Network Working Group                                          S. Moriai
Request for Comments: 3657              Sony Computer Entertainment Inc.
Category: Standards Track                                        A. Kato
                                               NTT Software Corporation
                                                           January 2004


              Use of the Camellia Encryption Algorithm
                in Cryptographic Message Syntax (CMS)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

Abstract

  This document specifies the conventions for using the Camellia
  encryption algorithm for encryption with the Cryptographic Message
  Syntax (CMS).

1.  Introduction

  This document specifies the conventions for using the Camellia
  encryption algorithm [CamelliaSpec] for encryption with the
  Cryptographic Message Syntax (CMS) [CMS].  The relevant object
  identifiers (OIDs) and processing steps are provided so that Camellia
  may be used in the CMS specification (RFC 3369, RFC 3370) for content
  and key encryption.

  Note:  This work was done when the first author worked for NTT.













Moriai & Kato               Standards Track                     [Page 1]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


1.1.  Camellia

  Camellia was jointly developed by Nippon Telegraph and Telephone
  Corporation and Mitsubishi Electric Corporation in 2000.  Camellia
  specifies the 128-bit block size and 128-, 192-, and 256-bit key
  sizes, the same interface as the Advanced Encryption Standard (AES).
  Camellia is characterized by its suitability for both software and
  hardware implementations as well as its high level of security.  From
  a practical viewpoint, it is designed to enable flexibility in
  software and hardware implementations on 32-bit processors widely
  used over the Internet and many applications, 8-bit processors used
  in smart cards, cryptographic hardware, embedded systems, and so on
  [CamelliaTech].  Moreover, its key setup time is excellent, and its
  key agility is superior to that of AES.

  Camellia has been scrutinized by the wide cryptographic community
  during several projects for evaluating crypto algorithms.  In
  particular, Camellia was selected as a recommended cryptographic
  primitive by the EU NESSIE (New European Schemes for Signatures,
  Integrity and Encryption) project [NESSIE] and also included in the
  list of cryptographic techniques for Japanese e-Government systems
  which were selected by the Japan CRYPTREC (Cryptography Research and
  Evaluation Committees) [CRYPTREC].

1.2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
  "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
  as shown) are to be interpreted as described in [RFC2119].

2.  Object Identifiers for Content and Key Encryption

  This section provides the OIDs and processing information necessary
  for Camellia to be used for content and key encryption in CMS.

  Camellia is added to the set of optional symmetric encryption
  algorithms in CMS by providing two classes of unique object
  identifiers (OIDs).  One OID class defines the content encryption
  algorithms and the other defines the key encryption algorithms.  Thus
  a CMS agent can apply Camellia either for content or key encryption
  by selecting the corresponding object identifier, supplying the
  required parameter, and starting the program code.









Moriai & Kato               Standards Track                     [Page 2]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


2.1.  OIDs for Content Encryption

  Camellia is added to the set of symmetric content encryption
  algorithms defined in [CMSALG].  The Camellia content-encryption
  algorithm, in Cipher Block Chaining (CBC) mode, for the three
  different key sizes are identified by the following object
  identifiers:

     id-camellia128-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia128-cbc(2) }

     id-camellia192-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia192-cbc(3) }

     id-camellia256-cbc OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) symmetric-encryption-algorithm(1)
           camellia256-cbc(4) }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field MUST contain the value of IV:

     CamelliaCBCParameter ::= CamelliaIV  --  Initialization Vector

     CamelliaIV ::= OCTET STRING (SIZE(16))

  The plain text is padded according to Section 6.3 of [CMS].

2.2.  OIDs for Key Encryption

  The key-wrap/unwrap procedures used to encrypt/decrypt a Camellia
  content-encryption key (CEK) with a Camellia key-encryption key (KEK)
  are specified in Section 3.  Generation and distribution of key-
  encryption keys are beyond the scope of this document.

  The Camellia key-encryption algorithm has the following object
  identifier:

    id-camellia128-wrap OBJECT IDENTIFIER ::=
                { iso(1) member-body(2) 392 200011 61 security(1)
                  algorithm(1) key-wrap-algorithm(3)
                  camellia128-wrap(2) }





Moriai & Kato               Standards Track                     [Page 3]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


    id-camellia192-wrap OBJECT IDENTIFIER ::=
                { iso(1) member-body(2) 392 200011 61 security(1)
                   algorithm(1) key-wrap-algorithm(3)
                   camellia192-wrap(3) }

    id-camellia256-wrap OBJECT IDENTIFIER ::=
                { iso(1) member-body(2) 392 200011 61 security(1)
                  algorithm(1) key-wrap-algorithm(3)
                  camellia256-wrap(4) }

  In all cases the parameters field of AlgorithmIdentifier MUST be
  ABSENT, because the key wrapping procedure itself defines how and
  when to use an IV.  The OID gives the KEK key size, but does not make
  any statements as to the size of the wrapped Camellia CEK.
  Implementations MAY use different KEK and CEK sizes.  Implementations
  MUST support the CEK and the KEK having the same length.  If
  different lengths are supported, the KEK MUST be of equal or greater
  length than the CEK.

3.  Key Wrap Algorithm

  Camellia key wrapping and unwrapping are done in conformance with the
  AES key wrap algorithm [RFC3394], because Camellia and AES have the
  same block and key sizes, i.e., the block size of 128 bits and key
  sizes of 128, 192, and 256 bits.

3.1.  Notation and Definitions

  The following notation is used in the description of the key wrapping
  algorithms:

  Camellia(K, W)
                Encrypt W using the Camellia codebook with key K
  Camellia-1(K, W)
                  Decrypt W using the Camellia codebook with key K
  MSB(j, W)     Return the most significant j bits of W
  LSB(j, W)     Return the least significant j bits of W
  B1 ^ B2       The bitwise exclusive or (XOR) of B1 and B2
  B1 | B2       Concatenate B1 and B2
  K             The key-encryption key K
  n             The number of 64-bit key data blocks
  s             The number of steps in the wrapping process, s = 6n
  P[i]          The ith plaintext key data block
  C[i]          The ith ciphertext data block
  A             The 64-bit integrity check register
  R[i]          An array of 64-bit registers where
                    i = 0, 1, 2, ..., n




Moriai & Kato               Standards Track                     [Page 4]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  A[t], R[t][i] The contents of registers A and R[i] after encryption
                    step t.
  IV            The 64-bit initial value used during the wrapping
                    process.

  In the key wrap algorithm, the concatenation function will be used to
  concatenate 64-bit quantities to form the 128-bit input to the
  Camellia codebook.  The extraction functions will be used to split
  the 128-bit output from the Camellia codebook into two 64-bit
  quantities.

3.2.  Camellia Key Wrap

  Key wrapping with Camellia is identical to Section 2.2.1 of [RFC3394]
  with "AES" replaced by "Camellia".

  The inputs to the key wrapping process are the KEK and the plaintext
  to be wrapped.  The plaintext consists of n 64-bit blocks, containing
  the key data being wrapped.  The key wrapping process is described
  below.

  Inputs:      Plaintext, n 64-bit values {P[1], P[2], ..., P[n]},
               and Key, K (the KEK).
  Outputs:     Ciphertext, (n+1) 64-bit values {C[0], C[1], ...,
               C[n]}.

  1) Initialize variables.

      Set A[0] to an initial value (see Section 3.4)
      For i = 1 to n
           R[0][i] = P[i]

  2) Calculate intermediate values.

      For t = 1 to s, where s = 6n
          A[t] = MSB(64, Camellia(K, A[t-1] | R[t-1][1])) ^ t
          For i = 1 to n-1
              R[t][i] = R[t-1][i+1]
          R[t][n] = LSB(64, Camellia(K, A[t-1] | R[t-1][1]))

  3) Output the results.

      Set C[0] = A[t]
      For i = 1 to n
          C[i] = R[t][i]






Moriai & Kato               Standards Track                     [Page 5]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  An alternative description of the key wrap algorithm involves
  indexing rather than shifting.  This approach allows one to calculate
  the wrapped key in place, avoiding the rotation in the previous
  description.  This produces identical results and is more easily
  implemented in software.

  Inputs:  Plaintext, n 64-bit values {P[1], P[2], ..., P[n]},
           and Key, K (the KEK).
  Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ...,
           C[n]}.

  1) Initialize variables.

      Set A = IV, an initial value (see Section 3.4)
      For i = 1 to n
          R[i] = P[i]

  2) Calculate intermediate values.

      For j = 0 to 5
          For i=1 to n
              B = Camellia(K, A | R[i])
              A = MSB(64, B) ^ t where t = (n*j)+i
              R[i] = LSB(64, B)

  3) Output the results.

      Set C[0] = A
      For i = 1 to n
          C[i] = R[i]

3.3.  Camellia Key Unwrap

  Key unwrapping with Camellia is identical to Section 2.2.2 of
  [RFC3394], with "AES" replaced by "Camellia".

  The inputs to the unwrap process are the KEK and (n+1) 64-bit blocks
  of ciphertext consisting of previously wrapped key.  It returns n
  blocks of plaintext consisting of the n 64-bit blocks of the
  decrypted key data.

  Inputs:  Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
           and Key, K (the KEK).
  Outputs: Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}.







Moriai & Kato               Standards Track                     [Page 6]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  1) Initialize variables.

      Set A[s] = C[0] where s = 6n
      For i = 1 to n
          R[s][i] = C[i]

  2) Calculate the intermediate values.

      For t = s to 1
          A[t-1] = MSB(64, Camellia-1(K, ((A[t] ^ t) | R[t][n]))
          R[t-1][1] = LSB(64, Camellia-1(K, ((A[t]^t) | R[t][n]))
          For i = 2 to n
              R[t-1][i] = R[t][i-1]

  3) Output the results.

      If A[0] is an appropriate initial value (see Section 3.4),
      Then
          For i = 1 to n
              P[i] = R[0][i]
      Else
          Return an error

  The unwrap algorithm can also be specified as an index based
  operation, allowing the calculations to be carried out in place.
  Again, this produces the same results as the register shifting
  approach.

  Inputs:  Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
           and Key, K (the KEK).
  Outputs: Plaintext, n 64-bit values {P[0], P[1], ..., P[n]}.

  1) Initialize variables.

      Set A = C[0]
      For i = 1 to n
          R[i] = C[i]

  2) Calculate intermediate values.

      For j = 5 to 0
          For i = n to 1
              B = Camellia-1(K, (A ^ t) | R[i]) where t = n*j+i
              A = MSB(64, B)
              R[i] = LSB(64, B)






Moriai & Kato               Standards Track                     [Page 7]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  3) Output results.

  If A is an appropriate initial value (see Section 3.4),
  Then
      For i = 1 to n
          P[i] = R[i]
  Else
      Return an error

3.4.  Key Data Integrity -- the Initial Value

  The initial value (IV) refers to the value assigned to A[0] in the
  first step of the wrapping process.  This value is used to obtain an
  integrity check on the key data.  In the final step of the unwrapping
  process, the recovered value of A[0] is compared to the expected
  value of A[0].  If there is a match, the key is accepted as valid,
  and the unwrapping algorithm returns it.  If there is not a match,
  then the key is rejected, and the unwrapping algorithm returns an
  error.

  The exact properties achieved by this integrity check depend on the
  definition of the initial value.  Different applications may call for
  somewhat different properties; for example, whether there is need to
  determine the integrity of key data throughout its lifecycle or just
  when it is unwrapped.  This specification defines a default initial
  value that supports integrity of the key data during the period it is
  wrapped (in Section 3.4.1).  Provision is also made to support
  alternative initial values (in Section 3.4.2).

3.4.1.  Default Initial Value

  The default initial value (IV) is defined to be the hexadecimal
  constant:

     A[0] = IV = A6A6A6A6A6A6A6A6

  The use of a constant as the IV supports a strong integrity check on
  the key data during the period that it is wrapped.  If unwrapping
  produces A[0] = A6A6A6A6A6A6A6A6, then the chance that the key data
  is corrupt is 2^-64.  If unwrapping produces A[0] any other value,
  then the unwrap must return an error and not return any key data.

3.4.2.  Alternative Initial Values

  When the key wrap is used as part of a larger key management protocol
  or system, the desired scope for data integrity may be more than just
  the key data or the desired duration for more than just the period
  that it is wrapped.  Also, if the key data is not just a Camellia



Moriai & Kato               Standards Track                     [Page 8]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  key, it may not always be a multiple of 64 bits.  Alternative
  definitions of the initial value can be used to address such
  problems.  According to [RFC3394], NIST will define alternative
  initial values in future key management publications as needed.  In
  order to accommodate a set of alternatives that may evolve over time,
  key wrap implementations that are not application-specific will
  require some flexibility in the way that the initial value is set and
  tested.

4.  SMIMECapabilities Attribute

  An S/MIME client SHOULD announce the set of cryptographic functions
  it supports by using the S/MIME capabilities attribute.  This
  attribute provides a partial list of OIDs of cryptographic functions
  and MUST be signed by the client.  The functions' OIDs SHOULD be
  logically separated in functional categories and MUST be ordered with
  respect to their preference.

  RFC 2633 [RFC2633], Section 2.5.2 defines the SMIMECapabilities
  signed attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs)
  to be used to specify a partial list of algorithms that the software
  announcing the SMIMECapabilities can support.

  If an S/MIME client is required to support symmetric encryption with
  Camellia, the capabilities attribute MUST contain the Camellia OID
  specified above in the category of symmetric algorithms.  The
  parameter associated with this OID MUST be CamelliaSMimeCapability.

     CamelliaSMimeCapabilty ::= NULL

  The SMIMECapability SEQUENCE representing Camellia MUST be DER-
  encoded as the following hexadecimal strings:

     Key Size                   Capability
      128          30 0f 06 0b 2a 83 08 8c 9a 4b 3d 01 01 01 02 05 00
      196          30 0f 06 0b 2a 83 08 8c 9a 4b 3d 01 01 01 03 05 00
      256          30 0f 06 0b 2a 83 08 8c 9a 4b 3d 01 01 01 04 05 00

  When a sending agent creates an encrypted message, it has to decide
  which type of encryption algorithm to use.  In general the decision
  process involves information obtained from the capabilities lists
  included in messages received from the recipient, as well as other
  information such as private agreements, user preferences, legal
  restrictions, and so on.  If users require Camellia for symmetric
  encryption, it MUST be supported by the S/MIME clients on both the
  sending and receiving side, and it MUST be set in the user
  preferences.




Moriai & Kato               Standards Track                     [Page 9]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


5.  Security Considerations

  This document specifies the use of Camellia for encrypting the
  content of a CMS message and for encrypting the symmetric key used to
  encrypt the content of a CMS message, and the other mechanisms are
  the same as the existing ones.  Therefore, the security
  considerations described in the CMS specifications [CMS][CMSALG] and
  the AES key wrap algorithm [RFC3394] can be applied to this document.
  No security problem has been found on Camellia [CRYPTREC][NESSIE].

6.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

  The IETF has been notified of intellectual property rights claimed in
  regard to some or all of the specification contained in this
  document.  For more information consult the online list of claimed
  rights.

7.  References

7.1.  Normative References

  [CamelliaSpec] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                 S., Nakajima, J., and Tokita, T., "Specification of
                 Camellia - a 128-bit Block Cipher".
                 http://info.isl.ntt.co.jp/camellia/

  [CMS]          Housley, R., "Cryptographic Message Syntax", RFC 3369,
                 August 2002.



Moriai & Kato               Standards Track                    [Page 10]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


  [CMSALG]       Housley, R., "Cryptographic Message Syntax (CMS)
                 Algorithms", RFC 3370, August 2002.

  [RFC2633]      Ramsdell, B., Editor, "S/MIME Version 3 Message
                 Specification", RFC 2633, June 1999.

  [RFC3565]      Schaad, J., "Use of the Advanced Encryption Standard
                 (AES) Encryption Algorithm in Cryptographic Message
                 Syntax (CMS)", RFC 3565, July 2003.

  [RFC3394]      Schaad, J. and R. Housley, "Advanced Encryption
                 Standard (AES) Key Wrap Algorithm", RFC 3394,
                 September 2002.

7.2.  Informative References

  [DES]          National Institute of Standards and Technology.  FIPS
                 Pub 46: Data Encryption Standard.  15 January 1977.

  [CamelliaTech] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,
                 S., Nakajima, J., and Tokita, T., "Camellia: A 128-Bit
                 Block Cipher Suitable for Multiple Platforms - Design
                 and Analysis -", In Selected Areas in Cryptography,
                 7th Annual International Workshop, SAC 2000, August
                 2000, Proceedings, Lecture Notes in Computer Science
                 2012, pp.39-56, Springer-Verlag, 2001.

  [CRYPTREC]     Information-technology Promotion Agency (IPA), Japan,
                 CRYPTREC.
                 http://www.ipa.go.jp/security/enc/CRYPTREC/index-
                 e.html

  [NESSIE]       New European Schemes for Signatures, Integrity and
                 Encryption (NESSIE) project.
                 http://www.cryptonessie.org

  [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.













Moriai & Kato               Standards Track                    [Page 11]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


Appendix A  ASN.1 Module

CamelliaEncryptionAlgorithmInCMS
   { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
     pkcs9(9) smime(16) modules(0) id-mod-cms-camellia(23) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- Camellia using CBC-chaining mode for key sizes of 128, 192, 256

id-camellia128-cbc OBJECT IDENTIFIER ::=
   { iso(1) member-body(2) 392 200011 61 security(1)
     algorithm(1) symmetric-encryption-algorithm(1)
     camellia128-cbc(2) }

id-camellia192-cbc OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) 392 200011 61 security(1)
    algorithm(1) symmetric-encryption-algorithm(1)
    camellia192-cbc(3) }

id-camellia256-cbc OBJECT IDENTIFIER ::=
  { iso(1) member-body(2) 392 200011 61 security(1)
    algorithm(1) symmetric-encryption-algorithm(1)
    camellia256-cbc(4) }

-- Camellia-IV is the parameter for all the above object identifiers.

Camellia-IV ::= OCTET STRING (SIZE(16))

-- Camellia S/MIME Capabilty parameter for all the above object
-- identifiers.

CamelliaSMimeCapability ::= NULL

-- Camellia Key Wrap Algorithm identifiers - Parameter is absent.

id-camellia128-wrap OBJECT IDENTIFIER ::=
   { iso(1) member-body(2) 392 200011 61 security(1)
     algorithm(1) key-wrap-algorithm(3)
     camellia128-wrap(2) }

id-camellia192-wrap OBJECT IDENTIFIER ::=
   { iso(1) member-body(2) 392 200011 61 security(1)
     algorithm(1) key-wrap-algorithm(3)
     camellia192-wrap(3) }





Moriai & Kato               Standards Track                    [Page 12]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


id-camellia256-wrap OBJECT IDENTIFIER ::=
   { iso(1) member-body(2) 392 200011 61 security(1)
     algorithm(1) key-wrap-algorithm(3)
     camellia256-wrap(4) }

END

Authors' Addresses

  Shiho Moriai
  Sony Computer Entertainment Inc.
  Phone: +81-3-6438-7523
  Fax:   +81-3-6438-8629
  EMail: [email protected] (Camellia team)
         [email protected] (Shiho Moriai)


  Akihiro Kato
  NTT Software Corporation
  Phone: +81-45-212-7934
  Fax:   +81-45-212-9800
  EMail: [email protected]





























Moriai & Kato               Standards Track                    [Page 13]

RFC 3657          Use of the Camellia Algorithm in CMS      January 2004


Full Copyright Statement

  Copyright (C) The Internet Society (2004).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Moriai & Kato               Standards Track                    [Page 14]