Network Working Group                            Editor of this version:
Request for Comments: 3417                                    R. Presuhn
STD: 62                                               BMC Software, Inc.
Obsoletes: 1906                             Authors of previous version:
Category: Standards Track                                        J. Case
                                                    SNMP Research, Inc.
                                                          K. McCloghrie
                                                    Cisco Systems, Inc.
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                          S. Waldbusser
                                         International Network Services
                                                          December 2002


                        Transport Mappings for
            the Simple Network Management Protocol (SNMP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document defines the transport of Simple Network Management
  Protocol (SNMP) messages over various protocols.  This document
  obsoletes RFC 1906.
















Presuhn, et al.             Standards Track                     [Page 1]

RFC 3417              Transport Mappings for SNMP          December 2002


Table of Contents

  1. Introduction ................................................    2
  2. Definitions .................................................    3
  3. SNMP over UDP over IPv4 .....................................    7
  3.1. Serialization .............................................    7
  3.2. Well-known Values .........................................    7
  4. SNMP over OSI ...............................................    7
  4.1. Serialization .............................................    7
  4.2. Well-known Values .........................................    8
  5. SNMP over DDP ...............................................    8
  5.1. Serialization .............................................    8
  5.2. Well-known Values .........................................    8
  5.3. Discussion of AppleTalk Addressing ........................    9
  5.3.1. How to Acquire NBP names ................................    9
  5.3.2. When to Turn NBP names into DDP addresses ...............   10
  5.3.3. How to Turn NBP names into DDP addresses ................   10
  5.3.4. What if NBP is broken ...................................   10
  6. SNMP over IPX ...............................................   11
  6.1. Serialization .............................................   11
  6.2. Well-known Values .........................................   11
  7. Proxy to SNMPv1 .............................................   12
  8. Serialization using the Basic Encoding Rules ................   12
  8.1. Usage Example .............................................   13
  9. Notice on Intellectual Property .............................   14
  10. Acknowledgments ............................................   14
  11. IANA Considerations ........................................   15
  12. Security Considerations ....................................   16
  13. References .................................................   16
  13.1. Normative References .....................................   16
  13.2. Informative References ...................................   17
  14. Changes from RFC 1906 ......................................   18
  15. Editor's Address ...........................................   18
  16. Full Copyright Statement ...................................   19

1.  Introduction

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB





Presuhn, et al.             Standards Track                     [Page 2]

RFC 3417              Transport Mappings for SNMP          December 2002


  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

  This document, Transport Mappings for the Simple Network Management
  Protocol, defines how the management protocol [RFC3416] may be
  carried over a variety of protocol suites.  It is the purpose of this
  document to define how the SNMP maps onto an initial set of transport
  domains.  At the time of this writing, work was in progress to define
  an IPv6 mapping, described in [RFC3419].  Other mappings may be
  defined in the future.

  Although several mappings are defined, the mapping onto UDP over IPv4
  is the preferred mapping for systems supporting IPv4.  Systems
  implementing IPv4 MUST implement the mapping onto UDP over IPv4.  To
  maximize interoperability, systems supporting other mappings SHOULD
  also provide for access via the UDP over IPv4 mapping.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [RFC2119].

2.  Definitions

  SNMPv2-TM DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-IDENTITY,
      snmpModules, snmpDomains, snmpProxys
          FROM SNMPv2-SMI
      TEXTUAL-CONVENTION
          FROM SNMPv2-TC;

  snmpv2tm MODULE-IDENTITY
      LAST-UPDATED "200210160000Z"
      ORGANIZATION "IETF SNMPv3 Working Group"
      CONTACT-INFO
              "WG-EMail:   [email protected]
               Subscribe:  [email protected]

               Co-Chair:   Russ Mundy
                           Network Associates Laboratories
               postal:     15204 Omega Drive, Suite 300
                           Rockville, MD 20850-4601
                           USA
               EMail:      [email protected]
               phone:      +1 301 947-7107



Presuhn, et al.             Standards Track                     [Page 3]

RFC 3417              Transport Mappings for SNMP          December 2002


               Co-Chair:   David Harrington
                           Enterasys Networks
               postal:     35 Industrial Way
                           P. O. Box 5005
                           Rochester, NH 03866-5005
                           USA
               EMail:      [email protected]
               phone:      +1 603 337-2614

               Editor:     Randy Presuhn
                           BMC Software, Inc.
               postal:     2141 North First Street
                           San Jose, CA 95131
                           USA
               EMail:      [email protected]
               phone:      +1 408 546-1006"
      DESCRIPTION
              "The MIB module for SNMP transport mappings.

               Copyright (C) The Internet Society (2002). This
               version of this MIB module is part of RFC 3417;
               see the RFC itself for full legal notices.
              "
      REVISION     "200210160000Z"
      DESCRIPTION
              "Clarifications, published as RFC 3417."
      REVISION    "199601010000Z"
      DESCRIPTION
              "Clarifications, published as RFC 1906."
      REVISION    "199304010000Z"
      DESCRIPTION
              "The initial version, published as RFC 1449."
      ::= { snmpModules 19 }

  -- SNMP over UDP over IPv4

  snmpUDPDomain  OBJECT-IDENTITY
      STATUS     current
      DESCRIPTION
              "The SNMP over UDP over IPv4 transport domain.
              The corresponding transport address is of type
              SnmpUDPAddress."
      ::= { snmpDomains 1 }








Presuhn, et al.             Standards Track                     [Page 4]

RFC 3417              Transport Mappings for SNMP          December 2002


  SnmpUDPAddress ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "1d.1d.1d.1d/2d"
      STATUS       current
      DESCRIPTION
              "Represents a UDP over IPv4 address:

                 octets   contents        encoding
                  1-4     IP-address      network-byte order
                  5-6     UDP-port        network-byte order
              "
      SYNTAX       OCTET STRING (SIZE (6))

  -- SNMP over OSI

  snmpCLNSDomain OBJECT-IDENTITY
      STATUS     current
      DESCRIPTION
              "The SNMP over CLNS transport domain.
              The corresponding transport address is of type
              SnmpOSIAddress."
      ::= { snmpDomains 2 }

  snmpCONSDomain OBJECT-IDENTITY
      STATUS     current
      DESCRIPTION
              "The SNMP over CONS transport domain.
              The corresponding transport address is of type
              SnmpOSIAddress."
      ::= { snmpDomains 3 }

  SnmpOSIAddress ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "*1x:/1x:"
      STATUS       current
      DESCRIPTION
              "Represents an OSI transport-address:

            octets   contents           encoding
               1     length of NSAP     'n' as an unsigned-integer
                                           (either 0 or from 3 to 20)
            2..(n+1) NSAP                concrete binary representation
            (n+2)..m TSEL                string of (up to 64) octets
              "
      SYNTAX       OCTET STRING (SIZE (1 | 4..85))








Presuhn, et al.             Standards Track                     [Page 5]

RFC 3417              Transport Mappings for SNMP          December 2002


  -- SNMP over DDP

  snmpDDPDomain  OBJECT-IDENTITY
      STATUS     current
      DESCRIPTION
              "The SNMP over DDP transport domain.  The corresponding
              transport address is of type SnmpNBPAddress."
      ::= { snmpDomains 4 }

  SnmpNBPAddress ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
              "Represents an NBP name:

           octets        contents          encoding
              1          length of object  'n' as an unsigned integer
            2..(n+1)     object            string of (up to 32) octets
             n+2         length of type    'p' as an unsigned integer
        (n+3)..(n+2+p)   type              string of (up to 32) octets
            n+3+p        length of zone    'q' as an unsigned integer
      (n+4+p)..(n+3+p+q) zone              string of (up to 32) octets

              For comparison purposes, strings are
              case-insensitive. All strings may contain any octet
              other than 255 (hex ff)."
      SYNTAX       OCTET STRING (SIZE (3..99))

  -- SNMP over IPX

  snmpIPXDomain  OBJECT-IDENTITY
      STATUS     current
      DESCRIPTION
              "The SNMP over IPX transport domain.  The corresponding
              transport address is of type SnmpIPXAddress."
      ::= { snmpDomains 5 }

  SnmpIPXAddress ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d"
      STATUS       current
      DESCRIPTION
              "Represents an IPX address:

                 octets   contents            encoding
                  1-4     network-number      network-byte order
                  5-10    physical-address    network-byte order
                 11-12    socket-number       network-byte order
              "
      SYNTAX       OCTET STRING (SIZE (12))



Presuhn, et al.             Standards Track                     [Page 6]

RFC 3417              Transport Mappings for SNMP          December 2002


  -- for proxy to SNMPv1 (RFC 1157)

  rfc1157Proxy   OBJECT IDENTIFIER ::= { snmpProxys 1 }

  rfc1157Domain  OBJECT-IDENTITY
      STATUS     deprecated
      DESCRIPTION
              "The transport domain for SNMPv1 over UDP over IPv4.
              The corresponding transport address is of type
              SnmpUDPAddress."
      ::= { rfc1157Proxy 1 }

  --  ::= { rfc1157Proxy 2 }            this OID is obsolete

  END

3.  SNMP over UDP over IPv4

  This is the preferred transport mapping.

3.1.  Serialization

  Each instance of a message is serialized (i.e., encoded according to
  the convention of [BER]) onto a single UDP [RFC768] over IPv4
  [RFC791] datagram, using the algorithm specified in Section 8.

3.2.  Well-known Values

  It is suggested that administrators configure their SNMP entities
  supporting command responder applications to listen on UDP port 161.
  Further, it is suggested that SNMP entities supporting notification
  receiver applications be configured to listen on UDP port 162.

  When an SNMP entity uses this transport mapping, it must be capable
  of accepting messages up to and including 484 octets in size.  It is
  recommended that implementations be capable of accepting messages of
  up to 1472 octets in size.  Implementation of larger values is
  encouraged whenever possible.

4.  SNMP over OSI

  This is an optional transport mapping.

4.1.  Serialization

  Each instance of a message is serialized onto a single TSDU [IS8072]
  [IS8072A] for the OSI Connectionless-mode Transport Service (CLTS),
  using the algorithm specified in Section 8.



Presuhn, et al.             Standards Track                     [Page 7]

RFC 3417              Transport Mappings for SNMP          December 2002


4.2.  Well-known Values

  It is suggested that administrators configure their SNMP entities
  supporting command responder applications to listen on transport
  selector "snmp-l" (which consists of six ASCII characters), when
  using a CL-mode network service to realize the CLTS.  Further, it is
  suggested that SNMP entities supporting notification receiver
  applications be configured to listen on transport selector "snmpt-l"
  (which consists of seven ASCII characters, six letters and a hyphen)
  when using a CL-mode network service to realize the CLTS.  Similarly,
  when using a CO-mode network service to realize the CLTS, the
  suggested transport selectors are "snmp-o" and "snmpt-o", for command
  responders and notification receivers, respectively.

  When an SNMP entity uses this transport mapping, it must be capable
  of accepting messages that are at least 484 octets in size.
  Implementation of larger values is encouraged whenever possible.

5.  SNMP over DDP

  This is an optional transport mapping.

5.1.  Serialization

  Each instance of a message is serialized onto a single DDP datagram
  [APPLETALK], using the algorithm specified in Section 8.

5.2.  Well-known Values

  SNMP messages are sent using DDP protocol type 8.  SNMP entities
  supporting command responder applications listen on DDP socket number
  8, while SNMP entities supporting notification receiver applications
  listen on DDP socket number 9.

  Administrators must configure their SNMP entities supporting command
  responder applications to use NBP type "SNMP Agent" (which consists
  of ten ASCII characters) while those supporting notification receiver
  applications must be configured to use NBP type "SNMP Trap Handler"
  (which consists of seventeen ASCII characters).

  The NBP name for SNMP entities supporting command responders and
  notification receivers should be stable - NBP names should not change
  any more often than the IP address of a typical TCP/IP node.  It is
  suggested that the NBP name be stored in some form of stable storage.

  When an SNMP entity uses this transport mapping, it must be capable
  of accepting messages that are at least 484 octets in size.
  Implementation of larger values is encouraged whenever possible.



Presuhn, et al.             Standards Track                     [Page 8]

RFC 3417              Transport Mappings for SNMP          December 2002


5.3.  Discussion of AppleTalk Addressing

  The AppleTalk protocol suite has certain features not manifest in the
  TCP/IP suite.  AppleTalk's naming strategy and the dynamic nature of
  address assignment can cause problems for SNMP entities that wish to
  manage AppleTalk networks.  TCP/IP nodes have an associated IP
  address which distinguishes each from the other.  In contrast,
  AppleTalk nodes generally have no such characteristic.  The network-
  level address, while often relatively stable, can change at every
  reboot (or more frequently).

  Thus, when SNMP is mapped over DDP, nodes are identified by a "name",
  rather than by an "address".  Hence, all AppleTalk nodes that
  implement this mapping are required to respond to NBP lookups and
  confirms (e.g., implement the NBP protocol stub), which guarantees
  that a mapping from NBP name to DDP address will be possible.

  In determining the SNMP identity to register for an SNMP entity, it
  is suggested that the SNMP identity be a name which is associated
  with other network services offered by the machine.

  NBP lookups, which are used to map NBP names into DDP addresses, can
  cause large amounts of network traffic as well as consume CPU
  resources.  It is also the case that the ability to perform an NBP
  lookup is sensitive to certain network disruptions (such as zone
  table inconsistencies) which would not prevent direct AppleTalk
  communications between two SNMP entities.

  Thus, it is recommended that NBP lookups be used infrequently,
  primarily to create a cache of name-to-address mappings.  These
  cached mappings should then be used for any further SNMP traffic.  It
  is recommended that SNMP entities supporting command generator
  applications should maintain this cache between reboots.  This
  caching can help minimize network traffic, reduce CPU load on the
  network, and allow for (some amount of) network trouble shooting when
  the basic name-to-address translation mechanism is broken.

5.3.1.  How to Acquire NBP names

  An SNMP entity supporting command generator applications may have a
  pre-configured list of names of "known" SNMP entities supporting
  command responder applications.  Similarly, an SNMP entity supporting
  command generator or notification receiver applications might
  interact with an operator.  Finally, an SNMP entity supporting
  command generator or notification receiver applications might
  communicate with all SNMP entities supporting command responder or
  notification originator applications in a set of zones or networks.




Presuhn, et al.             Standards Track                     [Page 9]

RFC 3417              Transport Mappings for SNMP          December 2002


5.3.2.  When to Turn NBP names into DDP addresses

  When an SNMP entity uses a cache entry to address an SNMP packet, it
  should attempt to confirm the validity mapping, if the mapping hasn't
  been confirmed within the last T1 seconds.  This cache entry
  lifetime, T1, has a minimum, default value of 60 seconds, and should
  be configurable.

  An SNMP entity supporting a command generator application may decide
  to prime its cache of names prior to actually communicating with
  another SNMP entity.  In general, it is expected that such an entity
  may want to keep certain mappings "more current" than other mappings,
  e.g., those nodes which represent the network infrastructure (e.g.,
  routers) may be deemed "more important".

  Note that an SNMP entity supporting command generator applications
  should not prime its entire cache upon initialization - rather, it
  should attempt resolutions over an extended period of time (perhaps
  in some pre-determined or configured priority order).  Each of these
  resolutions might, in fact, be a wildcard lookup in a given zone.

  An SNMP entity supporting command responder applications must never
  prime its cache.  When generating a response, such an entity does not
  need to confirm a cache entry.  An SNMP entity supporting
  notification originator applications should do NBP lookups (or
  confirms) only when it needs to send an SNMP trap or inform.

5.3.3.  How to Turn NBP names into DDP addresses

  If the only piece of information available is the NBP name, then an
  NBP lookup should be performed to turn that name into a DDP address.
  However, if there is a piece of stale information, it can be used as
  a hint to perform an NBP confirm (which sends a unicast to the
  network address which is presumed to be the target of the name
  lookup) to see if the stale information is, in fact, still valid.

  An NBP name to DDP address mapping can also be confirmed implicitly
  using only SNMP transactions.  For example, an SNMP entity supporting
  command generator applications issuing a retrieval operation could
  also retrieve the relevant objects from the NBP group [RFC1742] for
  the SNMP entity supporting the command responder application.  This
  information can then be correlated with the source DDP address of the
  response.

5.3.4.  What if NBP is broken

  Under some circumstances, there may be connectivity between two SNMP
  entities, but the NBP mapping machinery may be broken, e.g.,



Presuhn, et al.             Standards Track                    [Page 10]

RFC 3417              Transport Mappings for SNMP          December 2002


  o  the NBP FwdReq (forward NBP lookup onto local attached network)
     mechanism might be broken at a router on the other entity's
     network; or,

  o  the NBP BrRq (NBP broadcast request) mechanism might be broken at
     a router on the entity's own network; or,

  o  NBP might be broken on the other entity's node.

  An SNMP entity supporting command generator applications which is
  dedicated to AppleTalk management might choose to alleviate some of
  these failures by directly implementing the router portion of NBP.
  For example, such an entity might already know all the zones on the
  AppleTalk internet and the networks on which each zone appears.
  Given an NBP lookup which fails, the entity could send an NBP FwdReq
  to the network in which the SNMP entity supporting the command
  responder or notification originator application was last located.
  If that failed, the station could then send an NBP LkUp (NBP lookup
  packet) as a directed (DDP) multicast to each network number on that
  network.  Of the above (single) failures, this combined approach will
  solve the case where either the local router's BrRq-to-FwdReq
  mechanism is broken or the remote router's FwdReq-to-LkUp mechanism
  is broken.

6.  SNMP over IPX

  This is an optional transport mapping.

6.1.  Serialization

  Each instance of a message is serialized onto a single IPX datagram
  [NOVELL], using the algorithm specified in Section 8.

6.2.  Well-known Values

  SNMP messages are sent using IPX packet type 4 (i.e., Packet Exchange
  Protocol).

  It is suggested that administrators configure their SNMP entities
  supporting command responder applications to listen on IPX socket
  36879 (900f hexadecimal).  Further, it is suggested that those
  supporting notification receiver applications be configured to listen
  on IPX socket 36880 (9010 hexadecimal).

  When an SNMP entity uses this transport mapping, it must be capable
  of accepting messages that are at least 546 octets in size.
  Implementation of larger values is encouraged whenever possible.




Presuhn, et al.             Standards Track                    [Page 11]

RFC 3417              Transport Mappings for SNMP          December 2002


7.  Proxy to SNMPv1

  Historically, in order to support proxy to SNMPv1, as defined in
  [RFC2576], it was deemed useful to define a transport domain,
  rfc1157Domain, which indicates the transport mapping for SNMP
  messages as defined in [RFC1157].

8.  Serialization using the Basic Encoding Rules

  When the Basic Encoding Rules [BER] are used for serialization:

  (1)   When encoding the length field, only the definite form is used;
        use of the indefinite form encoding is prohibited.  Note that
        when using the definite-long form, it is permissible to use
        more than the minimum number of length octets necessary to
        encode the length field.

  (2)   When encoding the value field, the primitive form shall be used
        for all simple types, i.e., INTEGER, OCTET STRING, and OBJECT
        IDENTIFIER (either IMPLICIT or explicit).  The constructed form
        of encoding shall be used only for structured types, i.e., a
        SEQUENCE or an IMPLICIT SEQUENCE.

  (3)   When encoding an object whose syntax is described using the
        BITS construct, the value is encoded as an OCTET STRING, in
        which all the named bits in (the definition of) the bitstring,
        commencing with the first bit and proceeding to the last bit,
        are placed in bits 8 (high order bit) to 1 (low order bit) of
        the first octet, followed by bits 8 to 1 of each subsequent
        octet in turn, followed by as many bits as are needed of the
        final subsequent octet, commencing with bit 8.  Remaining bits,
        if any, of the final octet are set to zero on generation and
        ignored on receipt.

  These restrictions apply to all aspects of ASN.1 encoding, including
  the message wrappers, protocol data units, and the data objects they
  contain.














Presuhn, et al.             Standards Track                    [Page 12]

RFC 3417              Transport Mappings for SNMP          December 2002


8.1.  Usage Example

  As an example of applying the Basic Encoding Rules, suppose one
  wanted to encode an instance of the GetBulkRequest-PDU [RFC3416]:

    [5] IMPLICIT SEQUENCE {
            request-id      1414684022,
            non-repeaters   1,
            max-repetitions 2,
            variable-bindings {
                { name sysUpTime,
                  value { unSpecified NULL } },
                { name ipNetToMediaPhysAddress,
                  value { unSpecified NULL } },
                { name ipNetToMediaType,
                  value { unSpecified NULL } }
            }
        }

  Applying the BER, this may be encoded (in hexadecimal) as:

  [5] IMPLICIT SEQUENCE          a5 82 00 39
      INTEGER                    02 04 54 52 5d 76
      INTEGER                    02 01 01
      INTEGER                    02 01 02
      SEQUENCE (OF)              30 2b
          SEQUENCE               30 0b
              OBJECT IDENTIFIER  06 07 2b 06 01 02 01 01 03
              NULL               05 00
          SEQUENCE               30 0d
              OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 02
              NULL               05 00
          SEQUENCE               30 0d
              OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 04
              NULL               05 00

  Note that the initial SEQUENCE in this example was not encoded using
  the minimum number of length octets.  (The first octet of the length,
  82, indicates that the length of the content is encoded in the next
  two octets.)











Presuhn, et al.             Standards Track                    [Page 13]

RFC 3417              Transport Mappings for SNMP          December 2002


9.  Notice on Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

10.  Acknowledgments

  This document is the product of the SNMPv3 Working Group.  Some
  special thanks are in order to the following Working Group members:

     Randy Bush
     Jeffrey D. Case
     Mike Daniele
     Rob Frye
     Lauren Heintz
     Keith McCloghrie
     Russ Mundy
     David T. Perkins
     Randy Presuhn
     Aleksey Romanov
     Juergen Schoenwaelder
     Bert Wijnen

  This version of the document, edited by Randy Presuhn, was initially
  based on the work of a design team whose members were:

     Jeffrey D. Case
     Keith McCloghrie
     David T. Perkins
     Randy Presuhn
     Juergen Schoenwaelder



Presuhn, et al.             Standards Track                    [Page 14]

RFC 3417              Transport Mappings for SNMP          December 2002


  The previous versions of this document, edited by Keith McCloghrie,
  was the result of significant work by four major contributors:

     Jeffrey D. Case
     Keith McCloghrie
     Marshall T. Rose
     Steven Waldbusser

  Additionally, the contributions of the SNMPv2 Working Group to the
  previous versions are also acknowledged.  In particular, a special
  thanks is extended for the contributions of:

     Alexander I. Alten
     Dave Arneson
     Uri Blumenthal
     Doug Book
     Kim Curran
     Jim Galvin
     Maria Greene
     Iain Hanson
     Dave Harrington
     Nguyen Hien
     Jeff Johnson
     Michael Kornegay
     Deirdre Kostick
     David Levi
     Daniel Mahoney
     Bob Natale
     Brian O'Keefe
     Andrew Pearson
     Dave Perkins
     Randy Presuhn
     Aleksey Romanov
     Shawn Routhier
     Jon Saperia
     Juergen Schoenwaelder
     Bob Stewart
     Kaj Tesink
     Glenn Waters
     Bert Wijnen

11.  IANA Considerations

  The SNMPv2-TM MIB module requires the allocation of a single object
  identifier for its MODULE-IDENTITY.  IANA has allocated this object
  identifier in the snmpModules subtree, defined in the SNMPv2-SMI MIB
  module.




Presuhn, et al.             Standards Track                    [Page 15]

RFC 3417              Transport Mappings for SNMP          December 2002


12.  Security Considerations

  SNMPv1 by itself is not a secure environment.  Even if the network
  itself is secure (for example by using IPSec), even then, there is no
  control as to who on the secure network is allowed to access and
  GET/SET (read/change) the objects accessible through a command
  responder application.

  It is recommended that the implementors consider the security
  features as provided by the SNMPv3 framework.  Specifically, the use
  of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
  View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
  recommended.

  It is then a customer/user responsibility to ensure that the SNMP
  entity giving access to a MIB is properly configured to give access
  to the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change) them.

13.  References

13.1.  Normative References

  [BER]       Information processing systems - Open Systems
              Interconnection - Specification of Basic Encoding Rules
              for Abstract Syntax Notation One (ASN.1), International
              Organization for Standardization.  International Standard
              8825, December 1987.

  [IS8072]    Information processing systems - Open Systems
              Interconnection - Transport Service Definition,
              International Organization for Standardization.
              International Standard 8072, June 1986.

  [IS8072A]   Information processing systems - Open Systems
              Interconnection - Transport Service Definition - Addendum
              1: Connectionless-mode Transmission, International
              Organization for Standardization.  International Standard
              8072/AD 1, December 1986.

  [RFC768]    Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              August 1980.

  [RFC791]    Postel, J., "Internet Protocol", STD 5, RFC 791,
              September 1981.

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.



Presuhn, et al.             Standards Track                    [Page 16]

RFC 3417              Transport Mappings for SNMP          December 2002


  [RFC2578]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Structure of Management
              Information Version 2 (SMIv2)", STD 58, RFC 2578, April
              1999.

  [RFC2579]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Textual Conventions for
              SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Conformance Statements for
              SMIv2", STD 58, RFC 2580, April 1999.

  [RFC3414]   Blumenthal, U. and B. Wijnen, "The User-Based Security
              Model (USM) for Version 3 of the Simple Network
              Management Protocol (SNMPv3)", STD 62, RFC 3414, December
              2002.

  [RFC3415]   Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
              Access Control Model (VACM) for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3415, December
              2002.

  [RFC3416]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
              Waldbusser, "Version 2 of the Protocol Operations for the
              Simple Network Management Protocol (SNMP)", STD 62, RFC
              3416, December 2002.

13.2.  Informative References

  [APPLETALK] Sidhu, G., Andrews, R. and A. Oppenheimer, Inside
              AppleTalk (second edition).  Addison-Wesley, 1990.

  [NOVELL]    Network System Technical Interface Overview.  Novell,
              Inc., June 1989.

  [RFC1157]   Case, J., Fedor, M., Schoffstall, M. and J. Davin,
              "Simple Network Management Protocol", STD 15, RFC 1157,
              May 1990.

  [RFC1742]   Waldbusser, S. and K. Frisa, "AppleTalk Management
              Information Base II", RFC 1742, January 1995.

  [RFC2576]   Frye, R., Levi, D., Routhier, S. and B. Wijnen,
              "Coexistence between Version 1, Version 2, and Version 3
              of the Internet-Standard Network Management Framework",
              RFC 2576, March 2000.




Presuhn, et al.             Standards Track                    [Page 17]

RFC 3417              Transport Mappings for SNMP          December 2002


  [RFC3410]   Case, J., Mundy, R., Partain, D. and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410, December 2002.

  [RFC3419]   Daniele, M. and J. Schoenwaelder, "Textual Conventions
              for Transport Addresses", RFC 3419, November 2002.

14.  Changes from RFC 1906

  This document differs from RFC 1906 only in editorial improvements.
  The protocol is unchanged.

15.  Editor's Address

  Randy Presuhn
  BMC Software, Inc.
  2141 North First Street
  San Jose, CA 95131
  USA

  Phone: +1 408 546-1006
  EMail: [email protected]





























Presuhn, et al.             Standards Track                    [Page 18]

RFC 3417              Transport Mappings for SNMP          December 2002


16.  Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Presuhn, et al.             Standards Track                    [Page 19]