Network Working Group                                             D. New
Request for Comments: 3620                                  October 2003
Category: Standards Track

                          The TUNNEL Profile

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This memo describes a Blocks Extensible Exchange Protocol (BEEP)
  profile that allows a BEEP peer to serve as an application-layer
  proxy.  It allows authorized users to access services through a
  firewall.

Table of Contents

  1. Rationale  . . . . . . . . . . . . . . . . . . . . . . . . . .   2
  2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.1 One-Hop Example. . . . . . . . . . . . . . . . . . . . . .   3
     2.2 Two-Hop Example. . . . . . . . . . . . . . . . . . . . . .   4
     2.3 Failed Set-Up Example. . . . . . . . . . . . . . . . . . .   5
     2.4 Non-BEEP Example . . . . . . . . . . . . . . . . . . . . .   5
     2.5 Profile Example. . . . . . . . . . . . . . . . . . . . . .   6
     2.6 Endpoint Example . . . . . . . . . . . . . . . . . . . . .   8
  3. Message Syntax.  . . . . . . . . . . . . . . . . . . . . . . .   9
  4. Message Semantics .  . . . . . . . . . . . . . . . . . . . . .  10
  5. Provisioning . . . . . . . . . . . . . . . . . . . . . . . . .  12
  6. Reply Codes. . . . . . . . . . . . . . . . . . . . . . . . . .  13
  7. Security Considerations. . . . . . . . . . . . . . . . . . . .  14
  8. Normative References . . . . . . . . . . . . . . . . . . . . .  15
  A. IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  16
     A.1 Registration: BEEP Profile . . . . . . . . . . . . . . . .  16
     A.2 Registration: A System (Well-Known) TCP
         port number for TUNNEL . . . . . . . . . . . . . . . . . .  16
  B. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .  17
     Author's Address . . . . . . . . . . . . . . . . . . . . . . .  17
     Full Copyright Statement . . . . . . . . . . . . . . . . . . .  18



New                         Standards Track                     [Page 1]

RFC 3620                   The TUNNEL Profile               October 2003


1. Rationale

  The TUNNEL profile provides a mechanism for cooperating BEEP peers to
  form an application-layer tunnel.  The peers exchange "tunnel"
  elements that specify a source route, with the outermost element
  being stripped off and used to decide the next hop.  The innermost,
  empty "tunnel" element tells the final destination that it is,
  indeed, the final destination.  The term "proxy" is used to refer any
  of the BEEP peers other than the initiator and the final destination.

  In one use of this profile, a BEEP peer implementing the TUNNEL
  profile is co-resident with a firewall.  An initiating machine inside
  the firewall makes a connection to the proxy, then ask that proxy to
  make a connection to an endpoint outside the firewall.  Once this
  connection is established, the proxy tells the outside endpoint that
  it will be tunneling.  If the outside machine agrees, the proxy "gets
  out of the way," simply passing octets transparently, and both the
  initiating and terminating machines perform a "tuning reset," not
  unlike the way starting a TLS negotiation discards cached session
  state and starts anew.

  Another use for this profile is to limit connections to outside
  servers based on the user identity negotiated via SASL.  For example,
  a manager may connect to a proxy, authenticate herself with SASL,
  then instruct the proxy to tunnel to an information service
  restricted to managers.  Since each proxy knows the identity of the
  next proxy being requested, it can refuse to tunnel connections if
  inadequate levels of authorization have been established.  It is also
  possible to use the TUNNEL profile to anonymize the true source of a
  BEEP connection, in much the way a NAT translates IP addresses.
  However, detailed discussion of such uses is beyond the scope of this
  document.

  Once both endpoint machines are connected, the tunneling proxy
  machine does no further interpretation of the data.  In particular,
  it does not look for any BEEP framing.  The two endpoint machines may
  therefore negotiate TLS between them, passing certificates
  appropriate to the endpoints rather than the proxy, with the
  assurance that even the proxy cannot access the information
  exchanged.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119 [1].







New                         Standards Track                     [Page 2]

RFC 3620                   The TUNNEL Profile               October 2003


2. Examples

  While the semantics described in Section 4 may seem complex, the
  results are actually relatively simple.  A few examples will show the
  operation and use of this profile.  In these examples, the machine
  attempting to establish the connection is named "initial", while the
  intermediate proxies are "proxy1" or "proxy2", and the machine with
  the service that "initial" wishes to access is called "final".  The
  examples also assume that the BEEP framework [2] is implemented on
  top of TCP [3], or some other mapping where one transport connection
  carries all channels.

2.1 One-Hop Example

  A simple one-hop connection through a single proxy is illustrated
  first.

  initial                   proxy1                     final
     ----- xport connect ----->
    <------- greeting -------->
     --- start TUNNEL [1] ---->
                               ----- xport connect ------>
                              <-------- greeting -------->
                               ---- start TUNNEL [2] ---->
                              <---------- ok ------------
    <------- ok -------------- [3]
    <------------- greeting [4]-------------------------->

  Notes:

  [1]  The TUNNEL element looks like this:
       <tunnel fqdn='final.example.com' port='604'>
         <tunnel/>
       </tunnel>

  [2]  The TUNNEL element looks like this:
       <tunnel/>

  [3]  At this point, immediately after sending the <ok/> element,
       proxy1 starts passing octets transparently.  It continues to do
       so until either transport connection is closed, after which it
       closes the other.

  [4]  This greeting may include the TLS profile, allowing initial and
       final to communicate without proxy1 understanding or interfering
       without being caught.





New                         Standards Track                     [Page 3]

RFC 3620                   The TUNNEL Profile               October 2003


2.2 Two-Hop Example

  The second example shows the initiator connecting to its proxy, that
  proxy connecting to another, and finally that second proxy finding a
  service outside.

  initial             proxy1                proxy2                final
    --- xport connect -->
   <---- greeting ------>
    --start TUNNEL [1]-->
                         -- xport connect --->
                        <----- greeting ----->
                         --start TUNNEL [2]-->
                                              --- xport  connect --->
                                             <------- greeting ----->
                                              ---start TUNNEL [3]--->
                                             <-------- ok ----------
                        <------- ok --------- [4]
   <------- ok --------- [5]
   <-------------------------- greeting ---------------------------->

  Notes:

  [1]  The TUNNEL element looks like this:
       <tunnel fqdn='proxy2.example.com' port='604'>
         <tunnel fqdn='final.example.com' port='10290'>
           <tunnel/>
         </tunnel>
       </tunnel>

  [2]  The TUNNEL element looks like this:
       <tunnel fqdn='final.example.com' port='10290'>
         <tunnel/>
       </tunnel>

  [3]  The TUNNEL element looks like this:
       <tunnel/>

  [4]  Proxy2 starts passing octets transparently after sending the
       <ok/>.

  [5]  Proxy1 starts passing octets transparently after sending the
       <ok/>.








New                         Standards Track                     [Page 4]

RFC 3620                   The TUNNEL Profile               October 2003


2.3 Failed Set-Up Example

  The third example shows the initiator connecting through two proxys,
  the second proxy attempting to connect to the specified service and
  finding the destination is not a BEEP server.  (Of course, specifying
  the telnet service can be expected to lead to this error.)  The same
  would result if the destination did not support the TUNNEL profile.

  initial             proxy1                proxy2                final
    --- xport connect -->
   <---- greeting ------>
    --start TUNNEL [1]-->
                         --- xport connect -->
                        <----- greeting ----->
                         --start TUNNEL [2]-->
                                              ---- xport connect --->
                                             <------- login: -------
                                              ----- xport close ---->
                        <---- <error> -------
                         --- xport close ---->
   <---- <error> ------
    --- xport close ---> [3]

  Notes:

  [1]  The TUNNEL element looks like this:
       <tunnel fqdn='proxy2.example.com' port='604'>
         <tunnel fqdn='final.example.com' srv='_telnet._tcp'>
           <tunnel/>
         </tunnel>
       </tunnel>

  [2]  The TUNNEL element looks like this:
       <tunnel fqdn='final.example.com' srv='_telnet._tcp'>
         <tunnel/>
       </tunnel>

  [3]  This close is optional. "Initial" may also send another <tunnel>
       element, attempting to contact a different server, for example.

2.4 Non-BEEP Example

  This example shows the initiator connecting through two proxys, the
  second proxy attempting to connect to the specified service and
  accepting that the destination is not a BEEP server.  The difference
  at the protocol level is two-fold: The "initial" machine does not
  include the innermost "tunnel" element, and the final proxy
  ("proxy2") therefore does not expect a BEEP greeting.



New                         Standards Track                     [Page 5]

RFC 3620                   The TUNNEL Profile               October 2003


  initial             proxy1                proxy2                final
    --- xport connect -->
   <---- greeting ------>
    --start TUNNEL [1]-->
                         --- xport connect -->
                        <----- greeting ----->
                         --start TUNNEL [2]-->
                                              ---- xport connect --->
                                             <------- login: -------
                         <------ <ok> ------- [3]
                         <----- login: ------ [4]
   <------ <ok> --------- [3]
   <----- login: -------- [4] [5]

  Notes:

  [1]  The TUNNEL element looks like this:
       <tunnel fqdn='proxy2.example.com' port='604'>
         <tunnel fqdn='final.example.com' svc='_telnet._tcp'>
         </tunnel>
       </tunnel>
       Note the lack of an innermost no-attribute <tunnel> element.

  [2]  The TUNNEL element looks like this:
         <tunnel fqdn='final.example.com' srv='_telnet._tcp'>
         </tunnel>
       Note the lack of an innermost no-attribute <tunnel> element.

  [3]  Each proxy starts transparently forwarding octets after this
       <ok>.

  [4]  Each proxy forwards any data it received from the final host,
       even if that data arrived before the <ok> was sent.

  [5]  After receiving the "ok" message, the "initial" peer can expect
       raw, non-BEEP data to be sent to and received from the "final"
       machine.

2.5 Profile Example

  This example shows the initiator connecting through two proxys.  The
  initial machine knows there is a server offering the SEP2 profile
  somewhere beyond proxy1, but it need not know where.  Proxy1 has been
  locally configured to know that all SEP2 servers are beyond proxy2.
  Proxy2 has been locally configured to chose "final" as the server of
  choice for SEP2 services.  Note that "final" does not necessarily
  need to offer the requested profile in its initial greeting.




New                         Standards Track                     [Page 6]

RFC 3620                   The TUNNEL Profile               October 2003


  initial             proxy1                proxy2                final
    --- xport connect -->
   <---- greeting ------>
    --start TUNNEL [1]-->
                         -- xport connect --->
                        <----- greeting ----->
                         --start TUNNEL [2]-->
                                              --- xport  connect --->
                                             <------- greeting ----->
                                              ---start TUNNEL [3]--->
                                             <-------- ok ----------
                        <------- ok --------- [4]
   <------- ok --------- [5]
   <-------------------------- greeting ---------------------------->

  Notes:

  [1]  The TUNNEL element looks like this:
         <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
       Note the lack of an innermost no-attribute <tunnel> element.

  [2]  Proxy1 maps this to
         <tunnel fqdn="proxy2.example.com" port="604">
           <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
         </tunnel>
       based on local configuration, then processes the new
       element, stripping off the outer element and routing
         <tunnel profile="http://xml.resource/org/profiles/SEP2"/>
       to proxy2.

  [3]  Proxy2 receives the TUNNEL element with simply the SEP2
       URI specified. Local provisioning maps this to
         <tunnel fqdn='final.example.com' srv='_beep._tcp'>
           <tunnel/>
         </tunnel>
       Note the presence of an innermost no-attribute <tunnel> element.
       Proxy2 then strips the outermost element, looking up the
       appropriate address and port, and forwards the <tunnel/>
       element to the final machine.

  [4]  Proxy2 starts transparently forwarding octets after this <ok>.

  [5]  Proxy1 starts transparently forwarding octets after this <ok>.








New                         Standards Track                     [Page 7]

RFC 3620                   The TUNNEL Profile               October 2003


2.6 Endpoint Example

  This example shows the initiator connecting through two proxys.  The
  initial machine knows there is a server known as "operator console"
  somewhere beyond proxy1, but it needs not know where.  Proxy1 has
  been locally configured to know that "operator console" is beyond
  proxy2.  Proxy2 has been locally configured to use "final" as
  "operator console".  This example is almost identical to the previous
  example, except that "endpoint" is intended to route to a particular
  server, while "profile" is intended to route to a particular service.
  Otherwise, these two attributes are very similar.

  initial             proxy1                proxy2                final
    --- xport connect -->
   <---- greeting ------>
    --start TUNNEL [1]-->
                         -- xport connect --->
                        <----- greeting ----->
                         --start TUNNEL [2]-->
                                              --- xport  connect --->
                                             <------- greeting ----->
                                              ---start TUNNEL [3]--->
                                             <-------- ok ----------
                        <------- ok --------- [4]
   <------- ok --------- [5]
   <-------------------------- greeting ---------------------------->

  Notes:

  [1]  The TUNNEL element looks like this:
         <tunnel endpoint="operator console">
         </tunnel>
       Note the lack of an innermost no-attribute <tunnel> element.

  [2]  Proxy1 maps this to
         <tunnel fqdn="proxy2.example.com" port="604">
           <tunnel endpoint="operator console">
           </tunnel>
         </tunnel>
       based on local configuration, then processes the new
       element, stripping off the outer element and routing
         <tunnel endpoint="operator console">
         </tunnel>
       to proxy2.







New                         Standards Track                     [Page 8]

RFC 3620                   The TUNNEL Profile               October 2003


  [3]  Proxy2 receives the TUNNEL element with simply the endpoint
       specified. Local provisioning maps this to
         <tunnel fqdn='final.example.com' srv='_beep._tcp'>
           <tunnel/>
         </tunnel>
       Note the presence of an innermost no-attribute <tunnel> element.
       Proxy2 then strips the outermost element, looking up the
       appropriate address and port, and forwards the <tunnel/>
       element to the final machine.

  [4]  Proxy2 starts transparently forwarding octets after this <ok>.

  [5]  Proxy1 starts transparently forwarding octets after this <ok>.

3. Message Syntax

  The only element defined in this profile is the "tunnel" element.  It
  is described in the following DTD, with additional limitations as
  described afterwards.

  <!--
    DTD for the TUNNEL Profile, as of 2001-02-03

    Refer to this DTD as:

       <!ENTITY % TUNNEL PUBLIC "-//IETF//DTD TUNNEL//EN" "">
      %TUNNEL;
    -->

  <!--
    TUNNEL messages

       role           MSG                 RPY
      ======          ===                 ===
      I or L          TUNNEL              +: ok
                                          -: error
    -->

  <!ELEMENT tunnel      (tunnel?)>
  <!ATTLIST tunnel
            fqdn         CDATA    #IMPLIED
            ip4          CDATA    #IMPLIED
            ip6          CDATA    #IMPLIED
            port         CDATA    #IMPLIED
            srv          CDATA    #IMPLIED
            profile      CDATA    #IMPLIED
            endpoint     CDATA    #IMPLIED
            >



New                         Standards Track                     [Page 9]

RFC 3620                   The TUNNEL Profile               October 2003


  The format of the "fqdn" attribute is a fully qualified domain name,
  such as "proxy.example.com".  The format of the "ip4" attribute is
  four sets of decimal numbers separated by periods, such as
  "10.23.34.45".  The format of the "ip6" attribute is as specified in
  RFC2373 [4].  The format of the "port" attribute is a decimal number
  between one and 65535, inclusive.  The format of the "srv" attribute
  is a pair of identifiers each starting with an underline and
  separated by a period, such as "_sep._tcp".  The format of the
  "profile" attribute is a URI [5].  The format of the "endpoint"
  attribute is any string that may appear as an attribute value.

  The only allowable combinations of attributes are as follows:

  o  fqdn + port;

  o  fqdn + srv;

  o  fqdn + srv + port;

  o  ip4  + port;

  o  ip6  + port;

  o  profile, but only on the innermost element;

  o  endpoint, but only on the innermost element; or,

  o  no attributes, but only on the innermost element.

4. Message Semantics

  When a TUNNEL channel is started, the listener expects a "tunnel"
  element from the initiator, either in the "start" element on channel
  zero or on the new channel created.  As usual, if it arrives on
  channel zero, it is processed before the reply is returned.

  In either case, the outermost "tunnel" element is examined.  If it
  has no attributes, then this peer is hosting the BEEP service that
  the initiator wishes to use.  In this case, the listener performs a
  tuning reset:

  o  All channels, including channel zero, are implicitly closed.

  o  Any previously cached information about the BEEP session is
     discarded.

  o  A new plaintext greeting is sent.




New                         Standards Track                    [Page 10]

RFC 3620                   The TUNNEL Profile               October 2003


  If the outermost element has a "port" attribute and an "fqdn"
  attribute but no "srv" attribute, then "fqdn" is looked up as an A
  record via DNS for translation to an IP number.  An "ip4" attribute
  is interpreted as the dotted-quad representation of an IPv4 address.
  An "ip6" attribute is interpreted as a text representation of an IPv6
  address.  In each of these cases, a transport connection is
  established to the so-identified server.  If the outermost element
  has a "srv" attribute, the concatenation of the "srv" attribute and
  the "fqdn" attribute (with a period between) is looked up in the DNS
  for a SRV record [6], and the appropriate server is contacted; if
  that lookup fails and a "port" attribute is present, the connection
  is attempted as if the "srv" attribute were not specified.

  Alternately, if the outermost element has a "profile" attribute, then
  it must have no nested elements.  The proxy processing this element
  is responsible for determining the appropriate routing to reach a
  peer serving the BEEP profile indicated by the URI in the attribute's
  value.  Rather than source routing, this provides a hop-by-hop
  routing mechanism to a desired service.

  Similarly, if the outermost element has an "endpoint" attribute, then
  it must have no nested elements.  The proxy processing this element
  is responsible for determining the appropriate routing to reach a
  peer indicated by the value of the "endpoint" attribute.  Rather than
  source routing, this provides a hop-by-hop routing mechanism to a
  desired machine.  There are no restrictions on how machines are
  identified.

  Then, if the outermost element has no nested elements, but it does
  have attributes other than "profile" or "endpoint", then this peer is
  the final BEEP hop.  (This corresponds to "proxy2" in the "Non-BEEP"
  example above.)  In this case, as soon as the final underlying
  transport connection is established, an "ok" element is returned over
  the listening session, and the tunneling of data starts.  No BEEP
  greeting (or indeed any data) from the final hop is expected.
  Starting with the octet following the END(CR)(LF) trailer of the
  frame with the completion flag set (more=".") of the RPY carrying the
  "ok" element, the proxy begins copying octets directly and without
  any interpretation between the two underlying transport connections.

  If the identified server cannot be contacted, an "error" element is
  returned over the listening channel and any connection established as
  an initiator is closed.  If there is a nested "tunnel" element, and
  the server that has been contacted does not offer a BEEP greeting, or
  the BEEP greeting offered does not include the TUNNEL profile, then
  this too is treated as an error: the initiating transport connection
  is closed, and an error is returned.




New                         Standards Track                    [Page 11]

RFC 3620                   The TUNNEL Profile               October 2003


  If there is a nested "tunnel" element, and the identified server is
  contacted and offers a BEEP greeting including the TUNNEL profile,
  then the outermost element from the "tunnel" element received is
  stripped off, a new TUNNEL channel is started on the initiating
  session, and the stripped (inner) element is sent to start the next
  hop.  In this case, the peer is considered a "proxy" (meaning that
  the next paragraph is applicable).

  Once the proxy has passed the "tunnel" element on the TUNNEL channel,
  it awaits an "error" or an "ok" element in response.  If it receives
  an "error" element, it closes the initiated session and its
  underlying transport connection.  It then passes the "error" element
  unchanged back on the listening session.  If, on the other hand, it
  receives an "ok" element, it passes the "ok" element back on the
  listening session.  Starting with the octet following the END(CR)(LF)
  trailer of the frame with the completion flag set (more=".") of the
  RPY carrying the "ok" element, the proxy begins copying octets
  directly and without any interpretation between the two underlying
  transport connections.

5. Provisioning

  While the BEEP Framework [2] is used, the attributes described are
  sufficient for the TCP mapping [3] of BEEP.  The attributes on the
  "tunnel" element may need to be extended to handle other transport
  layers.

  In a mapping where multiple underlying transport connections are
  used, once the "ok" element is passed, all channels are closed,
  including channel zero.  Thus, only the underlying transport
  connection initially established remains, and all other underlying
  transport connections for the session should be closed as well.

  If a transport security layer (such as TLS) has been negotiated over
  the session, the semantics for the TUNNEL profile are ill-defined.
  The TUNNEL profile MUST NOT be advertised in any greetings after
  transport security has been negotiated.

  An SRV identifier of "_tunnel" is reserved by IANA for use with this
  profile.  Hence, the "srv" attribute "_tunnel._tcp" MAY be used as a
  default for finding the appropriate address for tunneling into a
  particular domain.

  System port number 604 has been allocated by the IANA for TUNNEL.







New                         Standards Track                    [Page 12]

RFC 3620                   The TUNNEL Profile               October 2003


6. Reply Codes

  This section lists the three-digit error codes the TUNNEL profile may
  generate.

  code   meaning
  ====   =======
   421   Service not available
         (E.g., the proxy does not have sufficient resources.)

   450   Requested action not taken
         (E.g., DNS lookup failed or connection could not
         be established. See too 550.)

   500   General syntax error (E.g., poorly-formed XML)

   501   Syntax error in parameters
         (E.g., non-valid XML, letters in "ip4" attribute, etc.)

   504   Parameter not implemented

   530   Authentication required

   534   Authentication mechanism insufficient
         (E.g., too weak, sequence exhausted, etc.)

   537   Action not authorized for user

   538   Encryption already enabled
         (E.g., TLS already negotiated, or a SASL that
         provides encryption already negotiated.)

   550   Requested action not taken
         (E.g., next hop could be contacted, but
         malformed greeting or no TUNNEL profile advertised.)

   553   Parameter invalid

   554   Transaction failed (E.g., policy violation)

  Note that the 450 error code is appropriate when the destination
  machine could not be contacted, while the 550 error code is
  appropriate when the destination machine could be contacted but the
  next phase of the protocol could not be negotiated.  It is suggested
  that the beginning of any reply from the destination machine be
  included as part of the CDATA text of the error element, for
  debugging purposes.




New                         Standards Track                    [Page 13]

RFC 3620                   The TUNNEL Profile               October 2003


7. Security Considerations

  The TUNNEL profile is a profile of BEEP.  In BEEP, transport
  security, user authentication, and data exchange are orthogonal.
  Refer to Section 8 of [2] for a discussion of this.

  However, the intent of the TUNNEL profile is to allow bidirectional
  contact between two machines normally separated by a firewall.  Since
  TUNNEL allows this connection between BEEP peers, and BEEP peers can
  offer a range of services with appropriate greetings, the TUNNEL
  profile should be configured with care.  It is reasonable to strictly
  limit the hosts and services that a proxy is allowed to contact.  It
  is also reasonable to limit the use of the TUNNEL profile to
  authorized users, as identified by a SASL profile.

  Negotiation of a TLS profile in an end-to-end manner after a TUNNEL
  has been established will prevent intermediate proxies from observing
  or modifying the cleartext information exchanged, but only if TLS
  certificates are properly configured during the negotiation.  The
  proxy could mount a "man in the middle" attack if public key
  infrastructure is not deployed.

  In some environments, it is undesirable to expose the names of
  machines on one side of a firewall in unencrypted messages on the
  other side of that firewall.  In this case, source routing (using the
  "fqdn", "ip4", "ip6", "port" and "srv" attributes) can route a
  connection to the firewall proxy, with an innermost "profile" or
  "endpoint" attribute which the firewall proxy understands.  Local
  provisioning can allow a  proxy to translate a particular "profile"
  or "endpoint" element into a new source route to reach the desired
  service.  This can prevents two attacks:

  o  Attackers sniffing packets on one side of the firewall cannot see
     IP addresses or FQDNs of machines on the other side of the
     firewall; and,

  o  Attackers cannot exhaustively attempt to connect to many FQDNs or
     IP addresses via source routing and use the error messages as an
     indication of whether the queried machine exists.  For this attack
     to be prevented, the proxy must allow only "profile" or "endpoint"
     connections, always refusing to even attempt source-routed
     connections.  This latter attack can also be thwarted by requiring
     a SASL identification before allowing a TUNNEL channel to be
     started, but this can have higher overhead.







New                         Standards Track                    [Page 14]

RFC 3620                   The TUNNEL Profile               October 2003


8. Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [2]  Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
       3080, March 2001.

  [3]  Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081, March
       2001.

  [4]  Hinden, R. and S. Deering, "IP Version 6 Addressing
       Architecture", RFC 2373, July 1998.

  [5]  Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
       Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

  [6]  Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
       specifying the location of services (DNS SRV)", RFC 2782,
       February 2000.































New                         Standards Track                    [Page 15]

RFC 3620                   The TUNNEL Profile               October 2003


Appendix A. IANA Considerations

A.1 Registration: BEEP Profile

  The IANA has registered the profiles specified in this section and
  has selected an IANA-specific URI: "http://iana.org/beep/TUNNEL".

  Profile identification: http://iana.org/beep/TUNNEL

  Message exchanged during channel creation: "tunnel"

  Messages starting one-to-one exchanges: "tunnel"

  Messages in positive replies: "ok"

  Messages in negative replies: "error"

  Messages in one-to-many exchanges: None.

  Message syntax: See Section 3 of this document.

  Message semantics: See Section 4 of this document.

  Contact information: See the Author's Address appendix of this
  document.

  Any extensions to this protocol MUST be documented in a Standards
  track RFC.

A.2 Registration: The System (Well-Known) TCP port number for TUNNEL

  A single well-known port, 604, is allocated by the IANA to the TUNNEL
  profile.

  Protocol Number: TCP

  Message Formats, Types, Opcodes, and Sequences: See Section 3.

  Functions: See Section 4.

  Use of Broadcast/Multicast: none

  Proposed Name: TUNNEL Profile

  Short name: tunnel

  Contact Information: See the "Authors' Addresses" section of this
  memo



New                         Standards Track                    [Page 16]

RFC 3620                   The TUNNEL Profile               October 2003


Appendix B. Acknowledgements

  The author gratefully acknowledges the contributions of  Marshall
  Rose, Greg Matthews, and Ben Feinstein.

  Inspiration for this profile comes from the Intrusion Detection
  Working Group of the IETF.

Author's Address

  Darren New
  5390 Caminito Exquisito
  San Diego, CA  92130
  US

  Phone: +1 858 350 9733
  EMail: [email protected]


































New                         Standards Track                    [Page 17]

RFC 3620                   The TUNNEL Profile               October 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















New                         Standards Track                    [Page 18]