Network Working Group                                         D. Whiting
Request for Comments: 3610                                          Hifn
Category: Informational                                       R. Housley
                                                         Vigil Security
                                                            N. Ferguson
                                                              MacFergus
                                                         September 2003


                      Counter with CBC-MAC (CCM)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  Counter with CBC-MAC (CCM) is a generic authenticated encryption
  block cipher mode.  CCM is defined for use with 128-bit block
  ciphers, such as the Advanced Encryption Standard (AES).

1.  Introduction

  Counter with CBC-MAC (CCM) is a generic authenticated encryption
  block cipher mode.  CCM is only defined for use with 128-bit block
  ciphers, such as AES [AES].  The CCM design principles can easily be
  applied to other block sizes, but these modes will require their own
  specifications.

1.1.  Conventions Used In This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [STDWORDS].

2.  CCM Mode Specification

  For the generic CCM mode there are two parameter choices.  The first
  choice is M, the size of the authentication field.  The choice of the
  value for M involves a trade-off between message expansion and the
  probability that an attacker can undetectably modify a message.
  Valid values are 4, 6, 8, 10, 12, 14, and 16 octets.  The second



Whiting, et al.              Informational                      [Page 1]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  choice is L, the size of the length field.  This value requires a
  trade-off between the maximum message size and the size of the Nonce.
  Different applications require different trade-offs, so L is a
  parameter.  Valid values of L range between 2 octets and 8 octets
  (the value L=1 is reserved).

      Name  Description                               Size    Encoding
      ----  ----------------------------------------  ------  --------
      M     Number of octets in authentication field  3 bits  (M-2)/2
      L     Number of octets in length field          3 bits  L-1

2.1.  Inputs

  To authenticate and encrypt a message the following information is
  required:

  1.  An encryption key K suitable for the block cipher.

  2.  A nonce N of 15-L octets.  Within the scope of any encryption key
      K, the nonce value MUST be unique.  That is, the set of nonce
      values used with any given key MUST NOT contain any duplicate
      values.  Using the same nonce for two different messages
      encrypted with the same key destroys the security properties of
      this mode.

  3.  The message m, consisting of a string of l(m) octets where 0 <=
      l(m) < 2^(8L).  The length restriction ensures that l(m) can be
      encoded in a field of L octets.

  4.  Additional authenticated data a, consisting of a string of l(a)
      octets where 0 <= l(a) < 2^64.  This additional data is
      authenticated but not encrypted, and is not included in the
      output of this mode.  It can be used to authenticate plaintext
      packet headers, or contextual information that affects the
      interpretation of the message.  Users who do not wish to
      authenticate additional data can provide a string of length zero.

  The inputs are summarized as:

     Name  Description                          Size
     ----  -----------------------------------  -----------------------
     K     Block cipher key                     Depends on block cipher
     N     Nonce                                15-L octets
     m     Message to authenticate and encrypt  l(m) octets
     a     Additional authenticated data        l(a) octets






Whiting, et al.              Informational                      [Page 2]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


2.2.  Authentication

  The first step is to compute the authentication field T.  This is
  done using CBC-MAC [MAC].  We first define a sequence of blocks B_0,
  B_1, ..., B_n and then apply CBC-MAC to these blocks.

  The first block B_0 is formatted as follows, where l(m) is encoded in
  most-significant-byte first order:

     Octet Number   Contents
     ------------   ---------
     0              Flags
     1 ... 15-L     Nonce N
     16-L ... 15    l(m)

  Within the first block B_0, the Flags field is formatted as follows:

     Bit Number   Contents
     ----------   ----------------------
     7            Reserved (always zero)
     6            Adata
     5 ... 3      M'
     2 ... 0      L'

  Another way say the same thing is:  Flags = 64*Adata + 8*M' + L'.

  The Reserved bit is reserved for future expansions and should always
  be set to zero.  The Adata bit is set to zero if l(a)=0, and set to
  one if l(a)>0.  The M' field is set to (M-2)/2.  As M can take on the
  even values from 4 to 16, the 3-bit M' field can take on the values
  from one to seven.  The 3-bit field MUST NOT have a value of zero,
  which would correspond to a 16-bit integrity check value.  The L'
  field encodes the size of the length field used to store l(m).  The
  parameter L can take on the values from 2 to 8 (recall, the value L=1
  is reserved).  This value is encoded in the 3-bit L' field using the
  values from one to seven by choosing L' = L-1 (the zero value is
  reserved).

  If l(a)>0 (as indicated by the Adata field), then one or more blocks
  of authentication data are added.  These blocks contain l(a) and a
  encoded in a reversible manner.  We first construct a string that
  encodes l(a).

  If 0 < l(a) < (2^16 - 2^8), then the length field is encoded as two
  octets which contain the value l(a) in most-significant-byte first
  order.





Whiting, et al.              Informational                      [Page 3]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  If (2^16 - 2^8) <= l(a) < 2^32, then the length field is encoded as
  six octets consisting of the octets 0xff, 0xfe, and four octets
  encoding l(a) in most-significant-byte-first order.

  If 2^32 <= l(a) < 2^64, then the length field is encoded as ten
  octets consisting of the octets 0xff, 0xff, and eight octets encoding
  l(a) in most-significant-byte-first order.

  The length encoding conventions are summarized in the following
  table.  Note that all fields are interpreted in most-significant-byte
  first order.

   First two octets   Followed by       Comment
   -----------------  ----------------  -------------------------------
   0x0000             Nothing           Reserved
   0x0001 ... 0xFEFF  Nothing           For 0 < l(a) < (2^16 - 2^8)
   0xFF00 ... 0xFFFD  Nothing           Reserved
   0xFFFE             4 octets of l(a)  For (2^16 - 2^8) <= l(a) < 2^32
   0xFFFF             8 octets of l(a)  For 2^32 <= l(a) < 2^64

  The blocks encoding a are formed by concatenating this string that
  encodes l(a) with a itself, and splitting the result into 16-octet
  blocks, and then padding the last block with zeroes if necessary.
  These blocks are appended to the first block B0.

  After the (optional) additional authentication blocks have been
  added, we add the message blocks.  The message blocks are formed by
  splitting the message m into 16-octet blocks, and then padding the
  last block with zeroes if necessary.  If the message m consists of
  the empty string, then no blocks are added in this step.

  The result is a sequence of blocks B0, B1, ..., Bn.  The CBC-MAC is
  computed by:

     X_1 := E( K, B_0 )
     X_i+1 := E( K, X_i XOR B_i )  for i=1, ..., n
     T := first-M-bytes( X_n+1 )

  where E() is the block cipher encryption function, and T is the MAC
  value.  CCM was designed with AES in mind for the E() function, but
  any 128-bit block cipher can be used.  Note that the last block B_n
  is XORed with X_n, and the result is encrypted with the block cipher.
  If needed, the ciphertext is truncated to give T.








Whiting, et al.              Informational                      [Page 4]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


2.3.  Encryption

  To encrypt the message data we use Counter (CTR) mode.  We first
  define the key stream blocks by:

     S_i := E( K, A_i )   for i=0, 1, 2, ...

  The values A_i are formatted as follows, where the Counter field i is
  encoded in most-significant-byte first order:

     Octet Number   Contents
     ------------   ---------
     0              Flags
     1 ... 15-L     Nonce N
     16-L ... 15    Counter i

  The Flags field is formatted as follows:

     Bit Number   Contents
     ----------   ----------------------
     7            Reserved (always zero)
     6            Reserved (always zero)
     5 ... 3      Zero
     2 ... 0      L'

  Another way say the same thing is:  Flags = L'.

  The Reserved bits are reserved for future expansions and MUST be set
  to zero.  Bit 6 corresponds to the Adata bit in the B_0 block, but as
  this bit is not used here, it is reserved and MUST be set to zero.
  Bits 3, 4, and 5 are also set to zero, ensuring that all the A blocks
  are distinct from B_0, which has the non-zero encoding of M in this
  position.  Bits 0, 1, and 2 contain L', using the same encoding as in
  B_0.

  The message is encrypted by XORing the octets of message m with the
  first l(m) octets of the concatenation of S_1, S_2, S_3, ... .  Note
  that S_0 is not used to encrypt the message.

  The authentication value U is computed by encrypting T with the key
  stream block S_0 and truncating it to the desired length.

     U := T XOR first-M-bytes( S_0 )

2.4.  Output

  The final result c consists of the encrypted message followed by the
  encrypted authentication value U.



Whiting, et al.              Informational                      [Page 5]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


2.5.  Decryption and Authentication Checking

  To decrypt a message the following information is required:

     1.  The encryption key K.

     2.  The nonce N.

     3.  The additional authenticated data a.

     4.  The encrypted and authenticated message c.

  Decryption starts by recomputing the key stream to recover the
  message m and the MAC value T.  The message and additional
  authentication data is then used to recompute the CBC-MAC value and
  check T.

  If the T value is not correct, the receiver MUST NOT reveal any
  information except for the fact that T is incorrect.  The receiver
  MUST NOT reveal the decrypted message, the value T, or any other
  information.

2.6.  Restrictions

  To preserve security, implementations need to limit the total amount
  of data that is encrypted with a single key; the total number of
  block cipher encryption operations in the CBC-MAC and encryption
  together cannot exceed 2^61.  (This allows nearly 2^64 octets to be
  encrypted and authenticated using CCM.  This is roughly 16 million
  terabytes, which should be more than enough for most applications.)
  In an environment where this limit might be reached, the sender MUST
  ensure that the total number of block cipher encryption operations in
  the CBC-MAC and encryption together does not exceed 2^61.  Receivers
  that do not expect to decrypt the same message twice MAY also check
  this limit.

  The recipient MUST verify the CBC-MAC before releasing any
  information such as the plaintext.  If the CBC-MAC verification
  fails, the receiver MUST destroy all information, except for the fact
  that the CBC-MAC verification failed.

3.  Security Proof

  Jakob Jonsson has developed a security proof of CCM [PROOF].  The
  resulting paper was presented at the SAC 2002 conference.  The proof
  shows that CCM provides a level of confidentiality and authenticity
  that is in line with other proposed authenticated encryption modes,
  such as OCB mode [OCB].



Whiting, et al.              Informational                      [Page 6]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


4.  Rationale

  The main difficulty in specifying this mode is the trade-off between
  nonce size and counter size.  For a general mode we want to support
  large messages.  Some applications use only small messages, but would
  rather have a larger nonce.  Introducing the L parameter solves this
  issue.  The parameter M gives the traditional trade-off between
  message expansion and probability of forgery.  For most applications,
  we recommend choosing M at least 8.

  The CBC-MAC is computed over a sequence of blocks that encode the
  relevant data in a unique way.  Given the block sequence it is easy
  to recover N, M, L, m, and a.  The length encoding of a was chosen to
  be simple and efficient when a is empty and when a is small.  We
  expect that many implementations will limit the maximum size of a.

  CCM encryption is a straightforward application of CTR mode [MODES].
  As some implementations will support a variable length counter field,
  we have ensured that the least significant octet of the counter is at
  one end of the field.  This also ensures that the counter is aligned
  on the block boundary.

  By encrypting T we avoid CBC-MAC collision attacks.  If the block
  cipher behaves as a pseudo-random permutation, then the key stream is
  indistinguishable from a random string.  Thus, the attacker gets no
  information about the CBC-MAC results.  The only avenue of attack
  that is left is a differential-style attack, which has no significant
  chance of success if the block cipher is a pseudo-random permutation.

  To simplify implementation we use the same block cipher key for the
  encryption and authentication functions.  In our design this is not a
  problem.  All the A blocks are different, and they are different from
  the B_0 block.  If the block cipher behaves like a random
  permutation, then the outputs are independent of each other, up to
  the insignificant limitation that they are all different.  The only
  cases where the inputs to the block cipher can overlap are an
  intermediate value in the CBC-MAC and one of the other encryptions.
  As all the intermediate values of the CBC-MAC computation are
  essentially random (because the block cipher behaves like a random
  permutation) the probability of such a collision is very small.  Even
  if there is a collision, these values only affect T, which is
  encrypted so that an attacker cannot deduce any information, or
  detect any collision.








Whiting, et al.              Informational                      [Page 7]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  Care has been taken to ensure that the blocks used by the
  authentication function match up with the blocks used by the
  encryption function.  This should simplify hardware implementations,
  and reduce the amount of byte-shifting required by software
  implementations.

5.  Nonce Suggestions

  The main requirement is that, within the scope of a single key, the
  nonce values are unique for each message.  A common technique is to
  number messages sequentially, and to use this number as the nonce.
  Sequential message numbers are also used to detect replay attacks and
  to detect message reordering, so in many situations (such as IPsec
  ESP [ESP]) the sequence numbers are already available.

  Users of CCM, and all other block cipher modes, should be aware of
  precomputation attacks.  These are effectively collision attacks on
  the cipher key.  Let us suppose the key K is 128 bits, and the same
  nonce value N' is used with many different keys.  The attacker
  chooses a particular nonce N'.  She chooses 2^64 different keys at
  random and computes a table entry for each K value, generating a pair
  of the form (K,S_1).  (Given the key and the nonce, computing S_1 is
  easy.)  She then waits for messages to be sent with nonce N'.  We
  will assume the first 16 bytes of each message are known so that she
  can compute S_1 for each message.  She looks in her table for a pair
  with a matching S_1 value.  She can expect to find a match after
  checking about 2^64 messages.  Once a match is found, the other part
  of the matched pair is the key in question.  The total workload of
  the attacker is only 2^64 steps, rather than the expected 2^128
  steps.  Similar precomputation attacks exist for all block cipher
  modes.

  The main weapon against precomputation attacks is to use a larger
  key.  Using a 256-bit key forces the attacker to perform at least
  2^128 precomputations, which is infeasible.  In situations where
  using a large key is not possible or desirable (for example, due to
  the resulting performance impact), users can use part of the nonce to
  reduce the number of times any specific nonce value is used with
  different keys.  If there is room in the nonce, the sender could add
  a few random bytes, and send these random bytes along with the
  message.  This makes the precomputation attack much harder, as the
  attacker now has to precompute a table for each of the possible
  random values.  An alternative is to use something like the sender's
  Ethernet address.  Note that due to the widespread use of DHCP and
  NAT, IP addresses are rarely unique.  Including the Ethernet address
  forces the attacker to perform the precomputation specifically for a
  specific source address, and the resulting table could not be used to
  attack anyone else.  Although these solutions can all work, they need



Whiting, et al.              Informational                      [Page 8]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  careful analysis and almost never entirely prevent these attacks.
  Where possible, we recommend using a larger key, as this solves all
  the problems.

6.  Efficiency and Performance

  Performance depends on the speed of the block cipher implementation.
  In hardware, for large packets, the speed achievable for CCM is
  roughly the same as that achievable with the CBC encryption mode.

  Encrypting and authenticating an empty message, without any
  additional authentication data, requires two block cipher encryption
  operations.  For each block of additional authentication data one
  additional block cipher encryption operation is required (if one
  includes the length encoding).  Each message block requires two block
  cipher encryption operations.  The worst-case situation is when both
  the message and the additional authentication data are a single
  octet.  In this case, CCM requires five block cipher encryption
  operations.

  CCM results in the minimal possible message expansion; the only bits
  added are the authentication bits.

  Both the CCM encryption and CCM decryption operations require only
  the block cipher encryption function.  In AES, the encryption and
  decryption algorithms have some significant differences.  Thus, using
  only the encrypt operation can lead to a significant savings in code
  size or hardware size.

  In hardware, CCM can compute the message authentication code and
  perform encryption in a single pass.  That is, the implementation
  does not have to complete calculation of the message authentication
  code before encryption can begin.

  CCM was designed for use in the packet processing environment.  The
  authentication processing requires the message length to be known at
  the beginning of the operation, which makes one-pass processing
  difficult in some environments.  However, in almost all environments,
  message or packet lengths are known in advance.












Whiting, et al.              Informational                      [Page 9]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


7.  Summary of Properties

  Security Function
     authenticated encryption

  Error Propagation
     none

  Synchronization
     same nonce used by sender and recipient

  Parallelizability
     encryption can be parallelized, but authentication cannot

  Keying Material Requirements
     one key

  Counter/IV/Nonce Requirements
     counter and nonce are part of the counter block

  Memory Requirements
     requires memory for encrypt operation of the underlying block
     cipher, plaintext, ciphertext (expanded for CBC-MAC), and a per-
     packet counter (an integer; at most L octets in size)

  Pre-processing Capability
     encryption key stream can be precomputed, but authentication
     cannot

  Message Length Requirements
     octet aligned message of arbitrary length, up to 2^(8*L) octets,
     and octet aligned arbitrary additional authenticated data, up to
     2^64 octets

  Ciphertext Expansion
     4, 6, 8, 10, 12, 14, or 16 octets depending on size of MAC
     selected

8.  Test Vectors

  These test vectors use AES for the block cipher [AES].  In each of
  these test vectors, the least significant sixteen bits of the counter
  block is used for the block counter, and the nonce is 13 octets.
  Some of the test vectors include a eight octet authentication value,
  and others include a ten octet authentication value.






Whiting, et al.              Informational                     [Page 10]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #1 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 03  02 01 00 A0  A1 A2 A3 A4  A5
  Total packet length = 31. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
  CBC IV in: 59 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 17
  CBC IV out:EB 9D 55 47  73 09 55 AB  23 1E 0A 2D  FE 4B 90 D6
  After xor: EB 95 55 46  71 0A 51 AE  25 19 0A 2D  FE 4B 90 D6   [hdr]
  After AES: CD B6 41 1E  3C DC 9B 4F  5D 92 58 B6  9E E7 F0 91
  After xor: C5 BF 4B 15  30 D1 95 40  4D 83 4A A5  8A F2 E6 86   [msg]
  After AES: 9C 38 40 5E  A0 3C 1B C9  04 B5 8B 40  C7 6C A2 EB
  After xor: 84 21 5A 45  BC 21 05 C9  04 B5 8B 40  C7 6C A2 EB   [msg]
  After AES: 2D C6 97 E4  11 CA 83 A8  60 C2 C4 06  CC AA 54 2F
  CBC-MAC  : 2D C6 97 E4  11 CA 83 A8
  CTR Start: 01 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 50 85 9D 91  6D CB 6D DD  E0 77 C2 D1  D4 EC 9F 97
  CTR[0002]: 75 46 71 7A  C6 DE 9A FF  64 0C 9C 06  DE 6D 0D 8F
  CTR[MAC ]: 3A 2E 46 C8  EC 33 A5 48
  Total packet length = 39. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  58 8C 97 9A  61 C6 63 D2
             F0 66 D0 C2  C0 F9 89 80  6D 5F 6B 61  DA C3 84 17
             E8 D1 2C FD  F9 26 E0


  =============== Packet Vector #2 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 04  03 02 01 A0  A1 A2 A3 A4  A5
  Total packet length = 32. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
  CBC IV in: 59 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 18
  CBC IV out:F0 C2 54 D3  CA 03 E2 39  70 BD 24 A8  4C 39 9E 77
  After xor: F0 CA 54 D2  C8 00 E6 3C  76 BA 24 A8  4C 39 9E 77   [hdr]
  After AES: 48 DE 8B 86  28 EA 4A 40  00 AA 42 C2  95 BF 4A 8C
  After xor: 40 D7 81 8D  24 E7 44 4F  10 BB 50 D1  81 AA 5C 9B   [msg]
  After AES: 0F 89 FF BC  A6 2B C2 4F  13 21 5F 16  87 96 AA 33
  After xor: 17 90 E5 A7  BA 36 DC 50  13 21 5F 16  87 96 AA 33   [msg]
  After AES: F7 B9 05 6A  86 92 6C F3  FB 16 3D C4  99 EF AA 11
  CBC-MAC  : F7 B9 05 6A  86 92 6C F3
  CTR Start: 01 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 7A C0 10 3D  ED 38 F6 C0  39 0D BA 87  1C 49 91 F4
  CTR[0002]: D4 0C DE 22  D5 F9 24 24  F7 BE 9A 56  9D A7 9F 51
  CTR[MAC ]: 57 28 D0 04  96 D2 65 E5
  Total packet length = 40. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  72 C9 1A 36  E1 35 F8 CF
             29 1C A8 94  08 5C 87 E3  CC 15 C4 39  C9 E4 3A 3B
             A0 91 D5 6E  10 40 09 16



Whiting, et al.              Informational                     [Page 11]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #3 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 05  04 03 02 A0  A1 A2 A3 A4  A5
  Total packet length = 33. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
             20
  CBC IV in: 59 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 19
  CBC IV out:6F 8A 12 F7  BF 8D 4D C5  A1 19 6E 95  DF F0 B4 27
  After xor: 6F 82 12 F6  BD 8E 49 C0  A7 1E 6E 95  DF F0 B4 27   [hdr]
  After AES: 37 E9 B7 8C  C2 20 17 E7  33 80 43 0C  BE F4 28 24
  After xor: 3F E0 BD 87  CE 2D 19 E8  23 91 51 1F  AA E1 3E 33   [msg]
  After AES: 90 CA 05 13  9F 4D 4E CF  22 6F E9 81  C5 9E 2D 40
  After xor: 88 D3 1F 08  83 50 50 D0  02 6F E9 81  C5 9E 2D 40   [msg]
  After AES: 73 B4 67 75  C0 26 DE AA  41 03 97 D6  70 FE 5F B0
  CBC-MAC  : 73 B4 67 75  C0 26 DE AA
  CTR Start: 01 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 59 B8 EF FF  46 14 73 12  B4 7A 1D 9D  39 3D 3C FF
  CTR[0002]: 69 F1 22 A0  78 C7 9B 89  77 89 4C 99  97 5C 23 78
  CTR[MAC ]: 39 6E C0 1A  7D B9 6E 6F
  Total packet length = 41. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  51 B1 E5 F4  4A 19 7D 1D
             A4 6B 0F 8E  2D 28 2A E8  71 E8 38 BB  64 DA 85 96
             57 4A DA A7  6F BD 9F B0  C5

  =============== Packet Vector #4 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 06  05 04 03 A0  A1 A2 A3 A4  A5
  Total packet length = 31. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
  CBC IV in: 59 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 13
  CBC IV out:06 65 2C 60  0E F5 89 63  CA C3 25 A9  CD 3E 2B E1
  After xor: 06 69 2C 61  0C F6 8D 66  CC C4 2D A0  C7 35 2B E1   [hdr]
  After AES: A0 75 09 AC  15 C2 58 86  04 2F 80 60  54 FE A6 86
  After xor: AC 78 07 A3  05 D3 4A 95  10 3A 96 77  4C E7 BC 9D   [msg]
  After AES: 64 4C 09 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF
  After xor: 78 51 17 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   [msg]
  After AES: 4B 4F 4B 39  B5 93 E6 BF  B0 B2 C2 B7  0F 29 CD 7A
  CBC-MAC  : 4B 4F 4B 39  B5 93 E6 BF
  CTR Start: 01 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: AE 81 66 6A  83 8B 88 6A  EE BF 4A 5B  32 84 50 8A
  CTR[0002]: D1 B1 92 06  AC 93 9E 2F  B6 DD CE 10  A7 74 FD 8D
  CTR[MAC ]: DD 87 2A 80  7C 75 F8 4E
  Total packet length = 39. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  A2 8C 68 65
             93 9A 9A 79  FA AA 5C 4C  2A 9D 4A 91  CD AC 8C 96
             C8 61 B9 C9  E6 1E F1



Whiting, et al.              Informational                     [Page 12]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #5 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 07  06 05 04 A0  A1 A2 A3 A4  A5
  Total packet length = 32. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
  CBC IV in: 59 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 14
  CBC IV out:00 4C 50 95  45 80 3C 48  51 CD E1 3B  56 C8 9A 85
  After xor: 00 40 50 94  47 83 38 4D  57 CA E9 32  5C C3 9A 85   [hdr]
  After AES: E2 B8 F7 CE  49 B2 21 72  84 A8 EA 84  FA AD 67 5C
  After xor: EE B5 F9 C1  59 A3 33 61  90 BD FC 93  E2 B4 7D 47   [msg]
  After AES: 3E FB 36 72  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3
  After xor: 22 E6 28 6D  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   [msg]
  After AES: 48 B9 E8 82  55 05 4A B5  49 0A 95 F9  34 9B 4B 5E
  CBC-MAC  : 48 B9 E8 82  55 05 4A B5
  CTR Start: 01 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: D0 FC F5 74  4D 8F 31 E8  89 5B 05 05  4B 7C 90 C3
  CTR[0002]: 72 A0 D4 21  9F 0D E1 D4  04 83 BC 2D  3D 0C FC 2A
  CTR[MAC ]: 19 51 D7 85  28 99 67 26
  Total packet length = 40. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  DC F1 FB 7B
             5D 9E 23 FB  9D 4E 13 12  53 65 8A D8  6E BD CA 3E
             51 E8 3F 07  7D 9C 2D 93

  =============== Packet Vector #6 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 08  07 06 05 A0  A1 A2 A3 A4  A5
  Total packet length = 33. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
             20
  CBC IV in: 59 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 15
  CBC IV out:04 72 DA 4C  6F F6 0A 63  06 52 1A 06  04 80 CD E5
  After xor: 04 7E DA 4D  6D F5 0E 66  00 55 12 0F  0E 8B CD E5   [hdr]
  After AES: 64 4C 36 A5  A2 27 37 62  0B 89 F1 D7  BF F2 73 D4
  After xor: 68 41 38 AA  B2 36 25 71  1F 9C E7 C0  A7 EB 69 CF   [msg]
  After AES: 41 E1 19 CD  19 24 CE 77  F1 2F A6 60  C1 6E BB 4E
  After xor: 5D FC 07 D2  39 24 CE 77  F1 2F A6 60  C1 6E BB 4E   [msg]
  After AES: A5 27 D8 15  6A C3 59 BF  1C B8 86 E6  2F 29 91 29
  CBC-MAC  : A5 27 D8 15  6A C3 59 BF
  CTR Start: 01 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 63 CC BE 1E  E0 17 44 98  45 64 B2 3A  8D 24 5C 80
  CTR[0002]: 39 6D BA A2  A7 D2 CB D4  B5 E1 7C 10  79 45 BB C0
  CTR[MAC ]: E5 7D DC 56  C6 52 92 2B
  Total packet length = 41. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  6F C1 B0 11
             F0 06 56 8B  51 71 A4 2D  95 3D 46 9B  25 70 A4 BD
             87 40 5A 04  43 AC 91 CB  94



Whiting, et al.              Informational                     [Page 13]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #7 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 09  08 07 06 A0  A1 A2 A3 A4  A5
  Total packet length = 31. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
  CBC IV in: 61 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 17
  CBC IV out:60 06 C5 72  DA 23 9C BF  A0 5B 0A DE  D2 CD A8 1E
  After xor: 60 0E C5 73  D8 20 98 BA  A6 5C 0A DE  D2 CD A8 1E   [hdr]
  After AES: 41 7D E2 AE  94 E2 EA D9  00 FC 44 FC  D0 69 52 27
  After xor: 49 74 E8 A5  98 EF E4 D6  10 ED 56 EF  C4 7C 44 30   [msg]
  After AES: 2A 6C 42 CA  49 D7 C7 01  C5 7D 59 FF  87 16 49 0E
  After xor: 32 75 58 D1  55 CA D9 01  C5 7D 59 FF  87 16 49 0E   [msg]
  After AES: 89 8B D6 45  4E 27 20 BB  D2 7E F3 15  7A 7C 90 B2
  CBC-MAC  : 89 8B D6 45  4E 27 20 BB  D2 7E
  CTR Start: 01 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 09 3C DB B9  C5 52 4F DA  C1 C5 EC D2  91 C4 70 AF
  CTR[0002]: 11 57 83 86  E2 C4 72 B4  8E CC 8A AD  AB 77 6F CB
  CTR[MAC ]: 8D 07 80 25  62 B0 8C 00  A6 EE
  Total packet length = 41. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  01 35 D1 B2  C9 5F 41 D5
             D1 D4 FE C1  85 D1 66 B8  09 4E 99 9D  FE D9 6C 04
             8C 56 60 2C  97 AC BB 74  90

  =============== Packet Vector #8 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 0A  09 08 07 A0  A1 A2 A3 A4  A5
  Total packet length = 32. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
  CBC IV in: 61 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 18
  CBC IV out:63 A3 FA E4  6C 79 F3 FA  78 38 B8 A2  80 36 B6 0B
  After xor: 63 AB FA E5  6E 7A F7 FF  7E 3F B8 A2  80 36 B6 0B   [hdr]
  After AES: 1C 99 1A 3D  B7 60 79 27  34 40 79 1F  AD 8B 5B 02
  After xor: 14 90 10 36  BB 6D 77 28  24 51 6B 0C  B9 9E 4D 15   [msg]
  After AES: 14 19 E8 E8  CB BE 75 58  E1 E3 BE 4B  6C 9F 82 E3
  After xor: 0C 00 F2 F3  D7 A3 6B 47  E1 E3 BE 4B  6C 9F 82 E3   [msg]
  After AES: E0 16 E8 1C  7F 7B 8A 38  A5 38 F2 CB  5B B6 C1 F2
  CBC-MAC  : E0 16 E8 1C  7F 7B 8A 38  A5 38
  CTR Start: 01 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 73 7C 33 91  CC 8E 13 DD  E0 AA C5 4B  6D B7 EB 98
  CTR[0002]: 74 B7 71 77  C5 AA C5 3B  04 A4 F8 70  8E 92 EB 2B
  CTR[MAC ]: 21 6D AC 2F  8B 4F 1C 07  91 8C
  Total packet length = 42. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  7B 75 39 9A  C0 83 1D D2
             F0 BB D7 58  79 A2 FD 8F  6C AE 6B 6C  D9 B7 DB 24
             C1 7B 44 33  F4 34 96 3F  34 B4




Whiting, et al.              Informational                     [Page 14]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #9 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 0B  0A 09 08 A0  A1 A2 A3 A4  A5
  Total packet length = 33. [Input with 8 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
             20
  CBC IV in: 61 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 19
  CBC IV out:4F 2C 86 11  1E 08 2A DD  6B 44 21 3A  B5 13 13 16
  After xor: 4F 24 86 10  1C 0B 2E D8  6D 43 21 3A  B5 13 13 16   [hdr]
  After AES: F6 EC 56 87  3C 57 12 DC  9C C5 3C A8  D4 D1 ED 0A
  After xor: FE E5 5C 8C  30 5A 1C D3  8C D4 2E BB  C0 C4 FB 1D   [msg]
  After AES: 17 C1 80 A5  31 53 D4 C3  03 85 0C 95  65 80 34 52
  After xor: 0F D8 9A BE  2D 4E CA DC  23 85 0C 95  65 80 34 52   [msg]
  After AES: 46 A1 F6 E2  B1 6E 75 F8  1C F5 6B 1A  80 04 44 1B
  CBC-MAC  : 46 A1 F6 E2  B1 6E 75 F8  1C F5
  CTR Start: 01 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 8A 5A 10 6B  C0 29 9A 55  5B 93 6B 0B  0E A0 DE 5A
  CTR[0002]: EA 05 FD E2  AB 22 5C FE  B7 73 12 CB  88 D9 A5 4A
  CTR[MAC ]: AC 3D F1 07  DA 30 C4 86  43 BB
  Total packet length = 43. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  82 53 1A 60  CC 24 94 5A
             4B 82 79 18  1A B5 C8 4D  F2 1C E7 F9  B7 3F 42 E1
             97 EA 9C 07  E5 6B 5E B1  7E 5F 4E

  =============== Packet Vector #10 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 0C  0B 0A 09 A0  A1 A2 A3 A4  A5
  Total packet length = 31. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
  CBC IV in: 61 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 13
  CBC IV out:7F B8 0A 32  E9 80 57 46  EC 31 6C 3A  B2 A2 EB 5D
  After xor: 7F B4 0A 33  EB 83 53 43  EA 36 64 33  B8 A9 EB 5D   [hdr]
  After AES: 7E 96 96 BF  F1 56 D6 A8  6E AC F5 7B  7F 23 47 5A
  After xor: 72 9B 98 B0  E1 47 C4 BB  7A B9 E3 6C  67 3A 5D 41   [msg]
  After AES: 8B 4A EE 42  04 24 8A 59  FA CC 88 66  57 66 DD 72
  After xor: 97 57 F0 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   [msg]
  After AES: 41 63 89 36  62 ED D7 EB  CD 6E 15 C1  89 48 62 05
  CBC-MAC  : 41 63 89 36  62 ED D7 EB  CD 6E
  CTR Start: 01 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 0B 39 2B 9B  05 66 97 06  3F 12 56 8F  2B 13 A1 0F
  CTR[0002]: 07 89 65 25  23 40 94 3B  9E 69 B2 56  CC 5E F7 31
  CTR[MAC ]: 17 09 20 76  09 A0 4E 72  45 B3
  Total packet length = 41. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  07 34 25 94
             15 77 85 15  2B 07 40 98  33 0A BB 14  1B 94 7B 56
             6A A9 40 6B  4D 99 99 88  DD



Whiting, et al.              Informational                     [Page 15]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #11 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 0D  0C 0B 0A A0  A1 A2 A3 A4  A5
  Total packet length = 32. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
  CBC IV in: 61 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 14
  CBC IV out:B0 84 85 79  51 D2 FA 42  76 EF 3A D7  14 B9 62 87
  After xor: B0 88 85 78  53 D1 FE 47  70 E8 32 DE  1E B2 62 87   [hdr]
  After AES: C9 B3 64 7E  D8 79 2A 5C  65 B7 CE CC  19 0A 97 0A
  After xor: C5 BE 6A 71  C8 68 38 4F  71 A2 D8 DB  01 13 8D 11   [msg]
  After AES: 34 0F 69 17  FA B9 19 D6  1D AC D0 35  36 D6 55 8B
  After xor: 28 12 77 08  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   [msg]
  After AES: 6B 5E 24 34  12 CC C2 AD  6F 1B 11 C3  A1 A9 D8 BC
  CBC-MAC  : 6B 5E 24 34  12 CC C2 AD  6F 1B
  CTR Start: 01 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: 6B 66 BC 0C  90 A1 F1 12  FC BE 6F 4E  12 20 77 BC
  CTR[0002]: 97 9E 57 2B  BE 65 8A E5  CC 20 11 83  2A 9A 9B 5B
  CTR[MAC ]: 9E 64 86 DD  02 B6 49 C1  6D 37
  Total packet length = 42. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  67 6B B2 03
             80 B0 E3 01  E8 AB 79 59  0A 39 6D A7  8B 83 49 34
             F5 3A A2 E9  10 7A 8B 6C  02 2C

  =============== Packet Vector #12 ==================
  AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
  Nonce =    00 00 00 0E  0D 0C 0B A0  A1 A2 A3 A4  A5
  Total packet length = 33. [Input with 12 cleartext header octets]
             00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
             10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
             20
  CBC IV in: 61 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 15
  CBC IV out:5F 8E 8D 02  AD 95 7C 5A  36 14 CF 63  40 16 97 4F
  After xor: 5F 82 8D 03  AF 96 78 5F  30 13 C7 6A  4A 1D 97 4F   [hdr]
  After AES: 63 FA BD 69  B9 55 65 FF  54 AA F4 60  88 7D EC 9F
  After xor: 6F F7 B3 66  A9 44 77 EC  40 BF E2 77  90 64 F6 84   [msg]
  After AES: 5A 76 5F 0B  93 CE 4F 6A  B4 1D 91 30  18 57 6A D7
  After xor: 46 6B 41 14  B3 CE 4F 6A  B4 1D 91 30  18 57 6A D7   [msg]
  After AES: 9D 66 92 41  01 08 D5 B6  A1 45 85 AC  AF 86 32 E8
  CBC-MAC  : 9D 66 92 41  01 08 D5 B6  A1 45
  CTR Start: 01 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 01
  CTR[0001]: CC F2 AE D9  E0 4A C9 74  E6 58 55 B3  2B 94 30 BF
  CTR[0002]: A2 CA AC 11  63 F4 07 E5  E5 F6 E3 B3  79 0F 79 F8
  CTR[MAC ]: 50 7C 31 57  63 EF 78 D3  77 9E
  Total packet length = 43. [Authenticated and Encrypted Output]
             00 01 02 03  04 05 06 07  08 09 0A 0B  C0 FF A0 D6
             F0 5B DB 67  F2 4D 43 A4  33 8D 2A A4  BE D7 B2 0E
             43 CD 1A A3  16 62 E7 AD  65 D6 DB



Whiting, et al.              Informational                     [Page 16]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #13 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 41 2B 4E  A9 CD BE 3C  96 96 76 6C  FA
  Total packet length = 31. [Input with 8 cleartext header octets]
             0B E1 A8 8B  AC E0 18 B1  08 E8 CF 97  D8 20 EA 25
             84 60 E9 6A  D9 CF 52 89  05 4D 89 5C  EA C4 7C
  CBC IV in: 59 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 17
  CBC IV out:33 AE C3 1A  1F B7 CC 35  E5 DA D2 BA  C0 90 D9 A3
  After xor: 33 A6 C8 FB  B7 3C 60 D5  FD 6B D2 BA  C0 90 D9 A3   [hdr]
  After AES: B7 56 CA 1E  5B 42 C6 9C  58 E3 0A F5  2B F7 7C FD
  After xor: BF BE 05 89  83 62 2C B9  DC 83 E3 9F  F2 38 2E 74   [msg]
  After AES: 33 3D 3A 3D  07 B5 3C 7B  22 0E 96 1A  18 A9 A1 9E
  After xor: 36 70 B3 61  ED 71 40 7B  22 0E 96 1A  18 A9 A1 9E   [msg]
  After AES: 14 BD DB 6B  F9 01 63 4D  FB 56 51 83  BC 74 93 F7
  CBC-MAC  : 14 BD DB 6B  F9 01 63 4D
  CTR Start: 01 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 01
  CTR[0001]: 44 51 B0 11  7A 84 82 BF  03 19 AE C1  59 5E BD DA
  CTR[0002]: 83 EB 76 E1  3A 44 84 7F  92 20 09 07  76 B8 25 C5
  CTR[MAC ]: F3 31 2C A0  F5 DC B4 FE
  Total packet length = 39. [Authenticated and Encrypted Output]
             0B E1 A8 8B  AC E0 18 B1  4C B9 7F 86  A2 A4 68 9A
             87 79 47 AB  80 91 EF 53  86 A6 FF BD  D0 80 F8 E7
             8C F7 CB 0C  DD D7 B3

  =============== Packet Vector #14 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 33 56 8E  F7 B2 63 3C  96 96 76 6C  FA
  Total packet length = 32. [Input with 8 cleartext header octets]
             63 01 8F 76  DC 8A 1B CB  90 20 EA 6F  91 BD D8 5A
             FA 00 39 BA  4B AF F9 BF  B7 9C 70 28  94 9C D0 EC
  CBC IV in: 59 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 18
  CBC IV out:42 0D B1 50  BB 0C 44 DA  83 E4 52 09  55 99 67 E3
  After xor: 42 05 D2 51  34 7A 98 50  98 2F 52 09  55 99 67 E3   [hdr]
  After AES: EA D1 CA 56  02 02 09 5C  E6 12 B0 D2  18 A0 DD 44
  After xor: 7A F1 20 39  93 BF D1 06  1C 12 89 68  53 0F 24 FB   [msg]
  After AES: 51 77 41 69  C3 DE 6B 24  13 27 74 90  F5 FF C5 62
  After xor: E6 EB 31 41  57 42 BB C8  13 27 74 90  F5 FF C5 62   [msg]
  After AES: D4 CC 3B 82  DF 9F CC 56  7E E5 83 61  D7 8D FB 5E
  CBC-MAC  : D4 CC 3B 82  DF 9F CC 56
  CTR Start: 01 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 01
  CTR[0001]: DC EB F4 13  38 3C 66 A0  5A 72 55 EF  98 D7 FF AD
  CTR[0002]: 2F 54 2C BA  15 D6 6C DF  E1 EC 46 8F  0E 68 A1 24
  CTR[MAC ]: 11 E2 D3 9F  A2 E8 0C DC
  Total packet length = 40. [Authenticated and Encrypted Output]
             63 01 8F 76  DC 8A 1B CB  4C CB 1E 7C  A9 81 BE FA
             A0 72 6C 55  D3 78 06 12  98 C8 5C 92  81 4A BC 33
             C5 2E E8 1D  7D 77 C0 8A




Whiting, et al.              Informational                     [Page 17]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #15 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 10 3F E4  13 36 71 3C  96 96 76 6C  FA
  Total packet length = 33. [Input with 8 cleartext header octets]
             AA 6C FA 36  CA E8 6B 40  B9 16 E0 EA  CC 1C 00 D7
             DC EC 68 EC  0B 3B BB 1A  02 DE 8A 2D  1A A3 46 13
             2E
  CBC IV in: 59 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 19
  CBC IV out:B3 26 49 FF  D5 9F 56 0F  02 2D 11 E2  62 C5 BE EA
  After xor: B3 2E E3 93  2F A9 9C E7  69 6D 11 E2  62 C5 BE EA   [hdr]
  After AES: 82 50 9E E5  B2 FF DB CA  9B D0 2E 20  6B 3F B7 AD
  After xor: 3B 46 7E 0F  7E E3 DB 1D  47 3C 46 CC  60 04 0C B7   [msg]
  After AES: 80 46 0E 4C  08 3A D0 3F  B9 A9 13 BE  E4 DE 2F 66
  After xor: 82 98 84 61  12 99 96 2C  97 A9 13 BE  E4 DE 2F 66   [msg]
  After AES: 47 29 CB 00  31 F1 81 C1  92 68 4B 89  A4 71 50 E7
  CBC-MAC  : 47 29 CB 00  31 F1 81 C1
  CTR Start: 01 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 01
  CTR[0001]: 08 C4 DA C8  EC C1 C0 7B  4C E1 F2 4C  37 5A 47 EE
  CTR[0002]: A7 87 2E 6C  6D C4 4E 84  26 02 50 4C  3F A5 73 C5
  CTR[MAC ]: E0 5F B2 6E  EA 83 B4 C7
  Total packet length = 41. [Authenticated and Encrypted Output]
             AA 6C FA 36  CA E8 6B 40  B1 D2 3A 22  20 DD C0 AC
             90 0D 9A A0  3C 61 FC F4  A5 59 A4 41  77 67 08 97
             08 A7 76 79  6E DB 72 35  06

  =============== Packet Vector #16 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 76 4C 63  B8 05 8E 3C  96 96 76 6C  FA
  Total packet length = 31. [Input with 12 cleartext header octets]
             D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  12 DA AC 56
             30 EF A5 39  6F 77 0C E1  A6 6B 21 F7  B2 10 1C
  CBC IV in: 59 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 13
  CBC IV out:AB DC 4E C9  AA 72 33 97  DF 2D AD 76  33 DE 3B 0D
  After xor: AB D0 9E 19  D9 2E 60 89  C4 C1 5D 3F  F1 9A 3B 0D   [hdr]
  After AES: 62 86 F6 2F  23 42 63 B0  1C FD 8C 37  40 74 81 EB
  After xor: 70 5C 5A 79  13 AD C6 89  73 8A 80 D6  E6 1F A0 1C   [msg]
  After AES: 88 95 84 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7
  After xor: 3A 85 98 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7   [msg]
  After AES: C1 85 92 D9  84 CD 67 80  63 D1 D9 6D  C1 DF A1 11
  CBC-MAC  : C1 85 92 D9  84 CD 67 80
  CTR Start: 01 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 01
  CTR[0001]: 06 08 FF 95  A6 94 D5 59  F4 0B B7 9D  EF FA 41 DF
  CTR[0002]: 80 55 3A 75  78 38 04 A9  64 8B 68 DD  7F DC DD 7A
  CTR[MAC ]: 5B EA DB 4E  DF 07 B9 2F
  Total packet length = 39. [Authenticated and Encrypted Output]
             D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  14 D2 53 C3
             96 7B 70 60  9B 7C BB 7C  49 91 60 28  32 45 26 9A
             6F 49 97 5B  CA DE AF



Whiting, et al.              Informational                     [Page 18]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #17 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 F8 B6 78  09 4E 3B 3C  96 96 76 6C  FA
  Total packet length = 32. [Input with 12 cleartext header octets]
             77 B6 0F 01  1C 03 E1 52  58 99 BC AE  E8 8B 6A 46
             C7 8D 63 E5  2E B8 C5 46  EF B5 DE 6F  75 E9 CC 0D
  CBC IV in: 59 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 14
  CBC IV out:F4 68 FE 5D  B1 53 0B 7A  5A A5 FB 27  40 CF 6E 33
  After xor: F4 64 89 EB  BE 52 17 79  BB F7 A3 BE  FC 61 6E 33   [hdr]
  After AES: 23 29 0E 0B  33 45 9A 83  32 2D E4 06  86 67 10 04
  After xor: CB A2 64 4D  F4 C8 F9 66  1C 95 21 40  69 D2 CE 6B   [msg]
  After AES: 8F BE D4 0F  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11
  After xor: FA 57 18 02  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11   [msg]
  After AES: 6A DB 15 B6  71 81 B2 E2  2B E3 4A F2  B2 83 E2 29
  CBC-MAC  : 6A DB 15 B6  71 81 B2 E2
  CTR Start: 01 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 01
  CTR[0001]: BD CE 95 5C  CF D3 81 0A  91 EA 77 A6  A4 5B C0 4C
  CTR[0002]: 43 2E F2 32  AE 36 D8 92  22 BF 63 37  E6 B2 6C E8
  CTR[MAC ]: 1C F7 19 C1  35 7F CC DE
  Total packet length = 40. [Authenticated and Encrypted Output]
             77 B6 0F 01  1C 03 E1 52  58 99 BC AE  55 45 FF 1A
             08 5E E2 EF  BF 52 B2 E0  4B EE 1E 23  36 C7 3E 3F
             76 2C 0C 77  44 FE 7E 3C

  =============== Packet Vector #18 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 D5 60 91  2D 3F 70 3C  96 96 76 6C  FA
  Total packet length = 33. [Input with 12 cleartext header octets]
             CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  64 35 AC BA
             FB 11 A8 2E  2F 07 1D 7C  A4 A5 EB D9  3A 80 3B A8
             7F
  CBC IV in: 59 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 15
  CBC IV out:BA 37 74 54  D7 20 A4 59  25 97 F6 A3  D1 D6 BA 67
  After xor: BA 3B B9 C4  93 F2 13 46  FE 16 D6 49  B1 16 BA 67   [hdr]
  After AES: 81 6A 20 20  38 D0 A6 30  CB E0 B7 3C  39 BB CE 05
  After xor: E5 5F 8C 9A  C3 C1 0E 1E  E4 E7 AA 40  9D 1E 25 DC   [msg]
  After AES: 6D 5C 15 FD  85 2D 5C 3C  E3 03 3D 85  DA 57 BD AC
  After xor: 57 DC 2E 55  FA 2D 5C 3C  E3 03 3D 85  DA 57 BD AC   [msg]
  After AES: B0 4A 1C 23  BC 39 B6 51  76 FD 5B FF  9B C1 28 5E
  CBC-MAC  : B0 4A 1C 23  BC 39 B6 51
  CTR Start: 01 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 01
  CTR[0001]: 64 A2 C5 56  50 CE E0 4C  7A 93 D8 EE  F5 43 E8 8E
  CTR[0002]: 18 E7 65 AC  B7 B0 E9 AF  09 2B D0 20  6C A1 C8 3C
  CTR[MAC ]: F7 43 82 79  5C 49 F3 00
  Total packet length = 41. [Authenticated and Encrypted Output]
             CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  00 97 69 EC
             AB DF 48 62  55 94 C5 92  51 E6 03 57  22 67 5E 04
             C8 47 09 9E  5A E0 70 45  51



Whiting, et al.              Informational                     [Page 19]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #19 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 42 FF F8  F1 95 1C 3C  96 96 76 6C  FA
  Total packet length = 31. [Input with 8 cleartext header octets]
             D8 5B C7 E6  9F 94 4F B8  8A 19 B9 50  BC F7 1A 01
             8E 5E 67 01  C9 17 87 65  98 09 D6 7D  BE DD 18
  CBC IV in: 61 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 17
  CBC IV out:44 F7 CC 9C  2B DD 2F 45  F6 38 25 6B  73 6E 1D 7A
  After xor: 44 FF 14 C7  EC 3B B0 D1  B9 80 25 6B  73 6E 1D 7A   [hdr]
  After AES: 57 C3 73 F8  00 AA 5F CC  7B CF 1D 1B  DD BB 4C 52
  After xor: DD DA CA A8  BC 5D 45 CD  F5 91 7A 1A  14 AC CB 37   [msg]
  After AES: 42 4E 93 72  72 C8 79 B6  11 C7 A5 9F  47 8D 9F D8
  After xor: DA 47 45 0F  CC 15 61 B6  11 C7 A5 9F  47 8D 9F D8   [msg]
  After AES: 9A CB 03 F8  B9 DB C8 D2  D2 D7 A4 B4  95 25 08 67
  CBC-MAC  : 9A CB 03 F8  B9 DB C8 D2  D2 D7
  CTR Start: 01 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 01
  CTR[0001]: 36 38 34 FA  28 83 3D B7  55 66 0D 98  65 0D 68 46
  CTR[0002]: 35 E9 63 54  87 16 72 56  3F 0C 08 AF  78 44 31 A9
  CTR[MAC ]: F9 B7 FA 46  7B 9B 40 45  14 6D
  Total packet length = 41. [Authenticated and Encrypted Output]
             D8 5B C7 E6  9F 94 4F B8  BC 21 8D AA  94 74 27 B6
             DB 38 6A 99  AC 1A EF 23  AD E0 B5 29  39 CB 6A 63
             7C F9 BE C2  40 88 97 C6  BA

  =============== Packet Vector #20 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 92 0F 40  E5 6C DC 3C  96 96 76 6C  FA
  Total packet length = 32. [Input with 8 cleartext header octets]
             74 A0 EB C9  06 9F 5B 37  17 61 43 3C  37 C5 A3 5F
             C1 F3 9F 40  63 02 EB 90  7C 61 63 BE  38 C9 84 37
  CBC IV in: 61 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 18
  CBC IV out:60 CB 21 CE  40 06 50 AE  2A D2 BE 52  9F 5F 0F C2
  After xor: 60 C3 55 6E  AB CF 56 31  71 E5 BE 52  9F 5F 0F C2   [hdr]
  After AES: 03 20 64 14  35 32 5D 95  C8 A2 50 40  93 28 DA 9B
  After xor: 14 41 27 28  02 F7 FE CA  09 51 CF 00  F0 2A 31 0B   [msg]
  After AES: B9 E8 87 95  ED F7 F0 08  15 15 F0 14  E2 FE 0E 48
  After xor: C5 89 E4 2B  D5 3E 74 3F  15 15 F0 14  E2 FE 0E 48   [msg]
  After AES: 8F AD 0C 23  E9 63 7E 87  FA 21 45 51  1B 47 DE F1
  CBC-MAC  : 8F AD 0C 23  E9 63 7E 87  FA 21
  CTR Start: 01 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 01
  CTR[0001]: 4F 71 A5 C1  12 42 E3 7D  29 F0 FE E4  1B E1 02 5F
  CTR[0002]: 34 2B D3 F1  7C B7 7B C1  79 0B 05 05  61 59 27 2C
  CTR[MAC ]: 7F 09 7B EF  C6 AA C1 D3  73 65
  Total packet length = 42. [Authenticated and Encrypted Output]
             74 A0 EB C9  06 9F 5B 37  58 10 E6 FD  25 87 40 22
             E8 03 61 A4  78 E3 E9 CF  48 4A B0 4F  44 7E FF F6
             F0 A4 77 CC  2F C9 BF 54  89 44




Whiting, et al.              Informational                     [Page 20]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #21 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 27 CA 0C  71 20 BC 3C  96 96 76 6C  FA
  Total packet length = 33. [Input with 8 cleartext header octets]
             44 A3 AA 3A  AE 64 75 CA  A4 34 A8 E5  85 00 C6 E4
             15 30 53 88  62 D6 86 EA  9E 81 30 1B  5A E4 22 6B
             FA
  CBC IV in: 61 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 19
  CBC IV out:43 07 C0 73  A8 9E E1 D5  05 27 B2 9A  62 48 D6 D2
  After xor: 43 0F 84 D0  02 A4 4F B1  70 ED B2 9A  62 48 D6 D2   [hdr]
  After AES: B6 0B C6 F5  84 01 75 BC  01 27 70 F1  11 8D 75 10
  After xor: 12 3F 6E 10  01 01 B3 58  14 17 23 79  73 5B F3 FA   [msg]
  After AES: 7D 5E 64 92  CE 2C B9 EA  7E 4C 4A 09  09 89 C8 FB
  After xor: E3 DF 54 89  94 C8 9B 81  84 4C 4A 09  09 89 C8 FB   [msg]
  After AES: 68 5F 8D 79  D2 2B 9B 74  21 DF 4C 3E  87 BA 0A AF
  CBC-MAC  : 68 5F 8D 79  D2 2B 9B 74  21 DF
  CTR Start: 01 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 01
  CTR[0001]: 56 8A 45 9E  40 09 48 67  EB 85 E0 9E  6A 2E 64 76
  CTR[0002]: A6 00 AA 92  92 03 54 9A  AE EF 2C CC  59 13 7A 57
  CTR[MAC ]: 25 1E DC DD  3F 11 10 F3  98 11
  Total packet length = 43. [Authenticated and Encrypted Output]
             44 A3 AA 3A  AE 64 75 CA  F2 BE ED 7B  C5 09 8E 83
             FE B5 B3 16  08 F8 E2 9C  38 81 9A 89  C8 E7 76 F1
             54 4D 41 51  A4 ED 3A 8B  87 B9 CE

  =============== Packet Vector #22 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 5B 8C CB  CD 9A F8 3C  96 96 76 6C  FA
  Total packet length = 31. [Input with 12 cleartext header octets]
             EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  B9 6B 49 E2
             1D 62 17 41  63 28 75 DB  7F 6C 92 43  D2 D7 C2
  CBC IV in: 61 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 13
  CBC IV out:91 14 AD 06  B6 CC 02 35  76 9A B6 14  C4 82 95 03
  After xor: 91 18 41 40  0D AF B2 10  56 59 8A 5D  39 F2 95 03   [hdr]
  After AES: 29 BD 7C 27  83 E3 E8 D3  C3 5C 01 F4  4C EC BB FA
  After xor: 90 D6 35 C5  9E 81 FF 92  A0 74 74 2F  33 80 29 B9   [msg]
  After AES: 4E DA F4 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C
  After xor: 9C 0D 36 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C   [msg]
  After AES: 21 9E F8 90  EA 64 C2 11  A5 37 88 83  E1 BA 22 0D
  CBC-MAC  : 21 9E F8 90  EA 64 C2 11  A5 37
  CTR Start: 01 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 01
  CTR[0001]: 88 BC 19 42  80 C1 FA 3E  BE FC EF FB  4D C6 2D 54
  CTR[0002]: 3E 59 7D A5  AE 21 CC A4  00 9E 4C 0C  91 F6 22 49
  CTR[MAC ]: 5C BC 30 98  66 02 A9 F4  64 A0
  Total packet length = 41. [Authenticated and Encrypted Output]
             EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  31 D7 50 A0
             9D A3 ED 7F  DD D4 9A 20  32 AA BF 17  EC 8E BF 7D
             22 C8 08 8C  66 6B E5 C1  97



Whiting, et al.              Informational                     [Page 21]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  =============== Packet Vector #23 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 3E BE 94  04 4B 9A 3C  96 96 76 6C  FA
  Total packet length = 32. [Input with 12 cleartext header octets]
             47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E2 FC FB B8
             80 44 2C 73  1B F9 51 67  C8 FF D7 89  5E 33 70 76
  CBC IV in: 61 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 14
  CBC IV out:0F 70 3F 5A  54 2C 44 6E  8B 74 A3 73  9B 48 B9 61
  After xor: 0F 7C 78 FC  0E EB CF 53  D2 36 84 9B  C5 39 B9 61   [hdr]
  After AES: 40 5B ED 29  D0 98 AE 91  DB 68 78 F3  68 B8 73 85
  After xor: A2 A7 16 91  50 DC 82 E2  C0 91 29 94  A0 47 A4 0C   [msg]
  After AES: 3D 03 29 3C  FD 81 1B 37  01 51 FB C7  85 6B 7A 74
  After xor: 63 30 59 4A  FD 81 1B 37  01 51 FB C7  85 6B 7A 74   [msg]
  After AES: 66 4F 27 16  3E 36 0F 72  62 0D 4E 67  7C E0 61 DE
  CBC-MAC  : 66 4F 27 16  3E 36 0F 72  62 0D
  CTR Start: 01 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 01
  CTR[0001]: 0A 7E 0A 63  53 C8 CF 9E  BC 3B 6E 63  15 9A D0 97
  CTR[0002]: EA 20 32 DA  27 82 6E 13  9E 1E 72 5C  5B 0D 3E BF
  CTR[MAC ]: B9 31 27 CA  F0 F1 A1 20  FA 70
  Total packet length = 42. [Authenticated and Encrypted Output]
             47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E8 82 F1 DB
             D3 8C E3 ED  A7 C2 3F 04  DD 65 07 1E  B4 13 42 AC
             DF 7E 00 DC  CE C7 AE 52  98 7D

  =============== Packet Vector #24 ==================
  AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
  Nonce =    00 8D 49 3B  30 AE 8B 3C  96 96 76 6C  FA
  Total packet length = 33. [Input with 12 cleartext header octets]
             6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  AB F2 1C 0B
             02 FE B8 8F  85 6D F4 A3  73 81 BC E3  CC 12 85 17
             D4
  CBC IV in: 61 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 15
  CBC IV out:67 AC E4 E8  06 77 7A D3  27 1D 0B 93  4C 67 98 15
  After xor: 67 A0 8A DF  A0 98 2E BE  B2 40 3F 38  2C 3E 98 15   [hdr]
  After AES: 35 58 F8 7E  CA C2 B4 39  B6 7E 75 BB  F1 5E 69 08
  After xor: 9E AA E4 75  C8 3C 0C B6  33 13 81 18  82 DF D5 EB   [msg]
  After AES: 54 E4 7B 62  22 F0 BB 87  17 D0 71 6A  EB AF 19 9E
  After xor: 98 F6 FE 75  F6 F0 BB 87  17 D0 71 6A  EB AF 19 9E   [msg]
  After AES: 23 E3 30 50  BC 57 DC 2C  3D 3E 7C 94  77 D1 49 71
  CBC-MAC  : 23 E3 30 50  BC 57 DC 2C  3D 3E
  CTR Start: 01 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 01
  CTR[0001]: 58 DB 19 B3  88 9A A3 8B  3C A4 0B 16  FF 42 2C 73
  CTR[0002]: C3 2F 24 3D  65 DC 7E 9F  4B 02 16 AB  7F B9 6B 4D
  CTR[MAC ]: 4E 2D AE D2  53 F6 B1 8A  1D 67
  Total packet length = 43. [Authenticated and Encrypted Output]
             6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  F3 29 05 B8
             8A 64 1B 04  B9 C9 FF B5  8C C3 90 90  0F 3D A1 2A
             B1 6D CE 9E  82 EF A1 6D  A6 20 59



Whiting, et al.              Informational                     [Page 22]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


9.  Intellectual Property Statements

  The authors hereby explicitly release any intellectual property
  rights to CCM to the public domain.  Further, the authors are not
  aware of any patent or patent application anywhere in the world that
  covers CCM mode.  It is our belief that CCM is a simple combination
  of well-established techniques, and we believe that CCM is obvious to
  a person of ordinary skill in the arts.

10.  Security Considerations

  We claim that this block cipher mode is secure against attackers
  limited to 2^128 steps of operation if the key K is 256 bits or
  larger.  There are fairly generic precomputation attacks against all
  block cipher modes that allow a meet-in-the-middle attack on the key
  K.  If these attacks can be made, then the theoretical strength of
  this, and any other, block cipher mode is limited to 2^(n/2) where n
  is the number of bits in the key.  The strength of the authentication
  is of course limited by M.

  Users of smaller key sizes (such as 128-bits) should take precautions
  to make the precomputation attacks more difficult.  Repeated use of
  the same nonce value (with different keys of course) ought to be
  avoided.  One solution is to include a random value within the nonce.
  Of course, a packet counter is also needed within the nonce.  Since
  the nonce is of limited size, a random value in the nonce provides a
  limited amount of additional security.

11.  References

  This section provides normative and informative references.

11.1.  Normative References

  [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2.  Informative References

  [AES]       NIST, FIPS PUB 197, "Advanced Encryption Standard (AES),"
              November 2001.

  [CCM]       Whiting, D., Housley, R. and N. Ferguson, "AES Encryption
              & Authentication Using CTR Mode & CBC-MAC," IEEE P802.11
              doc 02/001r2, May 2002.

  [ESP]       Kent, S. and R. Atkinson, "IP Encapsulating Security
              Payload (ESP)", RFC 2406, November 1998.



Whiting, et al.              Informational                     [Page 23]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


  [MAC]       NIST, FIPS PUB 113, "Computer Data Authentication," May
              1985.

  [MODES]     Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: Methods and Techniques," NIST Special
              Publication 800-38A, December 2001.

  [OCB]       Rogaway, P., Bellare, M., Black, J. and T, Krovetz, "OCB:
              A block-Cipher Mod of Operation for Efficient
              Authenticated Encryption," 8th ACM Conference on Computer
              and Communications Security, pp 196-295, ACM Press, 2001.

  [PROOF]     Jonsson, J., "On the Security of CTR + CBC-MAC," SAC 2002
              -- Ninth Annual Workshop on Selected Areas of
              Cryptography, Workshop Record version, 2002.  Final
              version to appear in the LNCS Proceedings.

12.  Acknowledgement

  Russ Housley thanks the management at RSA Laboratories, especially
  Burt Kaliski, who supported the development of this cryptographic
  mode and this specification.  The vast majority of this work was done
  while Russ was employed at RSA Laboratories.




























Whiting, et al.              Informational                     [Page 24]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


13.  Authors' Addresses

  Doug Whiting
  Hifn
  5973 Avenida Encinas, #110
  Carlsbad, CA 92009
  USA

  EMail: [email protected]


  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Niels Ferguson
  MacFergus BV
  Bart de Ligtstraat 64
  1097 JE Amsterdam
  Netherlands

  EMail: [email protected]
























Whiting, et al.              Informational                     [Page 25]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003


14.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assignees.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Whiting, et al.              Informational                     [Page 26]