Network Working Group                                            S. Legg
Request for Comments: 3687                           Adacel Technologies
Category: Standards Track                                  February 2004


            Lightweight Directory Access Protocol (LDAP)
                  and X.500 Component Matching Rules

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  The syntaxes of attributes in a Lightweight Directory Access Protocol
  (LDAP) or X.500 directory range from simple data types, such as text
  string, integer, or boolean, to complex structured data types, such
  as the syntaxes of the directory schema operational attributes.
  Matching rules defined for the complex syntaxes usually only provide
  the most immediately useful matching capability.  This document
  defines generic matching rules that can match any user selected
  component parts in an attribute value of any arbitrarily complex
  attribute syntax.




















Legg                        Standards Track                     [Page 1]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
  2.  Conventions. . . . . . . . . . . . . . . . . . . . . . . . . .  4
  3.  ComponentAssertion . . . . . . . . . . . . . . . . . . . . . .  5
      3.1.  Component Reference. . . . . . . . . . . . . . . . . . .  6
            3.1.1.  Component Type Substitutions . . . . . . . . . .  7
            3.1.2.  Referencing SET, SEQUENCE and CHOICE Components.  8
            3.1.3.  Referencing SET OF and SEQUENCE OF Components. .  9
            3.1.4.  Referencing Components of Parameterized Types. . 10
            3.1.5.  Component Referencing Example. . . . . . . . . . 10
            3.1.6.  Referencing Components of Open Types . . . . . . 12
                    3.1.6.1. Open Type Referencing Example . . . . . 12
            3.1.7.  Referencing Contained Types. . . . . . . . . . . 14
                    3.1.7.1. Contained Type Referencing Example. . . 14
      3.2.  Matching of Components . . . . . . . . . . . . . . . . . 15
            3.2.1.  Applicability of Existing Matching Rules . . . . 17
                    3.2.1.1. String Matching . . . . . . . . . . . . 17
                    3.2.1.2. Telephone Number Matching . . . . . . . 17
                    3.2.1.3. Distinguished Name Matching . . . . . . 18
            3.2.2.  Additional Useful Matching Rules . . . . . . . . 18
                    3.2.2.1. The rdnMatch Matching Rule. . . . . . . 18
                    3.2.2.2. The presentMatch Matching Rule. . . . . 19
            3.2.3.  Summary of Useful Matching Rules . . . . . . . . 20
  4.  ComponentFilter. . . . . . . . . . . . . . . . . . . . . . . . 21
  5.  The componentFilterMatch Matching Rule . . . . . . . . . . . . 22
  6.  Equality Matching of Complex Components. . . . . . . . . . . . 24
      6.1.  The OpenAssertionType Syntax . . . . . . . . . . . . . . 24
      6.2.  The allComponentsMatch Matching Rule . . . . . . . . . . 25
      6.3.  Deriving Component Equality Matching Rules . . . . . . . 27
      6.4.  The directoryComponentsMatch Matching Rule . . . . . . . 28
  7.  Component Matching Examples. . . . . . . . . . . . . . . . . . 30
  8.  Security Considerations. . . . . . . . . . . . . . . . . . . . 37
  9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 37
  10. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 37
  11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 38
      11.1.  Normative References. . . . . . . . . . . . . . . . . . 38
      11.2.  Informative References. . . . . . . . . . . . . . . . . 40
  12. Intellectual Property Statement. . . . . . . . . . . . . . . . 40
  13. Author's Address . . . . . . . . . . . . . . . . . . . . . . . 41
  14. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 42










Legg                        Standards Track                     [Page 2]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


1.  Introduction

  The structure or data type of data held in an attribute of a
  Lightweight Directory Access Protocol (LDAP) [7] or X.500 [19]
  directory is described by the attribute's syntax.  Attribute syntaxes
  range from simple data types, such as text string, integer, or
  boolean, to complex data types, for example, the syntaxes of the
  directory schema operational attributes.

  In X.500, the attribute syntaxes are explicitly described by Abstract
  Syntax Notation One (ASN.1) [13] type definitions.  ASN.1 type
  notation has a number of simple data types (e.g., PrintableString,
  INTEGER, BOOLEAN), and combining types (i.e., SET, SEQUENCE, SET OF,
  SEQUENCE OF, and CHOICE) for constructing arbitrarily complex data
  types from simpler component types.  In LDAP, the attribute syntaxes
  are usually described in Augmented Backus-Naur Form (ABNF) [2],
  though there is an implied association between the LDAP attribute
  syntaxes and the X.500 ASN.1 types.  To a large extent, the data
  types of attribute values in either an LDAP or X.500 directory are
  described by ASN.1 types.  This formal description can be exploited
  to identify component parts of an attribute value for a variety of
  purposes.  This document addresses attribute value matching.

  With any complex attribute syntax there is normally a requirement to
  partially match an attribute value of that syntax by matching only
  selected components of the value.  Typically, matching rules specific
  to the attribute syntax are defined to fill this need.  These highly
  specific matching rules usually only provide the most immediately
  useful matching capability.  Some complex attribute syntaxes don't
  even have an equality matching rule let alone any additional matching
  rules for partial matching.  This document defines a generic way of
  matching user selected components in an attribute value of any
  arbitrarily complex attribute syntax, where that syntax is described
  using ASN.1 type notation.  All of the type notations defined in
  X.680 [13] are supported.

  Section 3 describes the ComponentAssertion, a testable assertion
  about the value of a component of an attribute value of any complex
  syntax.

  Section 4 introduces the ComponentFilter assertion, which is an
  expression of ComponentAssertions.  The ComponentFilter enables more
  powerful filter matching of components in an attribute value.

  Section 5 defines the componentFilterMatch matching rule, which
  enables a ComponentFilter to be evaluated against attribute values.





Legg                        Standards Track                     [Page 3]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  Section 6 defines matching rules for component-wise equality matching
  of attribute values of any syntax described by an ASN.1 type
  definition.

  Examples showing the usage of componentFilterMatch are in Section 7.

  For a new attribute syntax, the Generic String Encoding Rules [9] and
  the specifications in sections 3 to 6 of this document make it
  possible to fully and precisely define the LDAP-specific encoding,
  the LDAP and X.500 binary encoding (and possibly other ASN.1
  encodings in the future), a suitable equality matching rule, and a
  comprehensive collection of component matching capabilities, by
  simply writing down an ASN.1 type definition for the syntax.  These
  implicit definitions are also automatically extended if the ASN.1
  type is later extended.  The algorithmic relationship between the
  ASN.1 type definition, the various encodings and the component
  matching behaviour makes directory server implementation support for
  the component matching rules amenable to automatic code generation
  from ASN.1 type definitions.

  Schema designers have the choice of storing related items of data as
  a single attribute value of a complex syntax in some entry, or as a
  subordinate entry where the related data items are stored as separate
  attribute values of simpler syntaxes.  The inability to search
  component parts of a complex syntax has been used as an argument for
  favouring the subordinate entries approach.  The component matching
  rules provide the analogous matching capability on an attribute value
  of a complex syntax that a search filter has on a subordinate entry.

  Most LDAP syntaxes have corresponding ASN.1 type definitions, though
  they are usually not reproduced or referenced alongside the formal
  definition of the LDAP syntax.  Syntaxes defined with only a
  character string encoding, i.e., without an explicit or implied
  corresponding ASN.1 type definition, cannot use the component
  matching capabilities described in this document unless and until a
  semantically equivalent ASN.1 type definition is defined for them.

2.  Conventions

  Throughout this document "type" shall be taken to mean an ASN.1 type
  unless explicitly qualified as an attribute type, and "value" shall
  be taken to mean an ASN.1 value unless explicitly qualified as an
  attribute value.








Legg                        Standards Track                     [Page 4]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  Note that "ASN.1 value" does not mean a Basic Encoding Rules (BER)
  [17] encoded value.  The ASN.1 value is an abstract concept that is
  independent of any particular encoding.  BER is just one possible
  encoding of an ASN.1 value.  The component matching rules operate at
  the abstract level without regard for the possible encodings of a
  value.

  Attribute type and matching rule definitions in this document are
  provided in both the X.500 [10] and LDAP [4] description formats.
  Note that the LDAP descriptions have been rendered with additional
  white-space and line breaks for the sake of readability.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED" and "MAY" in this document are
  to be interpreted as described in BCP 14, RFC 2119 [1].  The key word
  "OPTIONAL" is exclusively used with its ASN.1 meaning.

3.  ComponentAssertion

  A ComponentAssertion is an assertion about the presence, or values
  of, components within an ASN.1 value, i.e., an instance of an ASN.1
  type.  The ASN.1 value is typically an attribute value, where the
  ASN.1 type is the syntax of the attribute.  However, a
  ComponentAssertion may also be applied to a component part of an
  attribute value.  The assertion evaluates to either TRUE, FALSE or
  Undefined for each tested ASN.1 value.

  A ComponentAssertion is described by the following ASN.1 type
  (assumed to be defined with "EXPLICIT TAGS" in force):

     ComponentAssertion ::= SEQUENCE {
         component         ComponentReference (SIZE(1..MAX)) OPTIONAL,
         useDefaultValues  BOOLEAN DEFAULT TRUE,
         rule              MATCHING-RULE.&id,
         value             MATCHING-RULE.&AssertionType }

     ComponentReference ::= UTF8String

  MATCHING-RULE.&id equates to the OBJECT IDENTIFIER of a matching
  rule.  MATCHING-RULE.&AssertionType is an open type (formerly known
  as the ANY type).

  The "component" field of a ComponentAssertion identifies which
  component part of a value of some ASN.1 type is to be tested, the
  "useDefaultValues" field indicates whether DEFAULT values are to be
  substituted for absent component values, the "rule" field indicates





Legg                        Standards Track                     [Page 5]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  how the component is to be tested, and the "value" field is an
  asserted ASN.1 value against which the component is tested.  The
  ASN.1 type of the asserted value is determined by the chosen rule.

  The fields of a ComponentAssertion are described in detail in the
  following sections.

3.1.  Component Reference

  The component field in a ComponentAssertion is a UTF-8 character
  string [6] whose textual content is a component reference,
  identifying a component part of some ASN.1 type or value.  A
  component reference conforms to the following ABNF [2], which extends
  the notation defined in Clause 14 of X.680 [13]:

     component-reference = ComponentId *( "." ComponentId )
     ComponentId         = identifier /
                           from-beginning /
                           count /
                           from-end /       ; extends Clause 14
                           content /        ; extends Clause 14
                           select /         ; extends Clause 14
                           all

     identifier          = lowercase *alphanumeric
                              *(hyphen 1*alphanumeric)
     alphanumeric        = uppercase / lowercase / decimal-digit
     uppercase           = %x41-5A  ; "A" to "Z"
     lowercase           = %x61-7A  ; "a" to "z"
     hyphen              = "-"

     from-beginning      = positive-number
     count               = "0"
     from-end            = "-" positive-number
     content             = %x63.6F.6E.74.65.6E.74 ; "content"
     select              = "(" Value *( "," Value ) ")"
     all                 = "*"


     positive-number     = non-zero-digit *decimal-digit

     decimal-digit       = %x30-39  ; "0" to "9"
     non-zero-digit      = %x31-39  ; "1" to "9"








Legg                        Standards Track                     [Page 6]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  An <identifier> conforms to the definition of an identifier in ASN.1
  notation (Clause 11.3 of X.680 [13]).  It begins with a lowercase
  letter and is followed by zero or more letters, digits, and hyphens.
  A hyphen is not permitted to be the last character and a hyphen is
  not permitted to be followed by another hyphen.

  The <Value> rule is described by the Generic String Encoding Rules
  (GSER) [9].

  A component reference is a sequence of one or more ComponentIds where
  each successive ComponentId identifies either an inner component at
  the next level of nesting of an ASN.1 combining type, i.e., SET,
  SEQUENCE, SET OF, SEQUENCE OF, or CHOICE, or a specific type within
  an ASN.1 open type.

  A component reference is always considered in the context of a
  particular complex ASN.1 type.  When applied to the ASN.1 type the
  component reference identifies a specific component type.  When
  applied to a value of the ASN.1 type a component reference identifies
  zero, one or more component values of that component type.  The
  component values are potentially in a DEFAULT value if
  useDefaultValues is TRUE.  The specific component type identified by
  the component reference determines what matching rules are capable of
  being used to match the component values.

  The component field in a ComponentAssertion may also be absent, in
  which case the identified component type is the ASN.1 type to which
  the ComponentAssertion is applied, and the identified component value
  is the whole ASN.1 value.

  A valid component reference for a particular complex ASN.1 type is
  constructed by starting with the outermost combining type and
  repeatedly selecting one of the permissible forms of ComponentId to
  identify successively deeper nested components.  A component
  reference MAY identify a component with a complex ASN.1 type, i.e.,
  it is not required that the component type identified by a component
  reference be a simple ASN.1 type.

3.1.1.  Component Type Substitutions

  ASN.1 type notation has a number of constructs for referencing other
  defined types, and constructs that are irrelevant for matching
  purposes.  These constructs are not represented in a component
  reference in any way and substitutions of the component type are
  performed to eliminate them from further consideration.  These
  substitutions automatically occur prior to each ComponentId, whether
  constructing or interpreting a component reference, but do not occur
  after the last ComponentId, except as allowed by Section 3.2.



Legg                        Standards Track                     [Page 7]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  If the ASN.1 type is an ASN.1 type reference then the component type
  is taken to be the actual definition on the right hand side of the
  type assignment for the referenced type.

  If the ASN.1 type is a tagged type then the component type is taken
  to be the type without the tag.

  If the ASN.1 type is a constrained type (see X.680 [13] and X.682
  [15] for the details of ASN.1 constraint notation) then the component
  type is taken to be the type without the constraint.

  If the ASN.1 type is an ObjectClassFieldType (Clause 14 of X.681
  [14]) that denotes a specific ASN.1 type (e.g., MATCHING-RULE.&id
  denotes the OBJECT IDENTIFIER type) then the component type is taken
  to be the denoted type.  Section 3.1.6 describes the case where the
  ObjectClassFieldType denotes an open type.

  If the ASN.1 type is a selection type other than one used in the list
  of components for a SET or SEQUENCE type then the component type is
  taken to be the selected alternative type from the named CHOICE.

  If the ASN.1 type is a TypeFromObject (Clause 15 of X.681 [14]) then
  the component type is taken to be the denoted type.

  If the ASN.1 type is a ValueSetFromObjects (Clause 15 of X.681 [14])
  then the component type is taken to be the governing type of the
  denoted values.

3.1.2.  Referencing SET, SEQUENCE and CHOICE Components

  If the ASN.1 type is a SET or SEQUENCE type then the <identifier>
  form of ComponentId may be used to identify the component type within
  that SET or SEQUENCE having that identifier.  If <identifier>
  references an OPTIONAL component type and that component is not
  present in a particular value then there are no corresponding
  component values.  If <identifier> references a DEFAULT component
  type and useDefaultValues is TRUE (the default setting for
  useDefaultValues) and that component is not present in a particular
  value then the component value is taken to be the default value.  If
  <identifier> references a DEFAULT component type and useDefaultValues
  is FALSE and that component is not present in a particular value then
  there are no corresponding component values.

  If the ASN.1 type is a CHOICE type then the <identifier> form of
  ComponentId may be used to identify the alternative type within that
  CHOICE having that identifier.  If <identifier> references an
  alternative other than the one used in a particular value then there
  are no corresponding component values.



Legg                        Standards Track                     [Page 8]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  The COMPONENTS OF notation in Clause 24 of X.680 [13] augments the
  defined list of components in a SET or SEQUENCE type by including all
  the components of another defined SET or SEQUENCE type respectively.
  These included components are referenced directly by identifier as
  though they were defined in-line in the SET or SEQUENCE type
  containing the COMPONENTS OF notation.

  The SelectionType (Clause 29 of X.680 [13]), when used in the list of
  components for a SET or SEQUENCE type, includes a single component
  from a defined CHOICE type.  This included component is referenced
  directly by identifier as though it was defined in-line in the SET or
  SEQUENCE type.

  The REAL type is treated as though it is the SEQUENCE type defined in
  Clause 20.5 of X.680 [13].

  The EMBEDDED PDV type is treated as though it is the SEQUENCE type
  defined in Clause 33.5 of X.680 [13].

  The EXTERNAL type is treated as though it is the SEQUENCE type
  defined in Clause 8.18.1 of X.690 [17].

  The unrestricted CHARACTER STRING type is treated as though it is the
  SEQUENCE type defined in Clause 40.5 of X.680 [13].

  The INSTANCE OF type is treated as though it is the SEQUENCE type
  defined in Annex C of X.681 [14].

  The <identifier> form MUST NOT be used on any other ASN.1 type.

3.1.3.  Referencing SET OF and SEQUENCE OF Components

  If the ASN.1 type is a SET OF or SEQUENCE OF type then the
  <from-beginning>, <from-end>, <count> and <all> forms of ComponentId
  may be used.

  The <from-beginning> form of ComponentId may be used to identify one
  instance (i.e., value) of the component type of the SET OF or
  SEQUENCE OF type (e.g., if Foo ::= SET OF Bar, then Bar is the
  component type), where the instances are numbered from one upwards.
  If <from-beginning> references a higher numbered instance than the
  last instance in a particular value of the SET OF or SEQUENCE OF type
  then there is no corresponding component value.

  The <from-end> form of ComponentId may be used to identify one
  instance of the component type of the SET OF or SEQUENCE OF type,
  where "-1" is the last instance, "-2" is the second last instance,




Legg                        Standards Track                     [Page 9]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  and so on.  If <from-end> references a lower numbered instance than
  the first instance in a particular value of the SET OF or SEQUENCE OF
  type then there is no corresponding component value.

  The <count> form of ComponentId identifies a notional count of the
  number of instances of the component type in a value of the SET OF or
  SEQUENCE OF type.  This count is not explicitly represented but for
  matching purposes it has an assumed ASN.1 type of INTEGER (0..MAX).
  A ComponentId of the <count> form, if used, MUST be the last
  ComponentId in a component reference.

  The <all> form of ComponentId may be used to simultaneously identify
  all instances of the component type of the SET OF or SEQUENCE OF
  type.  It is through the <all> form that a component reference can
  identify more than one component value.  However, if a particular
  value of the SET OF or SEQUENCE OF type is an empty list, then there
  are no corresponding component values.

  Where multiple component values are identified, the remaining
  ComponentIds in the component reference, if any, can identify zero,
  one or more subcomponent values for each of the higher level
  component values.

  The corresponding ASN.1 type for the <from-beginning>, <from-end>,
  and <all> forms of ComponentId is the component type of the SET OF or
  SEQUENCE OF type.

  The <from-beginning>, <count>, <from-end> and <all> forms MUST NOT be
  used on ASN.1 types other than SET OF or SEQUENCE OF.

3.1.4.  Referencing Components of Parameterized Types

  A component reference cannot be formed for a parameterized type
  unless the type has been used with actual parameters, in which case
  the type is treated as though the DummyReferences [16] have been
  substituted with the actual parameters.

3.1.5.  Component Referencing Example

  Consider the following ASN.1 type definitions.

     ExampleType ::= SEQUENCE {
         part1       [0] INTEGER,
         part2       [1] ExampleSet,
         part3       [2] SET OF OBJECT IDENTIFIER,
         part4       [3] ExampleChoice }





Legg                        Standards Track                    [Page 10]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     ExampleSet ::= SET {
         option      PrintableString,
         setting     BOOLEAN }

     ExampleChoice ::= CHOICE {
         eeny-meeny  BIT STRING,
         miney-mo    OCTET STRING }

  Following are component references constructed with respect to the
  type ExampleType.

  The component reference "part1" identifies a component of a value of
  ExampleType having the ASN.1 tagged type [0] INTEGER.

  The component reference "part2" identifies a component of a value of
  ExampleType having the ASN.1 type of [1] ExampleSet

  The component reference "part2.option" identifies a component of a
  value of ExampleType having the ASN.1 type of PrintableString.  A
  ComponentAssertion could also be applied to a value of ASN.1 type
  ExampleSet, in which case the component reference "option" would
  identify the same kind of information.

  The component reference "part3" identifies a component of a value of
  ExampleType having the ASN.1 type of [2] SET OF OBJECT IDENTIFIER.

  The component reference "part3.2" identifies the second instance of
  the part3 SET OF.  The instance has the ASN.1 type of OBJECT
  IDENTIFIER.

  The component reference "part3.0" identifies the count of the number
  of instances in the part3 SET OF.  The count has the corresponding
  ASN.1 type of INTEGER (0..MAX).

  The component reference "part3.*" identifies all the instances in the
  part3 SET OF.  Each instance has the ASN.1 type of OBJECT IDENTIFIER.

  The component reference "part4" identifies a component of a value of
  ExampleType having the ASN.1 type of [3] ExampleChoice.

  The component reference "part4.miney-mo" identifies a component of a
  value of ExampleType having the ASN.1 type of OCTET STRING.









Legg                        Standards Track                    [Page 11]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


3.1.6.  Referencing Components of Open Types

  If a sequence of ComponentIds identifies an ObjectClassFieldType
  denoting an open type (e.g., ATTRIBUTE.&Type denotes an open type)
  then the ASN.1 type of the component varies.  An open type is
  typically constrained by some other component(s) in an outer
  enclosing type, either formally through the use of a component
  relation constraint [15], or informally in the accompanying text, so
  the actual ASN.1 type of a value of the open type will generally be
  known.  The constraint will also limit the range of permissible
  types.  The <select> form of ComponentId may be used to identify one
  of these permissible types in an open type.  Subcomponents of that
  type can then be identified with further ComponentIds.

  The other components constraining the open type are termed the
  referenced components [15].  The <select> form contains a list of one
  or more values which take the place of the value(s) of the referenced
  component(s) to uniquely identify one of the permissible types of the
  open type.

  Where the open type is constrained by a component relation
  constraint, there is a <Value> in the <select> form for each of the
  referenced components in the component relation constraint, appearing
  in the same order.  The ASN.1 type of each of these values is the
  same as the ASN.1 type of the corresponding referenced component.
  The type of a referenced component is potentially any ASN.1 type
  however it is typically an OBJECT IDENTIFIER or INTEGER, which means
  that the <Value> in the <select> form of ComponentId will nearly
  always be an <ObjectIdentifierValue> or <IntegerValue> [9].
  Furthermore, component relation constraints typically have only one
  referenced component.

  Where the open type is not constrained by a component relation
  constraint, the specification introducing the syntax containing the
  open type should explicitly nominate the referenced components and
  their order, so that the <select> form can be used.

  If an instance of <select> contains a value other than the value of
  the referenced component used in a particular value of the outer
  enclosing type then there are no corresponding component values for
  the open type.

3.1.6.1.  Open Type Referencing Example

  The ASN.1 type AttributeTypeAndValue [10] describes a single
  attribute value of a nominated attribute type.





Legg                        Standards Track                    [Page 12]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     AttributeTypeAndValue ::= SEQUENCE {
         type    ATTRIBUTE.&id ({SupportedAttributes}),
         value   ATTRIBUTE.&Type ({SupportedAttributes}{@type}) }

  ATTRIBUTE.&id denotes an OBJECT IDENTIFIER and
  ({SupportedAttributes}) constrains the OBJECT IDENTIFIER to be a
  supported attribute type.

  ATTRIBUTE.&Type denotes an open type, in this case an attribute
  value, and ({SupportedAttributes}{@type}) is a component relation
  constraint that constrains the open type to be of the attribute
  syntax for the attribute type.  The component relation constraint
  references only the "type" component, which has the ASN.1 type of
  OBJECT IDENTIFIER, thus if the <select> form of ComponentId is used
  to identify attribute values of specific attribute types it will
  contain a single OBJECT IDENTIFIER value.

  The component reference "value" on AttributeTypeAndValue refers to
  the open type.

  One of the X.500 standard attributes is facsimileTelephoneNumber
  [12], which is identified with the OBJECT IDENTIFIER 2.5.4.23, and is
  defined to have the following syntax.

     FacsimileTelephoneNumber ::= SEQUENCE {
         telephoneNumber PrintableString(SIZE(1..ub-telephone-number)),
         parameters      G3FacsimileNonBasicParameters OPTIONAL }

  The component reference "value.(2.5.4.23)" on AttributeTypeAndValue
  specifies an attribute value with the FacsimileTelephoneNumber
  syntax.

  The component reference "value.(2.5.4.23).telephoneNumber" on
  AttributeTypeAndValue identifies the telephoneNumber component of a
  facsimileTelephoneNumber attribute value.  The component reference
  "value.(facsimileTelephoneNumber)" is equivalent to
  "value.(2.5.4.23)".

  If the AttributeTypeAndValue ASN.1 value contains an attribute type
  other than facsimileTelephoneNumber then there are no corresponding
  component values for the component references "value.(2.5.4.23)" and
  "value.(2.5.4.23).telephoneNumber".









Legg                        Standards Track                    [Page 13]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


3.1.7.  Referencing Contained Types

  Sometimes the contents of a BIT STRING or OCTET STRING value are
  required to be the encodings of other ASN.1 values of specific ASN.1
  types.  For example, the extnValue component of the Extension type
  component in the Certificate type [11] is an OCTET STRING that is
  required to contain a Distinguished Encoding Rules (DER) [17]
  encoding of a certificate extension value.  It is useful to be able
  to refer to the embedded encoded value and its components.  An
  embedded encoded value is here referred to as a contained value and
  its associated type as the contained type.

  If the ASN.1 type is a BIT STRING or OCTET STRING type containing
  encodings of other ASN.1 values then the <content> form of
  ComponentId may be used to identify the contained type.
  Subcomponents of that type can then be identified with further
  ComponentIds.

  The contained type may be (effectively) an open type, constrained by
  some other component in an outer enclosing type (e.g., in a
  certificate Extension, extnValue is constrained by the chosen
  extnId).  In these cases the next ComponentId, if any, MUST be of the
  <select> form.

  For the purpose of building component references, the content of the
  extnValue OCTET STRING in the Extension type is assumed to be an open
  type having a notional component relation constraint with the extnId
  component as the single referenced component, i.e.,

     EXTENSION.&ExtnType ({ExtensionSet}{@extnId})

  The data-value component of the associated types for the EMBEDDED PDV
  and CHARACTER STRING types is an OCTET STRING containing the encoding
  of a data value described by the identification component.  For the
  purpose of building component references, the content of the
  data-value OCTET STRING in these types is assumed to be an open type
  having a notional component relation constraint with the
  identification component as the single referenced component.

3.1.7.1.  Contained Type Referencing Example

  The Extension ASN.1 type [11] describes a single certificate
  extension value of a nominated extension type.








Legg                        Standards Track                    [Page 14]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     Extension ::= SEQUENCE {
         extnId     EXTENSION.&id ({ExtensionSet}),
         critical   BOOLEAN DEFAULT FALSE,
         extnValue  OCTET STRING
             -- contains a DER encoding of a value of type &ExtnType
             -- for the extension object identified by extnId -- }

  EXTENSION.&id denotes an OBJECT IDENTIFIER and ({ExtensionSet})
  constrains the OBJECT IDENTIFIER to be the identifier of a supported
  certificate extension.

  The component reference "extnValue" on Extension refers to a
  component type of OCTET STRING.  The corresponding component values
  will be OCTET STRING values.  The component reference
  "extnValue.content" on Extension refers to the type of the contained
  type, which in this case is an open type.

  One of the X.509 [11] standard extensions is basicConstraints, which
  is identified with the OBJECT IDENTIFIER 2.5.29.19 and is defined to
  have the following syntax.

     BasicConstraintsSyntax ::= SEQUENCE {
         cA                 BOOLEAN DEFAULT FALSE,
         pathLenConstraint  INTEGER (0..MAX) OPTIONAL }

  The component reference "extnValue.content.(2.5.29.19)" on Extension
  specifies a BasicConstraintsSyntax extension value and the component
  reference "extnValue.content.(2.5.29.19).cA" identifies the cA
  component of a BasicConstraintsSyntax extension value.

3.2.  Matching of Components

  The rule in a ComponentAssertion specifies how the zero, one or more
  component values identified by the component reference are tested by
  the assertion.  Attribute matching rules are used to specify the
  semantics of the test.

  Each matching rule has a notional set of attribute syntaxes
  (typically one), defined as ASN.1 types, to which it may be applied.
  When used in a ComponentAssertion these matching rules apply to the
  same ASN.1 types, only in this context the corresponding ASN.1 values
  are not necessarily complete attribute values.

  Note that the referenced component type may be a tagged and/or
  constrained version of the expected attribute syntax (e.g.,
  [0] INTEGER, whereas integerMatch would expect simply INTEGER), or an
  open type.  Additional type substitutions of the kind described in




Legg                        Standards Track                    [Page 15]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  Section 3.1.1 are performed as required to reduce the component type
  to the same type as the attribute syntax expected by the matching
  rule.

  If a matching rule applies to more than one attribute syntax (e.g.,
  objectIdentifierFirstComponentMatch [12]) then the minimum number of
  substitutions required to conform to any one of those syntaxes is
  performed.  If a matching rule can apply to any attribute syntax
  (e.g., the allComponentsMatch rule defined in Section 6.2) then the
  referenced component type is used as is, with no additional
  substitutions.

  The value in a ComponentAssertion will be of the assertion syntax
  (i.e., ASN.1 type) required by the chosen matching rule.  Note that
  the assertion syntax of a matching rule is not necessarily the same
  as the attribute syntax(es) to which the rule may be applied.

  Some matching rules do not have a fixed assertion syntax (e.g.,
  allComponentsMatch).  The required assertion syntax is determined in
  each instance of use by the syntax of the attribute type to which the
  matching rule is applied.  For these rules the ASN.1 type of the
  referenced component is used in place of an attribute syntax to
  decide the required assertion syntax.

  The ComponentAssertion is Undefined if:

  a) the matching rule in the ComponentAssertion is not known to the
     evaluating procedure,

  b) the matching rule is not applicable to the referenced component
     type, even with the additional type substitutions,

  c) the value in the ComponentAssertion does not conform to the
     assertion syntax defined for the matching rule,

  d) some part of the component reference identifies an open type in
     the tested value that cannot be decoded, or

  e) the implementation does not support the particular combination of
     component reference and matching rule.

  If the ComponentAssertion is not Undefined then the
  ComponentAssertion evaluates to TRUE if there is at least one
  component value for which the matching rule applied to that component
  value returns TRUE, and evaluates to FALSE otherwise (which includes
  the case where there are no component values).





Legg                        Standards Track                    [Page 16]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


3.2.1.  Applicability of Existing Matching Rules

3.2.1.1.  String Matching

  ASN.1 has a number of built in restricted character string types with
  different character sets and/or different character encodings.  A
  directory user generally has little interest in the particular
  character set or encoding used to represent a character string
  component value, and some directory server implementations make no
  distinction between the different string types in their internal
  representation of values.  So rather than define string matching
  rules for each of the restricted character string types, the existing
  case ignore and case exact string matching rules are extended to
  apply to component values of any of the restricted character string
  types and any ChoiceOfStrings type [9], in addition to component
  values of the DirectoryString type.  This extension is only for the
  purposes of component matching described in this document.

  The relevant string matching rules are: caseIgnoreMatch,
  caseIgnoreOrderingMatch, caseIgnoreSubstringsMatch, caseExactMatch,
  caseExactOrderingMatch and caseExactSubstringsMatch.  The relevant
  restricted character string types are: NumericString,
  PrintableString, VisibleString, IA5String, UTF8String, BMPString,
  UniversalString, TeletexString, VideotexString, GraphicString and
  GeneralString.  A ChoiceOfStrings type is a purely syntactic CHOICE
  of these ASN.1 string types.  Note that GSER [9] declares each and
  every use of the DirectoryString{} parameterized type to be a
  ChoiceOfStrings type.

  The assertion syntax of the string matching rules is still
  DirectoryString regardless of the string syntax of the component
  being matched.  Thus an implementation will be called upon to compare
  a DirectoryString value to a value of one of the restricted character
  string types, or a ChoiceOfStrings type.  As is the case when
  comparing two DirectoryStrings where the chosen alternatives are of
  different string types, the comparison proceeds so long as the
  corresponding characters are representable in both character sets.
  Otherwise matching returns FALSE.

3.2.1.2.  Telephone Number Matching

  Early editions of X.520 [12] gave the syntax of the telephoneNumber
  attribute as a constrained PrintableString.  The fourth edition of
  X.520 equates the ASN.1 type name TelephoneNumber to the constrained
  PrintableString and uses TelephoneNumber as the attribute and
  assertion syntax.  For the purposes of component matching,





Legg                        Standards Track                    [Page 17]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  telephoneNumberMatch and telephoneNumberSubstringsMatch are permitted
  to be applied to any PrintableString value, as well as to
  TelephoneNumber values.

3.2.1.3.  Distinguished Name Matching

  The DistinguishedName type is defined by assignment to be the same as
  the RDNSequence type, however RDNSequence is sometimes directly used
  in other type definitions.  For the purposes of component matching,
  distinguishedNameMatch is also permitted to be applied to values of
  the RDNSequence type.

3.2.2.  Additional Useful Matching Rules

  This section defines additional matching rules that may prove useful
  in ComponentAssertions.  These rules may also be used in
  extensibleMatch search filters [3].

3.2.2.1.  The rdnMatch Matching Rule

  The distinguishedNameMatch matching rule can match whole
  distinguished names but it is sometimes useful to be able to match
  specific Relative Distinguished Names (RDNs) in a Distinguished Name
  (DN) without regard for the other RDNs in the DN.  The rdnMatch
  matching rule allows component RDNs of a DN to be tested.

  The LDAP-style definitions for rdnMatch and its assertion syntax are:

     ( 1.2.36.79672281.1.13.3 NAME 'rdnMatch'
         SYNTAX 1.2.36.79672281.1.5.0 )

     ( 1.2.36.79672281.1.5.0 DESC 'RDN' )

  The LDAP-specific encoding for a value of the RDN syntax is given by
  the <RelativeDistinguishedNameValue> rule [9].

  The X.500-style definition for rdnMatch is:

     rdnMatch MATCHING-RULE ::= {
         SYNTAX  RelativeDistinguishedName
         ID      { 1 2 36 79672281 1 13 3 } }

  The rdnMatch rule evaluates to true if the component value and
  assertion value are the same RDN, using the same RDN comparison
  method as distinguishedNameMatch.






Legg                        Standards Track                    [Page 18]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  When using rdnMatch to match components of DNs it is important to
  note that the LDAP-specific encoding of a DN [5] reverses the order
  of the RDNs.  So for the DN represented in LDAP as
  "cn=Steven Legg,o=Adacel,c=AU", the RDN "cn=Steven Legg" corresponds
  to the component reference "3", or alternatively, "-1".

3.2.2.2.  The presentMatch Matching Rule

  At times it would be useful to test not if a specific value of a
  particular component is present, but whether any value of a
  particular component is present.  The presentMatch matching rule
  allows the presence of a particular component value to be tested.

  The LDAP-style definitions for presentMatch and its assertion syntax
  are:

     ( 1.2.36.79672281.1.13.5 NAME 'presentMatch'
         SYNTAX 1.2.36.79672281.1.5.1 )

     ( 1.2.36.79672281.1.5.1 DESC 'NULL' )

  The LDAP-specific encoding for a value of the NULL syntax is given by
  the <NullValue> rule [9].

  The X.500-style definition for presentMatch is:

     presentMatch MATCHING-RULE ::= {
         SYNTAX  NULL
         ID      { 1 2 36 79672281 1 13 5 } }

  When used in a extensible match filter item, presentMatch behaves
  like the "present" case of a regular search filter.  In a
  ComponentAssertion, presentMatch evaluates to TRUE if and only if the
  component reference identifies one or more component values,
  regardless of the actual component value contents.  Note that if
  useDefaultValues is TRUE then the identified component values may be
  (part of) a DEFAULT value.

  The notional count referenced by the <count> form of ComponentId is
  taken to be present if the SET OF value is present, and absent
  otherwise.  Note that in ASN.1 notation an absent SET OF value is
  distinctly different from a SET OF value that is present but empty.
  It is up to the specification using the ASN.1 notation to decide
  whether the distinction matters.  Often an empty SET OF component and
  an absent SET OF component are treated as semantically equivalent.
  If a SET OF value is present, but empty, a presentMatch on the SET OF
  component SHALL return TRUE and the notional count SHALL be regarded
  as present and equal to zero.



Legg                        Standards Track                    [Page 19]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


3.2.3.  Summary of Useful Matching Rules

  The following is a non-exhaustive list of useful matching rules and
  the ASN.1 types to which they can be applied, taking account of all
  the extensions described in Section 3.2.1, and the new matching rules
  defined in Section 3.2.2.

     +================================+==============================+
     | Matching Rule                  | ASN.1 Type                   |
     +================================+==============================+
     | bitStringMatch                 | BIT STRING                   |
     +--------------------------------+------------------------------+
     | booleanMatch                   | BOOLEAN                      |
     +--------------------------------+------------------------------+
     | caseIgnoreMatch                | NumericString                |
     | caseIgnoreOrderingMatch        | PrintableString              |
     | caseIgnoreSubstringsMatch      | VisibleString (ISO646String) |
     | caseExactMatch                 | IA5String                    |
     | caseExactOrderingMatch         | UTF8String                   |
     | caseExactSubstringsMatch       | BMPString (UCS-2, UNICODE)   |
     |                                | UniversalString (UCS-4)      |
     |                                | TeletexString (T61String)    |
     |                                | VideotexString               |
     |                                | GraphicString                |
     |                                | GeneralString                |
     |                                | any ChoiceOfStrings type     |
     +--------------------------------+------------------------------+
     | caseIgnoreIA5Match             | IA5String                    |
     | caseExactIA5Match              |                              |
     +--------------------------------+------------------------------+
     | distinguishedNameMatch         | DistinguishedName            |
     |                                | RDNSequence                  |
     +--------------------------------+------------------------------+
     | generalizedTimeMatch           | GeneralizedTime              |
     | generalizedTimeOrderingMatch   |                              |
     +--------------------------------+------------------------------+
     | integerMatch                   | INTEGER                      |
     | integerOrderingMatch           |                              |
     +--------------------------------+------------------------------+
     | numericStringMatch             | NumericString                |
     | numericStringOrderingMatch     |                              |
     | numericStringSubstringsMatch   |                              |
     +--------------------------------+------------------------------+
     | objectIdentifierMatch          | OBJECT IDENTIFIER            |
     +--------------------------------+------------------------------+
     | octetStringMatch               | OCTET STRING                 |
     | octetStringOrderingMatch       |                              |
     | octetStringSubstringsMatch     |                              |



Legg                        Standards Track                    [Page 20]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     +--------------------------------+------------------------------+
     | presentMatch                   | any ASN.1 type               |
     +--------------------------------+------------------------------+
     | rdnMatch                       | RelativeDistinguishedName    |
     +--------------------------------+------------------------------+
     | telephoneNumberMatch           | PrintableString              |
     | telephoneNumberSubstringsMatch | TelephoneNumber              |
     +--------------------------------+------------------------------+
     | uTCTimeMatch                   | UTCTime                      |
     | uTCTimeOrderingMatch           |                              |
     +--------------------------------+------------------------------+

  Note that the allComponentsMatch matching rule defined in Section 6.2
  can be used for equality matching of values of the ENUMERATED, NULL,
  REAL and RELATIVE-OID ASN.1 types, among other things.

4.  ComponentFilter

  The ComponentAssertion allows the value(s) of any one component type
  in a complex ASN.1 type to be matched, but there is often a desire to
  match the values of more than one component type.  A ComponentFilter
  is an assertion about the presence, or values of, multiple components
  within an ASN.1 value.

  The ComponentFilter assertion, an expression of ComponentAssertions,
  evaluates to either TRUE, FALSE or Undefined for each tested ASN.1
  value.

  A ComponentFilter is described by the following ASN.1 type (assumed
  to be defined with "EXPLICIT TAGS" in force):

     ComponentFilter ::= CHOICE {
         item  [0] ComponentAssertion,
         and   [1] SEQUENCE OF ComponentFilter,
         or    [2] SEQUENCE OF ComponentFilter,
         not   [3] ComponentFilter }

  Note: despite the use of SEQUENCE OF instead of SET OF for the "and"
  and "or" alternatives in ComponentFilter, the order of the component
  filters is not significant.

  A ComponentFilter that is a ComponentAssertion evaluates to TRUE if
  the ComponentAssertion is TRUE, evaluates to FALSE if the
  ComponentAssertion is FALSE, and evaluates to Undefined otherwise.







Legg                        Standards Track                    [Page 21]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  The "and" of a sequence of component filters evaluates to TRUE if the
  sequence is empty or if each component filter evaluates to TRUE,
  evaluates to FALSE if at least one component filter is FALSE, and
  evaluates to Undefined otherwise.

  The "or" of a sequence of component filters evaluates to FALSE if the
  sequence is empty or if each component filter evaluates to FALSE,
  evaluates to TRUE if at least one component filter is TRUE, and
  evaluates to Undefined otherwise.

  The "not" of a component filter evaluates to TRUE if the component
  filter is FALSE, evaluates to FALSE if the component filter is TRUE,
  and evaluates to Undefined otherwise.

5.  The componentFilterMatch Matching Rule

  The componentFilterMatch matching rule allows a ComponentFilter to be
  applied to an attribute value.  The result of the matching rule is
  the result of applying the ComponentFilter to the attribute value.

  The LDAP-style definitions for componentFilterMatch and its assertion
  syntax are:

     ( 1.2.36.79672281.1.13.2 NAME 'componentFilterMatch'
         SYNTAX 1.2.36.79672281.1.5.2 )

     ( 1.2.36.79672281.1.5.2 DESC 'ComponentFilter' )

  The LDAP-specific encoding for the ComponentFilter assertion syntax
  is specified by GSER [9].

  As a convenience to implementors, an equivalent ABNF description of
  the GSER encoding for ComponentFilter is provided here.  In the event
  that there is a discrepancy between this ABNF and the encoding
  determined by GSER, GSER is to be taken as definitive.  The GSER
  encoding of a ComponentFilter is described by the following
  equivalent ABNF:

     ComponentFilter = filter-item /
                       and-filter /
                       or-filter /
                       not-filter

     filter-item     = item-chosen ComponentAssertion
     and-filter      = and-chosen  SequenceOfComponentFilter
     or-filter       = or-chosen   SequenceOfComponentFilter
     not-filter      = not-chosen  ComponentFilter




Legg                        Standards Track                    [Page 22]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     item-chosen     = %x69.74.65.6D.3A  ; "item:"
     and-chosen      = %x61.6E.64.3A     ; "and:"
     or-chosen       = %x6F.72.3A        ; "or:"
     not-chosen      = %x6E.6F.74.3A     ; "not:"

     SequenceOfComponentFilter = "{" [ sp ComponentFilter
                                    *( "," sp ComponentFilter) ] sp "}"

     ComponentAssertion = "{" [ sp component "," ]
                              [ sp useDefaultValues "," ]
                                sp rule ","
                                sp assertion-value sp "}"
     component          = component-label msp StringValue
     useDefaultValues   = use-defaults-label msp BooleanValue
     rule               = rule-label msp ObjectIdentifierValue
     assertion-value    = value-label msp Value

     component-label    = %x63.6F.6D.70.6F.6E.65.6E.74  ; "component"
     use-defaults-label = %x75.73.65.44.65.66.61.75.6C.74.56.61.6C.75
                          %x65.73                  ; "useDefaultValues"
     rule-label         = %x72.75.6C.65            ; "rule"
     value-label        = %x76.61.6C.75.65         ; "value"

     sp                 =  *%x20  ; zero, one or more space characters
     msp                = 1*%x20  ; one or more space characters

  The ABNF for <Value>, <StringValue>, <ObjectIdentifierValue> and
  <BooleanValue> is defined by GSER [9].

  The ABNF descriptions of LDAP-specific encodings for attribute
  syntaxes typically do not clearly or consistently delineate the
  component parts of an attribute value.  A regular and uniform
  character string encoding for arbitrary component data types is
  needed to encode the assertion value in a ComponentAssertion.  The
  <Value> rule from GSER provides a human readable text encoding for a
  component value of any arbitrary ASN.1 type.

  The X.500-style definition [10] for componentFilterMatch is:

     componentFilterMatch MATCHING-RULE ::= {
         SYNTAX  ComponentFilter
         ID      { 1 2 36 79672281 1 13 2 } }

  A ComponentAssertion can potentially use any matching rule, including
  componentFilterMatch, so componentFilterMatch may be nested.  The
  component references in a nested componentFilterMatch are relative to





Legg                        Standards Track                    [Page 23]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  the component corresponding to the containing ComponentAssertion.  In
  Section 7, an example search on the seeAlso attribute shows this
  usage.

6.  Equality Matching of Complex Components

  It is possible to test if an attribute value of a complex ASN.1
  syntax is the same as some purported (i.e., assertion) value by using
  a complicated ComponentFilter that tests if corresponding components
  are the same.  However, it would be more convenient to be able to
  present a whole assertion value to a matching rule that could do the
  component-wise comparison of an attribute value with the assertion
  value for any arbitrary attribute syntax.  Similarly, the ability to
  do a straightforward equality comparison of a component value that is
  itself of a complex ASN.1 type would also be convenient.

  It would be difficult to define a single matching rule that
  simultaneously satisfies all notions of what the equality matching
  semantics should be.  For example, in some instances a case sensitive
  comparison of string components may be preferable to a case
  insensitive comparison.  Therefore a basic equality matching rule,
  allComponentsMatch, is defined in Section 6.2, and the means to
  derive new matching rules from it with slightly different equality
  matching semantics are described in Section 6.3.

  The directoryComponentsMatch defined in Section 6.4 is a derivation
  of allComponentsMatch that suits typical uses of the directory.
  Other specifications are free to derive new rules from
  allComponentsMatch or directoryComponentsMatch, that suit their usage
  of the directory.

  The allComponentsMatch rule, the directoryComponentsMatch rule and
  any matching rules derived from them are collectively called
  component equality matching rules.

6.1.  The OpenAssertionType Syntax

  The component equality matching rules have a variable assertion
  syntax.  In X.500 this is indicated by omitting the optional SYNTAX
  field in the MATCHING-RULE information object.  The assertion syntax
  then defaults to the target attribute's syntax in actual usage,
  unless the description of the matching rule says otherwise.  The
  SYNTAX field in the LDAP-specific encoding of a
  MatchingRuleDescription is mandatory, so the OpenAssertionType syntax
  is defined to fill the same role.  That is, the OpenAssertionType
  syntax is semantically equivalent to an omitted SYNTAX field in an
  X.500 MATCHING-RULE information object.  OpenAssertionType MUST NOT
  be used as the attribute syntax in an attribute type definition.



Legg                        Standards Track                    [Page 24]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  Unless explicitly varied by the description of a particular matching
  rule, if an OpenAssertionType assertion value appears in a
  ComponentAssertion its LDAP-specific encoding is described by the
  <Value> rule in GSER [9], otherwise its LDAP-specific encoding is the
  encoding defined for the syntax of the attribute type to which the
  matching rule with the OpenAssertionType assertion syntax is applied.

  The LDAP definition for the OpenAssertionType syntax is:

     ( 1.2.36.79672281.1.5.3 DESC 'OpenAssertionType' )

6.2.  The allComponentsMatch Matching Rule

  The LDAP-style definition for allComponentsMatch is:

     ( 1.2.36.79672281.1.13.6 NAME 'allComponentsMatch'
         SYNTAX 1.2.36.79672281.1.5.3 )

  The X.500-style definition for allComponentsMatch is:

     allComponentsMatch MATCHING-RULE ::= {
         ID      { 1 2 36 79672281 1 13 6 } }

  When allComponentsMatch is used in a ComponentAssertion the assertion
  syntax is the same as the ASN.1 type of the identified component.
  Otherwise, the assertion syntax of allComponentsMatch is the same as
  the attribute syntax of the attribute to which the matching rule is
  applied.

  Broadly speaking, this matching rule evaluates to true if and only if
  corresponding components of the assertion value and the attribute or
  component value are the same.

  In detail, equality is determined by the following cases applied
  recursively.

  a) Two values of a SET or SEQUENCE type are the same if and only if,
     for each component type, the corresponding component values are
     either,

     1) both absent,

     2) both present and the same, or

     3) absent or the same as the DEFAULT value for the component, if a
        DEFAULT value is defined.





Legg                        Standards Track                    [Page 25]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


        Values of an EMBEDDED PDV, EXTERNAL, unrestricted CHARACTER
        STRING, or INSTANCE OF type are compared according to their
        respective associated SEQUENCE type (see Section 3.1.2).

  b) Two values of a SEQUENCE OF type are the same if and only if, the
     values have the same number of (possibly duplicated) instances and
     corresponding instances are the same.

  c) Two values of a SET OF type are the same if and only if, the
     values have the same number of instances and each distinct
     instance occurs in both values the same number of times, i.e.,
     both values have the same instances, including duplicates, but in
     any order.

  d) Two values of a CHOICE type are the same if and only if, both
     values are of the same chosen alternative and the component values
     are the same.

  e) Two BIT STRING values are the same if and only if the values have
     the same number of bits and corresponding bits are the same.  If
     the BIT STRING type is defined with a named bit list then trailing
     zero bits in the values are treated as absent for the purposes of
     this comparison.

  f) Two BOOLEAN values are the same if and only if both are TRUE or
     both are FALSE.

  g) Two values of a string type are the same if and only if the values
     have the same number of characters and corresponding characters
     are the same.  Letter case is significant.  For the purposes of
     allComponentsMatch, the string types are NumericString,
     PrintableString, TeletexString (T61String), VideotexString,
     IA5String, GraphicString, VisibleString (ISO646String),
     GeneralString, UniversalString, BMPString, UTF8String,
     GeneralizedTime, UTCTime and ObjectDescriptor.

  h) Two INTEGER values are the same if and only if the integers are
     equal.

  i) Two ENUMERATED values are the same if and only if the enumeration
     item identifiers are the same (equivalently, if the integer values
     associated with the identifiers are equal).

  j) Two NULL values are always the same, unconditionally.

  k) Two OBJECT IDENTIFIER values are the same if and only if the
     values have the same number of arcs and corresponding arcs are the
     same.



Legg                        Standards Track                    [Page 26]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  l) Two OCTET STRING values are the same if and only if the values
     have the same number of octets and corresponding octets are the
     same.

  m) Two REAL values are the same if and only if they are both the same
     special value, or neither is a special value and they have the
     same base and represent the same real number.  The special values
     for REAL are zero, PLUS-INFINITY and MINUS-INFINITY.

  n) Two RELATIVE-OID values are the same if and only if the values
     have the same number of arcs and corresponding arcs are the same.
     The respective starting nodes for the RELATIVE-OID values are
     disregarded in the comparison, i.e., they are assumed to be the
     same.

  o) Two values of an open type are the same if and only if both are of
     the same ASN.1 type and are the same according to that type.  If
     the actual ASN.1 type of the values is unknown then the
     allComponentsMatch rule evaluates to Undefined.

  Tags and constraints, being part of the type definition and not part
  of the abstract values, are ignored for matching purposes.

  The allComponentsMatch rule may be used as the defined equality
  matching rule for an attribute.

6.3.  Deriving Component Equality Matching Rules

  A new component equality matching rule with more refined matching
  semantics may be derived from allComponentsMatch, or any other
  component equality matching rule, using the convention described in
  this section.

  The matching behaviour of a derived component equality matching rule
  is specified by nominating, for each of one or more identified
  components, a commutative equality matching rule that will be used to
  match values of that component.  This overrides the matching that
  would otherwise occur for values of that component using the base
  rule for the derivation.  These overrides can be conveniently
  represented as rows in a table of the following form.

     Component   |  Matching Rule
     ============+===============
                 |
                 |






Legg                        Standards Track                    [Page 27]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  Usually, all component values of a particular ASN.1 type are to be
  matched the same way.  An ASN.1 type reference (e.g.,
  DistinguishedName) or an ASN.1 built-in type name (e.g., INTEGER) in
  the Component column of the table specifies that the nominated
  equality matching rule is to be applied to all values of the named
  type, regardless of context.

  An ASN.1 type reference with a component reference appended
  (separated by a ".")  specifies that the nominated matching rule
  applies only to the identified components of values of the named
  type.  Other component values that happen to be of the same ASN.1
  type are not selected.

  Additional type substitutions as described in Section 3.2 are assumed
  to be performed to align the component type with the matching rule
  assertion syntax.

  Conceptually, the rows in a table for the base rule are appended to
  the rows in the table for a derived rule for the purpose of deciding
  the matching semantics of the derived rule.  Notionally,
  allComponentsMatch has an empty table.

  A row specifying values of an outer containing type (e.g.,
  DistinguishedName) takes precedence over a row specifying values of
  an inner component type (e.g., RelativeDistinguishedName), regardless
  of their order in the table.  Specifying a row for component values
  of an inner type is only useful if a value of the type can also
  appear on its own, or as a component of values of a different outer
  type.  For example, if there is a row for DistinguishedName then a
  row for RelativeDistinguishedName can only ever apply to
  RelativeDistinguishedName component values that are not part of a
  DistinguishedName.  A row for values of an outer type in the table
  for the base rule takes precedence over a row for values of an inner
  type in the table for the derived rule.

  Where more than one row applies to a particular component value the
  earlier row takes precedence over the later row.  Thus rows in the
  table for the derived rule take precedence over any rows for the same
  component in the table for the base rule.

6.4.  The directoryComponentsMatch Matching Rule

  The directoryComponentsMatch matching rule is derived from the
  allComponentsMatch matching rule.







Legg                        Standards Track                    [Page 28]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  The LDAP-style definition for directoryComponentsMatch is:

     ( 1.2.36.79672281.1.13.7 NAME 'directoryComponentsMatch'
         SYNTAX 1.2.36.79672281.1.5.3 )

  The X.500-style definition for directoryComponentsMatch is:

     directoryComponentsMatch MATCHING-RULE ::= {
         ID      { 1 2 36 79672281 1 13 7 } }

  The matching semantics of directoryComponentsMatch are described by
  the following table, using the convention described in Section 6.3.

     ASN.1 Type                               | Matching Rule
     =========================================+========================
     RDNSequence                              | distinguishedNameMatch
     RelativeDistinguishedName                | rdnMatch
     TelephoneNumber                          | telephoneNumberMatch
     FacsimileTelephoneNumber.telephoneNumber | telephoneNumberMatch
     NumericString                            | numericStringMatch
     GeneralizedTime                          | generalizedTimeMatch
     UTCTime                                  | uTCTimeMatch
     DirectoryString{}                        | caseIgnoreMatch
     BMPString                                | caseIgnoreMatch
     GeneralString                            | caseIgnoreMatch
     GraphicString                            | caseIgnoreMatch
     IA5String                                | caseIgnoreMatch
     PrintableString                          | caseIgnoreMatch
     TeletexString                            | caseIgnoreMatch
     UniversalString                          | caseIgnoreMatch
     UTF8String                               | caseIgnoreMatch
     VideotexString                           | caseIgnoreMatch
     VisibleString                            | caseIgnoreMatch

  Notes:

  1) The DistinguishedName type is defined by assignment to be the same
     as the RDNSequence type.  Some types (e.g., Name and LocalName)
     directly reference RDNSequence rather than DistinguishedName.
     Specifying RDNSequence captures all these DN-like types.

  2) A RelativeDistinguishedName value is only matched by rdnMatch if
     it is not part of an RDNSequence value.

  3) The telephone number component of the FacsimileTelephoneNumber
     ASN.1 type [12] is defined as a constrained PrintableString.
     PrintableString component values that are part of a
     FacsimileTelephoneNumber value can be identified separately from



Legg                        Standards Track                    [Page 29]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     other components of PrintableString type by the specifier
     FacsimileTelephoneNumber.telephoneNumber, so that
     telephoneNumberMatch can be selectively applied.  The fourth
     edition of X.520 defines the telephoneNumber component of
     FacsimileTelephoneNumber to be of the type TelephoneNumber, making
     the row for FacsimileTelephoneNumber.telephoneNumber components
     redundant.

  The directoryComponentsMatch rule may be used as the defined equality
  matching rule for an attribute.

7.  Component Matching Examples

  This section contains examples of search filters using the
  componentFilterMatch matching rule.  The filters are described using
  the string representation of LDAP search filters [18].  Note that
  this representation requires asterisks to be escaped in assertion
  values (in these examples the assertion values are all
  <ComponentAssertion> encodings).  The asterisks have not been escaped
  in these examples for the sake of clarity, and to avoid confusing the
  protocol representation of LDAP search filter assertion values, where
  such escaping does not apply.  Line breaks and indenting have been
  added only as an aid to readability.

  The example search filters using componentFilterMatch are all single
  extensible match filter items, though there is no reason why
  componentFilterMatch can't be used in more complicated search
  filters.

  The first examples describe searches over the objectClasses schema
  operational attribute, which has an attribute syntax described by the
  ASN.1 type ObjectClassDescription [10], and holds the definitions of
  the object classes known to a directory server.  The definition of
  ObjectClassDescription is as follows:

     ObjectClassDescription ::= SEQUENCE {
         identifier       OBJECT-CLASS.&id,
         name             SET OF DirectoryString {ub-schema} OPTIONAL,
         description      DirectoryString {ub-schema} OPTIONAL,
         obsolete         BOOLEAN DEFAULT FALSE,
         information  [0] ObjectClassInformation }

     ObjectClassInformation ::= SEQUENCE {
         subclassOf       SET OF OBJECT-CLASS.&id OPTIONAL,
         kind             ObjectClassKind DEFAULT structural,
         mandatories  [3] SET OF ATTRIBUTE.&id OPTIONAL,
         optionals    [4] SET OF ATTRIBUTE.&id OPTIONAL }




Legg                        Standards Track                    [Page 30]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     ObjectClassKind ::= ENUMERATED {
         abstract     (0),
         structural   (1),
         auxiliary    (2) }

  OBJECT-CLASS.&id and ATTRIBUTE.&id are equivalent to the OBJECT
  IDENTIFIER ASN.1 type.  A value of OBJECT-CLASS.&id is an OBJECT
  IDENTIFIER for an object class.  A value of ATTRIBUTE.&id is an
  OBJECT IDENTIFIER for an attribute type.

  The following search filter finds the object class definition for the
  object class identified by the OBJECT IDENTIFIER 2.5.6.18:

     (objectClasses:componentFilterMatch:=
          item:{ component "identifier",
                 rule objectIdentifierMatch, value 2.5.6.18 })

  A match on the "identifier" component of objectClasses values is
  equivalent to the objectIdentifierFirstComponentMatch matching rule
  applied to attribute values of the objectClasses attribute type.  The
  componentFilterMatch matching rule subsumes the functionality of the
  objectIdentifierFirstComponentMatch, integerFirstComponentMatch and
  directoryStringFirstComponentMatch matching rules.

  The following search filter finds the object class definition for the
  object class called foobar:

     (objectClasses:componentFilterMatch:=
         item:{ component "name.*",
                rule caseIgnoreMatch, value "foobar" })

  An object class definition can have multiple names and the above
  filter will match an objectClasses value if any one of the names is
  "foobar".

  The component reference "name.0" identifies the notional count of the
  number of names in an object class definition.  The following search
  filter finds object class definitions with exactly one name:

     (objectClasses:componentFilterMatch:=
         item:{ component "name.0", rule integerMatch, value 1 })

  The "description" component of an ObjectClassDescription is defined
  to be an OPTIONAL DirectoryString.  The following search filter finds
  object class definitions that have descriptions, regardless of the
  contents of the description string:





Legg                        Standards Track                    [Page 31]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     (objectClasses:componentFilterMatch:=
         item:{ component "description",
                rule presentMatch, value NULL })

  The presentMatch returns TRUE if the description component is present
  and FALSE otherwise.

  The following search filter finds object class definitions that don't
  have descriptions:

     (objectClasses:componentFilterMatch:=
         not:item:{ component "description",
                    rule presentMatch, value NULL })

  The following search filter finds object class definitions with the
  word "bogus" in the description:

     (objectClasses:componentFilterMatch:=
         item:{ component "description",
                rule caseIgnoreSubstringsMatch,
                value { any:"bogus" } })

  The assertion value is of the SubstringAssertion syntax, i.e.,

     SubstringAssertion ::= SEQUENCE OF CHOICE {
         initial      [0] DirectoryString {ub-match},
         any          [1] DirectoryString {ub-match},
         final        [2] DirectoryString {ub-match} }

  The "obsolete" component of an ObjectClassDescription is defined to
  be DEFAULT FALSE.  An object class is obsolete if the "obsolete"
  component is present and set to TRUE.  The following search filter
  finds all obsolete object classes:

     (objectClasses:componentFilterMatch:=
         item:{ component "obsolete", rule booleanMatch, value TRUE })

  An object class is not obsolete if the "obsolete" component is not
  present, in which case it defaults to FALSE, or is present but is
  explicitly set to FALSE.  The following search filter finds all non-
  obsolete object classes:

     (objectClasses:componentFilterMatch:=
         item:{ component "obsolete", rule booleanMatch, value FALSE })

  The useDefaultValues flag in the ComponentAssertion defaults to TRUE
  so the componentFilterMatch rule treats an absent "obsolete"
  component as being present and set to FALSE.  The following search



Legg                        Standards Track                    [Page 32]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  filter finds only object class definitions where the "obsolete"
  component has been explicitly set to FALSE, rather than implicitly
  defaulting to FALSE:

     (objectClasses:componentFilterMatch:=
         item:{ component "obsolete", useDefaultValues FALSE,
                rule booleanMatch, value FALSE })

  With the useDefaultValues flag set to FALSE, if the "obsolete"
  component is absent the component reference identifies no component
  value and the matching rule will return FALSE.  The matching rule can
  only return TRUE if the component is present and set to FALSE.

  The "information.kind" component of the ObjectClassDescription is an
  ENUMERATED type.  The allComponentsMatch matching rule can be used to
  match values of an ENUMERATED type.  The following search filter
  finds object class definitions for auxiliary object classes:

     (objectClasses:componentFilterMatch:=
         item:{ component "information.kind",
                rule allComponentsMatch, value auxiliary })

  The following search filter finds auxiliary object classes with
  commonName (cn or 2.5.4.3) as a mandatory attribute:

     (objectClasses:componentFilterMatch:=and:{
         item:{ component "information.kind",
                rule allComponentsMatch, value auxiliary },
         item:{ component "information.mandatories.*",
                rule objectIdentifierMatch, value cn } })

  The following search filter finds auxiliary object classes with
  commonName as a mandatory or optional attribute:

     (objectClasses:componentFilterMatch:=and:{
         item:{ component "information.kind",
                rule allComponentsMatch, value auxiliary },
         or:{
             item:{ component "information.mandatories.*",
                    rule objectIdentifierMatch, value cn },
             item:{ component "information.optionals.*",
                    rule objectIdentifierMatch, value cn } } })

  Extra care is required when matching optional SEQUENCE OF or SET OF
  components because of the distinction between an absent list of
  instances and a present, but empty, list of instances.  The following
  search filter finds object class definitions with less than three




Legg                        Standards Track                    [Page 33]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  names, including object class definitions with a present but empty
  list of names, but does not find object class definitions with an
  absent list of names:

     (objectClasses:componentFilterMatch:=
         item:{ component "name.0",
                rule integerOrderingMatch, value 3 })

  If the "name" component is absent the "name.0" component is also
  considered to be absent and the ComponentAssertion evaluates to
  FALSE.  If the "name" component is present, but empty, the "name.0"
  component is also present and equal to zero, so the
  ComponentAssertion evaluates to TRUE.  To also find the object class
  definitions with an absent list of names the following search filter
  would be used:

     (objectClasses:componentFilterMatch:=or:{
         not:item:{ component "name", rule presentMatch, value NULL },
         item:{ component "name.0",
                rule integerOrderingMatch, value 3 } })

  Distinguished names embedded in other syntaxes can be matched with a
  componentFilterMatch.  The uniqueMember attribute type has an
  attribute syntax described by the ASN.1 type NameAndOptionalUID.

     NameAndOptionalUID ::= SEQUENCE {
         dn        DistinguishedName,
         uid       UniqueIdentifier OPTIONAL }

  The following search filter finds values of the uniqueMember
  attribute containing the author's DN:

     (uniqueMember:componentFilterMatch:=
         item:{ component "dn",
                rule distinguishedNameMatch,
                value "cn=Steven Legg,o=Adacel,c=AU" })

  The DistinguishedName and RelativeDistinguishedName ASN.1 types are
  also complex ASN.1 types so the component matching rules can be
  applied to their inner components.

     DistinguishedName   ::= RDNSequence

     RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

     RelativeDistinguishedName ::= SET SIZE (1..MAX) OF
         AttributeTypeAndValue




Legg                        Standards Track                    [Page 34]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     AttributeTypeAndValue ::= SEQUENCE {
         type        AttributeType ({SupportedAttributes}),
         value       AttributeValue ({SupportedAttributes}{@type}) }

     AttributeType ::= ATTRIBUTE.&id

     AttributeValue ::= ATTRIBUTE.&Type

  ATTRIBUTE.&Type is an open type.  A value of ATTRIBUTE.&Type is
  constrained by the type component of AttributeTypeAndValue to be of
  the attribute syntax of the nominated attribute type.  Note: the
  fourth edition of X.500 extends and renames the AttributeTypeAndValue
  SEQUENCE type.

  The seeAlso attribute has the DistinguishedName syntax.  The
  following search filter finds seeAlso attribute values containing the
  RDN, "o=Adacel", anywhere in the DN:

     (seeAlso:componentFilterMatch:=
         item:{ component "*", rule rdnMatch, value "o=Adacel" })

  The following search filter finds all seeAlso attribute values with
  "cn=Steven Legg" as the RDN of the named entry (i.e., the "first" RDN
  in an LDAPDN or the "last" RDN in an X.500 DN):

     (seeAlso:componentFilterMatch:=
         item:{ component "-1",
                rule rdnMatch, value "cn=Steven Legg" })

  The following search filter finds all seeAlso attribute values naming
  entries in the DIT subtree of "o=Adacel,c=AU":

     (seeAlso:componentFilterMatch:=and:{
         item:{ component "1", rule rdnMatch, value "c=AU" },
         item:{ component "2", rule rdnMatch, value "o=Adacel" } })

  The following search filter finds all seeAlso attribute values
  containing the naming attribute types commonName (cn) and
  telephoneNumber in the same RDN:

     (seeAlso:componentFilterMatch:=
         item:{ component "*", rule componentFilterMatch,
                value and:{
                    item:{ component "*.type",
                           rule objectIdentifierMatch, value cn },
                    item:{ component "*.type",
                           rule objectIdentifierMatch,
                           value telephoneNumber } } })



Legg                        Standards Track                    [Page 35]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  The following search filter would find all seeAlso attribute values
  containing the attribute types commonName and telephoneNumber, but
  not necessarily in the same RDN:

     (seeAlso:componentFilterMatch:=and:{
         item:{ component "*.*.type",
                rule objectIdentifierMatch, value cn },
         item:{ component "*.*.type",
                rule objectIdentifierMatch, value telephoneNumber } })

  The following search filter finds all seeAlso attribute values
  containing the word "Adacel" in any organizationalUnitName (ou)
  attribute value in any AttributeTypeAndValue of any RDN:

     (seeAlso:componentFilterMatch:=
         item:{ component "*.*.value.(2.5.4.11)",
                rule caseIgnoreSubstringsMatch,
                value { any:"Adacel" } })

  The component reference "*.*.value" identifies an open type, in this
  case an attribute value.  In a particular AttributeTypeAndValue, if
  the attribute type is not organizationalUnitName then the
  ComponentAssertion evaluates to FALSE.  Otherwise the substring
  assertion is evaluated against the attribute value.

  Absent component references in ComponentAssertions can be exploited
  to avoid false positive matches on multi-valued attributes.  For
  example, suppose there is a multi-valued attribute named
  productCodes, defined to have the Integer syntax
  (1.3.6.1.4.1.1466.115.121.1.27).  Consider the following search
  filter:

     (&(!(productCodes:integerOrderingMatch:=3))
       (productCodes:integerOrderingMatch:=8))

  An entry whose productCodes attribute contains only the values 1 and
  10 will match the above filter.  The first subfilter is satisfied by
  the value 10 (10 is not less than 3), and the second subfilter is
  satisfied by the value 1 (1 is less than 8).  The following search
  filter can be used instead to only match entries that have a
  productCodes value in the range 3 to 7, because the ComponentFilter
  is evaluated against each productCodes value in isolation:

     (productCodes:componentFilterMatch:= and:{
          not:item:{ rule integerOrderingMatch, value 3 },
         item:{ rule integerOrderingMatch, value 8 } })





Legg                        Standards Track                    [Page 36]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  An entry whose productCodes attribute contains only the values 1 and
  10 will not match the above filter.

8.  Security Considerations

  The component matching rules described in this document allow for a
  compact specification of matching capabilities that could otherwise
  have been defined by a plethora of specific matching rules, i.e.,
  despite their expressiveness and flexibility the component matching
  rules do not behave in a way uncharacteristic of other matching
  rules, so the security issues for component matching rules are no
  different than for any other matching rule.  However, because the
  component matching rules are applicable to any attribute syntax,
  support for them in a directory server may allow searching of
  attributes that were previously unsearchable by virtue of there not
  being a suitable matching rule.  Such attribute types ought to be
  properly protected with appropriate access controls.  A generic,
  interoperable access control mechanism has not yet been developed,
  however, and implementors should be aware of the interaction of that
  lack with the increased risk of exposure described above.

9.  Acknowledgements

  The author would like to thank Tom Gindin for private email
  discussions that clarified and refined the ideas presented in this
  document.

10.  IANA Considerations

  The Internet Assigned Numbers Authority (IANA) has updated the LDAP
  descriptors registry [8] as indicated by the following templates:

     Subject: Request for LDAP Descriptor Registration
     Descriptor (short name): componentFilterMatch
     Object Identifier: 1.2.36.79672281.1.13.2
     Person & email address to contact for further information:
       Steven Legg <[email protected]>
     Usage: other (matching rule)
     Specification: RFC 3687
     Author/Change Controller: IESG











Legg                        Standards Track                    [Page 37]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


     Subject: Request for LDAP Descriptor Registration
     Descriptor (short name): rdnMatch
     Object Identifier: 1.2.36.79672281.1.13.3
     Person & email address to contact for further information:
       Steven Legg <[email protected]>
     Usage: other (matching rule)
     Specification: RFC 3687
     Author/Change Controller: IESG

     Subject: Request for LDAP Descriptor Registration
     Descriptor (short name): presentMatch
     Object Identifier: 1.2.36.79672281.1.13.5
     Person & email address to contact for further information:
       Steven Legg <[email protected]>
     Usage: other (matching rule)
     Specification: RFC 3687
     Author/Change Controller: IESG

     Subject: Request for LDAP Descriptor Registration
     Descriptor (short name): allComponentsMatch
     Object Identifier: 1.2.36.79672281.1.13.6
     Person & email address to contact for further information:
       Steven Legg <[email protected]>
     Usage: other (matching rule)
     Specification: RFC 3687
     Author/Change Controller: IESG

     Subject: Request for LDAP Descriptor Registration
     Descriptor (short name): directoryComponentsMatch
     Object Identifier: 1.2.36.79672281.1.13.7
     Person & email address to contact for further information:
       Steven Legg <[email protected]>
     Usage: other (matching rule)
     Specification: RFC 3687
     Author/Change Controller: IESG

  The object identifiers have been assigned for use in this
  specification by Adacel Technologies, under an arc assigned to Adacel
  by Standards Australia.

11.  References

11.1.  Normative References

  [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.





Legg                        Standards Track                    [Page 38]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  [2]   Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
        Specifications: ABNF", RFC 2234, November 1997.

  [3]   Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
        Protocol (v3)", RFC 2251, December 1997.

  [4]   Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
        Directory Access Protocol (v3): Attribute Syntax Definitions",
        RFC 2252, December 1997.

  [5]   Wahl, M., Kille S. and T. Howes. "Lightweight Directory Access
        Protocol (v3): UTF-8 String Representation of Distinguished
        Names", RFC 2253, December 1997.

  [6]   Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
        63, RFC 3629, November 2003.

  [7]   Hodges, J. and R. Morgan, "Lightweight Directory Access
        Protocol (v3): Technical Specification", RFC 3377, September
        2002.

  [8]   Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
        Considerations for the Lightweight Directory Access Protocol
        (LDAP)", BCP 64, RFC 3383, September 2002.

  [9]   Legg, S., "Generic String Encoding Rules (GSER) for ASN.1
        Types", RFC 3641, October 2003.

  [10]  ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994,
        Information Technology - Open Systems Interconnection - The
        Directory: Models

  [11]  ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,
        Information Technology - Open Systems Interconnection - The
        Directory: Authentication Framework

  [12]  ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994,
        Information technology - Open Systems Interconnection - The
        Directory: Selected attribute types

  [13]  ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1:2002,
        Information technology - Abstract Syntax Notation One (ASN.1):
        Specification of basic notation

  [14]  ITU-T Recommendation X.681 (07/02) | ISO/IEC 8824-2:2002,
        Information technology - Abstract Syntax Notation One (ASN.1):
        Information object specification




Legg                        Standards Track                    [Page 39]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


  [15]  ITU-T Recommendation X.682 (07/02) | ISO/IEC 8824-3:2002,
        Information technology - Abstract Syntax Notation One (ASN.1):
        Constraint specification

  [16]  ITU-T Recommendation X.683 (07/02) | ISO/IEC 8824-4:2002,
        Information technology - Abstract Syntax Notation One (ASN.1):
        Parameterization of ASN.1 specifications

  [17]  ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1,
        Information technology - ASN.1 encoding rules: Specification of
        Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
        Distinguished Encoding Rules (DER)

12.2.  Informative References

  [18]  Howes, T., "The String Representation of LDAP Search Filters",
        RFC 2254, December 1997.

  [19]  ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994,
        Information Technology - Open Systems Interconnection - The
        Directory: Overview of concepts, models and services

12.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11. Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.








Legg                        Standards Track                    [Page 40]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


13.  Author's Address

  Steven Legg
  Adacel Technologies Ltd.
  250 Bay Street
  Brighton, Victoria 3186
  AUSTRALIA

  Phone: +61 3 8530 7710
  Fax:   +61 3 8530 7888
  EMail: [email protected]








































Legg                        Standards Track                    [Page 41]

RFC 3687        LDAP and X.500 Component Matching Rules    February 2004


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Legg                        Standards Track                    [Page 42]