Network Working Group                                         R. Housley
Request for Comments: 3686                                Vigil Security
Category: Standards Track                                   January 2004


        Using Advanced Encryption Standard (AES) Counter Mode
           With IPsec Encapsulating Security Payload (ESP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  This document describes the use of Advanced Encryption Standard (AES)
  Counter Mode, with an explicit initialization vector, as an IPsec
  Encapsulating Security Payload (ESP) confidentiality mechanism.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
      1.1.  Conventions Used In This Document. . . . . . . . . . . .  2
  2.  AES Block Cipher . . . . . . . . . . . . . . . . . . . . . . .  2
      2.1.  Counter Mode . . . . . . . . . . . . . . . . . . . . . .  2
      2.2.  Key Size and Rounds. . . . . . . . . . . . . . . . . . .  5
      2.3.  Block Size . . . . . . . . . . . . . . . . . . . . . . .  5
  3.  ESP Payload. . . . . . . . . . . . . . . . . . . . . . . . . .  5
      3.1.  Initialization Vector. . . . . . . . . . . . . . . . . .  6
      3.2.  Encrypted Payload. . . . . . . . . . . . . . . . . . . .  6
      3.3.  Authentication Data. . . . . . . . . . . . . . . . . . .  6
  4.  Counter Block Format . . . . . . . . . . . . . . . . . . . . .  7
  5.  IKE Conventions. . . . . . . . . . . . . . . . . . . . . . . .  8
      5.1.  Keying Material and Nonces . . . . . . . . . . . . . . .  8
      5.2.  Phase 1 Identifier . . . . . . . . . . . . . . . . . . .  9
      5.3.  Phase 2 Identifier . . . . . . . . . . . . . . . . . . .  9
      5.4.  Key Length Attribute . . . . . . . . . . . . . . . . . .  9
  6.  Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . .  9
  7.  Security Considerations. . . . . . . . . . . . . . . . . . . . 12
  8.  Design Rationale . . . . . . . . . . . . . . . . . . . . . . . 14
  9.  IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 16



Housley                     Standards Track                     [Page 1]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  10. Intellectual Property Statement. . . . . . . . . . . . . . . . 16
  11. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 16
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
      12.1. Normative References . . . . . . . . . . . . . . . . . . 17
      12.2. Informative References . . . . . . . . . . . . . . . . . 17
  13. Author's Address . . . . . . . . . . . . . . . . . . . . . . . 18
  14. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 19

1.  Introduction

  The National Institute of Standards and Technology (NIST) recently
  selected the Advanced Encryption Standard (AES) [AES], also known as
  Rijndael.  The AES is a block cipher, and it can be used in many
  different modes.  This document describes the use of AES Counter Mode
  (AES-CTR), with an explicit initialization vector (IV), as an IPsec
  Encapsulating Security Payload (ESP) [ESP] confidentiality mechanism.

  This document does not provide an overview of IPsec.  However,
  information about how the various components of IPsec and the way in
  which they collectively provide security services is available in
  [ARCH] and [ROADMAP].

1.1.  Conventions Used In This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [STDWORDS].

2.  AES Block Cipher

  This section contains a brief description of the relevant
  characteristics of the AES block cipher.  Implementation requirements
  are also discussed.

2.1.  Counter Mode

  NIST has defined five modes of operation for AES and other FIPS-
  approved block ciphers [MODES].  Each of these modes has different
  characteristics.  The five modes are: ECB (Electronic Code Book), CBC
  (Cipher Block Chaining), CFB (Cipher FeedBack), OFB (Output
  FeedBack), and CTR (Counter).

  Only AES Counter mode (AES-CTR) is discussed in this specification.
  AES-CTR requires the encryptor to generate a unique per-packet value,
  and communicate this value to the decryptor.  This specification
  calls this per-packet value an initialization vector (IV).  The same
  IV and key combination MUST NOT be used more than once.  The




Housley                     Standards Track                     [Page 2]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  encryptor can generate the IV in any manner that ensures uniqueness.
  Common approaches to IV generation include incrementing a counter for
  each packet and linear feedback shift registers (LFSRs).

  This specification calls for the use of a nonce for additional
  protection against precomputation attacks.  The nonce value need not
  be secret.  However, the nonce MUST be unpredictable prior to the
  establishment of the IPsec security association that is making use of
  AES-CTR.

  AES-CTR has many properties that make it an attractive encryption
  algorithm for in high-speed networking.  AES-CTR uses the AES block
  cipher to create a stream cipher.  Data is encrypted and decrypted by
  XORing with the key stream produced by AES encrypting sequential
  counter block values.  AES-CTR is easy to implement, and AES-CTR can
  be pipelined and parallelized.  AES-CTR also supports key stream
  precomputation.

  Pipelining is possible because AES has multiple rounds (see section
  2.2).  A hardware implementation (and some software implementations)
  can create a pipeline by unwinding the loop implied by this round
  structure.  For example, after a 16-octet block has been input, one
  round later another 16-octet block can be input, and so on.  In AES-
  CTR, these inputs are the sequential counter block values used to
  generate the key stream.

  Multiple independent AES encrypt implementations can also be used to
  improve performance.  For example, one could use two AES encrypt
  implementations in parallel, to process a sequence of counter block
  values, doubling the effective throughput.

  The sender can precompute the key stream.  Since the key stream does
  not depend on any data in the packet, the key stream can be
  precomputed once the nonce and IV are assigned.  This precomputation
  can reduce packet latency.  The receiver cannot perform similar
  precomputation because the IV will not be known before the packet
  arrives.

  AES-CTR uses the only AES encrypt operation (for both encryption and
  decryption), making AES-CTR implementations smaller than
  implementations of many other AES modes.

  When used correctly, AES-CTR provides a high level of
  confidentiality.  Unfortunately, AES-CTR is easy to use incorrectly.
  Being a stream cipher, any reuse of the per-packet value, called the
  IV, with the same nonce and key is catastrophic.  An IV collision
  immediately leaks information about the plaintext in both packets.
  For this reason, it is inappropriate to use this mode of operation



Housley                     Standards Track                     [Page 3]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  with static keys.  Extraordinary measures would be needed to prevent
  reuse of an IV value with the static key across power cycles.  To be
  safe, implementations MUST use fresh keys with AES-CTR.  The Internet
  Key Exchange (IKE) [IKE] protocol can be used to establish fresh
  keys.  IKE can also provide the nonce value.

  With AES-CTR, it is trivial to use a valid ciphertext to forge other
  (valid to the decryptor) ciphertexts.  Thus, it is equally
  catastrophic to use AES-CTR without a companion authentication
  function.  Implementations MUST use AES-CTR in conjunction with an
  authentication function, such as HMAC-SHA-1-96 [HMAC-SHA].

  To encrypt a payload with AES-CTR, the encryptor partitions the
  plaintext, PT, into 128-bit blocks.  The final block need not be 128
  bits; it can be less.

     PT = PT[1] PT[2] ... PT[n]

  Each PT block is XORed with a block of the key stream to generate the
  ciphertext, CT.  The AES encryption of each counter block results in
  128 bits of key stream.  The most significant 96 bits of the counter
  block are set to the nonce value, which is 32 bits, followed by the
  per-packet IV value, which is 64 bits.  The least significant 32 bits
  of the counter block are initially set to one.  This counter value is
  incremented by one to generate subsequent counter blocks, each
  resulting in another 128 bits of key stream.  The encryption of n
  plaintext blocks can be summarized as:

     CTRBLK := NONCE || IV || ONE
     FOR i := 1 to n-1 DO
       CT[i] := PT[i] XOR AES(CTRBLK)
       CTRBLK := CTRBLK + 1
     END
     CT[n] := PT[n] XOR TRUNC(AES(CTRBLK))

  The AES() function performs AES encryption with the fresh key.

  The TRUNC() function truncates the output of the AES encrypt
  operation to the same length as the final plaintext block, returning
  the most significant bits.











Housley                     Standards Track                     [Page 4]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Decryption is similar.  The decryption of n ciphertext blocks can be
  summarized as:

     CTRBLK := NONCE || IV || ONE
     FOR i := 1 to n-1 DO
       PT[i] := CT[i] XOR AES(CTRBLK)
       CTRBLK := CTRBLK + 1
     END
     PT[n] := CT[n] XOR TRUNC(AES(CTRBLK))

2.2.  Key Size and Rounds

  AES supports three key sizes: 128 bits, 192 bits, and 256 bits.  The
  default key size is 128 bits, and all implementations MUST support
  this key size.  Implementations MAY also support key sizes of 192
  bits and 256 bits.

  AES uses a different number of rounds for each of the defined key
  sizes.  When a 128-bit key is used, implementations MUST use 10
  rounds.  When a 192-bit key is used, implementations MUST use 12
  rounds.  When a 256-bit key is used, implementations MUST use 14
  rounds.

2.3.  Block Size

  The AES has a block size of 128 bits (16 octets).  As such, when
  using AES-CTR, each AES encrypt operation generates 128 bits of key
  stream.  AES-CTR encryption is the XOR of the key stream with the
  plaintext.  AES-CTR decryption is the XOR of the key stream with the
  ciphertext.  If the generated key stream is longer than the plaintext
  or ciphertext, the extra key stream bits are simply discarded.  For
  this reason, AES-CTR does not require the plaintext to be padded to a
  multiple of the block size.  However, to provide limited traffic flow
  confidentiality, padding MAY be included, as specified in [ESP].

3.  ESP Payload

  The ESP payload is comprised of the IV followed by the ciphertext.
  The payload field, as defined in [ESP], is structured as shown in
  Figure 1.











Housley                     Standards Track                     [Page 5]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Initialization Vector                     |
  |                            (8 octets)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                  Encrypted Payload (variable)                 ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                 Authentication Data (variable)                ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 1.  ESP Payload Encrypted with AES-CTR

3.1.  Initialization Vector

  The AES-CTR IV field MUST be eight octets.  The IV MUST be chosen by
  the encryptor in a manner that ensures that the same IV value is used
  only once for a given key.  The encryptor can generate the IV in any
  manner that ensures uniqueness.  Common approaches to IV generation
  include incrementing a counter for each packet and linear feedback
  shift registers (LFSRs).

  Including the IV in each packet ensures that the decryptor can
  generate the key stream needed for decryption, even when some packets
  are lost or reordered.

3.2.  Encrypted Payload

  The encrypted payload contains the ciphertext.

  AES-CTR mode does not require plaintext padding.  However, ESP does
  require padding to 32-bit word-align the authentication data.  The
  padding, Pad Length, and the Next Header MUST be concatenated with
  the plaintext before performing encryption, as described in [ESP].

3.3.  Authentication Data

  Since it is trivial to construct a forgery AES-CTR ciphertext from a
  valid AES-CTR ciphertext, AES-CTR implementations MUST employ a non-
  NULL ESP authentication method.  HMAC-SHA-1-96 [HMAC-SHA] is a likely
  choice.






Housley                     Standards Track                     [Page 6]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


4.  Counter Block Format

  Each packet conveys the IV that is necessary to construct the
  sequence of counter blocks used to generate the key stream necessary
  to decrypt the payload.  The AES counter block cipher block is 128
  bits.  Figure 2 shows the format of the counter block.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Nonce                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Initialization Vector (IV)                   |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Block Counter                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 2.  Counter Block Format

  The components of the counter block are as follows:

  Nonce
     The Nonce field is 32 bits.  As the name implies, the nonce is a
     single use value.  That is, a fresh nonce value MUST be assigned
     for each security association.  It MUST be assigned at the
     beginning of the security association.  The nonce value need not
     be secret, but it MUST be unpredictable prior to the beginning of
     the security association.

  Initialization Vector
     The IV field is 64 bits.  As described in section 3.1, the IV MUST
     be chosen by the encryptor in a manner that ensures that the same
     IV value is used only once for a given key.

  Block Counter
     The block counter field is the least significant 32 bits of the
     counter block.  The block counter begins with the value of one,
     and it is incremented to generate subsequent portions of the key
     stream.  The block counter is a 32-bit big-endian integer value.

  Using the encryption process described in section 2.1, this
  construction permits each packet to consist of up to:

     (2^32)-1 blocks  =  4,294,967,295 blocks
                      = 68,719,476,720 octets





Housley                     Standards Track                     [Page 7]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  This construction can produce enough key stream for each packet
  sufficient to handle any IPv6 jumbogram [JUMBO].

5.  IKE Conventions

  This section describes the conventions used to generate keying
  material and nonces for use with AES-CTR using the Internet Key
  Exchange (IKE) [IKE] protocol.  The identifiers and attributes needed
  to negotiate a security association which uses AES-CTR are also
  defined.

5.1.  Keying Material and Nonces

  As described in section 2.1, implementations MUST use fresh keys with
  AES-CTR.  IKE can be used to establish fresh keys.  This section
  describes the conventions for obtaining the unpredictable nonce value
  from IKE.  Note that this convention provides a nonce value that is
  secret as well as unpredictable.

  IKE makes use of a pseudo-random function (PRF) to derive keying
  material.  The PRF is used iteratively to derive keying material of
  arbitrary size, called KEYMAT.  Keying material is extracted from the
  output string without regard to boundaries.

  The size of the requested KEYMAT MUST be four octets longer than is
  needed for the associated AES key.  The keying material is used as
  follows:

  AES-CTR with a 128 bit key
     The KEYMAT requested for each AES-CTR key is 20 octets.  The first
     16 octets are the 128-bit AES key, and the remaining four octets
     are used as the nonce value in the counter block.

  AES-CTR with a 192 bit key
     The KEYMAT requested for each AES-CTR key is 28 octets.  The first
     24 octets are the 192-bit AES key, and the remaining four octets
     are used as the nonce value in the counter block.

  AES-CTR with a 256 bit key
     The KEYMAT requested for each AES-CTR key is 36 octets.  The first
     32 octets are the 256-bit AES key, and the remaining four octets
     are used as the nonce value in the counter block.









Housley                     Standards Track                     [Page 8]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


5.2.  Phase 1 Identifier

  This document does not specify the conventions for using AES-CTR for
  IKE Phase 1 negotiations.  For AES-CTR to be used in this manner, a
  separate specification is needed, and an Encryption Algorithm
  Identifier needs to be assigned.

5.3.  Phase 2 Identifier

  For IKE Phase 2 negotiations, IANA has assigned an ESP Transform
  Identifier of 13 for AES-CTR with an explicit IV.

5.4.  Key Length Attribute

  Since the AES supports three key lengths, the Key Length attribute
  MUST be specified in the IKE Phase 2 exchange [DOI].  The Key Length
  attribute MUST have a value of 128, 192, or 256.

6.  Test Vectors

  This section contains nine test vectors, which can be used to confirm
  that an implementation has correctly implemented AES-CTR.  The first
  three test vectors use AES with a 128 bit key; the next three test
  vectors use AES with a 192 bit key; and the last three test vectors
  use AES with a 256 bit key.

  Test Vector #1: Encrypting 16 octets using AES-CTR with 128-bit key
  AES Key          : AE 68 52 F8 12 10 67 CC 4B F7 A5 76 55 77 F3 9E
  AES-CTR IV       : 00 00 00 00 00 00 00 00
  Nonce            : 00 00 00 30
  Plaintext String : 'Single block msg'
  Plaintext        : 53 69 6E 67 6C 65 20 62 6C 6F 63 6B 20 6D 73 67
  Counter Block (1): 00 00 00 30 00 00 00 00 00 00 00 00 00 00 00 01
  Key Stream    (1): B7 60 33 28 DB C2 93 1B 41 0E 16 C8 06 7E 62 DF
  Ciphertext       : E4 09 5D 4F B7 A7 B3 79 2D 61 75 A3 26 13 11 B8

  Test Vector #2: Encrypting 32 octets using AES-CTR with 128-bit key
  AES Key          : 7E 24 06 78 17 FA E0 D7 43 D6 CE 1F 32 53 91 63
  AES-CTR IV       : C0 54 3B 59 DA 48 D9 0B
  Nonce            : 00 6C B6 DB
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
  Counter Block (1): 00 6C B6 DB C0 54 3B 59 DA 48 D9 0B 00 00 00 01
  Key Stream    (1): 51 05 A3 05 12 8F 74 DE 71 04 4B E5 82 D7 DD 87
  Counter Block (2): 00 6C B6 DB C0 54 3B 59 DA 48 D9 0B 00 00 00 02
  Key Stream    (2): FB 3F 0C EF 52 CF 41 DF E4 FF 2A C4 8D 5C A0 37
  Ciphertext       : 51 04 A1 06 16 8A 72 D9 79 0D 41 EE 8E DA D3 88
                   : EB 2E 1E FC 46 DA 57 C8 FC E6 30 DF 91 41 BE 28



Housley                     Standards Track                     [Page 9]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Test Vector #3: Encrypting 36 octets using AES-CTR with 128-bit key
  AES Key          : 76 91 BE 03 5E 50 20 A8 AC 6E 61 85 29 F9 A0 DC
  AES-CTR IV       : 27 77 7F 3F  4A 17 86 F0
  Nonce            : 00 E0 01 7B
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
                   : 20 21 22 23
  Counter Block (1): 00 E0 01 7B 27 77 7F 3F 4A 17 86 F0 00 00 00 01
  Key Stream    (1): C1 CE 4A AB 9B 2A FB DE C7 4F 58 E2 E3 D6 7C D8
  Counter Block (2): 00 E0 01 7B 27 77 7F 3F 4A 17 86 F0 00 00 00 02
  Key Stream    (2): 55 51 B6 38 CA 78 6E 21 CD 83 46 F1 B2 EE 0E 4C
  Counter Block (3): 00 E0 01 7B 27 77 7F 3F 4A 17 86 F0 00 00 00 03
  Key Stream    (3): 05 93 25 0C 17 55 36 00 A6 3D FE CF 56 23 87 E9
  Ciphertext       : C1 CF 48 A8 9F 2F FD D9 CF 46 52 E9 EF DB 72 D7
                   : 45 40 A4 2B DE 6D 78 36 D5 9A 5C EA AE F3 10 53
                   : 25 B2 07 2F

  Test Vector #4: Encrypting 16 octets using AES-CTR with 192-bit key
  AES Key          : 16 AF 5B 14 5F C9 F5 79 C1 75 F9 3E 3B FB 0E ED
                   : 86 3D 06 CC FD B7 85 15
  AES-CTR IV       : 36 73 3C 14 7D 6D 93 CB
  Nonce            : 00 00 00 48
  Plaintext String : 'Single block msg'
  Plaintext        : 53 69 6E 67 6C 65 20 62 6C 6F 63 6B 20 6D 73 67
  Counter Block (1): 00 00 00 48 36 73 3C 14 7D 6D 93 CB 00 00 00 01
  Key Stream    (1): 18 3C 56 28 8E 3C E9 AA 22 16 56 CB 23 A6 9A 4F
  Ciphertext       : 4B 55 38 4F E2 59 C9 C8 4E 79 35 A0 03 CB E9 28

  Test Vector #5: Encrypting 32 octets using AES-CTR with 192-bit key
  AES Key          : 7C 5C B2 40 1B 3D C3 3C 19 E7 34 08 19 E0 F6 9C
                   : 67 8C 3D B8 E6 F6 A9 1A
  AES-CTR IV       : 02 0C 6E AD C2 CB 50 0D
  Nonce            : 00 96 B0 3B
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
  Counter Block (1): 00 96 B0 3B 02 0C 6E AD C2 CB 50 0D 00 00 00 01
  Key Stream    (1): 45 33 41 FF 64 9E 25 35 76 D6 A0 F1 7D 3C C3 90
  Counter Block (2): 00 96 B0 3B 02 0C 6E AD C2 CB 50 0D 00 00 00 02
  Key Stream    (2): 94 81 62 0F 4E C1 B1 8B E4 06 FA E4 5E E9 E5 1F
  Ciphertext       : 45 32 43 FC 60 9B 23 32 7E DF AA FA 71 31 CD 9F
                   : 84 90 70 1C 5A D4 A7 9C FC 1F E0 FF 42 F4 FB 00










Housley                     Standards Track                    [Page 10]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Test Vector #6: Encrypting 36 octets using AES-CTR with 192-bit key
  AES Key          : 02 BF 39 1E E8 EC B1 59 B9 59 61 7B 09 65 27 9B
                   : F5 9B 60 A7 86 D3 E0 FE
  AES-CTR IV       : 5C BD 60 27 8D CC 09 12
  Nonce            : 00 07 BD FD
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
                   : 20 21 22 23
  Counter Block (1): 00 07 BD FD 5C BD 60 27 8D CC 09 12 00 00 00 01
  Key Stream    (1): 96 88 3D C6 5A 59 74 28 5C 02 77 DA D1 FA E9 57
  Counter Block (2): 00 07 BD FD 5C BD 60 27 8D CC 09 12 00 00 00 02
  Key Stream    (2): C2 99 AE 86 D2 84 73 9F 5D 2F D2 0A 7A 32 3F 97
  Counter Block (3): 00 07 BD FD 5C BD 60 27 8D CC 09 12 00 00 00 03
  Key Stream    (3): 8B CF 2B 16 39 99 B2 26 15 B4 9C D4 FE 57 39 98
  Ciphertext       : 96 89 3F C5 5E 5C 72 2F 54 0B 7D D1 DD F7 E7 58
                   : D2 88 BC 95 C6 91 65 88 45 36 C8 11 66 2F 21 88
                   : AB EE 09 35

  Test Vector #7: Encrypting 16 octets using AES-CTR with 256-bit key
  AES Key          : 77 6B EF F2 85 1D B0 6F 4C 8A 05 42 C8 69 6F 6C
                   : 6A 81 AF 1E EC 96 B4 D3 7F C1 D6 89 E6 C1 C1 04
  AES-CTR IV       : DB 56 72 C9 7A A8 F0 B2
  Nonce            : 00 00 00 60
  Plaintext String : 'Single block msg'
  Plaintext        : 53 69 6E 67 6C 65 20 62 6C 6F 63 6B 20 6D 73 67
  Counter Block (1): 00 00 00 60 DB 56 72 C9 7A A8 F0 B2 00 00 00 01
  Key Stream    (1): 47 33 BE 7A D3 E7 6E A5 3A 67 00 B7 51 8E 93 A7
  Ciphertext       : 14 5A D0 1D BF 82 4E C7 56 08 63 DC 71 E3 E0 C0

  Test Vector #8: Encrypting 32 octets using AES-CTR with 256-bit key
  AES Key          : F6 D6 6D 6B D5 2D 59 BB 07 96 36 58 79 EF F8 86
                   : C6 6D D5 1A 5B 6A 99 74 4B 50 59 0C 87 A2 38 84
  AES-CTR IV       : C1 58 5E F1 5A 43 D8 75
  Nonce            : 00 FA AC 24
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
  Counter block (1): 00 FA AC 24 C1 58 5E F1 5A 43 D8 75 00 00 00 01
  Key stream    (1): F0 5F 21 18 3C 91 67 2B 41 E7 0A 00 8C 43 BC A6
  Counter block (2): 00 FA AC 24 C1 58 5E F1 5A 43 D8 75 00 00 00 02
  Key stream    (2): A8 21 79 43 9B 96 8B 7D 4D 29 99 06 8F 59 B1 03
  Ciphertext       : F0 5E 23 1B 38 94 61 2C 49 EE 00 0B 80 4E B2 A9
                   : B8 30 6B 50 8F 83 9D 6A 55 30 83 1D 93 44 AF 1C









Housley                     Standards Track                    [Page 11]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Test Vector #9: Encrypting 36 octets using AES-CTR with 256-bit key
  AES Key          : FF 7A 61 7C E6 91 48 E4 F1 72 6E 2F 43 58 1D E2
                   : AA 62 D9 F8 05 53 2E DF F1 EE D6 87 FB 54 15 3D
  AES-CTR IV       : 51 A5 1D 70 A1 C1 11 48
  Nonce            : 00 1C C5 B7
  Plaintext        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
                   : 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
                   : 20 21 22 23
  Counter block (1): 00 1C C5 B7 51 A5 1D 70 A1 C1 11 48 00 00 00 01
  Key stream    (1): EB 6D 50 81 19 0E BD F0 C6 7C 9E 4D 26 C7 41 A5
  Counter block (2): 00 1C C5 B7 51 A5 1D 70 A1 C1 11 48 00 00 00 02
  Key stream    (2): A4 16 CD 95 71 7C EB 10 EC 95 DA AE 9F CB 19 00
  Counter block (3): 00 1C C5 B7 51 A5 1D 70 A1 C1 11 48 00 00 00 03
  Key stream    (3): 3E E1 C4 9B C6 B9 CA 21 3F 6E E2 71 D0 A9 33 39
  Ciphertext       : EB 6C 52 82 1D 0B BB F7 CE 75 94 46 2A CA 4F AA
                   : B4 07 DF 86 65 69 FD 07 F4 8C C0 B5 83 D6 07 1F
                   : 1E C0 E6 B8

7.  Security Considerations

  When used properly, AES-CTR mode provides strong confidentiality.
  Bellare, Desai, Jokipii, Rogaway show in [BDJR] that the privacy
  guarantees provided by counter mode are at least as strong as those
  for CBC mode when using the same block cipher.

  Unfortunately, it is very easy to misuse this counter mode.  If
  counter block values are ever used for more that one packet with the
  same key, then the same key stream will be used to encrypt both
  packets, and the confidentiality guarantees are voided.

  What happens if the encryptor XORs the same key stream with two
  different plaintexts?  Suppose two plaintext byte sequences P1, P2,
  P3 and Q1, Q2, Q3 are both encrypted with key stream K1, K2, K3.  The
  two corresponding ciphertexts are:

     (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

     (Q1 XOR K1), (Q2 XOR K2), (Q3 XOR K3)

  If both of these two ciphertext streams are exposed to an attacker,
  then a catastrophic failure of confidentiality results, since:

     (P1 XOR K1) XOR (Q1 XOR K1) = P1 XOR Q1
     (P2 XOR K2) XOR (Q2 XOR K2) = P2 XOR Q2
     (P3 XOR K3) XOR (Q3 XOR K3) = P3 XOR Q3






Housley                     Standards Track                    [Page 12]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Once the attacker obtains the two plaintexts XORed together, it is
  relatively straightforward to separate them.  Thus, using any stream
  cipher, including AES-CTR, to encrypt two plaintexts under the same
  key stream leaks the plaintext.

  Therefore, stream ciphers, including AES-CTR, should not be used with
  static keys.  It is inappropriate to use AES-CTR with static keys.
  Extraordinary measures would be needed to prevent reuse of a counter
  block value with the static key across power cycles.  To be safe, ESP
  implementations MUST use fresh keys with AES-CTR.  The Internet Key
  Exchange (IKE) protocol [IKE] can be used to establish fresh keys.
  IKE can also be used to establish the nonce at the beginning of the
  security association.

  When IKE is used to establish fresh keys between two peer entities,
  separate keys are established for the two traffic flows.  When a
  mechanism other than IKE is used to establish fresh keys, and that
  mechanism establishes only a single key to encrypt packets, then
  there is a high probability that the peers will select the same IV
  values for some packets.  Thus, to avoid counter block collisions,

  ESP implementations that permit use of the same key for encrypting
  outbound traffic and decrypting incoming traffic with the same peer
  MUST ensure that the two peers assign different Nonce values to the
  security association.

  Data forgery is trivial with CTR mode.  The demonstration of this
  attack is similar to the key stream reuse discussion above.  If a
  known plaintext byte sequence P1, P2, P3 is encrypted with key stream
  K1, K2, K3, then the attacker can replace the plaintext with one of
  his own choosing.  The ciphertext is:

     (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

  The attacker simply XORs a selected sequence Q1, Q2, Q3 with the
  ciphertext to obtain:

     (Q1 XOR (P1 XOR K1)), (Q2 XOR (P2 XOR K2)), (Q3 XOR (P3 XOR K3))

  Which is the same as:

     ((Q1 XOR P1) XOR K1), ((Q2 XOR P2) XOR K2), ((Q3 XOR P3) XOR K3)

  Decryption of the attacker-generated ciphertext will yield exactly
  what the attacker intended:

     (Q1 XOR P1), (Q2 XOR P2), (Q3 XOR P3)




Housley                     Standards Track                    [Page 13]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  Accordingly, ESP implementations MUST use of AES-CTR in conjunction
  with ESP authentication.

  Additionally, since AES has a 128-bit block size, regardless of the
  mode employed, the ciphertext generated by AES encryption becomes
  distinguishable from random values after 2^64 blocks are encrypted
  with a single key.  Since ESP with Enhanced Sequence Numbers allows
  for up to 2^64 packets in a single security association, there is
  real potential for more than 2^64 blocks to be encrypted with one
  key.  Therefore, implementations SHOULD generate a fresh key before
  2^64 blocks are encrypted with the same key.  Note that ESP with 32-
  bit Sequence Numbers will not exceed 2^64 blocks even if all of the
  packets are maximum-length IPv6 jumbograms [JUMBO].

  There are fairly generic precomputation attacks against all block
  cipher modes that allow a meet-in-the-middle attack against the key.
  These attacks require the creation and searching of huge tables of
  ciphertext associated with known plaintext and known keys.  Assuming
  that the memory and processor resources are available for a
  precomputation attack, then the theoretical strength of AES-CTR (and
  any other block cipher mode) is limited to 2^(n/2) bits, where n is
  the number of bits in the key.  The use of long keys is the best
  countermeasure to precomputation attacks.  Therefore, implementations
  that employ 128-bit AES keys should take precautions to make the
  precomputation attacks more difficult.  The unpredictable nonce value
  in the counter block significantly increases the size of the table
  that the attacker must compute to mount a successful attack.

8.  Design Rationale

  In the development of this specification, the use of the ESP sequence
  number field instead of an explicit IV field was considered.  This
  selection is not a cryptographic security issue, as either approach
  will prevent counter block collisions.

  In a very conservative model of encryption security, at most 2^64
  blocks ought to be encrypted with AES-CTR under a single key.  Under
  this constraint, no more than 64 bits are needed to identify each
  packet within a security association.  Since the ESP extended
  sequence number is 64 bits, it is an obvious candidate for use as an
  implicit IV.  This would dictate a single method for the assignment
  of per-packet value in the counter block.  The use of an explicit IV
  does not dictate such a method, which is desirable for several
  reasons.







Housley                     Standards Track                    [Page 14]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  1. Only the encryptor can ensure that the value is not used for more
     than one packet, so there is no advantage to selecting a mechanism
     that allows the decryptor to determine whether counter block
     values collide.  Damage from the collision is done, whether the
     decryptor detects it or not.

  2. Allows adders, LFSRs, and any other technique that meets the time
     budget of the encryptor, so long as the technique results in a
     unique value for each packet.  Adders are simple and
     straightforward to implement, but due to carries, they do not
     execute in constant time.  LFSRs offer an alternative that
     executes in constant time.

  3. Complexity is in control of the implementer.  Further, the
     decision made by the implementer of the encryptor does not make
     the decryptor more (or less) complex.

  4. When the encryptor has more than one cryptographic hardware
     device, an IV prefix can be assigned to each device, ensuring that
     collisions will not occur.  Yet, since the decryptor does not need
     to examine IV structure, the decryptor is unaffected by the IV
     structure selected by the encryptor.  One cannot make use of the
     same technique with the ESP sequence numbers, because the
     semantics for them require sequential value generation.

  5.  Assurance boundaries are very important to implementations that
     will be evaluated against the FIPS Pub 140-1 or FIPS Pub 140-2
     [SECRQMTS].  The assignment of the per-packet counter block value
     needs to be inside the assurance boundary.  Some implementations
     assign the sequence number inside the assurance boundary, but
     others do not.  A sequence number collision does not have the dire
     consequences, but, as described in section 6, a collision in
     counter block values has disastrous consequences.

  6. Coupling with the sequence number is possible in those
     architectures where the sequence number assignment is performed
     within the assurance boundary.  In this situation, the sequence
     number and the IV field will contain the same value.

  7. Decoupling from the sequence number is possible in those
     architectures where the sequence number assignment is performed
     outside the assurance boundary.

  The use of an explicit IV field directly follows from the decoupling
  of the sequence number and the per-packet counter block value.  The
  overhead associated with 64 bits for the IV field is acceptable.
  This overhead is significantly less than the overhead associated with
  Cipher Block Chaining (CBC) mode.  As normally employed, CBC requires



Housley                     Standards Track                    [Page 15]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  a full block for the IV and, on average, half of a block for padding.
  AES-CTR with an explicit IV has about one-third of the overhead as
  AES-CBC, and the overhead is constant for each packet.

  The inclusion of the nonce provides a weak countermeasure against
  precomputation attacks.  For this countermeasure to be effective, the
  attacker must not be able to predict the value of the nonce well in
  advance of security association establishment.  The use of long keys
  provides a strong countermeasure to precomputation attacks, and AES
  offers key sizes that thwart these attacks for many decades to come.

  A 28-bit block counter value is sufficient for the generation of a
  key stream to encrypt the largest possible IPv6 jumbogram [JUMBO];
  however, a 32-bit field is used.  This size is convenient for both
  hardware and software implementations.

9.  IANA Considerations

  IANA has assigned 13 as the ESP transform number for AES-CTR with an
  explicit IV.

10.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11. Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

11.  Acknowledgements

  This document is the result of extensive discussions and compromises.
  While not all of the participants are completely satisfied with the
  outcome, the document is better for their contributions.



Housley                     Standards Track                    [Page 16]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  The author thanks the members of the IPsec working group for their
  contributions to the design, with special mention of the efforts of
  (in alphabetical order) Steve Bellovin, David Black, Niels Ferguson,
  Charlie Kaufman, Steve Kent, Tero Kivinen, Paul Koning, David McGrew,
  Robert Moskowitz, Jesse Walker, and Doug Whiting.

  The author thanks and Alireza Hodjat, John Viega, and Doug Whiting
  for assistance with the test vectors.

12.  References

  This section provides normative and informative references.

12.1.  Normative References

  [AES]       NIST, FIPS PUB 197, "Advanced Encryption Standard (AES)",
              November 2001.

  [DOI]       Piper, D., "The Internet IP Security Domain of
              Interpretation for ISAKMP", RFC 2407, November 1998.

  [ESP]       Kent, S. and R. Atkinson, "IP Encapsulating Security
              Payload (ESP)", RFC 2406, November 1998.

  [MODES]     Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: Methods and Techniques", NIST Special
              Publication 800-38A, December 2001.

  [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2.  Informative References

  [ARCH]      Kent, S. and R. Atkinson, "Security Architecture for the
              Internet Protocol", RFC 2401, November 1998.

  [BDJR]      Bellare, M, Desai, A., Jokipii, E. and P. Rogaway, "A
              Concrete Security Treatment of Symmetric Encryption:
              Analysis of the DES Modes of Operation", Proceedings 38th
              Annual Symposium on Foundations of Computer Science,
              1997.

  [HMAC-SHA]  Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
              ESP and AH", RFC 2404, November 1998.

  [IKE]       Harkins, D. and D. Carrel, "The Internet Key Exchange
              (IKE)", RFC 2409, November 1998.




Housley                     Standards Track                    [Page 17]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


  [JUMBO]     Borman, D., Deering, S. and R. Hinden, "IPv6 Jumbograms",
              RFC 2675, August 1999.

  [ROADMAP]   Thayer, R., Doraswamy, N. and R. Glenn, "IP Security
              Document Roadmap", RFC 2411, November 1998.

  [SECRQMTS]  National Institute of Standards and Technology.  FIPS Pub
              140-1: Security Requirements for Cryptographic Modules.
              11 January 1994.

              National Institute of Standards and Technology.  FIPS Pub
              140-2: Security Requirements for Cryptographic Modules.
              25 May 2001. [Supercedes FIPS Pub 140-1]

13.  Author's Address

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA

  EMail: [email protected]




























Housley                     Standards Track                    [Page 18]

RFC 3686         Using AES Counter Mode With IPsec ESP      January 2004


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Housley                     Standards Track                    [Page 19]