Within a connection, outstanding R2Ts MUST be fulfilled by the
  initiator in the order in which they were received.

  R2T PDUs MAY also be used to recover Data Out PDUs.  Such an R2T
  (Recovery-R2T) is generated by a target upon detecting the loss of
  one or more Data-Out PDUs due to:

    - Digest error
    - Sequence error
    - Sequence reception timeout

  A Recovery-R2T carries the next unused R2TSN, but requests part of or
  the entire data burst that an earlier R2T (with a lower R2TSN) had
  already requested.

  DataSequenceInOrder governs the buffer offset ordering in consecutive
  R2Ts.  If DataSequenceInOrder is Yes, then consecutive R2Ts MUST
  refer to continuous non-overlapping ranges except for Recovery-R2Ts.

10.8.1.  TotalAHSLength and DataSegmentLength

  For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

10.8.2.  R2TSN

  R2TSN is the R2T PDU input PDU number within the command identified
  by the Initiator Task Tag.

  For bidirectional commands R2T and Data-In PDUs share the input PDU
  numbering sequence (see Section 3.2.2.3 Data Sequencing).




Satran, et al.              Standards Track                   [Page 143]

RFC 3720                         iSCSI                        April 2004


10.8.3.  StatSN

  The StatSN field will contain the next StatSN.  The StatSN for this
  connection is not advanced after this PDU is sent.

10.8.4.  Desired Data Transfer Length and Buffer Offset

  The target specifies how many bytes it wants the initiator to send
  because of this R2T PDU.  The target may request the data from the
  initiator in several chunks, not necessarily in the original order of
  the data.  The target, therefore, also specifies a Buffer Offset that
  indicates the point at which the data transfer should begin, relative
  to the beginning of the total data transfer.  The Desired Data
  Transfer Length MUST NOT be 0 and MUST not exceed MaxBurstLength.

10.8.5.  Target Transfer Tag

  The target assigns its own tag to each R2T request that it sends to
  the initiator.  This tag can be used by the target to easily identify
  the data it receives.  The Target Transfer Tag and LUN are copied in
  the outgoing data PDUs and are only used by the target.  There is no
  protocol rule about the Target Transfer Tag except that the value
  0xffffffff is reserved and MUST NOT be sent by a target in an R2T.




























Satran, et al.              Standards Track                   [Page 144]

RFC 3720                         iSCSI                        April 2004


10.9.  Asynchronous Message

  An Asynchronous Message may be sent from the target to the initiator
  without correspondence to a particular command.  The target specifies
  the reason for the event and sense data.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x32      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| 0xffffffff                                                    |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| AsyncEvent    | AsyncVCode    | Parameter1 or Reserved        |
    +---------------+---------------+---------------+---------------+
  40| Parameter2 or Reserved        | Parameter3 or Reserved        |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Sense Data and iSCSI Event Data                 /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  Some Asynchronous Messages are strictly related to iSCSI while others
  are related to SCSI [SAM2].

  StatSN counts this PDU as an acknowledgeable event (StatSN is
  advanced), which allows for initiator and target state
  synchronization.



Satran, et al.              Standards Track                   [Page 145]

RFC 3720                         iSCSI                        April 2004


10.9.1.  AsyncEvent

  The codes used for iSCSI Asynchronous Messages (events) are:

     0 - a SCSI Asynchronous Event is reported in the sense data.
         Sense Data that accompanies the report, in the data segment,
         identifies the condition.  The sending of a SCSI Event
         (Asynchronous Event Reporting in SCSI terminology) is
         dependent on the target support for SCSI asynchronous event
         reporting (see [SAM2]) as indicated in the standard INQUIRY
         data (see [SPC3]).  Its use may be enabled by parameters in
         the SCSI Control mode page (see [SPC3]).

     1 - target requests Logout.  This Async Message MUST be sent on
         the same connection as the one requesting to be logged out.
         The initiator MUST honor this request by issuing a Logout as
         early as possible, but no later than Parameter3 seconds.
         Initiator MUST send a Logout with a reason code of "Close the
         connection" OR "Close the session" to close all the
         connections.  Once this message is received, the initiator
         SHOULD NOT issue new iSCSI commands on the connection to be
         logged out.  The target MAY reject any new I/O requests that
         it receives after this Message with the reason code "Waiting
         for Logout".  If the initiator does not Logout in Parameter3
         seconds, the target should send an Async PDU with iSCSI event
         code "Dropped the connection" if possible, or simply terminate
         the transport connection.  Parameter1 and Parameter2 are
         reserved.

     2 - target indicates it will drop the connection.  The Parameter1
         field indicates the CID of the connection that is going to be
         dropped.

         The Parameter2 field (Time2Wait) indicates, in seconds, the
         minimum time to wait before attempting to reconnect or
         reassign.

         The Parameter3 field (Time2Retain) indicates the maximum time
         allowed to reassign commands after the initial wait (in
         Parameter2).

         If the initiator does not attempt to reconnect and/or reassign
         the outstanding commands within the time specified by
         Parameter3, or if Parameter3 is 0, the target will terminate
         all outstanding commands on this connection.  In this case, no
         other responses should be expected from the target for the
         outstanding commands on this connection.




Satran, et al.              Standards Track                   [Page 146]

RFC 3720                         iSCSI                        April 2004


         A value of 0 for Parameter2 indicates that reconnect can be
         attempted immediately.

     3 - target indicates it will drop all the connections of this
         session.

         Parameter1 field is reserved.

         The Parameter2 field (Time2Wait) indicates, in seconds, the
         minimum time to wait before attempting to reconnect.  The
         Parameter3 field (Time2Retain) indicates the maximum time
         allowed to reassign commands after the initial wait (in
         Parameter2).

         If the initiator does not attempt to reconnect and/or reassign
         the outstanding commands within the time specified by
         Parameter3, or if Parameter3 is 0, the session is terminated.

         In this case, the target will terminate all outstanding
         commands in this session; no other responses should be
         expected from the target for the outstanding commands in this
         session.  A value of 0 for Parameter2 indicates that reconnect
         can be attempted immediately.

     4 - target requests parameter negotiation on this connection.  The
         initiator MUST honor this request by issuing a Text Request
         (that can be empty) on the same connection as early as
         possible, but no later than Parameter3 seconds, unless a Text
         Request is already pending on the connection, or by issuing a
         Logout Request.  If the initiator does not issue a Text
         Request the target may reissue the Asynchronous Message
         requesting parameter negotiation.

     255 - vendor specific iSCSI Event.  The AsyncVCode details the
           vendor code, and data MAY accompany the report.

  All other event codes are reserved.

10.9.2.  AsyncVCode

  AsyncVCode is a vendor specific detail code that is only valid if the
  AsyncEvent field indicates a vendor specific event.  Otherwise, it is
  reserved.

10.9.3.  LUN

  The LUN field MUST be valid if AsyncEvent is 0.  Otherwise, this
  field is reserved.



Satran, et al.              Standards Track                   [Page 147]

RFC 3720                         iSCSI                        April 2004


10.9.4.  Sense Data and iSCSI Event Data

  For a SCSI event, this data accompanies the report in the data
  segment and identifies the condition.

  For an iSCSI event, additional vendor-unique data MAY accompany the
  Async event.  Initiators MAY ignore the data when not understood
  while processing the rest of the PDU.

  If the DataSegmentLength is not 0, the format of the DataSegment is
  as follows:

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|SenseLength                    | Sense Data                    |
    +---------------+---------------+---------------+---------------+
   x/ Sense Data                                                    /
    +---------------+---------------+---------------+---------------+
   y/ iSCSI Event Data                                              /
    /                                                               /
    +---------------+---------------+---------------+---------------+
   z|

10.9.4.1.  SenseLength

  This is the length of Sense Data.  When the Sense Data field is empty
  (e.g., the event is not a SCSI event) SenseLength is 0.






















Satran, et al.              Standards Track                   [Page 148]

RFC 3720                         iSCSI                        April 2004


10.10.  Text Request

  The Text Request is provided to allow for the exchange of information
  and for future extensions.  It permits the initiator to inform a
  target of its capabilities or to request some special operations.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x04      |F|C| Reserved                                  |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment (Text)                                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  An initiator MUST have at most one outstanding Text Request on a
  connection at any given time.

  On a connection failure, an initiator must either explicitly abort
  any active allegiant text negotiation task or must cause such a task
  to be implicitly terminated by the target.








Satran, et al.              Standards Track                   [Page 149]

RFC 3720                         iSCSI                        April 2004


10.10.1.  F (Final) Bit

  When set to 1,  indicates that this is the last or only text request
  in a sequence of Text Requests; otherwise, it indicates that more
  Text Requests will follow.

10.10.2.  C (Continue) Bit

  When set to 1, indicates that the text (set of key=value pairs) in
  this Text Request is not complete (it will be continued on subsequent
  Text Requests); otherwise, it indicates that this Text Request ends a
  set of key=value pairs.  A Text Request with the C bit set to 1 MUST
  have the F bit set to 0.

10.10.3.  Initiator Task Tag

  The initiator assigned identifier for this Text Request.  If the
  command is sent as part of a sequence of text requests and responses,
  the Initiator Task Tag MUST be the same for all the requests within
  the sequence (similar to linked SCSI commands).  The I bit for all
  requests in a sequence also MUST be the same.

10.10.4.  Target Transfer Tag

  When the Target Transfer Tag is set to the reserved value 0xffffffff,
  it tells the target that this is a new request and the target resets
  any internal state associated with the Initiator Task Tag (resets the
  current negotiation state).

  The target sets the Target Transfer Tag in a text response to a value
  other than the reserved value 0xffffffff whenever it indicates that
  it has more data to send or more operations to perform that are
  associated with the specified Initiator Task Tag.  It MUST do so
  whenever it sets the F bit to 0 in the response.  By copying the
  Target Transfer Tag from the response to the next Text Request, the
  initiator tells the target to continue the operation for the specific
  Initiator Task Tag.  The initiator MUST ignore the Target Transfer
  Tag in the Text Response when the F bit is set to 1.

  This mechanism allows the initiator and target to transfer a large
  amount of textual data over a sequence of text-command/text-response
  exchanges, or to perform extended negotiation sequences.

  If the Target Transfer Tag is not 0xffffffff, the LUN field MUST be
  sent by the target in the Text Response.






Satran, et al.              Standards Track                   [Page 150]

RFC 3720                         iSCSI                        April 2004


  A target MAY reset its internal negotiation state if an exchange is
  stalled by the initiator for a long time or if it is running out of
  resources.

  Long text responses are handled as in the following example:

    I->T Text SendTargets=All (F=1,TTT=0xffffffff)
    T->I Text <part 1> (F=0,TTT=0x12345678)
    I->T Text <empty> (F=1, TTT=0x12345678)
    T->I Text <part 2> (F=0, TTT=0x12345678)
    I->T Text <empty> (F=1, TTT=0x12345678)
    ...
    T->I Text <part n> (F=1, TTT=0xffffffff)

10.10.5.  Text

  The data lengths of a text request MUST NOT exceed the iSCSI target
  MaxRecvDataSegmentLength (a per connection and per direction
  negotiated parameter).  The text format is specified in Section 5.2
  Text Mode Negotiation.

  Chapter 11 and Chapter 12 list some basic Text key=value pairs, some
  of which can be used in Login Request/Response and some in Text
  Request/Response.

  A key=value pair can span Text request or response boundaries.  A
  key=value pair can start in one PDU and continue on the next.  In
  other words the end of a PDU does not necessarily signal the end of a
  key=value pair.

  The target responds by sending its response back to the initiator.
  The response text format is similar to the request text format.  The
  text response MAY refer to key=value pairs presented in an earlier
  text request and the text in the request may refer to earlier
  responses.

  Chapter 5 details the rules for the Text Requests and Responses.

  Text operations are usually meant for parameter setting/
  negotiations, but can also be used to perform some long lasting
  operations.

  Text operations that take a long time should be placed in their own
  Text request.







Satran, et al.              Standards Track                   [Page 151]

RFC 3720                         iSCSI                        April 2004


10.11.  Text Response

  The Text Response PDU contains the target's responses to the
  initiator's Text request.  The format of the Text field matches that
  of the Text request.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x24      |F|C| Reserved                                  |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment (Text)                                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

10.11.1.  F (Final) Bit

  When set to 1, in response to a Text Request with the Final bit set
  to 1, the F bit indicates that the target has finished the whole
  operation.  Otherwise, if set to 0 in response to a Text Request with
  the Final Bit set to 1, it indicates that the target has more work to
  do (invites a follow-on text request).  A Text Response with the F
  bit set to 1 in response to a Text Request with the F bit set to 0 is
  a protocol error.



Satran, et al.              Standards Track                   [Page 152]

RFC 3720                         iSCSI                        April 2004


  A Text Response with the F bit set to 1 MUST NOT contain key=value
  pairs that may require additional answers from the initiator.

  A Text Response with the F bit set to 1 MUST have a Target Transfer
  Tag field set to the reserved value of 0xffffffff.

  A Text Response with the F bit set to 0 MUST have a Target Transfer
  Tag field set to a value other than the reserved 0xffffffff.

10.11.2.  C (Continue) Bit

  When set to 1, indicates that the text (set of key=value pairs) in
  this Text Response is not complete (it will be continued on
  subsequent Text Responses); otherwise, it indicates that this Text
  Response ends a set of key=value pairs.  A Text Response with the C
  bit set to 1 MUST have the F bit set to 0.

10.11.3.  Initiator Task Tag

  The Initiator Task Tag matches the tag used in the initial Text
  Request.

10.11.4.  Target Transfer Tag

  When a target has more work to do (e.g., cannot transfer all the
  remaining text data in a single Text Response or has to continue the
  negotiation) and has enough resources to proceed, it MUST set the
  Target Transfer Tag to a value other than the reserved value of
  0xffffffff.  Otherwise, the Target Transfer Tag MUST be set to
  0xffffffff.

  When the Target Transfer Tag is not 0xffffffff, the LUN field may be
  significant.

  The initiator MUST copy the Target Transfer Tag and LUN in its next
  request to indicate that it wants the rest of the data.

  When the target receives a Text Request with the Target Transfer Tag
  set to the reserved value of 0xffffffff, it resets its internal
  information (resets state) associated with the given Initiator Task
  Tag (restarts the negotiation).

  When a target cannot finish the operation in a single Text Response,
  and does not have enough resources to continue, it rejects the Text
  Request with the appropriate Reject code.






Satran, et al.              Standards Track                   [Page 153]

RFC 3720                         iSCSI                        April 2004


  A target may reset its internal state associated with an Initiator
  Task Tag (the current negotiation state), state expressed through the
  Target Transfer Tag if the initiator fails to continue the exchange
  for some time.  The target may reject subsequent Text Requests with
  the Target Transfer Tag set to the "stale" value.

10.11.5.  StatSN

  The target StatSN variable is advanced by each Text Response sent.

10.11.6.  Text Response Data

  The data lengths of a text response MUST NOT exceed the iSCSI
  initiator MaxRecvDataSegmentLength (a per connection and per
  direction negotiated parameter).

  The text in the Text Response Data is governed by the same rules as
  the text in the Text Request Data (see Section 10.10.5 Text).

  Although the initiator is the requesting party and controls the
  request-response initiation and termination, the target can offer
  key=value pairs of its own as part of a sequence and not only in
  response to the initiator.

10.12.  Login Request

  After establishing a TCP connection between an initiator and a
  target, the initiator MUST start a Login Phase to gain further access
  to the target's resources.

  The Login Phase (see Chapter 5) consists of a sequence of Login
  Requests and Responses that carry the same Initiator Task Tag.

  Login Requests are always considered as immediate.

















Satran, et al.              Standards Track                   [Page 154]

RFC 3720                         iSCSI                        April 2004


  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|1| 0x03      |T|C|.|.|CSG|NSG| Version-max   | Version-min   |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| ISID                                                          |
    +                               +---------------+---------------+
  12|                               | TSIH                          |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| CID                           | Reserved                      |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN   or   Reserved                                     |
    +---------------+---------------+---------------+---------------+
  32| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  36| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ DataSegment - Login Parameters in Text request Format         /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

10.12.1.  T (Transit) Bit

  If set to 1, indicates that the initiator is ready to transit to the
  next stage.

  If the T bit is set to 1 and NSG is FullFeaturePhase, then this also
  indicates that the initiator is ready for the Final Login Response
  (see Chapter 5).

10.12.2.  C (Continue) Bit

  When set to 1,  indicates that the text (set of key=value pairs) in
  this Login Request is not complete (it will be continued on
  subsequent Login Requests); otherwise, it indicates that this Login
  Request ends a set of key=value pairs.  A Login Request with the C
  bit set to 1 MUST have the T bit set to 0.




Satran, et al.              Standards Track                   [Page 155]

RFC 3720                         iSCSI                        April 2004


10.12.3.  CSG and NSG

  Through these fields, Current Stage (CSG) and Next Stage (NSG), the
  Login negotiation requests and responses are associated with a
  specific stage in the session (SecurityNegotiation,
  LoginOperationalNegotiation, FullFeaturePhase) and may indicate the
  next stage to which they want to move (see Chapter 5).  The next
  stage value is only valid  when the T bit is 1; otherwise, it is
  reserved.

  The stage codes are:

     - 0 - SecurityNegotiation
     - 1 - LoginOperationalNegotiation
     - 3 - FullFeaturePhase

  All other codes are reserved.

10.12.4.  Version

  The version number of the current draft is 0x00.  As such, all
  devices MUST carry version 0x00 for both Version-min and Version-max.

10.12.4.1.  Version-max

  Maximum Version number supported.

  All Login Requests within the Login Phase MUST carry the same
  Version-max.

  The target MUST use the value presented with the first Login Request.

10.12.4.2.  Version-min

  All Login Requests within the Login Phase MUST carry the same
  Version-min.  The target MUST use the value presented with the first
  Login Request.














Satran, et al.              Standards Track                   [Page 156]

RFC 3720                         iSCSI                        April 2004


10.12.5.  ISID

  This is an initiator-defined component of the session identifier and
  is structured as follows (see [RFC3721] and Section 9.1.1
  Conservative Reuse of ISIDs for details):

   Byte/     0       |       1       |       2       |       3       |
      /              |               |               |               |
     |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
     +---------------+---------------+---------------+---------------+
    8| T |    A      |              B                |      C        |
     +---------------+---------------+---------------+---------------+
   12|               D               |
     +---------------+---------------+

  The T field identifies the format and usage of A, B, C, and D as
  indicated below:

    T

    00b     OUI-Format
            A&B are a 22 bit OUI
            (the I/G & U/L bits are omitted)
            C&D 24 bit qualifier
    01b     EN - Format (IANA Enterprise Number)
            A - Reserved
            B&C EN (IANA Enterprise Number)
            D - Qualifier
    10b     "Random"
            A - Reserved
            B&C Random
            D - Qualifier
    11b     A,B,C&D Reserved

  For the T field values 00b and 01b, a combination of A and B (for
  00b) or B and C (for 01b) identifies the vendor or organization whose
  component (software or hardware) generates this ISID.  A vendor or
  organization with one or more OUIs, or one or more Enterprise
  Numbers, MUST use at least one of these numbers and select the
  appropriate value for the T field when its components generate ISIDs.
  An OUI or EN MUST be set in the corresponding fields in network byte
  order (byte big-endian).

  If the T field is 10b, B and C are set to a random 24-bit unsigned
  integer value in network byte order (byte big-endian).  See [RFC3721]
  for how this affects the principle of "conservative reuse".





Satran, et al.              Standards Track                   [Page 157]

RFC 3720                         iSCSI                        April 2004


  The Qualifier field is a 16 or 24-bit unsigned integer value that
  provides a range of possible values for the ISID within the selected
  namespace.  It may be set to any value within the constraints
  specified in the iSCSI protocol (see Section 3.4.3 Consequences of
  the Model and Section 9.1.1 Conservative Reuse of ISIDs).

  The T field value of 11b is reserved.

  If the ISID is derived from something assigned to a hardware adapter
  or interface by a vendor, as a preset default value, it MUST be
  configurable to a value assigned according to the SCSI port behavior
  desired by the system in which it is installed (see Section 9.1.1
  Conservative Reuse of ISIDs and Section 9.1.2 iSCSI Name, ISID, and
  TPGT Use).  The resultant ISID MUST also be persistent over power
  cycles, reboot, card swap, etc.

10.12.6.  TSIH

  TSIH must be set in the first Login Request.  The reserved value 0
  MUST be used on the first connection for a new session.  Otherwise,
  the TSIH sent by the target at the conclusion of the successful login
  of the first connection for this session MUST be used.  The TSIH
  identifies to the target the associated existing session for this new
  connection.

  All Login Requests within a Login Phase MUST carry the same TSIH.

  The target MUST check the value presented with the first Login
  Request and act as specified in Section 5.3.1 Login Phase Start.

10.12.7.  Connection ID - CID

  A unique ID for this connection within the session.

  All Login Requests within the Login Phase MUST carry the same CID.

  The target MUST use the value presented with the first Login Request.

  A Login Request with a non-zero TSIH and a CID equal to that of an
  existing connection implies a logout of the connection followed by a
  Login (see Section 5.3.4 Connection Reinstatement).  For the details
  of the implicit Logout Request, see Section 10.14 Logout Request.









Satran, et al.              Standards Track                   [Page 158]

RFC 3720                         iSCSI                        April 2004


10.12.8.  CmdSN

  CmdSN is either the initial command sequence number of a session (for
  the first Login Request of a session - the "leading" login), or the
  command sequence number in the command stream if the login is for a
  new connection in an existing session.

  Examples:

     -  Login on a leading connection - if the leading login carries
        the CmdSN 123, all other Login Requests in the same Login Phase
        carry the CmdSN 123 and the first non-immediate command in
        FullFeaturePhase also carries the CmdSN 123.

     -  Login on other than a leading connection - if the current CmdSN
        at the time the first login on the connection is issued is 500,
        then that PDU carries CmdSN=500.  Subsequent Login Requests
        that are needed to complete this Login Phase may carry a CmdSN
        higher than 500 if non-immediate requests that were issued on
        other connections in the same session advance CmdSN.

  If the Login Request is a leading Login Request, the target MUST use
  the value presented in CmdSN as the target value for ExpCmdSN.

10.12.9.  ExpStatSN

  For the first Login Request on a connection this is ExpStatSN for the
  old connection and this field is only valid if the Login Request
  restarts a connection (see Section 5.3.4 Connection Reinstatement).

  For subsequent Login Requests it is used to acknowledge the Login
  Responses with their increasing StatSN values.

10.12.10.  Login Parameters

  The initiator MUST provide some basic parameters in order to enable
  the target to determine if the initiator may use the target's
  resources and the initial text parameters for the security exchange.

  All the rules specified in Section 10.10.5 Text for text requests
  also hold for Login Requests.  Keys and their explanations are listed
  in Chapter 11 (security negotiation keys) and Chapter 12 (operational
  parameter negotiation keys).  All keys in Chapter 12, except for the
  X extension formats, MUST be supported by iSCSI initiators and
  targets.  Keys in Chapter 11 only need to be supported when the
  function to which they refer is mandatory to implement.





Satran, et al.              Standards Track                   [Page 159]

RFC 3720                         iSCSI                        April 2004


10.13.  Login Response

  The Login Response indicates the progress and/or end of the Login
  Phase.

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x23      |T|C|.|.|CSG|NSG| Version-max   | Version-active|
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| ISID                                                          |
    +                               +---------------+---------------+
  12|                               | TSIH                          |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| Status-Class  | Status-Detail | Reserved                      |
    +---------------+---------------+---------------+---------------+
  40/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48/ DataSegment - Login Parameters in Text request Format         /
   +/                                                               /
    +---------------+---------------+---------------+---------------+

10.13.1.  Version-max

  This is the highest version number supported by the target.

  All Login Responses within the Login Phase MUST carry the same
  Version-max.

  The initiator MUST use the value presented as a response to the first
  Login Request.






Satran, et al.              Standards Track                   [Page 160]

RFC 3720                         iSCSI                        April 2004


10.13.2.  Version-active

  Indicates the highest version supported by the target and initiator.
  If the target does not support a version within the range specified
  by the initiator, the target rejects the login and this field
  indicates the lowest version supported by the target.

  All Login Responses within the Login Phase MUST carry the same
  Version-active.

  The initiator MUST use the value presented as a response to the first
  Login Request.

10.13.3.  TSIH

  The TSIH is the target assigned session identifying handle.  Its
  internal format and content are not defined by this protocol except
  for the value 0 that is reserved.  With the exception of the Login
  Final-Response in a new session, this field should be set to the TSIH
  provided by the initiator in the Login Request.  For a new session,
  the target MUST generate a non-zero TSIH and ONLY return it in the
  Login Final-Response (see Section 5.3 Login Phase).

10.13.4.  StatSN

  For the first Login Response (the response to the first Login
  Request), this is the starting status Sequence Number for the
  connection.  The next response of any kind, including the next Login
  Response, if any, in the same Login Phase, will carry this number +
  1.  This field is only valid if the Status-Class is 0.

10.13.5.  Status-Class and Status-Detail

  The Status returned in a Login Response indicates the execution
  status of the Login Phase.  The status includes:

    Status-Class
    Status-Detail

  0 Status-Class indicates success.

  A non-zero Status-Class indicates an exception.  In this case,
  Status-Class is sufficient for a simple initiator to use when
  handling exceptions, without having to look at the Status-Detail.
  The Status-Detail allows finer-grained exception handling for more
  sophisticated initiators and for better information for logging.





Satran, et al.              Standards Track                   [Page 161]

RFC 3720                         iSCSI                        April 2004


  The status classes are as follows:

     0 - Success - indicates that the iSCSI target successfully
         received, understood, and accepted the request.  The numbering
         fields (StatSN, ExpCmdSN, MaxCmdSN) are only valid if
         Status-Class is 0.

     1 - Redirection - indicates that the initiator must take further
         action to complete the request.  This is usually due to the
         target moving to a different address.  All of the redirection
         status class responses MUST return one or more text key
         parameters of the type "TargetAddress", which indicates the
         target's new address.  A redirection response MAY be issued by
         a target prior or after completing a security negotiation if a
         security negotiation is required.  A redirection SHOULD be
         accepted by an initiator even without having the target
         complete a security negotiation if any security negotiation is
         required, and MUST be accepted by the initiator after the
         completion of the security negotiation if any security
         negotiation is required.

     2 - Initiator Error (not a format error) - indicates that the
         initiator most likely caused the error.  This MAY be due to a
         request for a resource for which the initiator does not have
         permission.  The request should not be tried again.

     3 - Target Error - indicates that the target sees no errors in the
         initiator's Login Request, but is currently incapable of
         fulfilling the request.  The initiator may re-try the same
         Login Request later.

  The table below shows all of the currently allocated status codes.
  The codes are in hexadecimal; the first byte is the status class and
  the second byte is the status detail.

  -----------------------------------------------------------------
  Status        | Code | Description
                |(hex) |
  -----------------------------------------------------------------
  Success       | 0000 | Login is proceeding OK (*1).
  -----------------------------------------------------------------
  Target moved  | 0101 | The requested iSCSI Target Name (ITN)
  temporarily   |      |  has temporarily moved
                |      |  to the address provided.
  -----------------------------------------------------------------
  Target moved  | 0102 | The requested ITN has permanently moved
  permanently   |      |  to the address provided.
  -----------------------------------------------------------------



Satran, et al.              Standards Track                   [Page 162]

RFC 3720                         iSCSI                        April 2004


  Initiator     | 0200 | Miscellaneous iSCSI initiator
  error         |      | errors.
  ----------------------------------------------------------------
  Authentication| 0201 | The initiator could not be
  failure       |      | successfully authenticated or target
                |      | authentication is not supported.
  -----------------------------------------------------------------
  Authorization | 0202 | The initiator is not allowed access
  failure       |      | to the given target.
  -----------------------------------------------------------------
  Not found     | 0203 | The requested ITN does not
                |      | exist at this address.
  -----------------------------------------------------------------
  Target removed| 0204 | The requested ITN has been removed and
                |      |no forwarding address is provided.
  -----------------------------------------------------------------
  Unsupported   | 0205 | The requested iSCSI version range is
  version       |      | not supported by the target.
  -----------------------------------------------------------------
  Too many      | 0206 | Too many connections on this SSID.
  connections   |      |
  -----------------------------------------------------------------
  Missing       | 0207 | Missing parameters (e.g., iSCSI
  parameter     |      | Initiator and/or Target Name).
  -----------------------------------------------------------------
  Can't include | 0208 | Target does not support session
  in session    |      | spanning to this connection (address).
  -----------------------------------------------------------------
  Session type  | 0209 | Target does not support this type of
  not supported |      | of session or not from this Initiator.
  -----------------------------------------------------------------
  Session does  | 020a | Attempt to add a connection
  not exist     |      | to a non-existent session.
  -----------------------------------------------------------------
  Invalid during| 020b | Invalid Request type during Login.
  login         |      |
  -----------------------------------------------------------------
  Target error  | 0300 | Target hardware or software error.
  -----------------------------------------------------------------
  Service       | 0301 | The iSCSI service or target is not
  unavailable   |      | currently operational.
  -----------------------------------------------------------------
  Out of        | 0302 | The target has insufficient session,
  resources     |      | connection, or other resources.
  -----------------------------------------------------------------






Satran, et al.              Standards Track                   [Page 163]

RFC 3720                         iSCSI                        April 2004


  (*1) If the response T bit is 1 in both the request and the matching
  response, and the NSG is FullFeaturePhase in both the request and the
  matching response, the Login Phase is finished and the initiator may
  proceed to issue SCSI commands.

  If the Status Class is not 0, the initiator and target MUST close the
  TCP connection.

  If the target wishes to reject the Login Request for more than one
  reason, it should return the primary reason for the rejection.

10.13.6.  T (Transit) bit

  The T bit is set to 1 as an indicator of the end of the stage.  If
  the T bit is set to 1 and NSG is FullFeaturePhase, then this is also
  the Final Login Response (see Chapter 5).  A T bit of 0 indicates a
  "partial" response, which means "more negotiation needed".

  A Login Response with a T bit set to 1 MUST NOT contain key=value
  pairs that may require additional answers from the initiator within
  the same stage.

  If the status class is 0, the T bit MUST NOT be set to 1 if the T bit
  in the request was set to 0.

10.13.7.  C (Continue) Bit

  When set to 1,  indicates that the text (set of key=value pairs) in
  this Login Response is not complete (it will be continued on
  subsequent Login Responses); otherwise, it indicates that this Login
  Response ends a set of key=value pairs.  A Login Response with the C
  bit set to 1 MUST have the T bit set to 0.

10.13.8.  Login Parameters

  The target MUST provide some basic parameters in order to enable the
  initiator to determine if it is connected to the correct port and the
  initial text parameters for the security exchange.

  All the rules specified in Section 10.11.6 Text Response Data for
  text responses also hold for Login Responses.  Keys and their
  explanations are listed in Chapter 11 (security negotiation keys) and
  Chapter 12 (operational parameter negotiation keys).  All keys in
  Chapter 12, except for the X extension formats, MUST be supported by
  iSCSI initiators and targets.  Keys in Chapter 11, only need to be
  supported when the function to which they refer is mandatory to
  implement.




Satran, et al.              Standards Track                   [Page 164]

RFC 3720                         iSCSI                        April 2004


10.14.  Logout Request

  The Logout Request is used to perform a controlled closing of a
  connection.

  An initiator MAY use a Logout Request to remove a connection from a
  session or to close an entire session.

  After sending the Logout Request PDU, an initiator MUST NOT send any
  new iSCSI requests on the closing connection.  If the Logout Request
  is intended to close the session, new iSCSI requests MUST NOT be sent
  on any of the connections participating in the session.

  When receiving a Logout Request with the reason code of "close the
  connection" or "close the session", the target MUST terminate all
  pending commands, whether acknowledged via ExpCmdSN or not, on that
  connection or session respectively.

  When receiving a Logout Request with the reason code "remove
  connection for recovery", the target MUST discard all requests not
  yet acknowledged via ExpCmdSN that were issued on the specified
  connection, and suspend all data/status/R2T transfers on behalf of
  pending commands on the specified connection.

  The target then issues the Logout Response and half-closes the TCP
  connection (sends FIN).  After receiving the Logout Response and
  attempting to receive the FIN (if still possible), the initiator MUST
  completely close the logging-out connection.  For the terminated
  commands, no additional responses should be expected.

  A Logout for a CID may be performed on a different transport
  connection when the TCP connection for the CID has already been
  terminated.  In such a case, only a logical "closing" of the iSCSI
  connection for the CID is implied with a Logout.

  All commands that were not terminated or not completed (with status)
  and acknowledged when the connection is closed completely can be
  reassigned to a new connection if the target supports connection
  recovery.

  If an initiator intends to start recovery for a failing connection,
  it MUST use the Logout Request to "clean-up" the target end of a
  failing connection and enable recovery to start, or the Login Request
  with a non-zero TSIH and the same CID on a new connection for the
  same effect (see Section 10.14.3 CID).  In sessions with a single
  connection, the connection can be closed and then a new connection
  reopened.  A connection reinstatement login can be used for recovery
  (see Section 5.3.4 Connection Reinstatement).



Satran, et al.              Standards Track                   [Page 165]

RFC 3720                         iSCSI                        April 2004


  A successful completion of a Logout Request with the reason code of
  "close the connection" or "remove the connection for recovery"
  results at the target in the discarding of unacknowledged commands
  received on the connection being logged out.  These are commands that
  have arrived on the connection being logged out, but have not been
  delivered to SCSI because one or more commands with a smaller CmdSN
  has not been received by iSCSI.  See Section 3.2.2.1 Command
  Numbering and Acknowledging.  The resulting holes the in command
  sequence numbers will have to be handled by appropriate recovery (see
  Chapter 6) unless the session is also closed.

  The entire logout discussion in this section is also applicable for
  an implicit Logout realized via a connection reinstatement or session
  reinstatement.  When a Login Request performs an implicit Logout, the
  implicit Logout is performed as if having the reason codes specified
  below:

    Reason code        Type of implicit Logout
    -------------------------------------------
        0              session reinstatement
        1              connection reinstatement when
                      the operational ErrorRecoveryLevel < 2
        2              connection reinstatement when
                      the operational ErrorRecoveryLevel = 2



























Satran, et al.              Standards Track                   [Page 166]

RFC 3720                         iSCSI                        April 2004


  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x06      |1| Reason Code | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| CID or Reserved               | Reserved                      |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+

10.14.1.  Reason Code

  Reason Code indicates the reason for Logout as follows:

     0 - close the session.  All commands associated with the session
         (if any) are terminated.

     1 - close the connection.  All commands associated with connection
         (if any) are terminated.

     2 - remove the connection for recovery.  Connection is closed and
         all commands associated with it, if any, are to be prepared
         for a new allegiance.

  All other values are reserved.











Satran, et al.              Standards Track                   [Page 167]

RFC 3720                         iSCSI                        April 2004


10.14.2.  TotalAHSLength and DataSegmentLength

  For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

10.14.3.  CID

  This is the connection ID of the connection to be closed (including
  closing the TCP stream).  This field is only valid if the reason code
  is not "close the session".

10.14.4.  ExpStatSN

  This is the last ExpStatSN value for the connection to be closed.

10.14.5.  Implicit termination of tasks

  A target implicitly terminates the active tasks due to the iSCSI
  protocol in the following cases:

     a)  When a connection is implicitly or explicitly logged out with
         the reason code of "Close the connection" and there are active
         tasks allegiant to that connection.

     b)  When a connection fails and eventually the connection state
         times out (state transition M1 in Section 7.2.2 State
         Transition Descriptions for Initiators and Targets) and there
         are active tasks allegiant to that connection.

     c)  When a successful recovery Logout is performed while there are
         active tasks allegiant to that connection, and those tasks
         eventually time out after the Time2Wait and Time2Retain
         periods without allegiance reassignment.

     d)  When a connection is implicitly or explicitly logged out with
         the reason code of "Close the session" and there are active
         tasks in that session.

  If the tasks terminated in any of the above cases are SCSI tasks,
  they must be internally terminated as if with CHECK CONDITION status.
  This status is only meaningful for appropriately handling the
  internal SCSI state and SCSI side effects with respect to ordering
  because this status is never communicated back as a terminating
  status to the initiator. However additional actions may have to be
  taken at SCSI level depending on the SCSI context as defined by the
  SCSI standards (e.g., queued commands and ACA, in cases a), b), and
  c), after the tasks are terminated, the target MUST report a Unit
  Attention condition on the next command processed on any connection
  for each affected I_T_L nexus with the status of CHECK CONDITION, and



Satran, et al.              Standards Track                   [Page 168]

RFC 3720                         iSCSI                        April 2004


  the ASC/ASCQ value of 47h/7Fh - "SOME COMMANDS CLEARED BY ISCSI
  PROTOCOL EVENT" - etc. - see [SAM2] and [SPC3]).

10.15.  Logout Response

  The Logout Response is used by the target to indicate if the cleanup
  operation for the connection(s) has completed.

  After Logout, the TCP connection referred by the CID MUST be closed
  at both ends (or all connections must be closed if the logout reason
  was session close).

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x26      |1| Reserved    | Response      | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------------------------------------------------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag                                            |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| Reserved                                                      |
    +---------------------------------------------------------------+
  40| Time2Wait                     | Time2Retain                   |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+










Satran, et al.              Standards Track                   [Page 169]

RFC 3720                         iSCSI                        April 2004


10.15.1.  Response

  Logout Response:

     0 - connection or session closed successfully.

     1 - CID not found.

     2 - connection recovery is not supported.  If Logout reason code
        was recovery and target does not support it as indicated by the
        ErrorRecoveryLevel.

     3 - cleanup failed for various reasons.

10.15.2.  TotalAHSLength and DataSegmentLength

  For this PDU TotalAHSLength and DataSegmentLength MUST be 0.

10.15.3.  Time2Wait

  If the Logout Response code is 0 and if the operational
  ErrorRecoveryLevel is 2, this is the minimum amount of time, in
  seconds, to wait before attempting task reassignment.  If the Logout
  Response code is 0 and if the operational ErrorRecoveryLevel is less
  than 2, this field is to be ignored.

  This field is invalid if the Logout Response code is 1.

  If the Logout response code is 2 or 3, this field specifies the
  minimum time to wait before attempting a new implicit or explicit
  logout.

  If Time2Wait is 0, the reassignment or a new Logout may be attempted
  immediately.

10.15.4.  Time2Retain

  If the Logout response code is 0 and if the operational
  ErrorRecoveryLevel is 2, this is the maximum amount of time, in
  seconds, after the initial wait (Time2Wait), the target waits for the
  allegiance reassignment for any active task after which the task
  state is discarded.  If the Logout response code is 0 and if the
  operational ErrorRecoveryLevel is less than 2, this field is to be
  ignored.

  This field is invalid if the Logout response code is 1.





Satran, et al.              Standards Track                   [Page 170]

RFC 3720                         iSCSI                        April 2004


  If the Logout response code is 2 or 3, this field specifies the
  maximum amount of time, in seconds, after the initial wait
  (Time2Wait), the target waits for a new implicit or explicit logout.

  If it is the last connection of a session, the whole session state is
  discarded after Time2Retain.

  If Time2Retain is 0, the target has already discarded the connection
  (and possibly the session) state along with the task states.  No
  reassignment or Logout is required in this case.

10.16.  SNACK Request

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x10      |1|.|.|.| Type  | Reserved                      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or SNACK Tag or 0xffffffff                |
    +---------------+---------------+---------------+---------------+
  24| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  40| BegRun                                                        |
    +---------------------------------------------------------------+
  44| RunLength                                                     |
    +---------------------------------------------------------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+

  If the implementation supports ErrorRecoveryLevel greater than zero,
  it MUST support all SNACK types.






Satran, et al.              Standards Track                   [Page 171]

RFC 3720                         iSCSI                        April 2004


  The SNACK is used by the initiator to request the retransmission of
  numbered-responses, data, or R2T PDUs from the target.  The SNACK
  request indicates the numbered-responses or data "runs" whose
  retransmission is requested by the target, where the run starts with
  the first StatSN, DataSN, or R2TSN whose retransmission is requested
  and indicates the number of Status, Data, or R2T PDUs requested
  including the first.  0 has special meaning when used as a starting
  number and length:

    - When used in RunLength, it means all PDUs starting with the
      initial.
    - When used in both BegRun and RunLength, it means all
      unacknowledged PDUs.

  The numbered-response(s) or R2T(s), requested by a SNACK, MUST be
  delivered as exact replicas of the ones that the target transmitted
  originally except for the fields ExpCmdSN, MaxCmdSN, and ExpDataSN,
  which MUST carry the current values.  R2T(s)requested by SNACK MUST
  also carry the current value of StatSN.

  The numbered Data-In PDUs, requested by a Data SNACK MUST be
  delivered as exact replicas of the ones that the target transmitted
  originally except for the fields ExpCmdSN and MaxCmdSN, which MUST
  carry the current values and except for resegmentation (see Section
  10.16.3 Resegmentation).

  Any SNACK that requests a numbered-response, Data, or R2T that was
  not sent by the target or was already acknowledged by the initiator,
  MUST be rejected with a reason code of "Protocol error".

10.16.1.  Type

  This field encodes the SNACK function as follows:

     0-Data/R2T SNACK - requesting retransmission of one or more Data-
       In or R2T PDUs.

     1-Status SNACK - requesting retransmission of one or more numbered
       responses.

     2-DataACK - positively acknowledges Data-In PDUs.

     3-R-Data SNACK - requesting retransmission of Data-In PDUs with
       possible resegmentation and status tagging.







Satran, et al.              Standards Track                   [Page 172]

RFC 3720                         iSCSI                        April 2004


  All other values are reserved.

  Data/R2T SNACK, Status SNACK, or R-Data SNACK for a command MUST
  precede status acknowledgement for the given command.

10.16.2.  Data Acknowledgement

  If an initiator operates at ErrorRecoveryLevel 1 or higher, it MUST
  issue a SNACK of type DataACK after receiving a Data-In PDU with the
  A bit set to 1.  However, if the initiator has detected holes in the
  input sequence, it MUST postpone issuing the SNACK of type DataACK
  until the holes are filled.  An initiator MAY ignore the A bit if it
  deems that the bit is being set aggressively by the target (i.e.,
  before the MaxBurstLength limit is reached).

  The DataACK is used to free resources at the target and not to
  request or imply data retransmission.

  An initiator MUST NOT request retransmission for any data it had
  already acknowledged.

10.16.3.  Resegmentation

  If the initiator MaxRecvDataSegmentLength changed between the
  original transmission and the time the initiator requests
  retransmission, the initiator MUST issue a R-Data SNACK (see Section
  10.16.1 Type).  With R-Data SNACK, the initiator indicates that it
  discards all the unacknowledged data and expects the target to resend
  it.  It also expects resegmentation.  In this case, the retransmitted
  Data-In PDUs MAY be different from the ones originally sent in order
  to reflect changes in MaxRecvDataSegmentLength.  Their DataSN starts
  with the BegRun of the last DataACK received by the target if any was
  received; otherwise it starts with 0 and is increased by 1 for each
  resent Data-In PDU.

  A target that has received a R-Data SNACK MUST return a SCSI Response
  that contains a copy of the SNACK Tag field from the R-Data SNACK in
  the SCSI Response SNACK Tag field as its last or only Response.  For
  example, if it has already sent a response containing another value
  in the SNACK Tag field or had the status included in the last Data-In
  PDU, it must send a new SCSI Response PDU.  If a target sends more
  than one SCSI Response PDU due to this rule, all SCSI responses must
  carry the same StatSN (see Section 10.4.4 SNACK Tag).  If an
  initiator attempts to recover a lost SCSI Response (with a
  Status SNACK, see Section 10.16.1 Type) when more than one response
  has been sent, the target will send the SCSI Response with the latest
  content known to the target, including the last SNACK Tag for the
  command.



Satran, et al.              Standards Track                   [Page 173]

RFC 3720                         iSCSI                        April 2004


  For considerations in allegiance reassignment of a task to a
  connection with a different MaxRecvDataSegmentLength, refer to
  Section 6.2.2 Allegiance Reassignment.

10.16.4.  Initiator Task Tag

  For Status SNACK and DataACK, the Initiator Task Tag MUST be set to
  the reserved value 0xffffffff.  In all other cases, the Initiator
  Task Tag field MUST be set to the Initiator Task Tag of the
  referenced command.

10.16.5.  Target Transfer Tag or SNACK Tag

  For an R-Data SNACK, this field MUST contain a value that is
  different from 0 or 0xffffffff and is unique for the task (identified
  by the Initiator Task Tag).  This value MUST be copied by the iSCSI
  target in the last or only SCSI Response PDU it issues for the
  command.

  For DataACK, the Target Transfer Tag MUST contain a copy of the
  Target Transfer Tag and LUN provided with the SCSI Data-In PDU with
  the A bit set to 1.

  In all other cases, the Target Transfer Tag field MUST be set to the
  reserved value of 0xffffffff.

10.16.6.  BegRun

  The DataSN, R2TSN, or StatSN of the first PDU whose retransmission is
  requested (Data/R2T and Status SNACK), or the next expected DataSN
  (DataACK SNACK).

  BegRun 0 when used in conjunction with RunLength 0 means resend all
  unacknowledged Data-In, R2T or Response PDUs.

  BegRun MUST be 0 for a R-Data SNACK.

10.16.7.  RunLength

  The number of PDUs whose retransmission is requested.

  RunLength 0 signals that all Data-In, R2T, or Response PDUs carrying
  the numbers equal to or greater than BegRun have to be resent.

  The RunLength MUST also be 0 for a DataACK SNACK in addition to
  R-Data SNACK.





Satran, et al.              Standards Track                   [Page 174]

RFC 3720                         iSCSI                        April 2004


10.17.  Reject

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x3f      |1| Reserved    | Reason        | Reserved      |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  16| 0xffffffff                                                    |
    +---------------+---------------+---------------+---------------+
  20| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36| DataSN/R2TSN or Reserved                                      |
    +---------------+---------------+---------------+---------------+
  40| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  44| Reserved                                                      |
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
  xx/ Complete Header of Bad PDU                                    /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  yy/Vendor specific data (if any)                                  /
    /                                                               /
    +---------------+---------------+---------------+---------------+
  zz| Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  Reject is used to indicate an iSCSI error condition (protocol,
  unsupported option, etc.).









Satran, et al.              Standards Track                   [Page 175]

RFC 3720                         iSCSI                        April 2004


10.17.1.  Reason

  The reject Reason is coded as follows:

  +------+----------------------------------------+------------------+
  | Code | Explanation                            | Can the original |
  | (hex)|                                        | PDU be re-sent?  |
  +------+----------------------------------------+------------------+
  | 0x01 | Reserved                               | no               |
  |      |                                        |                  |
  | 0x02 | Data (payload) Digest Error            | yes  (Note 1)    |
  |      |                                        |                  |
  | 0x03 | SNACK Reject                           | yes              |
  |      |                                        |                  |
  | 0x04 | Protocol Error (e.g., SNACK request for| no               |
  |      | a status that was already acknowledged)|                  |
  |      |                                        |                  |
  | 0x05 | Command not supported                  | no               |
  |      |                                        |                  |
  | 0x06 | Immediate Command Reject - too many    | yes              |
  |      | immediate commands                     |                  |
  |      |                                        |                  |
  | 0x07 | Task in progress                       | no               |
  |      |                                        |                  |
  | 0x08 | Invalid Data ACK                       | no               |
  |      |                                        |                  |
  | 0x09 | Invalid PDU field                      | no   (Note 2)    |
  |      |                                        |                  |
  | 0x0a | Long Operation Reject - Can't generate | yes              |
  |      | Target Transfer Tag - out of resources |                  |
  |      |                                        |                  |
  | 0x0b | Negotiation Reset                      | no               |
  |      |                                        |                  |
  | 0x0c | Waiting for Logout                     | no               |
  +------+----------------------------------------+------------------+

  Note 1: For iSCSI, Data-Out PDU retransmission is only done if the
  target requests retransmission with a recovery R2T.  However, if this
  is the data digest error on immediate data, the initiator may choose
  to retransmit the whole PDU including the immediate data.

  Note 2: A target should use this reason code for all invalid values
  of PDU fields that are meant to describe a task,  a response, or a
  data transfer.  Some examples are invalid TTT/ITT, buffer offset, LUN
  qualifying a TTT, and an invalid sequence number in a SNACK.

  All other values for Reason are reserved.




Satran, et al.              Standards Track                   [Page 176]

RFC 3720                         iSCSI                        April 2004


  In all the cases in which a pre-instantiated SCSI task is terminated
  because of the reject, the target MUST issue a proper SCSI command
  response with CHECK CONDITION as described in Section 10.4.3
  Response.  In these cases in which a status for the SCSI task was
  already sent before the reject, no additional status is required.  If
  the error is detected while data from the initiator is still expected
  (i.e., the command PDU did not contain all the data and the target
  has not received a Data-Out PDU with the Final bit set to 1 for the
  unsolicited data, if any, and all outstanding R2Ts, if any), the
  target MUST wait until it receives the last expected Data-Out PDUs
  with the F bit set to 1 before sending the Response PDU.

  For additional usage semantics of Reject PDU, see Section 6.3 Usage
  Of Reject PDU in Recovery.

10.17.2.  DataSN/R2TSN

  This field is only valid if the rejected PDU is a Data/R2T SNACK and
  the Reject reason code is "Protocol error" (see Section 10.16 SNACK
  Request).  The DataSN/R2TSN is the next Data/R2T sequence number that
  the target would send for the task, if any.

10.17.3.  StatSN, ExpCmdSN and MaxCmdSN

  These fields carry their usual values and are not related to the
  rejected command. StatSN is advanced after a Reject.

10.17.4.  Complete Header of Bad PDU

  The target returns the header (not including digest) of the PDU in
  error as the data of the response.




















Satran, et al.              Standards Track                   [Page 177]

RFC 3720                         iSCSI                        April 2004


10.18.  NOP-Out

  Byte/     0       |       1       |       2       |       3       |
     /              |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|I| 0x00      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| CmdSN                                                         |
    +---------------+---------------+---------------+---------------+
  28| ExpStatSN                                                     |
    +---------------+---------------+---------------+---------------+
  32/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Ping Data (optional)                            /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  A NOP-Out may be used by an initiator as a "ping request" to verify
  that a connection/session is still active and all its components are
  operational.  The NOP-In response is the "ping echo".

  A NOP-Out is also sent by an initiator in response to a NOP-In.

  A NOP-Out may also be used to confirm a changed ExpStatSN if another
  PDU will not be available for a long time.

  Upon receipt of a NOP-In with the Target Transfer Tag set to a valid
  value (not the reserved 0xffffffff), the initiator MUST respond with
  a NOP-Out.  In this case, the NOP-Out Target Transfer Tag MUST
  contain a copy of the NOP-In Target Transfer Tag.





Satran, et al.              Standards Track                   [Page 178]

RFC 3720                         iSCSI                        April 2004


10.18.1.  Initiator Task Tag

  The NOP-Out MUST have the Initiator Task Tag set to a valid value
  only if a response in the form of NOP-In is requested (i.e., the
  NOP-Out is used as a ping request).  Otherwise, the Initiator Task
  Tag MUST be set to 0xffffffff.

  When a target receives the NOP-Out with a valid Initiator Task Tag,
  it MUST respond with a Nop-In Response (see Section 10.19 NOP-In).

  If the Initiator Task Tag contains 0xffffffff, the I bit MUST be set
  to 1 and the CmdSN is not advanced after this PDU is sent.

10.18.2.  Target Transfer Tag

  A target assigned identifier for the operation.

  The NOP-Out MUST only have the Target Transfer Tag set if it is
  issued in response to a NOP-In with a valid Target Transfer Tag.  In
  this case, it copies the Target Transfer Tag from the NOP-In PDU.
  Otherwise, the Target Transfer Tag MUST be set to 0xffffffff.

  When the Target Transfer Tag is set to a value other than 0xffffffff,
  the LUN field MUST also be copied from the NOP-In.

10.18.3.  Ping Data

  Ping data are reflected in the NOP-In Response.  The length of the
  reflected data are limited to MaxRecvDataSegmentLength.  The length
  of ping data are indicated by the DataSegmentLength.  0 is a valid
  value for the DataSegmentLength and indicates the absence of ping
  data.



















Satran, et al.              Standards Track                   [Page 179]

RFC 3720                         iSCSI                        April 2004


10.19.  NOP-In

  Byte/     0       |       1       |       2       |       3       |
     /             |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0|.|.| 0x20      |1| Reserved                                    |
    +---------------+---------------+---------------+---------------+
   4|TotalAHSLength | DataSegmentLength                             |
    +---------------+---------------+---------------+---------------+
   8| LUN or Reserved                                               |
    +                                                               +
  12|                                                               |
    +---------------+---------------+---------------+---------------+
  16| Initiator Task Tag or 0xffffffff                              |
    +---------------+---------------+---------------+---------------+
  20| Target Transfer Tag or 0xffffffff                             |
    +---------------+---------------+---------------+---------------+
  24| StatSN                                                        |
    +---------------+---------------+---------------+---------------+
  28| ExpCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  32| MaxCmdSN                                                      |
    +---------------+---------------+---------------+---------------+
  36/ Reserved                                                      /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
  48| Header-Digest (Optional)                                      |
    +---------------+---------------+---------------+---------------+
    / DataSegment - Return Ping Data                                /
   +/                                                               /
    +---------------+---------------+---------------+---------------+
    | Data-Digest (Optional)                                        |
    +---------------+---------------+---------------+---------------+

  NOP-In is either sent by a target as a response to a NOP-Out, as a
  "ping" to an initiator, or as a means to carry a changed ExpCmdSN
  and/or MaxCmdSN if another PDU will not be available for a long time
  (as determined by the target).

  When a target receives the NOP-Out with a valid Initiator Task Tag
  (not the reserved value 0xffffffff), it MUST respond with a NOP-In
  with the same Initiator Task Tag that was provided in the NOP-Out
  request.  It MUST also duplicate up to the first
  MaxRecvDataSegmentLength bytes of the initiator provided Ping Data.
  For such a response, the Target Transfer Tag MUST be 0xffffffff.





Satran, et al.              Standards Track                   [Page 180]

RFC 3720                         iSCSI                        April 2004


  Otherwise, when a target sends a NOP-In that is not a response to a
  Nop-Out received from the initiator, the Initiator Task Tag MUST be
  set to 0xffffffff and the Data Segment MUST NOT contain any data
  (DataSegmentLength MUST be 0).

10.19.1.  Target Transfer Tag

  If the target is responding to a NOP-Out, this is set to the reserved
  value 0xffffffff.

  If the target is sending a NOP-In as a Ping (intending to receive a
  corresponding NOP-Out), this field is set to a valid value (not the
  reserved 0xffffffff).

  If the target is initiating a NOP-In without wanting to receive a
  corresponding NOP-Out, this field MUST hold the reserved value of
  0xffffffff.

10.19.2.  StatSN

  The StatSN field will always contain the next StatSN.  However, when
  the Initiator Task Tag is set to 0xffffffff, StatSN for the
  connection is not advanced after this PDU is sent.

10.19.3.  LUN

  A LUN MUST be set to a correct value when the Target Transfer Tag is
  valid (not the reserved value 0xffffffff).

11.  iSCSI Security Text Keys and Authentication Methods

  Only the following keys are used during the SecurityNegotiation stage
  of the Login Phase:

    SessionType
    InitiatorName
    TargetName
    TargetAddress
    InitiatorAlias
    TargetAlias
    TargetPortalGroupTag
    AuthMethod and the keys used by the authentication methods
      specified under Section 11.1 AuthMethod along with all of
      their associated keys as well as Vendor Specific
      Authentication Methods.






Satran, et al.              Standards Track                   [Page 181]

RFC 3720                         iSCSI                        April 2004


  Other keys MUST NOT be used.

  SessionType, InitiatorName, TargetName, InitiatorAlias, TargetAlias,
  and TargetPortalGroupTag are described in Chapter 12 as they can be
  used also in the OperationalNegotiation stage.

  All security keys have connection-wide applicability.

11.1.  AuthMethod

  Use: During Login - Security Negotiation Senders: Initiator and
  Target Scope: connection

  AuthMethod = <list-of-values>

  The main item of security negotiation is the authentication method
  (AuthMethod).

  The authentication methods that can be used (appear in the
  list-of-values) are either those listed in the following table or are
  vendor-unique methods:

  +------------------------------------------------------------+
  | Name          | Description                                |
  +------------------------------------------------------------+
  | KRB5          | Kerberos V5 - defined in [RFC1510]         |
  +------------------------------------------------------------+
  | SPKM1         | Simple Public-Key GSS-API Mechanism        |
  |               | defined in [RFC2025]                       |
  +------------------------------------------------------------+
  | SPKM2         | Simple Public-Key GSS-API Mechanism        |
  |               | defined in [RFC2025]                       |
  +------------------------------------------------------------+
  | SRP           | Secure Remote Password                     |
  |               | defined in [RFC2945]                       |
  +------------------------------------------------------------+
  | CHAP          | Challenge Handshake Authentication Protocol|
  |               | defined in [RFC1994]                       |
  +------------------------------------------------------------+
  | None          | No authentication                          |
  +------------------------------------------------------------+

  The AuthMethod selection is followed by an "authentication exchange"
  specific to the authentication method selected.

  The authentication method proposal may be made by either the
  initiator or the target.  However the initiator MUST make the first
  step specific to the selected authentication method as soon as it is



Satran, et al.              Standards Track                   [Page 182]

RFC 3720                         iSCSI                        April 2004


  selected.  It follows that if the target makes the authentication
  method proposal the initiator sends the first keys(s) of the exchange
  together with its authentication method selection.

  The authentication exchange authenticates the initiator to the
  target, and optionally, the target to the initiator.  Authentication
  is OPTIONAL to use but MUST be supported by the target and initiator.

  The initiator and target MUST implement CHAP.  All other
  authentication methods are OPTIONAL.

  Private or public extension algorithms MAY also be negotiated for
  authentication methods.  Whenever a private or public extension
  algorithm is part of the default offer (the offer made in absence of
  explicit administrative action) the implementer MUST ensure that CHAP
  is listed as an alternative  in the default offer and "None" is not
  part of the default offer.

  Extension authentication methods MUST be named using one of the
  following two formats:

      a)  Z-reversed.vendor.dns_name.do_something=
      b)  Z<#><IANA-registered-string>=

  Authentication methods named using the Z- format are used as private
  extensions.  Authentication methods named using the Z# format are
  used as public extensions that must be registered with IANA and MUST
  be described by an informational RFC.

  For all of the public or private extension authentication methods,
  the method specific keys MUST conform to the format specified in
  Section 5.1 Text Format for standard-label.

  To identify the vendor for private extension authentication methods,
  we suggest you use the reversed DNS-name as a prefix to the proper
  digest names.

  The part of digest-name following Z- and Z# MUST conform to the
  format for standard-label specified in Section 5.1 Text Format.

  Support for public or private extension authentication methods is
  OPTIONAL.

  The following subsections define the specific exchanges for each of
  the standardized authentication methods.  As mentioned earlier the
  first step is always done by the initiator.





Satran, et al.              Standards Track                   [Page 183]

RFC 3720                         iSCSI                        April 2004


11.1.1.  Kerberos

  For KRB5 (Kerberos V5) [RFC1510] and [RFC1964], the initiator MUST
  use:

     KRB_AP_REQ=<KRB_AP_REQ>

  where KRB_AP_REQ is the client message as defined in [RFC1510].

  The default principal name assumed by an iSCSI initiator or target
  (prior to any administrative configuration action) MUST be the iSCSI
  Initiator Name or iSCSI Target Name respectively, prefixed by the
  string "iscsi/".

  If the initiator authentication fails, the target MUST respond with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator has selected the mutual authentication option (by setting
  MUTUAL-REQUIRED in the ap-options field of the KRB_AP_REQ), the
  target MUST reply with:

     KRB_AP_REP=<KRB_AP_REP>

  where KRB_AP_REP is the server's response message as defined in
  [RFC1510].

  If mutual authentication was selected and target authentication
  fails, the initiator MUST close the connection.

  KRB_AP_REQ and KRB_AP_REP are binary-values and their binary length
  (not the length of the character string that represents them in
  encoded form) MUST not exceed 65536 bytes.

11.1.2.  Simple Public-Key Mechanism (SPKM)

  For SPKM1 and SPKM2 [RFC2025], the initiator MUST use:

     SPKM_REQ=<SPKM-REQ>

  where SPKM-REQ is the first initiator token as defined in [RFC2025].

  [RFC2025] defines situations where each side may send an error token
  that may cause the peer to re-generate and resend its last token.
  This scheme is followed in iSCSI, and the error token syntax is:

     SPKM_ERROR=<SPKM-ERROR>






Satran, et al.              Standards Track                   [Page 184]

RFC 3720                         iSCSI                        April 2004


  However, SPKM-DEL tokens that are defined by [RFC2025] for fatal
  errors will not be used by iSCSI.  If the target needs to send a
  SPKM-DEL token, it will, instead, send a Login "login reject" message
  with the "Authentication Failure" status and terminate the
  connection.  If the initiator needs to send a SPKM-DEL token, it will
  close the connection.

  In the following sections, we assume that no SPKM-ERROR tokens are
  required.

  If the initiator authentication fails, the target MUST return an
  error.  Otherwise, if the AuthMethod is SPKM1 or if the initiator has
  selected the mutual authentication option (by setting mutual-state
  bit in the options field of the REQ-TOKEN in the SPKM-REQ), the
  target MUST reply with:

     SPKM_REP_TI=<SPKM-REP-TI>

  where SPKM-REP-TI is the target token as defined in [RFC2025].

  If mutual authentication was selected and target authentication
  fails, the initiator MUST close the connection.  Otherwise, if the
  AuthMethod is SPKM1, the initiator MUST continue with:

     SPKM_REP_IT=<SPKM-REP-IT>

  where SPKM-REP-IT is the second initiator token as defined in
  [RFC2025].  If the initiator authentication fails, the target MUST
  answer with a Login reject with "Authentication Failure" status.

  SPKM requires support for very long authentication items.

  All the SPKM-* tokens are binary-values and their binary length (not
  the length of the character string that represents them in encoded
  form) MUST not exceed 65536 bytes.

11.1.3.  Secure Remote Password (SRP)

  For SRP [RFC2945], the initiator MUST use:

     SRP_U=<U> TargetAuth=Yes   /* or TargetAuth=No */

  The target MUST answer with a Login reject with the "Authorization
  Failure" status or reply with:

  SRP_GROUP=<G1,G2...> SRP_s=<s>

  Where G1,G2... are proposed groups, in order of preference.



Satran, et al.              Standards Track                   [Page 185]

RFC 3720                         iSCSI                        April 2004


  The initiator MUST either close the connection or continue with:

  SRP_A=<A> SRP_GROUP=<G>

  Where G is one of G1,G2... that were proposed by the target.

  The target MUST answer with a Login reject with the "Authentication
  Failure" status or reply with:

     SRP_B=<B>

  The initiator MUST close the connection or continue with:

     SRP_M=<M>

  If the initiator authentication fails, the target MUST answer with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator sent TargetAuth=Yes in the first message (requiring target
  authentication), the target MUST reply with:

    SRP_HM=<H(A | M | K)>

  If the target authentication fails, the initiator MUST close the
  connection.

  Where U, s, A, B, M, and H(A | M | K) are defined in [RFC2945] (using
  the SHA1 hash function, such as SRP-SHA1) and G,Gn (Gn stands for
  G1,G2...) are identifiers of SRP groups specified in [RFC3723].  G,
  Gn, and U are text strings, s,A,B,M, and H(A | M | K) are
  binary-values.  The length of s,A,B,M and H(A | M | K) in binary form
  (not the length of the character string that represents them in
  encoded form) MUST not exceed 1024 bytes.

  For the SRP_GROUP, all the groups specified in [RFC3723] up to 1536
  bits (i.e., SRP-768, SRP-1024, SRP-1280, SRP-1536) must be supported
  by initiators and targets.  To guarantee interoperability, targets
  MUST always offer "SRP-1536" as one of the proposed groups.

11.1.4.  Challenge Handshake Authentication Protocol (CHAP)

  For CHAP [RFC1994], in the first step, the initiator MUST send:

     CHAP_A=<A1,A2...>

  Where A1,A2... are proposed algorithms, in order of preference.






Satran, et al.              Standards Track                   [Page 186]

RFC 3720                         iSCSI                        April 2004


  In the second step, the target MUST answer with a Login reject with
  the "Authentication Failure" status or reply with:

     CHAP_A=<A> CHAP_I=<I> CHAP_C=<C>

  Where A is one of A1,A2... that were proposed by the initiator.

  In the third step, the initiator MUST continue with:

     CHAP_N=<N> CHAP_R=<R>

  or, if it requires target authentication, with:

     CHAP_N=<N> CHAP_R=<R> CHAP_I=<I> CHAP_C=<C>

  If the initiator authentication fails, the target MUST answer with a
  Login reject with "Authentication Failure" status.  Otherwise, if the
  initiator required target authentication, the target MUST either
  answer with a Login reject with "Authentication Failure" or reply
  with:

     CHAP_N=<N> CHAP_R=<R>

  If target authentication fails, the initiator MUST close the
  connection.

  Where N, (A,A1,A2), I, C, and R are (correspondingly) the Name,
  Algorithm, Identifier, Challenge, and Response as defined in
  [RFC1994], N is a text string, A,A1,A2, and I are numbers, and C and
  R are large-binary-values and their binary length (not the length of
  the character string that represents them in encoded form) MUST not
  exceed 1024 bytes.

  For the Algorithm, as stated in [RFC1994], one value is required to
  be implemented:

      5     (CHAP with MD5)

  To guarantee interoperability, initiators MUST always offer it as one
  of the proposed algorithms.

12.  Login/Text Operational Text Keys

  Some session specific parameters MUST only be carried on the leading
  connection and cannot be changed after the leading connection login
  (e.g., MaxConnections, the maximum number of connections).  This





Satran, et al.              Standards Track                   [Page 187]

RFC 3720                         iSCSI                        April 2004


  holds for a single connection session with regard to connection
  restart.  The keys that fall into this category have the use: LO
  (Leading Only).

  Keys that can only be used during login have the use: IO (initialize
  only), while those that can be used in both the Login Phase and Full
  Feature Phase have the use: ALL.

  Keys that can only be used during Full Feature Phase use FFPO (Full
  Feature Phase only).

  Keys marked as Any-Stage may also appear in the SecurityNegotiation
  stage while all other keys described in this chapter are operational
  keys.

  Keys that do not require an answer are marked as Declarative.

  Key scope is indicated as session-wide (SW) or connection-only (CO).

  Result function, wherever mentioned, states the function that can be
  applied to check the validity of the responder selection.  Minimum
  means that the selected value cannot exceed the offered value.
  Maximum means that the selected value cannot be lower than the
  offered value.  AND means that the selected value must be a possible
  result of a Boolean "and" function with an arbitrary Boolean value
  (e.g., if the offered value is No the selected value must be No).  OR
  means that the selected value must be a possible result of a Boolean
  "or" function with an arbitrary Boolean value (e.g., if the offered
  value is Yes the selected value must be Yes).

12.1.  HeaderDigest and DataDigest

  Use: IO
  Senders: Initiator and Target
  Scope: CO

  HeaderDigest = <list-of-values>
  DataDigest = <list-of-values>

  Default is None for both HeaderDigest and DataDigest.

  Digests enable the checking of end-to-end, non-cryptographic data
  integrity beyond the integrity checks provided by the link layers and
  the covering of the whole communication path including all elements
  that may change the network level PDUs such as routers, switches, and
  proxies.





Satran, et al.              Standards Track                   [Page 188]

RFC 3720                         iSCSI                        April 2004


  The following table lists cyclic integrity checksums that can be
  negotiated for the digests and that MUST be implemented by every
  iSCSI initiator and target.  These digest options only have error
  detection significance.

  +---------------------------------------------+
  | Name          | Description     | Generator |
  +---------------------------------------------+
  | CRC32C        | 32 bit CRC      |0x11edc6f41|
  +---------------------------------------------+
  | None          | no digest                   |
  +---------------------------------------------+

  The generator polynomial for this digest is given in
  hex-notation (e.g., 0x3b stands for 0011 1011 and the polynomial is
  x**5+X**4+x**3+x+1).

  When the Initiator and Target agree on a digest, this digest MUST be
  used for every PDU in Full Feature Phase.

  Padding bytes, when present in a segment covered by a CRC, SHOULD be
  set to 0 and are included in the CRC.

  The CRC MUST be calculated by a method that produces the same
  results as the following process:

     -  The PDU bits are considered as the coefficients of a
        polynomial M(x) of degree n-1; bit 7 of the lowest numbered
        byte is considered the most significant bit (x^n-1), followed
        by bit 6 of the lowest numbered byte through bit 0 of the
        highest numbered byte (x^0).

     -  The most significant 32 bits are complemented.

     -  The polynomial is multiplied by x^32 then divided by G(x).  The
        generator polynomial produces a remainder R(x) of degree <= 31.

     -  The coefficients of R(x) are considered a 32 bit sequence.

     -  The bit sequence is complemented and the result is the CRC.

     -  The CRC bits are mapped into the digest word.  The x^31
        coefficient in bit 7 of the lowest numbered byte of the digest
        continuing through to the byte up to the x^24 coefficient in
        bit 0 of the lowest numbered byte, continuing with the x^23
        coefficient in bit 7 of next byte through x^0 in bit 0 of the
        highest numbered byte.




Satran, et al.              Standards Track                   [Page 189]

RFC 3720                         iSCSI                        April 2004


     -  Computing the CRC over any segment (data or header) extended
        to include the CRC built using the generator 0x11edc6f41 will
        always get the value 0x1c2d19ed as its final remainder (R(x)).
        This value is given here in its polynomial form (i.e., not
        mapped as the digest word).

  For a discussion about selection criteria for the CRC, see
  [RFC3385].  For a detailed analysis of the iSCSI polynomial, see
  [Castagnoli93].

  Private or public extension algorithms MAY also be negotiated for
  digests.  Whenever a private or public digest extension algorithm is
  part of the default offer (the offer made in absence of explicit
  administrative action) the implementer MUST ensure that CRC32C is
  listed as an alternative in the default offer and "None" is not
  part of the default offer.

  Extension digest algorithms MUST be named using one of the following
  two formats:

        a) Y-reversed.vendor.dns_name.do_something=
        b) Y<#><IANA-registered-string>=

  Digests named using the Y- format are used for private purposes
  (unregistered).  Digests named using the Y# format (public extension)
  must be registered with IANA and MUST be described by an
  informational RFC.

  For private extension digests, to identify the vendor, we suggest
  you use the reversed DNS-name as a prefix to the proper digest
  names.

  The part of digest-name following Y- and Y# MUST conform to the
  format for standard-label specified in Section 5.1 Text Format.

  Support for public or private extension digests is OPTIONAL.

12.2.  MaxConnections

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  MaxConnections=<numerical-value-from-1-to-65535>

  Default is 1.
  Result function is Minimum.



Satran, et al.              Standards Track                   [Page 190]

RFC 3720                         iSCSI                        April 2004



  Initiator and target negotiate the maximum number of connections
  requested/acceptable.

12.3.  SendTargets

  Use: FFPO
  Senders: Initiator
  Scope: SW

  For a complete description, see Appendix D.  - SendTargets
  Operation -.

12.4.  TargetName

  Use: IO by initiator, FFPO by target - only as response to a
  SendTargets, Declarative, Any-Stage

  Senders: Initiator and Target
  Scope: SW

  TargetName=<iSCSI-name-value>

  Examples:

     TargetName=iqn.1993-11.com.disk-vendor:diskarrays.sn.45678
     TargetName=eui.020000023B040506

  The initiator of the TCP connection MUST provide this key to the
  remote endpoint in the first login request if the initiator is not
  establishing a discovery session.  The iSCSI Target Name specifies
  the worldwide unique name of the target.

  The TargetName key may also be returned by the "SendTargets" text
  request (which is its only use when issued by a target).

  TargetName MUST not be redeclared within the login phase.














Satran, et al.              Standards Track                   [Page 191]

RFC 3720                         iSCSI                        April 2004


12.5.  InitiatorName

  Use: IO, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  InitiatorName=<iSCSI-name-value>

  Examples:

     InitiatorName=iqn.1992-04.com.os-vendor.plan9:cdrom.12345
     InitiatorName=iqn.2001-02.com.ssp.users:customer235.host90

  The initiator of the TCP connection MUST provide this key to the
  remote endpoint at the first Login of the Login Phase for every
  connection.  The InitiatorName key enables the initiator to identify
  itself to the remote endpoint.

  InitiatorName MUST not be redeclared within the login phase.

12.6.  TargetAlias

  Use: ALL, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetAlias=<iSCSI-local-name-value>

  Examples:

     TargetAlias=Bob-s Disk
     TargetAlias=Database Server 1 Log Disk
     TargetAlias=Web Server 3 Disk 20

  If a target has been configured with a human-readable name or
  description, this name SHOULD be communicated to the initiator during
  a Login Response PDU if SessionType=Normal (see Section 12.21
  SessionType).  This string is not used as an identifier, nor is it
  meant to be used for authentication or authorization decisions.  It
  can be displayed by the initiator's user interface in a list of
  targets to which it is connected.










Satran, et al.              Standards Track                   [Page 192]

RFC 3720                         iSCSI                        April 2004


12.7.  InitiatorAlias

  Use: ALL, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  InitiatorAlias=<iSCSI-local-name-value>

  Examples:

     InitiatorAlias=Web Server 4
     InitiatorAlias=spyalley.nsa.gov
     InitiatorAlias=Exchange Server

  If an initiator has been configured with a human-readable name or
  description, it SHOULD be communicated to the target during a Login
  Request PDU.  If not, the host name can be used instead.  This string
  is not used as an identifier, nor is meant to be used for
  authentication or authorization decisions.  It can be displayed by
  the target's user interface in a list of initiators to which it is
  connected.

12.8.  TargetAddress

  Use: ALL, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetAddress=domainname[:port][,portal-group-tag]

  The domainname can be specified as either a DNS host name, a
  dotted-decimal IPv4 address, or a bracketed IPv6 address as specified
  in [RFC2732].

  If the TCP port is not specified, it is assumed to be the
  IANA-assigned default port for iSCSI (see Section 13 IANA
  Considerations).

  If the TargetAddress is returned as the result of a redirect status
  in a login response, the comma and portal group tag MUST be omitted.

  If the TargetAddress is returned within a SendTargets response, the
  portal group tag MUST be included.








Satran, et al.              Standards Track                   [Page 193]

RFC 3720                         iSCSI                        April 2004


  Examples:

     TargetAddress=10.0.0.1:5003,1
     TargetAddress=[1080:0:0:0:8:800:200C:417A],65
     TargetAddress=[1080::8:800:200C:417A]:5003,1
     TargetAddress=computingcenter.example.com,23

  Use of the portal-group-tag is described in Appendix D.
  - SendTargets Operation -.  The formats for the port and
  portal-group-tag are the same as the one specified in Section 12.9
  TargetPortalGroupTag.

12.9.  TargetPortalGroupTag

  Use: IO by target, Declarative, Any-Stage
  Senders: Target
  Scope: SW

  TargetPortalGroupTag=<16-bit-binary-value>

  Examples:
  TargetPortalGroupTag=1

  The target portal group tag is a 16-bit binary-value that uniquely
  identifies a portal group within an iSCSI target node.  This key
  carries the value of the tag of the portal group that is servicing
  the Login request.  The iSCSI target returns this key to the
  initiator in the Login Response PDU to the first Login Request PDU
  that has the C bit set to 0 when TargetName is given by the
  initiator.

  For the complete usage expectations of this key see Section 5.3 Login
  Phase.

12.10.  InitialR2T

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  InitialR2T=<boolean-value>

  Examples:

     I->InitialR2T=No
     T->InitialR2T=No




Satran, et al.              Standards Track                   [Page 194]

RFC 3720                         iSCSI                        April 2004


  Default is Yes.
  Result function is OR.

  The InitialR2T key is used to turn off the default use of R2T for
  unidirectional and the output part of bidirectional commands, thus
  allowing an initiator to start sending data to a target as if it has
  received an initial R2T with Buffer Offset=Immediate Data Length and
  Desired Data Transfer Length=(min(FirstBurstLength, Expected Data
  Transfer Length) - Received Immediate Data Length).

  The default action is that R2T is required, unless both the initiator
  and the target send this key-pair attribute specifying InitialR2T=No.
  Only the first outgoing data burst (immediate data and/or separate
  PDUs) can be sent unsolicited (i.e., not requiring an explicit R2T).

12.11.  ImmediateData

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  ImmediateData=<boolean-value>

  Default is Yes.
  Result function is AND.

  The initiator and target negotiate support for immediate data.  To
  turn immediate data off, the initiator or target must state its
  desire to do so.  ImmediateData can be turned on if both the
  initiator and target have ImmediateData=Yes.

  If ImmediateData is set to Yes and InitialR2T is set to Yes
  (default), then only immediate data are accepted in the first burst.

  If ImmediateData is set to No and InitialR2T is set to Yes, then the
  initiator MUST NOT send unsolicited data and the target MUST reject
  unsolicited data with the corresponding response code.

  If ImmediateData is set to No and InitialR2T is set to No, then the
  initiator MUST NOT send unsolicited immediate data, but MAY send one
  unsolicited burst of Data-Out PDUs.

  If ImmediateData is set to Yes and InitialR2T is set to No, then the
  initiator MAY send unsolicited immediate data and/or one unsolicited
  burst of Data-Out PDUs.





Satran, et al.              Standards Track                   [Page 195]

RFC 3720                         iSCSI                        April 2004


  The following table is a summary of unsolicited data options:

  +----------+-------------+------------------+--------------+
  |InitialR2T|ImmediateData|    Unsolicited   |Immediate Data|
  |          |             |   Data Out PDUs  |              |
  +----------+-------------+------------------+--------------+
  | No       | No          | Yes              | No           |
  +----------+-------------+------------------+--------------+
  | No       | Yes         | Yes              | Yes          |
  +----------+-------------+------------------+--------------+
  | Yes      | No          | No               | No           |
  +----------+-------------+------------------+--------------+
  | Yes      | Yes         | No               | Yes          |
  +----------+-------------+------------------+--------------+

12.12.  MaxRecvDataSegmentLength

  Use: ALL, Declarative
  Senders: Initiator and Target
  Scope: CO

  MaxRecvDataSegmentLength=<numerical-value-512-to-(2**24-1)>

  Default is 8192 bytes.

  The initiator or target declares the maximum data segment length in
  bytes it can receive in an iSCSI PDU.

  The transmitter (initiator or target) is required to send PDUs with a
  data segment that does not exceed MaxRecvDataSegmentLength of the
  receiver.

  A target receiver is additionally limited by MaxBurstLength for
  solicited data and FirstBurstLength for unsolicited data.  An
  initiator MUST NOT send solicited PDUs exceeding MaxBurstLength nor
  unsolicited PDUs exceeding FirstBurstLength (or
  FirstBurstLength-Immediate Data Length if immediate data were sent).

12.13.  MaxBurstLength

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  MaxBurstLength=<numerical-value-512-to-(2**24-1)>





Satran, et al.              Standards Track                   [Page 196]

RFC 3720                         iSCSI                        April 2004


  Default is 262144 (256 Kbytes).
  Result function is Minimum.

  The initiator and target negotiate maximum SCSI data payload in bytes
  in a Data-In or a solicited Data-Out iSCSI sequence.  A sequence
  consists of one or more consecutive Data-In or Data-Out PDUs that end
  with a Data-In or Data-Out PDU with the F bit set to one.

12.14.  FirstBurstLength

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery
  Irrelevant when: ( InitialR2T=Yes and ImmediateData=No )

  FirstBurstLength=<numerical-value-512-to-(2**24-1)>

  Default is 65536 (64 Kbytes).
  Result function is Minimum.

  The initiator and target negotiate the maximum amount in bytes of
  unsolicited data an iSCSI initiator may send to the target during the
  execution of a single SCSI command.  This covers the immediate data
  (if any) and the sequence of unsolicited Data-Out PDUs (if any) that
  follow the command.

  FirstBurstLength MUST NOT exceed MaxBurstLength.

12.15.  DefaultTime2Wait

  Use: LO
  Senders: Initiator and Target
  Scope: SW

  DefaultTime2Wait=<numerical-value-0-to-3600>

  Default is 2.
  Result function is Maximum.

  The initiator and target negotiate the minimum time, in seconds, to
  wait before attempting an explicit/implicit logout or an active task
  reassignment after an unexpected connection termination or a
  connection reset.

  A value of 0 indicates that logout or active task reassignment can be
  attempted immediately.




Satran, et al.              Standards Track                   [Page 197]

RFC 3720                         iSCSI                        April 2004


12.16.  DefaultTime2Retain

  Use: LO Senders: Initiator and Target Scope: SW

  DefaultTime2Retain=<numerical-value-0-to-3600>

  Default is 20.  Result function is Minimum.

  The initiator and target negotiate the maximum time, in seconds after
  an initial wait (Time2Wait), before which an active task reassignment
  is still possible after an unexpected connection termination or a
  connection reset.

  This value is also the session state timeout if the connection in
  question is the last LOGGED_IN connection in the session.

  A value of 0 indicates that connection/task state is immediately
  discarded by the target.

12.17.  MaxOutstandingR2T

  Use: LO
  Senders: Initiator and Target
  Scope: SW

  MaxOutstandingR2T=<numerical-value-from-1-to-65535>
  Irrelevant when: SessionType=Discovery

  Default is 1.
  Result function is Minimum.

  Initiator and target negotiate the maximum number of outstanding R2Ts
  per task, excluding any implied initial R2T that might be part of
  that task.  An R2T is considered outstanding until the last data PDU
  (with the F bit set to 1) is transferred, or a sequence reception
  timeout (Section 6.1.4.1 Recovery Within-command) is encountered for
  that data sequence.

12.18.  DataPDUInOrder

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  DataPDUInOrder=<boolean-value>





Satran, et al.              Standards Track                   [Page 198]

RFC 3720                         iSCSI                        April 2004


  Default is Yes.
  Result function is OR.

  No is used by iSCSI to indicate that the data PDUs within sequences
  can be in any order.  Yes is used to indicate that data PDUs within
  sequences have to be at continuously increasing addresses and
  overlays are forbidden.

12.19.  DataSequenceInOrder

  Use: LO
  Senders: Initiator and Target
  Scope: SW
  Irrelevant when: SessionType=Discovery

  DataSequenceInOrder=<boolean-value>

  Default is Yes.
  Result function is OR.

  A Data Sequence is a sequence of Data-In or Data-Out PDUs that end
  with a Data-In or Data-Out PDU with the F bit set to one.  A Data-Out
  sequence is sent either unsolicited or in response to an R2T.
  Sequences cover an offset-range.

  If DataSequenceInOrder is set to No, Data PDU sequences may be
  transferred in any order.

  If DataSequenceInOrder is set to Yes, Data Sequences MUST be
  transferred using continuously non-decreasing sequence offsets (R2T
  buffer offset for writes, or the smallest SCSI Data-In buffer offset
  within a read data sequence).

  If DataSequenceInOrder is set to Yes, a target may retry at most the
  last R2T, and an initiator may at most request retransmission for the
  last read data sequence.  For this reason, if ErrorRecoveryLevel is
  not 0 and DataSequenceInOrder is set to Yes then MaxOustandingR2T
  MUST be set to 1.

12.20.  ErrorRecoveryLevel

  Use: LO
  Senders: Initiator and Target
  Scope: SW

  ErrorRecoveryLevel=<numerical-value-0-to-2>





Satran, et al.              Standards Track                   [Page 199]

RFC 3720                         iSCSI                        April 2004


  Default is 0.
  Result function is Minimum.

  The initiator and target negotiate the recovery level supported.

  Recovery levels represent a combination of recovery capabilities.
  Each recovery level includes all the capabilities of the lower
  recovery levels and adds some new ones to them.

  In the description of recovery mechanisms, certain recovery classes
  are specified.  Section 6.1.5 Error Recovery Hierarchy describes the
  mapping between the classes and the levels.

12.21.  SessionType

  Use: LO, Declarative, Any-Stage
  Senders: Initiator
  Scope: SW

  SessionType= <Discovery|Normal>

  Default is Normal.

  The initiator indicates the type of session it wants to create.  The
  target can either accept it or reject it.

  A discovery session indicates to the Target that the only purpose of
  this Session is discovery.  The only requests a target accepts in
  this type of session are a text request with a SendTargets key and a
  logout request with reason "close the session".

  The discovery session implies MaxConnections = 1 and overrides both
  the default and an explicit setting.

12.22.  The Private or Public Extension Key Format

  Use: ALL
  Senders: Initiator and Target
  Scope: specific key dependent

  X-reversed.vendor.dns_name.do_something=

  or

  X<#><IANA-registered-string>=






Satran, et al.              Standards Track                   [Page 200]

RFC 3720                         iSCSI                        April 2004


  Keys with this format are used for public or private extension
  purposes.  These keys always start with X- if unregistered with IANA
  (private) or X# if registered with IANA (public).

  For unregistered keys, to identify the vendor, we suggest you use the
  reversed DNS-name as a prefix to the key-proper.

  The part of key-name following X- and X# MUST conform to the format
  for key-name specified in Section 5.1 Text Format.

  For IANA registered keys the string following X# must be registered
  with IANA and the use of the key MUST be described by an
  informational RFC.

  Vendor specific keys MUST ONLY be used in normal sessions.

  Support for public or private extension keys is OPTIONAL.

13.  IANA Considerations

  This section conforms to [RFC2434].

  The well-known user TCP port number for iSCSI connections assigned by
  IANA is 3260 and this is the default iSCSI port.  Implementations
  needing a system TCP port number may use port 860, the port assigned
  by IANA as the iSCSI system port; however in order to use port 860,
  it MUST be explicitly specified - implementations MUST NOT default to
  use of port 860, as 3260 is the only allowed default.

  Extension keys, authentication methods, or digest types for which a
  vendor or group of vendors intend to provide publicly available
  descriptions MUST be described by an RFC and MUST be registered with
  IANA.

  The IANA has set up the following three registries:

        a)  iSCSI extended key registry
        b)  iSCSI authentication methods registry
        c)  iSCSI digests registry

  [RFC3723] also instructs IANA to maintain a registry for the values
  of the SRP_GROUP key.  The format of these values must conform to the
  one specified for iSCSI extension item-label in Section 13.5.4
  Standard iSCSI extension item-label format.







Satran, et al.              Standards Track                   [Page 201]

RFC 3720                         iSCSI                        April 2004


  For the iSCSI authentication methods registry and the iSCSI digests
  registry, IANA MUST also assign a 16-bit unsigned integer number (the
  method number for the authentication method and the digest number for
  the digest).

  The following initial values for the registry for authentication
  methods are specified by the standards action of this document:

   Authentication Method                   | Number |
  +----------------------------------------+--------+
  | CHAP                                   |     1  |
  +----------------------------------------+--------+
  | SRP                                    |     2  |
  +----------------------------------------+--------+
  | KRB5                                   |     3  |
  +----------------------------------------+--------+
  | SPKM1                                  |     4  |
  +----------------------------------------+--------+
  | SPKM2                                  |     5  |
  +----------------------------------------+--------+

  All other record numbers from 0 to 255 are reserved.  IANA will
  register numbers above 255.

  Authentication methods with numbers above 255 MUST be unique within
  the registry and MUST be used with the prefix Z#.


  The following initial values for the registry for digests are
  specified by the standards action of this document:

   Digest                                  | Number |
  +----------------------------------------+--------+
  | CRC32C                                 |     1  |
  +----------------------------------------+--------+

  All other record numbers from 0 to 255 are reserved.  IANA will
  register numbers above 255.

  Digests with numbers above 255 MUST be unique within the registry and
  MUST be used with the prefix Y#.

  The RFC that describes the item to be registered MUST indicate in the
  IANA Considerations section the string and iSCSI registry to which it
  should be recorded.

  Extension Keys, Authentication Methods, and digests (iSCSI extension
  items) must conform to a number of requirements as described below.



Satran, et al.              Standards Track                   [Page 202]

RFC 3720                         iSCSI                        April 2004


13.1.  Naming Requirements

  Each iSCSI extension item must have a unique name in its category.
  This name will be used as a standard-label for the key, access
  method, or digest and must conform to the syntax specified in Section
  13.5.4 Standard iSCSI extension item-label format for iSCSI extension
  item-labels.

13.2.  Mechanism Specification Requirements

  For iSCSI extension items all of the protocols and procedures used by
  a given iSCSI extension item must be described, either in the
  specification of the iSCSI extension item itself or in some other
  publicly available specification, in sufficient detail for the iSCSI
  extension item to be implemented by any competent implementor.  Use
  of secret and/or proprietary methods in iSCSI extension items are
  expressly prohibited.  In addition, the restrictions imposed by
  [RFC1602] on the standardization of patented algorithms must be
  respected.

13.3.  Publication Requirements

  All iSCSI extension items must be described by an RFC.  The RFC may
  be informational rather than Standards-Track, although Standards
  Track review and approval are encouraged for all iSCSI extension
  items.

13.4.  Security Requirements

  Any known security issues that arise from the use of the iSCSI
  extension item must be completely and fully described.  It is not
  required that the iSCSI extension item be secure or that it be free
  from risks, but that the known risks be identified.  Publication of a
  new iSCSI extension item does not require an exhaustive security
  review, and the security considerations section is subject to
  continuing evaluation.

  Additional security considerations should be addressed by publishing
  revised versions of the iSCSI extension item specification.

  For each of these registries, IANA must record the registered string,
  which MUST conform to the format rules described in Section 13.5.4
  Standard iSCSI extension item-label format for iSCSI extension
  item-labels, and the RFC number that describes it.  The key prefix
  (X#, Y# or Z#) is not part of the recorded string.






Satran, et al.              Standards Track                   [Page 203]

RFC 3720                         iSCSI                        April 2004


13.5.  Registration Procedure

  Registration of a new iSCSI extension item starts with the
  construction of an Internet Draft to become an RFC.

13.5.1.  Present the iSCSI extension item to the Community

  Send a proposed access type specification to the IPS WG mailing list,
  or if the IPS WG is disbanded at the registration time, to a mailing
  list designated by the IETF Transport Area Director for a review
  period of a month.  The intent of the public posting is to solicit
  comments and feedback on the iSCSI extension item specification and a
  review of any security considerations.

13.5.2.  iSCSI extension item review and IESG approval

  When the one month period has passed, the IPS WG chair or a person
  nominated by the IETF Transport Area Director (the iSCSI extension
  item reviewer) forwards the Internet Draft to the IESG for
  publication as an informational RFC or rejects it.  If the
  specification is a standards track document, the usual IETF
  procedures for such documents are followed.

  Decisions made by the iSCSI extension item reviewer must be published
  within two weeks after the month-long review period.  Decisions made
  by the iSCSI extension item reviewer can be appealed through the IESG
  appeal process.

13.5.3.  IANA Registration

  Provided that the iSCSI extension item has either passed review or
  has been successfully appealed to the IESG, and the specification is
  published as an RFC, then IANA will register the iSCSI extension item
  and make the registration available to the community.

13.5.4.  Standard iSCSI extension item-label format

  The following character symbols are used iSCSI extension item-labels
  (the hexadecimal values represent Unicode code points):

  (a-z, A-Z) - letters
  (0-9) - digits
  "."  (0x2e) - dot
  "-"  (0x2d) - minus
  "+"  (0x2b) - plus
  "@"  (0x40) - commercial at
  "_"  (0x5f) - underscore




Satran, et al.              Standards Track                   [Page 204]

RFC 3720                         iSCSI                        April 2004


  An iSCSI extension item-label is a string of one or more characters
  that consist of letters, digits, dot, minus, plus, commercial at, or
  underscore.  An iSCSI extension item-label MUST begin with a capital
  letter and must not exceed 63 characters.

13.6.  IANA Procedures for Registering iSCSI extension items

  The identity of the iSCSI extension item reviewer is communicated to
  the IANA by the IESG.  Then, the IANA only acts in response to iSCSI
  extension item definitions that are approved by the iSCSI extension
  item reviewer and forwarded by the reviewer to the IANA for
  registration, or in response to a communication from the IESG that an
  iSCSI extension item definition appeal has overturned the iSCSI
  extension item reviewer's ruling.

References

Normative References

  [CAM]          ANSI X3.232-199X, Common Access Method-3.

  [EUI]          "Guidelines for 64-bit Global Identifier (EUI-64)",
                 http:
                 //standards.ieee.org/regauth/oui/tutorials/EUI64.html

  [OUI]          "IEEE OUI and Company_Id Assignments",
                 http://standards.ieee.org/regauth/oui

  [RFC791]       Postel, J., "Internet Protocol", STD 5, RFC 791,
                 September 1981.

  [RFC793]       Postel, J., "Transmission Control Protocol", STD 7,
                 RFC 793, September 1981.

  [RFC1035]      Mockapetris, P., "Domain Names - Implementation and
                 Specification", STD 13, RFC 1035, November 1987.

  [RFC1122]      Braden, R., Ed., "Requirements for Internet Hosts-
                 Communication Layer", STD 3, RFC 1122, October 1989.

  [RFC1510]      Kohl, J. and C. Neuman, "The Kerberos Network
                 Authentication Service (V5)", RFC 1510, September
                 1993.

  [RFC1737]      Sollins, K. and L. Masinter "Functional Requirements
                 for Uniform Resource Names"RFC 1737, December 1994.





Satran, et al.              Standards Track                   [Page 205]

RFC 3720                         iSCSI                        April 2004


  [RFC1964]      Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
                 RFC 1964, June 1996.

  [RFC1982]      Elz, R. and R. Bush, "Serial Number Arithmetic", RFC
                 1982, August 1996.

  [RFC1994]      Simpson, W., "PPP Challenge Handshake Authentication
                 Protocol (CHAP)", RFC 1994, August 1996.

  [RFC2025]      Adams, C., "The Simple Public-Key GSS-API Mechanism
                 (SPKM)", RFC 2025, October 1996.

  [RFC2045]      Borenstein, N. and N. Freed, "MIME (Multipurpose
                 Internet Mail Extensions) Part One: Mechanisms for
                 Specifying and Describing the Format of Internet
                 Message Bodies", RFC 2045, November 1996.

  [RFC2119]      Bradner, S. "Key Words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2279]      Yergeau, F., "UTF-8, a Transformation Format of ISO
                 10646", RFC 2279 October 1996.

  [RFC2373]      Hinden, R. and S. Deering, "IP Version 6 Addressing
                 Architecture", RFC 2373, July 1998.

  [RFC2396]      Berners-Lee, T., Fielding, R. and L. Masinter "Uniform
                 Resource Identifiers", RFC 2396, August 1998.

  [RFC2401]      Kent, S. and R. Atkinson, "Security Architecture for
                 the Internet Protocol", RFC 2401, November 1998.

  [RFC2404]      Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96
                 within ESP and AH", RFC 2404, November 1998.

  [RFC2406]      Kent, S. and R. Atkinson, "IP Encapsulating Security
                 Payload (ESP)", RFC 2406, November 1998.

  [RFC2407]      Piper, D., "The Internet IP Security Domain of
                 Interpretation of ISAKMP", RFC 2407, November 1998.

  [RFC2409]      Harkins, D. and D. Carrel, "The Internet Key Exchange
                 (IKE)", RFC2409, November 1998.

  [RFC2434]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs.", BCP 26, RFC
                 2434, October 1998.




Satran, et al.              Standards Track                   [Page 206]

RFC 3720                         iSCSI                        April 2004


  [RFC2451]      Pereira, R. and R. Adams " The ESP CBC-Mode Cipher
                 Algorithms", RFC 2451, November 1998.

  [RFC2732]      Hinden, R., Carpenter, B. and L. Masinter, "Format for
                 Literal IPv6 Addresses in URL's", RFC 2451, December
                 1999.

  [RFC2945]      Wu, T., "The SRP Authentication and Key Exchange
                 System", RFC 2945, September 2000.

  [RFC3066]      Alvestrand, H., "Tags for the Identification of
                 Languages", STD 47, RFC 3066, January 2001.

  [RFC3454]      Hoffman, P. and M. Blanchet, "Preparation of
                 Internationalized Strings ("stringprep")", RFC 3454,
                 December 2002.

  [RFC3566]      Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96
                 Algorithm and Its Use With IPsec", RFC 3566, September
                 2003.

  [RFC3686]      Housley, R., "Using Advanced Encryption Standard (AES)
                 Counter Mode with IPsec Encapsulating Security Payload
                 (ESP)", RFC 3686, January 2004.

  [RFC3722]      Bakke, M., "String Profile for Internet Small Computer
                 Systems Interface (iSCSI) Names", RFC 3722, March
                 2004.

  [RFC3723]      Aboba, B., Tseng, J., Walker, J., Rangan, V. and F.
                 Travostino, "Securing Block Storage Protocols over
                 IP", RFC 3723, March 2004.

  [SAM2]         T10/1157D, SCSI Architecture Model - 2 (SAM-2).

  [SBC]          NCITS.306-1998, SCSI-3 Block Commands (SBC).

  [SPC3]         T10/1416-D, SCSI Primary Commands-3.

  [UNICODE]      Unicode Standard Annex #15, "Unicode Normalization
                 Forms", http://www.unicode.org/unicode/reports/tr15










Satran, et al.              Standards Track                   [Page 207]

RFC 3720                         iSCSI                        April 2004


Informative References

  [BOOT]         P. Sarkar, et al., "Bootstrapping Clients using the
                 iSCSI Protocol", Work in Progress, July 2003.

  [Castagnoli93] G. Castagnoli, S. Braeuer and M. Herrman "Optimization
                 of Cyclic Redundancy-Check Codes with 24 and 32 Parity
                 Bits", IEEE Transact. on Communications, Vol. 41, No.
                 6, June 1993.

  [CORD]          Chadalapaka, M. and R. Elliott, "SCSI Command
                 Ordering Considerations with iSCSI", Work in Progress.

  [RFC3347]      Krueger, M., Haagens, R., Sapuntzakis, C. and M.
                 Bakke, "Small Computer Systems Interface protocol over
                 the Internet (iSCSI) Requirements and Design
                 Considerations", RFC 3347, July 2002.

  [RFC3385]      Sheinwald, D., Staran, J., Thaler, P. and V. Cavanna,
                 "Internet Protocol Small Computer System Interface
                 (iSCSI) Cyclic Redundancy Check (CRC)/Checksum
                 Considerations", RFC 3385, September 2002.

  [RFC3721]      Bakke M., Hafner, J., Hufferd, J., Voruganti, K. and
                 M. Krueger, "Internet Small Computer Systems Interface
                 (iSCSI) Naming and Discovery, RFC 3721, March 2004.

  [SEQ-EXT]      Kent, S., "IP Encapsulating Security Payload (ESP)",
                 Work in Progress, July 2002.






















Satran, et al.              Standards Track                   [Page 208]

RFC 3720                         iSCSI                        April 2004


Appendix A.  Sync and Steering with Fixed Interval Markers

  This appendix presents a simple scheme for synchronization (PDU
  boundary retrieval).  It uses markers that include synchronization
  information placed at fixed intervals in the TCP stream.

  A Marker consists of:

  Byte /    0       |       1       |       2       |       3       |
      /             |               |               |               |
    |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
    +---------------+---------------+---------------+---------------+
   0| Next-iSCSI-PDU-start pointer - copy #1                        |
    +---------------+---------------+---------------+---------------+
   4| Next-iSCSI-PDU-start pointer - copy #2                        |
    +---------------+---------------+---------------+---------------+

  The Marker scheme uses payload byte stream counting that includes
  every byte placed by iSCSI in the TCP stream except for the markers
  themselves.  It also excludes any bytes that TCP counts but are not
  originated by iSCSI.

  Markers MUST NOT be included in digest calculation.

  The Marker indicates the offset to the next iSCSI PDU header.  The
  Marker is eight bytes in length and contains two 32-bit offset fields
  that indicate how many bytes to skip in the TCP stream in order to
  find the next iSCSI PDU header.  The marker uses two copies of the
  pointer so that a marker that spans a TCP packet boundary should
  leave at least one valid copy in one of the packets.

  The structure and semantics of an inserted marker are independent of
  the marker interval.

  The use of markers is negotiable.  The initiator and target MAY
  indicate their readiness to receive and/or send markers during login
  separately for each connection.  The default is No.

A.1.  Markers At Fixed Intervals

  A marker is inserted at fixed intervals in the TCP byte stream.
  During login, each end of the iSCSI session specifies the interval at
  which it is willing to receive the marker, or it disables the marker
  altogether.  If a receiver indicates that it desires a marker, the
  sender MAY agree (during negotiation) and provide the marker at the
  desired interval.  However, in certain environments, a sender that
  does not provide markers to a receiver that wants markers may suffer
  an appreciable performance degradation.



Satran, et al.              Standards Track                   [Page 209]

RFC 3720                         iSCSI                        April 2004


  The marker interval and the initial marker-less interval are counted
  in terms of the bytes placed in the TCP stream data by iSCSI.

  When reduced to iSCSI terms, markers MUST indicate the offset to a
  4-byte word boundary in the stream.  The least significant two bits
  of each marker word are reserved and are considered 0 for offset
  computation.

  Padding iSCSI PDU payloads to 4-byte word boundaries simplifies
  marker manipulation.

A.2.  Initial Marker-less Interval

  To enable the connection setup including the Login Phase negotiation,
  marking (if any) is only started at the first marker interval after
  the end of the Login Phase.  However, in order to enable the marker
  inclusion and exclusion mechanism to work without knowledge of the
  length of the Login Phase, the first marker will be placed in the TCP
  stream as if the Marker-less interval had included markers.

  Thus, all markers appear in the stream at locations conforming to the
  formula: [(MI + 8) * n - 8] where MI = Marker Interval, n = integer
  number.

  For example, if the marker interval is 512 bytes and the login ended
  at byte 1003 (first iSCSI placed byte is 0), the first marker will be
  inserted after byte 1031 in the stream.

A.3.  Negotiation

  The following operational key=value pairs are used to negotiate the
  fixed interval markers.  The direction (output or input) is relative
  to the initiator.

A.3.1.  OFMarker, IFMarker

  Use: IO
  Senders: Initiator and Target
  Scope: CO

  OFMarker=<boolean-value>
  IFMarker=<boolean-value>

  Default is No.

  Result function is AND.





Satran, et al.              Standards Track                   [Page 210]

RFC 3720                         iSCSI                        April 2004


  OFMarker is used to turn on or off the initiator to target markers
  on the connection.  IFMarker is used to turn on or off the target to
  initiator markers on the connection.

  Examples:

    I->OFMarker=Yes,IFMarker=Yes
    T->OFMarker=Yes,IFMarker=Yes

  Results in the Marker being used in both directions while:

    I->OFMarker=Yes,IFMarker=Yes
    T->OFMarker=Yes,IFMarker=No

  Results in Marker being used from the initiator to the target, but
  not from the target to initiator.

A.3.2.  OFMarkInt, IFMarkInt

  Use: IO
  Senders: Initiator and Target
  Scope: CO
  OFMarkInt is Irrelevant when: OFMarker=No
  IFMarkInt is Irrelevant when: IFMarker=No

  Offering:

  OFMarkInt=<numeric-range-from-1-to-65535>
  IFMarkInt=<numeric-range-from-1-to-65535>

  Responding:

  OFMarkInt=<numeric-value-from-1-to-65535>|Reject
  IFMarkInt=<numeric-value-from-1-to-65535>|Reject

  OFMarkInt is used to set the interval for the initiator to target
  markers on the connection.  IFMarkInt is used to set the interval for
  the target to initiator markers on the connection.

  For the offering, the initiator or target indicates the minimum to
  maximum interval (in 4-byte words) it wants the markers for one or
  both directions.  In case it only wants a specific value, only a
  single value has to be specified.  The responder selects a value
  within the minimum and maximum offered or the only value offered or
  indicates through the xFMarker key=value its inability to set and/or
  receive markers.  When the interval is unacceptable the responder
  answers with "Reject".  Reject is resetting the marker function in
  the specified direction (Output or Input) to No.



Satran, et al.              Standards Track                   [Page 211]

RFC 3720                         iSCSI                        April 2004


  The interval is measured from the end of a marker to the beginning of
  the next marker.  For example, a value of 1024 means 1024 words (4096
  bytes of iSCSI payload between markers).

  The default is 2048.

Appendix B.  Examples

B.1.  Read Operation Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|    PDU Type           |  Target Function     |
  +------------------+-----------------------+----------------------+
  |  Command request |SCSI Command (READ)>>> |                      |
  |  (read)          |                       |                      |
  +------------------+-----------------------+----------------------+
  |                  |                       |Prepare Data Transfer |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+























Satran, et al.              Standards Track                   [Page 212]

RFC 3720                         iSCSI                        April 2004


B.2.  Write Operation Example

  +------------------+-----------------------+---------------------+
  |Initiator Function|    PDU Type           |  Target Function    |
  +------------------+-----------------------+---------------------+
  | Command request  |SCSI Command (WRITE)>>>| Receive command     |
  |  (write)         |                       | and queue it        |
  +------------------+-----------------------+---------------------+
  |                  |                       | Process old commands|
  +------------------+-----------------------+---------------------+
  |                  |                       | Ready to process    |
  |                  |   <<< R2T             | WRITE command       |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< R2T             | Ready for data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< R2T             | Ready for data      |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |   Send Data      |   SCSI Data-Out >>>   |   Receive Data      |
  +------------------+-----------------------+---------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense|
  +------------------+-----------------------+---------------------+
  | Command Complete |                       |                     |
  +------------------+-----------------------+---------------------+
























Satran, et al.              Standards Track                   [Page 213]

RFC 3720                         iSCSI                        April 2004


B.3.  R2TSN/DataSN Use Examples

  Output (write) data DataSN/R2TSN Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|    PDU Type & Content |  Target Function     |
  +------------------+-----------------------+----------------------+
  |  Command request |SCSI Command (WRITE)>>>| Receive command      |
  |  (write)         |                       | and queue it         |
  +------------------+-----------------------+----------------------+
  |                  |                       | Process old commands |
  +------------------+-----------------------+----------------------+
  |                  |   <<< R2T             | Ready for data       |
  |                  |   R2TSN = 0           |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< R2T             | Ready for more data  |
  |                  |   R2TSN = 1           |                      |
  +------------------+-----------------------+----------------------+
  |  Send Data       |   SCSI Data-Out >>>   |   Receive Data       |
  |  for R2TSN 0     |   DataSN = 0, F=0     |                      |
  +------------------+-----------------------+----------------------+
  |  Send Data       |   SCSI Data-Out >>>   |   Receive Data       |
  |  for R2TSN 0     |   DataSN = 1, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |  Send Data       |   SCSI Data >>>       |   Receive Data       |
  |  for R2TSN 1     |   DataSN = 0, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  |                  |   ExpDataSN = 0       |                      |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+



















Satran, et al.              Standards Track                   [Page 214]

RFC 3720                         iSCSI                        April 2004


  Input (read) data DataSN Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|    PDU Type           |  Target Function     |
  +------------------+-----------------------+----------------------+
  |  Command request |SCSI Command (READ)>>> |                      |
  |  (read)          |                       |                      |
  +------------------+-----------------------+----------------------+
  |                  |                       | Prepare Data Transfer|
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 0, F=0     |                      |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 1, F=0     |                      |
  +------------------+-----------------------+----------------------+
  |   Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 2, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  |                  |   ExpDataSN = 3       |                      |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+



























Satran, et al.              Standards Track                   [Page 215]

RFC 3720                         iSCSI                        April 2004


  Bidirectional DataSN Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|    PDU Type           | Target Function      |
  +------------------+-----------------------+----------------------+
  | Command request |SCSI Command >>>        |                      |
  | (Read-Write)     | Read-Write            |                      |
  +------------------+-----------------------+----------------------+
  |                  |                       | Process old commands |
  +------------------+-----------------------+----------------------+
  |                  |   <<< R2T             | Ready to process     |
  |                  |   R2TSN = 0           | WRITE command        |
  +------------------+-----------------------+----------------------+
  | * Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 1, F=0     |                      |
  +------------------+-----------------------+----------------------+
  | * Receive Data   |   <<< SCSI Data-In    |   Send Data          |
  |                  |   DataSN = 2, F=1     |                      |
  +------------------+-----------------------+----------------------+
  | * Send Data      |   SCSI Data-Out >>>   |   Receive Data       |
  | for R2TSN 0      |   DataSN = 0, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  |                  |   ExpDataSN = 3       |                      |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+

  *) Send data and Receive Data may be transferred simultaneously as in
  an atomic Read-Old-Write-New or sequentially as in an atomic
  Read-Update-Write (in the latter case the R2T may follow the received
  data).



















Satran, et al.              Standards Track                   [Page 216]

RFC 3720                         iSCSI                        April 2004


  Unsolicited and immediate output (write) data with DataSN Example

  +------------------+-----------------------+----------------------+
  |Initiator Function|    PDU Type & Content |  Target Function     |
  +------------------+-----------------------+----------------------+
  |  Command request |SCSI Command (WRITE)>>>| Receive command      |
  |  (write)         |F=0                    | and data             |
  |+ Immediate data  |                       | and queue it         |
  +------------------+-----------------------+----------------------+
  | Send Unsolicited |   SCSI Write Data >>> | Receive more Data    |
  |  Data            |   DataSN = 0, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |                  |                       | Process old commands |
  +------------------+-----------------------+----------------------+
  |                  |   <<< R2T             | Ready for more data  |
  |                  |   R2TSN = 0           |                      |
  +------------------+-----------------------+----------------------+
  |  Send Data       |   SCSI Write Data >>> |   Receive Data       |
  |  for R2TSN 0     |   DataSN = 0, F=1     |                      |
  +------------------+-----------------------+----------------------+
  |                  |   <<< SCSI Response   |Send Status and Sense |
  |                  |                       |                      |
  +------------------+-----------------------+----------------------+
  | Command Complete |                       |                      |
  +------------------+-----------------------+----------------------+

B.4.  CRC Examples

  N.B.  all Values are Hexadecimal

  32 bytes of zeroes:

    Byte:        0  1  2  3

       0:       00 00 00 00
     ...
      28:       00 00 00 00

     CRC:       aa 36 91 8a

  32 bytes of ones:

    Byte:        0  1  2  3

       0:       ff ff ff ff
     ...
      28:       ff ff ff ff




Satran, et al.              Standards Track                   [Page 217]

RFC 3720                         iSCSI                        April 2004


     CRC:       43 ab a8 62

  32 bytes of incrementing 00..1f:

    Byte:        0  1  2  3

       0:       00 01 02 03
     ...
      28:       1c 1d 1e 1f

     CRC:       4e 79 dd 46

  32 bytes of decrementing 1f..00:

    Byte:        0  1  2  3

       0:       1f 1e 1d 1c
     ...
      28:       03 02 01 00

     CRC:       5c db 3f 11

  An iSCSI - SCSI Read (10) Command PDU

   Byte:        0  1  2  3

      0:       01 c0 00 00
      4:       00 00 00 00
      8:       00 00 00 00
     12:       00 00 00 00
     16:       14 00 00 00
     20:       00 00 04 00
     24:       00 00 00 14
     28:       00 00 00 18
     32:       28 00 00 00
     36:       00 00 00 00
     40:       02 00 00 00
     44:       00 00 00 00

    CRC:       56 3a 96 d9











Satran, et al.              Standards Track                   [Page 218]

RFC 3720                         iSCSI                        April 2004


Appendix C.  Login Phase Examples

  In the first example, the initiator and target authenticate each
  other via Kerberos:

    I-> Login (CSG,NSG=0,1 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,SRP,None

    T-> Login (CSG,NSG=0,0 T=0)
        AuthMethod=KRB5

    I-> Login (CSG,NSG=0,1 T=1)
        KRB_AP_REQ=<krb_ap_req>

    (krb_ap_req contains the Kerberos V5 ticket and authenticator
       with MUTUAL-REQUIRED set in the ap-options field)

    If the authentication is successful, the target proceeds with:

    T-> Login (CSG,NSG=0,1 T=1)
        KRB_AP_REP=<krb_ap_rep>

    (krb_ap_rep is the Kerberos V5 mutual authentication reply)

    If the authentication is successful, the initiator may proceed
       with:

    I-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=8192
    T-> Login (CSG,NSG=1,0 T=0) FirstBurstLength=4096
         MaxBurstLength=8192
    I-> Login (CSG,NSG=1,0 T=0) MaxBurstLength=8192
        ... more iSCSI Operational Parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... more iSCSI Operational Parameters

    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"







Satran, et al.              Standards Track                   [Page 219]

RFC 3720                         iSCSI                        April 2004


    If the initiator's authentication by the target is not
         successful, the target responds with:

    T-> Login "login reject"

    instead of the Login KRB_AP_REP message, and terminates the
       connection.

    If the target's authentication by the initiator is not
      successful, the initiator terminates the connection (without
      responding to the Login KRB_AP_REP message).

  In the next example only the initiator is authenticated by the
  target via Kerberos:

    I-> Login (CSG,NSG=0,1 T=1)
       InitiatorName=iqn.1999-07.com.os:hostid.77
       TargetName=iqn.1999-07.com.example:diskarray.sn.88
       AuthMethod=SRP,KRB5,None

    T-> Login-PR (CSG,NSG=0,0 T=0)
       AuthMethod=KRB5

    I-> Login (CSG,NSG=0,1 T=1)
        KRB_AP_REQ=krb_ap_req

    (MUTUAL-REQUIRED not set in the ap-options field of krb_ap_req)

    If the authentication is successful, the target proceeds with:

    T-> Login (CSG,NSG=0,1 T=1)

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    . . .

    T-> Login (CSG,NSG=1,3 T=1)"login accept"










Satran, et al.              Standards Track                   [Page 220]

RFC 3720                         iSCSI                        April 2004


  In the next example, the initiator and target authenticate each
  other via SPKM1:

    I-> Login (CSG,NSG=0,1 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=SPKM1,KRB5,None

    T-> Login (CSG,NSG=0,0 T=0)
        AuthMethod=SPKM1

    I-> Login (CSG,NSG=0,0 T=0)
        SPKM_REQ=<spkm-req>

    (spkm-req is the SPKM-REQ token with the mutual-state bit in the
      options field of the REQ-TOKEN set)

    T-> Login (CSG,NSG=0,0 T=0)
        SPKM_REP_TI=<spkm-rep-ti>

    If the authentication is successful, the initiator proceeds:

    I-> Login (CSG,NSG=0,1 T=1)
        SPKM_REP_IT=<spkm-rep-it>

    If the authentication is successful, the target proceeds with:

    T-> Login (CSG,NSG=0,1 T=1)

    The initiator may proceed:

    I-> Login  (CSG,NSG=1,0 T=0) ... iSCSI parameters
    T-> Login  (CSG,NSG=1,0 T=0) ... iSCSI parameters

    And at the end:

    I-> Login  (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"


    If the target's authentication by the initiator is not
         successful, the initiator terminates the connection (without
         responding to the Login SPKM_REP_TI message).






Satran, et al.              Standards Track                   [Page 221]

RFC 3720                         iSCSI                        April 2004


    If the initiator's authentication by the target is not
         successful, the target responds with:

    T-> Login "login reject"

    instead of the Login "proceed and change stage" message, and
         terminates the connection.


  In the next example, the initiator and target authenticate each
  other via SPKM2:

    I-> Login (CSG,NSG=0,0 T=0)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
              AuthMethod=SPKM1,SPKM2

    T-> Login-PR (CSG,NSG=0,0 T=0)
        AuthMethod=SPKM2

    I-> Login (CSG,NSG=0,1 T=1)
        SPKM_REQ=<spkm-req>

    (spkm-req is the SPKM-REQ token with the mutual-state bit in the
         options field of the REQ-TOKEN not set)

    If the authentication is successful, the target proceeds with:

    T-> Login (CSG,NSG=0,1 T=1)

    The initiator may proceed:

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    And at the end:

    I-> Login  (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"







Satran, et al.              Standards Track                   [Page 222]

RFC 3720                         iSCSI                        April 2004


  In the next example, the initiator and target authenticate each
  other via SRP:

    I-> Login (CSG,NSG=0,1 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,SRP,None

    T-> Login-PR (CSG,NSG=0,0 T=0)
        AuthMethod=SRP

    I-> Login (CSG,NSG=0,0 T=0)
        SRP_U=<user>
        TargetAuth=Yes

    T-> Login (CSG,NSG=0,0 T=0)
        SRP_GROUP=SRP-1536,SRP-1024
        SRP_s=<s>

    I-> Login (CSG,NSG=0,0 T=0)
        SRP_GROUP=SRP-1536
        SRP_A=<A>

    T-> Login (CSG,NSG=0,0 T=0)
        SRP_B=<B>

    I-> Login (CSG,NSG=0,1 T=1)
        SRP_M=<M>

    If the initiator authentication is successful, the target
      proceeds:

    T-> Login (CSG,NSG=0,1 T=1)
        SRP_HM=<H(A | M | K)>

     Where N, g, s, A, B, M, and H(A | M | K) are defined in [RFC2945].

    If the target authentication is not successful, the initiator
         terminates the connection; otherwise, it proceeds.

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters






Satran, et al.              Standards Track                   [Page 223]

RFC 3720                         iSCSI                        April 2004


    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login  (CSG,NSG=1,3 T=1) "login accept"

    If the initiator authentication is not successful, the target
         responds with:

    T-> Login "login reject"

    Instead of the T-> Login SRP_HM=<H(A | M | K)>  message and
         terminates the connection.

  In the next example, the initiator and target authenticate each
  other via SRP:

    I-> Login (CSG,NSG=0,1 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,SRP,None

    T-> Login-PR (CSG,NSG=0,0 T=0)
        AuthMethod=SRP

    I-> Login (CSG,NSG=0,0 T=0)
        SRP_U=<user>
        TargetAuth=No

     T-> Login (CSG,NSG=0,0 T=0)
         SRP_GROUP=SRP-1536
         SRP_s=<s>

    I-> Login (CSG,NSG=0,0 T=0)
        SRP_GROUP=SRP-1536
        SRP_A=<A>

    T-> Login (CSG,NSG=0,0 T=0)
        SRP_B=<B>

    I-> Login (CSG,NSG=0,1 T=1)
        SRP_M=<M>

    If the initiator authentication is successful, the target
         proceeds:

    T-> Login (CSG,NSG=0,1 T=1)



Satran, et al.              Standards Track                   [Page 224]

RFC 3720                         iSCSI                        April 2004



    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"

  In the next example the initiator and target authenticate each other
  via CHAP:

    I-> Login (CSG,NSG=0,0 T=0)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,CHAP,None

    T-> Login-PR (CSG,NSG=0,0 T=0)
        AuthMethod=CHAP

    I-> Login (CSG,NSG=0,0 T=0)
        CHAP_A=<A1,A2>

    T-> Login (CSG,NSG=0,0 T=0)
        CHAP_A=<A1>
        CHAP_I=<I>
        CHAP_C=<C>

    I-> Login (CSG,NSG=0,1 T=1)
        CHAP_N=<N>
        CHAP_R=<R>
        CHAP_I=<I>
        CHAP_C=<C>













Satran, et al.              Standards Track                   [Page 225]

RFC 3720                         iSCSI                        April 2004


    If the initiator authentication is successful, the target
      proceeds:

    T-> Login (CSG,NSG=0,1 T=1)
        CHAP_N=<N>
        CHAP_R=<R>

    If the target authentication is not successful, the initiator
      aborts the connection; otherwise, it proceeds.

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters
    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"

    If the initiator authentication is not successful, the target
      responds with:

    T-> Login "login reject"

    Instead of the Login CHAP_R=<response> "proceed and change
      stage" message and terminates the connection.

  In the next example, only the initiator is authenticated by the
  target via CHAP:

    I-> Login (CSG,NSG=0,1 T=0)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,CHAP,None

    T-> Login-PR (CSG,NSG=0,0 T=0)
        AuthMethod=CHAP

    I-> Login (CSG,NSG=0,0 T=0)
        CHAP_A=<A1,A2>








Satran, et al.              Standards Track                   [Page 226]

RFC 3720                         iSCSI                        April 2004


    T-> Login (CSG,NSG=0,0 T=0)
        CHAP_A=<A1>
        CHAP_I=<I>
        CHAP_C=<C>

    I-> Login (CSG,NSG=0,1 T=1)
        CHAP_N=<N>
        CHAP_R=<R>

    If the initiator authentication is successful, the target
      proceeds:

    T-> Login (CSG,NSG=0,1 T=1)

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"

  In the next example, the initiator does not offer any security
  parameters. It therefore may offer iSCSI parameters on the Login PDU
  with the T bit set to 1, and the target may respond with a final
  Login Response PDU immediately:

    I-> Login (CSG,NSG=1,3 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"
        ... ISCSI parameters

    In the next example, the initiator does offer security
      parameters on the Login PDU, but the target does not choose
      any (i.e., chooses the "None" values):

    I-> Login (CSG,NSG=0,1 T=1)
        InitiatorName=iqn.1999-07.com.os:hostid.77
        TargetName=iqn.1999-07.com.example:diskarray.sn.88
        AuthMethod=KRB5,SRP,None



Satran, et al.              Standards Track                   [Page 227]

RFC 3720                         iSCSI                        April 2004



    T-> Login-PR (CSG,NSG=0,1 T=1)
        AuthMethod=None

    I-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    T-> Login (CSG,NSG=1,0 T=0)
        ... iSCSI parameters

    And at the end:

    I-> Login (CSG,NSG=1,3 T=1)
        optional iSCSI parameters

    T-> Login (CSG,NSG=1,3 T=1) "login accept"



































Satran, et al.              Standards Track                   [Page 228]

RFC 3720                         iSCSI                        April 2004


Appendix D.  SendTargets Operation

  To reduce the amount of configuration required on an initiator, iSCSI
  provides the SendTargets text request.  The initiator uses the
  SendTargets request to get a list of targets to which it may have
  access, as well as the list of addresses (IP address and TCP port) on
  which these targets may be accessed.

  To make use of SendTargets, an initiator must first establish one of
  two types of sessions.  If the initiator establishes the session
  using the key "SessionType=Discovery", the session is a discovery
  session, and a target name does not need to be specified.  Otherwise,
  the session is a normal, operational session.  The SendTargets
  command MUST only be sent during the Full Feature Phase of a normal
  or discovery session.

  A system that contains targets MUST support discovery sessions on
  each of its iSCSI IP address-port pairs, and MUST support the
  SendTargets command on the discovery session.  In a discovery
  session, a target MUST return all path information (target name and
  IP address-port pairs and portal group tags) for the targets on the
  target network entity which the requesting initiator is authorized to
  access.

  A target MUST support the SendTargets command on operational
  sessions; these will only return path information about the target to
  which the session is connected, and do not need to return information
  about other target names that may be defined in the responding
  system.

  An initiator MAY make use of the SendTargets as it sees fit.

  A SendTargets command consists of a single Text request PDU.  This
  PDU contains exactly one text key and value.  The text key MUST be
  SendTargets.  The expected response depends upon the value, as well
  as whether the session is a discovery or operational session.

  The value must be one of:

    All

    The initiator is requesting that information on all relevant
      targets known to the implementation be returned.  This value
      MUST be supported on a discovery session, and MUST NOT be
      supported on an operational session.






Satran, et al.              Standards Track                   [Page 229]

RFC 3720                         iSCSI                        April 2004


    <iSCSI-target-name>

    If an iSCSI target name is specified, the session should respond
     with addresses for only the named target, if possible.  This
     value MUST be supported on discovery sessions.  A discovery
     session MUST be capable of returning addresses for those
     targets that would have been returned had value=All had been
     designated.

    <nothing>

    The session should only respond with addresses for the target to
      which the session is logged in.  This MUST be supported on
      operational sessions, and MUST NOT return targets other than
      the one to which the session is logged in.

  The response to this command is a text response that contains a list
  of zero or more targets and, optionally, their addresses.  Each
  target is returned as a target record.  A target record begins with
  the TargetName text key, followed by a list of TargetAddress text
  keys, and bounded by the end of the text response or the next
  TargetName key, which begins a new record.  No text keys other than
  TargetName and TargetAddress are permitted within a SendTargets
  response.

  For the format of the TargetName, see Section 12.4 TargetName.

  In a discovery session, a target MAY respond to a SendTargets request
  with its complete list of targets, or with a list of targets that is
  based on the name of the initiator logged in to the session.

  A SendTargets response MUST NOT contain target names if there are no
  targets for the requesting initiator to access.

  Each target record returned includes zero or more TargetAddress
  fields.

  Each target record starts with one text key of the form:

    TargetName=<target-name-goes-here>

  Followed by zero or more address keys of the form:

    TargetAddress=<hostname-or-ipaddress>[:<tcp-port>],
      <portal-group-tag>

  The hostname-or-ipaddress contains a domain name, IPv4 address, or
  IPv6 address, as specified for the TargetAddress key.



Satran, et al.              Standards Track                   [Page 230]

RFC 3720                         iSCSI                        April 2004


  A hostname-or-ipaddress duplicated in TargetAddress responses for a
  given node (the port is absent or equal) would probably indicate that
  multiple address families are in use at once (IPV6 and IPV4).

  Each TargetAddress belongs to a portal group, identified by its
  numeric portal group tag (as in Section 12.9 TargetPortalGroupTag).
  The iSCSI target name, together with this tag, constitutes the SCSI
  port identifier; the tag only needs to be unique within a given
  target's name list of addresses.

  Multiple-connection sessions can span iSCSI addresses that belong to
  the same portal group.

  Multiple-connection sessions cannot span iSCSI addresses that belong
  to different portal groups.

  If a SendTargets response reports an iSCSI address for a target, it
  SHOULD also report all other addresses in its portal group in the
  same response.

  A SendTargets text response can be longer than a single Text Response
  PDU, and makes use of the long text responses as specified.

  After obtaining a list of targets from the discovery target session,
  an iSCSI initiator may initiate new sessions to log in to the
  discovered targets for full operation.  The initiator MAY keep the
  discovery session open, and MAY send subsequent SendTargets commands
  to discover new targets.

  Examples:

  This example is the SendTargets response from a single target that
  has no other interface ports.

  Initiator sends text request that contains:

        SendTargets=All

  Target sends a text response that contains:

        TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

  All the target had to return in the simple case was the target name.
  It is assumed by the initiator that the IP address and TCP port for
  this target are the same as used on the current connection to the
  default iSCSI target.





Satran, et al.              Standards Track                   [Page 231]

RFC 3720                         iSCSI                        April 2004


  The next example has two internal iSCSI targets, each accessible via
  two different ports with different IP addresses.  The following is
  the text response:

     TargetName=iqn.1993-11.com.example:diskarray.sn.8675309
     TargetAddress=10.1.0.45:3000,1 TargetAddress=10.1.1.45:3000,2
     TargetName=iqn.1993-11.com.example:diskarray.sn.1234567
     TargetAddress=10.1.0.45:3000,1 TargetAddress=10.1.1.45:3000,2

  Both targets share both addresses; the multiple addresses are likely
  used to provide multi-path support.  The initiator may connect to
  either target name on either address.  Each of the addresses has its
  own portal group tag; they do not support spanning
  multiple-connection sessions with each other.  Keep in mind that the
  portal group tags for the two named targets are independent of one
  another; portal group "1" on the first target is not necessarily the
  same as portal group "1" on the second target.

  In the above example, a DNS host name or an IPv6 address could have
  been returned instead of an IPv4 address.

  The next text response shows a target that supports spanning sessions
  across multiple addresses, and further illustrates the use of the
  portal group tags:

      TargetName=iqn.1993-11.com.example:diskarray.sn.8675309

     TargetAddress=10.1.0.45:3000,1 TargetAddress=10.1.1.46:3000,1
     TargetAddress=10.1.0.47:3000,2 TargetAddress=10.1.1.48:3000,2
     TargetAddress=10.1.1.49:3000,3

  In this example, any of the target addresses can be used to reach the
  same target.  A single-connection session can be established to any
  of these TCP addresses.  A multiple-connection session could span
  addresses .45 and .46 or .47 and .48, but cannot span any other
  combination.  A TargetAddress with its own tag (.49) cannot be
  combined with any other address within the same session.

  This SendTargets response does not indicate whether .49 supports
  multiple connections per session; it is communicated via the
  MaxConnections text key upon login to the target.










Satran, et al.              Standards Track                   [Page 232]

RFC 3720                         iSCSI                        April 2004


Appendix E.  Algorithmic Presentation of Error Recovery Classes

  This appendix illustrates the error recovery classes using a
  pseudo-programming-language.  The procedure names are chosen to be
  obvious to most implementers.  Each of the recovery classes described
  has initiator procedures as well as target procedures.  These
  algorithms focus on outlining the mechanics of error recovery
  classes, and do not exhaustively describe all other aspects/cases.
  Examples of this approach are:


     -  Handling for only certain Opcode types is shown.

     -  Only certain reason codes (e.g., Recovery in Logout command)
        are outlined.

     -  Resultant cases, such as recovery of Synchronization on a
        header digest error are considered out-of-scope in these
        algorithms.  In this particular example, a header digest error
        may lead to connection recovery if some type of sync and
        steering layer is not implemented.

  These algorithms strive to convey the iSCSI error recovery concepts
  in the simplest terms, and are not designed to be optimal.

E.1.  General Data Structure and Procedure Description

  This section defines the procedures and data structures that are
  commonly used by all the error recovery algorithms.  The structures
  may not be the exhaustive representations of what is required for a
  typical implementation.

  Data structure definitions -
  struct TransferContext {
          int TargetTransferTag;
          int ExpectedDataSN;
  };

  struct TCB {              /* task control block */
          Boolean SoFarInOrder;
          int ExpectedDataSN; /* used for both R2Ts, and Data */
          int MissingDataSNList[MaxMissingDPDU];
          Boolean FbitReceived;
          Boolean StatusXferd;
          Boolean CurrentlyAllegiant;
          int ActiveR2Ts;
          int Response;
          char *Reason;



Satran, et al.              Standards Track                   [Page 233]

RFC 3720                         iSCSI                        April 2004


          struct TransferContext
                      TransferContextList[MaxOutStandingR2T];
          int InitiatorTaskTag;
          int CmdSN;

          int SNACK_Tag;

  };

  struct Connection {
          struct Session SessionReference;
          Boolean SoFarInOrder;
          int CID;
          int State;

          int CurrentTimeout;
          int ExpectedStatSN;
          int MissingStatSNList[MaxMissingSPDU];
          Boolean PerformConnectionCleanup;
  };

  struct Session {
          int NumConnections;
          int CmdSN;
          int Maxconnections;
          int ErrorRecoveryLevel;
          struct iSCSIEndpoint OtherEndInfo;
          struct Connection ConnectionList[MaxSupportedConns];
  };

  Procedure descriptions -
  Receive-a-In-PDU(transport connection, inbound PDU);
  check-basic-validity(inbound PDU);
  Start-Timer(timeout handler, argument, timeout value);
  Build-And-Send-Reject(transport connection, bad PDU, reason code);

E.2.  Within-command Error Recovery Algorithms

E.2.1.  Procedure Descriptions

  Recover-Data-if-Possible(last required DataSN, task control
  block);
  Build-And-Send-DSnack(task control block);
  Build-And-Send-RDSnack(task control block);
  Build-And-Send-Abort(task control block);
  SCSI-Task-Completion(task control block);
  Build-And-Send-A-Data-Burst(transport connection, data-descriptor,
                                                task control block);



Satran, et al.              Standards Track                   [Page 234]

RFC 3720                         iSCSI                        April 2004


  Build-And-Send-R2T(transport connection, data-descriptor,
                                               task control block);
  Build-And-Send-Status(transport connection, task control block);
  Transfer-Context-Timeout-Handler(transfer context);


  Notes:

     -  One procedure used in this section: Handle-Status-SNACK-
        request is defined in Within-connection recovery algorithms.

     -  The Response processing pseudo-code, shown in the target
        algorithms, applies to all solicited PDUs that carry StatSN -
        SCSI Response, Text Response etc.

E.2.2.  Initiator Algorithms

Recover-Data-if-Possible(LastRequiredDataSN, TCB)
{
 if (operational ErrorRecoveryLevel > 0) {
      if (# of missing PDUs is trackable) {
            Note the missing DataSNs in TCB.
            if (the task spanned a change in
                      MaxRecvDataSegmentLength) {
                 if (TCB.StatusXferd is TRUE)
                    drop the status PDU;
                 Build-And-Send-RDSnack(TCB);
            } else {
                 Build-And-Send-DSnack(TCB);
            }
      } else {
          TCB.Reason = "Protocol service CRC error";
          }
 } else {
       TCB.Reason = "Protocol service CRC error";
 }
 if (TCB.Reason == "Protocol service CRC error") {
       Clear the missing PDU list in the TCB.
       if (TCB.StatusXferd is not TRUE)
          Build-And-Send-Abort(TCB);
 }
}

Receive-a-In-PDU(Connection, CurrentPDU)
{
 check-basic-validity(CurrentPDU);
 if (Header-Digest-Bad) discard, return;
 Retrieve TCB for CurrentPDU.InitiatorTaskTag.



Satran, et al.              Standards Track                   [Page 235]

RFC 3720                         iSCSI                        April 2004


 if ((CurrentPDU.type == Data)
             or (CurrentPDU.type = R2T)) {
    if (Data-Digest-Bad for Data) {
          send-data-SNACK = TRUE;
      LastRequiredDataSN = CurrentPDU.DataSN;
        } else {
          if (TCB.SoFarInOrder = TRUE) {
              if (current DataSN is expected) {
                   Increment TCB.ExpectedDataSN.
              } else {

                   TCB.SoFarInOrder = FALSE;
                   send-data-SNACK = TRUE;
                  }
          } else {
                 if (current DataSN was considered missing) {
                     remove current DataSN from missing PDU list.
                 } else if (current DataSN is higher than expected)
{
                       send-data-SNACK = TRUE;
                  } else {
                        discard, return;
                  }
                  Adjust TCB.ExpectedDataSN if appropriate.
          }
          LastRequiredDataSN = CurrentPDU.DataSN - 1;
       }
       if (send-data-SNACK is TRUE and
              task is not already considered failed) {
          Recover-Data-if-Possible(LastRequiredDataSN, TCB);
    }
       if (missing data PDU list is empty) {
          TCB.SoFarInOrder = TRUE;
       }
    if (CurrentPDU.type == R2T) {
       Increment ActiveR2Ts for this task.

       Create a data-descriptor for the data burst.
       Build-And-Send-A-Data-Burst(Connection, data-descriptor,

                                               TCB);
    }
 } else if (CurrentPDU.type == Response) {
    if (Data-Digest-Bad) {
          send-status-SNACK = TRUE;
       } else {
       TCB.StatusXferd = TRUE;
       Store the status information in TCB.



Satran, et al.              Standards Track                   [Page 236]

RFC 3720                         iSCSI                        April 2004


       if (ExpDataSN does not match) {
            TCB.SoFarInOrder = FALSE;
            Recover-Data-if-Possible(current DataSN, TCB);
       }
          if (missing data PDU list is empty) {
               TCB.SoFarInOrder = TRUE;
          }
    }
 } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT
             SHOWN */
 }
 if ((TCB.SoFarInOrder == TRUE) and
                       (TCB.StatusXferd == TRUE)) {
    SCSI-Task-Completion(TCB);
 }
}

E.2.3.  Target Algorithms

Receive-a-In-PDU(Connection, CurrentPDU)
{
 check-basic-validity(CurrentPDU);
 if (Header-Digest-Bad) discard, return;
 Retrieve TCB for CurrentPDU.InitiatorTaskTag.
 if (CurrentPDU.type == Data) {
     Retrieve TContext from CurrentPDU.TargetTransferTag;
     if (Data-Digest-Bad) {
           Build-And-Send-Reject(Connection, CurrentPDU,
                             Payload-Digest-Error);
        Note the missing data PDUs in MissingDataRange[].
           send-recovery-R2T = TRUE;
        } else {
        if (current DataSN is not expected) {
            Note the missing data PDUs in MissingDataRange[].
               send-recovery-R2T = TRUE;
           }
        if (CurrentPDU.Fbit == TRUE) {
            if (current PDU is solicited) {
                   Decrement TCB.ActiveR2Ts.
            }
            if ((current PDU is unsolicited and
                   data received is less than I/O length and
                     data received is less than FirstBurstLength)
                or (current PDU is solicited and the length of
                     this burst is less than expected)) {
                send-recovery-R2T = TRUE;
                Note the missing data in MissingDataRange[].
            }



Satran, et al.              Standards Track                   [Page 237]

RFC 3720                         iSCSI                        April 2004


           }
        }
        Increment TContext.ExpectedDataSN.
     if (send-recovery-R2T is TRUE  and
               task is not already considered failed) {
        if (operational ErrorRecoveryLevel > 0) {
            Increment TCB.ActiveR2Ts.
            Create a data-descriptor for the data burst
                       from MissingDataRange.
            Build-And-Send-R2T(Connection, data-descriptor, TCB);
        } else {
             if (current PDU is the last unsolicited)
                TCB.Reason = "Not enough unsolicited data";
             else
                 TCB.Reason = "Protocol service CRC error";
        }
     }
     if (TCB.ActiveR2Ts == 0) {
        Build-And-Send-Status(Connection, TCB);
     }
 } else if (CurrentPDU.type == SNACK) {
     snack-failure = FALSE;
     if (operational ErrorRecoveryLevel > 0) {
        if (CurrentPDU.type == Data/R2T) {
             if (the request is satisfiable) {

                if (request for Data) {
                   Create a data-descriptor for the data burst
                       from BegRun and RunLength.
                   Build-And-Send-A-Data-Burst(Connection,

                                 data-descriptor, TCB);
                } else { /* R2T */
                   Create a data-descriptor for the data burst
                       from BegRun and RunLength.
                   Build-And-Send-R2T(Connection, data-descriptor,
                                  TCB);
                 }
             } else {
                   snack-failure = TRUE;
             }
        } else if (CurrentPDU.type == status) {
             Handle-Status-SNACK-request(Connection, CurrentPDU);
        } else if (CurrentPDU.type == DataACK) {
             Consider all data upto CurrentPDU.BegRun as
             acknowledged.
             Free up the retransmission resources for that data.
        } else if (CurrentPDU.type == R-Data SNACK) {



Satran, et al.              Standards Track                   [Page 238]

RFC 3720                         iSCSI                        April 2004


                Create a data descriptor for a data burst covering
                all unacknowledged data.
             Build-And-Send-A-Data-Burst(Connection,
                                 data-descriptor, TCB);
             TCB.SNACK_Tag = CurrentPDU.SNACK_Tag;
             if (there's no more data to send) {
                Build-And-Send-Status(Connection, TCB);
             }
        }
     } else { /* operational ErrorRecoveryLevel = 0 */
             snack-failure = TRUE;

     }
     if (snack-failure == TRUE) {
         Build-And-Send-Reject(Connection, CurrentPDU,
                                                 SNACK-Reject);
         if (TCB.StatusXferd != TRUE) {
             TCB.Reason = "SNACK Rejected";
             Build-And-Send-Status(Connection, TCB);
         }
     }

 } else { /* REST UNRELATED TO WITHIN-COMMAND-RECOVERY, NOT SHOWN */
 }
}

Transfer-Context-Timeout-Handler(TContext)
{
 Retrieve TCB and Connection from TContext.
 Decrement TCB.ActiveR2Ts.
 if (operational ErrorRecoveryLevel > 0 and
               task is not already considered failed) {
     Note the missing data PDUs in MissingDataRange[].
     Create a data-descriptor for the data burst
                       from MissingDataRange[].
     Build-And-Send-R2T(Connection, data-descriptor, TCB);
 } else {
     TCB.Reason = "Protocol service CRC error";
     if (TCB.ActiveR2Ts = 0) {
        Build-And-Send-Status(Connection, TCB);
     }
 }
}








Satran, et al.              Standards Track                   [Page 239]

RFC 3720                         iSCSI                        April 2004


E.3.  Within-connection Recovery Algorithms

E.3.1.  Procedure Descriptions

Procedure descriptions:
Recover-Status-if-Possible(transport connection,
                                   currently received PDU);
Evaluate-a-StatSN(transport connection, currently received PDU);
Retransmit-Command-if-Possible(transport connection, CmdSN);
Build-And-Send-SSnack(transport connection);
Build-And-Send-Command(transport connection, task control block);
Command-Acknowledge-Timeout-Handler(task control block);
Status-Expect-Timeout-Handler(transport connection);
Build-And-Send-Nop-Out(transport connection);
Handle-Status-SNACK-request(transport connection, status SNACK
PDU);
Retransmit-Status-Burst(status SNACK, task control block);
Is-Acknowledged(beginning StatSN, run length);

Implementation-specific tunables:
InitiatorProactiveSNACKEnabled

  Notes:

     -  The initiator algorithms only deal with unsolicited Nop-In PDUs
        for generating status SNACKs.  A solicited Nop-In PDU has an
        assigned StatSN, which, when out of order, could trigger the
        out of order StatSN handling in Within-command algorithms,
        again leading to Recover-Status-if-Possible.


     -  The pseudo-code shown may result in the retransmission of
        unacknowledged commands in more cases than necessary.  This
        will not, however, affect the correctness of the operation
        because the target is required to discard the duplicate CmdSNs.

     -  The procedure Build-And-Send-Async is defined in the Connection
        recovery algorithms.

     -  The procedure Status-Expect-Timeout-Handler describes how
        initiators may proactively attempt to retrieve the Status if
        they so choose. This procedure is assumed to be triggered much
        before the standard ULP timeout.








Satran, et al.              Standards Track                   [Page 240]

RFC 3720                         iSCSI                        April 2004


E.3.2.  Initiator Algorithms

Recover-Status-if-Possible(Connection, CurrentPDU)
{
 if ((Connection.state == LOGGED_IN) and
                connection is not already considered failed) {
    if (operational ErrorRecoveryLevel > 0) {
       if (# of missing PDUs is trackable) {
             Note the missing StatSNs in Connection
            that were not already requested with SNACK;
         Build-And-Send-SSnack(Connection);
           } else {
             Connection.PerformConnectionCleanup = TRUE;
       }
    } else {
           Connection.PerformConnectionCleanup = TRUE;
    }
    if (Connection.PerformConnectionCleanup == TRUE) {
       Start-Timer(Connection-Cleanup-Handler, Connection, 0);
        }
 }
}

Retransmit-Command-if-Possible(Connection, CmdSN)
{

 if (operational ErrorRecoveryLevel > 0) {
    Retrieve the InitiatorTaskTag, and thus TCB for the CmdSN.
    Build-And-Send-Command(Connection, TCB);
 }
}

Evaluate-a-StatSN(Connection, CurrentPDU)
{
 send-status-SNACK = FALSE;
 if (Connection.SoFarInOrder == TRUE) {
    if (current StatSN is the expected) {
         Increment Connection.ExpectedStatSN.
    } else {
             Connection.SoFarInOrder = FALSE;
             send-status-SNACK = TRUE;
        }
 } else {
    if (current StatSN was considered missing) {
         remove current StatSN from the missing list.
    } else {
             if (current StatSN is higher than expected){
                 send-status-SNACK = TRUE;



Satran, et al.              Standards Track                   [Page 241]

RFC 3720                         iSCSI                        April 2004


             } else {
                 send-status-SNACK = FALSE;
             discard the PDU;
         }
    }
    Adjust Connection.ExpectedStatSN if appropriate.
    if (missing StatSN list is empty) {
         Connection.SoFarInOrder = TRUE;
        }
 }
 return send-status-SNACK;
}

Receive-a-In-PDU(Connection, CurrentPDU)
{
 check-basic-validity(CurrentPDU);
 if (Header-Digest-Bad) discard, return;
 Retrieve TCB for CurrentPDU.InitiatorTaskTag.
 if (CurrentPDU.type == Nop-In) {
       if (the PDU is unsolicited) {
             if (current StatSN is not expected) {
                  Recover-Status-if-Possible(Connection,
                               CurrentPDU);
             }
             if (current ExpCmdSN is not Session.CmdSN) {
                 Retransmit-Command-if-Possible(Connection,
                               CurrentPDU.ExpCmdSN);
             }
       }
 } else if (CurrentPDU.type == Reject) {
       if (it is a data digest error on immediate data) {
             Retransmit-Command-if-Possible(Connection,
                                CurrentPDU.BadPDUHeader.CmdSN);
       }
 } else if (CurrentPDU.type == Response) {
      send-status-SNACK = Evaluate-a-StatSN(Connection,
                                     CurrentPDU);
      if (send-status-SNACK == TRUE)
          Recover-Status-if-Possible(Connection, CurrentPDU);
 } else { /* REST UNRELATED TO WITHIN-CONNECTION-RECOVERY,
           * NOT SHOWN */
 }
}

Command-Acknowledge-Timeout-Handler(TCB)
{
 Retrieve the Connection for TCB.
 Retransmit-Command-if-Possible(Connection, TCB.CmdSN);



Satran, et al.              Standards Track                   [Page 242]

RFC 3720                         iSCSI                        April 2004


}

Status-Expect-Timeout-Handler(Connection)
{
 if (operational ErrorRecoveryLevel > 0) {
     Build-And-Send-Nop-Out(Connection);
 } else if (InitiatorProactiveSNACKEnabled){
     if ((Connection.state == LOGGED_IN) and
            connection is not already considered failed) {
          Build-And-Send-SSnack(Connection);
     }
 }
}

E.3.3.   Target Algorithms

Handle-Status-SNACK-request(Connection, CurrentPDU)
{
 if (operational ErrorRecoveryLevel > 0) {
    if (request for an acknowledged run) {
        Build-And-Send-Reject(Connection, CurrentPDU,
                                          Protocol-Error);
    } else if (request for an untransmitted run) {
        discard, return;
    } else {
        Retransmit-Status-Burst(CurrentPDU, TCB);
    } else {
       Build-And-Send-Async(Connection, DroppedConnection,
                               DefaultTime2Wait,
                               DefaultTime2Retain);
 }
}

E.4.  Connection Recovery Algorithms

E.4.1.  Procedure Descriptions

Build-And-Send-Async(transport connection, reason code,
                                  minimum time, maximum time);
Pick-A-Logged-In-Connection(session);
Build-And-Send-Logout(transport connection, logout connection
                 identifier, reason code);
PerformImplicitLogout(transport connection, logout connection
                 identifier, target information);
PerformLogin(transport connection, target information);
CreateNewTransportConnection(target information);
Build-And-Send-Command(transport connection, task control block);
Connection-Cleanup-Handler(transport connection);



Satran, et al.              Standards Track                   [Page 243]

RFC 3720                         iSCSI                        April 2004


Connection-Resource-Timeout-Handler(transport connection);
Quiesce-And-Prepare-for-New-Allegiance(session, task control
block);
Build-And-Send-Logout-Response(transport connection,
                        CID of connection in recovery, reason
code);
Build-And-Send-TaskMgmt-Response(transport connection,
                      task mgmt command PDU, response code);
Establish-New-Allegiance(task control block, transport
connection);
Schedule-Command-To-Continue(task control block);

Notes:
     - Transport exception conditions, such as unexpected connection
        termination, connection reset, and hung connection while the
        connection is in the full-feature phase, are all assumed to be
        asynchronously signaled to the iSCSI layer using the
        Transport_Exception_Handler procedure.

E.4.2.  Initiator Algorithms

        Receive-a-In-PDU(Connection, CurrentPDU) {
          check-basic-validity(CurrentPDU);
          if (Header-Digest-Bad) discard, return;

          Retrieve TCB from CurrentPDU.InitiatorTaskTag.
          if (CurrentPDU.type == Async) {
              if (CurrentPDU.AsyncEvent == ConnectionDropped) {
                 Retrieve the AffectedConnection for
        CurrentPDU.Parameter1.
                 AffectedConnection.CurrentTimeout =
        CurrentPDU.Parameter3;
                 AffectedConnection.State = CLEANUP_WAIT;
                 Start-Timer(Connection-Cleanup-Handler,
                              AffectedConnection,
        CurrentPDU.Parameter2);
              } else if (CurrentPDU.AsyncEvent == LogoutRequest)) {
                AffectedConnection = Connection;
                AffectedConnection.State = LOGOUT_REQUESTED;
                AffectedConnection.PerformConnectionCleanup = TRUE;
                AffectedConnection.CurrentTimeout =
        CurrentPDU.Parameter3;
                Start-Timer(Connection-Cleanup-Handler,
                              AffectedConnection, 0);
              } else if (CurrentPDU.AsyncEvent == SessionDropped)) {
                for (each Connection) {
                    Connection.State = CLEANUP_WAIT;
                    Connection.CurrentTimeout = CurrentPDU.Parameter3;



Satran, et al.              Standards Track                   [Page 244]

RFC 3720                         iSCSI                        April 2004


                    Start-Timer(Connection-Cleanup-Handler,
                              Connection, CurrentPDU.Parameter2);
                }
                Session.state = FAILED;
              }

          } else if (CurrentPDU.type == LogoutResponse) {
              Retrieve the CleanupConnection for CurrentPDU.CID.
              if (CurrentPDU.Response = failure) {
                 CleanupConnection.State = CLEANUP_WAIT;
              } else {
                  CleanupConnection.State = FREE;
              }
          } else if (CurrentPDU.type == LoginResponse) {
               if (this is a response to an implicit Logout) {
                  Retrieve the CleanupConnection.
                  if (successful) {
                      CleanupConnection.State = FREE;
                      Connection.State = LOGGED_IN;
                  } else {
                       CleanupConnection.State = CLEANUP_WAIT;
                       DestroyTransportConnection(Connection);
                  }
               }
          } else { /* REST UNRELATED TO CONNECTION-RECOVERY,

                    * NOT SHOWN */
          }
          if (CleanupConnection.State == FREE) {
             for (each command that was active on CleanupConnection) {
             /* Establish new connection allegiance */
                  NewConnection = Pick-A-Logged-In-Connection(Session);
                  Build-And-Send-Command(NewConnection, TCB);
              }
          } }

        Connection-Cleanup-Handler(Connection) {
          Retrieve Session from Connection.
          if (Connection can still exchange iSCSI PDUs) {
              NewConnection = Connection;
          } else {
              Start-Timer(Connection-Resource-Timeout-Handler,
                    Connection, Connection.CurrentTimeout);
              if (there are other logged-in connections) {
                   NewConnection = Pick-A-Logged-In-
        Connection(Session);
              } else {
                   NewConnection =



Satran, et al.              Standards Track                   [Page 245]

RFC 3720                         iSCSI                        April 2004


                     CreateTransportConnection(Session.OtherEndInfo);
                   Initiate an implicit Logout on NewConnection for
                                                     Connection.CID.
                   return;
              }
          }
          Build-And-Send-Logout(NewConnection, Connection.CID,
                                              RecoveryRemove); }

        Transport_Exception_Handler(Connection) {
          Connection.PerformConnectionCleanup = TRUE;
          if (the event is an unexpected transport disconnect) {
              Connection.State = CLEANUP_WAIT;

              Connection.CurrentTimeout = DefaultTime2Retain;
              Start-Timer(Connection-Cleanup-Handler, Connection,
                                                DefaultTime2Wait);

          } else {
              Connection.State = FREE;
          } }

E.4.3.  Target Algorithms

        Receive-a-In-PDU(Connection, CurrentPDU)
        {
          check-basic-validity(CurrentPDU);
          if (Header-Digest-Bad) discard, return;
          else if (Data-Digest-Bad) {
                Build-And-Send-Reject(Connection, CurrentPDU,
                                            Payload-Digest-Error);
                discard, return;
          }
          Retrieve TCB and Session.
          if (CurrentPDU.type == Logout) {
             if (CurrentPDU.ReasonCode = RecoveryRemove) {
                 Retrieve the CleanupConnection from CurrentPDU.CID).
                 for (each command active on CleanupConnection) {
                      Quiesce-And-Prepare-for-New-Allegiance(Session,
                                          TCB);
                      TCB.CurrentlyAllegiant = FALSE;
                 }
                 Cleanup-Connection-State(CleanupConnection);
                 if ((quiescing successful) and (cleanup successful)) {
                      Build-And-Send-Logout-Response(Connection,
                                       CleanupConnection.CID, Success);
                 } else {
                      Build-And-Send-Logout-Response(Connection,



Satran, et al.              Standards Track                   [Page 246]

RFC 3720                         iSCSI                        April 2004


                                       CleanupConnection.CID, Failure);
                 }
             }
          } else if ((CurrentPDU.type == Login) and
                             operational ErrorRecoveryLevel == 2) {
                 Retrieve the CleanupConnection from CurrentPDU.CID).
                 for (each command active on CleanupConnection) {
                  Quiesce-And-Prepare-for-New-Allegiance(Session, TCB);
                      TCB.CurrentlyAllegiant = FALSE;
                 }
                 Cleanup-Connection-State(CleanupConnection);
                 if ((quiescing successful) and (cleanup successful)) {
                      Continue with the rest of the Login processing;
                 } else {
                      Build-And-Send-Login-Response(Connection,
                                 CleanupConnection.CID, Target Error);
                 }
             }

          } else if (CurrentPDU.type == TaskManagement) {
               if (CurrentPDU.function == "TaskReassign") {
                     if (Session.ErrorRecoveryLevel < 2) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                             CurrentPDU, "Allegiance reassignment
                                                    not supported");
                     } else if (task is not found) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                             CurrentPDU, "Task not in task set");
                     } else if (task is currently allegiant) {
                        Build-And-Send-TaskMgmt-Response(Connection,
                                  CurrentPDU, "Task still allegiant");
                     } else {
                        Establish-New-Allegiance(TCB, Connection);
                        TCB.CurrentlyAllegiant = TRUE;
                        Schedule-Command-To-Continue(TCB);
                     }
               }
          } else { /* REST UNRELATED TO CONNECTION-RECOVERY,
                    * NOT SHOWN */
          }
        }

        Transport_Exception_Handler(Connection)
        {
          Connection.PerformConnectionCleanup = TRUE;
          if (the event is an unexpected transport disconnect) {
              Connection.State = CLEANUP_WAIT;
              Start-Timer(Connection-Resource-Timeout-Handler,



Satran, et al.              Standards Track                   [Page 247]

RFC 3720                         iSCSI                        April 2004


              Connection,

        (DefaultTime2Wait+DefaultTime2Retain));
                if (this Session has full-feature phase connections
                     left)
        {
                  DifferentConnection =
                     Pick-A-Logged-In-Connection(Session);
                   Build-And-Send-Async(DifferentConnection,
                         DroppedConnection, DefaultTime2Wait,
                           DefaultTime2Retain);
             }
          } else {
              Connection.State = FREE;
          }
        }



































Satran, et al.              Standards Track                   [Page 248]

RFC 3720                         iSCSI                        April 2004


Appendix F.  Clearing Effects of Various Events on Targets

F.1.  Clearing Effects on iSCSI Objects

  The following tables describe the target behavior on receiving the
  events specified in the rows of the table.  The second table is  an
  extension of the first table and defines clearing actions for more
  objects on the same events.  The legend is:

     Y = Yes (cleared/discarded/reset on the event specified in the
         row).  Unless otherwise noted, the clearing action is only
         applicable for the issuing initiator port.
     N = No (not affected on the event specified in the row, i.e.,
         stays at previous value).
     NA = Not Applicable or Not Defined.




































Satran, et al.              Standards Track                   [Page 249]

RFC 3720                         iSCSI                        April 2004


                        +-----+-----+-----+-----+-----+
                        |IT(1)|IC(2)|CT(5)|ST(6)|PP(7)|
  +---------------------+-----+-----+-----+-----+-----+
  |connection failure(8)|Y    |Y    |N    |N    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |connection state     |NA   |NA   |Y    |N    |NA   |
  |timeout (9)          |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session timeout/     |Y    |Y    |Y    |Y    |Y(14)|
  |closure/reinstatement|     |     |     |     |     |
  |(10)                 |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session continuation |NA   |NA   |N(11)|N    |NA   |
  |(12)                 |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |successful connection|Y    |Y    |Y    |N    |Y(13)|
  |close logout         |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session failure (18) |Y    |Y    |N    |N    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |successful recovery  |Y    |Y    |N    |N    |Y(13)|
  |Logout               |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |failed Logout        |Y    |Y    |N    |N    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |connection Login     |NA   |NA   |NA   |Y(15)|NA   |
  |(leading)            |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |connection Login     |NA   |NA   |N(11)|N    |Y    |
  |(non-leading)        |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |target cold reset(16)|Y    |Y    |Y    |Y    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |target warm reset(16)|Y    |Y    |Y    |Y    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |LU reset(19)         |Y    |Y    |Y    |Y    |Y    |
  +---------------------+-----+-----+-----+-----+-----+
  |powercycle(16)       |Y    |Y    |Y    |Y    |Y    |
  +---------------------+-----+-----+-----+-----+-----+

  1.  Incomplete TTTs - Target Transfer Tags on which the target is
  still  expecting PDUs to be received.  Examples include TTTs received
  via R2T, NOP-IN, etc.

  2.  Immediate Commands - immediate commands, but waiting for
  execution on a target.  For example, Abort Task Set.





Satran, et al.              Standards Track                   [Page 250]

RFC 3720                         iSCSI                        April 2004


  5.  Connection Tasks - tasks that are active on the iSCSI connection
  in question.

  6.  Session Tasks - tasks that are active on the entire iSCSI
  session.  A union of "connection tasks" on all participating
  connections.

  7.  Partial PDUs (if any) - PDUs that are partially sent and waiting
  for transport window credit to complete the transmission.

  8.  Connection failure is a connection exception condition - one of
  the transport connections shutdown, transport connections reset, or
  transport connections timed out, which abruptly terminated the iSCSI
  full-feature phase connection.  A connection failure always takes the
  connection state machine to the CLEANUP_WAIT state.

  9.  Connection state timeout happens if a connection spends more time
  that agreed upon during Login negotiation in the CLEANUP_WAIT state,
  and this takes the connection to the FREE state (M1 transition in
  connection cleanup state diagram).

  10.  These are defined in Section 5.3.5 Session Reinstatement,
  Closure, and Timeout.

  11.  This clearing effect is "Y" only if it is a connection
  reinstatement and the operational ErrorRecoveryLevel is less than 2.

  12.  Session continuation is defined in Section 5.3.6 Session
  Continuation and Failure.

  13.  This clearing effect is only valid if the connection is being
  logged out on a different connection and when the connection being
  logged out on the target may have some partial PDUs pending to be
  sent.  In all other cases, the effect is "NA".

  14.  This clearing effect is only valid for a "close the session"
  logout in a multi-connection session.  In all other cases, the effect
  is "NA".

  15.  Only applicable if this leading connection login is a session
  reinstatement.  If this is not the case, it is "NA".

  16.  This operation affects all logged-in initiators.

  18.  Session failure is defined in Section 5.3.6 Session Continuation
  and Failure.





Satran, et al.              Standards Track                   [Page 251]

RFC 3720                         iSCSI                        April 2004


  19.  This operation affects all logged-in initiators and the clearing
  effects are only applicable to the LU being reset.

                        +-----+-----+-----+-----+-----+
                        |DC(1)|DD(2)|SS(3)|CS(4)|DS(5)|
  +---------------------+-----+-----+-----+-----+-----+
  |connection failure   |N    |Y    |N    |N    |N    |
  +---------------------+-----+-----+-----+-----+-----+
  |connection state     |Y    |NA   |Y    |N    |NA   |
  |timeout              |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session timeout/     |Y    |Y    |Y(7) |Y    |NA   |
  |closure/reinstatement|     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session continuation |N(11)|NA*12|NA   |N    |NA*13|
  +---------------------+-----+-----+-----+-----+-----+
  |successful connection|Y    |Y    |Y    |N    |NA   |
  |close Logout         |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |session failure      |N    |Y    |N    |N    |N    |
  +---------------------+-----+-----+-----+-----+-----+
  |successful recovery  |Y    |Y    |Y    |N    |N    |
  |Logout               |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |failed Logout        |N    |Y(9) |N    |N    |N    |
  +---------------------+-----+-----+-----+-----+-----+
  |connection Login     |NA   |NA   |N(8) |N(8) |NA   |
  |(leading             |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |connection Login     |N(11)|NA*12|N(8) |N    |NA*13|
  |(non-leading)        |     |     |     |     |     |
  +---------------------+-----+-----+-----+-----+-----+
  |target cold reset    |Y    |Y    |Y    |Y(10)|NA   |
  +---------------------+-----+-----+-----+-----+-----+
  |target warm reset    |Y    |Y    |N    |N    |NA   |
  +---------------------+-----+-----+-----+-----+-----+
  |LU reset             |N    |Y    |N    |N    |N    |
  +---------------------+-----+-----+-----+-----+-----+
  |powercycle           |Y    |Y    |Y    |Y(10)|NA   |
  +---------------------+-----+-----+-----+-----+-----+

  1.  Discontiguous Commands - commands allegiant to the connection in
  question and waiting to be reordered in the iSCSI layer.  All "Y"s in
  this column assume that the task causing the event (if indeed the
  event is the result of a task) is issued as an immediate command,
  because the discontiguities can be ahead of the task.





Satran, et al.              Standards Track                   [Page 252]

RFC 3720                         iSCSI                        April 2004


  2.  Discontiguous Data - data PDUs received for the task in question
  and waiting to be reordered due to prior discontiguities in DataSN.

  3.  StatSN

  4.  CmdSN

  5.  DataSN

  7.  It clears the StatSN on all the connections.

  8.  This sequence number is instantiated on this event.

  9.  A logout failure drives the connection state machine to the
  CLEANUP_WAIT state, similar to the connection failure event.  Hence,
  it has a similar effect on this and several other protocol aspects.

  10.  This is cleared by virtue of the fact that all sessions with all
  initiators are terminated.

  11.  This clearing effect is "Y" if it is a connection reinstatement.

  12.  This clearing effect is "Y" only if it is a connection
  reinstatement and the operational ErrorRecoveryLevel is 2.

  13.  This clearing effect is "N" only if it is a connection
  reinstatement and the operational ErrorRecoveryLevel is 2.

F.2.  Clearing Effects on SCSI Objects

  The only iSCSI protocol action that can effect clearing actions on
  SCSI objects is the "I_T nexus loss" notification (Section 4.3.5.1
  Loss of Nexus notification).  [SPC3] describes the clearing effects
  of this notification on a variety of SCSI attributes.  In addition,
  SCSI standards documents (such as [SAM2] and [SBC]) define additional
  clearing actions that may take place for several SCSI objects on SCSI
  events such as LU resets and power-on resets.

  Since iSCSI defines a target cold reset as a protocol-equivalent to a
  target power-cycle, the iSCSI target cold reset must also be
  considered as the power-on reset event in interpreting the actions
  defined in the SCSI standards.

  When the iSCSI session is reconstructed (between the same SCSI ports
  with the same nexus identifier) reestablishing the same I_T nexus,
  all SCSI objects that are defined to not clear on the "I_T nexus
  loss" notification event, such as persistent reservations, are
  automatically associated to this new session.



Satran, et al.              Standards Track                   [Page 253]

RFC 3720                         iSCSI                        April 2004


Acknowledgements

  This protocol was developed by a design team that, in addition to the
  authors, included Daniel Smith, Ofer Biran, Jim Hafner and John
  Hufferd (IBM), Mark Bakke (Cisco), Randy Haagens (HP), Matt Wakeley
  (Agilent, now Sierra Logic), Luciano Dalle Ore (Quantum), and Paul
  Von Stamwitz (Adaptec, now TrueSAN Networks).

  Furthermore, a large group of people contributed to this work through
  their review, comments, and valuable insights.  We are grateful to
  all of them.  We especially thank those people who found the time and
  patience to take part in our weekly phone conferences and
  intermediate meetings in Almaden and Haifa, which helped shape this
  document: Prasenjit Sarkar, Meir Toledano, John Dowdy, Steve Legg,
  Alain Azagury (IBM), Dave Nagle (CMU), David Black (EMC), John Matze
  (Veritas - now Okapi Software), Steve DeGroote, Mark Schrandt
  (Cisco), Gabi Hecht (Gadzoox), Robert Snively and Brian Forbes
  (Brocade), Nelson Nachum (StorAge), and Uri Elzur (Broadcom).  Many
  others helped edit and improve this document within the IPS working
  group.  We are especially grateful to David Robinson and Raghavendra
  Rao (Sun), Charles Monia, Joshua Tseng (Nishan), Somesh Gupta
  (Silverback), Michael Krause, Pierre Labat, Santosh Rao, Matthew
  Burbridge, Bob Barry, Robert Elliott, Nick Martin (HP), Stephen
  Bailey (Sandburst), Steve Senum, Ayman Ghanem, Dave Peterson (Cisco),
  Barry Reinhold (Trebia Networks), Bob Russell (UNH), Eddy Quicksall
  (iVivity, Inc.), Bill Lynn and Michael Fischer (Adaptec), Vince
  Cavanna, Pat Thaler (Agilent), Jonathan Stone (Stanford), Luben
  Tuikov (Splentec), Paul Koning (EqualLogic), Michael Krueger
  (Windriver), Martins Krikis (Intel), Doug Otis (Sanlight), John
  Marberg (IBM), Robert Griswold and Bill Moody (Crossroads), Bill
  Studenmund (Wasabi Systems), Elizabeth Rodriguez (Brocade) and Yaron
  Klein (Sanrad).  The recovery chapter was enhanced with the help of
  Stephen Bailey (Sandburst), Somesh Gupta (Silverback), and Venkat
  Rangan (Rhapsody Networks).  Eddy Quicksall contributed some examples
  and began the Definitions section.  Michael Fischer and Bob Barry
  started the Acronyms section.  Last, but not least, we thank Ralph
  Weber for keeping us in line with T10 (SCSI) standardization.

  We would like to thank Steve Hetzler for his unwavering support and
  for coming up with such a good name for the protocol, and Micky
  Rodeh, Jai Menon, Clod Barrera, and Andy Bechtolsheim for helping
  make this work happen.

  In addition to this document, we recommend you acquaint yourself with
  the following in order to get a full understanding of the iSCSI
  specification: "iSCSI Naming & Discovery"[RFC3721], "Bootstrapping
  Clients using the iSCSI Protocol" [BOOT], "Securing Block Storage
  Protocols over IP" [RFC3723] documents, "iSCSI Requirements and



Satran, et al.              Standards Track                   [Page 254]

RFC 3720                         iSCSI                        April 2004


  Design Considerations" [RFC3347] and "SCSI Command Ordering
  Considerations with iSCSI" [CORD].

  The "iSCSI Naming & Discovery" document is authored by:

     Mark Bakke (Cisco), Jim Hafner, John Hufferd, Kaladhar Voruganti
        (IBM), and Marjorie Krueger (HP).

  The "Bootstrapping Clients using the iSCSI Protocol" document is
  authored by:

     Prasenjit Sarkar (IBM), Duncan Missimer (HP), and Costa
        Sapuntzakis (Cisco).

  The "Securing Block Storage Protocols over IP" document is authored
  by:

     Bernard Aboba (Microsoft), Joshua Tseng (Nishan), Jesse Walker
        (Intel), Venkat Rangan (Rhapsody Networks), and Franco
        Travostino (Nortel Networks).

  The "iSCSI Requirements and Design Considerations" document is
  authored by:

     Marjorie Krueger, Randy Haagens (HP), Costa Sapuntzakis, and Mark
     Bakke (Cisco).

  The "SCSI Command Ordering Considerations with iSCSI" document is
  authored by:

     Mallikarjun Chadalapaka, Rob Elliot (HP)

  We are grateful to all of them for their good work and for helping us
  correlate this document with the ones they produced.

















Satran, et al.              Standards Track                   [Page 255]

RFC 3720                         iSCSI                        April 2004


Authors' Addresses

  Julian Satran
  IBM Research Laboratory in Haifa
  Haifa University Campus - Mount Carmel
  Haifa 31905, Israel

  Phone +972.4.829.6264
  EMail: [email protected]


  Kalman Meth
  IBM Research Laboratory in Haifa
  Haifa University Campus - Mount Carmel
  Haifa 31905, Israel

  Phone +972.4.829.6341
  EMail: [email protected]


  Costa Sapuntzakis
  Stanford University
  353 Serra Mall Dr #407
  Stanford, CA 94305

  Phone: +1.650.723.2458
  EMail: [email protected]


  Efri Zeidner
  XIV Ltd.
  1 Azrieli Center,
  Tel-Aviv 67021, Israel

  Phone: +972.3.607.4722
  EMail: [email protected]


  Mallikarjun Chadalapaka
  Hewlett-Packard Company
  8000 Foothills Blvd.
  Roseville, CA 95747-5668, USA

  Phone: +1.916.785.5621
  EMail: [email protected]






Satran, et al.              Standards Track                   [Page 256]

RFC 3720                         iSCSI                        April 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).  This document is subject
  to the rights, licenses and restrictions contained in BCP 78, and
  except as set forth therein, the authors retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at ietf-
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.









Satran, et al.              Standards Track                   [Page 257]