Network Working Group                                         L-N. Hamer
Request for Comments: 3520                                       B. Gage
Category: Standards Track                                Nortel Networks
                                                            B. Kosinski
                                                    Invidi Technologies
                                                               H. Shieh
                                                          AT&T Wireless
                                                             April 2003


                Session Authorization Policy Element

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes the representation of a session authorization
  policy element for supporting policy-based per-session authorization
  and admission control.  The goal of session authorization is to allow
  the exchange of information between network elements in order to
  authorize the use of resources for a service and to co-ordinate
  actions between the signaling and transport planes.  This document
  describes how a process on a system authorizes the reservation of
  resources by a host and then provides that host with a session
  authorization policy element which can be inserted into a resource
  reservation protocol (e.g., the Resource ReSerVation Protocol (RSVP)
  PATH message) to facilitate proper and secure reservation of those
  resources within the network.  We describe the encoding of session
  authorization information as a policy element conforming to the
  format of a Policy Data object (RFC 2750) and provide details
  relating to operations, processing rules and error scenarios.










Hamer, et al.               Standards Track                     [Page 1]

RFC 3520          Session Authorization Policy Element        April 2003


Table of Contents

  1. Conventions used in this document..............................3
  2. Introduction...................................................3
  3. Policy Element for Session Authorization.......................4
     3.1 Policy Data Object Format..................................4
     3.2 Session Authorization Policy Element.......................4
     3.3 Session Authorization Attributes...........................4
       3.3.1 Authorizing Entity Identifier..........................6
       3.3.2 Session Identifier.....................................7
       3.3.3 Source Address.........................................7
       3.3.4 Destination Address....................................9
       3.3.5 Start time............................................10
       3.3.6 End time..............................................11
       3.3.7 Resources Authorized..................................11
       3.3.8 Authentication data...................................12
  4. Integrity of the AUTH_SESSION policy element..................13
     4.1 Shared symmetric keys.....................................13
       4.1.1 Operational Setting using shared symmetric keys.......13
     4.2 Kerberos..................................................14
       4.2.1. Operational Setting using Kerberos...................15
     4.3 Public Key................................................16
       4.3.1. Operational Setting for public key based
              authentication.......................................16
         4.3.1.1 X.509 V3 digital certificates.....................17
         4.3.1.2 PGP digital certificates..........................17
  5. Framework.....................................................18
     5.1 The coupled model.........................................18
     5.2 The associated model with one policy server...............18
     5.3 The associated model with two policy servers..............19
     5.4 The non-associated model..................................19
  6. Message Processing Rules......................................20
     6.1 Generation of the AUTH_SESSION by the authorizing entity..20
     6.2 Message Generation (RSVP Host)............................20
     6.3 Message Reception (RSVP-aware Router).....................20
     6.4 Authorization (Router/PDP)................................21
  7. Error Signaling...............................................22
  8. IANA Considerations...........................................22
  9. Security Considerations.......................................24
  10. Acknowledgments..............................................24
  11. Normative References.........................................25
  12. Informative References.......................................27
  13. Intellectual Property Statement..............................27
  14. Contributors.................................................28
  15. Authors' Addresses...........................................29
  16. Full Copyright Statement.....................................30





Hamer, et al.               Standards Track                     [Page 2]

RFC 3520          Session Authorization Policy Element        April 2003


1. Conventions used in this document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC-2119].

2. Introduction

  RSVP [RFC-2205] is one example of a resource reservation protocol
  that is used by a host to request specific services from the network
  for particular application data streams or flows.  RSVP requests will
  generally result in resources being reserved in each router along the
  data path.  RSVP allows users to obtain preferential access to
  network resources, under the control of an admission control
  mechanism.  Such admission control is often based on user or
  application identity [RFC-3182], however, it is also valuable to
  provide the ability for per-session admission control.

  In order to allow for per-session admission control, it is necessary
  to provide a mechanism for ensuring use of resources by a host has
  been properly authorized before allowing the reservation of those
  resources.  In order to meet this requirement, there must be
  information in the resource reservation message which may be used to
  verify the validity of the reservation request.  This can be done by
  providing the host with a session authorization policy element which
  is inserted into the resource reservation message and verified by the
  network.

  This document describes the session authorization policy element
  (AUTH_SESSION) used to convey information about the resources
  authorized for use by a session.  The host must obtain an
  AUTH_SESSION element from an authorizing entity via a session
  signaling protocol such as SIP [RFC-3261].  The host then inserts the
  AUTH_SESSION element into the resource reservation message to allow
  verification of the network resource request; in the case of RSVP,
  this element MUST be encapsulated in the Policy Data object [RFC-
  2750] of an RSVP PATH message.  Network elements verify the request
  and then process the resource reservation message based on admission
  policy.

  [RFC-3521] describes a framework in which a session authorization
  policy element may be utilized to contain information relevant to the
  network's decision to grant a reservation request.







Hamer, et al.               Standards Track                     [Page 3]

RFC 3520          Session Authorization Policy Element        April 2003


3. Policy Element for Session Authorization

3.1 Policy Data Object Format

  The Session Authorization policy element conforms to the format of a
  POLICY_DATA object which contains policy information and is carried
  by policy based admission protocols such as RSVP.  A detailed
  description of the POLICY_DATA object can be found in "RSVP
  Extensions for Policy Control" [RFC-2750].

3.2 Session Authorization Policy Element

  In this section we describe a policy element (PE) called session
  authorization (AUTH_SESSION).  The AUTH_SESSION policy element
  contains a list of fields which describe the session, along with
  other attributes.

         +-------------+-------------+-------------+-------------+
         | Length                    | P-Type = AUTH_SESSION     |
         +-------------+-------------+-------------+-------------+
         // Session Authorization Attribute List                //
         +-------------------------------------------------------+

  Length: 16 bits
     The length of the policy element (including the Length and P-Type)
     is in number of octets (MUST be in multiples of 4) and indicates
     the end of the session authorization information block.

  P-Type: 16 bits (Session Authorization Type)
     AUTH_SESSION = 0x04
     The Policy element type (P-type) of this element.  The Internet
     Assigned Numbers Authority (IANA) acts as a registry for policy
     element types as described in [RFC-2750].

  Session Authorization Attribute List: variable length
     The session authorization attribute list is a collection of
     objects which describes the session and provides other information
     necessary to verify the resource reservation request. An initial
     set of valid objects is described in Section 3.3.

3.3 Session Authorization Attributes

  A session authorization attribute may contain a variety of
  information and has both an attribute type and subtype.  The
  attribute itself MUST be a multiple of 4 octets in length, and any
  attributes that are not a multiple of 4 octets long MUST be padded to
  a 4-octet boundary.  All padding bytes MUST have a value of zero.




Hamer, et al.               Standards Track                     [Page 4]

RFC 3520          Session Authorization Policy Element        April 2003


     +--------+--------+--------+--------+
     | Length          | X-Type |SubType |
     +--------+--------+--------+--------+
     | Value ...
     +--------+--------+--------+--------+

  Length: 16 bits
     The length field is two octets and indicates the actual length of
     the attribute (including Length, X-Type and SubType fields) in
     number of octets.  The length does NOT include any bytes padding
     to the value field to make the attribute a multiple of 4 octets
     long.

  X-Type: 8 bits
     Session authorization attribute type (X-Type) field is one octet.
     IANA acts as a registry for X-Types as described in section 7,
     IANA Considerations.  Initially, the registry contains the
     following X-Types:

     1  AUTH_ENT_ID          The unique identifier of the entity which
                             authorized the session.

     2  SESSION_ID           Unique identifier for this session.

     3  SOURCE_ADDR          Address specification for the session
                             originator.

     4  DEST_ADDR            Address specification for the session
                             end-point.

     5  START_TIME           The starting time for the session.

     6  END_TIME             The end time for the session.

     7  RESOURCES            The resources which the user is authorized
                             to request.

     8  AUTHENTICATION_DATA  Authentication data of the session
                             authorization policy element.

  SubType: 8 bits
     Session authorization attribute sub-type is one octet in length.
     The value of the SubType depends on the X-Type.

  Value: variable length
     The attribute specific information.





Hamer, et al.               Standards Track                     [Page 5]

RFC 3520          Session Authorization Policy Element        April 2003


3.3.1 Authorizing Entity Identifier

  AUTH_ENT_ID is used to identify the entity which authorized the
  initial service request and generated the session authorization
  policy element.  The AUTH_ENT_ID may be represented in various
  formats, and the SubType is used to define the format for the ID. The
  format for AUTH_ENT_ID is as follows:

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     AUTH_ENT_ID

  SubType
     The following sub-types for AUTH_ENT_ID are defined.  IANA acts as
     a registry for AUTH_ENT_ID sub-types as described in section 7,
     IANA Considerations.  Initially, the registry contains the
     following sub-types of AUTH_ENT_ID:

     1  IPV4_ADDRESS        IPv4 address represented in 32 bits

     2  IPV6_ADDRESS        IPv6 address represented in 128 bits

     3  FQDN                Fully Qualified Domain Name as defined in
                            RFC 1034 as an ASCII string.

     4  ASCII_DN            X.500 Distinguished name as defined in RFC
                            2253 as an ASCII string.

     5  UNICODE_DN          X.500 Distinguished name as defined in RFC
                            2253 as a UTF-8 string.

     6  URI                 Universal Resource Identifier, as defined
                            in RFC 2396.

     7  KRB_PRINCIPAL       Fully Qualified Kerberos Principal name
                            represented by the ASCII string of a
                            principal followed by the @ realm name as
                            defined in RFC 1510 (e.g.,
                            principalX@realmY).




Hamer, et al.               Standards Track                     [Page 6]

RFC 3520          Session Authorization Policy Element        April 2003


     8  X509_V3_CERT        The Distinguished Name of the subject of
                            the certificate as defined in RFC 2253 as a
                            UTF-8 string.

     9  PGP_CERT            The PGP digital certificate of the
                            authorizing entity as defined in RFC 2440.

  OctetString
     Contains the authorizing entity identifier.

3.3.2 Session Identifier

  SESSION_ID is a unique identifier used by the authorizing entity to
  identify the request.  It may be used for a number of purposes,
  including replay detection, or to correlate this request to a policy
  decision entry made by the authorizing entity.  For example, the
  SESSION_ID can be based on simple sequence numbers or on a standard
  NTP timestamp.

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

   X-Type
     SESSION_ID

  SubType
     No subtypes for SESSION_ID are currently defined; this field MUST
     be set to zero.  The authorizing entity is the only network entity
     that needs to interpret the contents of the SESSION_ID therefore
     the contents and format are implementation dependent.

  OctetString
     Contains the session identifier.

3.3.3 Source Address

  SOURCE_ADDR is used to identify the source address specification of
  the authorized session.  This X-Type may be useful in some scenarios
  to make sure the resource request has been authorized for that
  particular source address and/or port.





Hamer, et al.               Standards Track                     [Page 7]

RFC 3520          Session Authorization Policy Element        April 2003


     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     SOURCE_ADDR

  SubType
     The following sub types for SOURCE_ADDR are defined.  IANA acts as
     a registry for SOURCE_ADDR sub-types as described in section 7,
     IANA Considerations.  Initially, the registry contains the
     following sub types for SOURCE_ADDR:

     1  IPV4_ADDRESS        IPv4 address represented in 32 bits

     2  IPV6_ADDRESS        IPv6 address represented in 128 bits

     3  UDP_PORT_LIST       list of UDP port specifications,
                            represented as 16 bits per list entry.

     4  TCP_PORT_LIST       list of TCP port specifications,
                            represented as 16 bits per list entry.

  OctetString
     The OctetString contains the source address information.

  In scenarios where a source address is required (see Section 5), at
  least one of the subtypes 1 through 2 (inclusive) MUST be included in
  every Session Authorization Data Policy Element.  Multiple
  SOURCE_ADDR attributes MAY be included if multiple addresses have
  been authorized.  The source address field of the resource
  reservation datagram (e.g., RSVP PATH) MUST match one of the
  SOURCE_ADDR attributes contained in this Session Authorization Data
  Policy Element.

  At most, one instance of subtype 3 MAY be included in every Session
  Authorization Data Policy Element.  At most, one instance of subtype
  4 MAY be included in every Session Authorization Data Policy Element.
  Inclusion of a subtype 3 attribute does not prevent inclusion of a
  subtype 4 attribute (i.e., both UDP and TCP ports may be authorized).

  If no PORT attributes are specified, then all ports are considered
  valid; otherwise, only the specified ports are authorized for use.



Hamer, et al.               Standards Track                     [Page 8]

RFC 3520          Session Authorization Policy Element        April 2003


  Every source address and port list must be included in a separate
  SOURCE_ADDR attribute.

3.3.4 Destination Address

  DEST_ADDR is used to identify the destination address of the
  authorized session.  This X-Type may be useful in some scenarios to
  make sure the resource request has been authorized for that
  particular destination address and/or port.

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     DEST_ADDR

  SubType
     The following sub types for DEST_ADDR are defined.  IANA acts as a
     registry for DEST_ADDR sub-types as described in section 7, IANA
     Considerations.  Initially, the registry contains the following
     sub types for DEST_ADDR:

     1  IPV4_ADDRESS        IPv4 address represented in 32 bits

     2  IPV6_ADDRESS        IPv6 address represented in 128 bits

     3  UDP_PORT_LIST       list of UDP port specifications,
                            represented as 16 bits per list entry.

     4  TCP_PORT_LIST       list of TCP port specifications,
                            represented as 16 bits per list entry.

  OctetString
     The OctetString contains the destination address specification.

  In scenarios where a destination address is required (see Section 5),
  at least one of the subtypes 1 through 2 (inclusive) MUST be included
  in every Session Authorization Data Policy Element.  Multiple
  DEST_ADDR attributes MAY be included if multiple addresses have been
  authorized.  The destination address field of the resource





Hamer, et al.               Standards Track                     [Page 9]

RFC 3520          Session Authorization Policy Element        April 2003


  reservation datagram (e.g., RSVP PATH) MUST match one of the
  DEST_ADDR attributes contained in this Session Authorization Data
  Policy Element.

  At most, one instance of subtype 3 MAY be included in every Session
  Authorization Data Policy Element.  At most, one instance of subtype
  4 MAY be included in every Session Authorization Data Policy Element.
  Inclusion of a subtype 3 attribute does not prevent inclusion of a
  subtype 4 attribute (i.e., both UDP and TCP ports may be authorized).

  If no PORT attributes are specified, then all ports are considered
  valid; otherwise, only the specified ports are authorized for use.

  Every destination address and port list must be included in a
  separate DEST_ADDR attribute.

3.3.5 Start time

  START_TIME is used to identify the start time of the authorized
  session and can be used to prevent replay attacks.  If the
  AUTH_SESSION policy element is presented in a resource request, the
  network SHOULD reject the request if it is not received within a few
  seconds of the start time specified.

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     START_TIME

  SubType
     The following sub types for START_TIME are defined.  IANA acts as
     a registry for START_TIME sub-types as described in section 7,
     IANA Considerations.  Initially, the registry contains the
     following sub types for START_TIME:

     1  NTP_TIMESTAMP        NTP Timestamp Format as defined in
                             RFC 1305.

  OctetString
     The OctetString contains the start time.




Hamer, et al.               Standards Track                    [Page 10]

RFC 3520          Session Authorization Policy Element        April 2003


3.3.6 End time

  END_TIME is used to identify the end time of the authorized session
  and can be used to limit the amount of time that resources are
  authorized for use (e.g., in prepaid session scenarios).

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     END_TIME

  SubType
     The following sub types for END_TIME are defined.  IANA acts as a
     registry for END_TIME sub-types as described in section 7, IANA
     Considerations.  Initially, the registry contains the following
     sub types for END_TIME:

     1  NTP_TIMESTAMP        NTP Timestamp Format as defined in
                             RFC 1305.

  OctetString
     The OctetString contains the end time.

3.3.7 Resources Authorized

  RESOURCES is used to define the characteristics of the authorized
  session.  This X-Type may be useful in some scenarios to specify the
  specific resources authorized to ensure the request fits the
  authorized specifications.

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     RESOURCES



Hamer, et al.               Standards Track                    [Page 11]

RFC 3520          Session Authorization Policy Element        April 2003


  SubType
     The following sub-types for RESOURCES are defined.  IANA acts as a
     registry for RESOURCES sub-types as described in section 7, IANA
     Considerations.  Initially, the registry contains the following
     sub types for RESOURCES:

     1  BANDWIDTH     Maximum bandwidth (kbps) authorized.

     2  FLOW_SPEC     Flow spec specification as defined in RFC 2205.

     3  SDP           SDP Media Descriptor as defined in RFC 2327.

     4  DSCP          Differentiated services codepoint as defined in
                      RFC 2474.

  OctetString
     The OctetString contains the resources specification.

  In scenarios where a resource specification is required (see Section
  5), at least one of the subtypes 1 through 4 (inclusive) MUST be
  included in every Session Authorization Data Policy Element.
  Multiple RESOURCE attributes MAY be included if multiple types of
  resources have been authorized (e.g., DSCP and BANDWIDTH).

3.3.8 Authentication data

  The AUTHENTICATION_DATA attribute contains the authentication data of
  the AUTH_SESSION policy element and signs all the data in the policy
  element up to the AUTHENTICATION_DATA.  If the AUTHENTICATION_DATA
  attribute has been included in the AUTH_SESSION policy element, it
  MUST be the last attribute in the list.  The algorithm used to
  compute the authentication data depends on the AUTH_ENT_ID SubType
  field.  See Section 4 entitled Integrity of the AUTH_SESSION policy
  element.

  A summary of AUTHENTICATION_DATA attribute format is described below.

     +-------+-------+-------+-------+
     | Length        |X-Type |SubType|
     +-------+-------+-------+-------+
     | OctetString ...
     +-------+-------+-------+-------+

  Length
     Length of the attribute, which MUST be > 4.

  X-Type
     AUTHENTICATION_DATA



Hamer, et al.               Standards Track                    [Page 12]

RFC 3520          Session Authorization Policy Element        April 2003


  SubType
     No sub types for AUTHENTICATION_DATA are currently defined.  This
     field MUST be set to 0.

  OctetString
     The OctetString contains the authentication data of the
     AUTH_SESSION.

4. Integrity of the AUTH_SESSION policy element

  This section describes how to ensure the integrity of the policy
  element is preserved.

4.1 Shared symmetric keys

  In shared symmetric key environments, the AUTH_ENT_ID MUST be of
  subtypes: IPV4_ADDRESS, IPV6_ADDRESS, FQDN, ASCII_DN, UNICODE_DN or
  URI.  An example AUTH_SESSION policy element is shown below.

        +--------------+--------------+--------------+--------------+
        | Length                      | P-type = AUTH_SESSION       |
        +--------------+--------------+--------------+--------------+
        | Length                      |SESSION_ID    |     zero     |
        +--------------+--------------+--------------+--------------+
        | OctetString (The session identifier) ...
        +--------------+--------------+--------------+--------------+
        | Length                      | AUTH_ENT_ID  | IPV4_ADDRESS |
        +--------------+--------------+--------------+--------------+
        | OctetString (The authorizing entity's Identifier) ...
        +--------------+--------------+--------------+--------------+
        | Length                      |AUTH DATA.    |     zero     |
        +--------------+--------------+--------------+--------------+
        |                          KEY_ID                           |
        +--------------+--------------+--------------+--------------+
        | OctetString (Authentication data) ...
        +--------------+--------------+--------------+--------------+

4.1.1 Operational Setting using shared symmetric keys

  This assumes both the Authorizing Entity and the Network router/PDP
  are provisioned with shared symmetric keys and with policies
  detailing which algorithm to be used for computing the authentication
  data along with the expected length of the authentication data for
  that particular algorithm.

  Key maintenance is outside the scope of this document, but
  AUTH_SESSION implementations MUST at least provide the ability to
  manually configure keys and their parameters locally.  The key used



Hamer, et al.               Standards Track                    [Page 13]

RFC 3520          Session Authorization Policy Element        April 2003


  to produce the authentication data is identified by the AUTH_ENT_ID
  field.  Since multiple keys may be configured for a particular
  AUTH_ENT_ID value, the first 32 bits of the AUTH_DATA field MUST be a
  key ID to be used to identify the appropriate key.  Each key must
  also be configured with lifetime parameters for the time period
  within which it is valid as well as an associated cryptographic
  algorithm parameter specifying the algorithm to be used with the key.
  At a minimum, all AUTH_SESSION implementations MUST support the
  HMAC-MD5-128 [RFC-2104], [RFC-1321] cryptographic algorithm for
  computing the authentication data.  New algorithms may be added by
  the IETF standards process.

  It is good practice to regularly change keys.  Keys MUST be
  configurable such that their lifetimes overlap allowing smooth
  transitions between keys.  At the midpoint of the lifetime overlap
  between two keys, senders should transition from using the current
  key to the next/longer-lived key.  Meanwhile, receivers simply accept
  any identified key received within its configured lifetime and reject
  those that are not.

4.2 Kerberos

  In a Kerberos environment, the AUTH_ENT_ID MUST be of the subtype
  KRB_PRINCIPAL.  The KRB_PRINCIPAL field is defined as the Fully
  Qualified Kerberos Principal name of the authorizing entity.
  Kerberos [RFC-1510] authentication uses a trusted third party (the
  Kerberos Distribution Center - KDC) to provide for authentication of
  the AUTH_SESSION to a network server.  It is assumed that a KDC is
  present and both host and verifier of authentication information
  (authorizing entity and router/PDP) implement Kerberos
  authentication.

  An example of the Kerberos AUTH_DATA policy element is shown below.

     +--------------+--------------+--------------+--------------+
     | Length                      | P-type = AUTH_SESSION       |
     +--------------+--------------+--------------+--------------+
     | Length                      |SESSION_ID    |     zero     |
     +--------------+--------------+--------------+--------------+
     | OctetString (The session identifier) ...
     +--------------+--------------+--------------+--------------+
     | Length                      | AUTH_ENT_ID  | KERB_P.      |
     +--------------+--------------+--------------+--------------+
     | OctetString (The principal@realm name) ...
     +--------------+--------------+--------------+--------------+






Hamer, et al.               Standards Track                    [Page 14]

RFC 3520          Session Authorization Policy Element        April 2003


4.2.1. Operational Setting using Kerberos

  An authorizing entity is configured to construct the AUTH_SESSION
  policy element that designates use of the Kerberos authentication
  method (KRB_PRINCIPAL) as defined in RFC 1510.  Upon reception of the
  resource reservation request, the router/PDP contacts the local KDC,
  with a KRB_AS_REQ message, to request credentials for the authorizing
  entity (principal@realm).  In this request, the client (router/PDP)
  sends (in cleartext) its own identity and the identity of the server
  (the authorizing entity taken from the AUTH_ENT_ID field) for which
  it is requesting credentials.  The local KDC responds with these
  credentials in a KRB_AS_REP message, encrypted in the client's key.
  The credentials consist of 1) a "ticket" for the server and 2) a
  temporary encryption key (often called a "session key").  The
  router/PDP uses the ticket to access the authorizing entity with a
  KRB_AP_REQ message.  The session key (now shared by the router/PDP
  and the authorizing entity) is used to authenticate the router/PDP,
  and is used to authenticate the authorizing entity.  The session key
  is an encryption key and is also used to encrypt further
  communication between the two parties.  The authorizing entity
  responds by sending a concatenated message of a KRB_AP_REP and a
  KRB_SAFE.  The KRB_AP_REP is used to authenticate the authorizing
  entity.  The KRB_SAFE message contains the authentication data in the
  safe-body field.  The authentication data must be either a 16 byte
  MD5 hash or 20 byte SHA-1 hash of all data in the AUTH_SESSION policy
  element up to the AUTHENTICATION_DATA (note that when using Kerberos
  the AUTH_SESSION PE should not include AUTHENTICATION_DATA as this is
  sent in the KRB_SAFE message).  The router/PDP independently computes
  the hash, and compares it with the received hash in the user-data
  field of the KRB-SAFE-BODY [RFC-1510].

  At a minimum, all AUTH_SESSION implementations using Kerberos MUST
  support the Kerberos des-cbc-md5 encryption type [RFC-1510] (for
  encrypted data in tickets and Kerberos messages) and the Kerberos
  rsa-md5-des checksum type [RFC-1510] (for the KRB_SAFE checksum)
  checksum.  New algorithms may be added by the IETF standards process.
  Triple-DES encryption is supported in many Kerberos implementations
  (although not specified in [RFC-1510]), and SHOULD be used over
  single DES.

  For cases where the authorizing entity is in a different realm (i.e.,
  administrative domain, organizational boundary), the router/PDP needs
  to fetch a cross-realm Ticket Granting Ticket (TGT) from its local
  KDC.  This TGT can be used to fetch authorizing entity tickets from
  the KDC in the remote realm.  Note that for performance
  considerations, tickets are typically cached for extended periods.





Hamer, et al.               Standards Track                    [Page 15]

RFC 3520          Session Authorization Policy Element        April 2003


4.3 Public Key

  In a public key environment, the AUTH_ENT_ID MUST be of the subtypes:
  X509_V3_CERT or PGP_CERT.  The authentication data is used for
  authenticating the authorizing entity.  An example of the public key
  AUTH_SESSION policy element is shown below.

     +--------------+--------------+--------------+--------------+
     | Length                      | P-type = AUTH_SESSION       |
     +--------------+--------------+--------------+--------------+
     | Length                      |SESSION_ID    |     zero     |
     +--------------+--------------+--------------+--------------+
     | OctetString (The session identifier) ...
     +--------------+--------------+--------------+--------------+
     | Length                      | AUTH_ENT_ID  |   PGP_CERT   |
     +--------------+--------------+--------------+--------------+
     | OctetString (Authorizing entity Digital Certificate) ...
     +--------------+--------------+--------------+--------------+
     | Length                      |AUTH DATA.    |     zero     |
     +--------------+--------------+--------------+--------------+
     | OctetString (Authentication data) ...
     +--------------+--------------+--------------+--------------+

4.3.1. Operational Setting for public key based authentication

     Public key based authentication assumes the following:

     -  Authorizing entities have a pair of keys (private key and
        public key).

     -  Private key is secured with the authorizing entity.

     -  Public keys are stored in digital certificates and a trusted
        party, certificate authority (CA) issues these digital
        certificates.

     -  The verifier (PDP or router) has the ability to verify the
        digital certificate.

  Authorizing entity uses its private key to generate
  AUTHENTICATION_DATA.  Authenticators (router, PDP) use the
  authorizing entity's public key (stored in the digital certificate)
  to verify and authenticate the policy element.








Hamer, et al.               Standards Track                    [Page 16]

RFC 3520          Session Authorization Policy Element        April 2003


4.3.1.1 X.509 V3 digital certificates

  When the AUTH_ENT_ID is of type X509_V3_CERT, AUTHENTICATION_DATA
  MUST be generated following these steps:

  -  A Signed-data is constructed as defined in section 5 of CMS
     [RFC-3369].  A digest is computed on the content (as specified in
     section 6.1) with a signer-specific message-digest algorithm.  The
     certificates field contains the chain of authorizing entity's
     X.509 V3 digital certificates.  The certificate revocation list is
     defined in the crls field.  The digest output is digitally signed
     following section 8 of RFC 3447, using the signer's private key.

  When the AUTH_ENT_ID is of type X509_V3_CERT, verification MUST be
  done following these steps:

  -  Parse the X.509 V3 certificate to extract the distinguished name
     of the issuer of the certificate.
  -  Certification Path Validation is performed as defined in section 6
     of RFC 3280.
  -  Parse through the Certificate Revocation list to verify that the
     received certificate is not listed.
  -  Once  the X.509 V3 certificate is validated, the public key of the
     authorizing entity can be extracted from the certificate.
  -  Extract the digest algorithm and the length of the digested data
     by parsing the CMS signed-data.
  -  The recipient independently computes the message digest.  This
     message digest and the signer's public key are used to verify the
     signature value.

  This verification ensures integrity, non-repudiation and data origin.

4.3.1.2 PGP digital certificates

  When the AUTH_ENT_ID is of type PGP_CERT, AUTHENTICATION_DATA MUST be
  generated following these steps:

  -  AUTHENTICATION_DATA contains a Signature Packet as defined in
     section 5.2.3 of RFC 2440.  In summary:

     -  Compute the hash of all data in the AUTH_SESSION policy element
        up to the AUTHENTICATION_DATA.
     -  The hash output is digitally signed following section 8 of
        RFC 3447, using the signer's private key.







Hamer, et al.               Standards Track                    [Page 17]

RFC 3520          Session Authorization Policy Element        April 2003


  When the AUTH_ENT_ID is of type PGP_CERT, verification MUST be done
  following these steps:

  -  Validate the certificate.
  -  Once the PGP certificate is validated, the public key of the
     authorizing entity can be extracted from the certificate.
  -  Extract the hash algorithm and the length of the hashed data by
     parsing the PGP signature packet.
  -  The recipient independently computes the message digest.  This
     message digest and the signer's public key are used to verify the
     signature value.

  This verification ensures integrity, non-repudiation and data origin.

5. Framework

  [RFC-3521] describes a framework in which the AUTH_SESSION policy
  element may be utilized to transport information required for
  authorizing resource reservation for media flows. [RFC-3521]
  introduces 4 different models:

     1- the coupled model
     2- the associated model with one policy server
     3- the associated model with two policy servers
     4- the non-associated model.

  The fields that are required in an AUTH SESSION policy element
  dependent on which of the models is used.

5.1 The coupled model

  In the Coupled Model, the only information that MUST be included in
  the policy element is the SESSION_ID; it is used by the Authorizing
  Entity to correlate the resource reservation request with the media
  authorized during session set up.  Since the End Host is assumed to
  be untrusted, the Policy Server SHOULD take measures to ensure that
  the integrity of the SESSION_ID is preserved in transit; the exact
  mechanisms to be used and the format of the SESSION_ID are
  implementation dependent.

5.2 The associated model with one policy server

  In this model, the contents of the AUTH_SESSION policy element MUST
  include:

  -  A session identifier - SESSION_ID.  This is information that the
     authorizing entity can use to correlate the resource reservation
     request with the media authorized during session set up.



Hamer, et al.               Standards Track                    [Page 18]

RFC 3520          Session Authorization Policy Element        April 2003


  -  The identity of the authorizing entity - AUTH_ENT_ID.  This
     information is used by the Edge Router to determine which
     authorizing entity (Policy Server) should be used to solicit
     resource policy decisions.

  In some environments, an Edge Router may have no means for
  determining if the identity refers to a legitimate Policy Server
  within its domain.  In order to protect against redirection of
  authorization requests to a bogus authorizing entity, the
  AUTH_SESSION MUST also include:

  -  AUTHENTICATION_DATA.  This authentication data is calculated over
     all other fields of the AUTH_SESSION policy element.

5.3 The associated model with two policy servers

  The content of the AUTH_SESSION Policy Element is identical to the
  associated model with one policy server.

5.4 The non-associated model

  In this model, the AUTH_SESSION MUST contain sufficient information
  to allow the Policy Server to make resource policy decisions
  autonomously from the authorizing entity.  The policy element is
  created using information about the session by the authorizing
  entity.  The information in the AUTH_SESSION policy element MUST
  include:

  -  Calling party IP address or Identity (e.g., FQDN) - SOURCE_ADDR
     X-TYPE
  -  Called party IP address or Identity (e.g., FQDN) - DEST_ADDR
     X-TYPE
  -  The characteristics of (each of) the media stream(s) authorized
     for this session - RESOURCES X-TYPE
  -  The authorization lifetime - START_TIME X-TYPE
  -  The identity of the authorizing entity to allow for validation of
     the token in shared symmetric key and Kerberos schemes -
     AUTH_ENT_ID X-TYPE
  -  The credentials of the authorizing entity in a public-key
     scheme - AUTH_ENT_ID X-TYPE
  -  Authentication data used to prevent tampering with the
     AUTH_SESSION policy element - AUTHENTICATION_DATA









Hamer, et al.               Standards Track                    [Page 19]

RFC 3520          Session Authorization Policy Element        April 2003


  Furthermore, the AUTH_SESSION policy element MAY contain:

  -  The lifetime of (each of) the media stream(s) - END_TIME X-TYPE
  -  Calling party port number - SOURCE_ADDR X-TYPE
  -  Called party port number - DEST_ADDR X-TYPE

  All AUTH_SESSION fields MUST match with the resource request.  If a
  field does not match, the request SHOULD be denied.

6. Message Processing Rules

6.1 Generation of the AUTH_SESSION by the authorizing entity

  1. Generate the AUTH_SESSION policy element with the appropriate
     contents as specified in section 5.

  2. If authentication is needed, the entire AUTH_SESSION policy
     element is constructed, excluding the length, type and subtype
     fields of the AUTH_SESSION field.  Note that the message MUST
     include either a START_TIME or a SESSION_ID (See Section 9), to
     prevent replay attacks.  The output of the authentication
     algorithm, plus appropriate header information, is appended to the
     AUTH_SESSION policy element.

6.2 Message Generation (RSVP Host)

  An RSVP message is created as specified in [RFC-2205] with the
  following modifications.

  1. RSVP message MUST contain at most one AUTH_SESSION policy element.

  2. The AUTH SESSION policy element received from the authorizing
     entity (Section 3.2) MUST be copied without modification into the
     POLICY DATA object.

  3. POLICY_DATA object (containing the AUTH_SESSION policy element) is
     inserted in the RSVP message in the appropriate place.

6.3 Message Reception (RSVP-aware Router)

  RSVP message is processed as specified in [RFC-2205] with following
  modifications.

  1. If router is policy aware then it SHOULD send the RSVP message to
     the PDP and wait for response.  If the router is policy unaware
     then it ignores the policy data objects and continues processing
     the RSVP message.




Hamer, et al.               Standards Track                    [Page 20]

RFC 3520          Session Authorization Policy Element        April 2003


  2. Reject the message if the response from the PDP is negative.

  3. Continue processing the RSVP message.

6.4 Authorization (Router/PDP)

  1. Retrieve the AUTH_SESSION policy element.  Check the PE type field
     and return an error if the identity type is not supported.

  2. Verify the message integrity.

     -  Shared symmetric key authentication: The Network router/PDP
        uses the AUTH_ENT_ID field to consult a table keyed by that
        field.  The table should identify the cryptographic
        authentication algorithm to be used along with the expected
        length of the authentication data and the shared symmetric key
        for the authorizing entity.  Verify that the indicated length
        of the authentication data is consistent with the configured
        table entry and validate the authentication data.

     -  Public Key: Validate the certificate chain against the trusted
        Certificate Authority (CA) and validate the message signature
        using the public key.

     -  Kerberos Ticket: If the AUTH_ENT_ID is of subtype
        KRB_PRINCIPAL, Request a ticket for the authorizing entity
        (principal@realm) from the local KDC.  Use the ticket to access
        the authorizing entity and obtain authentication data for the
        message.

  3. Once the identity of the authorizing entity and the validity of
     the service request has been established, the authorizing
     router/PDP MUST then consult its local policy tables (the contents
     of which are a local matter) in order to determine whether or not
     the specific request is authorized.  To the extent to which these
     access control decisions require supplementary information,
     routers/PDPs MUST ensure that supplementary information is
     obtained securely.  An example of insecure access control
     decisions would be if the authorizing party relies upon an
     insecure database (such as DNS or a public LDAP directory) and
     authorizes with a certificate or an FQDN.

  4. Verify the requested resources do not exceed the authorized QoS.








Hamer, et al.               Standards Track                    [Page 21]

RFC 3520          Session Authorization Policy Element        April 2003


7. Error Signaling

  If a PDP fails to verify the AUTH_SESSION policy element then it MUST
  return a policy control failure (Error Code = 02) to the PEP.  The
  error values are described in [RFC-2205] and [RFC-2750].  Also the
  PDP SHOULD supply a policy data object containing an AUTH_DATA Policy
  Element with A-Type=POLICY_ERROR_CODE containing more details on the
  Policy Control failure [RFC-3182].  If RSVP is being used, the PEP
  MUST include this Policy Data object in the outgoing RSVP Error
  message.

8. IANA Considerations

  Following the policies outlined in [IANA-CONSIDERATIONS], Standard
  RSVP Policy Elements (P-type values) are assigned by IETF Consensus
  action as described in [RFC-2750].

  P-Type AUTH_SESSION is assigned the value 0x04.

  Following the policies outlined in [IANA-CONSIDERATIONS], session
  authorization attribute types (X-Type)in the range 0-127 are
  allocated through an IETF Consensus action; X-Type values between
  128-255 are reserved for Private Use and are not assigned by IANA.

  X-Type AUTH_ENT_ID is assigned the value 1.
  X-Type SESSION_ID is assigned the value 2.
  X-Type SOURCE_ADDR is assigned the value 3.
  X-Type DEST_ADDR is assigned the value 4.
  X-Type START_TIME is assigned the value 5.
  X-Type END_TIME is assigned the value 6.
  X-Type RESOURCES is assigned the value 7.
  X-Type AUTHENTICATION_DATA is assigned the value 8.

  Following the policies outlined in [IANA-CONSIDERATIONS],
  AUTH_ENT_ID SubType values in the range 0-127 are allocated through
  an IETF Consensus action; SubType values between 128-255 are
  reserved for Private Use and are not assigned by IANA.

  AUTH_ENT_ID SubType IPV4_ADDRESS is assigned the value 1.
  SubType IPV6_ADDRESS is assigned the value 2.
  SubType FQDN is assigned the value 3.
  SubType ASCII_DN is assigned the value 4.
  SubType UNICODE_DN is assigned the value 5.
  SubType URI is assigned the value 6.
  SubType KRB_PRINCIPAL is assigned the value 7.
  SubType X509_V3_CERT is assigned the value 8.
  SubType PGP_CERT is assigned the value 9.




Hamer, et al.               Standards Track                    [Page 22]

RFC 3520          Session Authorization Policy Element        April 2003


  Following the policies outlined in [IANA-CONSIDERATIONS],
  SOURCE_ADDR SubType values in the range 0-127 are allocated through
  an IETF Consensus action; SubType values between 128-255 are
  reserved for Private Use and are not assigned by IANA.

  SOURCE_ADDR SubType IPV4_ADDRESS is assigned the value 1.
  SubType IPV6_ADDRESS is assigned the value 2.
  SubType UDP_PORT_LIST is assigned the value 3.
  SubType TCP_PORT_LIST is assigned the value 4.

  Following the policies outlined in [IANA-CONSIDERATIONS],
  DEST_ADDR SubType values in the range 0-127 are allocated through an
  IETF Consensus action; SubType values between 128-255 are reserved
  for Private Use and are not assigned by IANA.

  DEST_ADDR SubType IPV4_ADDRESS is assigned the value 1.
  SubType IPV6_ADDRESS is assigned the value 2.
  SubType UDP_PORT_LIST is assigned the value 3.
  SubType TCP_PORT_LIST is assigned the value 4.

  Following the policies outlined in [IANA-CONSIDERATIONS],
  START_TIME SubType values in the range 0-127 are allocated through an
  IETF Consensus action; SubType values between 128-255 are
  reserved for Private Use and are not assigned by IANA.

  START_TIME SubType NTP_TIMESTAMP is assigned the value 1.

  Following the policies outlined in [IANA-CONSIDERATIONS],
  END_TIME SubType values in the range 0-127 are allocated through an
  IETF Consensus action; SubType values between 128-255 are reserved
  for Private Use and are not assigned by IANA.

  END_TIME SubType NTP_TIMESTAMP is assigned the value 1.

  Following the policies outlined in [IANA-CONSIDERATIONS],
  RESOURCES SubType values in the range 0-127 are allocated through an
  IETF Consensus action; SubType values between 128-255 are reserved
  for Private Use and are not assigned by IANA.

  RESOURCES SubType BANDWIDTH is assigned the value 1.
  SubType FLOW_SPEC is assigned the value 2.
  SubType SDP is assigned the value 3.
  SubType DSCP is assigned the value 4.








Hamer, et al.               Standards Track                    [Page 23]

RFC 3520          Session Authorization Policy Element        April 2003


9. Security Considerations

  The purpose of this document is to describe a mechanism for session
  authorization to prevent theft of service.

  Replay attacks MUST be prevented.  In the non-associated model, the
  AUTH_SESSION policy element MUST include a START_TIME field and the
  Policy Servers MUST support NTP to ensure proper clock
  synchronization.  Failure to ensure proper clock synchronization will
  allow replay attacks since the clocks of the different network
  entities may not be in-synch.  The start time is used to verify that
  the request is not being replayed at a later time.  In all other
  models, the SESSION_ID is used by the Policy Server to ensure that
  the resource request successfully correlates with records of an
  authorized session.  If a AUTH_SESSION is replayed, it MUST be
  detected by the policy server (using internal algorithms) and the
  request MUST be rejected.

  To ensure that the integrity of the policy element is preserved in
  untrusted environments, the AUTHENTICATION_DATA attribute MUST be
  included.

  In environments where shared symmetric keys are possible, they should
  be used in order to keep the AUTH_SESSION policy element size to a
  strict minimum.  This is especially true in wireless environments
  where the AUTH_SESSION policy element is sent
  over-the-air.  The shared symmetric keys authentication option MUST
  be supported by all AUTH_SESSION implementations.

  If shared symmetric keys are not a valid option, the Kerberos
  authentication mechanism is reasonably well secured and efficient in
  terms of AUTH_SESSION size.  The AUTH_SESSION only needs to contain
  the principal@realm name of the authorizing entity.  This is much
  more efficient than the PKI authentication option.

  PKI authentication option provides a high level of security and good
  scalability, however it requires the presence of credentials in the
  AUTH_SESSION policy element which impacts its size.

10.  Acknowledgments

  We would like to thank Francois Audet, Don Wade, Hamid Syed, Kwok Ho
  Chan and many others for their valuable comments.  Special thanks to
  Eric Rescorla who provided numerous comments and suggestions that
  improved this document.

  In addition, we would like to thank S. Yadav, et al., for their
  efforts on RFC 3182, as this document borrows from their work.



Hamer, et al.               Standards Track                    [Page 24]

RFC 3520          Session Authorization Policy Element        April 2003


11.  Normative References

  [ASCII]               Coded Character Set -- 7-Bit American Standard
                        Code for Information Interchange, ANSI X3.4-
                        1986.

  [X.509-ITU]           ITU-T (formerly CCITT) Information technology
                        Open Systems Interconnection - The Directory:
                        Authentication Framework Recommendation X.509
                        ISO/IEC 9594-8

  [RFC-1034]            Mockapetris, P., "Domain names - concepts and
                        facilities", STD 13, RFC 1034, November 1987.

  [RFC-1305]            Mills, D., "Network Time Protocol (Version 3)
                        Specification, Implementation, and Analysis",
                        RFC 1305, March 1992.

  [RFC-1321]            Rivest, R., "The MD5 Message-Digest Algorithm",
                        RFC 1321, April 1992.

  [RFC-1510]            Kohl, J. and C. Neuman, "The Kerberos Network
                        Authentication Service (V5)", RFC 1510,
                        September 1993.

  [RFC-2104]            Krawczyk, H., Bellare, M. and R. Canetti,
                        "HMAC: Keyed-Hashing for Message
                        Authentication", RFC 2104, February 1997.

  [RFC-2119]            Bradner, S., "Key words for use in RFCs to
                        Indicate Requirement Levels", BCP 14, RFC 2119,
                        March 1997.

  [RFC-2205]            Braden, R., Ed., Zhang, L., Berson, S., Herzog,
                        S. and S. Jamin, "Resource ReSerVation Protocol
                        (RSVP) - Version 1 Functional Specification",
                        RFC 2205, September 1997.

  [RFC-2209]            Braden, R. and L. Zhang, "Resource ReSerVation
                        Protocol (RSVP) - Version 1 Message Processing
                        Rules", RFC 2209, September 1997.

  [RFC-2253]            Wahl, M., Kille, S. and T. Howes , "UTF-8
                        String Representation of Distinguished Names",
                        RFC 2253, December 1997.

  [RFC-2279]            Yergeau, F., "UTF-8, a transformation format of
                        ISO 10646", RFC 2279, January 1998.



Hamer, et al.               Standards Track                    [Page 25]

RFC 3520          Session Authorization Policy Element        April 2003


  [RFC-2327]            Handley, M. and V. Jacobson, "SDP: Session
                        Description Protocol", RFC 2327, October 1998.

  [RFC-2396]            Berners-Lee, T., Fielding, R., Masinter, L.,
                        "Uniform Resource Identifiers (URI): Generic
                        Syntax", RFC 2396, August 1998.

  [RFC-2440]            Callas, J., Donnerhacke, L., Finney, H. and R.
                        Thayer, "OpenPGP Message Format", RFC 2440,
                        November 1998.

  [RFC-2474]            Nichols, K., Blake, S., Baker, F. and D. Black,
                        "Definition of the Differentiated Services
                        Field (DS Field) in the IPv4 and IPv6 Headers",
                        RFC 2474, December 1998.

  [RFC-2750]            Herzog, S., "RSVP Extensions for Policy
                        Control", RFC 2750, January 2000.

  [RFC-2753]            Yavatkar, R., Pendarakis, D. and R. Guerin, "A
                        Framework for Policy-based Admission Control
                        RSVP", RFC 2753, January 2000.

  [RFC-3182]            Yadav, S., Yavatkar, R., Pabbati, R., Ford, P.,
                        Moore, T., Herzog, S. and R. Hess, "Identity
                        Representation for RSVP", RFC 3182, October
                        2001

  [RFC-3280]            Housley, R., Polk, W., Ford, W. and D. Solo,
                        "Internet X.509 Public Key Infrastructure
                        Certificate and Certificate Revocation List
                        (CRL) Profile", RFC 3280, April 2002.

  [RFC-3369]            Housley, R., "Cryptographic Message Syntax",
                        RFC 3369, August 2002.

  [RFC-3447]            Jonsson, J. and B. Kaliski, "Public-Key
                        Cryptography Standards (PKCS) #1: RSA
                        Cryptography Specifications Version 2.1", RFC
                        3447, February 2003.

  [RFC-3521]            Hamer, L.-N., Gage, B. and H. Shieh, "Framework
                        for Session Setup with Media Authorization",
                        RFC 3521, April 2003.







Hamer, et al.               Standards Track                    [Page 26]

RFC 3520          Session Authorization Policy Element        April 2003


12.  Informative References

  [IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for
                        Writing an IANA Considerations Section in
                        RFCs", BCP 26, RFC 2434, October 1998.

  [RFC-3261]            Rosenberg, J., Schulzrinne, H., Camarillo, G.,
                        Johnston, A., Peterson, J., Sparks, R.,
                        Handley, M. and E. Schooler, "SIP: Session
                        Initiation Protocol", RFC 3261, June 2002.

13.  Intellectual Property Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.



















Hamer, et al.               Standards Track                    [Page 27]

RFC 3520          Session Authorization Policy Element        April 2003


14.  Contributors

  Matt Broda
  Nortel Networks

  EMail: [email protected]


  Louis LeVay
  Nortel Networks

  EMail: [email protected]


  Dennis Beard
  Nortel Networks

  EMail: [email protected]


  Lawrence Dobranski
  Nortel Networks

  EMail: [email protected]



























Hamer, et al.               Standards Track                    [Page 28]

RFC 3520          Session Authorization Policy Element        April 2003


15.  Authors' Addresses

  Louis-Nicolas Hamer
  Nortel Networks
  PO Box 3511 Station C
  Ottawa, Ontario
  Canada K1Y 4H7

  Phone: +1 613.768.3409
  EMail: [email protected]


  Brett Kosinski
  Invidi Technologies
  Edmonton, Alberta
  Canada T5J 3S4

  EMail: [email protected]


  Bill Gage
  Nortel Networks
  PO Box 3511 Station C
  Ottawa, Ontario
  Canada K1Y 4H7

  Phone: +1 613.763.4400
  EMail: [email protected]


  Hugh Shieh
  AT&T Wireless
  7277 164th Avenue NE
  Redmond, WA
  USA 98073-9761

  Phone: +1 425.580.6898
  EMail: [email protected]













Hamer, et al.               Standards Track                    [Page 29]

RFC 3520          Session Authorization Policy Element        April 2003


16.  Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Hamer, et al.               Standards Track                    [Page 30]