Network Working Group                                         J. Jonsson
Request for Comments: 3447                                    B. Kaliski
Obsoletes: 2437                                         RSA Laboratories
Category: Informational                                    February 2003


    Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
                     Specifications Version 2.1

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This memo represents a republication of PKCS #1 v2.1 from RSA
  Laboratories' Public-Key Cryptography Standards (PKCS) series, and
  change control is retained within the PKCS process.  The body of this
  document is taken directly from the PKCS #1 v2.1 document, with
  certain corrections made during the publication process.

Table of Contents

  1.       Introduction...............................................2
  2.       Notation...................................................3
  3.       Key types..................................................6
     3.1      RSA public key..........................................6
     3.2      RSA private key.........................................7
  4.       Data conversion primitives.................................8
     4.1      I2OSP...................................................9
     4.2      OS2IP...................................................9
  5.       Cryptographic primitives..................................10
     5.1      Encryption and decryption primitives...................10
     5.2      Signature and verification primitives..................12
  6.       Overview of schemes.......................................14
  7.       Encryption schemes........................................15
     7.1      RSAES-OAEP.............................................16
     7.2      RSAES-PKCS1-v1_5.......................................23
  8.       Signature schemes with appendix...........................27
     8.1      RSASSA-PSS.............................................29
     8.2      RSASSA-PKCS1-v1_5......................................32
  9.       Encoding methods for signatures with appendix.............35



Jonsson & Kaliski            Informational                      [Page 1]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     9.1      EMSA-PSS...............................................36
     9.2      EMSA-PKCS1-v1_5........................................41
  Appendix A. ASN.1 syntax...........................................44
     A.1      RSA key representation.................................44
     A.2      Scheme identification..................................46
  Appendix B. Supporting techniques..................................52
     B.1      Hash functions.........................................52
     B.2      Mask generation functions..............................54
  Appendix C. ASN.1 module...........................................56
  Appendix D. Intellectual Property Considerations...................63
  Appendix E. Revision history.......................................64
  Appendix F. References.............................................65
  Appendix G. About PKCS.............................................70
  Appendix H. Corrections Made During RFC Publication Process........70
  Security Considerations............................................70
  Acknowledgements...................................................71
  Authors' Addresses.................................................71
  Full Copyright Statement...........................................72

1. Introduction

  This document provides recommendations for the implementation of
  public-key cryptography based on the RSA algorithm [42], covering the
  following aspects:

   * Cryptographic primitives

   * Encryption schemes

   * Signature schemes with appendix

   * ASN.1 syntax for representing keys and for identifying the schemes

  The recommendations are intended for general application within
  computer and communications systems, and as such include a fair
  amount of flexibility.  It is expected that application standards
  based on these specifications may include additional constraints.
  The recommendations are intended to be compatible with the standard
  IEEE-1363-2000 [26] and draft standards currently being developed by
  the ANSI X9F1 [1] and IEEE P1363 [27] working groups.

  This document supersedes PKCS #1 version 2.0 [35][44] but includes
  compatible techniques.








Jonsson & Kaliski            Informational                      [Page 2]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  The organization of this document is as follows:

   * Section 1 is an introduction.

   * Section 2 defines some notation used in this document.

   * Section 3 defines the RSA public and private key types.

   * Sections 4 and 5 define several primitives, or basic mathematical
     operations.  Data conversion primitives are in Section 4, and
     cryptographic primitives (encryption-decryption, signature-
     verification) are in Section 5.

   * Sections 6, 7, and 8 deal with the encryption and signature
     schemes in this document.  Section 6 gives an overview.  Along
     with the methods found in PKCS #1 v1.5, Section 7 defines an
     OAEP-based [3] encryption scheme and Section 8 defines a PSS-based
     [4][5] signature scheme with appendix.

   * Section 9 defines the encoding methods for the signature schemes
     in Section 8.

   * Appendix A defines the ASN.1 syntax for the keys defined in
     Section 3 and the schemes in Sections 7 and 8.

   * Appendix B defines the hash functions and the mask generation
     function used in this document, including ASN.1 syntax for the
     techniques.

   * Appendix C gives an ASN.1 module.

   * Appendices D, E, F and G cover intellectual property issues,
     outline the revision history of PKCS #1, give references to other
     publications and standards, and provide general information about
     the Public-Key Cryptography Standards.

2. Notation

  c              ciphertext representative, an integer between 0 and
                 n-1

  C              ciphertext, an octet string

  d              RSA private exponent







Jonsson & Kaliski            Informational                      [Page 3]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  d_i            additional factor r_i's CRT exponent, a positive
                 integer such that

                   e * d_i == 1 (mod (r_i-1)), i = 3, ..., u

  dP             p's CRT exponent, a positive integer such that

                   e * dP == 1 (mod (p-1))

  dQ             q's CRT exponent, a positive integer such that

                   e * dQ == 1 (mod (q-1))

  e              RSA public exponent

  EM             encoded message, an octet string

  emBits         (intended) length in bits of an encoded message EM

  emLen          (intended) length in octets of an encoded message EM

  GCD(. , .)     greatest common divisor of two nonnegative integers

  Hash           hash function

  hLen           output length in octets of hash function Hash

  k              length in octets of the RSA modulus n

  K              RSA private key

  L              optional RSAES-OAEP label, an octet string

  LCM(., ..., .) least common multiple of a list of nonnegative
                 integers

  m              message representative, an integer between 0 and n-1

  M              message, an octet string

  mask           MGF output, an octet string

  maskLen        (intended) length of the octet string mask

  MGF            mask generation function

  mgfSeed        seed from which mask is generated, an octet string




Jonsson & Kaliski            Informational                      [Page 4]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  mLen           length in octets of a message M

  n              RSA modulus, n = r_1 * r_2 * ... * r_u , u >= 2

  (n, e)         RSA public key

  p, q           first two prime factors of the RSA modulus n

  qInv           CRT coefficient, a positive integer less than p such
                 that

                   q * qInv == 1 (mod p)

  r_i            prime factors of the RSA modulus n, including r_1 = p,
                 r_2 = q, and additional factors if any

  s              signature representative, an integer between 0 and n-1

  S              signature, an octet string

  sLen           length in octets of the EMSA-PSS salt

  t_i            additional prime factor r_i's CRT coefficient, a
                 positive integer less than r_i such that

                   r_1 * r_2 * ... * r_(i-1) * t_i == 1 (mod r_i) ,

                 i = 3, ... , u

  u              number of prime factors of the RSA modulus, u >= 2

  x              a nonnegative integer

  X              an octet string corresponding to x

  xLen           (intended) length of the octet string X

  0x             indicator of hexadecimal representation of an octet or
                 an octet string; "0x48" denotes the octet with
                 hexadecimal value 48; "(0x)48 09 0e" denotes the
                 string of three consecutive octets with hexadecimal
                 value 48, 09, and 0e, respectively

  \lambda(n)     LCM(r_1-1, r_2-1, ... , r_u-1)

  \xor           bit-wise exclusive-or of two octet strings





Jonsson & Kaliski            Informational                      [Page 5]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  \ceil(.)       ceiling function; \ceil(x) is the smallest integer
                 larger than or equal to the real number x

  ||             concatenation operator

  ==             congruence symbol; a == b (mod n) means that the
                 integer n divides the integer a - b

  Note.  The CRT can be applied in a non-recursive as well as a
  recursive way.  In this document a recursive approach following
  Garner's algorithm [22] is used.  See also Note 1 in Section 3.2.

3. Key types

  Two key types are employed in the primitives and schemes defined in
  this document: RSA public key and RSA private key.  Together, an RSA
  public key and an RSA private key form an RSA key pair.

  This specification supports so-called "multi-prime" RSA where the
  modulus may have more than two prime factors.  The benefit of multi-
  prime RSA is lower computational cost for the decryption and
  signature primitives, provided that the CRT (Chinese Remainder
  Theorem) is used.  Better performance can be achieved on single
  processor platforms, but to a greater extent on multiprocessor
  platforms, where the modular exponentiations involved can be done in
  parallel.

  For a discussion on how multi-prime affects the security of the RSA
  cryptosystem, the reader is referred to [49].

3.1 RSA public key

  For the purposes of this document, an RSA public key consists of two
  components:

     n        the RSA modulus, a positive integer
     e        the RSA public exponent, a positive integer

  In a valid RSA public key, the RSA modulus n is a product of u
  distinct odd primes r_i, i = 1, 2, ..., u, where u >= 2, and the RSA
  public exponent e is an integer between 3 and n - 1 satisfying GCD(e,
  \lambda(n)) = 1, where \lambda(n) = LCM(r_1 - 1, ..., r_u - 1).  By
  convention, the first two primes r_1 and r_2 may also be denoted p
  and q respectively.

  A recommended syntax for interchanging RSA public keys between
  implementations is given in Appendix A.1.1; an implementation's
  internal representation may differ.



Jonsson & Kaliski            Informational                      [Page 6]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


3.2 RSA private key

  For the purposes of this document, an RSA private key may have either
  of two representations.

  1. The first representation consists of the pair (n, d), where the
     components have the following meanings:

        n        the RSA modulus, a positive integer
        d        the RSA private exponent, a positive integer

  2. The second representation consists of a quintuple (p, q, dP, dQ,
     qInv) and a (possibly empty) sequence of triplets (r_i, d_i, t_i),
     i = 3, ..., u, one for each prime not in the quintuple, where the
     components have the following meanings:

        p        the first factor, a positive integer
        q        the second factor, a positive integer
        dP       the first factor's CRT exponent, a positive integer
        dQ       the second factor's CRT exponent, a positive integer
        qInv     the (first) CRT coefficient, a positive integer
        r_i      the i-th factor, a positive integer
        d_i      the i-th factor's CRT exponent, a positive integer
        t_i      the i-th factor's CRT coefficient, a positive integer

  In a valid RSA private key with the first representation, the RSA
  modulus n is the same as in the corresponding RSA public key and is
  the product of u distinct odd primes r_i, i = 1, 2, ..., u, where u
  >= 2.  The RSA private exponent d is a positive integer less than n
  satisfying

     e * d == 1 (mod \lambda(n)),

  where e is the corresponding RSA public exponent and \lambda(n) is
  defined as in Section 3.1.

  In a valid RSA private key with the second representation, the two
  factors p and q are the first two prime factors of the RSA modulus n
  (i.e., r_1 and r_2), the CRT exponents dP and dQ are positive
  integers less than p and q respectively satisfying

     e * dP == 1 (mod (p-1))
     e * dQ == 1 (mod (q-1)) ,

  and the CRT coefficient qInv is a positive integer less than p
  satisfying

     q * qInv == 1 (mod p).



Jonsson & Kaliski            Informational                      [Page 7]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  If u > 2, the representation will include one or more triplets (r_i,
  d_i, t_i), i = 3, ..., u.  The factors r_i are the additional prime
  factors of the RSA modulus n.  Each CRT exponent d_i (i = 3, ..., u)
  satisfies

     e * d_i == 1 (mod (r_i - 1)).

  Each CRT coefficient t_i (i = 3, ..., u) is a positive integer less
  than r_i satisfying

     R_i * t_i == 1 (mod r_i) ,

  where R_i = r_1 * r_2 * ... * r_(i-1).

  A recommended syntax for interchanging RSA private keys between
  implementations, which includes components from both representations,
  is given in Appendix A.1.2; an implementation's internal
  representation may differ.

  Notes.

  1. The definition of the CRT coefficients here and the formulas that
     use them in the primitives in Section 5 generally follow Garner's
     algorithm [22] (see also Algorithm 14.71 in [37]). However, for
     compatibility with the representations of RSA private keys in PKCS
     #1 v2.0 and previous versions, the roles of p and q are reversed
     compared to the rest of the primes.  Thus, the first CRT
     coefficient, qInv, is defined as the inverse of q mod p, rather
     than as the inverse of R_1 mod r_2, i.e., of p mod q.

  2. Quisquater and Couvreur [40] observed the benefit of applying the
     Chinese Remainder Theorem to RSA operations.

4. Data conversion primitives

  Two data conversion primitives are employed in the schemes defined in
  this document:

     * I2OSP - Integer-to-Octet-String primitive

     * OS2IP - Octet-String-to-Integer primitive

  For the purposes of this document, and consistent with ASN.1 syntax,
  an octet string is an ordered sequence of octets (eight-bit bytes).
  The sequence is indexed from first (conventionally, leftmost) to last
  (rightmost).  For purposes of conversion to and from integers, the
  first octet is considered the most significant in the following
  conversion primitives.



Jonsson & Kaliski            Informational                      [Page 8]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


4.1 I2OSP

  I2OSP converts a nonnegative integer to an octet string of a
  specified length.

  I2OSP (x, xLen)

  Input:
  x        nonnegative integer to be converted
  xLen     intended length of the resulting octet string

  Output:
  X        corresponding octet string of length xLen

  Error: "integer too large"

  Steps:

  1. If x >= 256^xLen, output "integer too large" and stop.

  2. Write the integer x in its unique xLen-digit representation in
     base 256:

        x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) + ...
        + x_1 256 + x_0,

     where 0 <= x_i < 256 (note that one or more leading digits will be
     zero if x is less than 256^(xLen-1)).

  3. Let the octet X_i have the integer value x_(xLen-i) for 1 <= i <=
     xLen.  Output the octet string

        X = X_1 X_2 ... X_xLen.

4.2 OS2IP

  OS2IP converts an octet string to a nonnegative integer.

  OS2IP (X)

  Input:
  X        octet string to be converted

  Output:
  x        corresponding nonnegative integer






Jonsson & Kaliski            Informational                      [Page 9]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Steps:

  1. Let X_1 X_2 ... X_xLen be the octets of X from first to last,
     and let x_(xLen-i) be the integer value of the octet X_i for
     1 <= i <= xLen.

  2. Let x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) + ...
     + x_1 256 + x_0.

  3. Output x.

5. Cryptographic primitives

  Cryptographic primitives are basic mathematical operations on which
  cryptographic schemes can be built.  They are intended for
  implementation in hardware or as software modules, and are not
  intended to provide security apart from a scheme.

  Four types of primitive are specified in this document, organized in
  pairs: encryption and decryption; and signature and verification.

  The specifications of the primitives assume that certain conditions
  are met by the inputs, in particular that RSA public and private keys
  are valid.

5.1 Encryption and decryption primitives

  An encryption primitive produces a ciphertext representative from a
  message representative under the control of a public key, and a
  decryption primitive recovers the message representative from the
  ciphertext representative under the control of the corresponding
  private key.

  One pair of encryption and decryption primitives is employed in the
  encryption schemes defined in this document and is specified here:
  RSAEP/RSADP.  RSAEP and RSADP involve the same mathematical
  operation, with different keys as input.

  The primitives defined here are the same as IFEP-RSA/IFDP-RSA in IEEE
  Std 1363-2000 [26] (except that support for multi-prime RSA has been
  added) and are compatible with PKCS #1 v1.5.

  The main mathematical operation in each primitive is exponentiation.








Jonsson & Kaliski            Informational                     [Page 10]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


5.1.1 RSAEP

  RSAEP ((n, e), m)

  Input:
  (n, e)   RSA public key
  m        message representative, an integer between 0 and n - 1

  Output:
  c        ciphertext representative, an integer between 0 and n - 1

  Error: "message representative out of range"

  Assumption: RSA public key (n, e) is valid

  Steps:

  1. If the message representative m is not between 0 and n - 1, output
     "message representative out of range" and stop.

  2. Let c = m^e mod n.

  3. Output c.

5.1.2   RSADP

  RSADP (K, c)

  Input:
  K        RSA private key, where K has one of the following forms:
           - a pair (n, d)
           - a quintuple (p, q, dP, dQ, qInv) and a possibly empty
             sequence of triplets (r_i, d_i, t_i), i = 3, ..., u
  c        ciphertext representative, an integer between 0 and n - 1

  Output:
  m        message representative, an integer between 0 and n - 1

  Error: "ciphertext representative out of range"

  Assumption: RSA private key K is valid










Jonsson & Kaliski            Informational                     [Page 11]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Steps:

  1. If the ciphertext representative c is not between 0 and n - 1,
     output "ciphertext representative out of range" and stop.

  2. The message representative m is computed as follows.

     a. If the first form (n, d) of K is used, let m = c^d mod n.

     b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
        of K is used, proceed as follows:

        i.    Let m_1 = c^dP mod p and m_2 = c^dQ mod q.

        ii.   If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.

        iii.  Let h = (m_1 - m_2) * qInv mod p.

        iv.   Let m = m_2 + q * h.

        v.    If u > 2, let R = r_1 and for i = 3 to u do

                 1. Let R = R * r_(i-1).

                 2. Let h = (m_i - m) * t_i mod r_i.

                 3. Let m = m + R * h.

  3.   Output m.

  Note.  Step 2.b can be rewritten as a single loop, provided that one
  reverses the order of p and q.  For consistency with PKCS #1 v2.0,
  however, the first two primes p and q are treated separately from
  the additional primes.

5.2 Signature and verification primitives

  A signature primitive produces a signature representative from a
  message representative under the control of a private key, and a
  verification primitive recovers the message representative from the
  signature representative under the control of the corresponding
  public key.  One pair of signature and verification primitives is
  employed in the signature schemes defined in this document and is
  specified here: RSASP1/RSAVP1.

  The primitives defined here are the same as IFSP-RSA1/IFVP-RSA1 in
  IEEE 1363-2000 [26] (except that support for multi-prime RSA has
  been added) and are compatible with PKCS #1 v1.5.



Jonsson & Kaliski            Informational                     [Page 12]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  The main mathematical operation in each primitive is
  exponentiation, as in the encryption and decryption primitives of
  Section 5.1.  RSASP1 and RSAVP1 are the same as RSADP and RSAEP
  except for the names of their input and output arguments; they are
  distinguished as they are intended for different purposes.

5.2.1 RSASP1

  RSASP1 (K, m)

  Input:
  K        RSA private key, where K has one of the following forms:
           - a pair (n, d)
           - a quintuple (p, q, dP, dQ, qInv) and a (possibly empty)
             sequence of triplets (r_i, d_i, t_i), i = 3, ..., u
  m        message representative, an integer between 0 and n - 1

  Output:
  s        signature representative, an integer between 0 and n - 1

  Error: "message representative out of range"

  Assumption: RSA private key K is valid

  Steps:

  1. If the message representative m is not between 0 and n - 1,
     output "message representative out of range" and stop.

  2. The signature representative s is computed as follows.

     a. If the first form (n, d) of K is used, let s = m^d mod n.

        b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
        of K is used, proceed as follows:

        i.    Let s_1 = m^dP mod p and s_2 = m^dQ mod q.

        ii.   If u > 2, let s_i = m^(d_i) mod r_i, i = 3, ..., u.

        iii.  Let h = (s_1 - s_2) * qInv mod p.

        iv.   Let s = s_2 + q * h.

        v.    If u > 2, let R = r_1 and for i = 3 to u do

                 1. Let R = R * r_(i-1).




Jonsson & Kaliski            Informational                     [Page 13]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


                 2. Let h = (s_i - s) * t_i mod r_i.

                 3. Let s = s + R * h.

  3. Output s.

  Note.  Step 2.b can be rewritten as a single loop, provided that one
  reverses the order of p and q.  For consistency with PKCS #1 v2.0,
  however, the first two primes p and q are treated separately from the
  additional primes.

5.2.2 RSAVP1

  RSAVP1 ((n, e), s)

  Input:
  (n, e)   RSA public key
  s        signature representative, an integer between 0 and n - 1

  Output:
  m        message representative, an integer between 0 and n - 1

  Error: "signature representative out of range"

  Assumption: RSA public key (n, e) is valid

  Steps:

  1. If the signature representative s is not between 0 and n - 1,
     output "signature representative out of range" and stop.

  2. Let m = s^e mod n.

  3. Output m.

6. Overview of schemes

  A scheme combines cryptographic primitives and other techniques to
  achieve a particular security goal.  Two types of scheme are
  specified in this document: encryption schemes and signature schemes
  with appendix.

  The schemes specified in this document are limited in scope in that
  their operations consist only of steps to process data with an RSA
  public or private key, and do not include steps for obtaining or
  validating the key.  Thus, in addition to the scheme operations, an
  application will typically include key management operations by which




Jonsson & Kaliski            Informational                     [Page 14]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  parties may select RSA public and private keys for a scheme
  operation.  The specific additional operations and other details are
  outside the scope of this document.

  As was the case for the cryptographic primitives (Section 5), the
  specifications of scheme operations assume that certain conditions
  are met by the inputs, in particular that RSA public and private keys
  are valid.  The behavior of an implementation is thus unspecified
  when a key is invalid.  The impact of such unspecified behavior
  depends on the application.  Possible means of addressing key
  validation include explicit key validation by the application; key
  validation within the public-key infrastructure; and assignment of
  liability for operations performed with an invalid key to the party
  who generated the key.

  A generally good cryptographic practice is to employ a given RSA key
  pair in only one scheme.  This avoids the risk that vulnerability in
  one scheme may compromise the security of the other, and may be
  essential to maintain provable security.  While RSAES-PKCS1-v1_5
  (Section 7.2) and RSASSA-PKCS1-v1_5 (Section 8.2) have traditionally
  been employed together without any known bad interactions (indeed,
  this is the model introduced by PKCS #1 v1.5), such a combined use of
  an RSA key pair is not recommended for new applications.

  To illustrate the risks related to the employment of an RSA key pair
  in more than one scheme, suppose an RSA key pair is employed in both
  RSAES-OAEP (Section 7.1) and RSAES-PKCS1-v1_5.  Although RSAES-OAEP
  by itself would resist attack, an opponent might be able to exploit a
  weakness in the implementation of RSAES-PKCS1-v1_5 to recover
  messages encrypted with either scheme.  As another example, suppose
  an RSA key pair is employed in both RSASSA-PSS (Section 8.1) and
  RSASSA-PKCS1-v1_5.  Then the security proof for RSASSA-PSS would no
  longer be sufficient since the proof does not account for the
  possibility that signatures might be generated with a second scheme.
  Similar considerations may apply if an RSA key pair is employed in
  one of the schemes defined here and in a variant defined elsewhere.

7. Encryption schemes

  For the purposes of this document, an encryption scheme consists of
  an encryption operation and a decryption operation, where the
  encryption operation produces a ciphertext from a message with a
  recipient's RSA public key, and the decryption operation recovers the
  message from the ciphertext with the recipient's corresponding RSA
  private key.






Jonsson & Kaliski            Informational                     [Page 15]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  An encryption scheme can be employed in a variety of applications.  A
  typical application is a key establishment protocol, where the
  message contains key material to be delivered confidentially from one
  party to another.  For instance, PKCS #7 [45] employs such a protocol
  to deliver a content-encryption key from a sender to a recipient; the
  encryption schemes defined here would be suitable key-encryption
  algorithms in that context.

  Two encryption schemes are specified in this document: RSAES-OAEP and
  RSAES-PKCS1-v1_5.  RSAES-OAEP is recommended for new applications;
  RSAES-PKCS1-v1_5 is included only for compatibility with existing
  applications, and is not recommended for new applications.

  The encryption schemes given here follow a general model similar to
  that employed in IEEE Std 1363-2000 [26], combining encryption and
  decryption primitives with an encoding method for encryption.  The
  encryption operations apply a message encoding operation to a message
  to produce an encoded message, which is then converted to an integer
  message representative.  An encryption primitive is applied to the
  message representative to produce the ciphertext.  Reversing this,
  the decryption operations apply a decryption primitive to the
  ciphertext to recover a message representative, which is then
  converted to an octet string encoded message.  A message decoding
  operation is applied to the encoded message to recover the message
  and verify the correctness of the decryption.

  To avoid implementation weaknesses related to the way errors are
  handled within the decoding operation (see [6] and [36]), the
  encoding and decoding operations for RSAES-OAEP and RSAES-PKCS1-v1_5
  are embedded in the specifications of the respective encryption
  schemes rather than defined in separate specifications.  Both
  encryption schemes are compatible with the corresponding schemes in
  PKCS #1 v2.0.

7.1 RSAES-OAEP

  RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1
  and 5.1.2) with the EME-OAEP encoding method (step 1.b in Section
  7.1.1 and step 3 in Section 7.1.2).  EME-OAEP is based on Bellare and
  Rogaway's Optimal Asymmetric Encryption scheme [3].  (OAEP stands for
  "Optimal Asymmetric Encryption Padding.").  It is compatible with the
  IFES scheme defined in IEEE Std 1363-2000 [26], where the encryption
  and decryption primitives are IFEP-RSA and IFDP-RSA and the message
  encoding method is EME-OAEP.  RSAES-OAEP can operate on messages of
  length up to k - 2hLen - 2 octets, where hLen is the length of the
  output from the underlying hash function and k is the length in
  octets of the recipient's RSA modulus.




Jonsson & Kaliski            Informational                     [Page 16]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Assuming that computing e-th roots modulo n is infeasible and the
  mask generation function in RSAES-OAEP has appropriate properties,
  RSAES-OAEP is semantically secure against adaptive chosen-ciphertext
  attacks.  This assurance is provable in the sense that the difficulty
  of breaking RSAES-OAEP can be directly related to the difficulty of
  inverting the RSA function, provided that the mask generation
  function is viewed as a black box or random oracle; see [21] and the
  note below for further discussion.

  Both the encryption and the decryption operations of RSAES-OAEP take
  the value of a label L as input.  In this version of PKCS #1, L is
  the empty string; other uses of the label are outside the scope of
  this document.  See Appendix A.2.1 for the relevant ASN.1 syntax.

  RSAES-OAEP is parameterized by the choice of hash function and mask
  generation function.  This choice should be fixed for a given RSA
  key.  Suggested hash and mask generation functions are given in
  Appendix B.

  Note.  Recent results have helpfully clarified the security
  properties of the OAEP encoding method [3] (roughly the procedure
  described in step 1.b in Section 7.1.1).  The background is as
  follows.  In 1994, Bellare and Rogaway [3] introduced a security
  concept that they denoted plaintext awareness (PA94).  They proved
  that if a deterministic public-key encryption primitive (e.g., RSAEP)
  is hard to invert without the private key, then the corresponding
  OAEP-based encryption scheme is plaintext-aware (in the random oracle
  model), meaning roughly that an adversary cannot produce a valid
  ciphertext without actually "knowing" the underlying plaintext.
  Plaintext awareness of an encryption scheme is closely related to the
  resistance of the scheme against chosen-ciphertext attacks.  In such
  attacks, an adversary is given the opportunity to send queries to an
  oracle simulating the decryption primitive.  Using the results of
  these queries, the adversary attempts to decrypt a challenge
  ciphertext.

  However, there are two flavors of chosen-ciphertext attacks, and PA94
  implies security against only one of them.  The difference relies on
  what the adversary is allowed to do after she is given the challenge
  ciphertext.  The indifferent attack scenario (denoted CCA1) does not
  admit any queries to the decryption oracle after the adversary is
  given the challenge ciphertext, whereas the adaptive scenario
  (denoted CCA2) does (except that the decryption oracle refuses to
  decrypt the challenge ciphertext once it is published).  In 1998,
  Bellare and Rogaway, together with Desai and Pointcheval [2], came up
  with a new, stronger notion of plaintext awareness (PA98) that does
  imply security against CCA2.




Jonsson & Kaliski            Informational                     [Page 17]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  To summarize, there have been two potential sources for
  misconception: that PA94 and PA98 are equivalent concepts; or that
  CCA1 and CCA2 are equivalent concepts.  Either assumption leads to
  the conclusion that the Bellare-Rogaway paper implies security of
  OAEP against CCA2, which it does not.

  (Footnote: It might be fair to mention that PKCS #1 v2.0 cites [3]
  and claims that "a chosen ciphertext attack is ineffective against a
  plaintext-aware encryption scheme such as RSAES-OAEP" without
  specifying the kind of plaintext awareness or chosen ciphertext
  attack considered.)

  OAEP has never been proven secure against CCA2; in fact, Victor Shoup
  [48] has demonstrated that such a proof does not exist in the general
  case.  Put briefly, Shoup showed that an adversary in the CCA2
  scenario who knows how to partially invert the encryption primitive
  but does not know how to invert it completely may well be able to
  break the scheme.  For example, one may imagine an attacker who is
  able to break RSAES-OAEP if she knows how to recover all but the
  first 20 bytes of a random integer encrypted with RSAEP.  Such an
  attacker does not need to be able to fully invert RSAEP, because she
  does not use the first 20 octets in her attack.

  Still, RSAES-OAEP is secure against CCA2, which was proved by
  Fujisaki, Okamoto, Pointcheval, and Stern [21] shortly after the
  announcement of Shoup's result.  Using clever lattice reduction
  techniques, they managed to show how to invert RSAEP completely given
  a sufficiently large part of the pre-image.  This observation,
  combined with a proof that OAEP is secure against CCA2 if the
  underlying encryption primitive is hard to partially invert, fills
  the gap between what Bellare and Rogaway proved about RSAES-OAEP and
  what some may have believed that they proved.  Somewhat
  paradoxically, we are hence saved by an ostensible weakness in RSAEP
  (i.e., the whole inverse can be deduced from parts of it).

  Unfortunately however, the security reduction is not efficient for
  concrete parameters.  While the proof successfully relates an
  adversary Adv against the CCA2 security of RSAES-OAEP to an algorithm
  Inv inverting RSA, the probability of success for Inv is only
  approximately \epsilon^2 / 2^18, where \epsilon is the probability of
  success for Adv.

  (Footnote: In [21] the probability of success for the inverter was
  \epsilon^2 / 4.  The additional factor 1 / 2^16 is due to the eight
  fixed zero bits at the beginning of the encoded message EM, which are
  not present in the variant of OAEP considered in [21] (Inv must apply
  Adv twice to invert RSA, and each application corresponds to a factor
  1 / 2^8).)



Jonsson & Kaliski            Informational                     [Page 18]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  In addition, the running time for Inv is approximately t^2, where t
  is the running time of the adversary.  The consequence is that we
  cannot exclude the possibility that attacking RSAES-OAEP is
  considerably easier than inverting RSA for concrete parameters.
  Still, the existence of a security proof provides some assurance that
  the RSAES-OAEP construction is sounder than ad hoc constructions such
  as RSAES-PKCS1-v1_5.

  Hybrid encryption schemes based on the RSA-KEM key encapsulation
  paradigm offer tight proofs of security directly applicable to
  concrete parameters; see [30] for discussion.  Future versions of
  PKCS #1 may specify schemes based on this paradigm.

7.1.1 Encryption operation

  RSAES-OAEP-ENCRYPT ((n, e), M, L)

  Options:
  Hash     hash function (hLen denotes the length in octets of the hash
           function output)
  MGF      mask generation function

  Input:
  (n, e)   recipient's RSA public key (k denotes the length in octets
           of the RSA modulus n)
  M        message to be encrypted, an octet string of length mLen,
           where mLen <= k - 2hLen - 2
  L        optional label to be associated with the message; the
           default value for L, if L is not provided, is the empty
           string

  Output:
  C        ciphertext, an octet string of length k

  Errors:  "message too long"; "label too long"

  Assumption: RSA public key (n, e) is valid

  Steps:

  1. Length checking:

     a. If the length of L is greater than the input limitation for the
        hash function (2^61 - 1 octets for SHA-1), output "label too
        long" and stop.

     b. If mLen > k - 2hLen - 2, output "message too long" and stop.




Jonsson & Kaliski            Informational                     [Page 19]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  2. EME-OAEP encoding (see Figure 1 below):

     a. If the label L is not provided, let L be the empty string. Let
        lHash = Hash(L), an octet string of length hLen (see the note
        below).

     b. Generate an octet string PS consisting of k - mLen - 2hLen - 2
        zero octets.  The length of PS may be zero.

     c. Concatenate lHash, PS, a single octet with hexadecimal value
        0x01, and the message M to form a data block DB of length k -
        hLen - 1 octets as

           DB = lHash || PS || 0x01 || M.

     d. Generate a random octet string seed of length hLen.

     e. Let dbMask = MGF(seed, k - hLen - 1).

     f. Let maskedDB = DB \xor dbMask.

     g. Let seedMask = MGF(maskedDB, hLen).

     h. Let maskedSeed = seed \xor seedMask.

     i. Concatenate a single octet with hexadecimal value 0x00,
        maskedSeed, and maskedDB to form an encoded message EM of
        length k octets as

           EM = 0x00 || maskedSeed || maskedDB.

  3. RSA encryption:

     a. Convert the encoded message EM to an integer message
        representative m (see Section 4.2):

           m = OS2IP (EM).

     b. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA
        public key (n, e) and the message representative m to produce
        an integer ciphertext representative c:

           c = RSAEP ((n, e), m).

     c. Convert the ciphertext representative c to a ciphertext C of
        length k octets (see Section 4.1):

           C = I2OSP (c, k).



Jonsson & Kaliski            Informational                     [Page 20]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  4. Output the ciphertext C.

  Note.  If L is the empty string, the corresponding hash value lHash
  has the following hexadecimal representation for different choices of
  Hash:

  SHA-1:   (0x)da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709
  SHA-256: (0x)e3b0c442 98fc1c14 9afbf4c8 996fb924 27ae41e4 649b934c
               a495991b 7852b855
  SHA-384: (0x)38b060a7 51ac9638 4cd9327e b1b1e36a 21fdb711 14be0743
               4c0cc7bf 63f6e1da 274edebf e76f65fb d51ad2f1 4898b95b
  SHA-512: (0x)cf83e135 7eefb8bd f1542850 d66d8007 d620e405 0b5715dc
               83f4a921 d36ce9ce 47d0d13c 5d85f2b0 ff8318d2 877eec2f
               63b931bd 47417a81 a538327a f927da3e

  __________________________________________________________________

                            +----------+---------+-------+
                       DB = |  lHash   |    PS   |   M   |
                            +----------+---------+-------+
                                           |
                 +----------+              V
                 |   seed   |--> MGF ---> xor
                 +----------+              |
                       |                   |
              +--+     V                   |
              |00|    xor <----- MGF <-----|
              +--+     |                   |
                |      |                   |
                V      V                   V
              +--+----------+----------------------------+
        EM =  |00|maskedSeed|          maskedDB          |
              +--+----------+----------------------------+
  __________________________________________________________________

  Figure 1: EME-OAEP encoding operation.  lHash is the hash of the
  optional label L.  Decoding operation follows reverse steps to
  recover M and verify lHash and PS.

7.1.2 Decryption operation

  RSAES-OAEP-DECRYPT (K, C, L)

  Options:
  Hash     hash function (hLen denotes the length in octets of the hash
           function output)
  MGF      mask generation function




Jonsson & Kaliski            Informational                     [Page 21]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Input:
  K        recipient's RSA private key (k denotes the length in octets
           of the RSA modulus n)
  C        ciphertext to be decrypted, an octet string of length k,
           where k = 2hLen + 2
  L        optional label whose association with the message is to be
           verified; the default value for L, if L is not provided, is
           the empty string

  Output:
  M        message, an octet string of length mLen, where mLen <= k -
           2hLen - 2

  Error: "decryption error"

  Steps:

  1. Length checking:

     a. If the length of L is greater than the input limitation for the
        hash function (2^61 - 1 octets for SHA-1), output "decryption
        error" and stop.

     b. If the length of the ciphertext C is not k octets, output
        "decryption error" and stop.

     c. If k < 2hLen + 2, output "decryption error" and stop.

  2.    RSA decryption:

     a. Convert the ciphertext C to an integer ciphertext
        representative c (see Section 4.2):

           c = OS2IP (C).

        b. Apply the RSADP decryption primitive (Section 5.1.2) to the
        RSA private key K and the ciphertext representative c to
        produce an integer message representative m:

           m = RSADP (K, c).

        If RSADP outputs "ciphertext representative out of range"
        (meaning that c >= n), output "decryption error" and stop.

     c. Convert the message representative m to an encoded message EM
        of length k octets (see Section 4.1):

           EM = I2OSP (m, k).



Jonsson & Kaliski            Informational                     [Page 22]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  3. EME-OAEP decoding:

     a. If the label L is not provided, let L be the empty string. Let
        lHash = Hash(L), an octet string of length hLen (see the note
        in Section 7.1.1).

     b. Separate the encoded message EM into a single octet Y, an octet
        string maskedSeed of length hLen, and an octet string maskedDB
        of length k - hLen - 1 as

           EM = Y || maskedSeed || maskedDB.

     c. Let seedMask = MGF(maskedDB, hLen).

     d. Let seed = maskedSeed \xor seedMask.

     e. Let dbMask = MGF(seed, k - hLen - 1).

     f. Let DB = maskedDB \xor dbMask.

     g. Separate DB into an octet string lHash' of length hLen, a
        (possibly empty) padding string PS consisting of octets with
        hexadecimal value 0x00, and a message M as

           DB = lHash' || PS || 0x01 || M.

        If there is no octet with hexadecimal value 0x01 to separate PS
        from M, if lHash does not equal lHash', or if Y is nonzero,
        output "decryption error" and stop.  (See the note below.)

  4. Output the message M.

  Note.  Care must be taken to ensure that an opponent cannot
  distinguish the different error conditions in Step 3.g, whether by
  error message or timing, or, more generally, learn partial
  information about the encoded message EM.  Otherwise an opponent may
  be able to obtain useful information about the decryption of the
  ciphertext C, leading to a chosen-ciphertext attack such as the one
  observed by Manger [36].

7.2 RSAES-PKCS1-v1_5

  RSAES-PKCS1-v1_5 combines the RSAEP and RSADP primitives (Sections
  5.1.1 and 5.1.2) with the EME-PKCS1-v1_5 encoding method (step 1 in
  Section 7.2.1 and step 3 in Section 7.2.2).  It is mathematically
  equivalent to the encryption scheme in PKCS #1 v1.5.  RSAES-PKCS1-
  v1_5 can operate on messages of length up to k - 11 octets (k is the
  octet length of the RSA modulus), although care should be taken to



Jonsson & Kaliski            Informational                     [Page 23]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  avoid certain attacks on low-exponent RSA due to Coppersmith,
  Franklin, Patarin, and Reiter when long messages are encrypted (see
  the third bullet in the notes below and [10]; [14] contains an
  improved attack).  As a general rule, the use of this scheme for
  encrypting an arbitrary message, as opposed to a randomly generated
  key, is not recommended.

  It is possible to generate valid RSAES-PKCS1-v1_5 ciphertexts without
  knowing the corresponding plaintexts, with a reasonable probability
  of success.  This ability can be exploited in a chosen- ciphertext
  attack as shown in [6].  Therefore, if RSAES-PKCS1-v1_5 is to be
  used, certain easily implemented countermeasures should be taken to
  thwart the attack found in [6].  Typical examples include the
  addition of structure to the data to be encoded, rigorous checking of
  PKCS #1 v1.5 conformance (and other redundancy) in decrypted
  messages, and the consolidation of error messages in a client-server
  protocol based on PKCS #1 v1.5.  These can all be effective
  countermeasures and do not involve changes to a PKCS #1 v1.5-based
  protocol.  See [7] for a further discussion of these and other
  countermeasures.  It has recently been shown that the security of the
  SSL/TLS handshake protocol [17], which uses RSAES-PKCS1-v1_5 and
  certain countermeasures, can be related to a variant of the RSA
  problem; see [32] for discussion.

  Note.  The following passages describe some security recommendations
  pertaining to the use of RSAES-PKCS1-v1_5.  Recommendations from
  version 1.5 of this document are included as well as new
  recommendations motivated by cryptanalytic advances made in the
  intervening years.

   * It is recommended that the pseudorandom octets in step 2 in
     Section 7.2.1 be generated independently for each encryption
     process, especially if the same data is input to more than one
     encryption process.  Haastad's results [24] are one motivation for
     this recommendation.

   * The padding string PS in step 2 in Section 7.2.1 is at least eight
     octets long, which is a security condition for public-key
     operations that makes it difficult for an attacker to recover data
     by trying all possible encryption blocks.

   * The pseudorandom octets can also help thwart an attack due to
     Coppersmith et al. [10] (see [14] for an improvement of the
     attack) when the size of the message to be encrypted is kept
     small.  The attack works on low-exponent RSA when similar messages
     are encrypted with the same RSA public key.  More specifically, in
     one flavor of the attack, when two inputs to RSAEP agree on a
     large fraction of bits (8/9) and low-exponent RSA (e = 3) is used



Jonsson & Kaliski            Informational                     [Page 24]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     to encrypt both of them, it may be possible to recover both inputs
     with the attack.  Another flavor of the attack is successful in
     decrypting a single ciphertext when a large fraction (2/3) of the
     input to RSAEP is already known.  For typical applications, the
     message to be encrypted is short (e.g., a 128-bit symmetric key)
     so not enough information will be known or common between two
     messages to enable the attack.  However, if a long message is
     encrypted, or if part of a message is known, then the attack may
     be a concern.  In any case, the RSAES-OAEP scheme overcomes the
     attack.

7.2.1 Encryption operation

  RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)

  Input:
  (n, e)   recipient's RSA public key (k denotes the length in octets
           of the modulus n)
  M        message to be encrypted, an octet string of length mLen,
           where mLen <= k - 11

  Output:
  C        ciphertext, an octet string of length k

  Error: "message too long"

  Steps:

  1. Length checking: If mLen > k - 11, output "message too long" and
     stop.

  2. EME-PKCS1-v1_5 encoding:

     a. Generate an octet string PS of length k - mLen - 3 consisting
        of pseudo-randomly generated nonzero octets.  The length of PS
        will be at least eight octets.

     b. Concatenate PS, the message M, and other padding to form an
        encoded message EM of length k octets as

           EM = 0x00 || 0x02 || PS || 0x00 || M.










Jonsson & Kaliski            Informational                     [Page 25]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  3. RSA encryption:

     a. Convert the encoded message EM to an integer message
        representative m (see Section 4.2):

           m = OS2IP (EM).

     b. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA
        public key (n, e) and the message representative m to produce
        an integer ciphertext representative c:

           c = RSAEP ((n, e), m).

     c. Convert the ciphertext representative c to a ciphertext C of
        length k octets (see Section 4.1):

              C = I2OSP (c, k).

  4. Output the ciphertext C.

7.2.2 Decryption operation

  RSAES-PKCS1-V1_5-DECRYPT (K, C)

  Input:
  K        recipient's RSA private key
  C        ciphertext to be decrypted, an octet string of length k,
           where k is the length in octets of the RSA modulus n

  Output:
  M        message, an octet string of length at most k - 11

  Error: "decryption error"

  Steps:

  1. Length checking: If the length of the ciphertext C is not k octets
     (or if k < 11), output "decryption error" and stop.

  2. RSA decryption:

     a. Convert the ciphertext C to an integer ciphertext
        representative c (see Section 4.2):

           c = OS2IP (C).






Jonsson & Kaliski            Informational                     [Page 26]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     b. Apply the RSADP decryption primitive (Section 5.1.2) to the RSA
        private key (n, d) and the ciphertext representative c to
        produce an integer message representative m:

           m = RSADP ((n, d), c).

        If RSADP outputs "ciphertext representative out of range"
        (meaning that c >= n), output "decryption error" and stop.

     c. Convert the message representative m to an encoded message EM
        of length k octets (see Section 4.1):

           EM = I2OSP (m, k).

  3. EME-PKCS1-v1_5 decoding: Separate the encoded message EM into an
     octet string PS consisting of nonzero octets and a message M as

        EM = 0x00 || 0x02 || PS || 0x00 || M.

     If the first octet of EM does not have hexadecimal value 0x00, if
     the second octet of EM does not have hexadecimal value 0x02, if
     there is no octet with hexadecimal value 0x00 to separate PS from
     M, or if the length of PS is less than 8 octets, output
     "decryption error" and stop.  (See the note below.)

  4. Output M.

  Note.  Care shall be taken to ensure that an opponent cannot
  distinguish the different error conditions in Step 3, whether by
  error message or timing.  Otherwise an opponent may be able to obtain
  useful information about the decryption of the ciphertext C, leading
  to a strengthened version of Bleichenbacher's attack [6]; compare to
  Manger's attack [36].

8. Signature schemes with appendix

  For the purposes of this document, a signature scheme with appendix
  consists of a signature generation operation and a signature
  verification operation, where the signature generation operation
  produces a signature from a message with a signer's RSA private key,
  and the signature verification operation verifies the signature on
  the message with the signer's corresponding RSA public key.  To
  verify a signature constructed with this type of scheme it is
  necessary to have the message itself.  In this way, signature schemes
  with appendix are distinguished from signature schemes with message
  recovery, which are not supported in this document.





Jonsson & Kaliski            Informational                     [Page 27]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  A signature scheme with appendix can be employed in a variety of
  applications.  For instance, the signature schemes with appendix
  defined here would be suitable signature algorithms for X.509
  certificates [28].  Related signature schemes could be employed in
  PKCS #7 [45], although for technical reasons the current version of
  PKCS #7 separates a hash function from a signature scheme, which is
  different than what is done here; see the note in Appendix A.2.3 for
  more discussion.

  Two signature schemes with appendix are specified in this document:
  RSASSA-PSS and RSASSA-PKCS1-v1_5.  Although no attacks are known
  against RSASSA-PKCS1-v1_5, in the interest of increased robustness,
  RSASSA-PSS is recommended for eventual adoption in new applications.
  RSASSA-PKCS1-v1_5 is included for compatibility with existing
  applications, and while still appropriate for new applications, a
  gradual transition to RSASSA-PSS is encouraged.

  The signature schemes with appendix given here follow a general model
  similar to that employed in IEEE Std 1363-2000 [26], combining
  signature and verification primitives with an encoding method for
  signatures.  The signature generation operations apply a message
  encoding operation to a message to produce an encoded message, which
  is then converted to an integer message representative.  A signature
  primitive is applied to the message representative to produce the
  signature.  Reversing this, the signature verification operations
  apply a signature verification primitive to the signature to recover
  a message representative, which is then converted to an octet string
  encoded message.  A verification operation is applied to the message
  and the encoded message to determine whether they are consistent.

  If the encoding method is deterministic (e.g., EMSA-PKCS1-v1_5), the
  verification operation may apply the message encoding operation to
  the message and compare the resulting encoded message to the
  previously derived encoded message.  If there is a match, the
  signature is considered valid.  If the method is randomized (e.g.,
  EMSA-PSS), the verification operation is typically more complicated.
  For example, the verification operation in EMSA-PSS extracts the
  random salt and a hash output from the encoded message and checks
  whether the hash output, the salt, and the message are consistent;
  the hash output is a deterministic function in terms of the message
  and the salt.

  For both signature schemes with appendix defined in this document,
  the signature generation and signature verification operations are
  readily implemented as "single-pass" operations if the signature is
  placed after the message.  See PKCS #7 [45] for an example format in
  the case of RSASSA-PKCS1-v1_5.




Jonsson & Kaliski            Informational                     [Page 28]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


8.1 RSASSA-PSS

  RSASSA-PSS combines the RSASP1 and RSAVP1 primitives with the EMSA-
  PSS encoding method.  It is compatible with the IFSSA scheme as
  amended in the IEEE P1363a draft [27], where the signature and
  verification primitives are IFSP-RSA1 and IFVP-RSA1 as defined in
  IEEE Std 1363-2000 [26] and the message encoding method is EMSA4.
  EMSA4 is slightly more general than EMSA-PSS as it acts on bit
  strings rather than on octet strings.  EMSA-PSS is equivalent to
  EMSA4 restricted to the case that the operands as well as the hash
  and salt values are octet strings.

  The length of messages on which RSASSA-PSS can operate is either
  unrestricted or constrained by a very large number, depending on the
  hash function underlying the EMSA-PSS encoding method.

  Assuming that computing e-th roots modulo n is infeasible and the
  hash and mask generation functions in EMSA-PSS have appropriate
  properties, RSASSA-PSS provides secure signatures.  This assurance is
  provable in the sense that the difficulty of forging signatures can
  be directly related to the difficulty of inverting the RSA function,
  provided that the hash and mask generation functions are viewed as
  black boxes or random oracles.  The bounds in the security proof are
  essentially "tight", meaning that the success probability and running
  time for the best forger against RSASSA-PSS are very close to the
  corresponding parameters for the best RSA inversion algorithm; see
  [4][13][31] for further discussion.

  In contrast to the RSASSA-PKCS1-v1_5 signature scheme, a hash
  function identifier is not embedded in the EMSA-PSS encoded message,
  so in theory it is possible for an adversary to substitute a
  different (and potentially weaker) hash function than the one
  selected by the signer.  Therefore, it is recommended that the EMSA-
  PSS mask generation function be based on the same hash function.  In
  this manner the entire encoded message will be dependent on the hash
  function and it will be difficult for an opponent to substitute a
  different hash function than the one intended by the signer.  This
  matching of hash functions is only for the purpose of preventing hash
  function substitution, and is not necessary if hash function
  substitution is addressed by other means (e.g., the verifier accepts
  only a designated hash function).  See [34] for further discussion of
  these points.  The provable security of RSASSA-PSS does not rely on
  the hash function in the mask generation function being the same as
  the hash function applied to the message.

  RSASSA-PSS is different from other RSA-based signature schemes in
  that it is probabilistic rather than deterministic, incorporating a
  randomly generated salt value.  The salt value enhances the security



Jonsson & Kaliski            Informational                     [Page 29]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  of the scheme by affording a "tighter" security proof than
  deterministic alternatives such as Full Domain Hashing (FDH); see [4]
  for discussion.  However, the randomness is not critical to security.
  In situations where random generation is not possible, a fixed value
  or a sequence number could be employed instead, with the resulting
  provable security similar to that of FDH [12].

8.1.1 Signature generation operation

  RSASSA-PSS-SIGN (K, M)

  Input:
  K        signer's RSA private key
  M        message to be signed, an octet string

  Output:
  S        signature, an octet string of length k, where k is the
           length in octets of the RSA modulus n

  Errors: "message too long;" "encoding error"

  Steps:

  1. EMSA-PSS encoding: Apply the EMSA-PSS encoding operation (Section
     9.1.1) to the message M to produce an encoded message EM of length
     \ceil ((modBits - 1)/8) octets such that the bit length of the
     integer OS2IP (EM) (see Section 4.2) is at most modBits - 1, where
     modBits is the length in bits of the RSA modulus n:

        EM = EMSA-PSS-ENCODE (M, modBits - 1).

     Note that the octet length of EM will be one less than k if
     modBits - 1 is divisible by 8 and equal to k otherwise.  If the
     encoding operation outputs "message too long," output "message too
     long" and stop.  If the encoding operation outputs "encoding
     error," output "encoding error" and stop.

  2. RSA signature:

     a. Convert the encoded message EM to an integer message
        representative m (see Section 4.2):

           m = OS2IP (EM).








Jonsson & Kaliski            Informational                     [Page 30]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA
        private key K and the message representative m to produce an
        integer signature representative s:

           s = RSASP1 (K, m).

     c. Convert the signature representative s to a signature S of
        length k octets (see Section 4.1):

           S = I2OSP (s, k).

  3. Output the signature S.

8.1.2 Signature verification operation

  RSASSA-PSS-VERIFY ((n, e), M, S)

  Input:
  (n, e)   signer's RSA public key
  M        message whose signature is to be verified, an octet string
  S        signature to be verified, an octet string of length k, where
           k is the length in octets of the RSA modulus n

  Output:
  "valid signature" or "invalid signature"

  Steps:

  1. Length checking: If the length of the signature S is not k octets,
     output "invalid signature" and stop.

  2. RSA verification:

     a. Convert the signature S to an integer signature representative
        s (see Section 4.2):

           s = OS2IP (S).

     b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the
        RSA public key (n, e) and the signature representative s to
        produce an integer message representative m:

           m = RSAVP1 ((n, e), s).

        If RSAVP1 output "signature representative out of range,"
        output "invalid signature" and stop.





Jonsson & Kaliski            Informational                     [Page 31]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     c. Convert the message representative m to an encoded message EM
        of length emLen = \ceil ((modBits - 1)/8) octets, where modBits
        is the length in bits of the RSA modulus n (see Section 4.1):

           EM = I2OSP (m, emLen).

        Note that emLen will be one less than k if modBits - 1 is
        divisible by 8 and equal to k otherwise.  If I2OSP outputs
        "integer too large," output "invalid signature" and stop.

  3. EMSA-PSS verification: Apply the EMSA-PSS verification operation
     (Section 9.1.2) to the message M and the encoded message EM to
     determine whether they are consistent:

        Result = EMSA-PSS-VERIFY (M, EM, modBits - 1).

  4. If Result = "consistent," output "valid signature." Otherwise,
     output "invalid signature."

8.2. RSASSA-PKCS1-v1_5

  RSASSA-PKCS1-v1_5 combines the RSASP1 and RSAVP1 primitives with the
  EMSA-PKCS1-v1_5 encoding method.  It is compatible with the IFSSA
  scheme defined in IEEE Std 1363-2000 [26], where the signature and
  verification primitives are IFSP-RSA1 and IFVP-RSA1 and the message
  encoding method is EMSA-PKCS1-v1_5 (which is not defined in IEEE Std
  1363-2000, but is in the IEEE P1363a draft [27]).

  The length of messages on which RSASSA-PKCS1-v1_5 can operate is
  either unrestricted or constrained by a very large number, depending
  on the hash function underlying the EMSA-PKCS1-v1_5 method.

  Assuming that computing e-th roots modulo n is infeasible and the
  hash function in EMSA-PKCS1-v1_5 has appropriate properties, RSASSA-
  PKCS1-v1_5 is conjectured to provide secure signatures.  More
  precisely, forging signatures without knowing the RSA private key is
  conjectured to be computationally infeasible.  Also, in the encoding
  method EMSA-PKCS1-v1_5, a hash function identifier is embedded in the
  encoding.  Because of this feature, an adversary trying to find a
  message with the same signature as a previously signed message must
  find collisions of the particular hash function being used; attacking
  a different hash function than the one selected by the signer is not
  useful to the adversary.  See [34] for further discussion.

  Note.  As noted in PKCS #1 v1.5, the EMSA-PKCS1-v1_5 encoding method
  has the property that the encoded message, converted to an integer
  message representative, is guaranteed to be large and at least
  somewhat "random".  This prevents attacks of the kind proposed by



Jonsson & Kaliski            Informational                     [Page 32]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Desmedt and Odlyzko [16] where multiplicative relationships between
  message representatives are developed by factoring the message
  representatives into a set of small values (e.g., a set of small
  primes).  Coron, Naccache, and Stern [15] showed that a stronger form
  of this type of attack could be quite effective against some
  instances of the ISO/IEC 9796-2 signature scheme.  They also analyzed
  the complexity of this type of attack against the EMSA-PKCS1-v1_5
  encoding method and concluded that an attack would be impractical,
  requiring more operations than a collision search on the underlying
  hash function (i.e., more than 2^80 operations).  Coppersmith,
  Halevi, and Jutla [11] subsequently extended Coron et al.'s attack to
  break the ISO/IEC 9796-1 signature scheme with message recovery.  The
  various attacks illustrate the importance of carefully constructing
  the input to the RSA signature primitive, particularly in a signature
  scheme with message recovery.  Accordingly, the EMSA-PKCS-v1_5
  encoding method explicitly includes a hash operation and is not
  intended for signature schemes with message recovery.  Moreover,
  while no attack is known against the EMSA-PKCS-v1_5 encoding method,
  a gradual transition to EMSA-PSS is recommended as a precaution
  against future developments.

8.2.1 Signature generation operation

  RSASSA-PKCS1-V1_5-SIGN (K, M)

  Input:
  K        signer's RSA private key
  M        message to be signed, an octet string

  Output:
  S        signature, an octet string of length k, where k is the
           length in octets of the RSA modulus n

  Errors: "message too long"; "RSA modulus too short"

  Steps:

  1. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding
     operation (Section 9.2) to the message M to produce an encoded
     message EM of length k octets:

        EM = EMSA-PKCS1-V1_5-ENCODE (M, k).

     If the encoding operation outputs "message too long," output
     "message too long" and stop.  If the encoding operation outputs
     "intended encoded message length too short," output "RSA modulus
     too short" and stop.




Jonsson & Kaliski            Informational                     [Page 33]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  2. RSA signature:

     a. Convert the encoded message EM to an integer message
        representative m (see Section 4.2):

           m = OS2IP (EM).

     b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA
        private key K and the message representative m to produce an
        integer signature representative s:

           s = RSASP1 (K, m).

     c. Convert the signature representative s to a signature S of
        length k octets (see Section 4.1):

           S = I2OSP (s, k).

  3. Output the signature S.

8.2.2 Signature verification operation

  RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

  Input:
  (n, e)   signer's RSA public key
  M        message whose signature is to be verified, an octet string
  S        signature to be verified, an octet string of length k, where
           k is the length in octets of the RSA modulus n

  Output:
  "valid signature" or "invalid signature"

  Errors: "message too long"; "RSA modulus too short"

  Steps:

  1. Length checking: If the length of the signature S is not k octets,
     output "invalid signature" and stop.

  2. RSA verification:

     a. Convert the signature S to an integer signature representative
        s (see Section 4.2):

           s = OS2IP (S).





Jonsson & Kaliski            Informational                     [Page 34]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the
        RSA public key (n, e) and the signature representative s to
        produce an integer message representative m:

           m = RSAVP1 ((n, e), s).

        If RSAVP1 outputs "signature representative out of range,"
        output "invalid signature" and stop.

     c. Convert the message representative m to an encoded message EM
        of length k octets (see Section 4.1):

           EM' = I2OSP (m, k).

        If I2OSP outputs "integer too large," output "invalid
        signature" and stop.

  3. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding
     operation (Section 9.2) to the message M to produce a second
     encoded message EM' of length k octets:

           EM' = EMSA-PKCS1-V1_5-ENCODE (M, k).

     If the encoding operation outputs "message too long," output
     "message too long" and stop.  If the encoding operation outputs
     "intended encoded message length too short," output "RSA modulus
     too short" and stop.

  4. Compare the encoded message EM and the second encoded message EM'.
     If they are the same, output "valid signature"; otherwise, output
     "invalid signature."

  Note.  Another way to implement the signature verification operation
  is to apply a "decoding" operation (not specified in this document)
  to the encoded message to recover the underlying hash value, and then
  to compare it to a newly computed hash value.  This has the advantage
  that it requires less intermediate storage (two hash values rather
  than two encoded messages), but the disadvantage that it requires
  additional code.

9. Encoding methods for signatures with appendix

  Encoding methods consist of operations that map between octet string
  messages and octet string encoded messages, which are converted to
  and from integer message representatives in the schemes.  The integer
  message representatives are processed via the primitives.  The
  encoding methods thus provide the connection between the schemes,
  which process messages, and the primitives.



Jonsson & Kaliski            Informational                     [Page 35]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  An encoding method for signatures with appendix, for the purposes of
  this document, consists of an encoding operation and optionally a
  verification operation.  An encoding operation maps a message M to an
  encoded message EM of a specified length.  A verification operation
  determines whether a message M and an encoded message EM are
  consistent, i.e., whether the encoded message EM is a valid encoding
  of the message M.

  The encoding operation may introduce some randomness, so that
  different applications of the encoding operation to the same message
  will produce different encoded messages, which has benefits for
  provable security.  For such an encoding method, both an encoding and
  a verification operation are needed unless the verifier can reproduce
  the randomness (e.g., by obtaining the salt value from the signer).
  For a deterministic encoding method only an encoding operation is
  needed.

  Two encoding methods for signatures with appendix are employed in the
  signature schemes and are specified here: EMSA-PSS and EMSA-PKCS1-
  v1_5.

9.1 EMSA-PSS

  This encoding method is parameterized by the choice of hash function,
  mask generation function, and salt length.  These options should be
  fixed for a given RSA key, except that the salt length can be
  variable (see [31] for discussion).  Suggested hash and mask
  generation functions are given in Appendix B.  The encoding method is
  based on Bellare and Rogaway's Probabilistic Signature Scheme (PSS)
  [4][5].  It is randomized and has an encoding operation and a
  verification operation.




















Jonsson & Kaliski            Informational                     [Page 36]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Figure 2 illustrates the encoding operation.

  __________________________________________________________________

                                 +-----------+
                                 |     M     |
                                 +-----------+
                                       |
                                       V
                                     Hash
                                       |
                                       V
                         +--------+----------+----------+
                    M' = |Padding1|  mHash   |   salt   |
                         +--------+----------+----------+
                                        |
              +--------+----------+     V
        DB =  |Padding2|maskedseed|   Hash
              +--------+----------+     |
                        |               |
                        V               |    +--+
                       xor <--- MGF <---|    |bc|
                        |               |    +--+
                        |               |      |
                        V               V      V
              +-------------------+----------+--+
        EM =  |    maskedDB       |maskedseed|bc|
              +-------------------+----------+--+
  __________________________________________________________________

  Figure 2: EMSA-PSS encoding operation.  Verification operation
  follows reverse steps to recover salt, then forward steps to
  recompute and compare H.

  Notes.

  1. The encoding method defined here differs from the one in Bellare
     and Rogaway's submission to IEEE P1363a [5] in three respects:

     *  It applies a hash function rather than a mask generation
        function to the message.  Even though the mask generation
        function is based on a hash function, it seems more natural to
        apply a hash function directly.

     *  The value that is hashed together with the salt value is the
        string (0x)00 00 00 00 00 00 00 00 || mHash rather than the
        message M itself.  Here, mHash is the hash of M.  Note that the




Jonsson & Kaliski            Informational                     [Page 37]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


        hash function is the same in both steps.  See Note 3 below for
        further discussion.  (Also, the name "salt" is used instead of
        "seed", as it is more reflective of the value's role.)

     *  The encoded message in EMSA-PSS has nine fixed bits; the first
        bit is 0 and the last eight bits form a "trailer field", the
        octet 0xbc.  In the original scheme, only the first bit is
        fixed.  The rationale for the trailer field is for
        compatibility with the Rabin-Williams IFSP-RW signature
        primitive in IEEE Std 1363-2000 [26] and the corresponding
        primitive in the draft ISO/IEC 9796-2 [29].

  2. Assuming that the mask generation function is based on a hash
     function, it is recommended that the hash function be the same as
     the one that is applied to the message; see Section 8.1 for
     further discussion.

  3. Without compromising the security proof for RSASSA-PSS, one may
     perform steps 1 and 2 of EMSA-PSS-ENCODE and EMSA-PSS-VERIFY (the
     application of the hash function to the message) outside the
     module that computes the rest of the signature operation, so that
     mHash rather than the message M itself is input to the module.  In
     other words, the security proof for RSASSA-PSS still holds even if
     an opponent can control the value of mHash.  This is convenient if
     the module has limited I/O bandwidth, e.g., a smart card.  Note
     that previous versions of PSS [4][5] did not have this property.
     Of course, it may be desirable for other security reasons to have
     the module process the full message.  For instance, the module may
     need to "see" what it is signing if it does not trust the
     component that computes the hash value.

  4. Typical salt lengths in octets are hLen (the length of the output
     of the hash function Hash) and 0.  In both cases the security of
     RSASSA-PSS can be closely related to the hardness of inverting
     RSAVP1.  Bellare and Rogaway [4] give a tight lower bound for the
     security of the original RSA-PSS scheme, which corresponds roughly
     to the former case, while Coron [12] gives a lower bound for the
     related Full Domain Hashing scheme, which corresponds roughly to
     the latter case.  In [13] Coron provides a general treatment with
     various salt lengths ranging from 0 to hLen; see [27] for
     discussion.  See also [31], which adapts the security proofs in
     [4][13] to address the differences between the original and the
     present version of RSA-PSS as listed in Note 1 above.

  5. As noted in IEEE P1363a [27], the use of randomization in
     signature schemes - such as the salt value in EMSA-PSS - may
     provide a "covert channel" for transmitting information other than
     the message being signed.  For more on covert channels, see [50].



Jonsson & Kaliski            Informational                     [Page 38]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


9.1.1 Encoding operation

  EMSA-PSS-ENCODE (M, emBits)

  Options:

  Hash     hash function (hLen denotes the length in octets of the hash
           function output)
  MGF      mask generation function
  sLen     intended length in octets of the salt

  Input:
  M        message to be encoded, an octet string
  emBits   maximal bit length of the integer OS2IP (EM) (see Section
           4.2), at least 8hLen + 8sLen + 9

  Output:
  EM       encoded message, an octet string of length emLen = \ceil
           (emBits/8)

  Errors:  "encoding error"; "message too long"

  Steps:

  1.  If the length of M is greater than the input limitation for the
      hash function (2^61 - 1 octets for SHA-1), output "message too
      long" and stop.

  2.  Let mHash = Hash(M), an octet string of length hLen.

  3.  If emLen < hLen + sLen + 2, output "encoding error" and stop.

  4.  Generate a random octet string salt of length sLen; if sLen = 0,
      then salt is the empty string.

  5.  Let
        M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;

      M' is an octet string of length 8 + hLen + sLen with eight
      initial zero octets.

  6.  Let H = Hash(M'), an octet string of length hLen.

  7.  Generate an octet string PS consisting of emLen - sLen - hLen - 2
      zero octets.  The length of PS may be 0.

  8.  Let DB = PS || 0x01 || salt; DB is an octet string of length
      emLen - hLen - 1.



Jonsson & Kaliski            Informational                     [Page 39]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  9.  Let dbMask = MGF(H, emLen - hLen - 1).

  10. Let maskedDB = DB \xor dbMask.

  11. Set the leftmost 8emLen - emBits bits of the leftmost octet in
      maskedDB to zero.

  12. Let EM = maskedDB || H || 0xbc.

  13. Output EM.

9.1.2 Verification operation

  EMSA-PSS-VERIFY (M, EM, emBits)

  Options:
  Hash     hash function (hLen denotes the length in octets of the hash
           function output)
  MGF      mask generation function
  sLen     intended length in octets of the salt

  Input:
  M        message to be verified, an octet string
  EM       encoded message, an octet string of length emLen = \ceil
           (emBits/8)
  emBits   maximal bit length of the integer OS2IP (EM) (see Section
           4.2), at least 8hLen + 8sLen + 9

  Output:
  "consistent" or "inconsistent"

  Steps:

  1.  If the length of M is greater than the input limitation for the
      hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
      and stop.

  2.  Let mHash = Hash(M), an octet string of length hLen.

  3.  If emLen < hLen + sLen + 2, output "inconsistent" and stop.

  4.  If the rightmost octet of EM does not have hexadecimal value
      0xbc, output "inconsistent" and stop.

  5.  Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
      let H be the next hLen octets.





Jonsson & Kaliski            Informational                     [Page 40]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  6.  If the leftmost 8emLen - emBits bits of the leftmost octet in
      maskedDB are not all equal to zero, output "inconsistent" and
      stop.

  7.  Let dbMask = MGF(H, emLen - hLen - 1).

  8.  Let DB = maskedDB \xor dbMask.

  9.  Set the leftmost 8emLen - emBits bits of the leftmost octet in DB
      to zero.

  10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
      or if the octet at position emLen - hLen - sLen - 1 (the leftmost
      position is "position 1") does not have hexadecimal value 0x01,
      output "inconsistent" and stop.

  11.  Let salt be the last sLen octets of DB.

  12.  Let
           M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;

      M' is an octet string of length 8 + hLen + sLen with eight
      initial zero octets.

  13. Let H' = Hash(M'), an octet string of length hLen.

  14. If H = H', output "consistent." Otherwise, output "inconsistent."

9.2 EMSA-PKCS1-v1_5

  This encoding method is deterministic and only has an encoding
  operation.

  EMSA-PKCS1-v1_5-ENCODE (M, emLen)

  Option:
  Hash     hash function (hLen denotes the length in octets of the hash
           function output)

  Input:
  M        message to be encoded
  emLen    intended length in octets of the encoded message, at least
           tLen + 11, where tLen is the octet length of the DER
           encoding T of a certain value computed during the encoding
           operation






Jonsson & Kaliski            Informational                     [Page 41]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Output:
  EM       encoded message, an octet string of length emLen

  Errors:
  "message too long"; "intended encoded message length too short"

  Steps:

  1. Apply the hash function to the message M to produce a hash value
     H:

        H = Hash(M).

     If the hash function outputs "message too long," output "message
     too long" and stop.

  2. Encode the algorithm ID for the hash function and the hash value
     into an ASN.1 value of type DigestInfo (see Appendix A.2.4) with
     the Distinguished Encoding Rules (DER), where the type DigestInfo
     has the syntax

     DigestInfo ::= SEQUENCE {
         digestAlgorithm AlgorithmIdentifier,
         digest OCTET STRING
     }

     The first field identifies the hash function and the second
     contains the hash value.  Let T be the DER encoding of the
     DigestInfo value (see the notes below) and let tLen be the length
     in octets of T.

  3. If emLen < tLen + 11, output "intended encoded message length too
     short" and stop.

  4. Generate an octet string PS consisting of emLen - tLen - 3 octets
     with hexadecimal value 0xff.  The length of PS will be at least 8
     octets.

  5. Concatenate PS, the DER encoding T, and other padding to form the
     encoded message EM as

        EM = 0x00 || 0x01 || PS || 0x00 || T.

  6. Output EM.







Jonsson & Kaliski            Informational                     [Page 42]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Notes.

  1. For the six hash functions mentioned in Appendix B.1, the DER
     encoding T of the DigestInfo value is equal to the following:

     MD2:     (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 02 05 00 04
                  10 || H.
     MD5:     (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04
                  10 || H.
     SHA-1:   (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H.
     SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00
                  04 20 || H.
     SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00
                  04 30 || H.
     SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00
                     04 40 || H.

  2. In version 1.5 of this document, T was defined as the BER
     encoding, rather than the DER encoding, of the DigestInfo value.
     In particular, it is possible - at least in theory - that the
     verification operation defined in this document (as well as in
     version 2.0) rejects a signature that is valid with respect to the
     specification given in PKCS #1 v1.5.  This occurs if other rules
     than DER are applied to DigestInfo (e.g., an indefinite length
     encoding of the underlying SEQUENCE type).  While this is unlikely
     to be a concern in practice, a cautious implementer may choose to
     employ a verification operation based on a BER decoding operation
     as specified in PKCS #1 v1.5.  In this manner, compatibility with
     any valid implementation based on PKCS #1 v1.5 is obtained.  Such
     a verification operation should indicate whether the underlying
     BER encoding is a DER encoding and hence whether the signature is
     valid with respect to the specification given in this document.



















Jonsson & Kaliski            Informational                     [Page 43]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


Appendix A. ASN.1 syntax

A.1 RSA key representation

  This section defines ASN.1 object identifiers for RSA public and
  private keys, and defines the types RSAPublicKey and RSAPrivateKey.
  The intended application of these definitions includes X.509
  certificates, PKCS #8 [46], and PKCS #12 [47].

  The object identifier rsaEncryption identifies RSA public and private
  keys as defined in Appendices A.1.1 and A.1.2.  The parameters field
  associated with this OID in a value of type AlgorithmIdentifier shall
  have a value of type NULL.

  rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

  The definitions in this section have been extended to support multi-
  prime RSA, but are backward compatible with previous versions.

A.1.1 RSA public key syntax

  An RSA public key should be represented with the ASN.1 type
  RSAPublicKey:

     RSAPublicKey ::= SEQUENCE {
         modulus           INTEGER,  -- n
         publicExponent    INTEGER   -- e
     }

  The fields of type RSAPublicKey have the following meanings:

   * modulus is the RSA modulus n.

   * publicExponent is the RSA public exponent e.

















Jonsson & Kaliski            Informational                     [Page 44]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


A.1.2 RSA private key syntax

  An RSA private key should be represented with the ASN.1 type
  RSAPrivateKey:

     RSAPrivateKey ::= SEQUENCE {
         version           Version,
         modulus           INTEGER,  -- n
         publicExponent    INTEGER,  -- e
         privateExponent   INTEGER,  -- d
         prime1            INTEGER,  -- p
         prime2            INTEGER,  -- q
         exponent1         INTEGER,  -- d mod (p-1)
         exponent2         INTEGER,  -- d mod (q-1)
         coefficient       INTEGER,  -- (inverse of q) mod p
         otherPrimeInfos   OtherPrimeInfos OPTIONAL
     }

  The fields of type RSAPrivateKey have the following meanings:

   * version is the version number, for compatibility with future
     revisions of this document.  It shall be 0 for this version of the
     document, unless multi-prime is used, in which case it shall be 1.

           Version ::= INTEGER { two-prime(0), multi(1) }
              (CONSTRAINED BY
              {-- version must be multi if otherPrimeInfos present --})

   * modulus is the RSA modulus n.

   * publicExponent is the RSA public exponent e.

   * privateExponent is the RSA private exponent d.

   * prime1 is the prime factor p of n.

   * prime2 is the prime factor q of n.

   * exponent1 is d mod (p - 1).

   * exponent2 is d mod (q - 1).

   * coefficient is the CRT coefficient q^(-1) mod p.

   * otherPrimeInfos contains the information for the additional primes
     r_3, ..., r_u, in order.  It shall be omitted if version is 0 and
     shall contain at least one instance of OtherPrimeInfo if version
     is 1.



Jonsson & Kaliski            Informational                     [Page 45]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


        OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo

        OtherPrimeInfo ::= SEQUENCE {
            prime             INTEGER,  -- ri
            exponent          INTEGER,  -- di
            coefficient       INTEGER   -- ti
        }

  The fields of type OtherPrimeInfo have the following meanings:

   * prime is a prime factor r_i of n, where i >= 3.

   * exponent is d_i = d mod (r_i - 1).

   * coefficient is the CRT coefficient t_i = (r_1 * r_2 * ... * r_(i-
     1))^(-1) mod r_i.

  Note.  It is important to protect the RSA private key against both
  disclosure and modification.  Techniques for such protection are
  outside the scope of this document.  Methods for storing and
  distributing private keys and other cryptographic data are described
  in PKCS #12 and #15.

A.2 Scheme identification

  This section defines object identifiers for the encryption and
  signature schemes.  The schemes compatible with PKCS #1 v1.5 have the
  same definitions as in PKCS #1 v1.5.  The intended application of
  these definitions includes X.509 certificates and PKCS #7.

  Here are type identifier definitions for the PKCS #1 OIDs:

     PKCS1Algorithms    ALGORITHM-IDENTIFIER ::= {
         { OID rsaEncryption              PARAMETERS NULL } |
         { OID md2WithRSAEncryption       PARAMETERS NULL } |
         { OID md5WithRSAEncryption       PARAMETERS NULL } |
         { OID sha1WithRSAEncryption      PARAMETERS NULL } |
         { OID sha256WithRSAEncryption    PARAMETERS NULL } |
         { OID sha384WithRSAEncryption    PARAMETERS NULL } |
         { OID sha512WithRSAEncryption    PARAMETERS NULL } |
         { OID id-RSAES-OAEP PARAMETERS RSAES-OAEP-params } |
         PKCS1PSourceAlgorithms                             |
         { OID id-RSASSA-PSS PARAMETERS RSASSA-PSS-params } ,
         ...  -- Allows for future expansion --
     }






Jonsson & Kaliski            Informational                     [Page 46]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


A.2.1 RSAES-OAEP

  The object identifier id-RSAES-OAEP identifies the RSAES-OAEP
  encryption scheme.

     id-RSAES-OAEP    OBJECT IDENTIFIER ::= { pkcs-1 7 }

  The parameters field associated with this OID in a value of type
  AlgorithmIdentifier shall have a value of type RSAES-OAEP-params:

     RSAES-OAEP-params ::= SEQUENCE {
         hashAlgorithm     [0] HashAlgorithm    DEFAULT sha1,
         maskGenAlgorithm  [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
         pSourceAlgorithm  [2] PSourceAlgorithm DEFAULT pSpecifiedEmpty
     }

  The fields of type RSAES-OAEP-params have the following meanings:

   * hashAlgorithm identifies the hash function.  It shall be an
     algorithm ID with an OID in the set OAEP-PSSDigestAlgorithms.
     For a discussion of supported hash functions, see Appendix B.1.

        HashAlgorithm ::= AlgorithmIdentifier {
           {OAEP-PSSDigestAlgorithms}
        }

        OAEP-PSSDigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
            { OID id-sha1 PARAMETERS NULL   }|
            { OID id-sha256 PARAMETERS NULL }|
            { OID id-sha384 PARAMETERS NULL }|
            { OID id-sha512 PARAMETERS NULL },
            ...  -- Allows for future expansion --
        }

     The default hash function is SHA-1:

        sha1    HashAlgorithm ::= {
            algorithm   id-sha1,
            parameters  SHA1Parameters : NULL
        }

        SHA1Parameters ::= NULL

   * maskGenAlgorithm identifies the mask generation function.  It
     shall be an algorithm ID with an OID in the set
     PKCS1MGFAlgorithms, which for this version shall consist of
     id-mgf1, identifying the MGF1 mask generation function (see
     Appendix B.2.1).  The parameters field associated with id-mgf1



Jonsson & Kaliski            Informational                     [Page 47]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     shall be an algorithm ID with an OID in the set
     OAEP-PSSDigestAlgorithms, identifying the hash function on which
     MGF1 is based.

        MaskGenAlgorithm ::= AlgorithmIdentifier {
           {PKCS1MGFAlgorithms}
        }
        PKCS1MGFAlgorithms    ALGORITHM-IDENTIFIER ::= {
            { OID id-mgf1 PARAMETERS HashAlgorithm },
            ...  -- Allows for future expansion --
        }

     The default mask generation function is MGF1 with SHA-1:

        mgf1SHA1    MaskGenAlgorithm ::= {
            algorithm   id-mgf1,
            parameters  HashAlgorithm : sha1
        }

   * pSourceAlgorithm identifies the source (and possibly the value)
     of the label L.  It shall be an algorithm ID with an OID in the
     set PKCS1PSourceAlgorithms, which for this version shall consist
     of id-pSpecified, indicating that the label is specified
     explicitly.  The parameters field associated with id-pSpecified
     shall have a value of type OCTET STRING, containing the
     label.  In previous versions of this specification, the term
     "encoding parameters" was used rather than "label", hence the
     name of the type below.

        PSourceAlgorithm ::= AlgorithmIdentifier {
           {PKCS1PSourceAlgorithms}
        }

        PKCS1PSourceAlgorithms    ALGORITHM-IDENTIFIER ::= {
            { OID id-pSpecified PARAMETERS EncodingParameters },
            ...  -- Allows for future expansion --
        }

        id-pSpecified    OBJECT IDENTIFIER ::= { pkcs-1 9 }

        EncodingParameters ::= OCTET STRING(SIZE(0..MAX))










Jonsson & Kaliski            Informational                     [Page 48]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     The default label is an empty string (so that lHash will contain
     the hash of the empty string):

        pSpecifiedEmpty    PSourceAlgorithm ::= {
            algorithm   id-pSpecified,
            parameters  EncodingParameters : emptyString
        }

        emptyString    EncodingParameters ::= ''H

     If all of the default values of the fields in RSAES-OAEP-params
     are used, then the algorithm identifier will have the following
     value:

        rSAES-OAEP-Default-Identifier  RSAES-AlgorithmIdentifier ::= {
            algorithm   id-RSAES-OAEP,
            parameters  RSAES-OAEP-params : {
                hashAlgorithm       sha1,
                maskGenAlgorithm    mgf1SHA1,
                pSourceAlgorithm    pSpecifiedEmpty
            }
        }

        RSAES-AlgorithmIdentifier ::= AlgorithmIdentifier {
           {PKCS1Algorithms}
        }

A.2.2 RSAES-PKCS1-v1_5

  The object identifier rsaEncryption (see Appendix A.1) identifies the
  RSAES-PKCS1-v1_5 encryption scheme.  The parameters field associated
  with this OID in a value of type AlgorithmIdentifier shall have a
  value of type NULL.  This is the same as in PKCS #1 v1.5.

     rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

A.2.3 RSASSA-PSS

  The object identifier id-RSASSA-PSS identifies the RSASSA-PSS
  encryption scheme.

     id-RSASSA-PSS    OBJECT IDENTIFIER ::= { pkcs-1 10 }









Jonsson & Kaliski            Informational                     [Page 49]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  The parameters field associated with this OID in a value of type
  AlgorithmIdentifier shall have a value of type RSASSA-PSS-params:

     RSASSA-PSS-params ::= SEQUENCE {
         hashAlgorithm      [0] HashAlgorithm    DEFAULT sha1,
         maskGenAlgorithm   [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
         saltLength         [2] INTEGER          DEFAULT 20,
         trailerField       [3] TrailerField     DEFAULT trailerFieldBC
     }

  The fields of type RSASSA-PSS-params have the following meanings:

   * hashAlgorithm identifies the hash function.  It shall be an
     algorithm ID with an OID in the set OAEP-PSSDigestAlgorithms (see
     Appendix A.2.1).  The default hash function is SHA-1.

   * maskGenAlgorithm identifies the mask generation function.  It
     shall be an algorithm ID with an OID in the set

     PKCS1MGFAlgorithms (see Appendix A.2.1).  The default mask
     generation function is MGF1 with SHA-1.  For MGF1 (and more
     generally, for other mask generation functions based on a hash
     function), it is recommended that the underlying hash function be
     the same as the one identified by hashAlgorithm; see Note 2 in
     Section 9.1 for further comments.

   * saltLength is the octet length of the salt.  It shall be an
     integer.  For a given hashAlgorithm, the default value of
     saltLength is the octet length of the hash value.  Unlike the
     other fields of type RSASSA-PSS-params, saltLength does not need
     to be fixed for a given RSA key pair.

   * trailerField is the trailer field number, for compatibility with
     the draft IEEE P1363a [27].  It shall be 1 for this version of the
     document, which represents the trailer field with hexadecimal
     value 0xbc.  Other trailer fields (including the trailer field
     HashID || 0xcc in IEEE P1363a) are not supported in this document.

        TrailerField ::= INTEGER { trailerFieldBC(1) }

     If the default values of the hashAlgorithm, maskGenAlgorithm, and
     trailerField fields of RSASSA-PSS-params are used, then the
     algorithm identifier will have the following value:








Jonsson & Kaliski            Informational                     [Page 50]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


        rSASSA-PSS-Default-Identifier  RSASSA-AlgorithmIdentifier ::= {
            algorithm   id-RSASSA-PSS,
            parameters  RSASSA-PSS-params : {
                hashAlgorithm       sha1,
                maskGenAlgorithm    mgf1SHA1,
                saltLength          20,
                trailerField        trailerFieldBC
            }
        }

        RSASSA-AlgorithmIdentifier ::=
            AlgorithmIdentifier { {PKCS1Algorithms} }

  Note.  In some applications, the hash function underlying a signature
  scheme is identified separately from the rest of the operations in
  the signature scheme.  For instance, in PKCS #7 [45], a hash function
  identifier is placed before the message and a "digest encryption"
  algorithm identifier (indicating the rest of the operations) is
  carried with the signature.  In order for PKCS #7 to support the
  RSASSA-PSS signature scheme, an object identifier would need to be
  defined for the operations in RSASSA-PSS after the hash function
  (analogous to the RSAEncryption OID for the RSASSA-PKCS1-v1_5
  scheme).  S/MIME CMS [25] takes a different approach.  Although a
  hash function identifier is placed before the message, an algorithm
  identifier for the full signature scheme may be carried with a CMS
  signature (this is done for DSA signatures).  Following this
  convention, the id-RSASSA-PSS OID can be used to identify RSASSA-PSS
  signatures in CMS.  Since CMS is considered the successor to PKCS #7
  and new developments such as the addition of support for RSASSA-PSS
  will be pursued with respect to CMS rather than PKCS #7, an OID for
  the "rest of" RSASSA-PSS is not defined in this version of PKCS #1.

A.2.4 RSASSA-PKCS1-v1_5

  The object identifier for RSASSA-PKCS1-v1_5 shall be one of the
  following.  The choice of OID depends on the choice of hash
  algorithm: MD2, MD5, SHA-1, SHA-256, SHA-384, or SHA-512.  Note that
  if either MD2 or MD5 is used, then the OID is just as in PKCS #1
  v1.5.  For each OID, the parameters field associated with this OID in
  a value of type AlgorithmIdentifier shall have a value of type NULL.
  The OID should be chosen in accordance with the following table:

     Hash algorithm   OID
     --------------------------------------------------------
     MD2              md2WithRSAEncryption    ::= {pkcs-1 2}
     MD5              md5WithRSAEncryption    ::= {pkcs-1 4}
     SHA-1            sha1WithRSAEncryption   ::= {pkcs-1 5}
     SHA-256          sha256WithRSAEncryption ::= {pkcs-1 11}



Jonsson & Kaliski            Informational                     [Page 51]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     SHA-384          sha384WithRSAEncryption ::= {pkcs-1 12}
     SHA-512          sha512WithRSAEncryption ::= {pkcs-1 13}


  The EMSA-PKCS1-v1_5 encoding method includes an ASN.1 value of type
  DigestInfo, where the type DigestInfo has the syntax

     DigestInfo ::= SEQUENCE {
         digestAlgorithm DigestAlgorithm,
         digest OCTET STRING
     }

  digestAlgorithm identifies the hash function and shall be an
  algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms.  For
  a discussion of supported hash functions, see Appendix B.1.

     DigestAlgorithm ::=
         AlgorithmIdentifier { {PKCS1-v1-5DigestAlgorithms} }

     PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
         { OID id-md2 PARAMETERS NULL    }|
         { OID id-md5 PARAMETERS NULL    }|
         { OID id-sha1 PARAMETERS NULL   }|
         { OID id-sha256 PARAMETERS NULL }|
         { OID id-sha384 PARAMETERS NULL }|
         { OID id-sha512 PARAMETERS NULL }
     }

Appendix B. Supporting techniques

  This section gives several examples of underlying functions
  supporting the encryption schemes in Section 7 and the encoding
  methods in Section 9.  A range of techniques is given here to allow
  compatibility with existing applications as well as migration to new
  techniques.  While these supporting techniques are appropriate for
  applications to implement, none of them is required to be
  implemented.  It is expected that profiles for PKCS #1 v2.1 will be
  developed that specify particular supporting techniques.

  This section also gives object identifiers for the supporting
  techniques.

B.1 Hash functions

  Hash functions are used in the operations contained in Sections 7 and
  9.  Hash functions are deterministic, meaning that the output is
  completely determined by the input.  Hash functions take octet
  strings of variable length, and generate fixed length octet strings.



Jonsson & Kaliski            Informational                     [Page 52]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  The hash functions used in the operations contained in Sections 7 and
  9 should generally be collision-resistant.  This means that it is
  infeasible to find two distinct inputs to the hash function that
  produce the same output.  A collision-resistant hash function also
  has the desirable property of being one-way; this means that given an
  output, it is infeasible to find an input whose hash is the specified
  output.  In addition to the requirements, the hash function should
  yield a mask generation function (Appendix B.2) with pseudorandom
  output.

  Six hash functions are given as examples for the encoding methods in
  this document: MD2 [33], MD5 [41], SHA-1 [38], and the proposed
  algorithms SHA-256, SHA-384, and SHA-512 [39].  For the RSAES-OAEP
  encryption scheme and EMSA-PSS encoding method, only SHA-1 and SHA-
  256/384/512 are recommended.  For the EMSA-PKCS1-v1_5 encoding
  method, SHA-1 or SHA-256/384/512 are recommended for new
  applications.  MD2 and MD5 are recommended only for compatibility
  with existing applications based on PKCS #1 v1.5.

  The object identifiers id-md2, id-md5, id-sha1, id-sha256, id-sha384,
  and id-sha512, identify the respective hash functions:

     id-md2      OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549)
         digestAlgorithm(2) 2
     }

     id-md5      OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549)
         digestAlgorithm(2) 5
     }

     id-sha1    OBJECT IDENTIFIER ::= {
         iso(1) identified-organization(3) oiw(14) secsig(3)
         algorithms(2) 26
     }

     id-sha256    OBJECT IDENTIFIER ::= {
         joint-iso-itu-t(2) country(16) us(840) organization(1)
         gov(101) csor(3) nistalgorithm(4) hashalgs(2) 1
     }

     id-sha384    OBJECT IDENTIFIER ::= {
         joint-iso-itu-t(2) country(16) us(840) organization(1)
         gov(101) csor(3) nistalgorithm(4) hashalgs(2) 2
     }





Jonsson & Kaliski            Informational                     [Page 53]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


     id-sha512    OBJECT IDENTIFIER ::= {
         joint-iso-itu-t(2) country(16) us(840) organization(1)
         gov(101) csor(3) nistalgorithm(4) hashalgs(2) 3
     }

  The parameters field associated with id-md2 and id-md5 in a value of
  type AlgorithmIdentifier shall have a value of type NULL.

  The parameters field associated with id-sha1, id-sha256, id-sha384,
  and id-sha512 should be omitted, but if present, shall have a value
  of type NULL.

  Note.  Version 1.5 of PKCS #1 also allowed for the use of MD4 in
  signature schemes.  The cryptanalysis of MD4 has progressed
  significantly in the intervening years.  For example, Dobbertin [18]
  demonstrated how to find collisions for MD4 and that the first two
  rounds of MD4 are not one-way [20].  Because of these results and
  others (e.g., [8]), MD4 is no longer recommended.  There have also
  been advances in the cryptanalysis of MD2 and MD5, although not
  enough to warrant removal from existing applications.  Rogier and
  Chauvaud [43] demonstrated how to find collisions in a modified
  version of MD2.  No one has demonstrated how to find collisions for
  the full MD5 algorithm, although partial results have been found
  (e.g., [9][19]).

  To address these concerns, SHA-1, SHA-256, SHA-384, or SHA-512 are
  recommended for new applications.  As of today, the best (known)
  collision attacks against these hash functions are generic attacks
  with complexity 2^(L/2), where L is the bit length of the hash
  output.  For the signature schemes in this document, a collision
  attack is easily translated into a signature forgery.  Therefore, the
  value L / 2 should be at least equal to the desired security level in
  bits of the signature scheme (a security level of B bits means that
  the best attack has complexity 2^B).  The same rule of thumb can be
  applied to RSAES-OAEP; it is recommended that the bit length of the
  seed (which is equal to the bit length of the hash output) be twice
  the desired security level in bits.

B.2 Mask generation functions

  A mask generation function takes an octet string of variable length
  and a desired output length as input, and outputs an octet string of
  the desired length.  There may be restrictions on the length of the
  input and output octet strings, but such bounds are generally very
  large.  Mask generation functions are deterministic; the octet string
  output is completely determined by the input octet string.  The
  output of a mask generation function should be pseudorandom: Given
  one part of the output but not the input, it should be infeasible to



Jonsson & Kaliski            Informational                     [Page 54]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  predict another part of the output.  The provable security of RSAES-
  OAEP and RSASSA-PSS relies on the random nature of the output of the
  mask generation function, which in turn relies on the random nature
  of the underlying hash.

  One mask generation function is given here: MGF1, which is based on a
  hash function.  MGF1 coincides with the mask generation functions
  defined in IEEE Std 1363-2000 [26] and the draft ANSI X9.44 [1].
  Future versions of this document may define other mask generation
  functions.

B.2.1 MGF1

  MGF1 is a Mask Generation Function based on a hash function.

  MGF1 (mgfSeed, maskLen)

  Options:
  Hash     hash function (hLen denotes the length in octets of the hash
           function output)

  Input:
  mgfSeed  seed from which mask is generated, an octet string
  maskLen  intended length in octets of the mask, at most 2^32 hLen

  Output:
  mask     mask, an octet string of length maskLen

  Error:   "mask too long"

  Steps:

  1. If maskLen > 2^32 hLen, output "mask too long" and stop.

  2. Let T be the empty octet string.

  3. For counter from 0 to \ceil (maskLen / hLen) - 1, do the
     following:

     a. Convert counter to an octet string C of length 4 octets (see
        Section 4.1):

           C = I2OSP (counter, 4) .

     b. Concatenate the hash of the seed mgfSeed and C to the octet
        string T:

           T = T || Hash(mgfSeed || C) .



Jonsson & Kaliski            Informational                     [Page 55]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  4. Output the leading maskLen octets of T as the octet string mask.

  The object identifier id-mgf1 identifies the MGF1 mask generation
  function:

  id-mgf1    OBJECT IDENTIFIER ::= { pkcs-1 8 }

  The parameters field associated with this OID in a value of type
  AlgorithmIdentifier shall have a value of type hashAlgorithm,
  identifying the hash function on which MGF1 is based.

Appendix C. ASN.1 module

PKCS-1 {
   iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
   modules(0) pkcs-1(1)
}

-- $ Revision: 2.1r1 $

-- This module has been checked for conformance with the ASN.1
-- standard by the OSS ASN.1 Tools

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL
-- All types and values defined in this module are exported for use
-- in other ASN.1 modules.

IMPORTS

id-sha256, id-sha384, id-sha512
   FROM NIST-SHA2 {
       joint-iso-itu-t(2) country(16) us(840) organization(1)
       gov(101) csor(3) nistalgorithm(4) modules(0) sha2(1)
   };

-- ============================
--   Basic object identifiers
-- ============================

-- The DER encoding of this in hexadecimal is:
-- (0x)06 08
--        2A 86 48 86 F7 0D 01 01
--
pkcs-1    OBJECT IDENTIFIER ::= {



Jonsson & Kaliski            Informational                     [Page 56]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


   iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1
}

--
-- When rsaEncryption is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be NULL.
--
rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

--
-- When id-RSAES-OAEP is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be RSAES-OAEP-params.
--
id-RSAES-OAEP    OBJECT IDENTIFIER ::= { pkcs-1 7 }

--
-- When id-pSpecified is used in an AlgorithmIdentifier the
-- parameters MUST be an OCTET STRING.
--
id-pSpecified    OBJECT IDENTIFIER ::= { pkcs-1 9 }

-- When id-RSASSA-PSS is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be RSASSA-PSS-params.
--
id-RSASSA-PSS    OBJECT IDENTIFIER ::= { pkcs-1 10 }

--
-- When the following OIDs are used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be NULL.
--
md2WithRSAEncryption       OBJECT IDENTIFIER ::= { pkcs-1 2 }
md5WithRSAEncryption       OBJECT IDENTIFIER ::= { pkcs-1 4 }
sha1WithRSAEncryption      OBJECT IDENTIFIER ::= { pkcs-1 5 }
sha256WithRSAEncryption    OBJECT IDENTIFIER ::= { pkcs-1 11 }
sha384WithRSAEncryption    OBJECT IDENTIFIER ::= { pkcs-1 12 }
sha512WithRSAEncryption    OBJECT IDENTIFIER ::= { pkcs-1 13 }

--
-- This OID really belongs in a module with the secsig OIDs.
--
id-sha1    OBJECT IDENTIFIER ::= {
   iso(1) identified-organization(3) oiw(14) secsig(3)
   algorithms(2) 26
}

--
-- OIDs for MD2 and MD5, allowed only in EMSA-PKCS1-v1_5.
--



Jonsson & Kaliski            Informational                     [Page 57]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


id-md2 OBJECT IDENTIFIER ::= {
   iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 2
}

id-md5 OBJECT IDENTIFIER ::= {
   iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 5
}

--
-- When id-mgf1 is used in an AlgorithmIdentifier the parameters MUST
-- be present and MUST be a HashAlgorithm, for example sha1.
--
id-mgf1    OBJECT IDENTIFIER ::= { pkcs-1 8 }

-- ================
--   Useful types
-- ================

ALGORITHM-IDENTIFIER ::= CLASS {
   &id    OBJECT IDENTIFIER  UNIQUE,
   &Type  OPTIONAL
}
   WITH SYNTAX { OID &id [PARAMETERS &Type] }

--
-- Note: the parameter InfoObjectSet in the following definitions
-- allows a distinct information object set to be specified for sets
-- of algorithms such as:
-- DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
--     { OID id-md2  PARAMETERS NULL }|
--     { OID id-md5  PARAMETERS NULL }|
--     { OID id-sha1 PARAMETERS NULL }
-- }
--

AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } ::=
SEQUENCE {
   algorithm  ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
   parameters
       ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}{@.algorithm})
           OPTIONAL
}

-- ==============
--   Algorithms
-- ==============

--



Jonsson & Kaliski            Informational                     [Page 58]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


-- Allowed EME-OAEP and EMSA-PSS digest algorithms.
--
OAEP-PSSDigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
   { OID id-sha1 PARAMETERS NULL   }|
   { OID id-sha256 PARAMETERS NULL }|
   { OID id-sha384 PARAMETERS NULL }|
   { OID id-sha512 PARAMETERS NULL },
   ...  -- Allows for future expansion --
}

--
-- Allowed EMSA-PKCS1-v1_5 digest algorithms.
--
PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
   { OID id-md2 PARAMETERS NULL    }|
   { OID id-md5 PARAMETERS NULL    }|
   { OID id-sha1 PARAMETERS NULL   }|
   { OID id-sha256 PARAMETERS NULL }|
   { OID id-sha384 PARAMETERS NULL }|
   { OID id-sha512 PARAMETERS NULL }
}

-- When id-md2 and id-md5 are used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be NULL.

-- When id-sha1, id-sha256, id-sha384 and id-sha512 are used in an
-- AlgorithmIdentifier the parameters (which are optional) SHOULD
-- be omitted. However, an implementation MUST also accept
-- AlgorithmIdentifier values where the parameters are NULL.

sha1    HashAlgorithm ::= {
   algorithm   id-sha1,
   parameters  SHA1Parameters : NULL  -- included for compatibility
                                      -- with existing implementations
}

HashAlgorithm ::= AlgorithmIdentifier { {OAEP-PSSDigestAlgorithms} }

SHA1Parameters ::= NULL

--
-- Allowed mask generation function algorithms.
-- If the identifier is id-mgf1, the parameters are a HashAlgorithm.
--
PKCS1MGFAlgorithms    ALGORITHM-IDENTIFIER ::= {
   { OID id-mgf1 PARAMETERS HashAlgorithm },
   ...  -- Allows for future expansion --
}



Jonsson & Kaliski            Informational                     [Page 59]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


--
-- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenAlgorithm and
-- id-RSASSA-PSS.maskGenAlgorithm.
--
mgf1SHA1    MaskGenAlgorithm ::= {
   algorithm   id-mgf1,
   parameters  HashAlgorithm : sha1
}

MaskGenAlgorithm ::= AlgorithmIdentifier { {PKCS1MGFAlgorithms} }

--
-- Allowed algorithms for pSourceAlgorithm.
--
PKCS1PSourceAlgorithms    ALGORITHM-IDENTIFIER ::= {
   { OID id-pSpecified PARAMETERS EncodingParameters },
   ...  -- Allows for future expansion --
}

EncodingParameters ::= OCTET STRING(SIZE(0..MAX))

--
-- This identifier means that the label L is an empty string, so the
-- digest of the empty string appears in the RSA block before
-- masking.
--
pSpecifiedEmpty    PSourceAlgorithm ::= {
   algorithm   id-pSpecified,
   parameters  EncodingParameters : emptyString
}

PSourceAlgorithm ::= AlgorithmIdentifier { {PKCS1PSourceAlgorithms} }

emptyString    EncodingParameters ::= ''H

--
-- Type identifier definitions for the PKCS #1 OIDs.
--
PKCS1Algorithms    ALGORITHM-IDENTIFIER ::= {
   { OID rsaEncryption              PARAMETERS NULL } |
   { OID md2WithRSAEncryption       PARAMETERS NULL } |
   { OID md5WithRSAEncryption       PARAMETERS NULL } |
   { OID sha1WithRSAEncryption      PARAMETERS NULL } |
   { OID sha256WithRSAEncryption    PARAMETERS NULL } |
   { OID sha384WithRSAEncryption    PARAMETERS NULL } |
   { OID sha512WithRSAEncryption    PARAMETERS NULL } |
   { OID id-RSAES-OAEP PARAMETERS RSAES-OAEP-params } |
   PKCS1PSourceAlgorithms                             |



Jonsson & Kaliski            Informational                     [Page 60]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


   { OID id-RSASSA-PSS PARAMETERS RSASSA-PSS-params } ,
   ...  -- Allows for future expansion --
}

-- ===================
--   Main structures
-- ===================

RSAPublicKey ::= SEQUENCE {
   modulus           INTEGER,  -- n
   publicExponent    INTEGER   -- e
}

--
-- Representation of RSA private key with information for the CRT
-- algorithm.
--
RSAPrivateKey ::= SEQUENCE {
   version           Version,
   modulus           INTEGER,  -- n
   publicExponent    INTEGER,  -- e
   privateExponent   INTEGER,  -- d
   prime1            INTEGER,  -- p
   prime2            INTEGER,  -- q
   exponent1         INTEGER,  -- d mod (p-1)
   exponent2         INTEGER,  -- d mod (q-1)
   coefficient       INTEGER,  -- (inverse of q) mod p
   otherPrimeInfos   OtherPrimeInfos OPTIONAL
}

Version ::= INTEGER { two-prime(0), multi(1) }
   (CONSTRAINED BY {
       -- version must be multi if otherPrimeInfos present --
   })

OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo

OtherPrimeInfo ::= SEQUENCE {
   prime             INTEGER,  -- ri
   exponent          INTEGER,  -- di
   coefficient       INTEGER   -- ti
}

--
-- AlgorithmIdentifier.parameters for id-RSAES-OAEP.
-- Note that the tags in this Sequence are explicit.
--
RSAES-OAEP-params ::= SEQUENCE {



Jonsson & Kaliski            Informational                     [Page 61]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


   hashAlgorithm      [0] HashAlgorithm     DEFAULT sha1,
   maskGenAlgorithm   [1] MaskGenAlgorithm  DEFAULT mgf1SHA1,
   pSourceAlgorithm   [2] PSourceAlgorithm  DEFAULT pSpecifiedEmpty
}

--
-- Identifier for default RSAES-OAEP algorithm identifier.
-- The DER Encoding of this is in hexadecimal:
-- (0x)30 0D
--        06 09
--           2A 86 48 86 F7 0D 01 01 07
--        30 00
-- Notice that the DER encoding of default values is "empty".
--

rSAES-OAEP-Default-Identifier    RSAES-AlgorithmIdentifier ::= {
   algorithm   id-RSAES-OAEP,
   parameters  RSAES-OAEP-params : {
       hashAlgorithm       sha1,
       maskGenAlgorithm    mgf1SHA1,
       pSourceAlgorithm    pSpecifiedEmpty
   }
}

RSAES-AlgorithmIdentifier ::=
   AlgorithmIdentifier { {PKCS1Algorithms} }

--
-- AlgorithmIdentifier.parameters for id-RSASSA-PSS.
-- Note that the tags in this Sequence are explicit.
--
RSASSA-PSS-params ::= SEQUENCE {
   hashAlgorithm      [0] HashAlgorithm      DEFAULT sha1,
   maskGenAlgorithm   [1] MaskGenAlgorithm   DEFAULT mgf1SHA1,
   saltLength         [2] INTEGER            DEFAULT 20,
   trailerField       [3] TrailerField       DEFAULT trailerFieldBC
}

TrailerField ::= INTEGER { trailerFieldBC(1) }

--
-- Identifier for default RSASSA-PSS algorithm identifier
-- The DER Encoding of this is in hexadecimal:
-- (0x)30 0D
--        06 09
--           2A 86 48 86 F7 0D 01 01 0A
--        30 00
-- Notice that the DER encoding of default values is "empty".



Jonsson & Kaliski            Informational                     [Page 62]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


--
rSASSA-PSS-Default-Identifier    RSASSA-AlgorithmIdentifier ::= {
   algorithm   id-RSASSA-PSS,
   parameters  RSASSA-PSS-params : {
       hashAlgorithm       sha1,
       maskGenAlgorithm    mgf1SHA1,
       saltLength          20,
       trailerField        trailerFieldBC
   }
}

RSASSA-AlgorithmIdentifier ::=
   AlgorithmIdentifier { {PKCS1Algorithms} }

--
-- Syntax for the EMSA-PKCS1-v1_5 hash identifier.
--
DigestInfo ::= SEQUENCE {
   digestAlgorithm DigestAlgorithm,
   digest OCTET STRING
}

DigestAlgorithm ::=
   AlgorithmIdentifier { {PKCS1-v1-5DigestAlgorithms} }

END  -- PKCS1Definitions

Appendix D. Intellectual Property Considerations

  The RSA public-key cryptosystem is described in U.S. Patent
  4,405,829, which expired on September 20, 2000.  RSA Security Inc.
  makes no other patent claims on the constructions described in this
  document, although specific underlying techniques may be covered.

  Multi-prime RSA is described in U.S. Patent 5,848,159.

  The University of California has indicated that it has a patent
  pending on the PSS signature scheme [5].  It has also provided a
  letter to the IEEE P1363 working group stating that if the PSS
  signature scheme is included in an IEEE standard, "the University of
  California will, when that standard is adopted, FREELY license any
  conforming implementation of PSS as a technique for achieving a
  digital signature with appendix" [23].  The PSS signature scheme is
  specified in the IEEE P1363a draft [27], which was in ballot
  resolution when this document was published.






Jonsson & Kaliski            Informational                     [Page 63]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  License to copy this document is granted provided that it is
  identified as "RSA Security Inc.  Public-Key Cryptography Standards
  (PKCS)" in all material mentioning or referencing this document.

  RSA Security Inc. makes no other representations regarding
  intellectual property claims by other parties.  Such determination is
  the responsibility of the user.

Appendix E. Revision history

  Versions 1.0 - 1.3

     Versions 1.0 - 1.3 were distributed to participants in RSA Data
     Security, Inc.'s Public-Key Cryptography Standards meetings in
     February and March 1991.

  Version 1.4

     Version 1.4 was part of the June 3, 1991 initial public release of
     PKCS.  Version 1.4 was published as NIST/OSI Implementors'
     Workshop document SEC-SIG-91-18.

  Version 1.5

     Version 1.5 incorporated several editorial changes, including
     updates to the references and the addition of a revision history.
     The following substantive changes were made:

     -  Section 10: "MD4 with RSA" signature and verification processes
        were added.
     -  Section 11: md4WithRSAEncryption object identifier was added.

     Version 1.5 was republished as IETF RFC 2313.

  Version 2.0

     Version 2.0 incorporated major editorial changes in terms of the
     document structure and introduced the RSAES-OAEP encryption
     scheme.  This version continued to support the encryption and
     signature processes in version 1.5, although the hash algorithm
     MD4 was no longer allowed due to cryptanalytic advances in the
     intervening years.  Version 2.0 was republished as IETF RFC 2437
     [35].








Jonsson & Kaliski            Informational                     [Page 64]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  Version 2.1

     Version 2.1 introduces multi-prime RSA and the RSASSA-PSS
     signature scheme with appendix along with several editorial
     improvements.  This version continues to support the schemes in
     version 2.0.

Appendix F: References

  [1]   ANSI X9F1 Working Group.  ANSI X9.44 Draft D2: Key
        Establishment Using Integer Factorization Cryptography.
        Working Draft, March 2002.

  [2]   M. Bellare, A. Desai, D. Pointcheval and P. Rogaway.  Relations
        Among Notions of Security for Public-Key Encryption Schemes.
        In H. Krawczyk, editor, Advances in Cryptology - Crypto '98,
        volume 1462 of Lecture Notes in Computer Science, pp. 26 - 45.
        Springer Verlag, 1998.

  [3]   M. Bellare and P. Rogaway.  Optimal Asymmetric Encryption - How
        to Encrypt with RSA.  In A. De Santis, editor, Advances in
        Cryptology - Eurocrypt '94, volume 950 of Lecture Notes in
        Computer Science, pp. 92 - 111.  Springer Verlag, 1995.

  [4]   M. Bellare and P. Rogaway.  The Exact Security of Digital
        Signatures - How to Sign with RSA and Rabin.  In U. Maurer,
        editor, Advances in Cryptology - Eurocrypt '96, volume 1070 of
        Lecture Notes in Computer Science, pp. 399 - 416.  Springer
        Verlag, 1996.

  [5]   M. Bellare and P. Rogaway.  PSS: Provably Secure Encoding
        Method for Digital Signatures.  Submission to IEEE P1363
        working group, August 1998.  Available from
        http://grouper.ieee.org/groups/1363/.

  [6]   D. Bleichenbacher.  Chosen Ciphertext Attacks Against Protocols
        Based on the RSA Encryption Standard PKCS #1.  In H. Krawczyk,
        editor, Advances in Cryptology - Crypto '98, volume 1462 of
        Lecture Notes in Computer Science, pp. 1 - 12.  Springer
        Verlag, 1998.

  [7]   D. Bleichenbacher, B. Kaliski and J. Staddon.  Recent Results
        on PKCS #1: RSA Encryption Standard.  RSA Laboratories'
        Bulletin No. 7, June 1998.







Jonsson & Kaliski            Informational                     [Page 65]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  [8]   B. den Boer and A. Bosselaers.  An Attack on the Last Two
        Rounds of MD4.  In J.  Feigenbaum, editor, Advances in
        Cryptology - Crypto '91, volume 576 of Lecture Notes in
        Computer Science, pp. 194 - 203.  Springer Verlag, 1992.

  [9]   B. den Boer and A. Bosselaers.  Collisions for the Compression
        Function of MD5.  In T. Helleseth, editor, Advances in
        Cryptology - Eurocrypt '93, volume 765 of Lecture Notes in
        Computer Science, pp. 293 - 304.  Springer Verlag, 1994.

  [10]  D. Coppersmith, M. Franklin, J. Patarin and M. Reiter.  Low-
        Exponent RSA with Related Messages.  In U. Maurer, editor,
        Advances in Cryptology - Eurocrypt '96, volume 1070 of Lecture
        Notes in Computer Science, pp. 1 - 9.  Springer Verlag, 1996.

  [11]  D. Coppersmith, S. Halevi and C. Jutla.  ISO 9796-1 and the New
        Forgery Strategy.  Presented at the rump session of Crypto '99,
        August 1999.

  [12]  J.-S. Coron.  On the Exact Security of Full Domain Hashing.  In
        M. Bellare, editor, Advances in Cryptology - Crypto 2000,
        volume 1880 of Lecture Notes in Computer Science, pp. 229 -
        235.  Springer Verlag, 2000.

  [13]  J.-S. Coron.  Optimal Security Proofs for PSS and Other
        Signature Schemes.   In L. Knudsen, editor, Advances in
        Cryptology - Eurocrypt 2002, volume 2332 of Lecture Notes in
        Computer Science, pp. 272 - 287.  Springer Verlag, 2002.

  [14]  J.-S. Coron, M. Joye, D. Naccache and P. Paillier.  New Attacks
        on PKCS #1 v1.5 Encryption.  In B. Preneel, editor, Advances in
        Cryptology - Eurocrypt 2000, volume 1807 of Lecture Notes in
        Computer Science, pp. 369 - 379.  Springer Verlag, 2000.

  [15]  J.-S. Coron, D. Naccache and J. P. Stern.  On the Security of
        RSA Padding.  In M. Wiener, editor, Advances in Cryptology -
        Crypto '99, volume 1666 of Lecture Notes in Computer Science,
        pp. 1 - 18.  Springer Verlag, 1999.

  [16]  Y. Desmedt and A.M. Odlyzko.  A Chosen Text Attack on the RSA
        Cryptosystem and Some Discrete Logarithm Schemes.  In H.C.
        Williams, editor, Advances in Cryptology - Crypto '85, volume
        218 of Lecture Notes in Computer Science, pp. 516 - 522.
        Springer Verlag, 1986.

  [17]  Dierks, T. and C. Allen, "The TLS Protocol, Version 1.0", RFC
        2246, January 1999.




Jonsson & Kaliski            Informational                     [Page 66]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  [18]  H. Dobbertin.  Cryptanalysis of MD4.  In D. Gollmann, editor,
        Fast Software Encryption '96, volume 1039 of Lecture Notes in
        Computer Science, pp. 55 - 72.  Springer Verlag, 1996.

  [19]  H. Dobbertin.  Cryptanalysis of MD5 Compress.  Presented at the
        rump session of Eurocrypt '96, May 1996.

  [20]  H. Dobbertin.  The First Two Rounds of MD4 are Not One-Way.  In
        S. Vaudenay, editor, Fast Software Encryption '98, volume 1372
        in Lecture Notes in Computer Science, pp. 284 - 292.  Springer
        Verlag, 1998.

  [21]  E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern.  RSA-OAEP
        is Secure under the RSA Assumption.  In J. Kilian, editor,
        Advances in Cryptology - Crypto 2001, volume 2139 of Lecture
        Notes in Computer Science, pp. 260 - 274.  Springer Verlag,
        2001.

  [22]  H. Garner.  The Residue Number System.  IRE Transactions on
        Electronic Computers, EC-8 (6), pp. 140 - 147, June 1959.

  [23]  M.L. Grell.  Re: Encoding Methods PSS/PSS-R.  Letter to IEEE
        P1363 working group, University of California, June 15, 1999.
        Available from
        http://grouper.ieee.org/groups/1363/P1363/patents.html.

  [24]  J. Haastad.  Solving Simultaneous Modular Equations of Low
        Degree.  SIAM Journal of Computing, volume 17, pp. 336 - 341,
        1988.

  [25]  Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3369,
        August 2002.  Housley, R., "Cryptographic Message Syntax (CMS)
        Algorithms", RFC 3370, August 2002.

  [26]  IEEE Std 1363-2000: Standard Specifications for Public Key
        Cryptography.  IEEE, August 2000.

  [27]  IEEE P1363 working group.  IEEE P1363a D11: Draft Standard
        Specifications for Public Key Cryptography -- Amendment 1:
        Additional Techniques. December 16, 2002.  Available from
        http://grouper.ieee.org/groups/1363/.

  [28]  ISO/IEC 9594-8:1997: Information technology - Open Systems
        Interconnection - The Directory: Authentication Framework.
        1997.






Jonsson & Kaliski            Informational                     [Page 67]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  [29]  ISO/IEC FDIS 9796-2: Information Technology - Security
        Techniques - Digital Signature Schemes Giving Message Recovery
        - Part 2: Integer Factorization Based Mechanisms.  Final Draft
        International Standard, December 2001.

  [30]  ISO/IEC 18033-2: Information Technology - Security Techniques -
        Encryption Algorithms - Part 2: Asymmetric Ciphers.  V. Shoup,
        editor, Text for 2nd Working Draft, January 2002.

  [31]  J. Jonsson.  Security Proof for the RSA-PSS Signature Scheme
        (extended abstract).  Second Open NESSIE Workshop.  September
        2001.  Full version available from
        http://eprint.iacr.org/2001/053/.

  [32]  J. Jonsson and B. Kaliski.  On the Security of RSA Encryption
        in TLS.  In M. Yung, editor, Advances in Cryptology - CRYPTO
        2002, vol. 2442 of Lecture Notes in Computer Science, pp. 127 -
        142.  Springer Verlag, 2002.

  [33]  Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319,
        April 1992.

  [34]  B. Kaliski.  On Hash Function Identification in Signature
        Schemes.  In B. Preneel, editor, RSA Conference 2002,
        Cryptographers' Track, volume 2271 of Lecture Notes in Computer
        Science, pp. 1 - 16.  Springer Verlag, 2002.

  [35]  Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
        Specifications Version 2.0", RFC 2437, October 1998.

  [36]  J. Manger.  A Chosen Ciphertext Attack on RSA Optimal
        Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
        v2.0. In J. Kilian, editor, Advances in Cryptology - Crypto
        2001, volume 2139 of Lecture Notes in Computer Science, pp. 260
        - 274.  Springer Verlag, 2001.

  [37]  A. Menezes, P. van Oorschot and S. Vanstone.  Handbook of
        Applied Cryptography.  CRC Press, 1996.

  [38]  National Institute of Standards and Technology (NIST).  FIPS
        Publication 180-1: Secure Hash Standard.  April 1994.

  [39]  National Institute of Standards and Technology (NIST).  Draft
        FIPS 180-2: Secure Hash Standard.  Draft, May 2001.  Available
        from http://www.nist.gov/sha/.






Jonsson & Kaliski            Informational                     [Page 68]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


  [40]  J.-J. Quisquater and C. Couvreur.  Fast Decipherment Algorithm
        for RSA Public-Key Cryptosystem.  Electronics Letters, 18 (21),
        pp. 905 - 907, October 1982.

  [41]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
        1992.

  [42]  R. Rivest, A. Shamir and L. Adleman.  A Method for Obtaining
        Digital Signatures and Public-Key Cryptosystems.
        Communications of the ACM, 21 (2), pp. 120-126, February 1978.

  [43]  N. Rogier and P. Chauvaud.  The Compression Function of MD2 is
        not Collision Free.  Presented at Selected Areas of
        Cryptography '95.  Carleton University, Ottawa, Canada.  May
        1995.

  [44]  RSA Laboratories.  PKCS #1 v2.0: RSA Encryption Standard.
        October 1998.

  [45]  RSA Laboratories.  PKCS #7 v1.5: Cryptographic Message Syntax
        Standard.  November 1993.  (Republished as IETF RFC 2315.)

  [46]  RSA Laboratories.  PKCS #8 v1.2: Private-Key Information Syntax
        Standard.  November 1993.

  [47]  RSA Laboratories.  PKCS #12 v1.0: Personal Information Exchange
        Syntax Standard.  June 1999.

  [48]  V. Shoup.  OAEP Reconsidered.  In J. Kilian, editor, Advances
        in Cryptology - Crypto 2001, volume 2139 of Lecture Notes in
        Computer Science, pp. 239 - 259.  Springer Verlag, 2001.

  [49]  R. D. Silverman.  A Cost-Based Security Analysis of Symmetric
        and Asymmetric Key Lengths.  RSA Laboratories Bulletin No. 13,
        April 2000.  Available from
        http://www.rsasecurity.com.rsalabs/bulletins/.

  [50]  G. J. Simmons.  Subliminal communication is easy using the DSA.
        In T. Helleseth, editor, Advances in Cryptology - Eurocrypt
        '93, volume 765 of Lecture Notes in Computer Science, pp. 218-
        232.  Springer-Verlag, 1993.










Jonsson & Kaliski            Informational                     [Page 69]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


Appendix G: About PKCS

  The Public-Key Cryptography Standards are specifications produced by
  RSA Laboratories in cooperation with secure systems developers
  worldwide for the purpose of accelerating the deployment of
  public-key cryptography.  First published in 1991 as a result of
  meetings with a small group of early adopters of public-key
  technology, the PKCS documents have become widely referenced and
  implemented.  Contributions from the PKCS series have become part of
  many formal and de facto standards, including ANSI X9 and IEEE P1363
  documents, PKIX, SET, S/MIME, SSL/TLS, and WAP/WTLS.

  Further development of PKCS occurs through mailing list discussions
  and occasional workshops, and suggestions for improvement are
  welcome.  For more information, contact:

     PKCS Editor
     RSA Laboratories
     174 Middlesex Turnpike
     Bedford, MA  01730 USA
     [email protected]
     http://www.rsasecurity.com/rsalabs/pkcs

Appendix H: Corrections Made During RFC Publication Process

  The following corrections were made in converting the PKCS #1 v2.1
  document to this RFC:

  *  The requirement that the parameters in an AlgorithmIdentifier
     value for id-sha1, id-sha256, id-sha384, and id-sha512 be NULL was
     changed to a recommendation that the parameters be omitted (while
     still allowing the parameters to be NULL). This is to align with
     the definitions originally promulgated by NIST. Implementations
     MUST accept AlgorithmIdentifier values both without parameters and
     with NULL parameters.

  *  The notes after RSADP and RSASP1 (Secs. 5.1.2 and 5.2.1) were
     corrected to refer to step 2.b rather than 2.a.

  *  References [25], [27] and [32] were updated to reflect new
     publication data.

  These corrections will be reflected in future editions of PKCS #1
  v2.1.

Security Considerations

  Security issues are discussed throughout this memo.



Jonsson & Kaliski            Informational                     [Page 70]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


Acknowledgements

  This document is based on a contribution of RSA Laboratories, the
  research center of RSA Security Inc.  Any substantial use of the text
  from this document must acknowledge RSA Security Inc.  RSA Security
  Inc. requests that all material mentioning or referencing this
  document identify this as "RSA Security Inc. PKCS #1 v2.1".

Authors' Addresses

  Jakob Jonsson
  Philipps-Universitaet Marburg
  Fachbereich Mathematik und Informatik
  Hans Meerwein Strasse, Lahnberge
  DE-35032 Marburg
  Germany

  Phone: +49 6421 28 25672
  EMail: [email protected]


  Burt Kaliski
  RSA Laboratories
  174 Middlesex Turnpike
  Bedford, MA 01730 USA

  Phone: +1 781 515 7073
  EMail: [email protected]























Jonsson & Kaliski            Informational                     [Page 71]

RFC 3447        PKCS #1: RSA Cryptography Specifications   February 2003


Full Copyright Statement

  Copyright (C) The Internet Society 2003.  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others provided that the above copyright notice and this paragraph
  are included on all such copies.  However, this document itself may
  not be modified in any way, such as by removing the copyright notice
  or references to the Internet Society or other Internet
  organizations, except as required to translate it into languages
  other than English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.

























Jonsson & Kaliski            Informational                     [Page 72]