Network Working Group                                           R. Bless
Request for Comments: 3662                            Univ. of Karlsruhe
Category: Informational                                       K. Nichols
                                                             Consultant
                                                              K. Wehrle
                                                Univ. of Tuebingen/ICSI
                                                          December 2003


 A Lower Effort Per-Domain Behavior (PDB) for Differentiated Services

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document proposes a differentiated services per-domain behavior
  (PDB) whose traffic may be "starved" (although starvation is not
  strictly required) in a properly functioning network.  This is in
  contrast to the Internet's "best-effort" or "normal Internet traffic"
  model, where prolonged starvation indicates network problems.  In
  this sense, the proposed PDB's traffic is forwarded with a "lower"
  priority than the normal "best-effort" Internet traffic, thus the PDB
  is called "Lower Effort" (LE).  Use of this PDB permits a network
  operator to strictly limit the effect of its traffic on "best-
  effort"/"normal" or all other Internet traffic.  This document gives
  some example uses, but does not propose constraining the PDB's use to
  any particular type of traffic.

1.  Description of the Lower Effort PDB

  This document proposes a differentiated services per-domain behavior
  [RFC3086] called "Lower Effort" (LE) which is intended for traffic of
  sufficiently low value (where "value" may be interpreted in any
  useful way by the network operator), in which all other traffic takes
  precedence over LE traffic in consumption of network link bandwidth.
  One possible interpretation of "low value" traffic is its low
  priority in time, which does not necessarily imply that it is
  generally of minor importance.  From this viewpoint, it can be





Bless, et al.                Informational                      [Page 1]

RFC 3662                    Lower Effort PDB               December 2003


  considered as a network equivalent to a background priority for
  processes in an operating system.  There may or may not be memory
  (buffer) resources allocated for this type of traffic.

  Some networks carry traffic for which delivery is considered
  optional; that is, packets of this type of traffic ought to consume
  network resources only when no other traffic is present.
  Alternatively, the effect of this type of traffic on all other
  network traffic is strictly limited.  This is distinct from "best-
  effort" (BE) traffic since the network makes no commitment to deliver
  LE packets.  In contrast, BE traffic receives an implied "good faith"
  commitment of at least some available network resources.  This
  document proposes a Lower Effort Differentiated Services per-domain
  behavior (LE PDB) [RFC3086] for handling this "optional" traffic in a
  differentiated services domain.

  There is no intrinsic reason to limit the applicability of the LE PDB
  to any particular application or type of traffic.  It is intended as
  an additional tool for administrators in engineering networks.

  Note: where not otherwise defined, terminology used in this document
  is defined as in [RFC2474].

2.  Applicability

  A Lower Effort (LE) PDB is for sending extremely non-critical traffic
  across a DS domain or DS region.  There should be an expectation that
  packets of the LE PDB may be delayed or dropped when other traffic is
  present.  Use of the LE PDB might assist a network operator in moving
  certain kinds of traffic or users to off-peak times.  Alternatively,
  or in addition, packets can be designated for the LE PDB when the
  goal is to protect all other packet traffic from competition with the
  LE aggregate, while not completely banning LE traffic from the
  network.  An LE PDB should not be used for a customer's "normal
  internet" traffic, nor should packets be "downgraded" to the LE PDB
  for use as a substitute for dropping packets that ought to simply be
  dropped as unauthorized.  The LE PDB is expected to be applicable to
  networks that have some unused capacity at some times of day.

  This is a PDB that allows networks to protect themselves from
  selected types of traffic rather than giving a selected traffic
  aggregate preferential treatment.  Moreover, it may also exploit all
  unused resources from other PDBs.








Bless, et al.                Informational                      [Page 2]

RFC 3662                    Lower Effort PDB               December 2003


3.  Technical Specification

3.1.  Classification and Traffic Conditioning

  There are no required traffic profiles governing the rate and bursts
  of packets beyond the limits imposed by the ingress link.  It is not
  necessary to limit the LE aggregate using edge techniques since its
  PHB is configured such that packets of the aggregate will be dropped
  in the network if no forwarding resources are available.  The
  differentiated services architecture [RFC2475] allows packets to be
  marked upstream of the DS domain or at the DS domain's edge.  When
  packets arrive pre-marked with the DSCP used by the LE PDB, it should
  not be necessary for the DS domain boundary to police that marking;
  further (MF) classification for such packets would only be required
  if there was some reason for the packets to be marked with a
  different DSCP.

  If there is not an agreement on a DSCP marking with the upstream
  domain for a DS domain using the LE PDB, the boundary must include a
  classifier that selects the appropriate LE target group of packets
  out of all arriving packets and steers them to a marker that sets the
  appropriate DSCP.  No other traffic conditioning is required.

3.2.  PHB configuration

  Either a Class Selector (CS) PHB [RFC2474], an Experimental/Local Use
  (EXP/LU) PHB [RFC2474], or an Assured Forwarding (AF) PHB [RFC2597]
  may be used as the PHB for the LE traffic aggregate.  This document
  does not specify the exact DSCP to use inside a domain, but instead
  specifies the necessary properties of the PHB selected by the DSCP.
  If a CS PHB is used, Class Selector 1 (DSCP=001000) is suggested.

  The PHB used by the LE aggregate inside a DS domain should be
  configured so that its packets are forwarded onto the node output
  link when the link would otherwise be idle; conceptually, this is the
  behavior of a weighted round-robin scheduler with a weight of zero.

  An operator might choose to configure a very small link share for the
  LE aggregate and still achieve the desired goals.  That is, if the
  output link scheduler permits, a small fixed rate might be assigned
  to the PHB, but the behavior beyond that configured rate should be
  that packets are forwarded only when the link would otherwise be
  idle.  This behavior could be obtained, for example, by using a CBQ
  [CBQ] scheduler with a small share and with borrowing permitted.  A
  PHB that allows packets of the LE aggregate to send more than the
  configured rate when packets of other traffic aggregates are waiting
  for the link is not recommended.




Bless, et al.                Informational                      [Page 3]

RFC 3662                    Lower Effort PDB               December 2003


  If a CS PHB is used, note that this configuration will violate the
  "SHOULD" of section 4.2.2.2 of RFC 2474 [RFC2474] since CS1 will have
  a less timely forwarding than CS0.  An operator's goal of providing
  an LE PDB is sufficient cause for violating the SHOULD.  If an AF PHB
  is used, it must be configured and a DSCP assigned such that it does
  not violate the "MUST" of paragraph three of section 2 of RFC 2597
  [RFC2597] which provides for a "minimum amount of forwarding
  resources".

4.  Attributes

  The ingress and egress flow of the LE aggregate can be measured but
  there are no absolute or statistical attributes that arise from the
  PDB definition.  A particular network operator may configure the DS
  domain in such a way that a statistical metric can be associated with
  that DS domain.  When the DS domain is known to be heavily congested
  with traffic of other PDBs, a network operator should expect to see
  no (or very few) packets of the LE PDB egress from the domain.  When
  there is no other traffic present, the proportion of the LE aggregate
  that successfully crosses the domain should be limited only by the
  capacity of the network relative to the ingress LE traffic aggregate.

5.  Parameters

  None required.

6.  Assumptions

  A properly functioning network.

7.  Example uses

  o  Multimedia applications [this example edited from Yoram Bernet]:

     Many network managers want to protect their networks from certain
     applications, in particular, from multimedia applications that
     typically use such non-adaptive protocols as UDP.

     Most of the focus in quality-of-service is on achieving attributes
     that are better than Best Effort.  These approaches can provide
     network managers with the ability to control the amount of
     multimedia traffic that is given this improved performance with
     excess relegated to Best Effort.  This excess traffic can wreak
     havoc with network resources even when it is relegated to Best
     Effort because it is non-adaptive and because it can be
     significant in volume and duration.  These characteristics permit
     it to seize network resources, thereby compromising the
     performance of other, more important applications that are



Bless, et al.                Informational                      [Page 4]

RFC 3662                    Lower Effort PDB               December 2003


     included in the Best Effort traffic aggregate but that use
     adaptive protocols (e.g., TCP).  As a result, network managers
     often simply refuse to allow multimedia applications to be
     deployed in resource constrained parts of their network.

     The LE PDB enables a network manager to allow the deployment of
     multimedia applications without losing control of network
     resources.  A limited amount of multimedia traffic may (or may
     not) be assigned to PDBs with attributes that are better than Best
     Effort.  Excess multimedia traffic can be prevented from wreaking
     havoc with network resources by forcing it to the LE PDB.

  o  For Netnews and other "bulk mail" of the Internet.

  o  For "downgraded" traffic from some other PDB when this does not
     violate the operational objectives of the other PDB or the overall
     network.  As noted in section 2, LE should not be used for the
     general case of downgraded traffic, but may be used by design,
     e.g., when multicast is used with a value-added DS-service and
     consequently the Neglected Reservation Subtree problem [NRS]
     arises.

  o  For content distribution, peer-to-peer file sharing traffic, and
     the like.

  o  For traffic caused by world-wide web search engines while they
     gather information from web servers.

8.  Experiences

  The authors solicit further experiences for this section.  Results
  from simulations are presented and discussed in Appendix A.

9.  Security Considerations for LE PDB

  There are no specific security exposures for this PDB.  See the
  general security considerations in [RFC2474] and [RFC2475].

10.  History of the LE PDB

  The previous name of this PDB, "bulk handling", was loosely based on
  the United States' Postal Service term for very low priority mail,
  sent at a reduced rate: it denotes a lower-cost delivery where the
  items are not handled with the same care or delivered with the same
  timeliness as items with first-class postage.  Finally, the name was
  changed to "lower effort", because the authors and other DiffServ
  Working Group members believe that the name should be more generic in
  order to not imply constraints on the PDB's use to a particular type



Bless, et al.                Informational                      [Page 5]

RFC 3662                    Lower Effort PDB               December 2003


  of traffic (namely that of bulk data).

  The notion of having something "lower than Best Effort" was raised in
  the Diffserv Working Group, most notably by Roland Bless and Klaus
  Wehrle in their Internet Drafts [LBE] and [LE] and by Yoram Bernet
  for enterprise multimedia applications.  One of its first
  applications was to re-mark packets within multicast groups [NRS].
  Therefore, previous discussions centered on the creation of a new
  PHB.  However, the original authors (Brian Carpenter and Kathleen
  Nichols) believe this is not required and this document was written
  to specifically explain how to get less than Best Effort without a
  new PHB.

11.  Acknowledgments

  Yoram Bernet contributed significant amounts of text for the
  "Examples" section of this document and provided other useful
  comments that helped in editing.  Other Diffserv WG members suggested
  that the LE PDB is needed for Napster traffic, particularly at
  universities.  Special thanks go to Milena Neumann for her extensive
  efforts in performing the simulations that are described in Appendix
  A.





























Bless, et al.                Informational                      [Page 6]

RFC 3662                    Lower Effort PDB               December 2003


Appendix A.  Experiences from a Simulation Model

  The intention of this appendix is to show that a Lower Effort PDB
  with a behavior as described in this document can be realized with
  different implementations and PHBs respectively.  Overall, each of
  these variants show the desired behavior but also show minor
  differences in certain traffic load situations.  This comparison
  could make the choice of a realization variant interesting for a
  network operator.

A.1.  Simulation Environment

  The small DiffServ domain shown in Figure 1 was used to simulate the
  LE PDB.  There are three main sources of traffic (S1-S3) depicted on
  the left side of the figure.  Source S1 sends five aggregated TCP
  flows (A1-A5) to the receivers R1-R5 respectively.  Each aggregated
  flow Ax consists of 20 TCP connections, where each aggregate
  experiences a different round trip time between 10ms and 250ms.
  There are two sources of bulk traffic.  B1 consists of 100 TCP
  connections sending as much data as possible to R6 and B2 is a single
  UDP flow also sending as much as possible to R7.

                     ...................
                   .                     .                R1
                 .                        .              /
               .                           .            /-R2
              .                             .          /
    S1==**=>[BR1]                          [BR4]==**==>---R3
            . \\                           // .        \
           .   \\                         //   .        \-R4
           .    **                       **     .        \
           .     \\                     //      .         R5
           .      \\                   //       .
  S2=++=>[BR2]-++-[IR1]==**==++==::==[IR2]      .
  (Bulk)   .      //                    \\      .
           .     //                      ::     .
           .    ::                        \\    .
            .  //                          ++  .
             .//                            \\.
   S3==::==>[BR3]                           [BR5]==++==>R6
   (UDP)       .                           . ||
                .                         .  ||
                  .                      .   ::
                    ....................     ||
                                             VV
                                             R7

           Figure 1: A DiffServ domain with different flows



Bless, et al.                Informational                      [Page 7]

RFC 3662                    Lower Effort PDB               December 2003


  In order to show the benefit of using the LE PDB instead of the
  normal Best Effort (BE) PDB [RFC3086], different scenarios are used:

  A) B1 and B2 are not present, i.e., the "normal" situation without
     bulk data present.  A1-A5 use the BE PDB.

  B) B1 and B2 use the BE PDB for their traffic, too.

  C) B1 and B2 use LE PDB for their traffic with different PHB
     implementations:

        1) PHB with Priority Queueing (PQ)
        2) PHB with Weighted Fair Queueing (WFQ)
        3) PHB with Weighted RED (WRED)
        4) PHB with WFQ and RED

  C1) represents the case where there are no allocated resources for
  the LE PDB, i.e., LE traffic is only forwarded if there are unused
  resources.  In scenarios C2)-C4), a bandwidth share of 10% has been
  allocated for the LE PDB.  RED parameters were set to w_q=0.1 and
  max_p=0.2.  In scenario C2), two tail drop queues were used for BE
  and LE and WFQ scheduling was set up with a weight of 9:1 for the
  ratio of BE:LE.  In scenario C3), a total queue length of 200000
  bytes was used with the following thresholds: min_th_BE=19000,
  max_th_BE=63333, min_th_LE=2346, max_th=7037.  WRED allows to mark
  packets with BE or LE within the same microflow (e.g., letting
  applications pre-mark packets according to their importance) without
  causing a reordering of packets within the microflow.  In scenario
  C4), each queue had a length of 50000 bytes with the same thresholds
  of min_th=18000 and max_th=48000 bytes.  WFQ parameters were the same
  as in C2).

  The link bandwidth between IR1 and IR2 is limited to 1200 kbit/s,
  thus creating the bottleneck in the network for the following
  situations.  In all situations, the 20 TCP connections within each
  aggregated flow Ax (flowing from S1 to Rx) used the Best Effort PDB.
  Sender S2 transmitted bulk flow B1 (consisting of 100 TCP connections
  to R6) with an aggregated rate of 550 kbit/s, whereas the UDP sender
  S3 transmitted with a rate of 50 kbit/s.












Bless, et al.                Informational                      [Page 8]

RFC 3662                    Lower Effort PDB               December 2003


  The following four different situations with varying traffic load for
  the Ax flows (at application level) were simulated.

     Situation                   |   I  |  II  |  III |  IV  |
     ----------------------------+------+------+------+------|
     Sender Rate S1 [kbit/s]     | 1200 | 1080 | 1800 |  800 |
     Sender Rate S2 [kbit/s]     |  550 |  550 |  550 |  550 |
     Sender Rate S3 [kbit/s]     |   50 |   50 |   50 |   50 |
     Bandwidth IR1 -> IR2        | 1200 | 1200 | 1200 | 1200 |
     Best Effort Load (S1)       | 100% |  90% | 150% |  67% |
     Total load for link IR1->IR2| 150% | 140% | 200% | 117% |

  In situation I, there are no unused resources left for the B1 and B2
  flows.  In situation II, there is a residual bandwidth of 10% of the
  bottleneck link between IR1 and IR2.  In situation III, the traffic
  load of A1-A5 is 50% higher than the bottleneck link capacity.  In
  situation IV, A1-A5 consume only 2/3 of the bottleneck link capacity.
  B1 and B2 require together 50% of the bottleneck link capacity.

  The simulations were performed with the freely available discrete
  event simulation tool OMNeT++ and a suitable set of QoS mechanisms
  [SimKIDS].  Results from the different simulation scenarios are
  discussed in the next section.

A.2.  Simulation Results

  QoS parameters listed in the following tables are averaged over the
  first 160s of the transmission.  Results of situation I are shown in
  Figure 2.  When the BE PDB is used for transmission of bulk flows B1
  and B2 in case B), one can see that flows A1-A5 throttle their
  sending rate to allow transmission of bulk flows B1 and B2.  In case
  C1), not a single packet is transmitted to the receiver because all
  packets get dropped within IR1, thereby protecting Ax flows from Bx
  flows.  In case C2), B1 and B2 consume all resources up to the
  configured limit of 10% of the link bandwidth, but not more.  C3)
  also limits the share of B1 and B2 flows, but not as precisely as
  with WFQ.  C4) shows slightly higher packet losses for Ax flows due
  to the active queue management.













Bless, et al.                Informational                      [Page 9]

RFC 3662                    Lower Effort PDB               December 2003


+-------------------------+--------+-----------------------------------+
|                         |        |   Bulk Transfer with PDB:         |
| QoS Parameter           |   A)   |  B)  |  C)  Lower Effort          |
|                         |No bulk | Best |  1)     2)     3)      4)  |
|                  Flows  |transfer|Effort|  PQ  | WFQ  | WRED |RED&WFQ|
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |    240 |   71 |  240 |  214 |  225 |   219 |
|                |   A2   |    240 |  137 |  240 |  216 |  223 |   218 |
|                |   A3   |    240 |  209 |  240 |  224 |  220 |   217 |
| Throughput     |   A4   |    239 |  182 |  239 |  222 |  215 |   215 |
| [kbit/s]       |   A5   |    238 |   70 |  238 |  202 |  201 |   208 |
|                |   B1   |      - |  491 |    0 |   82 |   85 |    84 |
|                |   B2   |      - |   40 |    0 |   39 |   31 |    38 |
+----------------+--------+--------+------+------+------+------+-------+
|Total Throughput| normal |   1197 |  669 | 1197 | 1078 | 1084 |  1078 |
| [kbit/s]       | bulk   |      - |  531 |    0 |  122 |  116 |   122 |
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |      0 | 19.3 |    0 |  6.3 |  5.7 |   8.6 |
|                |   A2   |      0 | 17.5 |    0 |  6.0 |  5.9 |   8.9 |
|                |   A3   |      0 | 10.2 |    0 |  3.2 |  6.2 |   9.1 |
| Paket Loss     |   A4   |      0 | 12.5 |    0 |  4.5 |  6.6 |   9.3 |
| [%]            |   A5   |      0 | 22.0 |    0 |  6.0 |  5.9 |   9.0 |
|                |   B1   |      - | 10.5 |  100 | 33.6 | 38.4 |  33.0 |
|                |   B2   |      - | 19.6 |  100 | 19.9 | 37.7 |  22.2 |
+----------------+--------+--------+------+------+------+------+-------+
| Total Packet   | normal |      0 | 14.9 |    0 |  5.2 |  6.1 |   9.0 |
| Loss Rate [%]  | bulk   |      0 | 11.4 |  100 | 29.5 | 38.2 |  29.7 |
+----------------+--------+--------+------+------+------+------+-------+
| Transmitted    |        |        |      |      |      |      |       |
| Data [MByte]   | normal |   21.9 | 12.6 | 21.9 | 19.6 | 20.3 |  20.3 |
+----------------+--------+--------+------+------+------+------+-------+

     Figure 2: Situation I - Best Effort traffic uses 100% of the
                         available bandwidth

















Bless, et al.                Informational                     [Page 10]

RFC 3662                    Lower Effort PDB               December 2003


  Results of situation II are shown in Figure 3.  In case C1), LE
  traffic gets exactly the 10% residual bandwidth that is not used by
  the Ax flows.  Cases C2) and C4) show similar results compared to
  C1), whereas case C3) also drops packets from flows A1-A5 due to
  active queue management.

+-------------------------+--------+-----------------------------------+
|                         |        |   Bulk Transfer with PDB:         |
| QoS Parameter           |   A)   |  B)  |  C)  Lower Effort          |
|                         |No bulk | Best |  1)     2)     3)      4)  |
|                  Flows  |transfer|Effort|  PQ  | WFQ  | WRED |RED&WFQ|
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |    216 |  193 |  216 |  216 |  211 |   216 |
|                |   A2   |    216 |  171 |  216 |  216 |  211 |   216 |
|                |   A3   |    216 |   86 |  216 |  216 |  210 |   216 |
| Throughput     |   A4   |    215 |  121 |  215 |  215 |  211 |   215 |
| [kbit/s]       |   A5   |    215 |  101 |  215 |  215 |  210 |   215 |
|                |   B1   |      - |  488 |   83 |   83 |  114 |    84 |
|                |   B2   |      - |   39 |   39 |   39 |   33 |    38 |
+----------------+--------+--------+------+------+------+------+-------+
|Total Throughput| normal |   1078 |  672 | 1077 | 1077 | 1053 |  1077 |
| [kbit/s]       | bulk   |      - |  528 |  122 |  122 |  147 |   122 |
+----------------+--------+--------+------+------+------+----+-+-------+
|                |   A1   |      0 |  9.4 |    0 |    0 |  1.8 |     0 |
|                |   A2   |      0 | 14.6 |    0 |    0 |  2.0 |     0 |
|                |   A3   |      0 | 22.4 |    0 |    0 |  2.1 |     0 |
| Paket Loss     |   A4   |      0 | 15.5 |    0 |    0 |  1.8 |     0 |
| [%]            |   A5   |      0 | 17.4 |    0 |    0 |  1.9 |     0 |
|                |   B1   |      - | 11.0 | 32.4 | 32.9 | 35.7 |  33.1 |
|                |   B2   |      - | 21.1 | 20.3 | 20.7 | 34.0 |  22.2 |
+----------------+--------+--------+------+------+------+------+-------+
| Total Packet   | normal |      0 | 14.9 |    0 |    0 |  1.9 |     0 |
| Loss Rate [%]  | bulk   |      - | 12.0 | 28.7 | 29.1 | 35.3 |  29.8 |
+----------------+--------+--------+------+------+------+------+-------+
| Transmitted    |        |        |      |      |      |      |       |
| Data [MByte]   | normal |   19.8 | 12.8 | 19.8 | 19.8 | 19.5 |  19.8 |
+----------------+--------+--------+------+------+------+------+-------+

     Figure 3: Situation II - Best Effort traffic uses 90% of the
                         available bandwidth











Bless, et al.                Informational                     [Page 11]

RFC 3662                    Lower Effort PDB               December 2003


  Results of simulations for situation III are depicted in Figure 4.
  Due to overload caused by flows A1-A5, packets get dropped in all
  cases.  Bulk flows B1 and B2 nearly get their maximum throughput in
  case B).  As one would expect, in case C1) all packets from B1 and B2
  are dropped, in cases C2) and C4) resource consumption of bulk data
  is limited to the configured share of 10%.  Again the WRED
  implementation in C3) is not as accurate as the WFQ variants and lets
  more BE traffic pass through IR1.

+-------------------------+--------+-----------------------------------+
|                         |        |   Bulk Transfer with PDB:         |
| QoS Parameter           |   A)   |  B)  |  C)  Lower Effort          |
|                         |No bulk | Best |  1)     2)     3)      4)  |
|                  Flows  |transfer|Effort|  PQ  | WFQ  | WRED |RED&WFQ|
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |    303 |  136 |  241 |  298 |  244 |   276 |
|                |   A2   |    316 |  234 |  286 |  299 |  240 |   219 |
|                |   A3   |    251 |  140 |  287 |  259 |  236 |   225 |
| Throughput     |   A4   |    168 |   84 |  252 |  123 |  209 |   219 |
| [kbit/s]       |   A5   |    159 |   82 |  132 |  101 |  166 |   141 |
|                |   B1   |      - |  483 |    0 |   83 |   73 |    83 |
|                |   B2   |      - |   41 |    0 |   38 |   31 |    38 |
+----------------+--------+--------+------+------+------+------+-------+
|Total Throughput| normal |   1199 |  676 | 1199 | 1079 | 1096 |  1079 |
| [kbit/s]       | bulk   |      - |  524 |    0 |  121 |  104 |   121 |
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |    9.6 | 17.6 | 12.1 |  9.3 |  8.6 |  12.8 |
|                |   A2   |    8.5 | 13.6 |  8.4 |  9.8 |  8.1 |  14.5 |
|                |   A3   |    8.8 | 18.7 |  7.7 | 11.6 |  7.8 |  13.6 |
| Paket Loss     |   A4   |   14.9 | 22.3 | 11.2 | 18.9 |  8.2 |  12.4 |
| [%]            |   A5   |   12.8 | 19.0 | 15.6 | 19.7 |  8.3 |  14.3 |
|                |   B1   |      - | 11.9 |  100 | 32.1 | 39.5 |  33.0 |
|                |   B2   |      - | 17.3 |  100 | 22.5 | 37.7 |  22.8 |
+----------------+--------+--------+------+------+------+------+-------+
| Total Packet   | normal |   10.4 | 17.3 | 10.3 | 12.2 |  8.2 |  13.4 |
| Loss Rate [%]  | bulk   |      - | 12.4 |  100 | 29.1 | 39.0 |  29.9 |
+----------------+--------+--------+------+------+------+------+-------+
| Transmitted    |        |        |      |      |      |      |       |
| Data [MByte]   | normal |   22.0 | 12.6 | 22.0 | 20.2 | 20.6 |  20.3 |
+----------------+--------+--------+------+------+------+------+-------+

      Figure 4: Situation III - Best Effort traffic load is 150%









Bless, et al.                Informational                     [Page 12]

RFC 3662                    Lower Effort PDB               December 2003


  In situation IV, 33% or 400 kbit/s are not used by Ax flows and the
  results are listed in Figure 5.  In case B) where bulk data flows B1
  and B2 use the BE PDB, packets of Ax flows are dropped, whereas in
  cases C1)-C4) flows Ax are protected from bulk flows B1 and B2.
  Therefore, by using the LE PDB for Bx flows, the latter get only the
  residual bandwidth of 400 kbit/s but not more.  Packets of Ax flows
  are not affected by Bx traffic in these cases.

+-------------------------+--------+-----------------------------------+
|                         |        |   Bulk Transfer with PDB:         |
| QoS Parameter           |   A)   |  B)  |  C)  Lower Effort          |
|                         |No bulk | Best |  1)     2)     3)      4)  |
|                  Flows  |transfer|Effort|  PQ  | WFQ  | WRED |RED&WFQ|
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |    160 |  140 |  160 |  160 |  160 |   160 |
|                |   A2   |    160 |  124 |  160 |  160 |  160 |   160 |
|                |   A3   |    160 |  112 |  160 |  160 |  160 |   160 |
| Throughput     |   A4   |    160 |  137 |  160 |  160 |  159 |   160 |
| [kbit/s]       |   A5   |    159 |  135 |  159 |  159 |  159 |   159 |
|                |   B1   |      - |  509 |  361 |  362 |  364 |   362 |
|                |   B2   |      - |   43 |   40 |   39 |   38 |    40 |
+----------------+--------+--------+------+------+------+------+-------+
|Total Throughput| normal |    798 |  648 |  798 |  798 |  797 |   798 |
| [kbit/s]       | bulk   |      - |  551 |  401 |  401 |  402 |   401 |
+----------------+--------+--------+------+------+------+------+-------+
|                |   A1   |      0 |  9.2 |    0 |    0 |    0 |     0 |
|                |   A2   |      0 | 12.2 |    0 |    0 |    0 |     0 |
|                |   A3   |      0 | 14.0 |    0 |    0 |    0 |     0 |
| Paket Loss     |   A4   |      0 |  9.3 |    0 |    0 |    0 |     0 |
| [%]            |   A5   |      0 |  6.6 |    0 |    0 |    0 |     0 |
|                |   B1   |      - |  7.3 | 21.2 | 21.8 | 25.0 |  21.3 |
|                |   B2   |      - | 14.3 | 19.4 | 20.7 | 24.5 |  20.7 |
+----------------+--------+--------+------+------+------+------+-------+
| Total Packet   | normal |      0 | 10.2 |    0 |    0 |    0 |     0 |
| Loss Rate [%]  | bulk   |      - |  8.0 | 21.0 | 21.7 | 25.0 |  21.2 |
+----------------+--------+--------+------+------+------+------+-------+
| Transmitted    |        |        |      |      |      |      |       |
| Data [MByte]   | normal |   14.8 | 12.1 | 14.8 | 14.8 | 14.7 |  14.7 |
+----------------+--------+--------+------+------+------+------+-------+

       Figure 5: Situation IV - Best Effort traffic load is 67%

  In summary, all the different scenarios show that the "normal" BE
  traffic can be protected from traffic in the LE PDB effectively.
  Either no packets get through if no residual bandwidth is left (LE
  traffic is starved), or traffic of the LE PDB can only consume
  resources up to a configurable limit.




Bless, et al.                Informational                     [Page 13]

RFC 3662                    Lower Effort PDB               December 2003


  Furthermore, the results substantiate that mass data transfer can
  adversely affect "normal" BE traffic (e.g., 14.9% packet loss in
  situations I and II, even 10.2% in situation IV) in situations
  without using the LE PDB.

  Thus, while all presented variants of realizing the LE PDB meet the
  desired behavior of protecting BE traffic, they also show small
  differences in detail.  A network operator has the opportunity to
  choose a realization method to fit the desired behavior (showing this
  is - after the proof of LE's efficacy - the second designation of
  this appendix).  For instance, if operators want to starve LE traffic
  completely in times of congestion, they could choose PQ.  This causes
  LE traffic to be completely starved and not a single packet would get
  through in case of full load or overload.

  On the other hand, for network operators who want to permit some
  small amount of throughput in the LE PDB, one of the other variants
  would be a better choice.

  Referring to this, the WFQ implementation showed a slightly more
  robust behavior with PQ, but had problems with synchronized TCP
  flows.  WRED behavior is highly dependent on the actual traffic
  characteristics and packet loss rates are often higher compared to
  other implementations, while the fairness between TCP connections is
  better.  The combined solution of WFQ with RED showed the overall
  best behavior, when an operator's intent is to keep a small but
  noticeable throughput in the LE PDB.
























Bless, et al.                Informational                     [Page 14]

RFC 3662                    Lower Effort PDB               December 2003


Normative References

  [RFC3086]  Nichols, K. and B. Carpenter, "Definition of
             Differentiated Services Per Domain Behaviors and Rules for
             their Specification", RFC 3086, April 2001.

  [RFC2474]  Nichols, K., Blake, S., Baker, F. and D. Black,
             "Definition of the Differentiated Services Field (DS
             Field) in the IPv4 and IPv6 Headers", RFC 2474, December
             1998.

  [RFC2475]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
             and W. Weiss, "An Architecture for Differentiated
             Services", RFC 2475, December 1998.

Informative References

  [RFC2597]  Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,
             "Assured Forwarding PHB Group", RFC 2597, June 1999.

  [CBQ]      Floyd, S. and V. Jacobson, "Link-sharing and Resource
             Management Models for Packet Networks", IEEE/ACM
             Transactions on Networking, Vol. 3, No. 4, pp. 365-386,
             August 1995.

  [LBE]      Bless, R. and K. Wehrle, "A Lower Than Best-Effort Per-Hop
             Behavior", Work in Progress, September 1999.

  [LE]       Bless, R. and K. Wehrle, "A Limited Effort Per-Hop
             Behavior", Work in Progress, February 2001.

  [SimKIDS]  Wehrle, K., Reber, J. and V. Kahmann, "A simulation suite
             for Internet nodes with the ability to integrate arbitrary
             Quality of Service behavior", in Proceedings of
             Communication Networks And Distributed Systems Modeling
             And Simulation Conference (CNDS 2001),  Phoenix (AZ), USA,
             pp. 115-122, January 2001.

  [NRS]      Bless, R. and K. Wehrle, "Group Communication in
             Differentiated Services Networks", in Proceedings of IEEE
             International Workshop  on "Internet QoS", Brisbane,
             Australia, IEEE Press, pp. 618-625, May 2001.









Bless, et al.                Informational                     [Page 15]

RFC 3662                    Lower Effort PDB               December 2003


Authors' Addresses

  Roland Bless
  Institute of Telematics, Universitaet Karlsruhe (TH)
  Zirkel 2
  76128 Karlsruhe
  Germany

  EMail: [email protected]
  URI:   http://www.tm.uka.de/~bless/


  Kathleen Nichols
  325M Sharon Park Drive #214
  Menlo Park, CA 94025

  EMail: [email protected]


  Klaus Wehrle
  University of Tuebingen, Computer Networks and Internet
  Morgenstelle 10c, 72076 Tuebingen, Germany &
  International Computer Science Institute (ICSI)
  1947 Center Street, Berkeley, CA, 94704, USA

  EMail: [email protected]
  URI: http://net.informatik.uni-tuebingen.de/~wehrle/
























Bless, et al.                Informational                     [Page 16]

RFC 3662                    Lower Effort PDB               December 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Bless, et al.                Informational                     [Page 17]