Network Working Group                                          C. Groves
Request for Comments: 3525                                   M. Pantaleo
Obsoletes: 3015                                              LM Ericsson
Category: Standards Track                                    T. Anderson
                                                             Consultant
                                                              T. Taylor
                                                        Nortel Networks
                                                                Editors
                                                              June 2003


                 Gateway Control Protocol Version 1

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document defines the protocol used between elements of a
  physically decomposed multimedia gateway, i.e., a Media Gateway and a
  Media Gateway Controller.  The protocol presented in this document
  meets the requirements for a media gateway control protocol as
  presented in RFC 2805.

  This document replaces RFC 3015.  It is the result of continued
  cooperation between the IETF Megaco Working Group and ITU-T Study
  Group 16.  It incorporates the original text of RFC 3015, modified by
  corrections and clarifications discussed on the Megaco
  E-mail list and incorporated into the Study Group 16 Implementor's
  Guide for Recommendation H.248.  The present version of this document
  underwent  ITU-T Last Call as Recommendation H.248 Amendment 1.
  Because of ITU-T renumbering, it was published by the ITU-T as
  Recommendation H.248.1 (03/2002), Gateway Control Protocol Version 1.

  Users of this specification are advised to consult the H.248 Sub-
  series Implementors' Guide at http://www.itu.int/itudoc/itu-
  t/com16/implgd for additional corrections and clarifications.





Groves, et al.              Standards Track                     [Page 1]

RFC 3525                Gateway Control Protocol               June 2003


Conventions used in this document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

Table of Contents

  1 Scope.........................................................5
    1.1 Changes From RFC 3015.....................................5
    1.2 Differences From ITU-T Recommendation H.248.1 (03/2002)...5
  2 References....................................................6
    2.1 Normative references......................................6
    2.2 Informative references....................................9
  3 Definitions..................................................10
  4 Abbreviations................................................11
  5 Conventions..................................................12
  6 Connection model.............................................13
    6.1 Contexts.................................................16
    6.2 Terminations.............................................17
      6.2.1 Termination dynamics.................................21
      6.2.2 TerminationIDs.......................................21
      6.2.3 Packages.............................................22
      6.2.4 Termination properties and descriptors...............23
      6.2.5 Root Termination.....................................25
  7 Commands.....................................................26
    7.1 Descriptors..............................................27
      7.1.1 Specifying parameters................................27
      7.1.2 Modem descriptor.....................................28
      7.1.3 Multiplex descriptor.................................28
      7.1.4 Media descriptor.....................................29
      7.1.5 TerminationState descriptor..........................29
      7.1.6 Stream descriptor....................................30
      7.1.7 LocalControl descriptor..............................31
      7.1.8 Local and Remote descriptors.........................32
      7.1.9 Events descriptor....................................35
      7.1.10 EventBuffer descriptor..............................38
      7.1.11 Signals descriptor..................................38
      7.1.12 Audit descriptor....................................40
      7.1.13 ServiceChange descriptor............................41
      7.1.14 DigitMap descriptor.................................41
      7.1.15 Statistics descriptor...............................46
      7.1.16 Packages descriptor.................................47
      7.1.17 ObservedEvents descriptor...........................47
      7.1.18 Topology descriptor.................................47
      7.1.19 Error Descriptor....................................50
    7.2 Command Application Programming Interface................50
      7.2.1 Add..................................................51



Groves, et al.              Standards Track                     [Page 2]

RFC 3525                Gateway Control Protocol               June 2003


      7.2.2 Modify...............................................52
      7.2.3 Subtract.............................................53
      7.2.4 Move.................................................55
      7.2.5 AuditValue...........................................56
      7.2.6 AuditCapabilities....................................59
      7.2.7 Notify...............................................60
      7.2.8 ServiceChange........................................61
      7.2.9 Manipulating and Auditing Context Attributes.........65
      7.2.10 Generic Command Syntax..............................66
    7.3 Command Error Codes......................................66
  8 Transactions.................................................66
    8.1 Common parameters........................................68
      8.1.1 Transaction Identifiers..............................68
      8.1.2 Context Identifiers..................................68
    8.2 Transaction Application Programming Interface............69
      8.2.1 TransactionRequest...................................69
      8.2.2 TransactionReply.....................................69
      8.2.3 TransactionPending...................................71
    8.3 Messages.................................................72
  9 Transport....................................................72
    9.1 Ordering of Commands.....................................73
    9.2 Protection against Restart Avalanche.....................74
  10 Security Considerations.....................................75
    10.1 Protection of Protocol Connections......................75
    10.2 Interim AH scheme.......................................76
    10.3 Protection of Media Connections.........................77
  11 MG-MGC Control Interface....................................78
    11.1 Multiple Virtual MGs....................................78
    11.2 Cold start..............................................79
    11.3 Negotiation of protocol version.........................79
    11.4 Failure of a MG.........................................80
    11.5 Failure of an MGC.......................................81
  12 Package definition..........................................82
    12.1 Guidelines for defining packages........................82
      12.1.1 Package.............................................83
      12.1.2 Properties..........................................84
      12.1.3 Events..............................................85
      12.1.4 Signals.............................................85
      12.1.5 Statistics..........................................86
      12.1.6 Procedures..........................................86
    12.2 Guidelines to defining Parameters to Events and Signals.86
    12.3 Lists...................................................87
    12.4 Identifiers.............................................87
    12.5 Package registration....................................88
  13 IANA Considerations.........................................88
    13.1 Packages................................................88
    13.2 Error codes.............................................89
    13.3 ServiceChange reasons...................................89



Groves, et al.              Standards Track                     [Page 3]

RFC 3525                Gateway Control Protocol               June 2003


  ANNEX A  Binary encoding of the protocol.......................90
    A.1 Coding of wildcards......................................90
    A.2 ASN.1 syntax specification...............................92
    A.3 Digit maps and path names...............................111
  ANNEX B Text encoding of the protocol.........................113
    B.1 Coding of wildcards.....................................113
    B.2 ABNF specification......................................113
    B.3 Hexadecimal octet coding................................127
    B.4 Hexadecimal octet sequence..............................127
  ANNEX C Tags for media stream properties......................128
    C.1 General media attributes................................128
    C.2 Mux properties..........................................130
    C.3 General bearer properties...............................130
    C.4 General ATM properties..................................130
    C.5 Frame Relay.............................................134
    C.6 IP......................................................134
    C.7 ATM AAL2................................................134
    C.8 ATM AAL1................................................136
    C.9 Bearer capabilities.....................................137
    C.10 AAL5 properties........................................147
    C.11 SDP equivalents........................................148
    C.12 H.245..................................................149
  ANNEX D Transport over IP.....................................150
    D.1 Transport over IP/UDP using Application Level Framing ..150
      D.1.1 Providing At-Most-Once functionality................150
      D.1.2 Transaction identifiers and three-way handshake.....151
      D.1.3 Computing retransmission timers.....................152
      D.1.4 Provisional responses...............................153
      D.1.5 Repeating Requests, Responses and Acknowledgements..153
    D.2 Using TCP...............................................155
      D.2.1 Providing the At-Most-Once functionality............155
      D.2.2 Transaction identifiers and three-way handshake.....155
      D.2.3 Computing retransmission timers.....................156
      D.2.4 Provisional responses...............................156
      D.2.5 Ordering of commands................................156
  ANNEX E  Basic packages.......................................157
    E.1 Generic.................................................157
    E.2 Base Root Package.......................................159
    E.3 Tone Generator Package..................................161
    E.4 Tone Detection Package..................................163
    E.5 Basic DTMF Generator Package............................166
    E.6 DTMF detection Package..................................167
    E.7 Call Progress Tones Generator Package...................169
    E.8 Call Progress Tones Detection Package...................171
    E.9 Analog Line Supervision Package.........................172
    E.10 Basic Continuity Package...............................175
    E.11 Network Package........................................178
    E.12 RTP Package............................................180



Groves, et al.              Standards Track                     [Page 4]

RFC 3525                Gateway Control Protocol               June 2003


    E.13 TDM Circuit Package....................................182
  APPENDIX I EXAMPLE CALL FLOWS (INFORMATIVE)...................184
    A.1 Residential Gateway to Residential Gateway Call.........184
      A.1.1 Programming Residential GW Analog Line Terminations
            for Idle Behavior...................................184
      A.1.2 Collecting Originator Digits and Initiating
            Termination.........................................186
  APPENDIX II  Changes From RFC 3015............................195
  Intellectual Property Rights..................................210
  Acknowledgments...............................................211
  Authors' Addresses............................................212
  Full Copyright Statement......................................213

1  Scope

  The present document, which is identical to the published version of
  ITU-T Recommendation H.248.1 (03/2002) except as noted below, defines
  the protocols used between elements of a physically decomposed
  multimedia gateway.  There are no functional differences from a
  system view between a decomposed gateway, with distributed sub-
  components potentially on more than one physical device, and a
  monolithic gateway such as described in ITU-T Recommendation H.246.
  This document does not define how gateways, multipoint control units
  or interactive voice response units (IVRs) work.  Instead it creates
  a general framework that is suitable for these applications.

  Packet network interfaces may include IP, ATM or possibly others.
  The interfaces will support a variety of Switched Circuit Network
  (SCN) signalling systems, including tone signalling, ISDN, ISUP, QSIG
  and GSM.  National variants of these signalling systems will be
  supported where applicable.

1.1 Changes From RFC 3015

  The differences between this document and RFC 3015 are documented in
  Appendix II.

1.2 Differences From ITU-T Recommendation H.248.1 (03/2002)

  This document differs from the corresponding ITU-T publication in the
  following respects:

  -  Added IETF front matter in place of the corresponding ITU-T
     material.

  -  The ITU-T summary is too H.323-specific and has been omitted.





Groves, et al.              Standards Track                     [Page 5]

RFC 3525                Gateway Control Protocol               June 2003


  -  The IETF conventions have been stated as governing this document.
     As discussed in section 5 below, this gives slightly greater
     strength to "should" requirements.

  -  The Scope section (just above) has been edited slightly to suit
     its IETF context.

  -  Added normative references to RFCs 2026 and 2119.

  -  Figures 4, 5, and 6 show the centre of the context for greater
     clarity.  Also added Figure 6a showing an important additional
     example.

  -  Added a paragraph in section 7.1.18 which was approved in the
     Implementor's Guide but lost inadvertently in the ITU-T approved
     version.

  -  This document incorporates corrections to the informative examples
     in Appendix I which also appear in H.248.1 version 2, but which
     were not picked up in H.248.1 (03/2002).

  -  This document includes a new Appendix II listing all the changes
     from RFC 3015.

  -  This document includes an Acknowledgements section listing the
     authors of RFC 3015 but also many other people who contributed to
     the development of the Megaco/H.248.x protocol.

  -  Moved the Intellectual Property declaration to its usual place in
     an IETF document and added a reference to declarations on the IETF
     web site.

2  References

  The following ITU-T Recommendations and other references contain
  provisions which, through reference in this text, constitute
  provisions of this RFC.  At the time of publication, the editions
  indicated were valid.  All Recommendations and other references are
  subject to revision; all users of this RFC are therefore encouraged
  to investigate the possibility of applying the most recent edition of
  the Recommendations and other references listed below.  A list of the
  currently valid ITU-T Recommendations is regularly published.

2.1   Normative references

  -  ITU-T Recommendation H.225.0 (1999), Call signalling protocols and
     media stream packetization for packet-based multimedia
     communication systems.



Groves, et al.              Standards Track                     [Page 6]

RFC 3525                Gateway Control Protocol               June 2003


  -  ITU-T Recommendation H.235 (1998), Security and encryption for
     H-Series (H.323 and other H.245-based) multimedia terminals.

  -  ITU-T Recommendation H.245 (1998), Control protocol for multimedia
     communication.

  -  ITU-T Recommendation H.246 (1998), Interworking of H-series
     multimedia terminals with H-series multimedia terminals and
     voice/voiceband terminals on GSTN and ISDN.

  -  ITU-T Recommendation H.248.8 (2002), H.248 Error Codes and Service
     Change Reasons.

  -  ITU-T Recommendation H.323 (1999), Packet-based multimedia
     communication systems.

  -  ITU-T Recommendation I.363.1 (1996), B-ISDN ATM adaptation layer
     (AAL) specification: Type 1 AAL.

  -  ITU-T Recommendation I.363.2 (1997), B-ISDN ATM adaptation layer
     (AAL) specification: Type 2 AAL.

  -  ITU-T Recommendation I.363.5 (1996), B-ISDN ATM adaptation layer
     (AAL) specification: Type 5 AAL.

  -  ITU-T Recommendation I.366.1 (1998), Segmentation and Reassembly
     Service Specific Convergence Sublayer for the AAL type 2.

  -  ITU-T Recommendation I.366.2 (1999), AAL type 2 service specific
     convergence sublayer for trunking.

  -  ITU-T Recommendation I.371 (2000), Traffic control and congestion
     control in B-ISDN.

  -  ITU-T Recommendation Q.763 (1999), Signalling System No. 7 - ISDN
     user part formats and codes.

  -  ITU-T Recommendation Q.765.5 (2001), Application transport
     mechanism - Bearer independent call control (BICC).

  -  ITU-T Recommendation Q.931 (1998), ISDN user-network interface
     layer 3 specification for basic call control.

  -  ITU-T Recommendation Q.2630.1 (1999), AAL type 2 signalling
     protocol (Capability Set 1).






Groves, et al.              Standards Track                     [Page 7]

RFC 3525                Gateway Control Protocol               June 2003


  -  ITU-T Recommendation Q.2931 (1995), Digital Subscriber Signalling
     System No. 2 (DSS2) - User-Network Interface (UNI) - Layer 3
     specification for basic call/connection control.

  -  ITU-T Recommendation Q.2941.1 (1997), Digital Subscriber
     Signalling System No. 2 - Generic identifier transport.

  -  ITU-T Recommendation Q.2961.1 (1995), Additional signalling
     capabilities to support traffic parameters for the tagging option
     and the sustainable call rate parameter set.

  -  ITU-T Recommendation Q.2961.2 (1997), Additional traffic
     parameters: Support of ATM transfer capability in the broadband
     bearer capability information element.

  -  ITU-T Recommendation Q.2965.1 (1999), Digital subscriber
     signalling system No. 2 - Support of Quality of Service classes.

  -  ITU-T Recommendation Q.2965.2 (1999), Digital subscriber
     signalling system No. 2 - Signalling of individual Quality of
     Service parameters.

  -  ITU-T Recommendation V.76 (1996), Generic multiplexer using V.42
     LAPM-based procedures.

  -  ITU-T Recommendation X.213 (1995), Information technology - Open
     Systems Interconnection - Network service definition plus
     Amendment 1 (1997), Addition of the Internet protocol address
     format identifier.

  -  ITU-T Recommendation X.680 (1997), Information technology -
     Abstract Syntax Notation One (ASN.1): Specification of basic
     notation.

  -  ITU-T Recommendation X.690 (1997), Information Technology - ASN.1
     Encoding Rules: Specification of Basic Encoding Rules (BER),
     Canonical Encoding Rules (CER) and Distinguished Encoding Rules
     (DER).

  -  ATM Forum (1996), ATM User-Network Interface (UNI) Signalling
     Specification - Version 4.0.

  [RFC 1006] Rose, M. and D. Cass, "ISO Transport Service on top of the
             TCP, Version 3", STD 35, RFC 1006, May 1987.

  [RFC 2026] Brander, S., "The Internet Standards Process -- Revision
             3", BCP 9, RFC 2026, October 1996.




Groves, et al.              Standards Track                     [Page 8]

RFC 3525                Gateway Control Protocol               June 2003


  [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC 2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", RFC 2234, November 1997.

  [RFC 2327] Handley, M. and V. Jacobson, "SDP: Session Description
             Protocol", RFC 2327, April 1998.

  [RFC 2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
             2402, November 1998.

  [RFC 2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

2.2   Informative references

  -  ITU-T Recommendation E.180/Q.35 (1998), Technical characteristics
     of tones for the telephone service.

  -  CCITT Recommendation G.711 (1988), Pulse Code Modulation (PCM) of
     voice frequencies.

  -  ITU-T Recommendation H.221 (1999), Frame structure for a 64 to
     1920 kbit/s channel in audiovisual teleservices.

  -  ITU  T Recommendation H.223 (1996), Multiplexing protocol for low
     bit rate multimedia communication.

  -  ITU-T Recommendation H.226 (1998), Channel aggregation protocol
     for multilink operation on circuit-switched networks

  -  ITU-T Recommendation Q.724 (1998), Signalling procedures.

  -  ITU-T Recommendation Q.764 (1999), Signalling system No. 7 - ISDN
     user part signalling procedures.

  -  ITU-T Recommendation Q.1902.4 (2001), Bearer independent call
     control protocol - Basic call procedures.

  [RFC 768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             August 1980.

  [RFC 791]  Postel, J., "Internet Protocol", STD 5, RFC 791, September
             1981.

  [RFC 793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.



Groves, et al.              Standards Track                     [Page 9]

RFC 3525                Gateway Control Protocol               June 2003


  [RFC 1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)", STD
             51, RFC 1661, July 1994.

  [RFC 1889] Schulzrinne, H., Casner, S., Frederick, R. and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", RFC 1889, January 1996.

  [RFC 1890] Schulzrinne, H. and G. Fokus, "RTP Profile for Audio and
             Video Conferences with Minimal Control",  RFC 1890,
             January 1996.

  [RFC 2401] Kent, S. and R. Atkinson, "Security Architecture for the
             Internet Protocol", RFC 2401, November 1998.

  [RFC 2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC 2543] Handley, M., Schulzrinne, H., Schooler, E. and J.
             Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
             March 1999.

  [RFC 2805] Greene, N., Ramalho, M. and B. Rosen, "Media Gateway
             Control Protocol Architecture and Requirements", RFC 2805,
             April 2000.

3  Definitions

  This document defines the following terms:

  Access gateway:
  A type of gateway that provides a User-Network Interface (UNI) such
  as ISDN.

  Descriptor:
  A syntactic element of the protocol that groups related properties.
  For instance, the properties of a media flow on the MG can be set by
  the MGC by including the appropriate descriptor in a command.

  Media Gateway (MG):
  The media gateway converts media provided in one type of network to
  the format required in another type of network.  For example, a MG
  could terminate bearer channels from a switched circuit network
  (e.g., DS0s) and media streams from a packet network (e.g., RTP
  streams in an IP network).  This gateway may be capable of processing
  audio, video and T.120 alone or in any combination, and will be
  capable of full duplex media translations.  The MG may also play
  audio/video messages and perform other IVR functions, or may perform
  media conferencing.



Groves, et al.              Standards Track                    [Page 10]

RFC 3525                Gateway Control Protocol               June 2003


  Media Gateway Controller (MGC):
  Controls the parts of the call state that pertain to connection
  control for media channels in a MG.

  Multipoint Control Unit (MCU):
  An entity that controls the setup and coordination of a multi-user
  conference that typically includes processing of audio, video and
  data.

  Residential gateway:
  A gateway that interworks an analogue line to a packet network.  A
  residential gateway typically contains one or two analogue lines and
  is located at the customer premises.

  SCN FAS signalling gateway:
  This function contains the SCN Signalling Interface that terminates
  SS7, ISDN or other signalling links where the call control channel
  and bearer channels are collocated in the same physical span.

  SCN NFAS signalling gateway:
  This function contains the SCN Signalling Interface that terminates
  SS7 or other signalling links where the call control channels are
  separated from bearer channels.

  Stream:
  Bidirectional media or control flow received/sent by a media gateway
  as part of a call or conference.

  Trunk:
  A communication channel between two switching systems such as a DS0
  on a T1 or E1 line.

  Trunking gateway:
  A gateway between SCN network and packet network that typically
  terminates a large number of digital circuits.

4  Abbreviations

  This RFC document uses the following abbreviations:

  ALF   Application Layer Framing

  ATM   Asynchronous Transfer Mode

  CAS   Channel Associated Signalling

  DTMF  Dual Tone Multi-Frequency




Groves, et al.              Standards Track                    [Page 11]

RFC 3525                Gateway Control Protocol               June 2003


  FAS   Facility Associated Signalling

  GSM   Global System for Mobile communications

  GW    GateWay

  IANA  Internet Assigned Numbers Authority (superseded by Internet
        Corporation for Assigned Names and Numbers - ICANN)

  IP    Internet Protocol

  ISUP  ISDN User Part

  IVR   Interactive Voice Response

  MG    Media Gateway

  MGC   Media Gateway Controller

  NFAS  Non-Facility Associated Signalling

  PRI   Primary Rate Interface

  PSTN  Public Switched Telephone Network

  QoS   Quality of Service

  RTP   Real-time Transport Protocol

  SCN   Switched Circuit Network

  SG    Signalling Gateway

  SS7   Signalling System No. 7

5  Conventions

  In the H.248.1 Recommendation, "SHALL" refers to a mandatory
  requirement, while "SHOULD" refers to a suggested but optional
  feature or procedure.  The term "MAY" refers to an optional course of
  action without expressing a preference.  Note that these definition
  are overridden in the present document by the RFC 2119 conventions
  stated at the beginning of this document.  RFC 2119 has a more
  precise definition of "should" than is provided by the ITU-T.







Groves, et al.              Standards Track                    [Page 12]

RFC 3525                Gateway Control Protocol               June 2003


6  Connection model

  The connection model for the protocol describes the logical entities,
  or objects, within the Media Gateway that can be controlled by the
  Media Gateway Controller.  The main abstractions used in the
  connection model are Terminations and Contexts.

  A Termination sources and/or sinks one or more streams.  In a
  multimedia conference, a Termination can be multimedia and sources or
  sinks multiple media streams.  The media stream parameters, as well
  as modem, and bearer parameters are encapsulated within the
  Termination.

  A Context is an association between a collection of Terminations.
  There is a special type of Context, the null Context, which contains
  all Terminations that are not associated to any other Termination.
  For instance, in a decomposed access gateway, all idle lines are
  represented by Terminations in the null Context.

  Following is a graphical depiction of these concepts.  The diagram of
  Figure 1 gives several examples and is not meant to be an
  all-inclusive illustration.  The asterisk box in each of the Contexts
  represents the logical association of Terminations implied by the
  Context.



























Groves, et al.              Standards Track                    [Page 13]

RFC 3525                Gateway Control Protocol               June 2003


        +------------------------------------------------------+
        |Media Gateway                                         |
        | +-------------------------------------------------+  |
        | |Context                          +-------------+ |  |
        | |                                 | Termination | |  |
        | |                                 |-------------| |  |
        | |  +-------------+             +->| SCN Bearer  |<---+->
        | |  | Termination |   +-----+   |  |   Channel   | |  |
        | |  |-------------|   |     |---+  +-------------+ |  |
      <-+--->| RTP Stream  |---|  *  |                      |  |
        | |  |             |   |     |---+  +-------------+ |  |
        | |  +-------------+   +-----+   |  | Termination | |  |
        | |                              |  |-------------| |  |
        | |                              +->| SCN Bearer  |<---+->
        | |                                 |   Channel   | |  |
        | |                                 +-------------+ |  |
        | +-------------------------------------------------+  |
        |                                                      |
        |                                                      |
        |                    +------------------------------+  |
        |   (NULL Context)   |Context                       |  |
        |  +-------------+   |              +-------------+ |  |
        |  | Termination |   | +-----+      | Termination | |  |
        |  |-------------|   | |     |      |-------------| |  |
        |  | SCN Bearer  |   | |  *  |------| SCN Bearer  |<---+->
        |  |   Channel   |   | |     |      |   Channel   | |  |
        |  +-------------+   | +-----+      +-------------+ |  |
        |                    +------------------------------+  |
        |                                                      |
        |                                                      |
        | +-------------------------------------------------+  |
        | |Context                                          |  |
        | |  +-------------+                +-------------+ |  |
        | |  | Termination |   +-----+      | Termination | |  |
        | |  |-------------|   |     |      |-------------| |  |
      <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
        | |  |   Channel   |   |     |      |   Channel   | |  |
        | |  +-------------+   +-----+      +-------------+ |  |
        | +-------------------------------------------------+  |
        | ___________________________________________________  |
        +------------------------------------------------------+

           Figure 1: Examples of Megaco/H.248 Connection Model








Groves, et al.              Standards Track                    [Page 14]

RFC 3525                Gateway Control Protocol               June 2003


  The example in Figure 2 shows an example of one way to accomplish a
  call-waiting scenario in a decomposed access gateway, illustrating
  the relocation of a Termination between Contexts.  Terminations T1
  and T2 belong to Context C1 in a two-way audio call.  A second audio
  call is waiting for T1 from Termination T3.  T3 is alone in Context
  C2.  T1 accepts the call from T3, placing T2 on hold.  This action
  results in T1 moving into Context C2, as shown in Figure 3.

        +------------------------------------------------------+
        |Media Gateway                                         |
        | +-------------------------------------------------+  |
        | |Context C1                                       |  |
        | |  +-------------+                +-------------+ |  |
        | |  | Term. T2    |   +-----+      | Term. T1    | |  |
        | |  |-------------|   |     |      |-------------| |  |
      <-+--->| RTP Stream  |---|  *  |------| SCN Bearer  |<---+->
        | |  |             |   |     |      |   Channel   | |  |
        | |  +-------------+   +-----+      +-------------+ |  |
        | +-------------------------------------------------+  |
        |                                                      |
        | +-------------------------------------------------+  |
        | |Context C2                                       |  |
        | |                                 +-------------+ |  |
        | |                    +-----+      | Term. T3    | |  |
        | |                    |     |      |-------------| |  |
        | |                    |  *  |------| SCN Bearer  |<---+->
        | |                    |     |      |   Channel   | |  |
        | |                    +-----+      +-------------+ |  |
        | +-------------------------------------------------+  |
        +------------------------------------------------------+

    Figure 2: Example Call Waiting Scenario / Alerting Applied to T1



















Groves, et al.              Standards Track                    [Page 15]

RFC 3525                Gateway Control Protocol               June 2003


        +------------------------------------------------------+
        |Media Gateway                                         |
        | +-------------------------------------------------+  |
        | |Context C1                                       |  |
        | |  +-------------+                                |  |
        | |  | Term. T2    |   +-----+                      |  |
        | |  |-------------|   |     |                      |  |
      <-+--->| RTP Stream  |---|  *  |                      |  |
        | |  |             |   |     |                      |  |
        | |  +-------------+   +-----+                      |  |
        | +-------------------------------------------------+  |
        |                                                      |
        | +-------------------------------------------------+  |
        | |Context C2                                       |  |
        | |  +-------------+                +-------------+ |  |
        | |  | Term. T1    |   +-----+      | Term. T3    | |  |
        | |  |-------------|   |     |      |-------------| |  |
      <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
        | |  |   Channel   |   |     |      |   Channel   | |  |
        | |  +-------------+   +-----+      +-------------+ |  |
        | +-------------------------------------------------+  |
        +------------------------------------------------------+

         Figure 3. Example Call Waiting Scenario / Answer by T1

6.1   Contexts

  A Context is an association between a number of Terminations.  The
  Context describes the topology (who hears/sees whom) and the media
  mixing and/or switching parameters if more than two Terminations are
  involved in the association.

  There is a special Context called the null Context.  It contains
  Terminations that are not associated to any other Termination.
  Terminations in the null Context can have their parameters examined
  or modified, and may have events detected on them.

  In general, an Add command is used to add Terminations to Contexts.
  If the MGC does not specify an existing Context to which the
  Termination is to be added, the MG creates a new Context.  A
  Termination may be removed from a Context with a Subtract command,
  and a Termination may be moved from one Context to another with a
  Move command.  A Termination SHALL exist in only one Context at a
  time.







Groves, et al.              Standards Track                    [Page 16]

RFC 3525                Gateway Control Protocol               June 2003


  The maximum number of Terminations in a Context is a MG property.
  Media gateways that offer only point-to-point connectivity might
  allow at most two Terminations per Context.  Media gateways that
  support multipoint conferences might allow three or more Terminations
  per Context.

6.1.1 Context attributes and descriptors

  The attributes of Contexts are:

  -  ContextID.

  -  The topology (who hears/sees whom).

     The topology of a Context describes the flow of media between the
     Terminations within a Context.  In contrast, the mode of a
     Termination (send/receive/...) describes the flow of the media at
     the ingress/egress of the media gateway.

  -  The priority is used for a Context in order to provide the MG with
     information about a certain precedence handling for a Context.
     The MGC can also use the priority to control autonomously the
     traffic precedence in the MG in a smooth way in certain
     situations (e.g., restart), when a lot of Contexts must be handled
     simultaneously.  Priority 0 is the lowest priority and a priority
     of 15 is the highest priority.

  -  An indicator for an emergency call is also provided to allow a
     preference handling in the MG.

6.1.2 Creating, deleting and modifying Contexts

  The protocol can be used to (implicitly) create Contexts and modify
  the parameter values of existing Contexts.  The protocol has commands
  to add Terminations to Contexts, subtract them from Contexts, and to
  move Terminations between Contexts.  Contexts are deleted implicitly
  when the last remaining Termination is subtracted or moved out.

6.2   Terminations

  A Termination is a logical entity on a MG that sources and/or sinks
  media and/or control streams.  A Termination is described by a number
  of characterizing Properties, which are grouped in a set of
  Descriptors that are included in commands.  Terminations have unique
  identities (TerminationIDs), assigned by the MG at the time of their
  creation.





Groves, et al.              Standards Track                    [Page 17]

RFC 3525                Gateway Control Protocol               June 2003


  Terminations representing physical entities have a semi-permanent
  existence.  For example, a Termination representing a TDM channel
  might exist for as long as it is provisioned in the gateway.
  Terminations representing ephemeral information flows, such as RTP
  flows, would usually exist only for the duration of their use.

  Ephemeral Terminations are created by means of an Add command.  They
  are destroyed by means of a Subtract command.  In contrast, when a
  physical Termination is Added to or Subtracted from a Context, it is
  taken from or to the null Context, respectively.

  Terminations may have signals applied to them (see 7.1.11).
  Terminations may be programmed to detect Events, the occurrence of
  which can trigger notification messages to the MGC, or action by the
  MG.  Statistics may be accumulated on a Termination.  Statistics are
  reported to the MGC upon request (by means of the AuditValue command,
  see 7.2.5) and when the Termination is taken out of the call it is
  in.

  Multimedia gateways may process multiplexed media streams.  For
  example, Recommendation H.221 describes a frame structure for
  multiple media streams multiplexed on a number of digital 64 kbit/s
  channels.  Such a case is handled in the connection model in the
  following way.  For every bearer channel that carries part of the
  multiplexed streams, there is a physical or ephemeral "bearer
  Termination".  The bearer Terminations that source/sink the digital
  channels are connected to a separate Termination called the
  "multiplexing Termination".  The multiplexing termination is an
  ephemeral termination representing a frame-oriented session.  The
  MultiplexDescriptor for this Termination describes the multiplex used
  (e.g., H.221 for an H.320 session) and indicates the order in which
  the contained digital channels are assembled into a frame.

  Multiplexing terminations may be cascades (e.g., H.226 multiplex of
  digital channels feeding into a H.223 multiplex supporting an H.324
  session).

  The individual media streams carried in the session are described by
  StreamDescriptors on the multiplexing Termination.  These media
  streams can be associated with streams sourced/sunk by Terminations
  in the Context other than the bearer Terminations supporting the
  multiplexing Termination.  Each bearer Termination supports only a
  single data stream.  These data streams do not appear explicitly as
  streams on the multiplexing Termination and they are hidden from the
  rest of the context.

  Figures 4, 5, 6, and 6a illustrate typical applications of the
  multiplexing termination and Multiplex Descriptor.



Groves, et al.              Standards Track                    [Page 18]

RFC 3525                Gateway Control Protocol               June 2003


                 +-----------------------------------+
                 | Context     +-------+             |
                +----+         |       |             |
  Circuit 1 -|--| TC1|---------+ Tmux  |             |
             |  +----+ (Str 1) |       |  Audio    +-----+
             |   |             |       +-----*-----+     |-----
             |  +----+         | H.22x | Stream 1  |     |
  Circuit 2 -|--| TC2|---------+ multi-|           | TR1 |
             |  +----+ (Str 1) | plex  |           |(RTP)|
             |   |             |       |  Video    |     |
             |  +----+         |       +-----*-----+     |-----
  Circuit 3 -|--| TC3|---------+       | Stream 2  |     |
             /  +----+ (Str 1) |       |           +-----+
            /    |             +-------+             |
           /     +-----------------\-----------------+
  Audio, video, and control         \
  signals are carried in frames    Tmux is an ephemeral with two
  spanning the circuits.           explicit Stream Descriptors
                                   and a Multiplex Descriptor.

     Figure 4: Multiplexed Termination Scenario - Circuit to Packet
             (Asterisks * denote the centre of the context)

                   Context
                 +--------------------------------------+
                 |       +-------+        +-------+     |
                +----+   |       |        |       |   +----+
  Circuit 1 ----| TC1|---+ Tmux1 |  Audio | Tmux2 +---| TC4|---
                +----+   |       +---*----+       |   +----+
                 |       |       |  Str 1 |       |     |
                +----+   | H.22x |        | H.22x |   +----+
  Circuit 2 ----| TC2|---+ multi-|        | multi-+---| TC5|---
                +----+   | plex  |        | plex  |   +----+
                 |       |       |  Video |       |     |
                +----+   |       +---*----+       |   +----+
  Circuit 3 ----| TC3|---+       |  Str 2 |       +---| TC6|---
                +----+   |       |        |       |   +----+
                 |       +-------+        +-------+     |
                 +-----------------\-----/--------------+
                                    \   /
            Tmux1 and Tmux2 are ephemerals each with two
           explicit Stream Descriptors and a Multiplex Descriptor.

     Figure 5: Multiplexed Termination Scenario - Circuit to Circuit
             (Asterisks * denote the centre of the context)






Groves, et al.              Standards Track                    [Page 19]

RFC 3525                Gateway Control Protocol               June 2003


                 +-----------------------------------+
                 | Context     +-------+             |
                +----+         |       |             |
  Circuit 1 -|--| TC1|---------+ Tmux  |             |
             |  +----+ (Str 1) |       |  Audio    +-----+
             |   |             |       +-----*-----+ TR1 |-----
             |  +----+         | H.22x | Stream 1  |(RTP)|
  Circuit 2 -|--| TC2|---------+ multi-|           +-----+
             |  +----+ (Str 1) | plex  |             |
             |   |             |       |  Video    +-----+
             |  +----+         |       +-----*-----+ TR2 |-----
  Circuit 3 -|--| TC3|---------+       | Stream 2  |(RTP)|
             /  +----+ (Str 1) |       |           +-----+
            /    |             +-------+             |
           /     +-----------------\-----------------+
  Audio, video, and control         \ Tmux is an ephemeral with two
  signals are carried in frames    explicit Stream Descriptors and
  spanning the circuits.           and a Multiplex Descriptor.

     Figure 6: Multiplexed Termination Scenario - Single to Multiple
                              Terminations
             (Asterisks * denote the centre of the context)

           Context
         +---------------------------------------------+
         |       +-------+       +-------+             |
  Cct 1 +----+   |       |       |       | Audio     +-----+
    ----| TC1|---+ Tmux1 |       | Tmux2 +-----*-----| TR1 |-----
        +----+   |       |       |       | Stream 1  |(RTP)|
         |       |       | Data  |       |           +-----+
  Cct 2 +----+   | H.226 +-------+ H.223 |             |
    ----| TC2|---+ multi-|(Str 1)| multi-| Control   +-----+
        +----+   | plex  |       | plex  +-----*-----+ Tctl|-----
         |       |       |       |       | Stream 3  +-----+
  Cct 3 +----+   |       |       |       |             |
    ----| TC3|---+       |       |       |           +-----+
        +----+   |       |       |       +-----*-----+ TR2 |-----
         |       +-------+       |       |  Video    |(RTP)|
         |                       +-------+ Stream 2  +-----+
         |                                             |
         +---------------------------------------------+
       Tmux1 has a Multiplex Descriptor and a single data stream.
       Tmux2 has a Multiplex Descriptor with a single bearer and
       three explicit Stream Descriptors.

   Figure 6a: Multiplexed Termination Scenario - Cascaded Multiplexes
             (Asterisks * denote the centre of the context)
    Note: this figure does not appear in Rec.  H.248.1



Groves, et al.              Standards Track                    [Page 20]

RFC 3525                Gateway Control Protocol               June 2003


  Terminations may be created which represent multiplexed bearers, such
  as an ATM AAL Type 2 bearer.  When a new multiplexed bearer is to be
  created, an ephemeral Termination is created in a Context established
  for this purpose.  When the Termination is subtracted, the
  multiplexed bearer is destroyed.

6.2.1 Termination dynamics

  The protocol can be used to create new Terminations and to modify
  property values of existing Terminations.  These modifications
  include the possibility of adding or removing events and/or signals.
  The Termination properties, and events and signals are described in
  the ensuing subclauses.  An MGC can only release/modify Terminations
  and the resources that the Termination represents which it has
  previously seized via, e.g., the Add command.

6.2.2 TerminationIDs

  Terminations are referenced by a TerminationID, which is an arbitrary
  schema chosen by the MG.

  TerminationIDs of physical Terminations are provisioned in the Media
  Gateway.  The TerminationIDs may be chosen to have structure.  For
  instance, a TerminationID may consist of trunk group and a trunk
  within the group.

  A wildcarding mechanism using two types of wildcards can be used with
  TerminationIDs.  The two wildcards are ALL and CHOOSE.  The former is
  used to address multiple Terminations at once, while the latter is
  used to indicate to a media gateway that it must select a Termination
  satisfying the partially specified TerminationID.  This allows, for
  instance, that a MGC instructs a MG to choose a circuit within a
  trunk group.

  When ALL is used in the TerminationID of a command, the effect is
  identical to repeating the command with each of the matching
  TerminationIDs.  The use of ALL does not address the ROOT
  termination.  Since each of these commands may generate a response,
  the size of the entire response may be large.  If individual
  responses are not required, a wildcard response may be requested.  In
  such a case, a single response is generated, which contains the UNION
  of all of the individual responses which otherwise would have been
  generated, with duplicate values suppressed.  For instance, given a
  Termination Ta with properties p1=a, p2=b and Termination Tb with







Groves, et al.              Standards Track                    [Page 21]

RFC 3525                Gateway Control Protocol               June 2003


  properties p2=c, p3=d, a UNION response would consist of a wildcarded
  TerminationId and the sequence of properties p1=a, p2=b,c and p3=d.
  Wildcard response may be particularly useful in the Audit commands.

  The encoding of the wildcarding mechanism is detailed in Annexes A
  and B.

6.2.3 Packages

  Different types of gateways may implement Terminations that have
  widely differing characteristics.  Variations in Terminations are
  accommodated in the protocol by allowing Terminations to have
  optional Properties, Events, Signals and Statistics implemented by
  MGs.

  In order to achieve MG/MGC interoperability, such options are grouped
  into Packages, and typically a Termination realizes a set of such
  Packages.  More information on definition of packages can be found in
  clause 12.  An MGC can audit a Termination to determine which
  Packages it realizes.

  Properties, Events, Signals and Statistics defined in Packages, as
  well as parameters to them, are referenced by identifiers (Ids).
  Identifiers are scoped.  For each package, PropertyIds, EventIds,
  SignalIds, StatisticsIds and ParameterIds have unique name spaces and
  the same identifier may be used in each of them.  Two PropertyIds in
  different packages may also have the same identifier, etc.

  To support a particular package the MG must support all properties,
  signals, events and statistics defined in a package.  It must also
  support all Signal and Event parameters.  The MG may support a subset
  of the values listed in a package for a particular Property or
  Parameter.

  When packages are extended, the properties, events, signals and
  statistics defined in the base package can be referred to using
  either the extended package name or the base package name.  For
  example, if Package A defines event e1, and Package B extends Package
  A, then B/e1 is an event for a termination implementing Package B. By
  definition, the MG MUST also implement the base Package, but it is
  optional to publish the base package as an allowed interface.  If it
  does publish  A, then A would be reported on the Package Descriptor
  in AuditValue as well as B, and event A/e1 would be available on a
  termination.  If the MG does not publish A, then only B/e1 would be
  available.  If published through AuditValue, A/e1 and B/e1 are the
  same event.





Groves, et al.              Standards Track                    [Page 22]

RFC 3525                Gateway Control Protocol               June 2003


  For improved interoperability and backward compatibility, an MG MAY
  publish all Packages supported by its Terminations, including base
  Packages from which extended Packages are derived.  An exception to
  this is in cases where the base packages are expressly "Designed to
  be extended only".

6.2.4 Termination properties and descriptors

  Terminations have properties.  The properties have unique
  PropertyIDs. Most properties have default values, which are
  explicitly defined in this protocol specification or in a package
  (see clause 12) or set by provisioning.  If not provisioned
  otherwise, the properties in all descriptors except TerminationState
  and LocalControl default to empty/"no value" when a Termination is
  first created or returned to the null Context.  The default contents
  of the two exceptions are described in 7.1.5 and 7.1.7.

  The provisioning of a property value in the MG will override any
  default value, be it supplied in this protocol specification or in a
  package.  Therefore if it is essential for the MGC to have full
  control over the property values of a Termination, it should supply
  explicit values when ADDing the Termination to a Context.
  Alternatively, for a physical Termination the MGC can determine any
  provisioned property values by auditing the Termination while it is
  in the NULL Context.

  There are a number of common properties for Terminations and
  properties specific to media streams.  The common properties are also
  called the Termination state properties.  For each media stream,
  there are local properties and properties of the received and
  transmitted flows.

  Properties not included in the base protocol are defined in Packages.
  These properties are referred to by a name consisting of the
  PackageName and a PropertyId.  Most properties have default values
  described in the Package description.  Properties may be read-only or
  read/write.  The possible values of a property may be audited, as can
  their current values.  For properties that are read/write, the MGC
  can set their values.  A property may be declared as "Global" which
  has a single value shared by all Terminations realizing the package.
  Related properties are grouped into descriptors for convenience.

  When a Termination is added to a Context, the value of its read/write
  properties can be set by including the appropriate descriptors as
  parameters to the Add command.  Similarly, a property of a
  Termination in a Context may have its value changed by the Modify
  command.




Groves, et al.              Standards Track                    [Page 23]

RFC 3525                Gateway Control Protocol               June 2003


  Properties may also have their values changed when a Termination is
  moved from one Context to another as a result of a Move command.  In
  some cases, descriptors are returned as output from a command.

  In general, if a Descriptor is completely omitted from one of the
  aforementioned Commands, the properties in that Descriptor retain
  their prior values for the Termination(s) upon which the Command
  acts.  On the other hand, if some read/write properties are omitted
  from a Descriptor in a Command (i.e., the Descriptor is only
  partially specified), those properties will be reset to their default
  values for the Termination(s) upon which the Command acts, unless the
  package specifies other behavior.  For more details, see clause 7.1
  dealing with the individual Descriptors.

  The following table lists all of the possible descriptors and their
  use.  Not all descriptors are legal as input or output parameters to
  every command.

  Descriptor name  Description

  Modem            Identifies modem type and properties when
                   applicable

  Mux              Describes multiplex type for multimedia
                   Terminations (e.g., H.221, H.223, H.225.0) and
                   Terminations forming the input mux

  Media            A list of media stream specifications (see 7.1.4)

  TerminationState Properties of a Termination (which can be defined
                   in Packages) that are not stream specific

  Stream           A list of remote/local/localControl descriptors for
                   a single stream

  Local            Contains properties that specify the media flows
                   that the MG receives from the remote entity.

  Remote           Contains properties that specify the media flows
                   that the MG sends to the remote entity.

  LocalControl     Contains properties (which can be defined in
                   packages) that are of interest between the MG and
                   the MGC.

  Events           Describes events to be detected by the MG and what
                   to do when an event is detected.




Groves, et al.              Standards Track                    [Page 24]

RFC 3525                Gateway Control Protocol               June 2003


  EventBuffer      Describes events to be detected by the MG when
                   Event Buffering is active.

  Signals          Describes signals (see 7.1.11) applied  to
                   Terminations.

  Audit            In Audit commands, identifies which information is
                   desired.

  Packages         In AuditValue, returns a list of Packages realized
                   by Termination.

  DigitMap         Defines patterns against which sequences of a
                   specified set of events are to be matched so they
                   can be reported as a group rather than singly.

  ServiceChange    In ServiceChange, what, why service change
                   occurred, etc.

  ObservedEvents   In Notify or AuditValue, report of events observed.

  Statistics       In Subtract and Audit, report of Statistics kept on
                   a Termination.

  Topology         Specifies flow directions between Terminations in a
                   Context.

  Error            Contains an error code and optionally error text;
                   it may occur in command replies and in Notify
                   requests.

6.2.5 Root Termination

  Occasionally, a command must refer to the entire gateway, rather than
  a Termination within it.  A special TerminationID, "Root" is reserved
  for this purpose.  Packages may be defined on Root.  Root thus may
  have properties, events and statistics (signals are not appropriate
  for root).  Accordingly, the root TerminationID may appear in:

  -  a Modify command - to change a property or set an event

  -  a Notify command - to report an event

  -  an AuditValue return - to examine the values of properties and
     statistics implemented on root

  -  an AuditCapability - to determine what properties of root are
     implemented



Groves, et al.              Standards Track                    [Page 25]

RFC 3525                Gateway Control Protocol               June 2003


  -  a ServiceChange - to declare the gateway in or out of service.

  Any other use of the root TerminationID is an error.  Error code
  410 - Incorrect identifier shall be returned in these cases.

7  Commands

  The protocol provides commands for manipulating the logical entities
  of the protocol connection model, Contexts and Terminations.
  Commands provide control at the finest level of granularity supported
  by the protocol.  For example, Commands exist to add Terminations to
  a Context, modify Terminations, subtract Terminations from a Context,
  and audit properties of Contexts or Terminations.  Commands provide
  for complete control of the properties of Contexts and Terminations.
  This includes specifying which events a Termination is to report,
  which signals/actions are to be applied to a Termination and
  specifying the topology of a Context (who hears/sees whom).

  Most commands are for the specific use of the Media Gateway
  Controller as command initiator in controlling Media Gateways as
  command responders.  The exceptions are the Notify and ServiceChange
  commands: Notify is sent from Media Gateway to Media Gateway
  Controller, and ServiceChange may be sent by either entity.  Below is
  an overview of the commands; they are explained in more detail in
  7.2.

  1) Add - The Add command adds a Termination to a Context.  The Add
     command on the first Termination in a Context is used to create a
     Context.

  2) Modify - The Modify command modifies the properties, events and
     signals of a Termination.

  3) Subtract - The Subtract command disconnects a Termination from its
     Context and returns statistics on the Termination's participation
     in the Context.  The Subtract command on the last Termination in a
     Context deletes the Context.

  4) Move - The Move command atomically moves a Termination to another
     Context.

  5) AuditValue - The AuditValue command returns the current state of
     properties, events, signals and statistics of Terminations.

  6) AuditCapabilities - The AuditCapabilities command returns all the
     possible values for Termination properties, events and signals
     allowed by the Media Gateway.




Groves, et al.              Standards Track                    [Page 26]

RFC 3525                Gateway Control Protocol               June 2003


  7) Notify - The Notify command allows the Media Gateway to inform the
     Media Gateway Controller of the occurrence of events in the Media
     Gateway.

  8) ServiceChange - The ServiceChange command allows the Media Gateway
     to notify the Media Gateway Controller that a Termination or group
     of Terminations is about to be taken out of service or has just
     been returned to service.  ServiceChange is also used by the MG to
     announce its availability to a MGC (registration), and to notify
     the MGC of impending or completed restart of the MG.  The MGC may
     announce a handover to the MG by sending it a ServiceChange
     command.  The MGC may also use ServiceChange to instruct the MG to
     take a Termination or group of Terminations in or out of service.

  These commands are detailed in 7.2.1 through 7.2.8.

7.1   Descriptors

  The parameters to a command are termed Descriptors.  A descriptor
  consists of a name and a list of items.  Some items may have values.
  Many Commands share common descriptors.  This subclause enumerates
  these descriptors.  Descriptors may be returned as output from a
  command.  In any such return of descriptor contents, an empty
  descriptor is represented by its name unaccompanied by any list.
  Parameters and parameter usage specific to a given Command type are
  described in the subclause that describes the Command.

7.1.1 Specifying parameters

  Command parameters are structured into a number of descriptors.  In
  general, the text format of descriptors is
  DescriptorName=<someID>{parm=value, parm=value, ...}.

  Parameters may be fully specified, overspecified or underspecified:

  1) Fully specified parameters have a single, unambiguous value that
     the command initiator is instructing the command responder to use
     for the specified parameter.

  2) Underspecified parameters, using the CHOOSE value, allow the
     command responder to choose any value it can support.

  3) Overspecified parameters have a list of potential values.  The
     list order specifies the command initiator's order of preference
     of selection.  The command responder chooses one value from
     the offered list and returns that value to the command initiator.





Groves, et al.              Standards Track                    [Page 27]

RFC 3525                Gateway Control Protocol               June 2003


  If a required descriptor other than the Audit descriptor is
  unspecified (i.e., entirely absent) from a command, the previous
  values set in that descriptor for that Termination, if any, are
  retained.  In commands other than Subtract, a missing Audit
  descriptor is equivalent to an empty Audit descriptor.  The Behaviour
  of the MG with respect to unspecified parameters within a descriptor
  varies with the descriptor concerned, as indicated in succeeding
  subclauses.  Whenever a parameter is underspecified or overspecified,
  the descriptor containing the value chosen by the responder is
  included as output from the command.

  Each command specifies the TerminationId the command operates on.
  This TerminationId may be "wildcarded".  When the TerminationId of a
  command is wildcarded, the effect shall be as if the command was
  repeated with each of the TerminationIds matched.

7.1.2 Modem descriptor

  The Modem descriptor specifies the modem type and parameters, if any,
  required for use in e.g., H.324 and text conversation.  The
  descriptor includes the following modem types: V.18, V.22, V.22 bis,
  V.32, V.32 bis, V.34, V.90, V.91, Synchronous ISDN, and allows for
  extensions.  By default, no Modem descriptor is present in a
  Termination.

7.1.3 Multiplex descriptor

  In multimedia calls, a number of media streams are carried on a
  (possibly different) number of bearers.  The multiplex descriptor
  associates the media and the bearers.  The descriptor includes the
  multiplex type:

  -  H.221;

  -  H.223;

  -  H.226;

  -  V.76;

  -  possible extensions,

  and a set of TerminationIDs representing the multiplexed bearers, in
  order.  For example:

     Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}





Groves, et al.              Standards Track                    [Page 28]

RFC 3525                Gateway Control Protocol               June 2003


7.1.4 Media descriptor

  The Media descriptor specifies the parameters for all the media
  streams.  These parameters are structured into two descriptors: a
  TerminationState descriptor, which specifies the properties of a
  Termination that are not stream dependent, and one or more Stream
  descriptors each of which describes a single media stream.

  A stream is identified by a StreamID.  The StreamID is used to link
  the streams in a Context that belong together.  Multiple streams
  exiting a Termination shall be synchronized with each other.  Within
  the Stream descriptor, there are up to three subsidiary descriptors:
  LocalControl, Local, and Remote.  The relationship between these
  descriptors is thus:

  Media descriptor
     TerminationState Descriptor
     Stream descriptor
        LocalControl descriptor
        Local descriptor
        Remote descriptor

  As a convenience, LocalControl, Local, or Remote descriptors may be
  included in the Media descriptor without an enclosing Stream
  descriptor.  In this case, the StreamID is assumed to be 1.

7.1.5 TerminationState descriptor

  The TerminationState descriptor contains the ServiceStates property,
  the EventBufferControl property and properties of a Termination
  (defined in Packages) that are not stream specific.

  The ServiceStates property describes the overall state of the
  Termination (not stream specific).  A Termination can be in one of
  the following states: "test", "out of service", or "in service".  The
  "test" state indicates that the Termination is being tested.  The
  state "out of service" indicates that the Termination cannot be used
  for traffic.  The state "in service" indicates that a Termination can
  be used or is being used for normal traffic.  "in service" is the
  default state.











Groves, et al.              Standards Track                    [Page 29]

RFC 3525                Gateway Control Protocol               June 2003


  Values assigned to Properties may be simple values
  (integer/string/enumeration) or may be underspecified, where more
  than one value is supplied and the MG may make a choice:

  -  Alternative Values - multiple values in a list, one of which must
     be selected

  -  Ranges - minimum and maximum values, any value between min and max
     must be selected, boundary values included

  -  Greater Than/Less Than - value must be greater/less than specified
     value

  -  CHOOSE Wildcard - the MG chooses from the allowed values for the
     property

  The EventBufferControl property specifies whether events are buffered
  following detection of an event in the Events descriptor, or
  processed immediately.  See 7.1.9 for details.

7.1.6 Stream descriptor

  A Stream descriptor specifies the parameters of a single
  bidirectional stream.  These parameters are structured into three
  descriptors: one that contains Termination properties specific to a
  stream and one each for local and remote flows.  The Stream
  Descriptor includes a StreamID which identifies the stream.  Streams
  are created by specifying a new StreamID on one of the Terminations
  in a Context.  A stream is deleted by setting empty Local and Remote
  descriptors for the stream with ReserveGroup and ReserveValue in
  LocalControl set to "false" on all Terminations in the Context that
  previously supported that stream.

  StreamIDs are of local significance between MGC and MG and they are
  assigned by the MGC.  Within a Context, StreamID is a means by which
  to indicate which media flows are interconnected: streams with the
  same StreamID are connected.

  If a Termination is moved from one Context to another, the effect on
  the Context to which the Termination is moved is the same as in the
  case that a new Termination were added with the same StreamIDs as the
  moved Termination.









Groves, et al.              Standards Track                    [Page 30]

RFC 3525                Gateway Control Protocol               June 2003


7.1.7 LocalControl descriptor

  The LocalControl descriptor contains the Mode property, the
  ReserveGroup and ReserveValue properties and properties of a
  Termination (defined in Packages) that are stream specific, and are
  of interest between the MG and the MGC.  Values of properties may be
  underspecified as in 7.1.1.

  The allowed values for the mode property are send-only, receive-only,
  send/receive, inactive and loop-back. "Send" and "receive" are with
  respect to the exterior of the Context, so that, for example, a
  stream set to mode=sendOnly does not pass received media into the
  Context.  The default value for the mode property is "Inactive".
  Signals and Events are not affected by mode.

  The boolean-valued Reserve properties, ReserveValue and ReserveGroup,
  of a Termination indicate what the MG is expected to do when it
  receives a Local and/or Remote descriptor.

  If the value of a Reserve property is True, the MG SHALL reserve
  resources for all alternatives specified in the Local and/or Remote
  descriptors for which it currently has resources available.  It SHALL
  respond with the alternatives for which it reserves resources.  If it
  cannot not support any of the alternatives, it SHALL respond with a
  reply to the MGC that contains empty Local and/or Remote descriptors.
  If media begins to flow while more than a single alternative is
  reserved, media packets may be sent/received on any of the
  alternatives and must be processed, although only a single
  alternative may be active at any given time.

  If the value of a Reserve property is False, the MG SHALL choose one
  of the alternatives specified in the Local descriptor (if present)
  and one of the alternatives specified in the Remote descriptor (if
  present).  If the MG has not yet reserved resources to support the
  selected alternative, it SHALL reserve the resources.  If, on the
  other hand, it already reserved resources for the Termination
  addressed (because of a prior exchange with ReserveValue and/or
  ReserveGroup equal to True), it SHALL release any excess resources it
  reserved previously.  Finally, the MG shall send a reply to the MGC
  containing the alternatives for the Local and/or Remote descriptor
  that it selected.  If the MG does not have sufficient resources to
  support any of the alternatives specified, it SHALL respond with
  error 510 (insufficient resources).

  The default value of ReserveValue and ReserveGroup is False.  More
  information on the use of the two Reserve properties is provided in
  7.1.8.




Groves, et al.              Standards Track                    [Page 31]

RFC 3525                Gateway Control Protocol               June 2003


  A new setting of the LocalControl Descriptor completely replaces the
  previous setting of that descriptor in the MG.  Thus, to retain
  information from the previous setting, the MGC must include that
  information in the new setting.  If the MGC wishes to delete some
  information from the existing descriptor, it merely resends the
  descriptor (in a Modify command) with the unwanted information
  stripped out.

7.1.8 Local and Remote descriptors

  The MGC uses Local and Remote descriptors to reserve and commit MG
  resources for media decoding and encoding for the given Stream(s) and
  Termination to which they apply.  The MG includes these descriptors
  in its response to indicate what it is actually prepared to support.
  The MG SHALL include additional properties and their values in its
  response if these properties are mandatory yet not present in the
  requests made by the MGC (e.g., by specifying detailed video encoding
  parameters where the MGC only specified the payload type).

  Local refers to the media received by the MG and Remote refers to the
  media sent by the MG.

  When text encoding the protocol, the descriptors consist of session
  descriptions as defined in SDP (RFC 2327).  In session descriptions
  sent from the MGC to the MG, the following exceptions to the syntax
  of RFC 2327 are allowed:

  -  the "s=", "t=" and "o=" lines are optional;

  -  the use of CHOOSE is allowed in place of a single parameter value;
     and

  -  the use of alternatives is allowed in place of a single parameter
     value.

  A Stream Descriptor specifies a single bi-directional media stream
  and so a single session description MUST NOT include more than one
  media description ("m=" line).  A Stream Descriptor may contain
  additional session descriptions as alternatives.  Each media stream
  for a termination must appear in distinct Stream Descriptors.  When
  multiple session descriptions are provided in one descriptor, the
  "v=" lines are required as delimiters; otherwise they are optional in
  session descriptions sent to the MG.  Implementations shall accept
  session descriptions that are fully conformant to RFC 2327.  When
  binary encoding the protocol the descriptor consists of groups of
  properties (tag-value pairs) as specified in Annex C.  Each such
  group may contain the parameters of a session description.




Groves, et al.              Standards Track                    [Page 32]

RFC 3525                Gateway Control Protocol               June 2003


  Below, the semantics of the Local and Remote descriptors are
  specified in detail.  The specification consists of two parts.  The
  first part specifies the interpretation of the contents of the
  descriptor.  The second part specifies the actions the MG must take
  upon receiving the Local and Remote descriptors.  The actions to be
  taken by the MG depend on the values of the ReserveValue and
  ReserveGroup properties of the LocalControl descriptor.

  Either the Local or the Remote descriptor or both may be:

  1) unspecified (i.e., absent);

  2) empty;

  3) underspecified through use of CHOOSE in a property value;

  4) fully specified; or

  5) overspecified through presentation of multiple groups of
     properties and possibly multiple property values in one or more of
     these groups.

  Where the descriptors have been passed from the MGC to the MG, they
  are interpreted according to the rules given in 7.1.1, with the
  following additional comments for clarification:

  a) An unspecified Local or Remote descriptor is considered to be a
     missing mandatory parameter.  It requires the MG to use whatever
     was last specified for that descriptor.  It is possible that there
     was no previously specified value, in which case the descriptor
     concerned is ignored in further processing of the command.

  b) An empty Local (Remote) descriptor in a message from the MGC
     signifies a request to release any resources reserved for the
     media flow received (sent).

  c) If multiple groups of properties are present in a Local or Remote
     descriptor or multiple values within a group, the order of
     preference is descending.

  d) Underspecified or overspecified properties within a group of
     properties sent by the MGC are requests for the MG to choose one
     or more values which it can support for each of those properties.
     In case of an overspecified property, the list of values is in
     descending order of preference.

  Subject to the above rules, subsequent action depends on the values
  of the ReserveValue and ReserveGroup properties in LocalControl.



Groves, et al.              Standards Track                    [Page 33]

RFC 3525                Gateway Control Protocol               June 2003


  If ReserveGroup is True, the MG reserves the resources required to
  support any of the requested property group alternatives that it can
  currently support.  If ReserveValue is True, the MG reserves the
  resources required to support any of the requested property value
  alternatives that it can currently support.

  NOTE - If a Local or Remote descriptor contains multiple groups of
  properties, and ReserveGroup is True, then the MG is requested to
  reserve resources so that it can decode or encode the media stream
  according to any of the alternatives.  For instance, if the Local
  descriptor contains two groups of properties, one specifying
  packetized G.711 A-law audio and the other G.723.1 audio, the MG
  reserves resources so that it can decode one audio stream encoded in
  either G.711 A-law format or G.723.1 format.  The MG does not have to
  reserve resources to decode two audio streams simultaneously, one
  encoded in G.711 A-law and one in G.723.1.  The intention for the use
  of ReserveValue is analogous.

  If ReserveGroup is true or ReserveValue is True, then the following
  rules apply:

  -  If the MG has insufficient resources to support all alternatives
     requested by the MGC and the MGC requested resources in both Local
     and Remote, the MG should reserve resources to support at least
     one alternative each within Local and Remote.

  -  If the MG has insufficient resources to support at least one
     alternative within a Local (Remote) descriptor received from the
     MGC, it shall return an empty Local (Remote) in response.

  -  In its response to the MGC, when the MGC included Local and Remote
     descriptors, the MG SHALL include Local and Remote descriptors for
     all groups of properties and property values it reserved resources
     for.  If the MG is incapable of supporting at least one of the
     alternatives within the Local (Remote) descriptor received from
     the MGC, it SHALL return an empty Local (Remote) descriptor.

  -  If the Mode property of the LocalControl descriptor is RecvOnly,
     SendRecv, or LoopBack, the MG must be prepared to receive media
     encoded according to any of the alternatives included in its
     response to the MGC.

  If ReserveGroup is False and ReserveValue is False, then the MG
  SHOULD apply the following rules to resolve Local and Remote to a
  single alternative each:

  -  The MG chooses the first alternative in Local for which it is able
     to support at least one alternative in Remote.



Groves, et al.              Standards Track                    [Page 34]

RFC 3525                Gateway Control Protocol               June 2003


  -  If the MG is unable to support at least one Local and one Remote
     alternative, it returns Error 510 (Insufficient Resources).

  -  The MG returns its selected alternative in each of Local and
     Remote.

  A new setting of a Local or Remote descriptor completely replaces the
  previous setting of that descriptor in the MG.  Thus, to retain
  information from the previous setting, the MGC must include that
  information in the new setting.  If the MGC wishes to delete some
  information from the existing descriptor, it merely resends the
  descriptor (in a Modify command) with the unwanted information
  stripped out.

7.1.9 Events descriptor

  The EventsDescriptor parameter contains a RequestIdentifier and a
  list of events that the Media Gateway is requested to detect and
  report.  The RequestIdentifier is used to correlate the request with
  the notifications that it may trigger.  Requested events include, for
  example, fax tones, continuity test results, and on-hook and off-hook
  transitions.  The RequestIdentifier is omitted if the
  EventsDescriptor is empty (i.e., no events are specified).

  Each event in the descriptor contains the Event name, an optional
  streamID, an optional KeepActive flag, and optional parameters.  The
  Event name consists of a Package Name (where the event is defined)
  and an EventID.  The ALL wildcard may be used for the EventID,
  indicating that all events from the specified package have to be
  detected.  The default streamID is 0, indicating that the event to be
  detected is not related to a particular media stream.  Events can
  have parameters.  This allows a single event description to have some
  variation in meaning without creating large numbers of individual
  events.  Further event parameters are defined in the package.

  If a digit map completion event is present or implied in the
  EventsDescriptor, the EventDM parameter is used to carry either the
  name or the value of the associated digit map.  See 7.1.14 for
  further details.

  When an event is processed against the contents of an active Events
  Descriptor and found to be present in that descriptor ("recognized"),
  the default action of the MG is to send a Notify command to the MGC.
  Notification may be deferred if the event is absorbed into the
  current dial string of an active digit map (see 7.1.14).  Any other
  action is for further study.  Moreover, event recognition may cause
  currently active signals to stop, or may cause the current Events
  and/or Signals descriptor to be replaced, as described at the end of



Groves, et al.              Standards Track                    [Page 35]

RFC 3525                Gateway Control Protocol               June 2003


  this subclause.  Unless the Events Descriptor is replaced by another
  Events Descriptor, it remains active after an event has been
  recognized.

  If the value of the EventBufferControl property equals LockStep,
  following detection of such an event, normal handling of events is
  suspended.  Any event which is subsequently detected and occurs in
  the EventBuffer descriptor is added to the end of the EventBuffer (a
  FIFO queue), along with the time that it was detected.  The MG SHALL
  wait for a new EventsDescriptor to be loaded.  A new EventsDescriptor
  can be loaded either as the result of receiving a command with a new
  EventsDescriptor, or by activating an embedded EventsDescriptor.

  If EventBufferControl equals Off, the MG continues processing based
  on the active EventsDescriptor.

  In the case of an embedded EventsDescriptor being activated, the MG
  continues event processing based on the newly activated
  EventsDescriptor.

    NOTE 1 - For purposes of EventBuffer handling, activation of an
    embedded EventsDescriptor is equivalent to receipt of a new
    EventsDescriptor.

  When the MG receives a command with a new EventsDescriptor, one or
  more events may have been buffered in the EventBuffer in the MG.  The
  value of EventBufferControl then determines how the MG treats such
  buffered events.

  Case 1

  If EventBufferControl equals LockStep and the MG receives a new
  EventsDescriptor, it will check the FIFO EventBuffer and take the
  following actions:

  1) If the EventBuffer is empty, the MG waits for detection of events
     based on the new EventsDescriptor.

  2) If the EventBuffer is non-empty, the MG processes the FIFO queue
     starting with the first event:

     a) If the event in the queue is in the events listed in the new
        EventsDescriptor, the MG acts on the event and removes the
        event from the EventBuffer.  The time stamp of the Notify shall
        be the time the event was actually detected.  The MG then waits
        for a new EventsDescriptor.  While waiting for a new
        EventsDescriptor, any events detected that appear in the




Groves, et al.              Standards Track                    [Page 36]

RFC 3525                Gateway Control Protocol               June 2003


        EventsBufferDescriptor will be placed in the EventBuffer.  When
        a new EventsDescriptor is received, the event processing will
        repeat from step 1.

     b) If the event is not in the new EventsDescriptor, the MG SHALL
        discard the event and repeat from step 1.

  Case 2

  If EventBufferControl equals Off and the MG receives a new
  EventsDescriptor, it processes new events with the new
  EventsDescriptor.

  If the MG receives a command instructing it to set the value of
  EventBufferControl to Off, all events in the EventBuffer SHALL be
  discarded.

  The MG may report several events in a single Transaction as long as
  this does not unnecessarily delay the reporting of individual events.

  For procedures regarding transmitting the Notify command, refer to
  the appropriate annex or Recommendation of the H.248 sub-series for
  specific transport considerations.

  The default value of EventBufferControl is Off.

    NOTE 2 - Since the EventBufferControl property is in the
    TerminationStateDescriptor, the MG might receive a command that
    changes the EventBufferControl property and does not include an
    EventsDescriptor.

  Normally, recognition of an event shall cause any active signals to
  stop.  When KeepActive is specified in the event, the MG shall not
  interrupt any signals active on the Termination on which the event is
  detected.

  An event can include an Embedded Signals descriptor and/or an
  Embedded Events descriptor which, if present, replaces the current
  Signals/Events descriptor when the event is recognized.  It is
  possible, for example, to specify that the dial-tone Signal be
  generated when an off-hook Event is recognized, or that the dial-tone
  Signal be stopped when a digit is recognized.  A media gateway
  controller shall not send EventsDescriptors with an event both marked
  KeepActive and containing an embedded SignalsDescriptor.







Groves, et al.              Standards Track                    [Page 37]

RFC 3525                Gateway Control Protocol               June 2003


  Only one level of embedding is permitted.  An embedded
  EventsDescriptor SHALL NOT contain another embedded EventsDescriptor;
  an embedded EventsDescriptor MAY contain an embedded
  SignalsDescriptor.

  An EventsDescriptor received by a media gateway replaces any previous
  Events descriptor.  Event notification in process shall complete, and
  events detected after the command containing the new EventsDescriptor
  executes, shall be processed according to the new EventsDescriptor.

  An empty Events Descriptor disables all event recognition and
  reporting.  An empty EventBuffer Descriptor clears the EventBuffer
  and disables all event accumulation in LockStep mode: the only events
  reported will be those occurring while an Events Descriptor is
  active.  If an empty Events Descriptor is activated while the
  Termination is operating in LockStep mode, the events buffer is
  immediately cleared.

7.1.10   EventBuffer descriptor

  The EventBuffer descriptor contains a list of events, with their
  parameters if any, that the MG is requested to detect and buffer when
  EventBufferControl equals LockStep (see 7.1.9).

7.1.11   Signals descriptor

  Signals are MG generated media such as tones and announcements as
  well as bearer-related signals such as hookswitch.  More complex
  signals may include a sequence of such simple signals interspersed
  with and conditioned upon the receipt and analysis of media or
  bearer-related signals.  Examples include echoing of received data as
  in Continuity Test package.  Signals may also request preparation of
  media content for future signals.

  A SignalsDescriptor is a parameter that contains the set of signals
  that the Media Gateway is asked to apply to a Termination.  A
  SignalsDescriptor contains a number of signals and/or sequential
  signal lists.  A SignalsDescriptor may contain zero signals and
  sequential signal lists.  Support of sequential signal lists is
  optional.

  Signals are defined in packages.  Signals shall be named with a
  Package name (in which the signal is defined) and a SignalID.  No
  wildcard shall be used in the SignalID.  Signals that occur in a
  SignalsDescriptor have an optional StreamID parameter (default is 0,
  to indicate that the signal is not related to a particular media
  stream), an optional signal type (see below), an optional duration
  and possibly parameters defined in the package that defines the



Groves, et al.              Standards Track                    [Page 38]

RFC 3525                Gateway Control Protocol               June 2003


  signal.  This allows a single signal to have some variation in
  meaning, obviating the need to create large numbers of individual
  signals.

  Finally, the optional parameter "notifyCompletion" allows a MGC to
  indicate that it wishes to be notified when the signal finishes
  playout.  The possible cases are that the signal timed out (or
  otherwise completed on its own), that it was interrupted by an event,
  that it was halted when a Signals descriptor was replaced, or that it
  stopped or never started for other reasons.  If the notifyCompletion
  parameter is not included in a Signals descriptor, notification is
  generated only if the signal stopped or was never started for other
  reasons.  For reporting to occur, the signal completion event (see
  E.1.2) must be enabled in the currently active Events descriptor.

  The duration is an integer value that is expressed in hundredths of a
  second.

  There are three types of signals:

  -  on/off - the signal lasts until it is turned off;

  -  timeout - the signal lasts until it is turned off or a specific
     period of time elapses;

  -  brief - the signal will stop on its own unless a new Signals
     descriptor is applied that causes it to stop; no timeout value is
     needed.

  If a signal of default type other than TO has its type overridden to
  type TO in the Signals descriptor, the duration parameter must be
  present.

  If the signal type is specified in a SignalsDescriptor, it overrides
  the default signal type (see 12.1.4).  If duration is specified for
  an on/off signal, it SHALL be ignored.

  A sequential signal list consists of a signal list identifier and a
  sequence of signals to be played sequentially.  Only the trailing
  element of the sequence of signals in a sequential signal list may be
  an on/off signal.  The duration of a sequential signal list is the
  sum of the durations of the signals it contains.

  Multiple signals and sequential signal lists in the same
  SignalsDescriptor shall be played simultaneously.

  Signals are defined as proceeding from the Termination towards the
  exterior of the Context unless otherwise specified in a package.



Groves, et al.              Standards Track                    [Page 39]

RFC 3525                Gateway Control Protocol               June 2003


  When the same Signal is applied to multiple Terminations within one
  Transaction, the MG should consider using the same resource to
  generate these Signals.

  Production of a Signal on a Termination is stopped by application of
  a new SignalsDescriptor, or detection of an Event on the Termination
  (see 7.1.9).

  A new SignalsDescriptor replaces any existing SignalsDescriptor.  Any
  signals applied to the Termination not in the replacement descriptor
  shall be stopped, and new signals are applied, except as follows.
  Signals present in the replacement descriptor and containing the
  KeepActive flag shall be continued if they are currently playing and
  have not already completed.  If a replacement signal descriptor
  contains a signal that is not currently playing and contains the
  KeepActive flag, that signal SHALL be ignored.  If the replacement
  descriptor contains a sequential signal list with the same identifier
  as the existing descriptor, then

  -  the signal type and sequence of signals in the sequential signal
     list in the replacement descriptor shall be ignored; and

  -  the playing of the signals in the sequential signal list in the
     existing descriptor shall not be interrupted.

7.1.12   Audit descriptor

  The Audit descriptor specifies what information is to be audited.
  The Audit descriptor specifies the list of descriptors to be
  returned.  Audit may be used in any command to force the return of
  any descriptor containing the current values of its properties,
  events, signals and statistics even if that descriptor was not
  present in the command, or had no underspecified parameters.
  Possible items in the Audit descriptor are:

     Modem
     Mux
     Events
     Media
     Signals
     ObservedEvents
     DigitMap
     Statistics
     Packages
     EventBuffer






Groves, et al.              Standards Track                    [Page 40]

RFC 3525                Gateway Control Protocol               June 2003


  Audit may be empty, in which case, no descriptors are returned.  This
  is useful in Subtract, to inhibit return of statistics, especially
  when using wildcard.

7.1.13   ServiceChange descriptor

  The ServiceChangeDescriptor contains the following parameters:

     .  ServiceChangeMethod
     .  ServiceChangeReason
     .  ServiceChangeAddress
     .  ServiceChangeDelay
     .  ServiceChangeProfile
     .  ServiceChangeVersion
     .  ServiceChangeMGCId
     .  TimeStamp
     .  Extension

  See 7.2.8.

7.1.14   DigitMap descriptor

7.1.14.1 DigitMap definition, creation, modification and deletion

  A DigitMap is a dialing plan resident in the Media Gateway used for
  detecting and reporting digit events received on a Termination.  The
  DigitMap descriptor contains a DigitMap name and the DigitMap to be
  assigned.  A digit map may be preloaded into the MG by management
  action and referenced by name in an EventsDescriptor, may be defined
  dynamically and subsequently referenced by name, or the actual
  digitmap itself may be specified in the EventsDescriptor.  It is
  permissible for a digit map completion event within an Events
  descriptor to refer by name to a DigitMap which is defined by a
  DigitMap descriptor within the same command, regardless of the
  transmitted order of the respective descriptors.

  DigitMaps defined in a DigitMapDescriptor can occur in any of the
  standard Termination manipulation Commands of the protocol.  A
  DigitMap, once defined, can be used on all Terminations specified by
  the (possibly wildcarded) TerminationID in such a command.  DigitMaps
  defined on the root Termination are global and can be used on every
  Termination in the MG, provided that a DigitMap with the same name
  has not been defined on the given Termination.  When a DigitMap is
  defined dynamically in a DigitMap descriptor:

  -  A new DigitMap is created by specifying a name that is not yet
     defined.  The value shall be present.




Groves, et al.              Standards Track                    [Page 41]

RFC 3525                Gateway Control Protocol               June 2003


  -  A DigitMap value is updated by supplying a new value for a name
     that is already defined.  Terminations presently using the
     digitmap shall continue to use the old definition; subsequent
     EventsDescriptors specifying the name, including any
     EventsDescriptor in the command containing the DigitMap
     descriptor, shall use the new one.

  -  A DigitMap is deleted by supplying an empty value for a name that
     is already defined.  Terminations presently using the digitmap
     shall continue to use the old definition.

7.1.14.2 DigitMap Timers

  The collection of digits according to a DigitMap may be protected by
  three timers, viz. a start timer (T), short timer (S), and long timer
  (L).

  1) The start timer (T) is used prior to any digits having been
     dialed.  If the start timer is overridden with the value set to
     zero (T=0), then the start timer shall be disabled.  This implies
     that the MG will wait indefinitely for digits.

  2) If the Media Gateway can determine that at least one more digit is
     needed for a digit string to match any of the allowed patterns in
     the digit map, then the interdigit timer value should be set to a
     long (L) duration (e.g., 16 seconds).

  3) If the digit string has matched one of the patterns in a digit
     map, but it is possible that more digits could be received which
     would cause a match with a different pattern, then instead of
     reporting the match immediately, the MG must apply the short timer
     (S) and wait for more digits.

  The timers are configurable parameters to a DigitMap.  Default values
  of these timers should be provisioned on the MG, but can be
  overridden by values specified within the DigitMap.

7.1.14.3 DigitMap Syntax

  The formal syntax of the digit map is described by the DigitMap rule
  in the formal syntax description of the protocol (see Annex A and
  Annex B).  A DigitMap, according to this syntax, is defined either by
  a string or by a list of strings.  Each string in the list is an
  alternative event sequence, specified either as a sequence of digit
  map symbols or as a regular expression of digit map symbols.  These
  digit map symbols, the digits "0" through "9" and letters "A" through
  a maximum value depending on the signalling system concerned, but
  never exceeding "K", correspond to specified events within a package



Groves, et al.              Standards Track                    [Page 42]

RFC 3525                Gateway Control Protocol               June 2003


  which has been designated in the Events descriptor on the Termination
  to which the digit map is being applied.  (The mapping between events
  and digit map symbols is defined in the documentation for packages
  associated with channel-associated signalling systems such as DTMF,
  MF, or R2.  Digits "0" through "9" MUST be mapped to the
  corresponding digit events within the signalling system concerned.
  Letters should be allocated in logical fashion, facilitating the use
  of range notation for alternative events.)

  The letter "x" is used as a wildcard, designating any event
  corresponding to symbols in the range "0"-"9".  The string may also
  contain explicit ranges and, more generally, explicit sets of
  symbols, designating alternative events any one of which satisfies
  that position of the digit map.  Finally, the dot symbol "." stands
  for zero or more repetitions of the event selector (event, range of
  events, set of alternative events, or wildcard) that precedes it.  As
  a consequence of the third timing rule above, inter-event timing
  while matching a terminal dot symbol uses the short timer by default.

  In addition to these event symbols, the string may contain "S" and
  "L" inter-event timing specifiers and the "Z" duration modifier.  "S"
  and "L" respectively indicate that the MG should use the short (S)
  timer or the long (L) timer for subsequent events, overriding the
  timing rules described above.  If an explicit timing specifier is in
  effect in one alternative event sequence, but none is given in any
  other candidate alternative, the timer value set by the explicit
  timing specifier must be used.  If all sequences with explicit timing
  controls are dropped from the candidate set, timing reverts to the
  default rules given above.  Finally, if conflicting timing specifiers
  are in effect in different alternative sequences, the long timer
  shall be used.

  A "Z" designates a long duration event: placed in front of the
  symbol(s) designating the event(s) which satisfy a given digit
  position, it indicates that that position is satisfied only if the
  duration of the event exceeds the long-duration threshold.  The value
  of this threshold is assumed to be provisioned in the MG.

7.1.14.4 DigitMap Completion Event

  A digit map is active while the Events descriptor which invoked it is
  active and it has not completed.  A digit map completes when:

  -  a timer has expired; or

  -  an alternative event sequence has been matched and no other
     alternative event sequence in the digit map could be matched
     through detection of an additional event (unambiguous match); or



Groves, et al.              Standards Track                    [Page 43]

RFC 3525                Gateway Control Protocol               June 2003


  -  an event has been detected such that a match to a complete
     alternative event sequence of the digit map will be impossible no
     matter what additional events are received.

  Upon completion, a digit map completion event as defined in the
  package providing the events being mapped into the digit map shall be
  generated.  At that point the digit map is deactivated.  Subsequent
  events in the package are processed as per the currently active event
  processing mechanisms.

7.1.14.5 DigitMap Procedures

  Pending completion, successive events shall be processed according to
  the following rules:

  1) The "current dial string", an internal variable, is initially
     empty.  The set of candidate alternative event sequences includes
     all of the alternatives specified in the digit map.

  2) At each step, a timer is set to wait for the next event, based
     either on the default timing rules given above or on explicit
     timing specified in one or more alternative event sequences.  If
     the timer expires and a member of the candidate set of
     alternatives is fully satisfied, a timeout completion with full
     match is reported.  If the timer expires and part or none of any
     candidate alternative is satisfied, a timeout completion with
     partial match is reported.

  3) If an event is detected before the timer expires, it is mapped to
     a digit string symbol and provisionally added to the end of the
     current dial string.  The duration of the event (long or not long)
     is noted if and only if this is relevant in the current symbol
     position (because at least one of the candidate alternative event
     sequences includes the "Z" modifier at this position in the
     sequence).

  4) The current dial string is compared to the candidate alternative
     event sequences.  If and only if a sequence expecting a
     long-duration event at this position is matched (i.e., the event
     had long duration and met the specification for this position),
     then any alternative event sequences not specifying a long
     duration event at this position are discarded, and the current
     dial string is modified by inserting a "Z" in front of the symbol
     representing the latest event.   Any sequence expecting a long-
     duration event at this position but not matching the observed
     event is discarded from the candidate set.  If alternative event
     sequences not specifying a long duration event in the given




Groves, et al.              Standards Track                    [Page 44]

RFC 3525                Gateway Control Protocol               June 2003


     position remain in the candidate set after application of the
     above rules, the observed event duration is treated as irrelevant
     in assessing matches to them.

  5) If exactly one candidate remains and it has been fully matched, a
     completion event is generated indicating an unambiguous match.  If
     no candidates remain, the latest event is removed from the current
     dial string and a completion event is generated indicating full
     match if one of the candidates from the previous step was fully
     satisfied before the latest event was detected, or partial match
     otherwise.  The event removed from the current dial string will
     then be reported as per the currently active event processing
     mechanisms.

  6) If no completion event is reported out of step 5, processing
     returns to step 2.

7.1.14.6 DigitMap Activation

  A digit map is activated whenever a new Event descriptor is applied
  to the Termination or embedded Event descriptor is activated, and
  that Event descriptor contains a digit map completion event.  The
  digit map completion event contains an eventDM field in the requested
  actions field.  Each new activation of a digit map begins at step 1
  of the above procedure, with a clear current dial string.  Any
  previous contents of the current dial string from an earlier
  activation are lost.

  A digit map completion event that does not contain an eventDM field
  in its requested actions field is considered an error.  Upon receipt
  of such an event in an EventsDescriptor, a MG shall respond with an
  error response, including Error 457 - Missing parameter in signal or
  event.

7.1.14.7 Interaction Of DigitMap and Event Processing

  While the digit map is activated, detection is enabled for all events
  defined in the package containing the specified digit map completion
  event.  Normal event behaviour (e.g., stopping of signals unless the
  digit completion event has the KeepActive flag enabled) continues to
  apply for each such event detected, except that:

  -  the events in the package containing the specified digit map
     completion event other than the completion event itself are not
     individually notified and have no side-effects unless separately
     enabled; and





Groves, et al.              Standards Track                    [Page 45]

RFC 3525                Gateway Control Protocol               June 2003


  -  an event that triggers a partial match completion event is not
     recognized and therefore has no side effects until reprocessed
     following the recognition of the digit map completion event.

7.1.14.8 Wildcards

  Note that if a package contains a digit map completion event, then an
  event specification consisting of the package name with a wildcarded
  ItemID (Property Name) will activate a digit map; to that end, the
  event specification must include an eventDM field according to
  section 7.1.14.6.  If the package also contains the digit events
  themselves, this form of event specification will cause the
  individual events to be reported to the MGC as they are detected.

7.1.14.9 Example

  As an example, consider the following dial plan:

  0                      Local operator

  00                     Long-distance operator

  xxxx                   Local extension number (starts with 1-7)

  8xxxxxxx               Local number

  #xxxxxxx               Off-site extension

  *xx                    Star services

  91xxxxxxxxxx           Long-distance number

  9011 + up to 15 digits International number



  If the DTMF detection package described in E.6 is used to collect the
  dialed digits, then the dialing plan shown above results in the
  following digit map:

   (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)

7.1.15   Statistics descriptor

  The Statistics Descriptor provides information describing the status
  and usage of a Termination during its existence within a specific
  Context.  There is a set of standard statistics kept for each
  Termination where appropriate (number of octets sent and received for



Groves, et al.              Standards Track                    [Page 46]

RFC 3525                Gateway Control Protocol               June 2003


  example).  The particular statistical properties that are reported
  for a given Termination are determined by the Packages realized by
  the Termination.  By default, statistics are reported when the
  Termination is Subtracted from the Context.  This behaviour can be
  overridden by including an empty AuditDescriptor in the Subtract
  command.  Statistics may also be returned from the AuditValue
  command, or any Add/Move/Modify command using the Audit descriptor.

  Statistics are cumulative; reporting Statistics does not reset them.
  Statistics are reset when a Termination is Subtracted from a Context.

7.1.16   Packages descriptor

  Used only with the AuditValue command, the PackageDescriptor returns
  a list of Packages realized by the Termination.

7.1.17   ObservedEvents descriptor

  ObservedEvents is supplied with the Notify command to inform the MGC
  of which event(s) were detected.  Used with the AuditValue command,
  the ObservedEventsDescriptor returns events in the event buffer which
  have not been Notified.  ObservedEvents contains the
  RequestIdentifier of the EventsDescriptor that triggered the
  notification, the event(s) detected, optionally the detection time(s)
  and any parameters of the observed event.  Detection times are
  reported with a precision of hundredths of a second.

7.1.18   Topology descriptor

  A Topology descriptor is used to specify flow directions between
  Terminations in a Context.  Contrary to the descriptors in previous
  subclauses, the Topology descriptor applies to a Context instead of a
  Termination.  The default topology of a Context is that each
  Termination's transmission is received by all other Terminations.
  The Topology descriptor is optional to implement.  An MG that does
  not support Topology descriptors, but receives a command containing
  one, returns Error 444 Unsupported or unknown descriptor, and
  optionally includes a string containing the name of the unsupported
  Descriptor ("Topology") in the error text in the error descriptor.

  The Topology descriptor occurs before the commands in an action.  It
  is possible to have an action containing only a Topology descriptor,
  provided that the Context to which the action applies already exists.








Groves, et al.              Standards Track                    [Page 47]

RFC 3525                Gateway Control Protocol               June 2003


  A Topology descriptor consists of a sequence of triples of the form
  (T1, T2, association).  T1 and T2 specify Terminations within the
  Context, possibly using the ALL or CHOOSE wildcard.  The association
  specifies how media flows between these two Terminations as follows.

  -  (T1, T2, isolate) means that the Terminations matching T2 do not
     receive media from the Terminations matching T1, nor vice versa.

  -  (T1, T2, oneway) means that the Terminations that match T2 receive
     media from the Terminations matching T1, but not vice versa.  In
     this case use of the ALL wildcard such that there are Terminations
     that match both T1 and T2 is not allowed.

  -  (T1, T2, bothway) means that the Terminations matching T2 receive
     media from the Terminations matching T1, and vice versa.  In this
     case it is allowed to use wildcards such that there are
     Terminations that match both T1 and T2.  However, if there is a
     Termination that matches both, no loopback is introduced.

  CHOOSE wildcards may be used in T1 and T2 as well, under the
  following restrictions:

  -  the action (see clause 8) of which the topology descriptor is part
     contains an Add command in which a CHOOSE wildcard is used;

  -  if a CHOOSE wildcard occurs in T1 or T2, then a partial name SHALL
     NOT be specified.

  The CHOOSE wildcard in a Topology descriptor matches the
  TerminationID that the MG assigns in the first Add command that uses
  a CHOOSE wildcard in the same action.  An existing Termination that
  matches T1 or T2 in the Context to which a Termination is added, is
  connected to the newly added Termination as specified by the Topology
  descriptor.

  If a termination is not mentioned within a Topology Descriptor, any
  topology associated with it remains unchanged.  If, however, a new
  termination is added into a context its association with the other
  terminations within the context defaults to bothway, unless a
  Topology Descriptor is given to change this (e.g., if T3 is added to
  a context with T1 and T2 with topology (T3, T1, oneway) it will be
  connected bothway to T2).

  Figure 7 and the table following it show some examples of the effect
  of including topology descriptors in actions.  In these examples it
  is assumed that the topology descriptors are applied in sequence.





Groves, et al.              Standards Track                    [Page 48]

RFC 3525                Gateway Control Protocol               June 2003


    +------------------+  +------------------+  +------------------+
    |      +----+      |  |      +----+      |  |      +----+      |
    |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
    |      +----+      |  |      +----+      |  |      +----+      |
    |       ^  ^       |  |          ^       |  |          ^       |
    |       |  |       |  |          |       |  |          |       |
    |    +--+  +--+    |  |          +---+   |  |          +--+    |
    |    |        |    |  |              |   |  |             |    |
    |    v        v    |  |              v   |  |             |    |
    | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
    | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
    | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
    +------------------+  +------------------+  +------------------+
    1. No Topology Desc.   2. T1, T2, Isolate    3. T3, T2, Oneway

    +------------------+  +------------------+  +------------------+
    |      +----+      |  |      +----+      |  |      +----+      |
    |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
    |      +----+      |  |      +----+      |  |      +----+      |
    |          |       |  |          ^       |  |       ^  ^       |
    |          |       |  |          |       |  |       |  |       |
    |          +--+    |  |          +---+   |  |    +--+  +--+    |
    |             |    |  |              |   |  |    |        |    |
    |             v    |  |              v   |  |    v        v    |
    | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
    | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
    | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
    +------------------+  +------------------+  +------------------+
    4. T2, T3 oneway      5. T2, T3 bothway     6. T1, T2 bothway

    Note: the direction of the arrow indicates the direction of flow.

                      Figure 7: Example topologies

  Topology Description

  1 No topology descriptors    When no topology descriptors are
                               included, all Terminations have a
                               bothway connection to all other
                               Terminations.

  2 T1, T2 Isolate             Removes the connection between T1 and
                               T2.  T3 has a bothway connection with
                               both T1 and T2.  T1 and T2 have bothway
                               connection to T3.






Groves, et al.              Standards Track                    [Page 49]

RFC 3525                Gateway Control Protocol               June 2003


  3 T3, T2 oneway              A oneway connection from T3 to T2 (i.e.,
                               T2 receives media flow from T3).  A
                               bothway connection between T1 and T3.

  4 T2, T3 oneway              A oneway connection between T2 to T3.
                               T1 and T3 remain bothway connected.

  5 T2, T3 bothway             T2 is bothway connected to T3.  This
                               results in the same as 2.

  6 T1, T2 bothway (T2, T3     All Terminations have a bothway
    bothway and T1, T3         connection to all other Terminations.
    bothway may be implied or
    explicit).

  A oneway connection must be implemented in such a way that the other
  Terminations in the Context are not aware of the change in topology.

7.1.19   Error Descriptor

  If a responder encounters an error when processing a transaction
  request, it must include an error descriptor in its response.  A
  Notify request may contain an error descriptor as well.

  An error descriptor consists of an IANA-registered error code,
  optionally accompanied by an error text.  H.248.8 contains a list of
  valid error codes and error descriptions.

  An error descriptor shall be specified at the "deepest level" that is
  semantically appropriate for the error being described and that is
  possible given any parsing problems with the original request.  An
  error descriptor may refer to a syntactical construct other than
  where it appears.  For example, Error descriptor 422 - Syntax Error
  in Action, could appear within a command even though it refers to the
  larger construct - the action - and not the particular command within
  which it appears.

7.2   Command Application Programming Interface

  Following is an Application Programming Interface (API) describing
  the Commands of the protocol.  This API is shown to illustrate the
  Commands and their parameters and is not intended to specify
  implementation (e.g., via use of blocking function calls).  It
  describes the input parameters in parentheses after the command name
  and the return values in front of the Command.  This is only for
  descriptive purposes; the actual Command syntax and encoding are





Groves, et al.              Standards Track                    [Page 50]

RFC 3525                Gateway Control Protocol               June 2003


  specified in later subclauses.  The order of parameters to commands
  is not fixed.  Descriptors may appear as parameters to commands in
  any order.  The descriptors SHALL be processed in the order in which
  they appear.

  Any reply to a command may contain an error descriptor; the API does
  not specifically show this.

  All parameters enclosed by square brackets ([. . .]) are considered
  optional.

7.2.1 Add

  The Add Command adds a Termination to a Context.

    TerminationID
    [,MediaDescriptor]
    [,ModemDescriptor]
    [,MuxDescriptor]
    [,EventsDescriptor]
    [,SignalsDescriptor]
    [,DigitMapDescriptor]
    [,ObservedEventsDescriptor]
    [,EventBufferDescriptor]
    [,StatisticsDescriptor]
    [,PackagesDescriptor]
      Add( TerminationID
       [, MediaDescriptor]
       [, ModemDescriptor]
       [, MuxDescriptor]
       [, EventsDescriptor]
       [, EventBufferDescriptor]
       [, SignalsDescriptor]
       [, DigitMapDescriptor]
       [, AuditDescriptor]
       )

  The TerminationID specifies the Termination to be added to the
  Context.  The Termination is either created, or taken from the null
  Context.  If a CHOOSE wildcard is used in the TerminationID, the
  selected TerminationID will be returned.  Wildcards may be used in an
  Add, but such usage would be unusual.  If the wildcard matches more
  than one TerminationID, all possible matches are attempted, with
  results reported for each one.  The order of attempts when multiple
  TerminationIDs match is not specified.

  The optional MediaDescriptor describes all media streams.




Groves, et al.              Standards Track                    [Page 51]

RFC 3525                Gateway Control Protocol               June 2003


  The optional ModemDescriptor and MuxDescriptor specify a modem and
  multiplexer if applicable.  For convenience, if a Multiplex
  descriptor is present in an Add command and lists any Terminations
  that are not currently in the Context, such Terminations are added to
  the Context as if individual Add commands listing the Terminations
  were invoked. If an error occurs on such an implied Add, error 471 -
  Implied Add for Multiplex failure shall be returned and further
  processing of the command shall cease.

  The EventsDescriptor parameter is optional.  If present, it provides
  the list of events that should be detected on the Termination.

  The EventBufferDescriptor parameter is optional.  If present, it
  provides the list of events that the MG is requested to detect and
  buffer when EventBufferControl equals LockStep.

  The SignalsDescriptor parameter is optional.  If present, it provides
  the list of signals that should be applied to the Termination.

  The DigitMapDescriptor parameter is optional.  If present, it defines
  a DigitMap definition that may be used in an EventsDescriptor.

  The AuditDescriptor is optional.  If present, the command will return
  descriptors as specified in the AuditDescriptor.

  All descriptors that can be modified could be returned by MG if a
  parameter was underspecified or overspecified.  ObservedEvents,
  Statistics, and Packages, and the EventBuffer descriptors are
  returned only if requested in the AuditDescriptor.

  Add SHALL NOT be used on a Termination with a serviceState of
  "OutofService".

7.2.2 Modify

  The Modify Command modifies the properties of a Termination.

    TerminationID
    [,MediaDescriptor]
    [,ModemDescriptor]
    [,MuxDescriptor]
    [,EventsDescriptor]
    [,SignalsDescriptor]
    [,DigitMapDescriptor]
    [,ObservedEventsDescriptor]
    [,EventBufferDescriptor]
    [,StatisticsDescriptor]
    [,PackagesDescriptor]



Groves, et al.              Standards Track                    [Page 52]

RFC 3525                Gateway Control Protocol               June 2003


     Modify( TerminationID
        [, MediaDescriptor]
        [, ModemDescriptor]
        [, MuxDescriptor]
        [, EventsDescriptor]
        [, EventBufferDescriptor]
        [, SignalsDescriptor]
        [, DigitMapDescriptor]
        [, AuditDescriptor]
        )

  The TerminationID may be specific if a single Termination in the
  Context is to be modified.  Use of wildcards in the TerminationID may
  be appropriate for some operations.  If the wildcard matches more
  than one TerminationID, all possible matches are attempted, with
  results reported for each one.  The order of attempts when multiple
  TerminationIDs match is not specified.  The CHOOSE option is an
  error, as the Modify command may only be used on existing
  Terminations.

  For convenience, if a Multiplex Descriptor is present in a Modify
  command, then:

  -  if the new Multiplex Descriptor lists any Terminations that are
     not currently in the Context, such Terminations are added to the
     context as if individual commands listing the Terminations were
     invoked.

  -  if any Terminations listed previously in the Multiplex Descriptor
     are no longer present in the new Multiplex Descriptor, they are
     subtracted from the context as if individual Subtract commands
     listing the Terminations were invoked.

  The remaining parameters to Modify are the same as those to Add.
  Possible return values are the same as those to Add.

7.2.3 Subtract

  The Subtract Command disconnects a Termination from its Context and
  returns statistics on the Termination's participation in the Context.

    TerminationID
    [,MediaDescriptor]
    [,ModemDescriptor]
    [,MuxDescriptor]
    [,EventsDescriptor]
    [,SignalsDescriptor]
    [,DigitMapDescriptor]



Groves, et al.              Standards Track                    [Page 53]

RFC 3525                Gateway Control Protocol               June 2003


    [,ObservedEventsDescriptor]
    [,EventBufferDescriptor]
    [,StatisticsDescriptor]
    [,PackagesDescriptor]
     Subtract(TerminationID
        [, AuditDescriptor]
        )

  TerminationID in the input parameters represents the Termination that
  is being subtracted.  The TerminationID may be specific or may be a
  wildcard value indicating that all (or a set of related) Terminations
  in the Context of the Subtract Command are to be subtracted.  If the
  wildcard matches more than one TerminationID, all possible matches
  are attempted, with results reported for each one.  The order of
  attempts when multiple TerminationIDs match is not specified.

  The use of CHOOSE in the TerminationID is an error, as the Subtract
  command may only be used on existing Terminations.

  ALL may be used as the ContextID as well as the TerminationId in a
  Subtract, which would have the effect of deleting all Contexts,
  deleting all ephemeral Terminations, and returning all physical
  Terminations to Null Context.  Subtract of a termination from the
  Null Context is not allowed.

  For convenience, if a multiplexing Termination is the object of a
  Subtract command, then any bearer Terminations listed in its
  Multiplex Descriptor are subtracted from the context as if individual
  Subtract commands listing the Terminations were invoked.

  By default, the Statistics parameter is returned to report
  information collected on the Termination or Terminations specified in
  the Command.  The information reported applies to the Termination's
  or Terminations' existence in the Context from which it or they are
  being subtracted.

  The AuditDescriptor is optional.  If present, the command will return
  only those descriptors as specified in the AuditDescriptor, which may
  be empty.  If omitted, the Statistics descriptor is returned, by
  default.  Possible return values are the same as those to Add.

  When a provisioned Termination is Subtracted from a Context, its
  property values shall revert to:

  -  the default value, if specified for the property and not
     overridden by provisioning;

  -  otherwise, the provisioned value.



Groves, et al.              Standards Track                    [Page 54]

RFC 3525                Gateway Control Protocol               June 2003


7.2.4 Move

  The Move Command moves a Termination to another Context from its
  current Context in one atomic operation.  The Move command is the
  only command that refers to a Termination in a Context different from
  that to which the command is applied.  The Move command shall not be
  used to move Terminations to or from the null Context.

    TerminationID
    [,MediaDescriptor]
    [,ModemDescriptor]
    [,MuxDescriptor]
    [,EventsDescriptor]
    [,SignalsDescriptor]
    [,DigitMapDescriptor]
    [,ObservedEventsDescriptor]
    [,EventBufferDescriptor]
    [,StatisticsDescriptor]
    [,PackagesDescriptor]
     Move( TerminationID
        [, MediaDescriptor]
        [, ModemDescriptor]
        [, MuxDescriptor]
        [, EventsDescriptor]
        [, EventBufferDescriptor]
        [, SignalsDescriptor]
        [, DigitMapDescriptor]
        [, AuditDescriptor]
        )

  The TerminationID specifies the Termination to be moved.  It may be
  wildcarded, but CHOOSE shall not be used in the TerminationID.  If
  the wildcard matches more than one TerminationID, all possible
  matches are attempted, with results reported for each one.  The order
  of attempts when multiple TerminationIDs match is not specified.  The
  Context to which the Termination is moved is indicated by the target
  ContextId in the Action.  If the last remaining Termination is moved
  out of a Context, the Context is deleted.

  The Move command does not affect the properties of the Termination on
  which it operates, except those properties explicitly modified by
  descriptors included in the Move command.  The AuditDescriptor with
  the Statistics option, for example, would return statistics on the
  Termination just prior to the Move.  Possible descriptors returned
  from Move are the same as for Add.






Groves, et al.              Standards Track                    [Page 55]

RFC 3525                Gateway Control Protocol               June 2003


  For convenience, if a multiplexing Termination is the object of a
  Move command, then any bearer Terminations listed in its Multiplex
  Descriptor are also moved as if individual Move commands listing the
  Terminations were invoked.

  Move SHALL NOT be used on a Termination with a serviceState of
  "OutofService".

7.2.5 AuditValue

  The AuditValue Command returns the current values of properties,
  events, signals and statistics associated with Terminations.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
    AuditValue(TerminationID,
     AuditDescriptor
     )

  TerminationID may be specific or wildcarded.  If the wildcard matches
  more than one TerminationID, all possible matches are attempted, with
  results reported for each one.  The order of attempts when multiple
  TerminationIDs match is not specified.  If a wildcarded response is
  requested, only one command return is generated, with the contents
  containing the union of the values of all Terminations matching the
  wildcard.  This convention may reduce the volume of data required to
  audit a group of Terminations.  Use of CHOOSE is an error.

  The appropriate descriptors, with the current values for the
  Termination, are returned from AuditValue.  Values appearing in
  multiple instances of a descriptor are defined to be alternate values
  supported, with each parameter in a descriptor considered
  independent.

  ObservedEvents returns a list of events in the EventBuffer.  If the
  ObservedEventsDescriptor is audited while a DigitMap is active, the
  returned ObservedEvents descriptor also includes a digit map
  completion event that shows the current dial string but does not show
  a Termination method.



Groves, et al.              Standards Track                    [Page 56]

RFC 3525                Gateway Control Protocol               June 2003


  EventBuffer returns the set of events and associated parameter values
  currently enabled in the EventBufferDescriptor.  PackagesDescriptor
  returns a list of packages realized by the Termination.
  DigitMapDescriptor returns the name or value of the current DigitMap
  for the Termination.  DigitMap requested in an AuditValue command
  with TerminationID ALL returns all DigitMaps in the gateway.
  Statistics returns the current values of all statistics being kept on
  the Termination.   Specifying an empty Audit descriptor results in
  only the TerminationID being returned.  This may be useful to get a
  list of TerminationIDs when used with wildcard.  Annexes A and B
  provide a special syntax for presenting such a list in condensed
  form, such that the AuditValue command tag does not have to be
  repeated for each TerminationID.

  AuditValue results depend on the Context, viz. specific, null, or
  wildcarded.  (Note that ContextID ALL does not include the null
  Context.)  The TerminationID may be specific, or wildcarded.

  The following are examples of what is returned in case the context
  and/or the termination is wildcarded and a wildcarded response has
  been specified.

  Assume that the gateway has 4 terminations: t1/1, t1/2, t2/1 and
  t2/2.  Assume that terminations t1/* have implemented packages aaa
  and bbb and that terminations t2/* have implemented packages ccc and
  ddd.  Assume that Context 1 has t1/1 and t2/1 in it and that Context
  2 has t1/2 and t2/2 in it.

  The command:

    Context=1{AuditValue=t1/1{Audit{Packages}}}

  Returns:

    Context=1{AuditValue=t1/1{Packages{aaa,bbb}}}

  The command:

    Context=*{AuditValue=t2/*{Audit{Packages}}}

  Returns:

    Context=1{AuditValue=t2/1{Packages{ccc,ddd}}},
    Context=2{AuditValue=t2/2{Packages{ccc,ddd}}}

  The command:

    Context=*{W-AuditValue=t1/*{Audit{Packages}}}



Groves, et al.              Standards Track                    [Page 57]

RFC 3525                Gateway Control Protocol               June 2003


  Returns:

    Context=*{W-AuditValue=t1/*{Packages{aaa,bbb}}}

  Note: A wildcard response may also be used for other commands such as
  Subtract.

  The following illustrates other information that can be obtained with
  the AuditValue Command:

  ContextID TerminationID Information Obtained

  Specific  wildcard      Audit of matching Terminations in a Context

  Specific  specific      Audit of a single Termination in a Context

  Null      Root          Audit of Media Gateway state and events

  Null      wildcard      Audit of all matching Terminations in the
                           null Context

  Null      specific      Audit of a single Termination outside of any
                           Context

  All       wildcard      Audit of all matching Terminations and the
                           Context to which they are associated

  All       Root          List of all ContextIds (the ContextID list
                           should be returned by using multiple action
                           replies, each containing a ContextID from
                           the list)

  All       Specific      (Non-null) ContextID in which the
                           Termination currently exists

















Groves, et al.              Standards Track                    [Page 58]

RFC 3525                Gateway Control Protocol               June 2003


7.2.6 AuditCapabilities

  The AuditCapabilities Command returns the possible values of
  properties, events, signals and statistics associated with
  Terminations.

    TerminationID
    [,MediaDescriptor]
    [,ModemDescriptor]
    [,MuxDescriptor]
    [,EventsDescriptor]
    [,SignalsDescriptor]
    [,ObservedEventsDescriptor]
    [,EventBufferDescriptor]
    [,StatisticsDescriptor]
     AuditCapabilities(TerminationID,
        AuditDescriptor
        )

  The appropriate descriptors, with the possible values for the
  Termination are returned from AuditCapabilities.  Descriptors may be
  repeated where there are multiple possible values.  If a wildcarded
  response is requested, only one command return is generated, with the
  contents containing the union of the values of all Terminations
  matching the wildcard.  This convention may reduce the volume of data
  required to audit a group of Terminations.

  Interpretation of what capabilities are requested for various values
  of ContextID and TerminationID is the same as in AuditValue.

  The EventsDescriptor returns the list of possible events on the
  Termination together with the list of all possible values for the
  EventsDescriptor Parameters.  EventBufferDescriptor returns the same
  information as EventsDescriptor.  The SignalsDescriptor returns the
  list of possible signals that could be applied to the Termination
  together with the list of all possible values for the Signals
  Parameters.  StatisticsDescriptor returns the names of the statistics
  being kept on the termination.  ObservedEventsDescriptor returns the
  names of active events on the Termination.  DigitMap and Packages are
  not legal in AuditCapability.











Groves, et al.              Standards Track                    [Page 59]

RFC 3525                Gateway Control Protocol               June 2003


  The following illustrates other information that can be obtained with
  the AuditCapabilties Command:

  ContextID TerminationID Information Obtained

  Specific  wildcard      Audit of matching Terminations in a Context

  Specific  specific      Audit of a single Termination in a Context

  Null      Root          Audit of MG state and events

  Null      wildcard      Audit of all matching Terminations in the
                           Null Context

  Null      specific      Audit of a single Termination outside of any
                           Context

  All       wildcard      Audit of all matching Terminations and the
                           Context to which they are associated

  All       Root          Same as for AuditValue

  All       Specific      Same as for AuditValue

7.2.7 Notify

  The Notify Command allows the Media Gateway to notify the Media
  Gateway Controller of events occurring within the Media Gateway.

    TerminationID
     Notify(TerminationID,
        ObservedEventsDescriptor,
        [ErrorDescriptor]
        )

  The TerminationID parameter specifies the Termination issuing the
  Notify Command.  The TerminationID shall be a fully qualified name.

  The ObservedEventsDescriptor contains the RequestID and a list of
  events that the Media Gateway detected in the order that they were
  detected.  Each event in the list is accompanied by parameters
  associated with the event and optionally an indication of the time
  that the event was detected.  Procedures for sending Notify commands
  with RequestID equal to 0 are for further study.

  Notify Commands with RequestID not equal to 0 shall occur only as the
  result of detection of an event specified by an Events descriptor
  which is active on the Termination concerned.



Groves, et al.              Standards Track                    [Page 60]

RFC 3525                Gateway Control Protocol               June 2003


  The RequestID returns the RequestID parameter of the EventsDescriptor
  that triggered the Notify Command.  It is used to correlate the
  notification with the request that triggered it.  The events in the
  list must have been requested via the triggering EventsDescriptor or
  embedded events descriptor unless the RequestID is 0 (which is for
  further study).

  The ErrorDescriptor may be sent in the Notify Command as a result of
  Error 518 - Event buffer full.

7.2.8 ServiceChange

  The ServiceChange Command allows the Media Gateway to notify the
  Media Gateway Controller that a Termination or group of Terminations
  is about to be taken out of service or has just been returned to
  service.  The Media Gateway Controller may indicate that
  Termination(s) shall be taken out of or returned to service.   The
  Media Gateway may notify the MGC that the capability of a Termination
  has changed.  It also allows a MGC to hand over control of a MG to
  another MGC.

  TerminationID,

    [ServiceChangeDescriptor]
     ServiceChange ( TerminationID,
        ServiceChangeDescriptor
        )

  The TerminationID parameter specifies the Termination(s) that are
  taken out of or returned to service.  Wildcarding of Termination
  names is permitted, with the exception that the CHOOSE mechanism
  shall not be used.  Use of the "Root" TerminationID indicates a
  ServiceChange affecting the entire Media Gateway.

  The ServiceChangeDescriptor contains the following parameters as
  required:

  -  ServiceChangeMethod
  -  ServiceChangeReason
  -  ServiceChangeDelay
  -  ServiceChangeAddress
  -  ServiceChangeProfile
  -  ServiceChangeVersion
  -  ServiceChangeMgcId
  -  TimeStamp






Groves, et al.              Standards Track                    [Page 61]

RFC 3525                Gateway Control Protocol               June 2003


  The ServiceChangeMethod parameter specifies the type of ServiceChange
  that will or has occurred:

  1) Graceful - indicates that the specified Terminations will be taken
     out of service after the specified ServiceChangeDelay; established
     connections are not yet affected, but the Media Gateway Controller
     should refrain from establishing new connections and should
     attempt to gracefully tear down existing connections on the
     Termination(s) affected by the serviceChange command.  The MG
     should set Termination serviceState at the expiry of
     ServiceChangeDelay or the removal of the Termination from an
     active Context (whichever is first), to "out of service".

  2) Forced - indicates that the specified Terminations were taken
     abruptly out of service and any established connections associated
     with them may be lost.  For non-Root terminations, the MGC is
     responsible for cleaning up the Context (if any) with which the
     failed Termination is associated.  At a minimum the Termination
     shall be subtracted from the Context.  The Termination
     serviceState should be "out of service".  For the root
     termination, the MGC can assume that all connections are lost on
     the MG and thus can consider that all the terminations have been
     subtracted.

  3) Restart - indicates that service will be restored on the specified
     Terminations after expiration of the ServiceChangeDelay.  The
     serviceState should be set to "inService" upon expiry of
     ServiceChangeDelay.

  4) Disconnected - always applied with the Root TerminationID,
     indicates that the MG lost communication with the MGC, but it was
     subsequently restored to the same MGC (possibly after trying other
     MGCs on a pre-provisioned list).  Since MG state may have changed,
     the MGC may wish to use the Audit command to resynchronize its
     state with the MG's.

  5) Handoff - sent from the MGC to the MG, this reason indicates that
     the MGC is going out of service and a new MGC association must be
     established.  Sent from the MG to the MGC, this indicates that the
     MG is attempting to establish a new association in accordance with
     a Handoff received from the MGC with which it was previously
     associated.

  6) Failover - sent from MG to MGC to indicate the primary MG is out
     of service and a secondary MG is taking over.  This serviceChange
     method is also sent from the MG to the MGC when the MG detects
     that MGC has failed.




Groves, et al.              Standards Track                    [Page 62]

RFC 3525                Gateway Control Protocol               June 2003


  7) Another value whose meaning is mutually understood between the MG
     and the MGC.

  The ServiceChangeReason parameter specifies the reason why the
  ServiceChange has or will occur.  It consists of an alphanumeric
  token (IANA registered) and, optionally, an explanatory string.

  The optional ServiceChangeAddress parameter specifies the address
  (e.g., IP port number for IP networks) to be used for subsequent
  communications.  It can be specified in the input parameter
  descriptor or the returned result descriptor.  ServiceChangeAddress
  and ServiceChangeMgcId parameters must not both be present in the
  ServiceChangeDescriptor or the ServiceChangeResultDescriptor.  The
  ServiceChangeAddress provides an address to be used within the
  Context of the association currently being negotiated, while the
  ServiceChangeMgcId provides an alternate address where the MG should
  seek to establish another association.  Note that the use of
  ServiceChangeAddress is not encouraged.  MGCs and MGs must be able to
  cope with the ServiceChangeAddress being either a full address or
  just a port number in the case of TCP transports.

  The optional ServiceChangeDelay parameter is expressed in seconds.
  If the delay is absent or set to zero, the delay value should be
  considered to be null.  In the case of a "graceful"
  ServiceChangeMethod, a null delay indicates that the Media Gateway
  Controller should wait for the natural removal of existing
  connections and should not establish new connections.  For "graceful"
  only, a null delay means the MG must not set serviceState "out of
  service" until the Termination is in the null Context.

  The optional ServiceChangeProfile parameter specifies the Profile (if
  any) of the protocol supported.  The ServiceChangeProfile includes
  the version of the profile supported.

  The optional ServiceChangeVersion parameter contains the protocol
  version and is used if protocol version negotiation occurs (see
  11.3).

  The optional TimeStamp parameter specifies the actual time as kept by
  the sender.  As such, it is not necessarily absolute time according
  to, for example, a local time zone - it merely establishes an
  arbitrary starting time against which all future timestamps
  transmitted by a sender during this association shall be compared.
  It can be used by the responder to determine how its notion of time
  differs from that of its correspondent.  TimeStamp is sent with a
  precision of hundredths of a second.





Groves, et al.              Standards Track                    [Page 63]

RFC 3525                Gateway Control Protocol               June 2003


  The optional Extension parameter may contain any value whose meaning
  is mutually understood by the MG and MGC.

  A ServiceChange Command specifying the "Root" for the TerminationID
  and ServiceChangeMethod equal to Restart is a registration command by
  which a Media Gateway announces its existence to the Media Gateway
  Controller.  The Media Gateway may also announce a registration
  command by specifying the "Root" for the TerminationID and
  ServiceChangeMethod equal to Failover when the MG detects MGC
  failures.  The Media Gateway is expected to be provisioned with the
  name of one primary and optionally some number of alternate Media
  Gateway Controllers.  Acknowledgement of the ServiceChange Command
  completes the registration process, except when the MGC has returned
  an alternative ServiceChangeMgcId as described in the following
  paragraph.  The MG may specify the transport ServiceChangeAddress to
  be used by the MGC for sending messages in the ServiceChangeAddress
  parameter in the input ServiceChangeDescriptor.  The MG may specify
  an address in the ServiceChangeAddress parameter of the ServiceChange
  request, and the MGC may also do so in the ServiceChange reply.  In
  either case, the recipient must use the supplied address as the
  destination for all subsequent transaction requests within the
  association.  At the same time, as indicated in clause 9, transaction
  replies and pending indications must be sent to the address from
  which the corresponding requests originated.  This must be done even
  if it implies extra messaging because commands and responses cannot
  be packed together.  The TimeStamp parameter shall be sent with a
  registration command and its response.

  The Media Gateway Controller may return a ServiceChangeMgcId
  parameter that describes the Media Gateway Controller that should
  preferably be contacted for further service by the Media Gateway.  In
  this case the Media Gateway shall reissue the ServiceChange command
  to the new Media Gateway Controller.  The MGC specified in a
  ServiceChangeMgcId, if provided, shall be contacted before any
  further alternate MGCs.  On a HandOff message from MGC to MG, the
  ServiceChangeMgcId is the new MGC that will take over from the
  current MGC.

  The return from ServiceChange is empty except when the Root
  terminationID is used.  In that case it includes the following
  parameters as required:

  -  ServiceChangeAddress, if the responding MGC wishes to specify a
     new destination for messages from the MG for the remainder of the
     association;

  -  ServiceChangeMgcId, if the responding MGC does not wish to sustain
     an association with the MG;



Groves, et al.              Standards Track                    [Page 64]

RFC 3525                Gateway Control Protocol               June 2003


  -  ServiceChangeProfile, if the responder wishes to negotiate the
     profile to be used for the association;

  -  ServiceChangeVersion, if the responder wishes to negotiate the
     version of the protocol to be used for the association.

  The following ServiceChangeReasons are defined.  This list may be
  extended by an IANA registration as outlined in 13.3.

     900 Service Restored
     901 Cold Boot
     902 Warm Boot
     903 MGC Directed Change
     904 Termination malfunctioning
     905 Termination taken out of service
     906 Loss of lower layer connectivity (e.g., downstream sync)
     907 Transmission Failure
     908 MG Impending Failure
     909 MGC Impending Failure
     910 Media Capability Failure
     911 Modem Capability Failure
     912 Mux Capability Failure
     913 Signal Capability Failure
     914 Event Capability Failure
     915 State Loss

7.2.9 Manipulating and Auditing Context Attributes

  The commands of the protocol as discussed in the preceding subclauses
  apply to Terminations.  This subclause specifies how Contexts are
  manipulated and audited.

  Commands are grouped into actions (see clause 8).  An action applies
  to one Context.  In addition to commands, an action may contain
  Context manipulation and auditing instructions.

  An action request sent to a MG may include a request to audit
  attributes of a Context.  An action may also include a request to
  change the attributes of a Context.

  The Context properties that may be included in an action reply are
  used to return information to a MGC.  This can be information
  requested by an audit of Context attributes or details of the effect
  of manipulation of a Context.







Groves, et al.              Standards Track                    [Page 65]

RFC 3525                Gateway Control Protocol               June 2003


  If a MG receives an action which contains both a request to audit
  context attributes and a request to manipulate those attributes, the
  response SHALL include the values of the attributes after processing
  the manipulation request.

7.2.10   Generic Command Syntax

  The protocol can be encoded in a binary format or in a text format.
  MGCs should support both encoding formats.  MGs may support both
  formats.

  The protocol syntax for the binary format of the protocol is defined
  in Annex A.  Annex C specifies the encoding of the Local and Remote
  descriptors for use with the binary format.

  A complete ABNF of the text encoding of the protocol per RFC 2234 is
  given in Annex B.  SDP is used as the encoding of the Local and
  Remote descriptors for use with the text encoding as modified in
  7.1.8.

7.3   Command Error Codes

  Errors consist of an IANA registered error code and an explanatory
  string.  Sending the explanatory string is optional.  Implementations
  are encouraged to append diagnostic information to the end of the
  string.

  When a MG reports an error to a MGC, it does so in an error
  descriptor.  An error descriptor consists of an error code and
  optionally the associated explanatory string.

  H.248.8 contains the error codes supported by Recommendations in the
  H.248 sub-series.

8  Transactions

  Commands between the Media Gateway Controller and the Media Gateway
  are grouped into Transactions, each of which is identified by a
  TransactionID.  Transactions consist of one or more Actions.  An
  Action consists of a non-empty series of Commands, Context property
  modifications, or Context property audits that are limited to
  operating within a single Context.  Consequently, each Action
  typically specifies a ContextID.  However, there are two
  circumstances where a specific ContextID is not provided with an
  Action.  One is the case of modification of a Termination outside of
  a Context.  The other is where the controller requests the gateway to
  create a new Context.  Figure 8 is a graphic representation of the
  Transaction, Action and Command relationships.



Groves, et al.              Standards Track                    [Page 66]

RFC 3525                Gateway Control Protocol               June 2003


     +----------------------------------------------------------+
     | Transaction x                                            |
     |  +----------------------------------------------------+  |
     |  | Action 1                                           |  |
     |  | +---------+  +---------+  +---------+  +---------+ |  |
     |  | | Command |  | Command |  | Command |  | Command | |  |
     |  | |    1    |  |    2    |  |    3    |  |    4    | |  |
     |  | +---------+  +---------+  +---------+  +---------+ |  |
     |  +----------------------------------------------------+  |
     |                                                          |
     |  +----------------------------------------------------+  |
     |  | Action 2                                           |  |
     |  | +---------+                                        |  |
     |  | | Command |                                        |  |
     |  | |    1    |                                        |  |
     |  | +---------+                                        |  |
     |  +----------------------------------------------------+  |
     |                                                          |
     |  +----------------------------------------------------+  |
     |  | Action 3                                           |  |
     |  | +---------+  +---------+  +---------+              |  |
     |  | | Command |  | Command |  | Command |              |  |
     |  | |    1    |  |    2    |  |    3    |              |  |
     |  | +---------+  +---------+  +---------+              |  |
     |  +----------------------------------------------------+  |
     +----------------------------------------------------------+

              Figure 8: Transactions, Actions and Commands

  Transactions are presented as TransactionRequests.  Corresponding
  responses to a TransactionRequest are received in a single reply,
  possibly preceded by a number of TransactionPending messages (see
  8.2.3).

  Transactions guarantee ordered Command processing.  That is, Commands
  within a Transaction are executed sequentially.  Ordering of
  Transactions is NOT guaranteed - transactions may be executed in any
  order, or simultaneously.

  At the first failing Command in a Transaction, processing of the
  remaining Commands in that Transaction stops.  If a command contains
  a wildcarded TerminationID, the command is attempted with each of the
  actual TerminationIDs matching the wildcard.  A response within the
  TransactionReply is included for each matching TerminationID, even if
  one or more instances generated an error.  If any TerminationID
  matching a wildcard results in an error when executed, any commands
  following the wildcarded command are not attempted.




Groves, et al.              Standards Track                    [Page 67]

RFC 3525                Gateway Control Protocol               June 2003


  Commands may be marked as "Optional" which can override this
  behaviour - if a command marked as Optional results in an error,
  subsequent commands in the Transaction will be executed.  If a
  command fails, the MG shall as far as possible restore the state that
  existed prior to the attempted execution of the command before
  continuing with command processing.

  A TransactionReply includes the results for all of the Commands in
  the corresponding TransactionRequest.  The TransactionReply includes
  the return values for the Commands that were executed successfully,
  and the Command and error descriptor for any Command that failed.

  TransactionPending is used to periodically notify the receiver that a
  Transaction has not completed yet, but is actively being processed.

  Applications SHOULD implement an application level timer per
  transaction.  Expiration of the timer should cause a retransmission
  of the request.  Receipt of a Reply should cancel the timer.  Receipt
  of Pending should restart the timer.

8.1   Common parameters

8.1.1 Transaction Identifiers

  Transactions are identified by a TransactionID, which is assigned by
  sender and is unique within the scope of the sender.  A response
  containing an error descriptor to indicate that the TransactionID is
  missing in a request shall use TransactionID 0 in the corresponding
  TransactionReply.

8.1.2 Context Identifiers

  Contexts are identified by a ContextID, which is assigned by the
  Media Gateway and is unique within the scope of the Media Gateway.
  The Media Gateway Controller shall use the ContextID supplied by the
  Media Gateway in all subsequent Transactions relating to that
  Context.  The protocol makes reference to a distinguished value that
  may be used by the Media Gateway Controller when referring to a
  Termination that is currently not associated with a Context, namely
  the null ContextID.

  The CHOOSE wildcard is used to request that the Media Gateway create
  a new Context.

  The MGC may use the ALL wildcard to address all Contexts on the MG.
  The null Context is not included when the ALL wildcard is used.





Groves, et al.              Standards Track                    [Page 68]

RFC 3525                Gateway Control Protocol               June 2003


  The MGC shall not use partially specified ContextIDs containing the
  CHOOSE or ALL wildcards.

8.2   Transaction Application Programming Interface

  Following is an Application Programming Interface (API) describing
  the Transactions of the protocol.  This API is shown to illustrate
  the Transactions and their parameters and is not intended to specify
  implementation (e.g., via use of blocking function calls).  It will
  describe the input parameters and return values expected to be used
  by the various Transactions of the protocol from a very high level.
  Transaction syntax and encodings are specified in later subclauses.

8.2.1 TransactionRequest

  The TransactionRequest is invoked by the sender.  There is one
  Transaction per request invocation.  A request contains one or more
  Actions, each of which specifies its target Context and one or more
  Commands per Context.

    TransactionRequest(TransactionId {
        ContextID {Command ... Command},
           . . .
        ContextID {Command ... Command } })

  The TransactionID parameter must specify a value for later
  correlation with the TransactionReply or TransactionPending response
  from the receiver.

  The ContextID parameter must specify a value to pertain to all
  Commands that follow up to either the next specification of a
  ContextID parameter or the end of the TransactionRequest, whichever
  comes first.

  The Command parameter represents one of the Commands mentioned in 7.2
  (Command Application Programming Interface).

8.2.2 TransactionReply

  The TransactionReply is invoked by the receiver.  There is one reply
  invocation per transaction.  A reply contains one or more Actions,
  each of which must specify its target Context and one or more
  Responses per Context.  The TransactionReply is invoked by the
  responder when it has processed the TransactionRequest.







Groves, et al.              Standards Track                    [Page 69]

RFC 3525                Gateway Control Protocol               June 2003


  A TransactionRequest has been processed:

  -  when all actions in that TransactionRequest have been processed;
     or

  -  when an error is encountered in processing that
     TransactionRequest, except when the error is in an optional
     command.

  A command has been processed when all descriptors in that command
  have been processed.

  A SignalsDescriptor is considered to have been processed when it has
  been established that the descriptor is syntactically valid, the
  requested signals are supported and they have been queued to be
  applied.

  An EventsDescriptor or EventBufferDescriptor is considered to have
  been processed when it has been established that the descriptor is
  syntactically valid, the requested events can be observed, any
  embedded signals can be generated, any embedded events can be
  detected, and the MG has been brought into a state in which the
  events will be detected.

    TransactionReply(TransactionID {
        ContextID { Response ... Response },
           . . .
        ContextID { Response ... Response } })

  The TransactionID parameter must be the same as that of the
  corresponding TransactionRequest.

  The ContextID parameter must specify a value to pertain to all
  Responses for the action.  The ContextID may be specific, all or
  null.

  Each of the Response parameters represents a return value as
  mentioned in 7.2, or an error descriptor if the command execution
  encountered an error.  Commands after the point of failure are not
  processed and, therefore, Responses are not issued for them.

  An exception to this occurs if a command has been marked as optional
  in the Transaction request.  If the optional command generates an
  error, the transaction still continues to execute, so the Reply
  would, in this case, have Responses after an Error.

  Section 7.1.19 Error Descriptor specifies the generation of error
  descriptors.  The text below discusses several individual cases.



Groves, et al.              Standards Track                    [Page 70]

RFC 3525                Gateway Control Protocol               June 2003


  If the receiver encounters an error in processing a ContextID, the
  requested Action response will consist of the Context ID and a single
  error descriptor, 422 - Syntax Error in Action.

  If the receiver encounters an error such that it cannot determine a
  legal Action, it will return a TransactionReply consisting of the
  TransactionID and a single error descriptor, 422 - Syntax Error in
  Action.  If the end of an action cannot be reliably determined but
  one or more commands can be parsed, it will process them and then
  send 422 - Syntax Error in Action as the last action for the
  transaction.  If the receiver encounters an error such that is cannot
  determine a legal Transaction, it will return a TransactionReply with
  a null TransactionID and a single error descriptor (403 - Syntax
  Error in TransactionRequest).

  If the end of a transaction cannot be reliably determined and one or
  more Actions can be parsed, it will process them and then return 403
  - Syntax Error in Transaction as the last action reply for the
  transaction.  If no Actions can be parsed, it will return 403 -
  Syntax Error in TransactionRequest as the only reply.

  If the terminationID cannot be reliably determined, it will send 442
  - Syntax Error in Command as the action reply.

  If the end of a command cannot be reliably determined, it will return
  442 - Syntax Error in Command as the reply to the last action it can
  parse.

8.2.3 TransactionPending

  The receiver invokes the TransactionPending.  A TransactionPending
  indicates that the Transaction is actively being processed, but has
  not been completed.  It is used to prevent the sender from assuming
  the TransactionRequest was lost where the Transaction will take some
  time to complete.

    TransactionPending(TransactionID { } )

  The TransactionID parameter must be the same as that of the
  corresponding TransactionRequest.  A property of root
  (normalMGExecutionTime) is settable by the MGC to indicate the
  interval within which the MGC expects a response to any transaction
  from the MG.  Another property (normalMGCExecutionTime) is settable
  by the MGC to indicate the interval within which the MG should expect
  a response to any transaction from the MGC.  Senders may receive more
  than one TransactionPending for a command.  If a duplicate request is





Groves, et al.              Standards Track                    [Page 71]

RFC 3525                Gateway Control Protocol               June 2003


  received when pending, the responder may send a duplicate pending
  immediately, or continue waiting for its timer to trigger another
  TransactionPending.

8.3   Messages

  Multiple Transactions can be concatenated into a Message.  Messages
  have a header, which includes the identity of the sender.  The
  Message Identifier (MID) of a message is set to a provisioned name
  (e.g., domain address/domain name/device name) of the entity
  transmitting the message.  Domain name is a suggested default.  An
  H.248.1 entity (MG/MGC) must consistently use the same MID in all
  messages it originates for the duration of control association with
  the peer (MGC/MG).

  Every Message contains a Version Number identifying the version of
  the protocol the message conforms to.  Versions consist of one or two
  digits, beginning with version 1 for the present version of the
  protocol.

  The transactions in a message are treated independently.  There is no
  order implied; there is no application or protocol acknowledgement of
  a message.  A message is essentially a transport mechanism.  For
  example, message X containing transaction requests A, B, and C may be
  responded to with message Y containing replies to A and C and message
  Z containing the reply to B.  Likewise, message L containing request
  D and message M containing request E may be responded to with message
  N containing replies to both D and E.

9  Transport

  The transport mechanism for the protocol should allow the reliable
  transport of transactions between a MGC and MG.  The transport shall
  remain independent of what particular commands are being sent and
  shall be applicable to all application states.  There are several
  transports defined for the protocol, which are defined in Annexes to
  this RFC and other Recommendations of the H.248
  sub-series.  Additional Transports may be defined as additional

  Recommendations of the H.248 sub-series.  For transport of the
  protocol over IP, MGCs shall implement both TCP and UDP/ALF, a MG
  shall implement TCP or UDP/ALF or both.

  The MG is provisioned with a name or address (such as DNS name or IP
  address) of a primary and zero or more secondary MGCs (see 7.2.8)
  that is the address the MG uses to send messages to the MGC.  If TCP
  or UDP is used as the protocol transport and the port to which the
  initial ServiceChange request is to be sent is not otherwise known,



Groves, et al.              Standards Track                    [Page 72]

RFC 3525                Gateway Control Protocol               June 2003


  that request should be sent to the default port number for the
  protocol.  This port number is 2944 for text-encoded operation or
  2945 for binary-encoded operation, for either UDP or TCP.  The MGC
  receives the message containing the ServiceChange request from the MG
  and can determine the MG's address from it.  As described in 7.2.8,
  either the MG or the MGC may supply an address in the
  ServiceChangeAddress parameter to which subsequent transaction
  requests must be addressed, but responses (including the response to
  the initial ServiceChange request) must always be sent back to the
  address which was the source of the corresponding request.  For
  example, in IP networks, this is the source address in the IP header
  and the source port number in the TCP/UDP/SCTP header.

9.1   Ordering of Commands

  This RFC does not mandate that the underlying transport protocol
  guarantees the sequencing of transactions sent to an entity.  This
  property tends to maximize the timeliness of actions, but it has a
  few drawbacks.  For example:

  -  Notify commands may be delayed and arrive at the MGC after the
     transmission of a new command changing the EventsDescriptor.

  -  If a new command is transmitted before a previous one is
     acknowledged, there is no guarantee that prior command will be
     executed before the new one.

  Media Gateway Controllers that want to guarantee consistent operation
  of the Media Gateway may use the following rules.  These rules are
  with respect to commands that are in different transactions.
  Commands that are in the same transaction are executed in order (see
  clause 8).

  1) When a Media Gateway handles several Terminations, commands
     pertaining to the different Terminations may be sent in parallel,
     for example following a model where each Termination (or group of
     Terminations) is controlled by its own process or its own thread.

  2) On a Termination, there should normally be at most one outstanding
     command (Add or Modify or Move), unless the outstanding commands
     are in the same transaction.  However, a Subtract command may be
     issued at any time.  In consequence, a Media Gateway may sometimes
     receive a Modify command that applies to a previously subtracted
     Termination.  Such commands should be ignored, and an error code
     should be returned.






Groves, et al.              Standards Track                    [Page 73]

RFC 3525                Gateway Control Protocol               June 2003


  3) For transports that do not guarantee in-sequence delivery of
     messages (i.e., UDP), there should normally be on a given
     Termination at most one outstanding Notify command at any time.

  4) In some cases, an implicitly or explicitly wildcarded Subtract
     command that applies to a group of Terminations may step in front
     of a pending Add command.  The Media Gateway Controller should
     individually delete all Terminations for which an Add command was
     pending at the time of the global Subtract command.  Also, new Add
     commands for Terminations named by the wildcarding (or implied in
     a Multiplex descriptor) should not be sent until the wildcarded
     Subtract command is acknowledged.

  5) AuditValue and AuditCapability are not subject to any sequencing.

  6) ServiceChange shall always be the first command sent by a MG as
     defined by the restart procedure.  Any other command or response
     must be delivered after this ServiceChange command.

  These rules do not affect the command responder, which should always
  respond to commands.

9.2   Protection against Restart Avalanche

  In the event that a large number of Media Gateways are powered on
  simultaneously and they were to all initiate a ServiceChange
  transaction, the Media Gateway Controller would very likely be
  swamped, leading to message losses and network congestion during the
  critical period of service restoration.  In order to prevent such
  avalanches, the following behaviour is suggested:

  1) When a Media Gateway is powered on, it should initiate a restart
     timer to a random value, uniformly distributed between 0 and a
     maximum waiting delay (MWD).  Care should be taken to avoid
     synchronicity of the random number generation between multiple
     Media Gateways that would use the same algorithm.

  2) The Media Gateway should then wait for either the end of this
     timer or the detection of a local user activity, such as for
     example an off-hook transition on a residential Media Gateway.

  3) When the timer elapses, or when an activity is detected, the Media
     Gateway should initiate the restart procedure.

  The restart procedure simply requires the MG to guarantee that the
  first message that the Media Gateway Controller sees from this MG is
  a ServiceChange message informing the Media Gateway Controller about
  the restart.



Groves, et al.              Standards Track                    [Page 74]

RFC 3525                Gateway Control Protocol               June 2003


    NOTE - The value of MWD is a configuration parameter that depends
    on the type of the Media Gateway.  The following reasoning may be
    used to determine the value of this delay on residential gateways.

  Media Gateway Controllers are typically dimensioned to handle the
  peak hour traffic load, during which, in average, 10% of the lines
  will be busy, placing calls whose average duration is typically 3
  minutes.  The processing of a call typically involves 5 to 6 Media
  Gateway Controller transactions between each Media Gateway and the
  Media Gateway Controller.  This simple calculation shows that the
  Media Gateway Controller is expected to handle 5 to 6 transactions
  for each Termination, every 30 minutes on average, or, to put it
  otherwise, about one transaction per Termination every 5 to 6 minutes
  on average.  This suggests that a reasonable value of MWD for a
  residential gateway would be 10 to 12 minutes.  In the absence of
  explicit configuration, residential gateways should adopt a value of
  600 seconds for MWD.

  The same reasoning suggests that the value of MWD should be much
  shorter for trunking gateways or for business gateways, because they
  handle a large number of Terminations, and also because the usage
  rate of these Terminations is much higher than 10% during the peak
  busy hour, a typical value being 60%.  These Terminations, during the
  peak hour, are this expected to contribute about one transaction per
  minute to the Media Gateway Controller load.  A reasonable algorithm
  is to make the value of MWD per "trunk" Termination six times shorter
  than the MWD per residential gateway, and also inversely proportional
  to the number of Terminations that are being restarted.  For example
  MWD should be set to 2.5 seconds for a gateway that handles a T1
  line, or to 60 milliseconds for a gateway that handles a T3 line.

10 Security Considerations

  This clause covers security when using the protocol in an IP
  environment.

10.1  Protection of Protocol Connections

  A security mechanism is clearly needed to prevent unauthorized
  entities from using the protocol defined in this RFC for setting up
  unauthorized calls or interfering with authorized calls.  The
  security mechanism for the protocol when transported over IP networks
  is IPsec [RFC 2401 to RFC 2411].

  The AH header [RFC 2402] affords data origin authentication,
  connectionless integrity and optional anti-replay protection of
  messages passed between the MG and the MGC.  The ESP header [RFC
  2406] provides confidentiality of messages, if desired.  For



Groves, et al.              Standards Track                    [Page 75]

RFC 3525                Gateway Control Protocol               June 2003


  instance, the ESP encryption service should be requested if the
  session descriptions are used to carry session keys, as defined in
  SDP.

  Implementations of the protocol defined in this RFC employing the ESP
  header SHALL comply with section 5 of [RFC 2406], which defines a
  minimum set of algorithms for integrity checking and encryption.
  Similarly, implementations employing the AH header SHALL comply with
  section 5 of [RFC 2402], which defines a minimum set of algorithms
  for integrity checking using manual keys.

  Implementations SHOULD use IKE [RFC 2409] to permit more robust
  keying options.  Implementations employing IKE SHOULD support
  authentication with RSA signatures and RSA public key encryption.

10.2  Interim AH scheme

  Implementation of IPsec requires that the AH or ESP header be
  inserted immediately after the IP header.  This cannot be easily done
  at the application level.  Therefore, this presents a deployment
  problem for the protocol defined in this RFC where the underlying
  network implementation does not support IPsec.

  As an interim solution, an optional AH header is defined within the
  H.248.1 protocol header.  The header fields are exactly those of the
  SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC 2402].  The
  semantics of the header fields are the same as the "transport mode"
  of [RFC 2402], except for the calculation of the Integrity Check
  Value (ICV).  In IPsec, the ICV is calculated over the entire IP
  packet including the IP header.  This prevents spoofing of the IP
  addresses.  To retain the same functionality, the ICV calculation
  should be performed across all the transactions (concatenated) in the
  message prepended by a synthesized IP header consisting of a 32-bit
  source IP address, a 32-bit destination address and a 16-bit UDP
  destination port encoded as 20 hex digits.  When the interim AH
  mechanism is employed when TCP is the transport Layer, the UDP Port
  above becomes the TCP port, and all other operations are the same.

  Implementations of the H.248.1 protocol SHALL implement IPsec where
  the underlying operating system and the transport network supports
  IPsec.  Implementations of the protocol using IPv4 SHALL implement
  the interim AH scheme.  However, this interim scheme SHALL NOT be
  used when the underlying network layer supports IPsec.  IPv6
  implementations are assumed to support IPsec and SHALL NOT use the
  interim AH scheme.






Groves, et al.              Standards Track                    [Page 76]

RFC 3525                Gateway Control Protocol               June 2003


  All implementations of the interim AH mechanism SHALL comply with
  section 5 of RFC 2402 which defines a minimum set of algorithms for
  integrity checking using manual keys.

  The interim AH interim scheme does not provide protection against
  eavesdropping, thus forbidding third parties from monitoring the
  connections set up by a given Termination.  Also, it does not provide
  protection against replay attacks.  These procedures do not
  necessarily protect against denial of service attacks by misbehaving
  MGs or misbehaving MGCs.  However, they will provide an
  identification of these misbehaving entities, which should then be
  deprived of their authorization through maintenance procedures.

10.3  Protection of Media Connections

  The protocol allows the MGC to provide MGs with "session keys" that
  can be used to encrypt the audio messages, protecting against
  eavesdropping.

  A specific problem of packet networks is "uncontrolled barge-in".
  This attack can be performed by directing media packets to the IP
  address and UDP port used by a connection.  If no protection is
  implemented, the packets must be decompressed and the signals must be
  played on the "line side".

  A basic protection against this attack is to only accept packets from
  known sources, checking for example that the IP source address and
  UDP source port match the values announced in the Remote descriptor.
  This has two inconveniences: it slows down connection establishment
  and it can be fooled by source spoofing:

  -  To enable the address-based protection, the MGC must obtain the
     remote session description of the egress MG and pass it to the
     ingress MG.  This requires at least one network round trip, and
     leaves us with a dilemma: either allow the call to proceed without
     waiting for the round trip to complete, and risk for example,
     "clipping" a remote announcement, or wait for the full round trip
     and settle for slower call-set up procedures.

  -  Source spoofing is only effective if the attacker can obtain valid
     pairs of source destination addresses and ports, for example by
     listening to a fraction of the traffic.  To fight source spoofing,
     one could try to control all access points to the network.  But
     this is in practice very hard to achieve.







Groves, et al.              Standards Track                    [Page 77]

RFC 3525                Gateway Control Protocol               June 2003


  An alternative to checking the source address is to encrypt and
  authenticate the packets, using a secret key that is conveyed during
  the call set-up procedure.  This will not slow down the call set-up,
  and provides strong protection against address spoofing.

11 MG-MGC Control Interface

  The control association between MG and MGC is initiated at MG cold
  start, and announced by a ServiceChange message, but can be changed
  by subsequent events, such as failures or manual service events.
  While the protocol does not have an explicit mechanism to support
  multiple MGCs controlling a physical MG, it has been designed to
  support the multiple logical MG (within a single physical MG) that
  can be associated with different MGCs.

11.1  Multiple Virtual MGs

  A physical Media Gateway may be partitioned into one or more Virtual
  MGs.  A virtual MG consists of a set of statically partitioned
  physical Terminations and/or sets of ephemeral Terminations.  A
  physical Termination is controlled by one MGC.  The model does not
  require that other resources be statically allocated, just
  Terminations.  The mechanism for allocating Terminations to virtual
  MGs is a management method outside the scope of the protocol.  Each
  of the virtual MGs appears to the MGC as a complete MG client.

  A physical MG may have only one network interface, which must be
  shared across virtual MGs.  In such a case, the packet/cell side
  Termination is shared.  It should be noted however, that in use, such
  interfaces require an ephemeral instance of the Termination to be
  created per flow, and thus sharing the Termination is
  straightforward.  This mechanism does lead to a complication, namely
  that the MG must always know which of its controlling MGCs should be
  notified if an event occurs on the interface.

  In normal operation, the Virtual MG will be instructed by the MGC to
  create network flows (if it is the originating side), or to expect
  flow requests (if it is the terminating side), and no confusion will
  arise.  However, if an unexpected event occurs, the Virtual MG must
  know what to do with respect to the physical resources it is
  controlling.

  If recovering from the event requires manipulation of a physical
  interface's state, only one MGC should do so.  These issues are
  resolved by allowing any of the MGCs to create EventsDescriptors to
  be notified of such events, but only one MGC can have read/write





Groves, et al.              Standards Track                    [Page 78]

RFC 3525                Gateway Control Protocol               June 2003


  access to the physical interface properties; all other MGCs have
  read-only access.  The management mechanism is used to designate
  which MGC has read/write capability, and is designated the Master
  MGC.

  Each virtual MG has its own Root Termination.  In most cases the
  values for the properties of the Root Termination are independently
  settable by each MGC.  Where there can only be one value, the
  parameter is read-only to all but the Master MGC.

  ServiceChange may only be applied to a Termination or set of
  Terminations partitioned to the Virtual MG or created (in the case of
  ephemeral Terminations) by that Virtual MG.

11.2  Cold start

  A MG is pre-provisioned by a management mechanism outside the scope
  of this protocol with a primary and (optionally) an ordered list of
  secondary MGCs.  Upon a cold start of the MG, it will issue a
  ServiceChange command with a "Restart" method, on the Root
  Termination to its primary MGC.  If the MGC accepts the MG, it sends
  a Transaction Reply not including a ServiceChangeMgcId parameter.  If
  the MGC does not accept the MG's registration, it sends a Transaction
  Reply, providing the address of an alternate MGC to be contacted by
  including a ServiceChangeMgcId parameter.

  If the MG receives a Transaction Reply that includes a
  ServiceChangeMgcId parameter, it sends a ServiceChange to the MGC
  specified in the ServiceChangeMgcId.  It continues this process until
  it gets a controlling MGC to accept its registration, or it fails to
  get a reply.  Upon failure to obtain a reply, either from the primary
  MGC, or a designated successor, the MG tries its pre-provisioned
  secondary MGCs, in order.  If the MG is unable to establish a control
  relationship with any MGC, it shall wait a random amount of time as
  described in 9.2 and then start contacting its primary, and if
  necessary, its secondary MGCs again.

  It is possible that the reply to a ServiceChange with Restart will be
  lost, and a command will be received by the MG prior to the receipt
  of the ServiceChange response.  The MG shall issue Error 505 -
  Command Received before a ServiceChange Reply has been received.

11.3  Negotiation of protocol version

  The first ServiceChange command from a MG shall contain the version
  number of the protocol supported by the MG in the
  ServiceChangeVersion parameter.  Upon receiving such a message, if
  the MGC supports only a lower version, then the MGC shall send a



Groves, et al.              Standards Track                    [Page 79]

RFC 3525                Gateway Control Protocol               June 2003


  ServiceChangeReply with the lower version and thereafter all the
  messages between MG and MGC shall conform to the lower version of the
  protocol.  If the MG is unable to comply and it has established a
  transport connection to the MGC, it should close that connection.  In
  any event, it should reject all subsequent requests from the MGC with
  error 406 - Version Not Supported.

  If the MGC supports a higher version than the MG but is able to
  support the lower version proposed by the MG, it shall send a
  ServiceChangeReply with the lower version and thereafter all the
  messages between MG and MGC shall conform to the lower version of the
  protocol.  If the MGC is unable to comply, it shall reject the
  association, with error 406 - Version Not Supported.

  Protocol version negotiation may also occur at "handoff" and
  "failover" ServiceChanges.

  When extending the protocol with new versions, the following rules
  should be followed:

  1) Existing protocol elements, i.e., procedures, parameters,
     descriptor, property, values, should not be changed unless a
     protocol error needs to be corrected or it becomes necessary to
     change the operation of the service that is being supported by the
     protocol.

  2) The semantics of a command, a parameter, a descriptor, a property,
     or a value should not be changed.

  3) Established rules for formatting and encoding messages and
     parameters should not be modified.

  4) When information elements are found to be obsolete they can be
     marked as not used.  However, the identifier for that information
     element will be marked as reserved.  In that way it can not be
     used in future versions.

11.4  Failure of a MG

  If a MG fails, but is capable of sending a message to the MGC, it
  sends a ServiceChange with an appropriate method (graceful or forced)
  and specifies the Root TerminationID.  When it returns to service, it
  sends a ServiceChange with a "Restart" method.

  Allowing the MGC to send duplicate messages to both MGs accommodates
  pairs of MGs that are capable of redundant failover of one of the
  MGs.  Only the Working MG shall accept or reject transactions.  Upon
  failover, the primary MG sends a ServiceChange command with a



Groves, et al.              Standards Track                    [Page 80]

RFC 3525                Gateway Control Protocol               June 2003


  "Failover" method and a "MG Impending Failure" reason.  The MGC then
  uses the secondary MG as the active MG.  When the error condition is
  repaired, the Working MG can send a "ServiceChange" with a "Restart"
  method.

    Note: Redundant failover MGs require a reliable transport, because
    the protocol provides no means for a secondary MG running ALF to
    acknowledge messages sent from the MGC.

11.5  Failure of an MGC

  If the MG detects a failure of its controlling MGC, it attempts to
  contact the next MGC on its pre-provisioned list.  It starts its
  attempts at the beginning (primary MGC), unless that was the MGC that
  failed, in which case it starts at its first secondary MGC.  It sends
  a ServiceChange message with a "Failover" method and a "MGC Impending
  Failure" reason.  If the MG is unable to establish a control
  relationship with any MGC, it shall wait a random amount of time as
  described in section 9.2 and then start again contacting its primary,
  and (if necessary) its secondary MGCs.  When contacting its
  previously controlling MGC, the MG sends the ServiceChange message
  with "Disconnected" method.

  In partial failure, or for manual maintenance reasons, an MGC may
  wish to direct its controlled MGs to use a different MGC.  To do so,
  it sends a ServiceChange method to the MG with a "HandOff" method,
  and its designated replacement in ServiceChangeMgcId.  If "HandOff"
  is supported, the MG shall send a ServiceChange message with a
  "Handoff" method and a "MGC directed change" reason to the designated
  MGC.  If it fails to get a reply from the designated MGC, the MG
  shall behave as if its MGC failed, and start contacting secondary
  MGCs as specified in the previous paragraph.  If the MG is unable to
  establish a control relationship with any MGC, it shall wait a random
  amount of time as described in 9.2 and then start contacting its
  primary, and if necessary, its secondary MGCs again.

  No recommendation is made on how the MGCs involved in the Handoff
  maintain state information; this is considered to be out of scope of
  this RFC.  The MGC and MG may take the following steps when Handoff
  occurs.  When the MGC initiates a HandOff, the handover should be
  transparent to Operations on the Media Gateway.  Transactions can be
  executed in any order, and could be in progress when the
  ServiceChange is executed.  Accordingly, commands in progress
  continue and replies to all commands from the original MGC must be
  sent to the transport address from which they were sent.  If the
  service relationship with the sending MGC has ended, the replies
  should be discarded.  The MG may receive outstanding transaction
  replies from the new MGC.  No new messages shall be sent to the new



Groves, et al.              Standards Track                    [Page 81]

RFC 3525                Gateway Control Protocol               June 2003


  MGC until the control association is established.  Repeated
  transaction requests shall be directed to the new MGC.  The MG shall
  maintain state on all Terminations and Contexts.

  It is possible that the MGC could be implemented in such a way that a
  failed MGC is replaced by a working MGC where the identity of the new
  MGC is the same as the failed one.  In such a case,
  ServiceChangeMgcId would be specified with the previous value and the
  MG shall behave as if the value was changed, and send a ServiceChange
  message, as above.

  Pairs of MGCs that are capable of redundant failover can notify the
  controlled MGs of the failover by the above mechanism.

12 Package definition

  The primary mechanism for extension is by means of Packages.
  Packages define additional Properties, Events, Signals and Statistics
  that may occur on Terminations.

  Packages defined by IETF will appear in separate RFCs.

  Packages defined by ITU-T may appear in the relevant Recommendations
  (e.g., as Recommendations of the H.248 sub-series).

  1) A public document or a standard forum document, which can be
     referenced as the document that describes the package following
     the guideline above, should be specified.

  2) The document shall specify the version of the Package that it
     describes.

  3) The document should be available on a public web server and should
     have a stable URL.  The site should provide a mechanism to provide
     comments and appropriate responses should be returned.

12.1  Guidelines for defining packages

  Packages define Properties, Events, Signals, and Statistics.

  Packages may also define new error codes according to the guidelines
  given in 13.2.  This is a matter of documentary convenience: the
  package documentation is submitted to IANA in support of the error
  code registration.  If a package is modified, it is unnecessary to
  provide IANA with a new document reference in support of the error
  code unless the description of the error code itself is modified.





Groves, et al.              Standards Track                    [Page 82]

RFC 3525                Gateway Control Protocol               June 2003


  Names of all such defined constructs shall consist of the PackageID
  (which uniquely identifies the package) and the ID of the item (which
  uniquely identifies the item in that package).  In the text encoding
  the two shall be separated by a forward slash ("/") character.
  Example: togen/playtone is the text encoding to refer to the play
  tone signal in the tone generation package.

  A Package will contain the following sections:

12.1.1   Package

  Overall description of the package, specifying:

     Package Name: only descriptive

     PackageID: is an identifier

     Description:

     Version:

        A new version of a package can only add additional Properties,
        Events, Signals, Statistics and new possible values for an
        existing parameter described in the original package.  No
        deletions or modifications shall be allowed.  A version is an
        integer in the range from 1 to 99.

     Designed to be extended only (Optional):

        This indicates that the package has been expressly designed to
        be extended by others, not to be directly referenced.  For
        example, the package may not have any function on its own or be
        nonsensical on its own.  The MG SHOULD NOT publish this
        PackageID when reporting packages.

     Extends (Optional): existing package Descriptor

        A package may extend an existing package.  The version of the
        original package must be specified.  When a package extends
        another package it shall only add additional Properties,
        Events, Signals, Statistics and new possible values for an
        existing parameter described in the original package.  An
        extended package shall not redefine or overload an identifier
        defined in the original package and packages it may have
        extended (multiple levels of extension).  Hence, if package B
        version 1 extends package A version 1, version 2 of B will not
        be able to extend the A version 2 if A version 2 defines a name
        already in B version 1.



Groves, et al.              Standards Track                    [Page 83]

RFC 3525                Gateway Control Protocol               June 2003


12.1.2   Properties

  Properties defined by the package, specifying:

     Property Name: only descriptive

     PropertyID: is an identifier

     Description:

     Type: One of:

        Boolean

        String: UTF-8 string

        Octet String: A number of octets.  See Annex A and Annex B.3
        for encoding

        Integer: 4 byte signed integer

        Double: 8 byte signed integer

        Character: unicode UTF-8 encoding of a single letter.  Could be
        more than one octet.

        Enumeration: one of a list of possible unique values (see 12.3)

        Sub-list: a list of several values from a list.  The type of
        sub-list SHALL also be specified.  The type shall be chosen
        from the types specified in this section (with the exception of
        sub-list).  For example, Type: sub-list of enumeration.  The
        encoding of sub-lists is specified in Annexes A and B.3.

     Possible values:

        A package MUST specify either a specific set of values or a
        description of how values are determined.  A package MUST also
        specify a default value or the default behaviour when the value
        is omitted from its descriptor.  For example, a package may
        specify that procedures related to the property are suspended
        when its value is omitted.  A default value (but not
  procedures)
        may be specified as provisionable.

     Defined in:

        Which H.248.1 descriptor the property is defined in.



Groves, et al.              Standards Track                    [Page 84]

RFC 3525                Gateway Control Protocol               June 2003


        LocalControl is for stream dependent properties.
        TerminationState is for stream independent properties.  These
        are expected to be the most common cases, but it is possible
        for properties to be defined in other descriptors.

     Characteristics: Read/Write or both, and (optionally), global:

        Indicates whether a property is read-only, or read-write, and
        if it is global.  If Global is omitted, the property is not
        global.  If a property is declared as global, the value of the
        property is shared by all Terminations realizing the package.

12.1.3   Events

  Events defined by the package, specifying:

     Event name: only descriptive

     EventID: is an identifier

     Description:

     EventsDescriptor Parameters:

        Parameters used by the MGC to configure the event, and found in
        the EventsDescriptor.  See 12.2.

     ObservedEventsDescriptor Parameters:

        Parameters returned to the MGC in Notify requests and in
        replies to command requests from the MGC that audit
        ObservedEventsDescriptor, and found in the
        ObservedEventsDescriptor.  See 12.2.

12.1.4   Signals

  Signals defined by the package, specifying:

     Signal Name: only descriptive

     SignalID: is an identifier.  SignalID is used in a
     SignalsDescriptor

     Description

     SignalType: one of:

        OO (On/Off)



Groves, et al.              Standards Track                    [Page 85]

RFC 3525                Gateway Control Protocol               June 2003


        TO (TimeOut)

        BR (Brief)

     NOTE - SignalType may be defined such that it is dependent on the
     value of one or more parameters.  The package MUST specify a
     default signal type.  If the default type is TO, the package MUST
     specify a default duration which may be provisioned.  A default
     duration is meaningless for BR.

     Duration: in hundredths of seconds

     Additional Parameters: see 12.2

12.1.5   Statistics

  Statistics defined by the package, specifying:

     Statistic name: only descriptive

     StatisticID: is an identifier

     StatisticID is used in a StatisticsDescriptor

     Description:

     Units: unit of measure, e.g., milliseconds, packets

12.1.6   Procedures

  Additional guidance on the use of the package.

12.2  Guidelines to defining Parameters to Events and Signals

  Parameter Name: only descriptive

  ParameterID: is an identifier.  The textual ParameterID of parameters
  to Events and Signals shall not start with "EPA" and "SPA",
  respectively.  The textual ParameterID shall also not be "ST",
  "Stream", "SY", "SignalType", "DR", "Duration", "NC",
  "NotifyCompletion", "KA", "Keepactive", "EB", "Embed", "DM" or
  "DigitMap".

  Type: One of:

     Boolean

     String: UTF-8 octet string



Groves, et al.              Standards Track                    [Page 86]

RFC 3525                Gateway Control Protocol               June 2003


     Octet String: A number of octets.  See Annex A and Annex B.3 for
     encoding

     Integer: 4-octet signed integer

     Double: 8-octet signed integer

     Character: unicode UTF-8 encoding of a single letter.  Could be
     more than one octet.

     Enumeration: one of a list of possible unique values (see 12.3)

     Sub-list: a list of several values from a list (not supported for
     statistics).  The type of sub-list SHALL also be specified.  The
     type shall be chosen from the types specified in this section
     (with the exception of sub-list).  For example, Type: sub-list of
     enumeration.  The encoding of sub-lists is specified in Annexes A
     and B.3.

  Possible values:

     A package MUST specify either a specific set of values or a
     description of how values are determined.  A package MUST also
     specify a default value or the default behavior when the value is
     omitted from its descriptor.  For example, a package may specify
     that procedures related to the parameter are suspended when it
     value is omitted.  A default value (but not procedures) may be
     specified as provisionable.

  Description:

12.3  Lists

  Possible values for parameters include enumerations.  Enumerations
  may be defined in a list.  It is recommended that the list be IANA
  registered so that packages that extend the list can be defined
  without concern for conflicting names.

12.4  Identifiers

  Identifiers in text encoding shall be strings of up to 64 characters,
  containing no spaces, starting with an alphabetic character and
  consisting of alphanumeric characters and/or digits, and possibly
  including the special character underscore ("_").







Groves, et al.              Standards Track                    [Page 87]

RFC 3525                Gateway Control Protocol               June 2003


  Identifiers in binary encoding are 2 octets long.

  Both text and binary values shall be specified for each identifier,
  including identifiers used as values in enumerated types.

12.5  Package registration

  A package can be registered with IANA for interoperability reasons.
  See clause 13 for IANA Considerations.

13 IANA Considerations

13.1  Packages

  The following considerations SHALL be met to register a package with
  IANA:

  1) A unique string name, unique serial number and version number is
     registered for each package.  The string name is used with text
     encoding.  The serial number shall be used with binary encoding.
     Serial Numbers 0x8000 to 0xFFFF are reserved for private use.
     Serial number 0 is reserved.

  2) A contact name, email and postal addresses for that contact shall
     be specified.  The contact information shall be updated by the
     defining organization as necessary.

  3) A reference to a document that describes the package, which should
     be public:

     The document shall specify the version of the Package that it
     describes.

     If the document is public, it should be located on a public web
     server and should have a stable URL.  The site should provide a
     mechanism to provide comments and appropriate responses should be
     returned.

  4) Packages registered by other than recognized standards bodies
     shall have a minimum package name length of 8 characters.

  5) All other package names are first come-first served if all other
     conditions are met.








Groves, et al.              Standards Track                    [Page 88]

RFC 3525                Gateway Control Protocol               June 2003


13.2  Error codes

  The following considerations SHALL be met to register an error code
  with IANA:

  1) An error number and a one-line (80-character maximum) string is
     registered for each error.

  2) A complete description of the conditions under which the error is
     detected shall be included in a publicly available document.  The
     description shall be sufficiently clear to differentiate the error
     from all other existing error codes.

  3) The document should be available on a public web server and should
     have a stable URL.

  4) Error numbers registered by recognized standards bodies shall have
     3- or 4-character error numbers.

  5) Error numbers registered by all other organizations or individuals
     shall have 4-character error numbers.

  6) An error number shall not be redefined nor modified except by the
     organization or individual that originally defined it, or their
     successors or assigns.

13.3  ServiceChange reasons

  The following considerations SHALL be met to register service change
  reason with IANA:

  1) A one-phrase, 80-character maximum, unique reason code is
     registered for each reason.

  2) A complete description of the conditions under which the reason is
     used is detected shall be included in a publicly available
     document.  The description shall be sufficiently clear to
     differentiate the reason from all other existing reasons.

  3) The document should be available on a public web server and should
     have a stable URL.










Groves, et al.              Standards Track                    [Page 89]

RFC 3525                Gateway Control Protocol               June 2003


ANNEX A - Binary encoding of the protocol

  This annex specifies the syntax of messages using the notation
  defined in Recommendation X.680; Information technology - Abstract
  Syntax Notation One (ASN.1): Specification of basic notation.
  Messages shall be encoded for transmission by applying the basic
  encoding rules specified in Recommendation X.690, Information
  Technology - ASN.1 Encoding Rules: Specification of Basic Encoding
  Rules (BER), Canonical Encoding Rules (CER) and Distinguished
  Encoding Rules.

A.1   Coding of wildcards

  The use of wildcards ALL and CHOOSE is allowed in the protocol.  This
  allows a MGC to partially specify Termination IDs and to let the MG
  choose from the values that conform to the partial specification.
  Termination IDs may encode a hierarchy of names.  This hierarchy is
  provisioned.  For instance, a TerminationID may consist of a trunk
  group, a trunk within the group and a circuit.  Wildcarding must be
  possible at all levels.  The following paragraphs explain how this is
  achieved.

  The ASN.1 description uses octet strings of up to 8 octets in length
  for Termination IDs.  This means that Termination IDs consist of at
  most 64 bits.  A fully specified Termination ID may be preceded by a
  sequence of wildcarding fields.  A wildcarding field is one octet in
  length.  Bit 7 (the most significant bit) of this octet specifies
  what type of wildcarding is invoked: if the bit value equals 1, then
  the ALL wildcard is used; if the bit value if 0, then the CHOOSE
  wildcard is used.  Bit 6 of the wildcarding field specifies whether
  the wildcarding pertains to one level in the hierarchical naming
  scheme (bit value 0) or to the level of the hierarchy specified in
  the wildcarding field plus all lower levels (bit value 1).  Bits 0
  through 5 of the wildcarding field specify the bit position in the
  Termination ID at which the wildcarding starts.

  We illustrate this scheme with some examples.  In these examples, the
  most significant bit in a string of bits appears on the left hand
  side.

  Assume that Termination IDs are three octets long and that each octet
  represents a level in a hierarchical naming scheme.  A valid
  Termination ID is:

     00000001 00011110 01010101.






Groves, et al.              Standards Track                    [Page 90]

RFC 3525                Gateway Control Protocol               June 2003


  Addressing ALL names with prefix 00000001 00011110 is done as
  follows:

     wildcarding field: 10000111

     Termination ID: 00000001 00011110 xxxxxxxx.

  The values of the bits labeled "x" is irrelevant and shall be ignored
  by the receiver.

  Indicating to the receiver that it must choose a name with 00011110
  as the second octet is done as follows:

     wildcarding fields: 00010111 followed by 00000111

     Termination ID: xxxxxxxx 00011110 xxxxxxxx.

  The first wildcard field indicates a CHOOSE wildcard for the level in
  the naming hierarchy starting at bit 23, the highest level in our
  assumed naming scheme.  The second wildcard field indicates a CHOOSE
  wildcard for the level in the naming hierarchy starting at bit 7, the
  lowest level in our assumed naming scheme.

  Finally, a CHOOSE-wildcarded name with the highest level of the name
  equal to 00000001 is specified as follows:

     wildcard field: 01001111

     Termination ID: 0000001 xxxxxxxx xxxxxxxx .

  Bit value 1 at bit position 6 of the first octet of the wildcard
  field indicates that the wildcarding pertains to the specified level
  in the naming hierarchy and all lower levels.

  Context IDs may also be wildcarded.  In the case of Context IDs,
  however, specifying partial names is not allowed.  Context ID 0x0
  SHALL be used to indicate the NULL Context, Context ID 0xFFFFFFFE
  SHALL be used to indicate a CHOOSE wildcard, and Context ID
  0xFFFFFFFF SHALL be used to indicate an ALL wildcard.

  TerminationID 0xFFFFFFFFFFFFFFFF SHALL be used to indicate the ROOT
  Termination.









Groves, et al.              Standards Track                    [Page 91]

RFC 3525                Gateway Control Protocol               June 2003


A.2   ASN.1 syntax specification

  This subclause contains the ASN.1 specification of the H.248.1
  protocol syntax.

    NOTE 1 - In case a transport mechanism is used that employs
    application level framing, the definition of Transaction below
    changes.  Refer to the annex or to the Recommendation of the H.248
    sub-series defining the transport mechanism for the definition that
    applies in that case.

    NOTE 2 - The ASN.1 specification below contains a clause defining
    TerminationIDList as a sequence of TerminationIDs.  The length of
    this sequence SHALL be one, except possibly when used in
    contextAuditResult.

    NOTE 3 - This syntax specification does not enforce all
    restrictions on element inclusions and values.  Some additional
    restrictions are stated in comments and other restrictions appear
    in the text of this RFC.  These additional restrictions
    are part of the protocol even though not enforced by this
    specification.

    NOTE 4 - The ASN.1 module in this Annex uses octet string types to
    encode values for property parameter, signal parameter and event
    parameter values and statistics.  The actual types of these values
    vary and are specified in Annex C or the relevant package
    definition.

  A value is first BER-encoded based on its type using the table below.
  The result of this BER-encoding is then encoded as an ASN.1 octet
  string, "double wrapping" the value.  The format specified in Annex C
  or the package relates to BER encoding according to the following
  table:

  Type Specified in Package   ASN.1 BER Type

  String                      IA5String or UTF8String (Note 4)

  Integer (4 Octet)           INTEGER

  Double (8 octet signed int) INTEGER (Note 3)

  Character (UTF-8, Note 1)   IA5String

  Enumeration                 ENUMERATED

  Boolean                     BOOLEAN



Groves, et al.              Standards Track                    [Page 92]

RFC 3525                Gateway Control Protocol               June 2003


  Unsigned Integer (Note 2)   INTEGER  (Note 3)

  Octet (String)              OCTET STRING

    Note 1: Can be more than one byte

    Note 2: Unsigned integer is referenced in Annex C

    Note 3: The BER encoding of INTEGER does not imply the use of 4
    bytes.

    Note 4: String should be encoded as IA5String when the contents
    are all ASCII characters, but as UTF8String if it contains any
    Non-ASCII characters.

  See ITU-T Rec.  X.690, 8.7, for the definition of the encoding of an
  octet string value.

  MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::=
  BEGIN

  MegacoMessage ::= SEQUENCE
  {
     authHeader     AuthenticationHeader OPTIONAL,
     mess           Message
  }

  AuthenticationHeader ::= SEQUENCE
  {
     secParmIndex   SecurityParmIndex,
     seqNum         SequenceNum,
     ad             AuthData
  }

  SecurityParmIndex ::= OCTET STRING(SIZE(4))

  SequenceNum       ::= OCTET STRING(SIZE(4))

  AuthData          ::= OCTET STRING (SIZE (12..32))

  Message ::= SEQUENCE
  {
     version           INTEGER(0..99),
     -- The version of the protocol defined here is equal to 1.
     mId               MId,  -- Name/address of message originator
     messageBody       CHOICE
     {
        messageError      ErrorDescriptor,



Groves, et al.              Standards Track                    [Page 93]

RFC 3525                Gateway Control Protocol               June 2003


        transactions      SEQUENCE OF Transaction
     },
     ...
  }

  MId ::= CHOICE
  {
     ip4Address           IP4Address,
     ip6Address           IP6Address,
     domainName           DomainName,
     deviceName           PathName,
     mtpAddress           OCTET STRING(SIZE(2..4)),
     -- Addressing structure of mtpAddress:
     --     25 - 15           0
     --        |  PC        | NI |
     --      24 - 14 bits    2 bits
     -- Note: 14 bits are defined for international use.
     -- Two national options exist where the point code is 16 or 24
     -- bits.
     -- To octet align the mtpAddress, the MSBs shall be encoded as 0s.
            ...
  }

  DomainName ::= SEQUENCE
  {
     name        IA5String,
     -- The name starts with an alphanumeric digit followed by a
     -- sequence of alphanumeric digits, hyphens and dots.  No two
     -- dots shall occur consecutively.
     portNumber     INTEGER(0..65535) OPTIONAL
  }

  IP4Address ::= SEQUENCE
  {
     address        OCTET STRING (SIZE(4)),
     portNumber     INTEGER(0..65535) OPTIONAL
  }

  IP6Address ::= SEQUENCE
  {
     address        OCTET STRING (SIZE(16)),
     portNumber     INTEGER(0..65535) OPTIONAL
  }

  PathName ::= IA5String(SIZE (1..64))
  -- See A.3

  Transaction ::= CHOICE



Groves, et al.              Standards Track                    [Page 94]

RFC 3525                Gateway Control Protocol               June 2003


  {
     transactionRequest   TransactionRequest,
     transactionPending   TransactionPending,
     transactionReply     TransactionReply,
     transactionResponseAck  TransactionResponseAck,
         -- use of response acks is dependent on underlying transport
     ...
  }

  TransactionId ::= INTEGER(0..4294967295)  -- 32-bit unsigned integer

  TransactionRequest ::= SEQUENCE
  {
     transactionId        TransactionId,
     actions              SEQUENCE OF ActionRequest,
     ...
  }

  TransactionPending ::= SEQUENCE
  {
     transactionId        TransactionId,
     ...
  }

  TransactionReply ::= SEQUENCE
  {
     transactionId        TransactionId,
     immAckRequired       NULL OPTIONAL,
     transactionResult    CHOICE
     {
          transactionError   ErrorDescriptor,
          actionReplies      SEQUENCE OF ActionReply
     },
     ...
  }

  TransactionResponseAck ::= SEQUENCE OF TransactionAck
  TransactionAck ::= SEQUENCE
  {
     firstAck       TransactionId,
     lastAck        TransactionId OPTIONAL
  }

  ErrorDescriptor ::= SEQUENCE
  {
     errorCode      ErrorCode,
     errorText      ErrorText OPTIONAL
  }



Groves, et al.              Standards Track                    [Page 95]

RFC 3525                Gateway Control Protocol               June 2003



  ErrorCode ::= INTEGER(0..65535)
  -- See clause 13 for IANA Considerations with respect to error codes

  ErrorText ::= IA5String

  ContextID ::= INTEGER(0..4294967295)

  -- Context   NULL Value: 0
  -- Context CHOOSE Value: 4294967294 (0xFFFFFFFE)
  -- Context    ALL Value: 4294967295 (0xFFFFFFFF)


  ActionRequest ::= SEQUENCE
  {
     contextId         ContextID,
     contextRequest       ContextRequest OPTIONAL,
     contextAttrAuditReq  ContextAttrAuditRequest OPTIONAL,
     commandRequests   SEQUENCE OF CommandRequest
  }

  ActionReply ::= SEQUENCE
  {
     contextId         ContextID,
     errorDescriptor   ErrorDescriptor OPTIONAL,
     contextReply      ContextRequest OPTIONAL,
     commandReply      SEQUENCE OF CommandReply
  }

  ContextRequest ::= SEQUENCE
  {
     priority       INTEGER(0..15) OPTIONAL,
     emergency      BOOLEAN OPTIONAL,
     topologyReq    SEQUENCE OF TopologyRequest OPTIONAL,
     ...
  }

  ContextAttrAuditRequest ::= SEQUENCE
  {
     topology    NULL OPTIONAL,
     emergency   NULL OPTIONAL,
     priority    NULL OPTIONAL,
     ...
  }

  CommandRequest ::= SEQUENCE
  {
     command           Command,



Groves, et al.              Standards Track                    [Page 96]

RFC 3525                Gateway Control Protocol               June 2003


     optional          NULL OPTIONAL,
     wildcardReturn    NULL OPTIONAL,
     ...
  }

  Command ::= CHOICE
  {
     addReq               AmmRequest,
     moveReq              AmmRequest,
     modReq               AmmRequest,
     -- Add, Move, Modify requests have the same parameters
     subtractReq          SubtractRequest,
     auditCapRequest      AuditRequest,
     auditValueRequest    AuditRequest,
     notifyReq            NotifyRequest,
     serviceChangeReq     ServiceChangeRequest,
     ...
  }

  CommandReply ::= CHOICE
  {
     addReply                AmmsReply,
     moveReply               AmmsReply,
     modReply                AmmsReply,
     subtractReply           AmmsReply,
     -- Add, Move, Modify, Subtract replies have the same parameters
     auditCapReply           AuditReply,
     auditValueReply         AuditReply,
     notifyReply             NotifyReply,
     serviceChangeReply      ServiceChangeReply,
     ...
  }

  TopologyRequest ::= SEQUENCE
  {
     terminationFrom         TerminationID,
     terminationTo           TerminationID,
     topologyDirection       ENUMERATED
     {
        bothway(0),
        isolate(1),
        oneway(2)
     },
     ...
  }

  AmmRequest ::= SEQUENCE
  {



Groves, et al.              Standards Track                    [Page 97]

RFC 3525                Gateway Control Protocol               June 2003


     terminationID        TerminationIDList,
     descriptors          SEQUENCE OF AmmDescriptor,
     -- At most one descriptor of each type (see AmmDescriptor)
     -- allowed in the sequence.
     ...
  }

  AmmDescriptor ::= CHOICE
  {
     mediaDescriptor         MediaDescriptor,
     modemDescriptor         ModemDescriptor,
     muxDescriptor           MuxDescriptor,
     eventsDescriptor        EventsDescriptor,
     eventBufferDescriptor   EventBufferDescriptor,
     signalsDescriptor       SignalsDescriptor,
     digitMapDescriptor      DigitMapDescriptor,
     auditDescriptor         AuditDescriptor,
     ...
  }

  AmmsReply ::= SEQUENCE
  {
     terminationID        TerminationIDList,
     terminationAudit     TerminationAudit OPTIONAL,
     ...
  }

  SubtractRequest ::= SEQUENCE
  {
     terminationID        TerminationIDList,
     auditDescriptor      AuditDescriptor OPTIONAL,
     ...
  }

  AuditRequest ::= SEQUENCE
  {
     terminationID        TerminationID,
     auditDescriptor      AuditDescriptor,
     ...
  }

  AuditReply ::= CHOICE
  {
     contextAuditResult   TerminationIDList,
     error                ErrorDescriptor,
     auditResult          AuditResult,
     ...
  }



Groves, et al.              Standards Track                    [Page 98]

RFC 3525                Gateway Control Protocol               June 2003



  AuditResult ::= SEQUENCE
  {

     terminationID           TerminationID,
     terminationAuditResult  TerminationAudit
  }

  TerminationAudit ::= SEQUENCE OF AuditReturnParameter

  AuditReturnParameter ::= CHOICE
  {
     errorDescriptor         ErrorDescriptor,
     mediaDescriptor         MediaDescriptor,
     modemDescriptor         ModemDescriptor,
     muxDescriptor           MuxDescriptor,
     eventsDescriptor        EventsDescriptor,
     eventBufferDescriptor   EventBufferDescriptor,
     signalsDescriptor       SignalsDescriptor,
     digitMapDescriptor      DigitMapDescriptor,
     observedEventsDescriptor   ObservedEventsDescriptor,
     statisticsDescriptor    StatisticsDescriptor,
     packagesDescriptor      PackagesDescriptor,
     emptyDescriptors        AuditDescriptor,
     ...
  }

  AuditDescriptor ::= SEQUENCE
  {
     auditToken  BIT STRING
        {
           muxToken(0), modemToken(1), mediaToken(2),
           eventsToken(3), signalsToken(4),
           digitMapToken(5), statsToken(6),
           observedEventsToken(7),
           packagesToken(8), eventBufferToken(9)
        } OPTIONAL,
     ...
  }

  NotifyRequest ::= SEQUENCE
  {
     terminationID              TerminationIDList,
     observedEventsDescriptor   ObservedEventsDescriptor,
     errorDescriptor            ErrorDescriptor OPTIONAL,
     ...
  }




Groves, et al.              Standards Track                    [Page 99]

RFC 3525                Gateway Control Protocol               June 2003


  NotifyReply ::= SEQUENCE
  {
     terminationID           TerminationIDList,
     errorDescriptor         ErrorDescriptor OPTIONAL,
     ...
  }

  ObservedEventsDescriptor ::= SEQUENCE
  {
     requestId               RequestID,
     observedEventLst        SEQUENCE OF ObservedEvent
  }

  ObservedEvent ::= SEQUENCE
  {
     eventName            EventName,
     streamID             StreamID OPTIONAL,
     eventParList         SEQUENCE OF EventParameter,
     timeNotation         TimeNotation OPTIONAL,
     ...
  }

  EventName ::= PkgdName

  EventParameter ::= SEQUENCE
  {
     eventParameterName      Name,
     value                   Value,
  -- For use of extraInfo see the comment related to PropertyParm
     extraInfo CHOICE
     {
        relation Relation,
        range    BOOLEAN,
        sublist  BOOLEAN
     } OPTIONAL,
     ...
  }

  ServiceChangeRequest ::= SEQUENCE
  {
     terminationID           TerminationIDList,
     serviceChangeParms      ServiceChangeParm,
     ...
  }

  ServiceChangeReply ::= SEQUENCE
  {
     terminationID           TerminationIDList,



Groves, et al.              Standards Track                   [Page 100]

RFC 3525                Gateway Control Protocol               June 2003


     serviceChangeResult     ServiceChangeResult,
     ...
  }

  -- For ServiceChangeResult, no parameters are mandatory.  Hence the
  -- distinction between ServiceChangeParm and ServiceChangeResParm.

  ServiceChangeResult ::= CHOICE
  {
     errorDescriptor            ErrorDescriptor,
     serviceChangeResParms      ServiceChangeResParm
  }

  WildcardField ::= OCTET STRING(SIZE(1))

  TerminationID ::= SEQUENCE
  {
     wildcard SEQUENCE OF WildcardField,
     id    OCTET STRING(SIZE(1..8)),
     ...
  }
  -- See A.1 for explanation of wildcarding mechanism.
  -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.

  TerminationIDList ::= SEQUENCE OF TerminationID

  MediaDescriptor ::= SEQUENCE
  {

     termStateDescr TerminationStateDescriptor OPTIONAL,
     streams     CHOICE
     {
        oneStream      StreamParms,
        multiStream    SEQUENCE OF StreamDescriptor
     } OPTIONAL,
     ...
  }

  StreamDescriptor ::= SEQUENCE
  {
     streamID          StreamID,
     streamParms       StreamParms
  }

  StreamParms ::= SEQUENCE
  {
     localControlDescriptor     LocalControlDescriptor OPTIONAL,
     localDescriptor            LocalRemoteDescriptor OPTIONAL,



Groves, et al.              Standards Track                   [Page 101]

RFC 3525                Gateway Control Protocol               June 2003


     remoteDescriptor           LocalRemoteDescriptor OPTIONAL,
     ...
  }

  LocalControlDescriptor ::= SEQUENCE
  {

     streamMode        StreamMode OPTIONAL,
     reserveValue      BOOLEAN OPTIONAL,
     reserveGroup      BOOLEAN OPTIONAL,
     propertyParms     SEQUENCE OF PropertyParm,
     ...
  }

  StreamMode ::= ENUMERATED
  {
     sendOnly(0),
     recvOnly(1),
     sendRecv(2),
     inactive(3),
     loopBack(4),
        ...
  }

  -- In PropertyParm, value is a SEQUENCE OF octet string.  When sent
  -- by an MGC the interpretation is as follows:
  -- empty sequence means CHOOSE
  -- one element sequence specifies value
  -- If the sublist field is not selected, a longer sequence means
  -- "choose one of the values" (i.e., value1 OR value2 OR ...)
  -- If the sublist field is selected,
  -- a sequence with more than one element encodes the value of a
  -- list-valued property (i.e., value1 AND value2 AND ...).
  -- The relation field may only be selected if the value sequence
  -- has length 1.  It indicates that the MG has to choose a value
  -- for the property.  E.g., x > 3 (using the greaterThan
  -- value for relation) instructs the MG to choose any value larger
  -- than 3 for property x.
  -- The range field may only be selected if the value sequence
  -- has length 2.  It indicates that the MG has to choose a value
  -- in the range between the first octet in the value sequence and
  -- the trailing octet in the value sequence, including the
  -- boundary values.
  -- When sent by the MG, only responses to an AuditCapability request
  -- may contain multiple values, a range, or a relation field.

  PropertyParm ::= SEQUENCE
  {



Groves, et al.              Standards Track                   [Page 102]

RFC 3525                Gateway Control Protocol               June 2003


     name        PkgdName,
     value       SEQUENCE OF OCTET STRING,
     extraInfo   CHOICE
     {
        relation    Relation,
        range       BOOLEAN,
        sublist     BOOLEAN
     } OPTIONAL,
     ...
  }

  Name ::= OCTET STRING(SIZE(2))

  PkgdName ::= OCTET STRING(SIZE(4))
  -- represents Package Name (2 octets) plus Property, Event,
  -- Signal Names or Statistics ID. (2 octets)
  -- To wildcard a package use 0xFFFF for first two octets, choose
  -- is not allowed.  To reference native property tag specified in
  -- Annex C, use 0x0000 as first two octets.
  -- To wildcard a Property, Event, Signal, or Statistics ID, use
  -- 0xFFFF for last two octets, choose is not allowed.
  -- Wildcarding of Package Name is permitted only if Property,
  -- Event, Signal, or Statistics ID are
  -- also wildcarded.

  Relation ::= ENUMERATED
  {
     greaterThan(0),
     smallerThan(1),
     unequalTo(2),
     ...
  }

  LocalRemoteDescriptor ::= SEQUENCE
  {
     propGrps SEQUENCE OF PropertyGroup,
     ...
  }

  PropertyGroup ::= SEQUENCE OF PropertyParm

  TerminationStateDescriptor ::= SEQUENCE
  {
     propertyParms        SEQUENCE OF PropertyParm,
     eventBufferControl   EventBufferControl OPTIONAL,
     serviceState         ServiceState OPTIONAL,
     ...
  }



Groves, et al.              Standards Track                   [Page 103]

RFC 3525                Gateway Control Protocol               June 2003



  EventBufferControl ::= ENUMERATED
  {
     off(0),
     lockStep(1),
     ...
  }

  ServiceState ::= ENUMERATED

  {
     test(0),
     outOfSvc(1),
     inSvc(2),
        ...
  }

  MuxDescriptor   ::= SEQUENCE
  {
     muxType           MuxType,
     termList          SEQUENCE OF TerminationID,
     nonStandardData   NonStandardData OPTIONAL,
     ...
  }

  MuxType ::= ENUMERATED
  {
     h221(0),
     h223(1),
     h226(2),
     v76(3),
     ...
  }

  StreamID ::= INTEGER(0..65535)   -- 16-bit unsigned integer

  EventsDescriptor ::= SEQUENCE
  {
     requestID      RequestID OPTIONAL,
                 -- RequestID must be present if eventList
                 -- is non empty
     eventList      SEQUENCE OF RequestedEvent,
     ...
  }

  RequestedEvent ::= SEQUENCE
  {
     pkgdName       PkgdName,



Groves, et al.              Standards Track                   [Page 104]

RFC 3525                Gateway Control Protocol               June 2003


     streamID       StreamID OPTIONAL,
     eventAction    RequestedActions OPTIONAL,
     evParList      SEQUENCE OF EventParameter,
     ...
  }

  RequestedActions ::= SEQUENCE
  {
     keepActive        BOOLEAN OPTIONAL,
     eventDM           EventDM OPTIONAL,
     secondEvent          SecondEventsDescriptor OPTIONAL,
     signalsDescriptor    SignalsDescriptor OPTIONAL,
     ...
  }

  EventDM ::= CHOICE
  {  digitMapName   DigitMapName,
     digitMapValue  DigitMapValue
  }

  SecondEventsDescriptor ::= SEQUENCE
  {
     requestID         RequestID OPTIONAL,
     eventList         SEQUENCE OF SecondRequestedEvent,
     ...
  }

  SecondRequestedEvent ::= SEQUENCE
  {
     pkgdName          PkgdName,
     streamID          StreamID OPTIONAL,
     eventAction       SecondRequestedActions OPTIONAL,
     evParList         SEQUENCE OF EventParameter,
     ...
  }

  SecondRequestedActions ::= SEQUENCE
  {
     keepActive           BOOLEAN OPTIONAL,
     eventDM              EventDM OPTIONAL,
     signalsDescriptor    SignalsDescriptor OPTIONAL,
     ...
  }

  EventBufferDescriptor ::= SEQUENCE OF EventSpec

  EventSpec ::= SEQUENCE
  {



Groves, et al.              Standards Track                   [Page 105]

RFC 3525                Gateway Control Protocol               June 2003


     eventName      EventName,
     streamID       StreamID OPTIONAL,
     eventParList   SEQUENCE OF EventParameter,
     ...
  }

  SignalsDescriptor ::= SEQUENCE OF SignalRequest

  SignalRequest ::=CHOICE
  {
     signal         Signal,
     seqSigList     SeqSigList,
     ...
  }

  SeqSigList ::= SEQUENCE
  {
     id                INTEGER(0..65535),
     signalList        SEQUENCE OF Signal
  }

  Signal ::= SEQUENCE
  {
     signalName        SignalName,
     streamID          StreamID OPTIONAL,
     sigType           SignalType OPTIONAL,
     duration          INTEGER (0..65535) OPTIONAL,
     notifyCompletion  NotifyCompletion OPTIONAL,
     keepActive        BOOLEAN OPTIONAL,
     sigParList        SEQUENCE OF SigParameter,
     ...
  }

  SignalType ::= ENUMERATED
  {
     brief(0),
     onOff(1),
     timeOut(2),
     ...
  }

  SignalName ::= PkgdName

  NotifyCompletion ::= BIT STRING
  {
     onTimeOut(0), onInterruptByEvent(1),
     onInterruptByNewSignalDescr(2), otherReason(3)
  }



Groves, et al.              Standards Track                   [Page 106]

RFC 3525                Gateway Control Protocol               June 2003



  SigParameter ::= SEQUENCE
  {
     sigParameterName     Name,
     value                Value,
     -- For use of extraInfo see the comment related to PropertyParm
     extraInfo CHOICE
     {
        relation Relation,
        range    BOOLEAN,
        sublist  BOOLEAN

     } OPTIONAL,
     ...
  }

  -- For an AuditCapReply with all events, the RequestID SHALL be ALL.
  -- ALL is represented by 0xffffffff.

  RequestID ::= INTEGER(0..4294967295)   -- 32-bit unsigned integer

  ModemDescriptor ::= SEQUENCE
  {
     mtl               SEQUENCE OF ModemType,
     mpl               SEQUENCE OF PropertyParm,
     nonStandardData   NonStandardData OPTIONAL
  }

  ModemType ::= ENUMERATED
  {
     v18(0),
     v22(1),
     v22bis(2),
     v32(3),
     v32bis(4),
     v34(5),
     v90(6),
     v91(7),
     synchISDN(8),
     ...
  }

  DigitMapDescriptor ::= SEQUENCE
  {
     digitMapName   DigitMapName   OPTIONAL,
     digitMapValue  DigitMapValue  OPTIONAL
  }




Groves, et al.              Standards Track                   [Page 107]

RFC 3525                Gateway Control Protocol               June 2003


  DigitMapName ::= Name

  DigitMapValue ::= SEQUENCE
  {
     startTimer     INTEGER(0..99) OPTIONAL,
     shortTimer     INTEGER(0..99) OPTIONAL,
     longTimer      INTEGER(0..99) OPTIONAL,
     digitMapBody      IA5String,
  -- Units are seconds for start, short and long timers, and
  -- hundreds of milliseconds for duration timer.  Thus start,
  -- short, and long range from 1 to 99 seconds and duration
  -- from 100 ms to 9.9 s
     -- See A.3 for explanation of digit map syntax
     ...
  }

  ServiceChangeParm ::= SEQUENCE
  {
     serviceChangeMethod     ServiceChangeMethod,
     serviceChangeAddress    ServiceChangeAddress OPTIONAL,
     serviceChangeVersion    INTEGER(0..99) OPTIONAL,
     serviceChangeProfile    ServiceChangeProfile OPTIONAL,
     serviceChangeReason     Value,
  -- A serviceChangeReason consists of a numeric reason code
  -- and an optional text description.
  -- The serviceChangeReason SHALL be a string consisting of
  -- a decimal reason code, optionally followed by a single
  -- space character and a textual description string.
  -- This string is first BER-encoded as an IA5String.
  -- The result of this BER-encoding is then encoded as
  -- an ASN.1 OCTET STRING type, "double wrapping" the
  -- value as was done for package elements.
     serviceChangeDelay      INTEGER(0..4294967295) OPTIONAL,
                                       -- 32-bit unsigned integer
     serviceChangeMgcId      MId OPTIONAL,
     timeStamp               TimeNotation OPTIONAL,
     nonStandardData         NonStandardData OPTIONAL,
     ...
  }

  ServiceChangeAddress ::= CHOICE
  {
     portNumber        INTEGER(0..65535),    -- TCP/UDP port number
     ip4Address        IP4Address,
     ip6Address        IP6Address,
     domainName        DomainName,
     deviceName        PathName,
     mtpAddress        OCTET STRING(SIZE(2..4)),



Groves, et al.              Standards Track                   [Page 108]

RFC 3525                Gateway Control Protocol               June 2003


     ...
  }

  ServiceChangeResParm ::= SEQUENCE
  {
     serviceChangeMgcId      MId OPTIONAL,
     serviceChangeAddress    ServiceChangeAddress OPTIONAL,
     serviceChangeVersion    INTEGER(0..99) OPTIONAL,
     serviceChangeProfile    ServiceChangeProfile OPTIONAL,
     timestamp               TimeNotation OPTIONAL,
     ...
  }

  ServiceChangeMethod ::= ENUMERATED

  {
     failover(0),
     forced(1),
     graceful(2),
     restart(3),
     disconnected(4),
     handOff(5),
     ...
  }

  ServiceChangeProfile ::= SEQUENCE
  {
     profileName    IA5String(SIZE (1..67))
     -- 64 characters for name, 1 for "/", 2 for version to match ABNF
  }

  PackagesDescriptor ::= SEQUENCE OF PackagesItem

  PackagesItem ::= SEQUENCE
  {
     packageName       Name,
     packageVersion    INTEGER(0..99),
     ...
  }

  StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter

  StatisticsParameter ::= SEQUENCE
  {
     statName       PkgdName,
     statValue      Value OPTIONAL
  }




Groves, et al.              Standards Track                   [Page 109]

RFC 3525                Gateway Control Protocol               June 2003


  NonStandardData ::= SEQUENCE
  {
     nonStandardIdentifier   NonStandardIdentifier,
     data                    OCTET STRING
  }

  NonStandardIdentifier ::= CHOICE
  {
     object            OBJECT IDENTIFIER,
     h221NonStandard   H221NonStandard,
     experimental      IA5String(SIZE(8)),
         -- first two characters should be "X-" or "X+"
     ...
  }

  H221NonStandard ::= SEQUENCE
  {  t35CountryCode1   INTEGER(0..255),
     t35CountryCode2   INTEGER(0..255),      -- country, as per T.35
     t35Extension      INTEGER(0..255),      -- assigned nationally
     manufacturerCode     INTEGER(0..65535), -- assigned nationally
     ...
  }

  TimeNotation ::= SEQUENCE
  {
     date     IA5String(SIZE(8)),  -- yyyymmdd format
     time     IA5String(SIZE(8))   -- hhmmssss format
     -- per ISO 8601:1988
  }

  Value ::= SEQUENCE OF OCTET STRING

  END


















Groves, et al.              Standards Track                   [Page 110]

RFC 3525                Gateway Control Protocol               June 2003


A.3   Digit maps and path names

  From a syntactic viewpoint, digit maps are strings with syntactic
  restrictions imposed upon them.  The syntax of valid digit maps is
  specified in ABNF [RFC 2234].  The syntax for digit maps presented in
  this subclause is for illustrative purposes only.  The definition of
  digitMap in Annex B takes precedence in the case of differences
  between the two.

    digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")"
              LWSP)

    digitStringList = digitString *( LWSP "|" LWSP digitString )
    digitString = 1*(digitStringElement)
    digitStringElement = digitPosition [DOT]
    digitPosition = digitMapLetter / digitMapRange
    digitMapRange = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP))
    digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter)
    digitMapLetter = DIGIT           ;digits 0-9
            / %x41-4B / %x61-6B    ;a-k and A-K
            / "L"/ "S"       ;Inter-event timers
                                ;(long, short)
            / "Z"            ;Long duration event
    DOT = %x2E ; "."
    LWSP = *(WSP / COMMENT / EOL)
    WSP = SP / HTAB
    COMMENT = ";" *(SafeChar / RestChar / WSP) EOL
    EOL = (CR [LF]) / LF
    SP = %x20
    HTAB = %x09
    CR = %x0D
    LF = %x0A
    SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" /
        "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" /
        "(" / ")" / "%" / "."
    RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" /
        "<" / ">" / "=" / %x22
    DIGIT = %x30-39       ; digits 0 through 9
    ALPHA = %x41-5A / %x61-7A; A-Z, a-z

  A path name is also a string with syntactic restrictions imposed upon
  it.  The ABNF production defining it is copied from Annex B.

    ; Total length of pathNAME must not exceed 64 chars.
    pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" )
                           ["@" pathDomainName ]





Groves, et al.              Standards Track                   [Page 111]

RFC 3525                Gateway Control Protocol               June 2003


    ; ABNF allows two or more consecutive "." although it is
    ; meaningless in a path domain name.
    pathDomainName       = (ALPHA / DIGIT / "*" )
                           *63(ALPHA / DIGIT / "-"
    NAME = ALPHA *63(ALPHA / DIGIT / "_" )














































Groves, et al.              Standards Track                   [Page 112]

RFC 3525                Gateway Control Protocol               June 2003


ANNEX B - Text encoding of the protocol

B.1   Coding of wildcards

  In a text encoding of the protocol, while TerminationIDs are
  arbitrary, by judicious choice of names, the wildcard character, "*"
  may be made more useful.  When the wildcard character is encountered,
  it will "match" all TerminationIDs having the same previous and
  following characters (if appropriate).  For example, if there were
  TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID
  R13/3/* would match all of them.  There are some circumstances where
  ALL Terminations must be referred to.  The TerminationID "*"
  suffices, and is referred to as ALL.  The CHOOSE TerminationID "$"
  may be used to signal to the MG that it has to create an ephemeral
  Termination or select an idle physical Termination.

B.2   ABNF specification

  The protocol syntax is presented in ABNF according to RFC 2234.

     Note 1 - This syntax specification does not enforce all
     restrictions on element inclusions and values.  Some additional
     restrictions are stated in comments and other restrictions appear
     in the text of this RFC.  These additional restrictions are part
     of the protocol even though not enforced by this specification.

     Note 2 - The syntax is context-dependent.  For example, "Add" can
     be the AddToken or a NAME depending on the context in which it
     occurs.

  Everything in the ABNF and text encoding is case insensitive.  This
  includes TerminationIDs, digitmap Ids etc.  SDP is case sensitive as
  per RFC 2327.

  ; NOTE -- The ABNF in this section uses the VALUE construct (or lists
  ; of VALUE constructs) to encode various package element values
  ; (properties, signal parameters, etc.).  The types of these values
  ; vary and are specified the relevant package definition.  Several
  ; such types are described in section 12.2.
  ;
  ; The ABNF specification for VALUE allows a quotedString form or a
  ; collection of SafeChars.  The encoding of package element values
  ; into ABNF VALUES is specified below.  If a type's encoding allows
  ; characters other than SafeChars, the quotedString form MUST be used
  ; for all values of that type, even for specific values that consist
  ; only of SafeChars.
  ;




Groves, et al.              Standards Track                   [Page 113]

RFC 3525                Gateway Control Protocol               June 2003


  ; String:  A string MUST use the quotedString form of VALUE and can
  ; contain anything allowable in the quotedString form.
  ;
  ; Integer, Double, and Unsigned Integer:  Decimal values can be
  ; encoded using characters 0-9.  Hexadecimal values must be prefixed
  ; with '0x' and can use characters 0-9,a-f,A-F.  An octal format is
  ; not supported.  Negative integers start with '-' and MUST be
  ; Decimal.  The SafeChar form of VALUE MUST be used.
  ;
  ; Character:  A UTF-8 encoding of a single letter surrounded by
  ; double quotes.
  ;
  ; Enumeration:  An enumeration MUST use the SafeChar form of VALUE
  ; and can contain anything allowable in the SafeChar form.
  ;
  ; Boolean:  Boolean values are encoded as "on" and "off" and are
  ; case insensitive.  The SafeChar form of VALUE MUST be used.
  ;
  ; Future types:  Any defined types MUST fit within
  ; the ABNF specification of VALUE.  Specifically, if a type's
  ; encoding allows characters other than SafeChars, the quotedString
  ; form MUST be used for all values of that type, even for specific
  ; values that consist only of SafeChars.
  ;
  ; Note that there is no way to use the double quote character within
  ; a value.
  ;
  ; Note that SDP disallows whitespace at the beginning of a line,
  ; Megaco ABNF allows whitespace before the beginning of the SDP in
  ; the Local/Remote descriptor.  Parsers should accept whitespace
  ; between the LBRKT following the Local/Remote token and the
  ; beginning of the SDP.

  megacoMessage        = LWSP [authenticationHeader SEP ] message

  authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON
                         SequenceNum COLON AuthData

  SecurityParmIndex    = "0x" 8(HEXDIG)
  SequenceNum          = "0x" 8(HEXDIG)
  AuthData             = "0x" 24*64(HEXDIG)

  message            = MegacopToken SLASH Version SEP mId SEP
  messageBody
  ; The version of the protocol defined here is equal to 1.

  messageBody          = ( errorDescriptor / transactionList )




Groves, et al.              Standards Track                   [Page 114]

RFC 3525                Gateway Control Protocol               June 2003


  transactionList      = 1*( transactionRequest / transactionReply /
                         transactionPending / transactionResponseAck )
  ;Use of response acks is dependent on underlying transport


  transactionPending   = PendingToken EQUAL TransactionID LBRKT
  RBRKT

  transactionResponseAck = ResponseAckToken LBRKT transactionAck
                 *(COMMA transactionAck) RBRKT
  transactionAck = transactionID / (transactionID "-" transactionID)

  transactionRequest   = TransToken EQUAL TransactionID LBRKT
                         actionRequest *(COMMA actionRequest) RBRKT

  actionRequest        = CtxToken EQUAL ContextID LBRKT ((
                         contextRequest [COMMA  commandRequestList])
                         / commandRequestList) RBRKT

  contextRequest    = ((contextProperties [COMMA contextAudit])
              / contextAudit)

  contextProperties    = contextProperty *(COMMA contextProperty)

  ; at-most-once
  contextProperty    = (topologyDescriptor / priority / EmergencyToken)

  contextAudit   = ContextAuditToken LBRKT contextAuditProperties
                        *(COMMA contextAuditProperties) RBRKT

  ; at-most-once
  contextAuditProperties = ( TopologyToken / EmergencyToken /
                             PriorityToken )

  ; "O-" indicates an optional command
  ; "W-" indicates a wildcarded response to a command
  commandRequestList = ["O-"] ["W-"] commandRequest
                       *(COMMA ["O-"] ["W-"]commandRequest)

  commandRequest      = ( ammRequest / subtractRequest / auditRequest /
                          notifyRequest / serviceChangeRequest)

  transactionReply     = ReplyToken EQUAL TransactionID LBRKT
                    [ ImmAckRequiredToken COMMA]
                  ( errorDescriptor / actionReplyList ) RBRKT

  actionReplyList      = actionReply *(COMMA actionReply )




Groves, et al.              Standards Track                   [Page 115]

RFC 3525                Gateway Control Protocol               June 2003


  actionReply          = CtxToken EQUAL ContextID LBRKT
                    ( errorDescriptor / commandReply ) /
           (commandReply COMMA errorDescriptor) ) RBRKT

  commandReply      = (( contextProperties [COMMA commandReplyList] ) /
                          commandReplyList )


  commandReplyList     = commandReplys *(COMMA commandReplys )

  commandReplys        = (serviceChangeReply / auditReply / ammsReply /
                          notifyReply )

  ;Add Move and Modify have the same request parameters
  ammRequest           = (AddToken / MoveToken / ModifyToken ) EQUAL
                         TerminationID [LBRKT ammParameter *(COMMA
                         ammParameter) RBRKT]

  ;at-most-once
  ammParameter         = (mediaDescriptor / modemDescriptor /
                          muxDescriptor / eventsDescriptor /
                          signalsDescriptor / digitMapDescriptor /
                          eventBufferDescriptor / auditDescriptor)

  ammsReply            = (AddToken / MoveToken / ModifyToken /
                          SubtractToken ) EQUAL TerminationID [ LBRKT
                          terminationAudit RBRKT ]

  subtractRequest      =  SubtractToken EQUAL TerminationID
                          [ LBRKT auditDescriptor RBRKT]

  auditRequest         =  (AuditValueToken / AuditCapToken ) EQUAL
                          TerminationID LBRKT auditDescriptor RBRKT

  auditReply           = (AuditValueToken / AuditCapToken )
                         ( contextTerminationAudit  / auditOther)

  auditOther           = EQUAL TerminationID [LBRKT
                         terminationAudit RBRKT]

  terminationAudit = auditReturnParameter *(COMMA auditReturnParameter)

  contextTerminationAudit = EQUAL CtxToken ( terminationIDList /
                         LBRKT errorDescriptor RBRKT )

  auditReturnParameter = (mediaDescriptor / modemDescriptor /
                          muxDescriptor / eventsDescriptor /
                          signalsDescriptor / digitMapDescriptor /



Groves, et al.              Standards Track                   [Page 116]

RFC 3525                Gateway Control Protocol               June 2003


                     observedEventsDescriptor / eventBufferDescriptor /
                          statisticsDescriptor / packagesDescriptor /
                           errorDescriptor / auditItem)

  auditDescriptor      = AuditToken LBRKT [ auditItem
                         *(COMMA auditItem) ] RBRKT

  notifyRequest        = NotifyToken EQUAL TerminationID
                         LBRKT ( observedEventsDescriptor
                               [ COMMA errorDescriptor ] ) RBRKT

  notifyReply          = NotifyToken EQUAL TerminationID
                         [ LBRKT errorDescriptor RBRKT ]

  serviceChangeRequest = ServiceChangeToken EQUAL TerminationID
                         LBRKT serviceChangeDescriptor RBRKT

  serviceChangeReply   = ServiceChangeToken EQUAL TerminationID
                         [LBRKT (errorDescriptor /
                         serviceChangeReplyDescriptor) RBRKT]

  errorDescriptor   = ErrorToken EQUAL ErrorCode
                      LBRKT [quotedString] RBRKT

  ErrorCode            = 1*4(DIGIT) ; could be extended

  TransactionID        = UINT32

  mId                  = (( domainAddress / domainName )
                         [":" portNumber]) / mtpAddress / deviceName

  ; ABNF allows two or more consecutive "." although it is meaningless
  ; in a domain name.
  domainName           = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" /
                         ".") ">"
  deviceName           = pathNAME

  ;The values 0x0, 0xFFFFFFFE and 0xFFFFFFFF are reserved.
  ContextID            = (UINT32 / "*" / "-" / "$")

  domainAddress        = "[" (IPv4address / IPv6address) "]"
  ;RFC2373 contains the definition of IP6Addresses.
  IPv6address          = hexpart [ ":" IPv4address ]
  IPv4address          = V4hex DOT V4hex DOT V4hex DOT V4hex
  V4hex                = 1*3(DIGIT) ; "0".."255"
  ; this production, while occurring in RFC2373, is not referenced
  ; IPv6prefix           = hexpart SLASH 1*2DIGIT
  hexpart           = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq



Groves, et al.              Standards Track                   [Page 117]

RFC 3525                Gateway Control Protocol               June 2003


  hexseq               = hex4 *( ":" hex4)
  hex4                 = 1*4HEXDIG

  portNumber           = UINT16

  ; Addressing structure of mtpAddress:
  ; 25 - 15            0
  ;    |  PC        | NI |
  ;    24 - 14 bits    2 bits
  ; Note: 14 bits are defined for international use.
  ; Two national options exist where the point code is 16 or 24 bits.
  ; To octet align the mtpAddress the MSBs shall be encoded as 0s.
  ; An octet shall be represented by 2 hex digits.
  mtpAddress           = MTPToken LBRKT 4*8 (HEXDIG) RBRKT

  terminationIDList  = LBRKT TerminationID *(COMMA TerminationID) RBRKT

  ; Total length of pathNAME must not exceed 64 chars.
  pathNAME      = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" )
                         ["@" pathDomainName ]

  ; ABNF allows two or more consecutive "." although it is meaningless
  ; in a path domain name.
  pathDomainName       = (ALPHA / DIGIT / "*" )
                         *63(ALPHA / DIGIT / "-" / "*" / ".")

  TerminationID        = "ROOT" / pathNAME / "$" / "*"

  mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT

  ; at-most one terminationStateDescriptor
  ; and either streamParm(s) or streamDescriptor(s) but not both
  mediaParm            = (streamParm / streamDescriptor /
                          terminationStateDescriptor)

  ; at-most-once per item
  streamParm           = ( localDescriptor / remoteDescriptor /
                          localControlDescriptor )

  streamDescriptor     = StreamToken EQUAL StreamID LBRKT streamParm
                         *(COMMA streamParm) RBRKT

  localControlDescriptor = LocalControlToken LBRKT localParm
                           *(COMMA localParm) RBRKT

  ; at-most-once per item except for propertyParm
  localParm = ( streamMode / propertyParm / reservedValueMode
                 / reservedGroupMode )



Groves, et al.              Standards Track                   [Page 118]

RFC 3525                Gateway Control Protocol               June 2003



  reservedValueMode    = ReservedValueToken EQUAL ( "ON" / "OFF" )
  reservedGroupMode    = ReservedGroupToken EQUAL ( "ON" / "OFF" )

  streamMode           = ModeToken EQUAL streamModes

  streamModes     = (SendonlyToken / RecvonlyToken / SendrecvToken /
                         InactiveToken / LoopbackToken )

  propertyParm         = pkgdName parmValue
  parmValue            = (EQUAL alternativeValue/ INEQUAL VALUE)
  alternativeValue     = ( VALUE
                 / LSBRKT VALUE *(COMMA VALUE) RSBRKT
                  ; sublist (i.e., A AND B AND ...)
                 / LBRKT VALUE *(COMMA VALUE) RBRKT
                  ; alternatives (i.e., A OR B OR ...)
                 /  LSBRKT VALUE COLON VALUE RSBRKT )
                  ; range

  INEQUAL              = LWSP (">" / "<" / "#" ) LWSP
  LSBRKT               = LWSP "[" LWSP
  RSBRKT               = LWSP "]" LWSP

  ; Note - The octet zero is not among the permitted characters in
  ; octet string.  As the current definition is limited to SDP, and a
  ; zero octet would not be a legal character in SDP, this is not a
  ; concern.

  localDescriptor      = LocalToken LBRKT octetString RBRKT

  remoteDescriptor     = RemoteToken LBRKT octetString RBRKT

  eventBufferDescriptor= EventBufferToken [ LBRKT eventSpec
                         *( COMMA eventSpec) RBRKT ]

  eventSpec      = pkgdName [ LBRKT eventSpecParameter
               *(COMMA eventSpecParameter) RBRKT ]
  eventSpecParameter   = (eventStream / eventOther)

  eventBufferControl     = BufferToken EQUAL ( "OFF" / LockStepToken )

  terminationStateDescriptor = TerminationStateToken LBRKT
             terminationStateParm *( COMMA terminationStateParm ) RBRKT

  ; at-most-once per item except for propertyParm
  terminationStateParm = (propertyParm / serviceStates /
                          eventBufferControl )




Groves, et al.              Standards Track                   [Page 119]

RFC 3525                Gateway Control Protocol               June 2003


  serviceStates        = ServiceStatesToken EQUAL ( TestToken /
                         OutOfSvcToken / InSvcToken )

  muxDescriptor        = MuxToken EQUAL MuxType  terminationIDList

  MuxType              = ( H221Token / H223Token / H226Token / V76Token
                          / extensionParameter )

  StreamID             = UINT16
  pkgdName     = (PackageName SLASH ItemID) ;specific item
               / (PackageName SLASH "*") ;all items in package
               / ("*" SLASH "*") ; all items supported by the MG
  PackageName          = NAME
  ItemID               = NAME

  eventsDescriptor     = EventsToken [ EQUAL RequestID LBRKT
                       requestedEvent *( COMMA requestedEvent ) RBRKT ]

  requestedEvent       = pkgdName [ LBRKT eventParameter
                         *( COMMA eventParameter ) RBRKT ]

  ; at-most-once each of KeepActiveToken , eventDM and eventStream
  ;at most one of either embedWithSig or embedNoSig but not both
  ;KeepActiveToken and embedWithSig must not both be present
  eventParameter       = ( embedWithSig / embedNoSig / KeepActiveToken
                           /eventDM / eventStream / eventOther )

  embedWithSig         = EmbedToken LBRKT signalsDescriptor
                           [COMMA embedFirst ] RBRKT
  embedNoSig        = EmbedToken LBRKT embedFirst RBRKT

  ; at-most-once of each
  embedFirst      = EventsToken [ EQUAL RequestID LBRKT
             secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT ]

  secondRequestedEvent = pkgdName [ LBRKT secondEventParameter
                         *( COMMA secondEventParameter ) RBRKT ]

  ; at-most-once each of embedSig , KeepActiveToken, eventDM or
  ; eventStream
  ; KeepActiveToken and embedSig must not both be present
  secondEventParameter = ( embedSig / KeepActiveToken / eventDM /
                           eventStream / eventOther )

  embedSig  = EmbedToken LBRKT signalsDescriptor RBRKT

  eventStream          = StreamToken EQUAL StreamID




Groves, et al.              Standards Track                   [Page 120]

RFC 3525                Gateway Control Protocol               June 2003


  eventOther           = eventParameterName parmValue

  eventParameterName   = NAME

  eventDM              = DigitMapToken EQUAL(( digitMapName ) /
                         (LBRKT digitMapValue RBRKT ))

  signalsDescriptor    = SignalsToken LBRKT [ signalParm
                         *(COMMA signalParm)] RBRKT

  signalParm           = signalList / signalRequest

  signalRequest        = signalName [ LBRKT sigParameter
                         *(COMMA sigParameter) RBRKT ]

  signalList           = SignalListToken EQUAL signalListId LBRKT
                         signalListParm *(COMMA signalListParm) RBRKT

  signalListId         = UINT16

  ;exactly once signalType, at most once duration and every signal
  ;parameter
  signalListParm       = signalRequest

  signalName           = pkgdName
  ;at-most-once sigStream, at-most-once sigSignalType,
  ;at-most-once sigDuration, every signalParameterName at most once
  sigParameter = sigStream / sigSignalType / sigDuration / sigOther
              / notifyCompletion / KeepActiveToken
  sigStream            = StreamToken EQUAL StreamID
  sigOther             = sigParameterName parmValue
  sigParameterName     = NAME
  sigSignalType        = SignalTypeToken EQUAL signalType
  signalType           = (OnOffToken / TimeOutToken / BriefToken)
  sigDuration          = DurationToken EQUAL UINT16
  notifyCompletion     = NotifyCompletionToken EQUAL (LBRKT
           notificationReason *(COMMA notificationReason) RBRKT)

  notificationReason   = ( TimeOutToken / InterruptByEventToken
                       / InterruptByNewSignalsDescrToken
                       / OtherReasonToken )
  observedEventsDescriptor = ObservedEventsToken EQUAL RequestID
                     LBRKT observedEvent *(COMMA observedEvent) RBRKT

  ;time per event, because it might be buffered
  observedEvent        = [ TimeStamp LWSP COLON] LWSP
                         pkgdName [ LBRKT observedEventParameter
                         *(COMMA observedEventParameter) RBRKT ]



Groves, et al.              Standards Track                   [Page 121]

RFC 3525                Gateway Control Protocol               June 2003



  ;at-most-once eventStream, every eventParameterName at most once
  observedEventParameter = eventStream / eventOther

  ; For an AuditCapReply with all events, the RequestID should be ALL.
  RequestID            = ( UINT32 / "*" )

  modemDescriptor      = ModemToken (( EQUAL modemType) /
                     (LSBRKT modemType *(COMMA modemType) RSBRKT))
                    [ LBRKT propertyParm *(COMMA propertyParm) RBRKT ]


  ; at-most-once except for extensionParameter
  modemType            = (V32bisToken / V22bisToken / V18Token /
                          V22Token / V32Token / V34Token / V90Token /
                        V91Token / SynchISDNToken / extensionParameter)

  digitMapDescriptor  = DigitMapToken EQUAL
                       ( ( LBRKT digitMapValue RBRKT ) /
                       (digitMapName [ LBRKT digitMapValue RBRKT ]) )
  digitMapName        = NAME
  digitMapValue       = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA]
                        ["L" COLON Timer COMMA] digitMap
  Timer               = 1*2DIGIT
  ; Units are seconds for T, S, and L timers, and hundreds of
  ; milliseconds for Z timer.  Thus T, S, and L range from 1 to 99
  ; seconds and Z from 100 ms to 9.9 s
  digitMap = (digitString /
              LWSP "(" LWSP digitStringList LWSP ")" LWSP)
  digitStringList   = digitString *( LWSP "|" LWSP digitString )
  digitString       = 1*(digitStringElement)
  digitStringElement = digitPosition [DOT]
  digitPosition     = digitMapLetter / digitMapRange
  digitMapRange     = ("x" / (LWSP "[" LWSP digitLetter LWSP "]" LWSP))
  digitLetter       = *((DIGIT "-" DIGIT ) / digitMapLetter)
  digitMapLetter    = DIGIT   ;Basic event symbols
              / %x41-4B / %x61-6B ; a-k, A-K
              / "L" / "S"   ;Inter-event timers (long, short)
              / "Z"         ;Long duration modifier

  ;at-most-once, and DigitMapToken and PackagesToken are not allowed
  ;in AuditCapabilities command
  auditItem            = ( MuxToken / ModemToken / MediaToken /
                          SignalsToken / EventBufferToken /
                          DigitMapToken / StatsToken / EventsToken /
                          ObservedEventsToken / PackagesToken )





Groves, et al.              Standards Track                   [Page 122]

RFC 3525                Gateway Control Protocol               June 2003


  serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm
                           *(COMMA serviceChangeParm) RBRKT

  ; each parameter at-most-once
  ; at most one of either serviceChangeAddress or serviceChangeMgcId
  ; but not both
  ; serviceChangeMethod and serviceChangeReason are REQUIRED
  serviceChangeParm    = (serviceChangeMethod / serviceChangeReason /
                         serviceChangeDelay / serviceChangeAddress /
                         serviceChangeProfile / extension / TimeStamp /
                         serviceChangeMgcId / serviceChangeVersion )

  serviceChangeReplyDescriptor = ServicesToken LBRKT
                       servChgReplyParm *(COMMA servChgReplyParm) RBRKT

  ; at-most-once.  Version is REQUIRED on first ServiceChange response
  ; at most one of either serviceChangeAddress or serviceChangeMgcId
  ; but not both
  servChgReplyParm     = (serviceChangeAddress / serviceChangeMgcId /
                         serviceChangeProfile / serviceChangeVersion /
                         TimeStamp)
  serviceChangeMethod  = MethodToken EQUAL (FailoverToken /
                         ForcedToken / GracefulToken / RestartToken /
                         DisconnectedToken / HandOffToken /
                         extensionParameter)
  ; A serviceChangeReason consists of a numeric reason code
  ; and an optional text description.
  ; A serviceChangeReason MUST be encoded using the quotedString
  ; form of VALUE.
  ; The quotedString SHALL contain a decimal reason code,
  ; optionally followed by a single space character and a
  ; textual description string.


  serviceChangeReason  = ReasonToken  EQUAL VALUE
  serviceChangeDelay   = DelayToken   EQUAL UINT32
  serviceChangeAddress = ServiceChangeAddressToken EQUAL ( mId /
                         portNumber )
  serviceChangeMgcId   = MgcIdToken   EQUAL mId
  serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version
  serviceChangeVersion = VersionToken EQUAL Version
  extension            = extensionParameter parmValue

  packagesDescriptor   = PackagesToken LBRKT packagesItem
                         *(COMMA packagesItem) RBRKT

  Version              = 1*2(DIGIT)
  packagesItem         = NAME "-" UINT16



Groves, et al.              Standards Track                   [Page 123]

RFC 3525                Gateway Control Protocol               June 2003



  TimeStamp            = Date "T" Time ; per ISO 8601:1988
  ; Date = yyyymmdd
  Date                 = 8(DIGIT)
  ; Time = hhmmssss
  Time                 = 8(DIGIT)
  statisticsDescriptor = StatsToken LBRKT statisticsParameter
                        *(COMMA statisticsParameter ) RBRKT

  ;at-most-once per item
  statisticsParameter  = pkgdName [EQUAL VALUE]

  topologyDescriptor   = TopologyToken LBRKT topologyTriple
                         *(COMMA topologyTriple) RBRKT
  topologyTriple       = terminationA COMMA
                         terminationB COMMA topologyDirection
  terminationA         = TerminationID
  terminationB         = TerminationID
  topologyDirection    = BothwayToken / IsolateToken / OnewayToken

  priority             = PriorityToken EQUAL UINT16

  extensionParameter   = "X"  ("-" / "+") 1*6(ALPHA / DIGIT)

  ; octetString is used to describe SDP defined in RFC2327.
  ; Caution should be taken if CRLF in RFC2327 is used.
  ; To be safe, use EOL in this ABNF.
  ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}"
  octetString          = *(nonEscapeChar)
  nonEscapeChar        = ( "\}" / %x01-7C / %x7E-FF )
  ; Note - The double-quote character is not allowed in quotedString.
  quotedString         = DQUOTE *(SafeChar / RestChar/ WSP) DQUOTE

  UINT16               = 1*5(DIGIT)  ; %x0-FFFF
  UINT32               = 1*10(DIGIT) ; %x0-FFFFFFFF

  NAME                 = ALPHA *63(ALPHA / DIGIT / "_" )
  VALUE                = quotedString / 1*(SafeChar)
  SafeChar             = DIGIT / ALPHA / "+" / "-" / "&" /
                         "!" / "_" / "/" / "\'" / "?" / "@" /
                         "^" / "`" / "~" / "*" / "$" / "\" /
                         "(" / ")" / "%" / "|" / "."

  EQUAL                = LWSP %x3D LWSP ; "="
  COLON                = %x3A           ; ":"
  LBRKT                = LWSP %x7B LWSP ; "{"
  RBRKT                = LWSP %x7D LWSP ; "}"
  COMMA                = LWSP %x2C LWSP ; ","



Groves, et al.              Standards Track                   [Page 124]

RFC 3525                Gateway Control Protocol               June 2003


  DOT                  = %x2E           ; "."
  SLASH                = %x2F           ; "/"
  ALPHA                = %x41-5A / %x61-7A ; A-Z / a-z
  DIGIT                = %x30-39         ; 0-9
  DQUOTE               = %x22            ; " (Double Quote)
  HEXDIG               = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" )
  SP                   = %x20        ; space
  HTAB                 = %x09        ; horizontal tab
  CR                   = %x0D        ; Carriage return
  LF                   = %x0A        ; linefeed
  LWSP                 = *( WSP / COMMENT / EOL )
  EOL                  = (CR [LF] / LF )
  WSP                  = SP / HTAB ; white space
  SEP                  = ( WSP / EOL / COMMENT) LWSP
  COMMENT              = ";" *(SafeChar/ RestChar / WSP / %x22) EOL
  RestChar            = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" /
                         "<" / ">" / "="

  ; New Tokens added to sigParameter must take the format of SPA*
  ; * may be of any form i.e., SPAM
  ; New Tokens added to eventParameter must take the form of EPA*
  ; * may be of any form i.e., EPAD

  AddToken                   = ("Add"                   / "A")
  AuditToken                 = ("Audit"                 / "AT")
  AuditCapToken              = ("AuditCapability"       / "AC")
  AuditValueToken            = ("AuditValue"            / "AV")
  AuthToken                  = ("Authentication"        / "AU")
  BothwayToken               = ("Bothway"               / "BW")
  BriefToken                 = ("Brief"                 / "BR")
  BufferToken                = ("Buffer"                / "BF")
  CtxToken                   = ("Context"               / "C")
  ContextAuditToken       = ("ContextAudit"    / "CA")
  DigitMapToken              = ("DigitMap"              / "DM")
  DisconnectedToken          = ("Disconnected"          / "DC")
  DelayToken                 = ("Delay"                 / "DL")
  DurationToken              = ("Duration"              / "DR")
  EmbedToken                 = ("Embed"                 / "EM")
  EmergencyToken             = ("Emergency"             / "EG")
  ErrorToken                 = ("Error"                 / "ER")
  EventBufferToken           = ("EventBuffer"           / "EB")
  EventsToken                = ("Events"                / "E")
  FailoverToken              = ("Failover"              / "FL")
  ForcedToken                = ("Forced"                / "FO")
  GracefulToken              = ("Graceful"              / "GR")
  H221Token                  = ("H221" )
  H223Token                  = ("H223" )
  H226Token                  = ("H226" )



Groves, et al.              Standards Track                   [Page 125]

RFC 3525                Gateway Control Protocol               June 2003


  HandOffToken               = ("HandOff"               / "HO")
  ImmAckRequiredToken        = ("ImmAckRequired"        / "IA")
  InactiveToken              = ("Inactive"              / "IN")
  IsolateToken               = ("Isolate"               / "IS")
  InSvcToken                 = ("InService"             / "IV")
  InterruptByEventToken      = ("IntByEvent"            / "IBE")
  InterruptByNewSignalsDescrToken
                             = ("IntBySigDescr"         / "IBS")
  KeepActiveToken            = ("KeepActive"            / "KA")
  LocalToken                 = ("Local"                 / "L")
  LocalControlToken          = ("LocalControl"          / "O")
  LockStepToken              = ("LockStep"              / "SP")
  LoopbackToken              = ("Loopback"              / "LB")
  MediaToken                 = ("Media"                 / "M")
  MegacopToken               = ("MEGACO"                / "!")
  MethodToken                = ("Method"                / "MT")
  MgcIdToken                 = ("MgcIdToTry"            / "MG")
  ModeToken                  = ("Mode"                  / "MO")
  ModifyToken                = ("Modify"                / "MF")
  ModemToken                 = ("Modem"                 / "MD")
  MoveToken                  = ("Move"                  / "MV")
  MTPToken                   = ("MTP")
  MuxToken                   = ("Mux"                   / "MX")
  NotifyToken                = ("Notify"                / "N")
  NotifyCompletionToken      = ("NotifyCompletion"      / "NC")
  ObservedEventsToken        = ("ObservedEvents"        / "OE")
  OnewayToken                = ("Oneway"                / "OW")
  OnOffToken                 = ("OnOff"                 / "OO")
  OtherReasonToken           = ("OtherReason"           / "OR")
  OutOfSvcToken              = ("OutOfService"          / "OS")
  PackagesToken              = ("Packages"              / "PG")
  PendingToken               = ("Pending"               / "PN")
  PriorityToken              = ("Priority"              / "PR")
  ProfileToken               = ("Profile"               / "PF")
  ReasonToken                = ("Reason"                / "RE")
  RecvonlyToken              = ("ReceiveOnly"           / "RC")
  ReplyToken                 = ("Reply"                 / "P")
  RestartToken               = ("Restart"               / "RS")
  RemoteToken                = ("Remote"                / "R")
  ReservedGroupToken         = ("ReservedGroup"         / "RG")
  ReservedValueToken         = ("ReservedValue"         / "RV")
  SendonlyToken              = ("SendOnly"              / "SO")
  SendrecvToken              = ("SendReceive"           / "SR")
  ServicesToken              = ("Services"              / "SV")
  ServiceStatesToken         = ("ServiceStates"         / "SI")
  ServiceChangeToken         = ("ServiceChange"         / "SC")
  ServiceChangeAddressToken  = ("ServiceChangeAddress"  / "AD")
  SignalListToken            = ("SignalList"            / "SL")



Groves, et al.              Standards Track                   [Page 126]

RFC 3525                Gateway Control Protocol               June 2003


  SignalsToken               = ("Signals"               / "SG")
  SignalTypeToken            = ("SignalType"            / "SY")
  StatsToken                 = ("Statistics"            / "SA")
  StreamToken                = ("Stream"                / "ST")
  SubtractToken              = ("Subtract"              / "S")
  SynchISDNToken             = ("SynchISDN"             / "SN")
  TerminationStateToken      = ("TerminationState"      / "TS")
  TestToken                  = ("Test"                  / "TE")
  TimeOutToken               = ("TimeOut"               / "TO")
  TopologyToken              = ("Topology"              / "TP")
  TransToken                 = ("Transaction"           / "T")
  ResponseAckToken           = ("TransactionResponseAck" / "K")
  V18Token                   = ("V18")
  V22Token                   = ("V22")
  V22bisToken                = ("V22b")
  V32Token                   = ("V32")
  V32bisToken                = ("V32b")
  V34Token                   = ("V34")
  V76Token                   = ("V76")
  V90Token                   = ("V90")
  V91Token                   = ("V91")
  VersionToken               = ("Version"               / "V")

B.3   Hexadecimal octet coding

  Hexadecimal octet coding is a means for representing a string of
  octets as a string of hexadecimal digits, with two digits
  representing each octet.  This octet encoding should be used when
  encoding octet strings in the text version of the protocol.  For each
  octet, the 8-bit sequence is encoded as two hexadecimal digits.  Bit
  0 is the first transmitted; bit 7 is the last.  Bits 7-4 are encoded
  as the first hexadecimal digit, with Bit 7 as MSB and Bit 4 as LSB.
  Bits 3-0 are encoded as the second hexadecimal digit, with Bit 3 as
  MSB and Bit 0 as LSB. Examples:

       Octet bit pattern                   Hexadecimal coding
       00011011                            D8
       11100100                            27
       10000011 10100010 11001000 00001001 C1451390

B.4   Hexadecimal octet sequence

  A hexadecimal octet sequence is an even number of hexadecimal digits,
  terminated by a <CR> character.







Groves, et al.              Standards Track                   [Page 127]

RFC 3525                Gateway Control Protocol               June 2003


ANNEX C - Tags for media stream properties

  Parameters for Local, Remote and LocalControl descriptors are
  specified as tag-value pairs if binary encoding is used for the
  protocol.  This annex contains the property names (PropertyID), the
  tags (Property tag), type of the property (Type) and the values
  (Value).  Values presented in the Value field when the field contains
  references shall be regarded as "information".  The reference
  contains the normative values.  If a value field does not contain a
  reference, then the values in that field can be considered as
  "normative".

  Tags are given as hexadecimal numbers in this annex.  When setting
  the value of a property, a MGC may underspecify the value according
  to one of the mechanisms specified in 7.1.1.

  It is optional to support the properties in this Annex or any of its
  sub-sections.  For example, only three properties from C.3 and only
  five properties from C.8 might be implemented.

  For type "enumeration" the value is represented by the value in
  brackets, e.g., Send(0), Receive(1).  Annex C properties with the
  types "N bits" or "M Octets" should be treated as octet strings when
  encoding the protocol.  Properties with "N bit integer" shall be
  treated as an integers.  "String" shall be treated as an IA5String
  when encoding the protocol.

  When a type is smaller than one octet, the value shall be stored in
  the low-order bits of an octet string of size 1.

C.1   General media attributes

  PropertyID    Property Type          Value
                tag

  Media         1001     Enumeration   Audio(0), Video(1), Data(2)

  Transmission  1002     Enumeration   Send(0), Receive(1),
  mode                                 Send&Receive(2)

  Number of     1003     Unsigned      0-255
  Channels               integer

  Sampling      1004     Unsigned      0-2^32
  rate                   integer

  Bitrate       1005     Integer       (0..4294967295)NOTE - Units of
                                       100 bit/s.



Groves, et al.              Standards Track                   [Page 128]

RFC 3525                Gateway Control Protocol               June 2003


  ACodec        1006     Octet string  Audio Codec Type:
                                       Ref.: ITU-T Q.765
                                       Non-ITU-T codecs are defined
                                       with the appropriate standards
                                       organization under a defined
                                       Organizational Identifier.

  Samplepp      1007     Unsigned      Maximum samples or frames per
                         integer       packet: 0..65535

  Silencesupp   1008     Boolean       Silence Suppression: True/False

  Encrypttype   1009     Octet string  Ref.: ITU-T H.245

  Encryptkey    100A     Octet string  Encryption key
                         size          Ref.: ITU-T H.235
                         (0..65535)

  Echocanc      100B                    Not Used.  See H.248.1 E.13 for
                                       an example of possible Echo
                                       Control properties.

  Gain          100C     Unsigned      Gain in dB: 0..65535
                         integer

  Jitterbuff    100D     Unsigned      Jitter buffer size in ms:
                         integer       0..65535

  PropDelay     100E     Unsigned      Propagation Delay: 0..65535
                         integer       Maximum propagation delay in
                                       milliseconds for the bearer
                                       connection between two media
                                       gateways.  The maximum delay
                                       will be dependent on the bearer
                                       technology.

  RTPpayload    100F     Integer       Payload type in RTP Profile for
                                       Audio and Video Conferences
                                       with Minimal Control
                                       Ref.: RFC 1890











Groves, et al.              Standards Track                   [Page 129]

RFC 3525                Gateway Control Protocol               June 2003


C.2   Mux properties

  PropertyID Property tag Type         Value

  H222       2001         Octet string H222LogicalChannelParameters
                                        Ref.: ITU-T H.245

  H223       2002         Octet string H223LogicalChannelParameters
                                        Ref.: ITU-T H.245

  V76        2003         Octet string V76LogicalChannelParameters
                                        Ref.: ITU-T H.245

  H2250      2004         Octet string H2250LogicalChannelParameters
                                        Ref.: ITU-T H.245

C.3   General bearer properties

  PropertyID Property   Type        Value
             tag

  Mediatx    3001       Enumeration Media Transport TypeTDM
                                     Circuit(0), ATM(1), FR(2),
                                     Ipv4(3), Ipv6(4), ...

  BIR        3002       4 octets    Value depends on transport
                                     technology

  NSAP       3003       1-20 octets See NSAP.
                                     Ref.: Annex A/X.213

C.4   General ATM properties

  PropertyID Property Type              Value
             tag

  AESA       4001     20 octets         ATM End System Address

  VPVC       4002     4 octets: VPCI    VPCI/VCI
                       in first two
                       least             Ref.: ITU-T Q.2931
                       significant
                       octets, VCI in
                       second two
                       octets






Groves, et al.              Standards Track                   [Page 130]

RFC 3525                Gateway Control Protocol               June 2003


  SC         4003     Enumeration       Service Category: CBR(0),
                                         nrt-VBR1(1), nrt  VBR2(2),
                                         nrt-VBR3(3), rt-VBR1(4),
                                         rt  VBR2(5), rt-VBR3(6),
                                         UBR1(7), UBR2(8), ABR(9).
                                         Ref.: ATM Forum UNI 4.0

  BCOB       4004     5-bit integer     Broadband Bearer Class
                                         Ref.: ITU-T Q.2961.2

  BBTC       4005     7-bit integer     Broadband Transfer Capability
                                         Ref.: ITU-T Q.2961.1

  ATC        4006     Enumeration       I.371 ATM Traffic
                                         CapabilityDBR(0), SBR1(1),
                                         SBR2(2), SBR3(3), ABT/IT(4),
                                         ABT/DT(5), ABR(6)
                                         Ref.: ITU-T I.371

  STC        4007     2 bits            Susceptibility to clipping:
                                         Bits
                                         2 1
                                         ---
                                         0 0     not susceptible to
                                                 clipping
                                         0 1     susceptible to
                                                 clipping
                                         Ref.: ITU-T Q.2931

  UPCC       4008     2 bits            User Plane Connection
                                         configuration:
                                         Bits
                                         2 1
                                         ---
                                         0 0     point-to-point
                                         0 1     point-to-multipoint
                                         Ref.: ITU-T Q.2931

  PCR0       4009     24-bit integer    Peak Cell Rate (For CLP = 0)
                                         Ref.: ITU-T Q.2931

  SCR0       400A     24-bit integer    Sustainable Cell Rate (For
                                         CLP = 0)
                                         Ref.: ITU-T Q.2961.1

  MBS0       400B     24-bit integer    Maximum Burst Size (For CLP =
                                         0)
                                         Ref.: ITU-T Q.2961.1



Groves, et al.              Standards Track                   [Page 131]

RFC 3525                Gateway Control Protocol               June 2003


  PCR1       400C     24-bit integer    Peak Cell Rate (For CLP = 0 +
                                         1)
                                         Ref.: ITU-T Q.2931

  SCR1       400D     24-bit integer    Sustainable Cell Rate (For
                                         CLP = 0 + 1)
                                         Ref.: ITU-T Q.2961.1

  MBS1       400E     24-bit integer    Maximum Burst Size (For CLP =
                                         0 + 1)
                                         Ref.: ITU-T Q.2961.1

  BEI        400F     Boolean           Best Effort Indicator
                                         Value 1 indicates that BEI is
                                         to be included in the ATM
                                         signaling; value 0 indicates
                                         that BEI is not to be
                                         included in the ATM
                                         signaling.
                                         Ref.: ATM Forum UNI 4.0

  TI         4010     Boolean           Tagging Indicator
                                         Value 0 indicates that
                                         tagging is not allowed; value
                                         1 indicates that tagging is
                                         requested.
                                         Ref.: ITU-T Q.2961.1

  FD         4011     Boolean           Frame Discard
                                         Value 0 indicates that no
                                         frame discard is allowed;
                                         value 1 indicates that frame
                                         discard is allowed.
                                         Ref.: ATM Forum UNI 4.0

  A2PCDV     4012     24-bit integer    Acceptable 2-point CDV
                                         Ref.: ITU-T Q.2965.2

  C2PCDV     4013     24-bit integer    Cumulative 2-point CDV
                                         Ref.: ITU-T Q.2965.2

  APPCDV     4014     24-bit integer    Acceptable P-P CDV
                                         Ref.: ATM Forum UNI 4.0

  CPPCDV     4015     24-bit integer    Cumulative P-P CDV
                                         Ref.: ATM Forum UNI 4.0





Groves, et al.              Standards Track                   [Page 132]

RFC 3525                Gateway Control Protocol               June 2003


  ACLR       4016     8-bit integer     Acceptable Cell Loss Ratio
                                         Ref.: ITU-T Q.2965.2, ATM
                                         Forum UNI 4.0

  MEETD      4017     16-bit integer    Maximum End-to-end transit
                                         delay
                                         Ref.: ITU-T Q.2965.2, ATM
                                         Forum UNI 4.0

  CEETD      4018     16-bit integer    Cumulative End-to-end transit
                                         delay
                                         Ref.: ITU-T Q.2965.2, ATM
                                         Forum UNI 4.0

  QosClass   4019     Integer 0-5          QoS Class

                                           QoS Class     Meaning

                                           0             Default QoS
                                                          associated
                                                          with the ATC
                                                          as defined
                                                          in ITU-T
                                                          Q.2961.2

                                           1             Stringent

                                           2             Tolerant

                                           3             Bi-level

                                           4             Unbounded

                                           5             Stringent
                                                          Bi-level
                                         Ref.: ITU-T Q.2965.1

  AALtype    401A     1 octet           AAL Type
                                         Bits
                                         8 7 6 5 4 3 2 1
                                         ---------------
                                         0 0 0 0 0 0 0 0   AAL for
                                                           voice
                                         0 0 0 0 0 0 0 1   AAL type 1
                                         0 0 0 0 0 0 1 0   AAL type 2
                                         0 0 0 0 0 0 1 1   AAL type
                                                           3/4
                                         0 0 0 0 0 1 0 1   AAL type 5



Groves, et al.              Standards Track                   [Page 133]

RFC 3525                Gateway Control Protocol               June 2003


                                         0 0 0 1 0 0 0 0   user-
                                                           defined AAL
                                         Ref.: ITU-T Q.2931

C.5   Frame Relay

  PropertyID         Property    Type          Value
                     tag

  DLCI               5001        Unsigned      Data link connection
                                 integer       id

  CID                5002        Unsigned      sub-channel id
                                 integer

  SID/Noiselevel     5003        Unsigned      silence insertion
                                 integer       descriptor

  Primary Payload    5004        Unsigned      Primary Payload Type
  type                           integer       Covers FAX and codecs

C.6   IP

  PropertyID Property tag Type                Value

  IPv4       6001         32 bits Ipv4Address Ipv4Address
                                               Ref.: IETF RFC 791

  IPv6       6002         128 bits            IPv6 Address
                                               Ref.: IETF RFC 2460

  Port       6003         Unsigned integer    0..65535

  Porttype   6004         Enumerated          TCP(0), UDP(1), SCTP(2)


C.7   ATM AAL2

  PropertyID Property Type                   Value
             tag

  AESA       7001     20 octets              AAL2 service endpoint
                                               address as defined in
                                               the referenced
                                               Recommendation.
                                               ESEANSEA
                                               Ref.: ITU-T Q.2630.1




Groves, et al.              Standards Track                   [Page 134]

RFC 3525                Gateway Control Protocol               June 2003


  BIR        See C.3  4 octets               Served user generated
                                               reference as defined in
                                               the referenced
                                               Recommendation.
                                               SUGR
                                               Ref.: ITU-T Q.2630.1

  ALC        7002     12 octets              AAL2 link
                                               characteristics as
                                               defined in the
                                               referenced
                                               Recommendation.
                                               Maximum/Average CPS-SDU
                                               bit rate;
                                               Maximum/Average CPS-SDU
                                               size
                                               Ref.: ITU-T Q.2630.1

  SSCS       7003     I.366.2: Audio (8      Service specific
                       octets); Multirate (3  convergence sublayer
                       octets), or I.366.1:   information as defined
                       SAR-assured (14        in:
                       octets);SAR-unassured  - ITU-T Q.2630.1,and
                       (7 octets).            used in:
                                               - ITU-T I.366.2:
                                               Audio/Multirate;
                                               - ITU-T I.366.1: SAR-
                                               assured/unassured.
                                               Ref.: ITU-T Q.2630.1,
                                               I.366.1 and I.366.2

  SUT        7004     1..254 octets          Served user transport
                                               parameter as defined in
                                               the referenced
                                               Recommendation.
                                               Ref.: ITU-T Q.2630.1

  TCI        7005     Boolean                Test connection
                                               indicator as defined in
                                               the referenced
                                               Recommendation.
                                               Ref.: ITU-T Q.2630.1

  Timer_CU   7006     32-bit integer         Timer-CU
                                               Milliseconds to hold
                                               partially filled cell
                                               before sending.




Groves, et al.              Standards Track                   [Page 135]

RFC 3525                Gateway Control Protocol               June 2003


  MaxCPSSDU  7007     8-bit integer          Maximum Common Part
                                               Sublayer Service Data
                                               Unit
                                               Ref.: ITU-T Q.2630.1

  CID        7008     8 bits                 subchannel id: 0-255
                                               Ref.: ITU-T I.363.2
C.8   ATM AAL1

  PropertyID Property   Type        Value
             tag

  BIR        See table  4-29 octets GIT (Generic Identifier
             in C.3                 Transport)
                                     Ref.: ITU-T Q.2941.1

  AAL1ST     8001       1 octet     AAL1 Subtype
                                     Bits
                                     8 7 6 5 4 3 2 1
                                     ---------------
                                     0 0 0 0 0 0 0 0     null
                                     0 0 0 0 0 0 0 1     voiceband
                                     signal transport on 64 kbit/s
                                     0 0 0 0 0 0 1 0     circuit
                                     transport
                                     0 0 0 0 0 1 0 0     high-quality
                                     audio signal transport
                                     0 0 0 0 0 1 0 1     video signal
                                     transport
                                     Ref.: ITU-T Q.2931

  CBRR       8002       1 octet     CBR Rate
                                     Bits
                                     8 7 6 5 4 3 2 1
                                     ---------------
                                     0 0 0 0 0 0 0 1       64 kbit/s
                                     0 0 0 0 0 1 0 0     1544 kbit/s
                                     0 0 0 0 0 1 0 1     6312 kbit/s
                                     0 0 0 0 0 1 1 0   32 064 kbit/s
                                     0 0 0 0 0 1 1 1   44 736 kbit/s
                                     0 0 0 0 1 0 0 0   97 728 kbit/s
                                     0 0 0 1 0 0 0 0     2048 kbit/s
                                     0 0 0 1 0 0 0 1     8448 kbit/s
                                     0 0 0 1 0 0 1 0   34 368 kbit/s
                                     0 0 0 1 0 0 1 1  139 264 kbit/s
                                     0 1 0 0 0 0 0 0   n x 64 kbit/s
                                     0 1 0 0 0 0 0 1    n x 8 kbit/s
                                     Ref.: ITU-T Q.2931



Groves, et al.              Standards Track                   [Page 136]

RFC 3525                Gateway Control Protocol               June 2003


  MULT       See table              Multiplier, or n x 64k/8k/300
             in C.9                 Ref.: ITU-T Q.2931

  SCRI       8003       1 octet     Source Clock Frequency Recovery
                                     Method
                                     Bits
                                     8 7 6 5 4 3 2 1
                                     ---------------
                                     0 0 0 0 0 0 0 0     null
                                     0 0 0 0 0 0 0 1     SRTS
                                     0 0 0 0 0 0 1 0     ACM
                                     Ref.: ITU-T Q.2931

  ECM        8004       1 octet     Error Correction Method
                                     Bits
                                     8 7 6 5 4 3 2 1
                                     ---------------
                                     0 0 0 0 0 0 0 0     null
                                     0 0 0 0 0 0 0 1     FEC - Loss
                                     0 0 0 0 0 0 1 0     FEC - Delay
                                     Ref.: ITU-T Q.2931

  SDTB       8005       16-bit      Structured Data Transfer
                        integer     Blocksize
                                     Block size of SDT CBR service
                                     Ref.: ITU-T I.363.1

  PFCI       8006       8-bit       Partially filled cells identifier
                        integer     1-47
                                     Ref.: ITU-T I.363.1

C.9   Bearer capabilities

  The table entries referencing Recommendation Q.931 refer to the
  encoding in the bearer capability information element of Q.931, not
  to the low layer information element.

  PropertyID    Tag    Type      Value

  TMR           9001   1 octet   Transmission Medium
                                 Requirement (Q.763)
                                 Bits
                                 87654321
                                 --------
                                 00000000  speech
                                 00000001  spare
                                 00000010  64 kbit/s
                                 unrestricted



Groves, et al.              Standards Track                   [Page 137]

RFC 3525                Gateway Control Protocol               June 2003


                                 00000011  3.1 kHz audio
                                 00000100  reserved for
                                 alternate speech (service
                                 2)/64 kbit/s unrestricted
                                 (service 1)
                                 00000101  reserved for
                                 alternate 64 kbit/s
                                 unrestricted (service
                                 1)/speech (service 2)
                                 00000110  64 kbit/s preferred

                                 The assigned codepoints
                                 listed below are all for
                                 unrestricted service.
                                 00000111  2 x 64 kbit/s
                                 00001000  384 kbit/s
                                 00001001  1536 kbit/s
                                 00001010  1920 kbit/s
                                 00001011
                                  through
                                 00001111  spare
                                 00010000
                                  through
                                 00101010:
                                    3 x 64 kbit/s through
                                   29 x 64 kbit/s
                                 except
                                 00010011  spare
                                 00100101  spare

                                 00101011
                                  through
                                 11111111  spare
                                 Ref.: ITU-T Q.763

  TMRSR         9002   1 octet   Transmission Medium
                                 Requirement Subrate
                                 0     unspecified
                                 1      8 kbit/s
                                 2     16 kbit/s
                                 3     32 kbit/s

  Contcheck     9003   Boolean   Continuity Check
                                 0     continuity check not
                                 required on this circuit
                                 1     continuity check
                                 required on this circuit
                                 Ref.: ITU-T Q.763



Groves, et al.              Standards Track                   [Page 138]

RFC 3525                Gateway Control Protocol               June 2003



  ITC           9004   5 bits    Information Transfer
                                 Capability
                                 Bits
                                 5 4 3 2 1
                                 ---------
                                 0 0 0 0 0     Speech
                                 0 1 0 0 0     Unrestricted
                                 digital information
                                 0 1 0 0 1     Restricted
                                 digital information
                                 1 0 0 0 0     3.1 kHz audio
                                 1 0 0 0 1     Unrestricted
                                 digital information with
                                 tones/announcements
                                 1 1 0 0 0     Video
                                 All other values are
                                 reserved.
                                 Ref.: ITU-T Q.763

  TransMode     9005   2 bits    Transfer Mode
                                 Bits
                                 2 1
                                 ---
                                 0 0     Circuit mode
                                 1 0     Packet mode
                                 Ref.: ITU-T Q.931

  TransRate     9006   5 bits    Transfer Rate
                                 Bits
                                 5 4 3 2 1
                                 ---------
                                 0 0 0 0 0     This code shall
                                 be used for packet mode calls
                                 1 0 0 0 0      64 kbit/s
                                 1 0 0 0 1  2 x 64 kbit/s
                                 1 0 0 1 1     384 kbit/s
                                 1 0 1 0 1    1536 kbit/s
                                 1 0 1 1 1    1920 kbit/s
                                 1 1 0 0 0  Multirate (64
                                 kbit/s base rate)
                                 Ref.: ITU-T Q.931

  MULT          9007   7 bits    Rate Multiplier
                                 Any value from 2 to n
                                 (maximum number of B-
                                 channels)
                                 Ref.: ITU-T Q.931



Groves, et al.              Standards Track                   [Page 139]

RFC 3525                Gateway Control Protocol               June 2003



  layer1prot    9008   5 bits    User Information Layer 1
                                 Protocol
                                 Bits
                                 5 4 3 2 1
                                 ---------
                                 0 0 0 0 1     ITU-T
                                 standardized rate adaption
                                 V.110 and X.30.
                                 0 0 0 1 0     Recommendation
                                 G.711 m-law
                                 0 0 0 1 1     Recommendation
                                 G.711 A-law
                                 0 0 1 0 0     Recommendation
                                 G.721 32 kbit/s ADPCM and
                                 Recommendation I.460
                                 0 0 1 0 1     Recommendations
                                 H.221 and H.242
                                 0 0 1 1 0     Recommendations
                                 H.223 and H.245
                                 0 0 1 1 1     Non-ITU-T
                                 standardized rate adaption.
                                 0 1 0 0 0     ITU-T
                                 standardized rate adaption
                                 V.120.
                                 0 1 0 0 1     ITU-T
                                 standardized rate adaption
                                 X.31 HDLC flag stuffing
                                 All other values are
                                 reserved.
                                 Ref.: ITU Recommendation
                                 Q.931

  syncasync     9009   Boolean   Synchronous/Asynchronous
                                 0     Synchronous data
                                 1     Asynchronous data
                                 Ref.: ITU-T Q.931

  negotiation   900A   Boolean   Negotiation
                                 0     In-band negotiation
                                 possible
                                 1     In-band negotiation not
                                 possible
                                 Ref.: ITU-T Q.931

  Userrate      900B   5 bits    User Rate
                                 Bits
                                 5 4 3 2 1



Groves, et al.              Standards Track                   [Page 140]

RFC 3525                Gateway Control Protocol               June 2003


                                 ---------
                                 0 0 0 0 0     Rate is
                                 indicated by E-bits specified
                                 in Recommendation I.460 or
                                 may be negotiated in-band
                                 0 0 0 0 1     0.6 kbit/s
                                 Recommendations V.6 and X.1
                                 0 0 0 1 0     1.2 kbit/s
                                 Recommendation V.6
                                 0 0 0 1 1     2.4 kbit/s
                                 Recommendations V.6 and X.1
                                 0 0 1 0 0     3.6 kbit/s
                                 Recommendation V.6
                                 0 0 1 0 1     4.8 kbit/s
                                 Recommendations V.6 and X.1
                                 0 0 1 1 0     7.2 kbit/s
                                 Recommendation V.6
                                 0 0 1 1 1     8 kbit/s
                                 Recommendation I.460
                                 0 1 0 0 0     9.6 kbit/s
                                 Recommendations V.6 and X.1
                                 0 1 0 0 1     14.4 kbit/s
                                 Recommendation V.6
                                 0 1 0 1 0     16 kbit/s
                                 Recommendation I.460
                                 0 1 0 1 1     19.2 kbit/s
                                 Recommendation V.6
                                 0 1 1 0 0     32 kbit/s
                                 Recommendation I.460
                                 0 1 1 0 1     38.4 kbit/s
                                 Recommendation V.110
                                 0 1 1 1 0     48 kbit/s
                                 Recommendations V.6 and X.1
                                 0 1 1 1 1     56 kbit/s
                                 Recommendation V.6
                                 1 0 0 1 0     57.6 kbit/s
                                 Recommendation V.14 extended
                                 1 0 0 1 1     28.8 kbit/s
                                 Recommendation V.110
                                 1 0 1 0 0     24 kbit/s
                                 Recommendation V.110
                                 1 0 1 0 1     0.1345 kbit/s
                                 Recommendation X.1
                                 1 0 1 1 0     0.100 kbit/s
                                 Recommendation X.1
                                 1 0 1 1 1     0.075/1.2
                                 kbit/s Recommendations V.6
                                 and X.1



Groves, et al.              Standards Track                   [Page 141]

RFC 3525                Gateway Control Protocol               June 2003


                                 1 1 0 0 0     1.2/0.075
                                 kbit/s Recommendations V.6
                                 and X.1
                                 1 1 0 0 1     0.050 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 0 1 0     0.075 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 0 1 1     0.110 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 1 0 0     0.150 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 1 0 1     0.200 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 1 1 0     0.300 kbit/s
                                 Recommendations V.6 and X.1
                                 1 1 1 1 1     12 kbit/s
                                 Recommendation V.6
                                 All other values are
                                 reserved.
                                 Ref.: ITU-T Q.931
  INTRATE       900C   2 bits    Intermediate Rate
                                 Bits
                                 2 1
                                 ---
                                 0 0     Not used
                                 0 1     8 kbit/s
                                 1 0     16 kbit/s
                                 1 1     32 kbit/s
                                 Ref.: ITU-T Q.931

  nictx         900D   Boolean   Network Independent Clock
                                 (NIC) on transmission
                                 0     Not required to send
                                 data with network independent
                                 clock
                                 1     Required to send data
                                 with network independent
                                 clock
                                 Ref.: ITU-T Q.931

  nicrx         900E   Boolean   Network independent clock
                                 (NIC) on reception
                                 0     Cannot accept data with
                                 network independent clock
                                 (i.e., sender does not support
                                 this optional procedure)
                                 1     Can accept data with
                                 network independent clock



Groves, et al.              Standards Track                   [Page 142]

RFC 3525                Gateway Control Protocol               June 2003


                                 (i.e., sender does support
                                 this optional procedure)
                                 Ref.: ITU-T Q.931

  flowconttx    900F   Boolean   Flow Control on transmission
                                 (Tx)
                                 0     Not required to send
                                 data with flow control
                                 mechanism
                                 1     Required to send data
                                 with flow control mechanism
                                 Ref.: ITU-T Q.931

  flowcontrx    9010   Boolean   Flow control on reception
                                 (Rx)
                                 0     Cannot accept data with
                                 flow control mechanism (i.e.,
                                 sender does not support this
                                 optional procedure)
                                 1     Can accept data with
                                 flow control mechanism (i.e.,
                                 sender does support this
                                 optional procedure)
                                 Ref.: ITU-T Q.931

  rateadapthdr  9011   Boolean   Rate adaption header/no
                                 header
                                 0     Rate adaption header
                                 not included
                                 1     Rate adaption header
                                 included
                                 Ref.: ITU-T Q.931

  multiframe    9012   Boolean   Multiple frame establishment
                                 support in data link
                                 0     Multiple frame
                                 establishment not supported.
                                 Only UI frames allowed
                                 1     Multiple frame
                                 establishment supported
                                 Ref.: ITU-T Q.931

  OPMODE        9013   Boolean   Mode of operation
                                 0     Bit transparent mode of
                                 operation
                                 1     Protocol sensitive mode
                                 of operation
                                 Ref.: ITU-T Q.931



Groves, et al.              Standards Track                   [Page 143]

RFC 3525                Gateway Control Protocol               June 2003



  llidnegot     9014   Boolean   Logical link identifier
                                 negotiation
                                 0     Default, LLI = 256 only
                                 1     Full protocol
                                 negotiation
                                 Ref.: ITU-T Q.931

  assign        9015   Boolean   Assignor/assignee
                                 0     Message originator is
                                 "default assignee"
                                 1     Message originator is
                                 "assignor only"
                                 Ref.: ITU-T Q.931

  inbandneg     9016   Boolean   In-band/out-band negotiation
                                 0     Negotiation is done
                                 with USER INFORMATION
                                 messages on a temporary
                                 signalling connection
                                 1     Negotiation is done in-
                                 band using logical link zero
                                 Ref.: ITU-T Q.931

  stopbits      9017   2 bits    Number of stop bits
                                 Bits
                                 2 1
                                 ---
                                 0 0     Not used
                                 0 1     1 bit
                                 1 0     1.5 bits
                                 1 1     2 bits
                                 Ref.: ITU-T Q.931

  databits      9018   2 bits    Number of data bits excluding
                                 parity bit if present
                                 Bits
                                 2 1
                                 ---
                                 0 0     Not used
                                 0 1     5 bits
                                 1 0     7 bits
                                 1 1     8 bits
                                 Ref.: ITU-T Q.931

  parity        9019   3 bits    Parity information
                                 Bits
                                 3 2 1



Groves, et al.              Standards Track                   [Page 144]

RFC 3525                Gateway Control Protocol               June 2003


                                 ------
                                 0 0 0     Odd
                                 0 1 0     Even
                                 0 1 1     None
                                 1 0 0     Forced to 0
                                 1 0 1     Forced to 1
                                 All other values are
                                 reserved.
                                 Ref.: ITU-T Q.931

  duplexmode    901A   Boolean   Mode duplex
                                 0     Half duplex
                                 1     Full duplex
                                 Ref.: ITU-T Q.931

  modem         901B   6 bits    Modem Type
                                 Bits
                                 6 5 4 3 2 1
                                 -----------
                                 0 0 0 0 0 0 through
                                 0 0 0 1 0 1   National use
                                 0 1 0 0 0 1   Rec.  V.21
                                 0 1 0 0 1 0     Rec.  V.22
                                 0 1 0 0 1 1     Rec.  V.22 bis
                                 0 1 0 1 0 0     Rec.  V.23
                                 0 1 0 1 0 1     Rec.  V.26
                                 0 1 1 0 0 1     Rec.  V.26 bis
                                 0 1 0 1 1 1     Rec.  V.26 ter
                                 0 1 1 0 0 0     Rec.  V.27
                                 0 1 1 0 0 1     Rec.  V.27 bis
                                 0 1 1 0 1 0     Rec.  V.27 ter
                                 0 1 1 0 1 1     Rec.  V.29
                                 0 1 1 1 0 1     Rec.  V.32
                                 0 1 1 1 1 0     Rec.  V.34
                                 1 0 0 0 0 0  through
                                 1 0 1 1 1 1    National use
                                 1 1 0 0 0 0  through
                                 1 1 1 1 1 1    User specified
                                 Ref.: ITU-T Q.931

  layer2prot    901C   5 bits    User information layer 2
                                 protocol
                                 Bits
                                 5 4 3 2 1
                                 ---------
                                 0 0 0 1 0    Rec.  Q.921/I.441
                                 0 0 1 1 0    Rec.  X.25, link
                                 layer



Groves, et al.              Standards Track                   [Page 145]

RFC 3525                Gateway Control Protocol               June 2003


                                 0 1 1 0 0    LAN logical link
                                 control (ISO/IEC 8802  2)
                                 All other values are
                                 reserved.
                                 Ref.: ITU-T Q.931

  layer3prot    901D   5 bits    User information layer 3
                                 protocol
                                 Bits
                                 5 4 3 2 1
                                 ---------
                                 0 0 0 1 0     ITU-T Q.931
                                 0 0 1 1 0     ITU-T X.25,
                                 packet layer
                                 0 1 0 1 1     ISO/IEC TR 9577
                                 (Protocol identification in
                                 the network layer)
                                 All other values are
                                 reserved.
                                 Ref.: ITU-T Q.931

  addlayer3prot 901E   Octet     Additional User Information
                                 layer 3 protocol
                                 Bits        Bits
                                 4 3 2 1     4 3 2 1
                                 -------     -------
                                 1 1 0 0     1 1 0 0
                                 Internet Protocol (RFC 791)
                                 (ISO/IEC TR 9577)
                                 1 1 0 0     1 1 1 1
                                 Point-to-point Protocol (RFC
                                 1661)
                                 Ref.: ITU-T Q.931

  DialledN      901F   30        Dialled Number
                       octets

  DiallingN     9020   30        Dialling Number
                       octets

  ECHOCI        9021             Not Used.  See H.248.1 E.13
                                 for an example of possible
                                 Echo Control properties.

  NCI           9022   1 octet   Nature of Connection
                                 Indicators
                                 Bits
                                 2 1     Satellite Indicator



Groves, et al.              Standards Track                   [Page 146]

RFC 3525                Gateway Control Protocol               June 2003


                                 ---
                                 0 0     no satellite circuit
                                 in the connection
                                 0 1     one satellite circuit
                                 in the connection
                                 1 0     two satellite
                                 circuits in the connection
                                 1 1     spare

                                 Bits
                                 4 3     Continuity check
                                 ---     indicator
                                 0 0     continuity check not
                                 required
                                 0 1     continuity check
                                 required on this circuit
                                 1 0     continuity check
                                 performed on a previous
                                 circuit
                                 1 1     spare

                                 Bit
                                 5     Echo control device
                                 -     indicator
                                 0     outgoing echo control
                                 device not included
                                 1     outgoing echo control
                                 device included

                                 Bits
                                 8 7 6     Spare
                                 Ref.: ITU-T Q.763

  USI           9023   Octet     User Service Information
                       string    Ref.: ITU-T Q.763 Clause 3.57

C.10  AAL5 properties

  PropertyID Property    Type       Value
             tag

  FMSDU      A001        32-bit     Forward Maximum CPCS-SDU Size:
                         integer    Maximum CPCS-SDU size sent in the
                                    direction from the calling user to
                                    the called user.
                                    Ref.: ITU-T Q.2931





Groves, et al.              Standards Track                   [Page 147]

RFC 3525                Gateway Control Protocol               June 2003


  BMSDU      A002        32-bit     Backwards Maximum CPCS-SDU Size:
                         integer    Maximum CPCS-SDU size sent in the
                                    direction from the called user to
                                    the calling user.
                                    Ref.: ITU-T Q.2931

  SSCS       See table   See table  See table in C.7
             in C.7      in C.7     Additional values:
                                    VPI/VCI

C.11  SDP equivalents

  PropertyID Property    Type   Value
             tag

  SDP_V      B001        String Protocol Version
                                 Ref.: RFC 2327

  SDP_O      B002        String Owner/creator and session ID
                                 Ref.: RFC 2327

  SDP_S      B003        String Session name
                                 Ref.: RFC 2327

  SDP_I      B004        String Session identifier
                                 Ref.: RFC 2327

  SDP_U      B005        String URI of descriptor
                                 Ref.: RFC 2327

  SDC_E      B006        String email address
                                 Ref.: RFC 2327

  SDP_P      B007        String phone number
                                 Ref.: RFC 2327

  SDP_C      B008        String Connection information
                                 Ref.: RFC 2327

  SDP_B      B009        String Bandwidth Information
                                 Ref.: RFC 2327

  SDP_Z      B00A        String Time zone adjustment
                                 Ref.: RFC 2327

  SDP_K      B00B        String Encryption Key
                                 Ref.: RFC 2327




Groves, et al.              Standards Track                   [Page 148]

RFC 3525                Gateway Control Protocol               June 2003


  SDP_A      B00C        String Zero or more session attributes
                                 Ref.: RFC 2327

  SDP_T      B00D        String Active Session Time
                                 Ref.: RFC 2327

  SDP_R      B00E        String Zero or more repeat times
                                 Reference: RFC 2327

  SDP_M      B00F        String Media type, port, transport and format
                                 Ref.: RFC 2327

C.12  H.245

  PropertyID Property   Type     Value
             tag

  OLC        C001       Octet    The value of H.245
                                  OpenLogicalChannel structure.
                        string   Ref.: ITU-T H.245

  OLCack     C002       Octet    The value of H.245
                        string   OpenLogicalChannelAck structure.
                                  Ref.: ITU-T H.245

  OLCcnf     C003       Octet    The value of H.245
                        string   OpenLogicalChannelConfirm structure.
                                  Ref.: ITU-T H.245

  OLCrej     C004       Octet    The value of H.245
                        string   OpenLogicalChannelReject structure.
                                  Ref.: ITU-T H.245

  CLC        C005       Octet    The value of H.245
                        string   CloseLogicalChannel structure.
                                  Ref.: ITU-T H.245

  CLCack     C006       Octet    The value of H.245
                        string   CloseLogicalChannelAck structure.
                                  Ref.: ITU-T H.245











Groves, et al.              Standards Track                   [Page 149]

RFC 3525                Gateway Control Protocol               June 2003


ANNEX D - Transport over IP

D.1   Transport over IP/UDP using Application Level Framing (ALF)

  Protocol messages defined in this RFC may be transmitted over UDP.
  When no port is provided by the peer (see 7.2.8), commands should be
  sent to the default port number: 2944 for text-encoded operation, or
  2945 for binary-encoded operation.  Responses must be sent to the
  address and port from which the corresponding commands were sent.

  ALF is a set of techniques that allows an application, as opposed to
  a stack, to affect how messages are sent to the other side.  A
  typical ALF technique is to allow an application to change the order
  of messages sent when there is a queue after it has queued them.
  There is no formal specification for ALF.  The procedures in Annex
  D.1 contain a minimum suggested set of ALF behaviours

  Implementors using IP/UDP with ALF should be aware of the
  restrictions of the MTU on the maximum message size.

D.1.1 Providing At-Most-Once functionality

  Messages, being carried over UDP, may be subject to losses.  In the
  absence of a timely response, commands are repeated.  Most commands
  are not idempotent.  The state of the MG would become unpredictable
  if, for example, Add commands were executed several times.  The
  transmission procedures shall thus provide an "At-Most-Once"
  functionality.

  Peer protocol entities are expected to keep in memory a list of the
  responses that they sent to recent transactions and a list of the
  transactions that are currently outstanding.  The transaction
  identifier of each incoming message is compared to the transaction
  identifiers of the recent responses sent to the same MId.  If a match
  is found, the entity does not execute the transaction, but simply
  repeats the response.  If no match is found, the message will be
  compared to the list of currently outstanding transactions.  If a
  match is found in that list, indicating a duplicate transaction, the
  entity does not execute the transaction (see D.1.4 for procedures on
  sending TransactionPending).

  The procedure uses a long timer value, noted LONG-TIMER in the
  following.  The timer should be set larger than the maximum duration
  of a transaction, which should take into account the maximum number







Groves, et al.              Standards Track                   [Page 150]

RFC 3525                Gateway Control Protocol               June 2003


  of repetitions, the maximum value of the repetition timer and the
  maximum propagation delay of a packet in the network.  A suggested
  value is 30 seconds.

  The copy of the responses may be destroyed either LONG-TIMER seconds
  after the response is issued, or when the entity receives a
  confirmation that the response has been received, through the
  "Response Acknowledgement parameter".  For transactions that are
  acknowledged through this parameter, the entity shall keep a copy of
  the transaction-id for LONG-TIMER seconds after the response is
  issued, in order to detect and ignore duplicate copies of the
  transaction request that could be produced by the network.

D.1.2 Transaction identifiers and three-way handshake

D.1.2.1  Transaction identifiers

  Transaction identifiers are 32-bit integer numbers.  A Media Gateway
  Controller may decide to use a specific number space for each of the
  MGs that they manage, or to use the same number space for all MGs
  that belong to some arbitrary group.  MGCs may decide to share the
  load of managing a large MG between several independent processes.
  These processes will share the same transaction number space.  There
  are multiple possible implementations of this sharing, such as having
  a centralized allocation of transaction identifiers, or
  pre-allocating non-overlapping ranges of identifiers to different
  processes.  The implementations shall guarantee that unique
  transaction identifiers are allocated to all transactions that
  originate from a logical MGC (identical mId).  MGs can simply detect
  duplicate transactions by looking at the transaction identifier and
  mId only.

D.1.2.2  Three-way handshake

  The TransactionResponse Acknowledgement parameter can be found in any
  message.  It carries a set of "confirmed transaction-id ranges".
  Entities may choose to delete the copies of the responses to
  transactions whose id is included in "confirmed transaction-id
  ranges" received in the transaction response messages.  They should
  silently discard further commands when the transaction-id falls
  within these ranges.

  The "confirmed transaction-id ranges" values shall not be used if
  more than LONG-TIMER seconds have elapsed since the MG issued its
  last response to that MGC, or when a MG resumes operation.  In this
  situation, transactions should be accepted and processed, without any
  test on the transaction-id.




Groves, et al.              Standards Track                   [Page 151]

RFC 3525                Gateway Control Protocol               June 2003


  Messages that carry the "Transaction Response Acknowledgement"
  parameter may be transmitted in any order.  The entity shall retain
  the "confirmed transaction-id ranges" received for LONG-TIMER
  seconds.

  In the binary encoding, if only the firstAck is present in a response
  acknowledgement (see A.2), only one transaction is acknowledged.  If
  both firstAck and lastAck are present, then the range of transactions
  from firstAck to lastAck is acknowledged.  In the text encoding, a
  horizontal dash is used to indicate a range of transactions being
  acknowledged (see B.2).

D.1.3 Computing retransmission timers

  It is the responsibility of the requesting entity to provide suitable
  timeouts for all outstanding transactions, and to retry transactions
  when timeouts have been exceeded.  Furthermore, when repeated
  transactions fail to be acknowledged, it is the responsibility of the
  requesting entity to seek redundant services and/or clear existing or
  pending connections.

  The specification purposely avoids specifying any value for the
  retransmission timers.  These values are typically network dependent.
  The retransmission timers should normally estimate the timer value by
  measuring the time spent between the sending of a command and the
  return of a response.  Implementations SHALL ensure that the
  algorithm used to calculate retransmission timing performs an
  exponentially increasing backoff of the retransmission timeout for
  each retransmission or repetition after the first one.

    NOTE - One possibility is to use the algorithm implemented in
    TCP-IP, which uses two variables:

  -  The average acknowledgement delay (AAD), estimated through an
     exponentially smoothed average of the observed delays.

  -  The average deviation (ADEV), estimated through an exponentially
     smoothed average of the absolute value of the difference between
     the observed delay and the current average.  The retransmission
     timer, in TCP, is set to the sum of the average delay plus N times
     the average deviation.  The maximum value of the timer should
     however be bounded for the protocol defined in this
     RFC, in order to guarantee that no repeated packet
     would be received by the gateways after LONG-TIMER seconds.  A
     suggested maximum value is 4 seconds.






Groves, et al.              Standards Track                   [Page 152]

RFC 3525                Gateway Control Protocol               June 2003


  After any retransmission, the entity SHOULD do the following:

  -  It should double the estimated value of the average delay, AAD.

  -  It should compute a random value, uniformly distributed between
     0.5 AAD and AAD.

  -  It should set the retransmission timer to the sum of that random
     value and N times the average deviation.

  This procedure has two effects.  Because it includes an exponentially
  increasing component, it will automatically slow down the stream of
  messages in case of congestion.  Because it includes a random
  component, it will break the potential synchronization between
  notifications triggered by the same external event.

D.1.4 Provisional responses

  Executing some transactions may require a long time.  Long execution
  times may interact with the timer-based retransmission procedure.
  This may result either in an inordinate number of retransmissions, or
  in timer values that become too long to be efficient.  Entities that
  can predict that a transaction will require a long execution time may
  send a provisional response, "Transaction Pending".  They SHOULD send
  this response if they receive a repetition of a transaction that is
  still being executed.

  Entities that receive a Transaction Pending shall switch to a
  different repetition timer for repeating requests.  The root
  Termination has a property (ProvisionalResponseTimerValue), which can
  be set to the requested maximum number of milliseconds between
  receipt of a command and transmission of the TransactionPending
  response.  Upon receipt of a final response following receipt of
  provisional responses, an immediate confirmation shall be sent, and
  normal repetition timers shall be used thereafter.  An entity that
  sends a provisional response, SHALL include the immAckRequired field
  in the ensuing final response, indicating that an immediate
  confirmation is expected.  Receipt of a Transaction Pending after
  receipt of a reply shall be ignored.

D.1.5 Repeating Requests, Responses and Acknowledgements

  The protocol is organized as a set of transactions, each of which is
  composed of a request and a response, commonly referred to as an
  acknowledgement.  The protocol messages, being carried over UDP, may
  be subject to losses.  In the absence of a timely response,
  transactions are repeated.  Entities are expected to keep in memory a




Groves, et al.              Standards Track                   [Page 153]

RFC 3525                Gateway Control Protocol               June 2003


  list of the responses that they sent to recent transactions, i.e., a
  list of all the responses they sent over the last LONG-TIMER seconds,
  and a list of the transactions that are currently being executed.

  The repetition mechanism is used to guard against three types of
  possible errors:

  -  transmission errors, when for example a packet is lost due to
     noise on a line or congestion in a queue;

  -  component failure, when for example an interface to a entity
     becomes unavailable;

  -  entity failure, when for example an entire entity becomes
     unavailable.

  The entities should be able to derive from the past history an
  estimate of the packet loss rate due to transmission errors.  In a
  properly configured system, this loss rate should be kept very low,
  typically less than 1%.  If a Media Gateway Controller or a Media
  Gateway has to repeat a message more than a few times, it is very
  legitimate to assume that something else than a transmission error is
  occurring.   For example, given a loss rate of 1%, the probability
  that five consecutive transmission attempts fail is 1 in 100 billion,
  an event that should occur less than once every 10 days for a Media
  Gateway Controller that processes 1000 transactions per second.
  (Indeed, the number of repetition that is considered excessive should
  be a function of the prevailing packet loss rate.)  We should note
  that the "suspicion threshold", which we will call "Max1", is
  normally lower than the "disconnection threshold", which should be
  set to a larger value.

  A classic retransmission algorithm would simply count the number of
  successive repetitions, and conclude that the association is broken
  after retransmitting the packet an excessive number of times
  (typically between 7 and 11 times.)  In order to account for the
  possibility of an undetected or in  progress "failover", we modify
  the classic algorithm so that if the Media Gateway receives a valid
  ServiceChange message announcing a failover, it will start
  transmitting outstanding commands to that new MGC.  Responses to
  commands are still transmitted to the source address of the command.

  In order to automatically adapt to network load, this RFC specifies
  exponentially increasing timers.  If the initial timer is set to 200
  milliseconds, the loss of a fifth retransmission will be detected
  after about 6 seconds.  This is probably an acceptable waiting delay
  to detect a failover.  The repetitions should continue after that
  delay not only in order to perhaps overcome a transient connectivity



Groves, et al.              Standards Track                   [Page 154]

RFC 3525                Gateway Control Protocol               June 2003


  problem, but also in order to allow some more time for the execution
  of a failover  (waiting a total delay of 30 seconds is probably
  acceptable).

  It is, however, important that the maximum delay of retransmissions
  be bounded.  Prior to any retransmission, it is checked that the time
  elapsed since the sending of the initial datagram is no greater than
  T-MAX.  If more than T-MAX time has elapsed, the MG concludes that
  the MGC has failed, and it begins its recovery process as described
  in section 11.5.  If the MG retries to connect to the current MGC it
  shall use a ServiceChange with ServiceChangeMethod set to
  Disconnected so that the new MGC will be aware that the MG lost one
  or more transactions.  The value T-MAX is related to the LONG-TIMER
  value: the LONG-TIMER value is obtained by adding to T  MAX the
  maximum propagation delay in the network.

D.2   Using TCP

  Protocol messages as defined in this RFC may be transmitted over TCP.
  When no port is specified by the other side (see 7.2.8), the commands
  should be sent to the default port.  The defined protocol has
  messages as the unit of transfer, while TCP is a stream-oriented
  protocol.  TPKT, according to RFC 1006, SHALL be used to delineate
  messages within the TCP stream.

  In a transaction-oriented protocol, there are still ways for
  transaction requests or responses to be lost.  As such, it is
  recommended that entities using TCP transport implement application
  level timers for each request and each response, similar to those
  specified for application level framing over UDP.

D.2.1 Providing the At-Most-Once functionality

  Messages, being carried over TCP, are not subject to transport
  losses, but loss of a transaction request or its reply may
  nonetheless be noted in real implementations.  In the absence of a
  timely response, commands are repeated.  Most commands are not
  idempotent.  The state of the MG would become unpredictable if, for
  example, Add commands were executed several times.

  To guard against such losses, it is recommended that entities follow
  the procedures in D.1.1.

D.2.2 Transaction identifiers and three-way handshake

  For the same reasons, it is possible that transaction replies may be
  lost even with a reliable delivery protocol such as TCP.  It is
  recommended that entities follow the procedures in D.1.2.2.



Groves, et al.              Standards Track                   [Page 155]

RFC 3525                Gateway Control Protocol               June 2003


D.2.3 Computing retransmission timers

  With reliable delivery, the incidence of loss of a transaction
  request or reply is expected to be very low.  Therefore, only simple
  timer mechanisms are required.  Exponential back-off algorithms
  should not be necessary, although they could be employed where, as in
  an MGC, the code to do so is already required, since MGCs must
  implement ALF/UDP as well as TCP.

D.2.4 Provisional responses

  As with UDP, executing some transactions may require a long time.
  Entities that can predict that a transaction will require a long
  execution time may send a provisional response, "Transaction
  Pending".  They should send this response if they receive a
  repetition of a transaction that is still being executed.

  Entities that receive a Transaction Pending shall switch to a longer
  repetition timer for that transaction.

  Entities shall retain Transactions and replies until they are
  confirmed.  The basic procedure of D.1.4 should be followed, but
  simple timer values should be sufficient.  There is no need to send
  an immediate confirmation upon receipt of a final response.

D.2.5 Ordering of commands

  TCP provides ordered delivery of transactions.  No special procedures
  are required.  It should be noted that ALF/UDP allows sending entity
  to modify its behaviour under congestion, and in particular, could
  reorder transactions when congestion is encountered.  TCP could not
  achieve the same results.



















Groves, et al.              Standards Track                   [Page 156]

RFC 3525                Gateway Control Protocol               June 2003


ANNEX E - Basic packages

  This annex contains definitions of some packages for use with
  Recommendation H.248.1.

E.1   Generic

  PackageID: g (0x0001)
  Version: 1
  Extends: None

  Description:
     Generic package for commonly encountered items.

E.1.1 Properties

  None.

E.1.2 Events

  Cause

     EventID: cause (0x0001)
     Generic error event

     EventsDescriptor parameters:  None

     ObservedEvents Descriptor Parameters:

        General Cause
        ParameterID: Generalcause (0x0001)

           This parameter groups the failures into six groups, which
           the MGC may act upon.

           Type: enumeration

           Possible values:
                    "NR" Normal Release (0x0001)
                    "UR" Unavailable Resources (0x0002)
                    "FT" Failure, Temporary (0x0003)
                    "FP" Failure, Permanent (0x0004)
                    "IW" Interworking Error (0x0005)
                    "UN" Unsupported (0x0006)

        Failure Cause
        ParameterID: Failurecause (0x0002)




Groves, et al.              Standards Track                   [Page 157]

RFC 3525                Gateway Control Protocol               June 2003


           Possible values:  OCTET STRING

           Description: The Failure Cause is the value generated by the
           Released equipment, i.e., a released network connection.
           The concerned value is defined in the appropriate bearer
           control protocol.

  Signal Completion

     EventID: sc (0x0002)

     Indicates the termination of a signal for which the
     notifyCompletion parameter was set to enable reporting of a
     completion event.  For further procedural description, see 7.1.1,
     7.1.17 and 7.2.7.

     EventsDescriptor parameters:  None

     ObservedEvents Descriptor parameters:

        Signal Identity
        ParameterID: SigID (0x0001)

           This parameter identifies the signal which has terminated.
           For a signal that is contained in a signal list, the signal
           list identity parameter should also be returned indicating
           the appropriate list.

           Type: Binary: octet (string), Text: string

           Possible values: a signal which has terminated.  A signal
           shall be identified using the pkgdName syntax without
           wildcarding.

        Termination Method
        ParameterID: Meth (0x0002)

           Indicates the means by which the signal terminated.

           Type: enumeration

           Possible values:
              "TO" (0x0001) Signal timed out or otherwise completed on
              its own
              "EV" (0x0002) Interrupted by event
              "SD" (0x0003) Halted by new Signals descriptor
              "NC" (0x0004) Not completed, other cause




Groves, et al.              Standards Track                   [Page 158]

RFC 3525                Gateway Control Protocol               June 2003


        Signal List ID
        ParameterID:  SLID (0x0003)

           Indicates to which signal list a signal belongs.  The
           SignalList ID is only returned in cases where the signal
           resides in a signal list.

           Type: integer

           Possible values: any integer

E.1.3 Signals

  None.

E.1.4 Statistics

  None.

E.2   Base Root Package

  PackageID: root (0x0002)
  Version: 1
  Extends: None

  Description:
     This package defines Gateway wide properties.

E.2.1 Properties

  MaxNrOfContexts
  PropertyID: maxNumberOfContexts (0x0001)

     The value of this property gives the maximum number of contexts
     that can exist at any time.  The NULL context is not included in
     this number.

     Type: double

     Possible values: 1 and up

     Defined in: TerminationState

     Characteristics: read only

  MaxTerminationsPerContext
  PropertyID: maxTerminationsPerContext (0x0002)




Groves, et al.              Standards Track                   [Page 159]

RFC 3525                Gateway Control Protocol               June 2003


     The maximum number of allowed terminations in a context, see 6.1

     Type: integer

     Possible values: any integer

     Defined in: TerminationState

     Characteristics: read only

  normalMGExecutionTime
  PropertyId: normalMGExecutionTime (0x0003)

     Settable by the MGC to indicate the interval within which the MGC
     expects a response to any transaction from the MG (exclusive of
     network delay)

     Type: integer

     Possible values: any integer, represents milliseconds

     Defined in: TerminationState

     Characteristics: read / write

  normalMGCExecutionTime
  PropertyId: normalMGCExecutionTime (0x0004)

     Settable by the MGC to indicate the interval within which the MG
     should expects a response to any transaction from the MGC
     (exclusive of network delay)

     Type: integer

     Possible values: any integer, represents milliseconds

     Defined in: TerminationState

     Characteristics: read / write

  MGProvisionalResponseTimerValue
  PropertyId: MGProvisionalResponseTimerValue (0x0005)

     Indicates the time within which the MGC should expect a Pending
     Response from the MG if a Transaction cannot be completed.

     Initially set to normalMGExecutionTime plus network delay, but may
     be lowered.



Groves, et al.              Standards Track                   [Page 160]

RFC 3525                Gateway Control Protocol               June 2003


     Type: Integer

     Possible Values: any integer, represents milliseconds

     Defined in: TerminationState

     Characteristics: read / write

  MGCProvisionalResponseTimerValue
  PropertyId: MGCProvisionalResponseTimerValue (0x0006)

     Indicates the time within which the MG should expect a Pending
     Response from the MGC if a Transaction cannot be completed.
     Initially set to normalMGCExecutionTime plus network delay, but
     may be lowered.

     Type: Integer

     Possible Values: any integer, represents milliseconds

     Defined in: TerminationState

     Characteristics: read / write

E.2.2 Events

  None.

E.2.3 Signals

  None.

E.2.4 Statistics

  None.

E.2.5 Procedures

  None.

E.3   Tone Generator Package

  PackageID: tonegen (0x0003)
  Version: 1
  Extends: None






Groves, et al.              Standards Track                   [Page 161]

RFC 3525                Gateway Control Protocol               June 2003


  Description:

     This package defines signals to generate audio tones.  This
     package does not specify parameter values.  It is intended to be
     extendable.  Generally, tones are defined as an individual signal
     with a parameter, ind, representing "interdigit" time delay, and a
     tone id to be used with playtones.  A tone id should be kept
     consistent with any tone generation for the same tone.  MGs are
     expected to be provisioned with the characteristics of appropriate
     tones for the country in which the MG is located.

  Designed to be extended only.

E.3.1 Properties

  None.

E.3.2 Events

  None.

E.3.3 Signals

  Play tone
  SignalID: pt (0x0001)

     Plays audio tone over an audio channel

     Signal Type: Brief

     Duration: Provisioned

     Additional parameters:

        Tone id list
        ParameterID: tl (0x0001)

           Type: list of tone ids

           List of tones to be played in sequence.  The list SHALL
           contain one or more tone ids.

        Inter signal duration
        ParameterID: ind (0x0002)

           Type: integer

           Timeout between two consecutive tones in milliseconds



Groves, et al.              Standards Track                   [Page 162]

RFC 3525                Gateway Control Protocol               June 2003



  No tone ids are specified in this package.  Packages that extend this
  package can add possible values for tone id as well as adding
  individual tone signals.

E.3.4 Statistics

  None.

E.3.5 Procedures

  None.

E.4   Tone Detection Package

  PackageID: tonedet (0x0004)
  Version: 1
  Extends: None

  This Package defines events for audio tone detection.  Tones are
  selected by name (tone id).  MGs are expected to be provisioned with
  the characteristics of appropriate tones for the country in which the
  MG is located.

  Designed to be extended only:
     This package does not specify parameter values.  It is intended to
     be extendable.

E.4.1 Properties

  None.

E.4.2 Events

  Start tone detected
  EventID: std, 0x0001

     Detects the start of a tone.  The characteristics of positive tone
     detection are implementation dependent.

     EventsDescriptor parameters:

        Tone id list
        ParameterID: tl (0x0001)

           Type: list of tone ids





Groves, et al.              Standards Track                   [Page 163]

RFC 3525                Gateway Control Protocol               June 2003


           Possible values: The only tone id defined in this package is
           "wild card" which is "*" in text encoding and 0x0000 in
           binary.  Extensions to this package would add possible
           values for tone id.  If tl is "wild card", any tone id is
           detected.

        ObservedEventsDescriptor parameters:

        Tone id
        ParameterID: tid (0x0003)

           Type: enumeration

           Possible values: "wildcard" as defined above is the only
           value defined in this package.  Extensions to this package
           would add additional possible values for tone id.

        End tone detected
        EventID: etd, 0x0002

        Detects the end of a tone.

        EventDescriptor parameters:

           Tone id list
           ParameterID: tl (0x0001)

              Type: enumeration or list of enumerated types

              Possible values: No possible values are specified in this
              package.  Extensions to this package would add possible
              values for tone id.

        ObservedEventsDescriptor parameters:

           Tone id
           ParameterID: tid (0x0003)

              Type: enumeration

              Possible values: "wildcard" as defined above is the only
              value defined in this package.  Extensions to this
              package would add possible values for tone id.

           Duration
           ParameterId: dur (0x0002)

              Type: integer, in milliseconds



Groves, et al.              Standards Track                   [Page 164]

RFC 3525                Gateway Control Protocol               June 2003



              This parameter contains the duration of the tone from
              first detection until it stopped.

  Long tone detected
  EventID: ltd, 0x0003

     Detects that a tone has been playing for at least a certain amount
     of time.

     EventDescriptor parameters:

        Tone id list
        ParameterID: tl (0x0001)

           Type: enumeration or list

           Possible values: "wildcard" as defined above is the only
           value defined in this package.  Extensions to this package
           would add possible values for tone id.

        Duration
        ParameterID: dur (0x0002)

           Type: integer, duration to test against

           Possible values: any legal integer, expressed in
           milliseconds

     ObservedEventsDescriptor parameters:

        Tone id
        ParameterID: tid (0x0003)

           Type: Enumeration

           Possible values: No possible values are specified in this
           package.  Extensions to this package would add possible
           values for tone id.

E.4.3 Signals

  None.

E.4.4 Statistics

  None.




Groves, et al.              Standards Track                   [Page 165]

RFC 3525                Gateway Control Protocol               June 2003


E.4.5 Procedures

  None.

E.5   Basic DTMF Generator Package

  PackageID: dg (0x0005)
  Version: 1
  Extends: tonegen version 1

  This package defines the basic DTMF tones as signals and extends the
  allowed values of parameter tl of playtone in tonegen.

E.5.1 Properties

  None.

E.5.2 Events

  None.

E.5.3 Signals

  DTMF character 0
  SignalID: d0 (0x0010)

     Generate DTMF 0 tone.  The physical characteristic of DTMF 0 is
     defined in the gateway.

     Signal Type: Brief

     Duration: Provisioned

     Additional parameters:

        None.

  Additional values:

     d0 (0x0010) is defined as a tone id for playtone

  The other DTMF characters are specified in exactly the same way.  A
  table with all signal names and signal IDs is included.  Note that
  each DTMF character is defined as both a signal and a tone id, thus
  extending the basic tone generation package.  Also note that DTMF
  SignalIds are different from the names used in a digit map.





Groves, et al.              Standards Track                   [Page 166]

RFC 3525                Gateway Control Protocol               June 2003


                    Signal name     Signal ID/Tone id

                   DTMF character 0    d0 (0x0010)
                   DTMF character 1    d1 (0x0011)
                   DTMF character 2    d2 (0x0012)
                   DTMF character 3    d3 (0x0013)
                   DTMF character 4    d4 (0x0014)
                   DTMF character 5    d5 (0x0015)
                   DTMF character 6    d6 (0x0016)
                   DTMF character 7    d7 (0x0017)
                   DTMF character 8    d8 (0x0018)
                   DTMF character 9    d9 (0x0019)
                   DTMF character *    ds (0x0020)
                   DTMF character #    do (0x0021)
                   DTMF character A    da (0x001a)
                   DTMF character B    db (0x001b)
                   DTMF character C    dc (0x001c)
                   DTMF character D    dd (0x001d)

E.5.4 Statistics

  None.

E.5.5 Procedures

  None.

E.6   DTMF detection Package

  PackageID: dd (0x0006)
  Version: 1
  Extends: tonedet version 1

  This package defines the basic DTMF tones detection.  This Package
  extends the possible values of tone id in the "start tone detected"
  "end tone detected" and "long tone detected" events.

  Additional tone id values are all tone ids described in package dg
  (basic DTMF generator package).

  The following table maps DTMF events to digit map symbols as
  described in 7.1.14.

                          DTMF Event Symbol

                          d0   "0"
                          d1   "1"
                          d2   "2"



Groves, et al.              Standards Track                   [Page 167]

RFC 3525                Gateway Control Protocol               June 2003


                          d3   "3"
                          d4   "4"
                          d5   "5"
                          d6   "6"
                          d7   "7"
                          d8   "8"
                          d9   "9"
                          da   "A" or "a"
                          db   "B" or "b"
                          dc   "C" or "c"
                          dd   "D" or "d"
                          ds   "E" or "e"
                          do   "F" or "f"

E.6.1 Properties

  None.

E.6.2 Events

  DTMF digits

     EventIds are defined with the same names as the SignalIds defined
     in the table found in E.5.3.

  DigitMap Completion Event
  EventID: ce, 0x0004

     Generated when a digit map completes as described in 7.1.14.

     EventsDescriptor parameters: None.

     ObservedEventsDescriptor parameters:

        DigitString
        ParameterID: ds (0x0001)

           Type: string of digit map symbols (possibly empty) returned
           as a quotedString

           Possible values: a sequence of the characters "0" through
           "9", "A" through "F", and the long duration modifier "Z".

           Description: the portion of the current dial string as
           described in 7.1.14 which matched part or all of an
           alternative event sequence specified in the digit map.





Groves, et al.              Standards Track                   [Page 168]

RFC 3525                Gateway Control Protocol               June 2003


        Termination Method
        ParameterID: Meth (0x0003)

           Type: enumeration

           Possible values:

              "UM" (0x0001) Unambiguous match

              "PM" (0x0002) Partial match, completion by timer expiry
              or unmatched event

              "FM" (0x0003) Full match, completion by timer expiry or
              unmatched event

           Description: indicates the reason for generation of the
           event.  See the procedures in 7.1.14.

E.6.3 Signals

  None.

E.6.4 Statistics

  None.

E.6.5 Procedures

  Digit map processing is activated only if an events descriptor is
  activated that contains a digit map completion event as defined in
  Section E.6.2 and that digit map completion event contains an eventDM
  field in the requested actions as defined in Section 7.1.9.  Other
  parameters such as KeepActive or embedded events of signals
  descriptors may also be present in the events descriptor and do not
  affect the activation of digit map processing.

E.7   Call Progress Tones Generator Package

  PackageID: cg, 0x0007
  Version: 1
  Extends: tonegen version 1

  This package defines the basic call progress tones as signals and
  extends the allowed values of the tl parameter of playtone in
  tonegen.






Groves, et al.              Standards Track                   [Page 169]

RFC 3525                Gateway Control Protocol               June 2003


E.7.1 Properties

  None.

E.7.2 Events

  None.

E.7.3 Signals

  Dial Tone
  SignalID: dt (0x0030)

     Generate dial tone.  The physical characteristic of dial tone is
     available in the gateway.

     Signal Type: TimeOut

     Duration: Provisioned

     Additional parameters:

        None.

  Additional values:

     dt (0x0030) is defined as a tone id for playtone

  The other tones of this package are defined in exactly the same way.
  A table with all signal names and signal IDs is included.  Note that
  each tone is defined as both a signal and a tone id, thus extending
  the basic tone generation package.

    Signal Name                 Signal ID/tone id

    Dial Tone                   dt (0x0030)
    Ringing Tone                rt (0x0031)
    Busy Tone                   bt (0x0032)
    Congestion Tone             ct (0x0033)
    Special Information Tone    sit(0x0034)
    Warning Tone                wt (0x0035)
    Payphone Recognition Tone   prt (0x0036)
    Call Waiting Tone           cw (0x0037)
    Caller Waiting Tone         cr (0x0038)

E.7.4 Statistics

  None.



Groves, et al.              Standards Track                   [Page 170]

RFC 3525                Gateway Control Protocol               June 2003


E.7.5 Procedures

     NOTE - The required set of tone ids corresponds to those defined
     in Recommendation E.180/Q.35.  See Recommendation E.180/Q.35 for
     definition of the meanings of these tones.


E.8   Call Progress Tones Detection Package

  PackageID: cd (0x0008)
  Version: 1
  Extends: tonedet version 1

  This package defines the basic call progress detection tones.  This
  package extends the possible values of tone id in the "start tone
  detected", "end tone detected" and "long tone detected" events.

  Additional values

     toneID values are defined for start tone detected, end tone
     detected and long tone detected with the same values as those in
     package cg (call progress tones generation package).

  The required set of tone ids corresponds to Recommendation
  E.180/Q.35.  See Recommendation E.180/Q.35 for definition of the
  meanings of these tones.

E.8.1 Properties

  None.

E.8.2 Events

  Events are defined as in the call progress tones generator package
  (cg) for the tones listed in the table of E.7.3.

E.8.3 Signals

  None.

E.8.4 Statistics

  None.

E.8.5 Procedures

  None.




Groves, et al.              Standards Track                   [Page 171]

RFC 3525                Gateway Control Protocol               June 2003


E.9   Analog Line Supervision Package

  PackageID: al, 0x0009
  Version: 1
  Extends: None

  This package defines events and signals for an analog line.

  E.9.1 Properties

  None.

E.9.2 Events

  onhook
  EventID: on (0x0004)

     Detects handset going on hook.  Whenever an events descriptor is
     activated that requests monitoring for an on-hook event and the
     line is already on-hook, then the MG shall behave according to the
     setting of the "strict" parameter.

     EventDescriptor parameters:

        Strict Transition
        ParameterID: strict (0x0001)

           Type: enumeration

           Possible values: "exact" (0x00), "state" (0x01), "failWrong"
           (0x02)

             "exact" means that only an actual hook state transition to
             on-hook is to be recognized;

             "state" means that the event is to be recognized either if
             the hook state transition is detected or if the hook state
             is already on-hook;

             "failWrong" means that if the hook state is already
             on-hook, the command fails and an error is reported.

     ObservedEventsDescriptor parameters:

        Initial State
        ParameterID: init (0x0002)

           Type: Boolean



Groves, et al.              Standards Track                   [Page 172]

RFC 3525                Gateway Control Protocol               June 2003


           Possible values:

              "True" means that the event was reported because the line
              was already on-hook when the events descriptor containing
              this event was activated;

              "False" means that the event represents an actual state
              transition to on-hook.

  offhook
  EventID: of (0x0005)

     Detects handset going off hook.  Whenever an events descriptor is
     activated that requests monitoring for an off-hook event and the
     line is already off-hook, then the MG shall behave according to
     the setting of the "strict" parameter.

     EventDescriptor parameters:

        Strict Transition
        ParameterID: strict (0x0001)

           Type: enumeration

           Possible values: "exact" (0x00), "state" (0x01), "failWrong"
           (0x02)

              "exact" means that only an actual hook state transition
              to off-hook is to be recognized;

              "state" means that the event is to be recognized either
              if the hook state transition is detected or if the hook
              state is already off-hook;

              "failWrong" means that if the hook state is already off-
              hook, the command fails and an error is reported.

     ObservedEventsDescriptor parameters

        Initial State
        ParameterID: init (0x0002)

           Type: Boolean








Groves, et al.              Standards Track                   [Page 173]

RFC 3525                Gateway Control Protocol               June 2003


           Possible values:

              "True" means that the event was reported because the line
              was already off-hook when the events descriptor
              containing this event was activated;

              "False" means that the event represents an actual state
              transition to off-hook.

  flashhook
  EventID: fl, 0x0006

     Detects handset flash.  A flash occurs when an onhook is followed
     by an offhook between a minimum and maximum duration.

     EventDescriptor parameters:

        Minimum duration
        ParameterID: mindur (0x0004)

           Type: integer in milliseconds

           Default value is provisioned.

        Maximum duration
        ParameterID: maxdur (0x0005)

           Type: integer in milliseconds

           Default value is provisioned.

     ObservedEventsDescriptor parameters:

        None

E.9.3 Signals

  ring
  SignalID: ri, 0x0002

     Applies ringing on the line

     Signal Type: TimeOut

     Duration: Provisioned






Groves, et al.              Standards Track                   [Page 174]

RFC 3525                Gateway Control Protocol               June 2003


     Additional parameters:

        Cadence
        ParameterID: cad (0x0006)

           Type: list of integers representing durations of alternating
           on and off segments, constituting a complete ringing cycle
           starting with an on.  Units in milliseconds

           Default is fixed or provisioned.  Restricted function MGs
           may ignore cadence values they are incapable of generating.

        Frequency
        ParameterID: freq (0x0007)

           Type: integer in Hz

           Default is fixed or provisioned.  Restricted function MGs
           may ignore frequency values they are incapable of
           generating.

E.9.4 Statistics

  None.

E.9.5 Procedures

  If the MGC sets an EventsDescriptor containing a hook state
  transition event (on-hook or off-hook) with the "strict" (0x0001)
  parameter set to "failWrong", and the hook state is already what the
  transition implies, the execution of the command containing that
  EventsDescriptor fails.  The MG SHALL include error code 540
  "Unexpected initial hook state" in its reponse.

E.9.6 Error code

  This package defines a new error code:

     540 - Unexpected initial hook state

  The procedure for use of this code is given in E.9.5.

E.10  Basic Continuity Package

  PackageID: ct (0x000a)
  Version: 1
  Extends: None




Groves, et al.              Standards Track                   [Page 175]

RFC 3525                Gateway Control Protocol               June 2003


  This package defines events and signals for continuity test.  The
  continuity test includes provision of either a loopback or
  transceiver functionality.

E.10.1   Properties

  None.

E.10.2   Events

  Completion
  EventID: cmp, 0x0005

     This event detects test completion of continuity test.

     EventDescriptor parameters

        None.

     ObservedEventsDescriptor parameters

        Result
        ParameterID: res (0x0008)

           Type: enumeration

           Possible values: success (0x0001), failure (0x0000)

E.10.3   Signals

  Continuity test
  SignalID: ct (0x0003)

     Initiates sending of continuity test tone on the termination to
     which it is applied.

     Signal Type: TimeOut

     Default value is provisioned

     Additional parameters:

        None.

  Respond
  SignalID: rsp (0x0004)





Groves, et al.              Standards Track                   [Page 176]

RFC 3525                Gateway Control Protocol               June 2003


     The signal is used to respond to a continuity test.  See E.10.5
     for further explanation.

     Signal Type: On/Off

     Default duration is provisioned

     Additional parameters:

        None.

E.10.4   Statistics

  None.

E.10.5   Procedures

  When a MGC wants to initiate a continuity test, it sends a command to
  the MG containing:

  -  a signals descriptor with the ct signal; and

  -  an events descriptor containing the cmp event.

  Upon reception of a command containing the ct signal and cmp event,
  the MG initiates the continuity test tone for the specified
  Termination.  If the return tone is detected and any other required
  conditions are satisfied before the signal times out, the cmp event
  shall be generated with the value of the result parameter equal to
  success.  In all other cases, the cmp event shall be generated with
  the value of the result parameter equal to failure.

  When a MGC wants the MG to respond to a continuity test, it sends a
  command to the MG containing a signals descriptor with the rsp
  signal.  Upon reception of a command with the rsp signal, the MG
  either applies a loopback or (for 2-wire circuits) awaits reception
  of a continuity test tone.  In the loopback case, any incoming
  information shall be reflected back as outgoing information.  In the
  2-wire case, any time the appropriate test tone is received, the
  appropriate response tone should be sent.  The MGC determines when to
  remove the rsp signal.

  When a continuity test is performed on a Termination, no echo devices
  or codecs shall be active on that Termination.

  Performing voice path assurance as part of continuity testing is
  provisioned by bilateral agreement between network operators.




Groves, et al.              Standards Track                   [Page 177]

RFC 3525                Gateway Control Protocol               June 2003


     (Informative Note) Example tones and test procedure details are
     given in Q.724 sections 7 and 8, Q.764 section 2.1.8 and Q.1902.4.

E.11  Network Package

  PackageID: nt (0x000b)
  Version: 1
  Extends: None

  This package defines properties of network terminations independent
  of network type.

E.11.1   Properties

  Maximum Jitter Buffer
  PropertyID: jit (0x0007)

     This property puts a maximum size on the jitter buffer.

     Type: integer in milliseconds

     Possible values: This property is specified in milliseconds.

     Defined in: LocalControlDescriptor

     Characteristics: read/write

E.11.2   Events

  network failure
  EventID: netfail, 0x0005

     The termination generates this event upon detection of a failure
     due to external or internal network reasons.

     EventDescriptor parameters

        None.

     ObservedEventsDescriptor parameters

        cause
        ParameterID: cs (0x0001)

           Type: string

           Possible values: any text string




Groves, et al.              Standards Track                   [Page 178]

RFC 3525                Gateway Control Protocol               June 2003


           This parameter may be included with the failure event to
           provide diagnostic information on the reason of failure.

  quality alert
  EventID: qualert, 0x0006

     This property allows the MG to indicate a loss of quality of the
     network connection.  The MG may do this by measuring packet loss,
     interarrival jitter, propagation delay and then indicating this
     using a percentage of quality loss.

     EventDescriptor parameters

        Threshold
        ParameterId: th (0x0001)

           Type: integer

           Possible values: 0 to 99

           Description: threshold for percent of quality loss measured,
           calculated based on a provisioned method, that could take
           into consideration packet loss, jitter, and delay for
           example.  Event is triggered when calculation exceeds the
           threshold.

     ObservedEventsDescriptor parameters

        Threshold
        ParameterId: th (0x0001)

           Type: integer

           Possible values: 0 to 99

           Description: percent of quality loss measured, calculated
           based on a provisioned method, that could take into
           consideration packet loss, jitter, and delay for example.

E.11.3   Signals

  None.









Groves, et al.              Standards Track                   [Page 179]

RFC 3525                Gateway Control Protocol               June 2003


E.11.4   Statistics

  Duration
  StatisticsID: dur (0x0001)

     Description: provides duration of time the termination has been in
     the Context.

     Type: double, in milliseconds

  Octets Sent
  StatisticID: os (0x0002)

     Type: double

     Possible values: any 64-bit integer

  Octets Received
  StatisticID: or (0x0003)

     Type: double

     Possible values: any 64-bit integer

E.11.5   Procedures

  None.

E.12  RTP Package

  PackageID: rtp (0x000c)
  Version: 1
  Extends: Network Package version 1

  This package is used to support packet-based multimedia data transfer
  by means of the Real-time Transport Protocol (RTP) [RFC 1889].

E.12.1   Properties

  None.

E.12.2   Events

  Payload Transition
  EventID: pltrans, 0x0001

     This event detects and notifies when there is a transition of the
     RTP payload format from one format to another.



Groves, et al.              Standards Track                   [Page 180]

RFC 3525                Gateway Control Protocol               June 2003


     EventDescriptor parameters

        None.

     ObservedEventsDescriptor parameters

        ParameterName: rtppayload
        ParameterID: rtppltype, 0x01

        Type: list of enumerated types.

        Possible values: The encoding method shall be specified by
        using one or several valid encoding names, as defined in the
        RTP AV Profile or registered with IANA.

E.12.3   Signals

  None.

E.12.4   Statistics

  Packets Sent
  StatisticID: ps (0x0004)

     Type: double

     Possible values: any 64-bit integer

  Packets Received
  StatisticID: pr (0x0005)

     Type: double

     Possible values: any 64-bit integer

  Packet Loss
  StatisticID: pl (0x0006)

     Describes the current rate of packet loss on an RTP stream, as
     defined in IETF RFC 1889.  Packet loss is expressed as percentage
     value: number of packets lost in the interval between two
     reception reports, divided by the number of packets expected
     during that interval.

     Type: double

     Possible values: a 32-bit whole number and a 32-bit fraction.




Groves, et al.              Standards Track                   [Page 181]

RFC 3525                Gateway Control Protocol               June 2003


  Jitter
  StatisticID: jit (0x0007)

     Requests the current value of the interarrival jitter on an RTP
     stream as defined in IETF RFC 1889.  Jitter measures the variation
     in interarrival time for RTP data packets.

  Delay
  StatisticID:delay (0x0008)

     Requests the current value of packet propagation delay expressed
     in timestamp units.  Same as average latency.

E.12.5   Procedures

  None.

E.13  TDM Circuit Package

     PackageID: tdmc (0x000d)
     Version: 1
     Extends: Network Package version 1

     This package may be used by any termination that supports gain and
     echo control.  It was originally intended for use on TDM circuits
     but may be more widely used.


     New versions or extensions of this package should take non-TDM use
     into account.

E.13.1   Properties

     Echo Cancellation
     PropertyID: ec (0x0008)

        Type: boolean

        Possible values:

           "on" (when the echo cancellation is requested) and

           "off" (when it is turned off.)

           The default is provisioned.

        Defined in: LocalControlDescriptor




Groves, et al.              Standards Track                   [Page 182]

RFC 3525                Gateway Control Protocol               June 2003


        Characteristics: read/write

     Gain Control
     PropertyID: gain (0x000a)

        Gain control, or usage of of signal level adaptation and
        noise level reduction is used to adapt the level of the signal.
        However, it is necessary, for example for modem calls, to turn
        off this function.

        Type: integer

        Possible values:

        The gain control parameter may either be specified as
        "automatic" (0xffffffff), or as an explicit number of decibels
        of gain (any other integer value).  The default is provisioned
        in the MG.

     Defined in: LocalControlDescriptor

     Characteristics: read/write

E.13.2   Events

  None.

E.13.3   Signals

  None.

E.13.4   Statistics

  None.

E.13.5   Procedures

  None.













Groves, et al.              Standards Track                   [Page 183]

RFC 3525                Gateway Control Protocol               June 2003


APPENDIX I  EXAMPLE CALL FLOWS (INFORMATIVE)

  All H.248.1 implementors must read the normative part of this RFC
  carefully before implementing from it.  The examples in this appendix
  should not be used as stand-alone explanations of how to create
  protocol messages.

  The examples in this appendix use SDP for encoding of the Local and
  and Remote stream descriptors. SDP is defined in RFC 2327. If there
  is is any discrepancy between the SDP in the examples, and RFC 2327,
  the the RFC should be consulted for correctness. Audio profiles used
  are are those defined in IETF RFC 1890, and others registered with
  IANA.  For example, G.711 A-law is called PCMA in SDP, and is
  assigned profile 0. G.723.1 is called G723 and is profile 4; H.263 is
  called H263 and is profile 34. See also
  http://www.iana.org/assignments/rtp-parameters.

A.1   Residential Gateway to Residential Gateway Call

  This example scenario illustrates the use of the elements of the
  protocol to set up a Residential Gateway to Residential Gateway call
  over an IP-based network.  For simplicity, this example assumes that
  both Residential Gateways involved in the call are controlled by the
  same Media Gateway Controller.

A.1.1 Programming Residential GW Analog Line Terminations for Idle
  Behavior

  The following illustrates the API invocations from the Media Gateway
  Controller and Media Gateways to get the Terminations in this
  scenario programmed for idle behavior.  Both the originating and
  terminating Media Gateways have idle AnalogLine Terminations
  programmed to look for call initiation events (i.e., -offhook) by
  using the Modify Command with the appropriate parameters.  The null
  Context is used to indicate that the Terminations are not yet
  involved in a Context.  The ROOT termination is used to indicate the
  entire MG instead of a termination within the MG.

  In this example, MG1 has the IP address 124.124.124.222, MG2 is
  125.125.125.111, and the MGC is 123.123.123.4. The default Megaco
  port is 55555 for all three.

  1. An MG registers with an MGC using the ServiceChange command:

  MG1 to MGC:

  MEGACO/1 [124.124.124.222] Transaction = 9998 {
      Context = - {



Groves, et al.              Standards Track                   [Page 184]

RFC 3525                Gateway Control Protocol               June 2003


          ServiceChange = ROOT {Services {
              Method=Restart,
              ServiceChangeAddress=55555, Profile=ResGW/1}
          }
      } }

  2. The MGC sends a reply:

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Reply = 9998 {
     Context = - {ServiceChange = ROOT {
       Services {ServiceChangeAddress=55555, Profile=ResGW/1} } } }

  3. The MGC programs a Termination in the NULL context.  The
  terminationId is A4444, the streamId is 1, the requestId in the
  Events descriptor is 2222.  The mId is the identifier of the sender
  of this message, in this case, it is the IP address and port
  [123.123.123.4]:55555.  Mode for this stream is set to SendReceive.
  "al" is the analog line supervision package.  Local and Remote are
  assumed to be provisioned.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 9999 {
      Context = - {
          Modify = A4444 {
              Media { Stream = 1 {
                       LocalControl {
                           Mode = SendReceive,
                           tdmc/gain=2,  ; in dB,
                           tdmc/ec=on
                       },

                   }
              },
              Events = 2222 {al/of(strict=state)}
          }
      } }


  The dialplan script could have been loaded into the MG previously.
  Its function would be to wait for the OffHook, turn on dialtone and
  start collecting DTMF digits.  However in this example, we use the
  digit map, which is put into place after the offhook is detected
  (step 5 below).





Groves, et al.              Standards Track                   [Page 185]

RFC 3525                Gateway Control Protocol               June 2003


  Note that the embedded EventsDescriptor could have been used to
  combine steps 3 and 4 with steps 8 and 9, eliminating steps 6 and 7.

  4. The MG1 accepts the Modify with this reply:

  MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555

  Reply = 9999 {
     Context = - {Modify = A4444} }

  5. A similar exchange happens between MG2 and the MGC, resulting in
  an idle Termination called A5555.

A.1.2 Collecting Originator Digits and Initiating Termination

  The following builds upon the previously shown conditions.  It
  illustrates the transactions from the Media Gateway Controller and
  originating Media Gateway (MG1) to get the originating Termination
  (A4444) through the stages of digit collection required to initiate a
  connection to the terminating Media Gateway (MG2).

  6. MG1 detects an offhook event from User 1 and reports it to the
  Media Gateway Controller via the Notify Command.

  MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555 Transaction = 10000 {
     Context = - {
         Notify = A4444 {ObservedEvents =2222 {
           19990729T22000000:al/of(init=false)}}
     } }

  7. And the Notify is acknowledged.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Reply = 10000 {

      Context = - {Notify = A4444} }










Groves, et al.              Standards Track                   [Page 186]

RFC 3525                Gateway Control Protocol               June 2003


  8. The MGC Modifies the termination to play dial tone, to look for
  digits according to Dialplan0 and to look for the on-hook event now.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 10001 {
      Context = - {
          Modify = A4444 {
              Events = 2223 {
                  al/on(strict=state), dd/ce {DigitMap=Dialplan0}
              },
              Signals {cg/dt},
              DigitMap= Dialplan0{ (0| 00|[1-
  7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)}
          }
      } }

  9. And the Modify is acknowledged.

  MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555 Reply = 10001 {
      Context = - {Modify = A4444} }

  10.   Next, digits are accumulated by MG1 as they are dialed by User
  1.  Dialtone is stopped upon detection of the first digit.  When an
  appropriate match is made of collected digits against the currently
  programmed Dialplan for A4444, another Notify is sent to the Media
  Gateway Controller.

  MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555 Transaction = 10002 {
     Context = - {
         Notify = A4444 {ObservedEvents =2223 {
           19990729T22010001:dd/ce{ds="916135551212",Meth=UM}}}
     } }

  11.   And the Notify is acknowledged.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Reply = 10002 {
      Context = - {Notify = A4444} }


  12.   The controller then analyses the digits and determines that a
  connection needs to be made from MG1 to MG2.  Both the TDM



Groves, et al.              Standards Track                   [Page 187]

RFC 3525                Gateway Control Protocol               June 2003


  termination A4444, and an RTP termination are added to a new context
  in MG1.  Mode is ReceiveOnly since Remote descriptor values are not
  yet specified.  Preferred codecs are in the MGC's preferred order of
  choice.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 10003 {
      Context = $ {
         Add = A4444,
         Add = $ {
             Media {
               Stream = 1 {
                    LocalControl {
                        Mode = ReceiveOnly,

                        nt/jit=40 ; in ms
                    },
                    Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4
  a=ptime:30 v=0 c=IN IP4 $ m=audio $ RTP/AVP 0
                    }
               }
            }
         }
      } }


     NOTE - The MGC states its preferred parameter values as a series
     of SDP blocks in  Local.  The MG fills in the Local Descriptor in
     the Reply.

  13.   MG1 acknowledges the new Termination and fills in the Local IP
  address and UDP port.  It also makes a choice for the codec based on
  the MGC preferences in Local.  MG1 sets the RTP port to 2222.

  MG1 -> MGC:

  MEGACO/1 [124.124.124.222]:55555 Reply = 10003 {
     Context = 2000 {
        Add = A4444,
        Add=A4445{
           Media {
               Stream = 1 {
                   Local { v=0 o=- 2890844526 2890842807 IN IP4
  124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222
  RTP/AVP 4 a=ptime:30 a=recvonly
                   } ; RTP profile for G.723.1 is 4
               }



Groves, et al.              Standards Track                   [Page 188]

RFC 3525                Gateway Control Protocol               June 2003


           }
        }
     } }

  14.   The MGC will now associate A5555 with a new Context on MG2, and
  establish an RTP Stream (i.e., A5556 will be assigned), SendReceive
  connection through to the originating user, User 1.  The MGC also
  sets ring on A5555.

  MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 50003 {
      Context = $ {
         Add = A5555  { Media {
              Stream = 1 {
                   LocalControl {Mode = SendReceive} }},
        Events=1234{al/of(strict=state)},
              Signals {al/ri}

              },
         Add  = $ {Media {
              Stream = 1 {
                   LocalControl {
                      Mode = SendReceive,
                      nt/jit=40 ; in ms
                   },
                   Local { v=0 c=IN IP4 $ m=audio $ RTP/AVP 4
  a=ptime:30
                   },
                   Remote { v=0 c=IN IP4 124.124.124.222 m=audio 2222
  RTP/AVP 4 a=ptime:30
                   } ; RTP profile for G.723.1 is 4
               }
            }
        }
     } }

  15.   This is acknowledged.  The stream port number is different from
  the control port number.  In this case it is 1111 (in the SDP).

  MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555 Reply = 50003 {
     Context = 5000 {
     Add = A5555,
        Add = A5556{
           Media {
              Stream = 1 {



Groves, et al.              Standards Track                   [Page 189]

RFC 3525                Gateway Control Protocol               June 2003


                  Local { v=0 o=- 7736844526 7736842807 IN IP4
  125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111
  RTP/AVP 4 }
              } ; RTP profile for G723.1 is 4
           }
         }

     } }

  16.   The above IPAddr and UDPport need to be given to MG1 now.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 10005 {
    Context = 2000 {
      Modify = A4444 {
        Signals {cg/rt}
      },
      Modify = A4445 {
         Media {
              Stream = 1 {
                  Remote { v=0 o=- 7736844526 7736842807 IN IP4
  125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111
  RTP/AVP 4
                  }
              } ; RTP profile for G723.1 is 4
          }
      }
    } }


  MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555 Reply = 10005 {
     Context = 2000 {Modify = A4444, Modify = A4445} }

  17.   The two gateways are now connected and User 1 hears the
  RingBack.  The MG2 now waits until User2 picks up the receiver and
  then the two-way call is established.












Groves, et al.              Standards Track                   [Page 190]

RFC 3525                Gateway Control Protocol               June 2003


  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555 Transaction = 50005 {
     Context = 5000 {

         Notify = A5555 {ObservedEvents =1234 {
           19990729T22020002:al/of(init=false)}}
     } }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555 Reply = 50005 {
      Context = - {Notify = A5555} }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 50006 {
     Context = 5000 {
        Modify = A5555 {
           Events = 1235 {al/on(strict=state)},
           Signals { } ; to turn off ringing
        }
     } }

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555 Reply = 50006 {
   Context = 5000 {Modify = A4445} }

  18.   Change mode on MG1 to SendReceive, and stop the ringback.

  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 10006 {
     Context = 2000 {
        Modify = A4445 {
           Media {
              Stream = 1 {
                 LocalControl {
                    Mode=SendReceive

                 }
              }
           }
        },
        Modify = A4444 {
           Signals { }
        }



Groves, et al.              Standards Track                   [Page 191]

RFC 3525                Gateway Control Protocol               June 2003


     } }

  from MG1 to MGC:

  MEGACO/1 [124.124.124.222]:55555 Reply = 10006 {
     Context = 2000 {Modify = A4445, Modify = A4444}}

  19.   The MGC decides to Audit the RTP termination on MG2.

  MGC -> MG2:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 50007 {
     Context = - {AuditValue = A5556{
        Audit{Media, DigitMap, Events, Signals, Packages, Statistics }}
     } }

  20.   The MG2 replies.

  MG2 -> MGC:

  MEGACO/1 [125.125.125.111]:55555 Reply = 50007 {
     Context = - { AuditValue = A5556 {
            Media {
               TerminationState { ServiceStates = InService,
           Buffer = OFF },
         Stream = 1 {
                   LocalControl { Mode = SendReceive,
                      nt/jit=40 },
                   Local { v=0 o=- 7736844526 7736842807 IN IP4
  125.125.125.111 s=- t= 0 0 c=IN IP4 125.125.125.111 m=audio 1111
  RTP/AVP  4 a=ptime:30
                  },
                   Remote { v=0 o=- 2890844526 2890842807 IN IP4
  124.124.124.222 s=- t= 0 0 c=IN IP4 124.124.124.222 m=audio 2222
  RTP/AVP  4 a=ptime:30
                   } } },
             Events,
          Signals,
          DigitMap,
         Packages {nt-1, rtp-1},
            Statistics { rtp/ps=1200,  ; packets sent
                         nt/os=62300, ; octets sent
                         rtp/pr=700, ; packets received
                         nt/or=45100, ; octets received
                         rtp/pl=0.2,  ; % packet loss
                         rtp/jit=20,
                         rtp/delay=40 } ; avg latency
         }



Groves, et al.              Standards Track                   [Page 192]

RFC 3525                Gateway Control Protocol               June 2003


      } }

  21.   When the MGC receives an onhook signal from one of the MGs, it
  brings down the call.  In this example, the user at MG2 hangs up
  first.

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555 Transaction = 50008 {
     Context = 5000 {
         Notify = A5555 {ObservedEvents =1235 {
            19990729T24020002:al/on(init=false)}
         }
     } }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555 Reply = 50008 {

      Context = - {Notify = A5555} }

  22.   The MGC now sends both MGs a Subtract to take down the call.
  Only the subtracts to MG2 are shown here.  Each termination has its
  own set of statistics that it gathers.  An MGC may not need to
  request both to be returned.  A5555 is a physical termination, and
  A5556 is an RTP termination.

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555 Transaction = 50009 {
     Context = 5000 {
        Subtract = A5555 {Audit{Statistics}},
        Subtract = A5556 {Audit{Statistics}}
     } }

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555 Reply = 50009 {
     Context = 5000 {
       Subtract = A5555 {
            Statistics {
               nt/os=45123, ; Octets Sent
               nt/dur=40 ; in seconds
               }
         },
         Subtract = A5556 {
            Statistics {
               rtp/ps=1245, ; packets sent



Groves, et al.              Standards Track                   [Page 193]

RFC 3525                Gateway Control Protocol               June 2003


               nt/os=62345, ; octets sent
               rtp/pr=780, ; packets received
               nt/or=45123, ; octets received
               rtp/pl=10, ;  % packets lost
               rtp/jit=27,
               rtp/delay=48 ; average latency
            }
         }
     } }

  23.   The MGC now sets up both MG1 and MG2 to be ready to detect the
  next off-hook event.  See step 1.  Note that this could be the
  default state of a termination in the null context, and if this were
  the case, no message need be sent from the MGC to the MG.  Once a
  termination returns to the null context, it goes back to the default
  termination values for that termination.



































Groves, et al.              Standards Track                   [Page 194]

RFC 3525                Gateway Control Protocol               June 2003


APPENDIX II  Changes From RFC 3015

  In the following table, "source" indicates when the change was first
  approved.  It has the following values:

  IG1100: H.248 Implementor's Guide approved in November, 2000 (as TD
  Plen-39, Christian Groves, editor).

  IG0601: H.248 Implementor's Guide approved in June, 2001 (as  TD
  Plen-15, Christian Groves, editor).

  IGDUB: Draft H.248 Implementor's Guide approved at the Q.3
  Rapporteur's meeting held near Dublin, October 2001 (as TD-28, Terry
  Anderson, editor).

  GEN0202: added at the Geneva meeting, February 2002, which consented
  to H.248 v1 Amendment 1 (as TD Plen-36r1, Marcello Pantaleo, editor).

  ITUPOST: added in post-Geneva editing by the ITU-T.

  TTPOST: added in post-approval editing by the Megaco Chair, Tom
  Taylor, who assembled this document for submission.

  Section    Source                       Change

  1          ITUPOST   Reference changed from H.248 to H.248.1.

  2.1        ITUPOST   Reference added for error codes, changed from
                       H.248 Annex L to H.248.8 (2002).

  2.1        IG1100    Corrected Q.765 reference to Q.765.5.

  2.1        GEN0202   Added reference to X.690.

  2.2        GEN0202   Added reference to H.226.

  2.2         IGDUB    Added informative references to Q.724, Q.764,
                       and Q.1902.4.

  4          IG0601    Added expansion of ALF.

  5          TTPOST    Gave priority to IETF conventions (added at
                       start of document).








Groves, et al.              Standards Track                   [Page 195]

RFC 3525                Gateway Control Protocol               June 2003


  6.1.1      IG0601    Added text regarding use of wildcards for
                       context identifiers.  (This information
                       already appeared in section 8.1.2.  The IG
                       change subsequently disappeared.)

  6.1.1      IG1100    Added ranking of priority values.

  6.2         IGDUB    Deleted definition of signals.

  6.2        GEN0202   Expanded text and diagrams describing
                       multiplexing terminations.

  6.2        TTPOST    Added asterisks to multiplexing diagrams to
                       indicate centre of context.  Added Figure 6a
                       showing cascading of multiplexes.

  6.2.2      IG0601    Added text indicating that ALL does not
                       include ROOT.

  6.2.3      IG1100    Added text clarifying what must be supported
                       to claim support of a package.

  6.2.3      IG1100    Added text indicating what packages a peer can
                       indicate support for, when some of them are
                       extensions of others.

  6.2.4      IG0601    Added text on ability of provisioning to
                       override default values, and need for MGC to
                       audit to learn the provisioned defaults.

  6.2.4      IG0601    Added text indicating effect of omitting
                       specific properties from Descriptors in
                       commands modifying a termination.
                       Contradicted original text saying that omitted
                       properties retain their prior values (still
                       true for entirely-omitted Descriptors).

  6.2.4      GEN0202   Modified above text to restrict it to
                       read/write properties, allow for default
                       behaviour in place of default values if so
                       specified in the property definition.

  6.2.4       IGDUB    Trimmed definition of signals Descriptor in
                       table and inserted cross-reference to section
                       7.1.11.

  6.2.4      IG1100    Added Topology and Error Descriptors to table.




Groves, et al.              Standards Track                   [Page 196]

RFC 3525                Gateway Control Protocol               June 2003


  6.2.5       IGDUB    Specified error code to return if ROOT used
                       inappropriately.

  7.1.1      IG1100    Added qualification to explanation of effect
                       of missing Audit Descriptor, excepting
                       Subtract.

  7.1.3      GEN0202   Changed "inputs" to "bearers" to be consistent
                       with terminology in 6.2.

  7.1.4      IG0601    Small change to make clear that more than one
                       of Local, Remote, and LocalControl can be
                       included in the default streamId.

  7.1.7      IG0601    Default value for Mode specified to be
                       Inactive.

  7.1.7      GEN0202   Added text requiring processing of media in
                       any of the reserved formats, where more than
                       one has been reserved in a given stream.

  7.1.8       IGDUB    Added restriction to at most one m= line per
                       session description.

  7.1.9      IG0601    Text added to omit request identifier if the
                       EventsDescriptor is empty.  Further text added
                       at end to indicate the effects of an empty
                       EventsDescriptor and an empty
                       EventBufferDescriptor.

  7.1.9      IG0601    Fixed typo for destination of a Notify.

  7.1.9      IG1100    Added note to say event remains active after
                       it has been notified, so long as it is still
                       present in the active Events Descriptor.

  7.1.11      IGDUB    Added definition of signals.

  7.1.11     GEN0202   Modified definition to include example of more
                       complex signal, and added role of signal in
                       media preparation for future signals.

  7.1.11      IGDUB    The timeout completion reason was broadened to
                       include other circumstances where the signal
                       completed on its own.  Text added to indicate
                       that if default signal type changed to TO,
                       duration parameter must be provided.




Groves, et al.              Standards Track                   [Page 197]

RFC 3525                Gateway Control Protocol               June 2003


  7.1.11     GEN0202   Removed reference to BR signal being "so
                       short" it will stop on its own.  Added text
                       indicating that if the type of a signal is
                       changed to TO, the Duration parameter must be
                       supplied.

  7.1.11     IG1100    Deleted text discussing type of Signals List.

  7.1.12     GEN0202   Improved wording of introductory paragraph and
                       added text making content of returned
                       Descriptor clear.

  7.1.14.2   GEN0202   Added text indicating that when the start
                       timer is set to 0, initial digit timing is
                       disabled and the MG waits indefinitely for
                       digits.

  7.1.14.2   GEN0202   Added text pointing out that default digit
                       timer values should be provisioned, but can be
                       overridden in the digit map.

  7.1.14.3   GEN0202   Changed result of long-short digit timer
                       conflict from undefined to long.

  7.1.14.6   IG1100    Clarified that the digit map is provided by
                       the eventDM parameter, which must be present.

  7.1.14.7   GEN0202   Added text clarifying that events covered by
                       the digit map completion event have no side-
                       effects unless separately enabled.

  7.1.14.8   IG0601    Added requirement that the event specification
                       include the eventDM parameter.

  7.1.17      IGDUB    Added text to indicate timestamp is optional
                       and to include observed event parameters in
                       reported content.

  7.1.17     GEN0202   Deleted provision that time is expressed in
                       UTC (since intention was to use format, not
                       time zone).

  7.1.18      IGDUB    Added text indicating error to return if
                       topology option not supported.







Groves, et al.              Standards Track                   [Page 198]

RFC 3525                Gateway Control Protocol               June 2003


  7.1.18     IG1100    Added text clarifying effect of not mentioning
             TTPOST    a termination in a topology Descriptor, and
                       default topology for a new termination.  (This
                       text got lost between the Dublin meeting and
                       the production of H.248 Amendment 1 out of the
                       Geneva 02/02 meeting.  It has been added back
                       to the present document.)

  7.1.19     IG1100    New section to describe Error Descriptor.
             GEN0202   Slightly edited in Geneva 02/02 meeting.
             ITUPOST   Reference for error code documentation updated
                       to H.248.8.

  7.1.19     IG0601    Added paragraph giving guidance on level at
                       which errors should be reported.

  7.2        IG1100    Noted possibility of Error Descriptor in reply
                       to any command.

  7.2.1      IG1100    Added EventBufferDescriptor as Add parameter.

  7.2.1      IG1100    Removed restriction on use of CHOOSE wildcard.

  7.2.2      IG1100    Added EventBufferDescriptor as Modify
                       parameter.

  7.2.2      GEN0202   Added text on side-effects of Modify of a
                       multiplexing termination.

  7.2.3      IG1100    Added prohibition against subtracting from the
                       NULL context.

  7.2.3      GEN0202   Added text on side-effects of Subtract of a
                       multiplexing termination.

  7.2.3       IGDUB    Added text clarifying effect of empty
                       AuditDescriptor in Subtract.

  7.2.4      IG1100    Added EventBufferDescriptor as Move parameter.

  7.2.4      GEN0202   Removed misleading statement that Move acts as
                       subtract from original context.

  7.2.4      IG1100    Clarified effect of Move on properties of the
                       moved termination.

  7.2.4      GEN0202   Added text on side-effects of Move of a
                       multiplexing termination.



Groves, et al.              Standards Track                   [Page 199]

RFC 3525                Gateway Control Protocol               June 2003


  7.2.5      IG1100    Added examples showing W- wildcard usage.

  7.2.5      IG1100    Noted that returning a list of all contextIDs
                       requires that they be returned one per
                       ActionReply.

  7.2.5      IG1100    Added table entry (ALL, specific) to determine
                       context in which termination currently
                       resides.

  7.2.6      GEN0202   Added table similar to that in 7.2.5.

  7.2.7      IG0601    Added TerminationID to API.

  7.2.7       IGDUB    Indicated timestamp was optional in Notify, to
                       accord with syntax.

  7.2.7      IG1100    Noted possibility of sending Error Descriptor
                       in Notify.

  7.2.8      IG0601    Added text to description of Forced method to
                       indicate that Forced on ROOT indicates a cold
                       restart (all context state lost).

  7.2.8       IGDUB    Amplified explanation of Disconnected method
                       to emphasize return to the previously
                       controlling MGC.

  7.2.8      IG0601    Added text for MG use of Failover method when
                       it detects MGC failure.

  7.2.8      IG1100    Added notes discouraging use of
                       ServiceChangeAddress and warning that it could
                       be either a full address or just a port
                       number.

  7.2.8      IG0601    Added text indicating that timestamp does not
                       necessarily represent absolute time, only
                       local clock reading.

  7.2.8       IGDUB    Corrected "gateway" to "MGC" in discussion of
                       returned ServiceChangeMgcId parameter.

  7.3        IG0601    Removed error code documentation to Annex L
             ITUPOST   (now H.248.8).

  8          IG1100    Added requirement that an Action be non-empty.




Groves, et al.              Standards Track                   [Page 200]

RFC 3525                Gateway Control Protocol               June 2003


  8          GEN0202   Added context properties and context property
                       audit requests to commands as potential
                       contents of actions.

  8.1.2      GEN0202   Added prohibition on using partial contextIDs
                       with ALL wildcards.

  8.2.2      IG1100    Added text clarifying when in transaction
                       processing the requested actions have been
                       completed and a reply can be sent.

  8.2.2      IG1100    Added ALL as allowed contextID in
                       TransactionReply.

  8.2.2      GEN0202   Provided general reference to section 7.1.19
                       for generation of error Descriptors.

  8.2.2      IG0601    Corrected Actions to Commands when discussing
                       partially-understood action.

  8.3        IG0601    Added text specifying that the same MId value
                       must be used by a given entity throughout the
                       life of a control association.

  8.3        IG0601    Added text expanding on independence of
                       transactions from messages.

  9          ITUPOST   Indicated that additional transports may be
                       defined in separate Recommendations as well as
                       annexes to the primary specification.

  9          IG0601    Gave specific example of "request source
                       address" for IP.

  9.1        IG1100    Deleted restriction to one outstanding Notify
                       command on a termination at one time, since
                       this is transport-specific.

  9.1        IG0601    Restored restriction, but noted that it
                       applied only to transport not guaranteeing
                       ordered delivery.

  10.2       IG1100    Corrected length of synthesized address field
                       from 10 to 20 hex digits and indicated that
                       calculation should be over entire message, not
                       just one transaction.





Groves, et al.              Standards Track                   [Page 201]

RFC 3525                Gateway Control Protocol               June 2003


  11.2       IG1100    Corrected text in first two paragraphs
                       describing use of ServiceChangeMgcId
                       parameter.

  11.2       IG1100    Corrected "Transaction Accept" to "Transaction
                       Reply".

  11.4       IG0601    Noted that support of redundant MGs requires
             GEN0202   use of a reliable transport and support in the
                       MGC.  Added more explanation in Geneva.

  11.5       IG0601    Added text clarifying procedure if MG unable
                       to establish a control relationship with any
                       of its eligible MGCs.

  11.5        IGDUB    Added text indicating that when trying to
                       reestablish contact with the previously
                       controlling MGC the MG uses the Disconnected
                       method.

  11.5       IG1100    Clarified handoff procedure.

  11.5       GEN0202   Changed text on replies to transactions in
                       progress during handoff.  Replies now
                       discarded when the service relationship with
                       the old MGC has ended, rather than sent to the
                       new MGC.  The new MGC could still send replies
                       to requests sent to the old MGC.

  12.1.1     GEN0202   Added optional package designation as
                       "designed to be extended only".

  12.1.1     IG1100    Made prohibition on overloading of identifiers
                       in extended packages transitive through all
                       ancestors of the extended package.

  12.1.2      IGDUB    Clarified the set of types allowed for
                       properties.

  12.1.2     GEN0202   Added requirement to specify the base type of
                       a sub-list.

  12.1.2     GEN0202   Provided requirements for content of the
                       "Possible Values" template item, including
                       specification of default values or behaviour.






Groves, et al.              Standards Track                   [Page 202]

RFC 3525                Gateway Control Protocol               June 2003


  12.1.4     GEN0202   Added requirement to specify the default
                       signal type, and specify a default duration
                       for TO signals.  Also noted that duration is
                       meaningless for BR, and that the signal type
                       might be dependent on the values of other
                       signal parameters.

  12.2       GEN0202   Fixed section title (covers only event and
                       signal parameters, not properties or
                       statistics).

  12.2       IG1100    Reserved SPA and EPA prefixes, so they are not
                       to be used for signal and event parameter
                       tokens.

  12.2       IG0601    Expanded list of reserved prefixes.

  12.2        IGDUB    Clarified the set of types allowed for signal
                       and event parameters.

  12.2       GEN0202   Added requirement to specify the base type of
                       a sub-list.

  12.2       GEN0202   Provided requirements for content of the
                       "Possible Values" template item, including
                       specification of default values or behaviour.

  12.4        IGDUB    Corrected to indicate identifiers must start
                       with alphabetic rather than alphanumeric
                       character.

  13.1       IG0601    Changed private range of binary package
                       identifiers to convenient hex values.

  A          GEN0202   Removed versions from X.680 and X.690
                       references.

  A.2         IGDUB    Added note warning that the syntax alone does
                       not provide a complete description of the
                       constraints, but must be supplemented by a
                       reading of the text and comments.

  A.2        IG0601    Added description of double wrapping of
                       parameters declared as OCTET STRING.







Groves, et al.              Standards Track                   [Page 203]

RFC 3525                Gateway Control Protocol               June 2003


  A.2        GEN0202   Some editing of double wrapping description to
                       use ASN.1, BER in their proper places.  Added
                       possibility of encoding strings as UTF8String,
                       but only if they contain non-ASCII characters.

  A.2         IGDUB    Added line in table on double wrapping of true
                       octet strings.

  A.2        IG1100    Corrected and expanded comments describing
                       mtpAddress form of MId.  Fixed maximum length
                       of mtpAddress both here and in
                       ServiceChangeAddress.

  A.2        IG0601   Inserted missing lines in IP4Address
                       production.

  A.2        IG0601    Modified TransactionResponseAck to allow
                       acknowledgement of multiple ranges of
                       transactionIds.

  A.2        IG0601    Corrected numerical value of CHOOSE as a
                       context identifier.

  A.2         IGDUB    Added missing extension marker in
                       TopologyRequest.

  A.2        IG1100    AuditReply and AuditResult modified to bring
                       binary functionality into line with text
                       functionality.

  A.2        IG0601    Removed OPTIONAL tag from terminationID in
                       NotifyReply.

  A.2        IG0601    Added extraInfo substructure to EventParameter
                       and SigParameter.

  A.2        IG0601    Modified MediaDescriptor to make it optional
                       to specify a stream.

  A.2        IG0601    Added OPTIONAL tags to reserveValue and
                       reserveGroup.

  A.2         IGDUB    Added to comments for pkgdName to indicate
                       applicability to event names, signal names,
                       and statisticIds as well as property.






Groves, et al.              Standards Track                   [Page 204]

RFC 3525                Gateway Control Protocol               June 2003


  A.2        IG0601    RequestID made optional in EventsDescriptor
                       and SecondEventsDescriptor and comment added
                       saying it must be present if events are
                       present.

  A.2        IG1100    Added OPTIONAL tags on RequestActions and
                       SecondRequestedActions keepActive BOOLEANs.

  A.2        IG1100    Added comment to indicate requestID value to
                       use in an AuditCapReply.

  A.2        GEN0202   Added comment to DigitMapValue indicating time
                       units for timers.

  A.2        IG0601    Added comment indicating coding of Value for
             GEN0202   ServiceChangeReason.  Cleaned up in Geneva to
                       use ASN.1 and BER in their proper places.

  A.2        IG0601    Inserted missing extension marker in
                       ServiceChangeParm production.

  A.2        IG0601    Aligned definition of mtpAddress in
                       ServiceChangeAddress with that in MId.

  A.2        IG0601    Added timestamp to ServiceChangeResParm.

  A.2         IGDUB    Changed type of profileName in
                       ServiceChangeProfile to IA5String.

  A.2        IG0601    Made returned value optional in
                       statisticsParameter, to support
                       auditCapability result.

  A.2        GEN0202   Added reference to ISO 8601:1988 for
                       TimeNotation.

  A.2        IG1100    Value production modified to support the
                       sublist parameter type.

  A.3        IG1100    Corrected ABNF for digitStringlisT, replacing
                       "/" with "|".

  A.3        IG1100    Added parentheses to digitMapRange production.

  A.3        IG1100    Replaced more abbreviated syntax for pathName
                       with fuller definition and constraints copied
                       from B.2.




Groves, et al.              Standards Track                   [Page 205]

RFC 3525                Gateway Control Protocol               June 2003


  B.2         IGDUB    Added note warning that the syntax alone does
                       not provide a complete description of the
                       constraints, but must be supplemented by a
                       reading of the text and comments.

  B.2        IG0601    Added note warning that the interpretation of
                       symbols is context-dependent.

  B.2        IG1100    Added comment to indicate case insensitivity
                       of protocol (excepting SDP) and ABNF.

  B.2        IG0601    Expanded upon and capitalized this comment.

  B.2        IG0601    Lengthy note added on the coding of the VALUE
                       construct.

  B.2         IGDUB    Deleted sentence in note suggesting that
                       packages could add new types for properties,
                       parameters, or statistics.

  B.2        IG0601    Added note indicating that parsers should
                       allow for white space preceding the first line
                       of SDP in Local or Remote.

  B.2         IGDUB    Added comments identifying the O- and W- tags.

  B.2        IG1100    Moved wildcard tag up from individual commands
                       to commandRequestList.

  B.2        GEN0202   Added additional error case to actionReply.

  B.2        IG0601    Modified syntax of auditOther to allow return
                       of terminationID only.

  B.2         IGDUB    Corrected upper limit for V4hex.

  B.2        IG1100    Corrected and expanded comments describing
                       mtpAddress form of MId.

  B.2        IG0601    Modified comment to mediaParm to make
                       streamParms and StreamDescriptor mutually
                       exclusive.

  B.2        GEN0202   Modified comment further to indicate at most
                       one instance of terminationStateDescriptor.

  B.2        GEN0202   Expanded comment for streamParm to indicate
                       the restriction on repetition is per item.



Groves, et al.              Standards Track                   [Page 206]

RFC 3525                Gateway Control Protocol               June 2003


  B.2        IG0601    Modified "at most once" comments to localParm,
                       terminationStateParm, and modemType, to allow
                       multiple instances of propertyParm in the
                       first two cases and extensionParameter in the
                       last one.

  B.2        IG0601    Added note before description of Local and
                       Remote, pointing out that the octet value x00
                       is not allowed in octetString.

  B.2        IG0601    Syntax for eventsDescriptor, embedFirst, and
                       eventBufferDescriptor modified to make
                       contents beyond token optional.

  B.2         IGDUB    Replaced "event" by "item" in comment to
                       pkgdName because pkgdName applies to
                       properties, signals, and statistics as well.

  B.2        IG0601    Corrected placement of EQUAL in eventDM
                       production.

  B.2        IG1100    Added comment and syntax to indicate requestID
                       value to use in an AuditCapReply.

  B.2        IG1100    Corrected Modem Descriptor to allow package
                       items as properties.

  B.2        IG0601    Comment to modemType changed to allow multiple
                       instances of extensionParameter.

  B.2        GEN0202   Comment added to indicate units for Timer.

  B.2        IG1100    Added parentheses to digitMapRange production.

  B.2        IG1100    Added comment to serviceChangeParm,
                       restricting each parameter to one appearance.

  B.2        IG0601    Added comments making serviceChangeMgcId and
                       serviceChangeAddress mutually exclusive in
                       ServiceChangeParm and servChgReplyParm.

  B.2         IGDUB    Added comment to serviceChangeParm indicating
                       that ServiceChangeMethod and
                       ServiceChangeReason are required.

  B.2        IG0601    Added Timestamp to servChgReplyParm.





Groves, et al.              Standards Track                   [Page 207]

RFC 3525                Gateway Control Protocol               June 2003


  B.2        IG0601    Added comment indicating coding of Value for
                       ServiceChangeReason.

  B.2        IG0601    Modified ServiceChangeAddress to use MId
                       definition for full address.

  B.2        IG1100    Made returned value optional in
                       statisticsParameter, to support
                       auditCapability result.

  B.2        IG1100    Changed topologyDescriptor to allow multiple
                       triples.

  B.2        IG0601    Added comment forbidding use of a double quote
                       within a quotedString value.

  B.2        IG1100    Reserved prefixes for new tokens added to
                       signalParameter and eventParameter, to avoid
                       collision with package names.

  B.2        IG1100    EmbedToken and EmergencyToken changed to
                       remove clash with EventBufferToken.

  B.3        IG1100    New section describing hexadecimal octet
                       encoding.

  B.4        IG1100    New section describing hex octet sequence.

  C          IG1100    Added permission to use Annex C properties in
                       LocalControl as well as in Local and Remote.

  C          IG0601    Added text making support of all properties of
                       Annex C optional.

  C           IGDUB    Added directions to reconcile tabulated
                       formats with allowed types for properties.

  C.1        IG1100    Corrected Q.765 reference to Q.765.5 for
                       ACodec.

  C.1        IG1100    Deprecated Echocanc codepoint in favour of
                       package-defined property.

  C.4        ITUPOST   Updated references from Q.2961 to Q.2961.1.

  C.4         IGDUB    Added details on format of VPVC.

  C.9        IG1100    Renamed USI to layer1prot.



Groves, et al.              Standards Track                   [Page 208]

RFC 3525                Gateway Control Protocol               June 2003


  C.9        IG1100    Deprecated ECHOCI codepoint in favour of
                       package-defined property.

  C.9        IG1100    Added new USI property.

  C.11       IG1100    Added m= line tag.

  D.1        IG0601    Added explanation of ALF.

  D.1.5       IGDUB    Expanded text indicating that when trying to
                       reestablish contact with the previously
                       controlling MGC the MG uses the Disconnected
                       method.

  E.1.2      GEN0202   Added missing EventsDescriptor parameters
                       lines.

  E.1.2      GEN0202   For the Signal Completion event:
                       - corrected the description of how it is
                       enabled
                       - heavily edited the description of the Signal
                       Identity observed event parameter and added a
                       type.

  E.1.2       IGDUB    The timeout completion reason for the Signal
                       Completion event was broadened to include
                       other circumstances where the signal completed
                       on its own.

  E.1.2      IG1100    Added signal list ID observed event parameter
                       to the Signal Completion event.

  E.2.1      IG0601    Added missing read only, read-write
                       specifications.

  E.2.1      IG0601    Split ProvisionalResponseTimer properties into
                       one for MG, one for MGC.

  E.3        GEN0202   Added "Designed to be extended only" to
                       tonegen package description.

  E.4        GEN0202   Added "Designed to be extended only" to
                       tonedet package description.

  E.4.2      GEN0202   Added type for tone ID observed parameter for
                       Long Tone Detected event.





Groves, et al.              Standards Track                   [Page 209]

RFC 3525                Gateway Control Protocol               June 2003


  E.6.2      IG1100    Corrected binary identifier for digit map
                       completion event to avoid clash with base
                       package.

  E.6.2      IG1100    Removed procedural text.

  E.6.5      IG1100    Added procedural text indicating where to find
                       the applicable digit map and indicating the
                       error to return if the parameter is missing.

  E.6.5      IG0601    Further modified procedural text.

  E.7.3      IG1100    Corrected text identifier for payphone
                       recognition tone to avoid clash with base
                       package.

  E.10.5      IGDUB    Provided informative references for tones and
                       procedures for continuity check.

  E.13       GEN0202   Added note that TDM package could also apply
                       to other transports.

  E.13.1     IG1100    Changed default for echo cancellation from
                       "on" to provisioned.

  E.13.1     IG0601    Corrected type for gain property.

  Appendix   TTPOST    Included a number of corrections which were
     I                 not picked up in H.248.1 Amendment 1 but which
                       do appear in H.248.1 v2.

Intellectual Property Rights

  The ITU draws attention to the possibility that the practice or
  implementation of this RFC may involve the use of a claimed
  Intellectual Property Right.  The ITU takes no position concerning
  the evidence, validity or applicability of claimed Intellectual
  Property Rights, whether asserted by ITU members or others outside of
  the Recommendation development process.

  As of the date of approval of this RFC, the ITU had received notice
  of intellectual property, protected by patents, which may be required
  to implement this RFC.  However, implementors are cautioned that this
  may not represent the latest information and are therefore strongly
  urged to consult the TSB patent database.






Groves, et al.              Standards Track                   [Page 210]

RFC 3525                Gateway Control Protocol               June 2003


  The IETF has also received notice of intellectual property claims
  relating to Megaco/H.248.1.  Please consult the IETF IPR
  announcements at http://www.ietf.org/ipr.html.

Acknowledgments

  Megaco/H.248.1 is the result of hard work by many people in both the
  IETF and in ITU-T Study Group 16.  This section records those who
  played a prominent role in ITU-T meetings, on the Megaco list, or
  both.

  Megaco/H.248 owes a large initial debt to the MGCP protocol (RFC
  2705), and thus to its authors, Mauricio Arango, Andrew Dugan, Ike
  Elliott, Christian Huitema, and Scott Pickett.  Flemming Andreasen
  does not appear on this list of authors, but was a major contributor
  to the development of both MGCP and Megaco/H.248.1.  RFC 3435 has an
  extensive acknowledgement of many other people who worked on media
  gateway control before Megaco got started.

  The authors of the first Megaco RFCs (2805, then 3015) were Fernando
  Cuervo, Nancy Greene, Abdallah Rayhan, Christian Huitema, Brian
  Rosen, and John Segers.  Christian Groves conceived and was editor of
  Annex C.  The people most active on the Megaco list in the period
  leading up to the completion of RFC 2885 were Brian Rosen, Tom
  Taylor, Nancy Greene, Christian Huitema, Matt Holdrege, Chip Sharp,
  John Segers, Michael Thomas, Henry Sinnreich, and Paul Sijben.  The
  people who sacrificed sleep and meals to complete the massive amount
  of work required in the decisive Study Group 16 meeting of February,
  2000, were Michael Brown, Ranga Dendi, Larry Forni, Glen Freundlich,
  Christian Groves, Alf Heidemark, Steve Magnell, Selvam Rengasami,
  Rich Rubin, Klaus Sambor, John Segers, Chip Sharp, Tom Taylor, and
  Stephen Terrill.

  The most active people on the Megaco list in the period since the
  February 2000 have been Tom Taylor, Brian Rosen, Christian Groves,
  Madhu Babu Brahmanapally, Troy Cauble, Terry Anderson, Chuong Nguyen,
  and Kevin Boyle, but many other people have been regular
  contributors.  Brian Rosen did tremendous service in putting together
  the Megaco interoperability tests.  On the Study Group 16 side, the
  editorial team for the final revised document in February, 2002
  included Christian Groves, Marcello Pantaleo, Terry Anderson, Peter
  Leis, Kevin Boyle, and Tom Taylor.

  Tom Taylor as Megaco Chair managed the day to day operation of the
  Megaco list, with Brian Rosen taking an equal share of the burden for
  most of the last three years.  Glen Freundlich as the Study Group 16
  Rapporteur ran the ITU-T meetings and ensured that all of the work at
  hand was completed.  Without Glen's determination the Megaco/H.248



Groves, et al.              Standards Track                   [Page 211]

RFC 3525                Gateway Control Protocol               June 2003


  standard would have taken at least half a year longer to produce.
  Christian Groves filled in ably as Rapporteur when Glen could no
  longer take part.

Authors' Addresses

  Terry L. Anderson
  24 Hill St
  Bernardsville, NJ 07924
  USA

  EMail: [email protected]


  Christian Groves
  Ericsson AsiaPacificLab Australia
  37/360 Elizabeth St
  Melbourne, Victoria 3000
  Australia

  EMail: [email protected]


  Marcello Pantaleo
  Ericsson Eurolab Deuschland
  Ericsson Allee 1
  52134 Herzogenrath, Germany

  EMail: [email protected]


  Tom Taylor
  Nortel Networks
  1852 Lorraine Ave,
  Ottawa, Ontario
  Canada K1H 6Z8

  Phone: +1 613 736 0961
  EMail: [email protected]












Groves, et al.              Standards Track                   [Page 212]

RFC 3525                Gateway Control Protocol               June 2003


Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Groves, et al.              Standards Track                   [Page 213]