Network Working Group                                      D. Harrington
Request for Comments: 3411                            Enterasys Networks
STD: 62                                                       R. Presuhn
Obsoletes: 2571                                       BMC Software, Inc.
Category: Standards Track                                      B. Wijnen
                                                    Lucent Technologies
                                                          December 2002


                    An Architecture for Describing
   Simple Network Management Protocol (SNMP) Management Frameworks

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document describes an architecture for describing Simple Network
  Management Protocol (SNMP) Management Frameworks.  The architecture
  is designed to be modular to allow the evolution of the SNMP protocol
  standards over time.  The major portions of the architecture are an
  SNMP engine containing a Message Processing Subsystem, a Security
  Subsystem and an Access Control Subsystem, and possibly multiple SNMP
  applications which provide specific functional processing of
  management data.  This document obsoletes RFC 2571.

Table of Contents

  1. Introduction ................................................    4
  1.1. Overview ..................................................    4
  1.2. SNMP ......................................................    5
  1.3. Goals of this Architecture ................................    6
  1.4. Security Requirements of this Architecture ................    6
  1.5. Design Decisions ..........................................    8
  2. Documentation Overview ......................................   10
  2.1. Document Roadmap ..........................................   11
  2.2. Applicability Statement ...................................   11





Harrington, et al.          Standards Track                     [Page 1]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  2.3. Coexistence and Transition ................................   11
  2.4. Transport Mappings ........................................   12
  2.5. Message Processing ........................................   12
  2.6. Security ..................................................   12
  2.7. Access Control ............................................   13
  2.8. Protocol Operations .......................................   13
  2.9. Applications ..............................................   14
  2.10. Structure of Management Information ......................   15
  2.11. Textual Conventions ......................................   15
  2.12. Conformance Statements ...................................   15
  2.13. Management Information Base Modules ......................   15
  2.13.1. SNMP Instrumentation MIBs ..............................   15
  2.14. SNMP Framework Documents .................................   15
  3. Elements of the Architecture ................................   16
  3.1. The Naming of Entities ....................................   17
  3.1.1. SNMP engine .............................................   18
  3.1.1.1. snmpEngineID ..........................................   18
  3.1.1.2. Dispatcher ............................................   18
  3.1.1.3. Message Processing Subsystem ..........................   19
  3.1.1.3.1. Message Processing Model ............................   19
  3.1.1.4. Security Subsystem ....................................   20
  3.1.1.4.1. Security Model ......................................   20
  3.1.1.4.2. Security Protocol ...................................   20
  3.1.2. Access Control Subsystem ................................   21
  3.1.2.1. Access Control Model ..................................   21
  3.1.3. Applications ............................................   21
  3.1.3.1. SNMP Manager ..........................................   22
  3.1.3.2. SNMP Agent ............................................   23
  3.2. The Naming of Identities ..................................   25
  3.2.1. Principal ...............................................   25
  3.2.2. securityName ............................................   25
  3.2.3. Model-dependent security ID .............................   26
  3.3. The Naming of Management Information ......................   26
  3.3.1. An SNMP Context .........................................   28
  3.3.2. contextEngineID .........................................   28
  3.3.3. contextName .............................................   29
  3.3.4. scopedPDU ...............................................   29
  3.4. Other Constructs ..........................................   29
  3.4.1. maxSizeResponseScopedPDU ................................   29
  3.4.2. Local Configuration Datastore ...........................   29
  3.4.3. securityLevel ...........................................   29
  4. Abstract Service Interfaces .................................   30
  4.1. Dispatcher Primitives .....................................   30
  4.1.1. Generate Outgoing Request or Notification ...............   31
  4.1.2. Process Incoming Request or Notification PDU ............   31
  4.1.3. Generate Outgoing Response ..............................   32
  4.1.4. Process Incoming Response PDU ...........................   32
  4.1.5. Registering Responsibility for Handling SNMP PDUs .......   32



Harrington, et al.          Standards Track                     [Page 2]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  4.2. Message Processing Subsystem Primitives ...................   33
  4.2.1. Prepare Outgoing SNMP Request or Notification Message ...   33
  4.2.2. Prepare an Outgoing SNMP Response Message ...............   34
  4.2.3. Prepare Data Elements from an Incoming SNMP Message .....   35
  4.3. Access Control Subsystem Primitives .......................   35
  4.4. Security Subsystem Primitives .............................   36
  4.4.1. Generate a Request or Notification Message ..............   36
  4.4.2. Process Incoming Message ................................   36
  4.4.3. Generate a Response Message .............................   37
  4.5. Common Primitives .........................................   37
  4.5.1. Release State Reference Information .....................   37
  4.6. Scenario Diagrams .........................................   38
  4.6.1. Command Generator or Notification Originator ............   38
  4.6.2. Scenario Diagram for a Command Responder Application ....   39
  5. Managed Object Definitions for SNMP Management Frameworks ...   40
  6. IANA Considerations .........................................   51
  6.1. Security Models ...........................................   51
  6.2. Message Processing Models .................................   51
  6.3. SnmpEngineID Formats ......................................   52
  7. Intellectual Property .......................................   52
  8. Acknowledgements ............................................   52
  9. Security Considerations .....................................   54
  10. References .................................................   54
  10.1. Normative References .....................................   54
  10.2. Informative References ...................................   56
  A. Guidelines for Model Designers ..............................   57
  A.1. Security Model Design Requirements ........................   57
  A.1.1. Threats .................................................   57
  A.1.2. Security Processing .....................................   58
  A.1.3. Validate the security-stamp in a received message .......   59
  A.1.4. Security MIBs ...........................................   59
  A.1.5. Cached Security Data ....................................   59
  A.2. Message Processing Model Design Requirements ..............   60
  A.2.1. Receiving an SNMP Message from the Network ..............   60
  A.2.2. Sending an SNMP Message to the Network ..................   60
  A.3. Application Design Requirements ...........................   61
  A.3.1. Applications that Initiate Messages .....................   61
  A.3.2. Applications that Receive Responses .....................   62
  A.3.3. Applications that Receive Asynchronous Messages .........   62
  A.3.4. Applications that Send Responses ........................   62
  A.4. Access Control Model Design Requirements ..................   63
  Editors' Addresses .............................................   63
  Full Copyright Statement .......................................   64








Harrington, et al.          Standards Track                     [Page 3]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


1.  Introduction

1.1.  Overview

  This document defines a vocabulary for describing SNMP Management
  Frameworks, and an architecture for describing the major portions of
  SNMP Management Frameworks.

  This document does not provide a general introduction to SNMP.  Other
  documents and books can provide a much better introduction to SNMP.
  Nor does this document provide a history of SNMP.  That also can be
  found in books and other documents.

  Section 1 describes the purpose, goals, and design decisions of this
  architecture.

  Section 2 describes various types of documents which define (elements
  of) SNMP Frameworks, and how they fit into this architecture.  It
  also provides a minimal road map to the documents which have
  previously defined SNMP frameworks.

  Section 3 details the vocabulary of this architecture and its pieces.
  This section is important for understanding the remaining sections,
  and for understanding documents which are written to fit within this
  architecture.

  Section 4 describes the primitives used for the abstract service
  interfaces between the various subsystems, models and applications
  within this architecture.

  Section 5 defines a collection of managed objects used to instrument
  SNMP entities within this architecture.

  Sections 6, 7, 8, 9, 10 and 11 are administrative in nature.

  Appendix A contains guidelines for designers of Models which are
  expected to fit within this architecture.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].










Harrington, et al.          Standards Track                     [Page 4]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


1.2.  SNMP

  An SNMP management system contains:

     -  several (potentially many) nodes, each with an SNMP entity
        containing command responder and notification originator
        applications, which have access to management instrumentation
        (traditionally called agents);

     -  at least one SNMP entity containing command generator and/or
        notification receiver applications (traditionally called a
        manager) and,

     -  a management protocol, used to convey management information
        between the SNMP entities.

  SNMP entities executing command generator and notification receiver
  applications monitor and control managed elements.  Managed elements
  are devices such as hosts, routers, terminal servers, etc., which are
  monitored and controlled via access to their management information.

  It is the purpose of this document to define an architecture which
  can evolve to realize effective management in a variety of
  configurations and environments.  The architecture has been designed
  to meet the needs of implementations of:

     -  minimal SNMP entities with command responder and/or
        notification originator applications (traditionally called SNMP
        agents),

     -  SNMP entities with proxy forwarder applications (traditionally
        called SNMP proxy agents),

     -  command line driven SNMP entities with command generator and/or
        notification receiver applications (traditionally called SNMP
        command line managers),

     -  SNMP entities with  command generator and/or notification
        receiver, plus command responder and/or notification originator
        applications (traditionally called SNMP mid-level managers or
        dual-role entities),

     -  SNMP entities with command generator and/or notification
        receiver and possibly other types of applications for managing
        a potentially very large number of managed nodes (traditionally
        called (network) management stations).





Harrington, et al.          Standards Track                     [Page 5]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


1.3.  Goals of this Architecture

  This architecture was driven by the following goals:

     -  Use existing materials as much as possible.  It is heavily
        based on previous work, informally known as SNMPv2u and
        SNMPv2*, based in turn on SNMPv2p.

     -  Address the need for secure SET support, which is considered
        the most important deficiency in SNMPv1 and SNMPv2c.

     -  Make it possible to move portions of the architecture forward
        in the standards track, even if consensus has not been reached
        on all pieces.

     -  Define an architecture that allows for longevity of the SNMP
        Frameworks that have been and will be defined.

     -  Keep SNMP as simple as possible.

     -  Make it relatively inexpensive to deploy a minimal conforming
        implementation.

     -  Make it possible to upgrade portions of SNMP as new approaches
        become available, without disrupting an entire SNMP framework.

     -  Make it possible to support features required in large
        networks, but make the expense of supporting a feature directly
        related to the support of the feature.

1.4.  Security Requirements of this Architecture

  Several of the classical threats to network protocols are applicable
  to the management problem and therefore would be applicable to any
  Security Model used in an SNMP Management Framework.  Other threats
  are not applicable to the management problem.  This section discusses
  principal threats, secondary threats, and threats which are of lesser
  importance.

  The principal threats against which any Security Model used within
  this architecture SHOULD provide protection are:

     Modification of Information
        The modification threat is the danger that some unauthorized
        entity may alter in-transit SNMP messages generated on behalf
        of an authorized principal in such a way as to effect
        unauthorized management operations, including falsifying the
        value of an object.



Harrington, et al.          Standards Track                     [Page 6]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


     Masquerade
        The masquerade threat is the danger that management operations
        not authorized for some principal may be attempted by assuming
        the identity of another principal that has the appropriate
        authorizations.

  Secondary threats against which any Security Model used within this
  architecture SHOULD provide protection are:

     Message Stream Modification
        The SNMP protocol is typically based upon a connectionless
        transport service which may operate over any subnetwork
        service.  The re-ordering, delay or replay of messages can and
        does occur through the natural operation of many such
        subnetwork services.  The message stream modification threat is
        the danger that messages may be maliciously re-ordered, delayed
        or replayed to an extent which is greater than can occur
        through the natural operation of a subnetwork service, in order
        to effect unauthorized management operations.

     Disclosure
        The disclosure threat is the danger of eavesdropping on the
        exchanges between SNMP engines.  Protecting against this threat
        may be required as a matter of local policy.

  There are at least two threats against which a Security Model within
  this architecture need not protect, since they are deemed to be of
  lesser importance in this context:

     Denial of Service
        A Security Model need not attempt to address the broad range of
        attacks by which service on behalf of authorized users is
        denied.  Indeed, such denial-of-service attacks are in many
        cases indistinguishable from the type of network failures with
        which any viable management protocol must cope as a matter of
        course.

     Traffic Analysis
        A Security Model need not attempt to address traffic analysis
        attacks.  Many traffic patterns are predictable - entities may
        be managed on a regular basis by a relatively small number of
        management stations - and therefore there is no significant
        advantage afforded by protecting against traffic analysis.








Harrington, et al.          Standards Track                     [Page 7]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


1.5.  Design Decisions

  Various design decisions were made in support of the goals of the
  architecture and the security requirements:

     - Architecture
        An architecture should be defined which identifies the
        conceptual boundaries between the documents.  Subsystems should
        be defined which describe the abstract services provided by
        specific portions of an SNMP framework.  Abstract service
        interfaces, as described by service primitives, define the
        abstract boundaries between documents, and the abstract
        services that are provided by the conceptual subsystems of an
        SNMP framework.

     - Self-contained Documents
        Elements of procedure plus the MIB objects which are needed for
        processing for a specific portion of an SNMP framework should
        be defined in the same document, and as much as possible,
        should not be referenced in other documents.  This allows
        pieces to be designed and documented as independent and self-
        contained parts, which is consistent with the general SNMP MIB
        module approach.  As portions of SNMP change over time, the
        documents describing other portions of SNMP are not directly
        impacted.  This modularity allows, for example, Security
        Models, authentication and privacy mechanisms, and message
        formats to be upgraded and supplemented as the need arises.
        The self-contained documents can move along the standards track
        on different time-lines.

        This modularity of specification is not meant to be interpreted
        as imposing any specific requirements on implementation.

     - Threats
        The Security Models in the Security Subsystem SHOULD protect
        against the principal and secondary threats: modification of
        information, masquerade, message stream modification and
        disclosure.  They do not need to protect against denial of
        service and traffic analysis.

     - Remote Configuration
        The Security and Access Control Subsystems add a whole new set
        of SNMP configuration parameters.  The Security Subsystem also
        requires frequent changes of secrets at the various SNMP
        entities.  To make this deployable in a large operational
        environment, these SNMP parameters must be remotely
        configurable.




Harrington, et al.          Standards Track                     [Page 8]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


     - Controlled Complexity
        It is recognized that producers of simple managed devices want
        to keep the resources used by SNMP to a minimum.  At the same
        time, there is a need for more complex configurations which can
        spend more resources for SNMP and thus provide more
        functionality.  The design tries to keep the competing
        requirements of these two environments in balance and allows
        the more complex environments to logically extend the simple
        environment.










































Harrington, et al.          Standards Track                     [Page 9]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


2.  Documentation Overview

  The following figure shows the set of documents that fit within the
  SNMP Architecture.

  +------------------------- Document Set ----------------------------+
  |                                                                   |
  | +----------+              +-----------------+  +----------------+ |
  | | Document |              | Applicability   |  | Coexistence    | |
  | | Roadmap  |              | Statement       |  | & Transition   | |
  | +----------+              +-----------------+  +----------------+ |
  |                                                                   |
  | +---------------------------------------------------------------+ |
  | | Message Handling                                              | |
  | | +----------------+  +-----------------+  +-----------------+  | |
  | | | Transport      |  | Message         |  | Security        |  | |
  | | | Mappings       |  | Processing and  |  |                 |  | |
  | | |                |  | Dispatcher      |  |                 |  | |
  | | +----------------+  +-----------------+  +-----------------+  | |
  | +---------------------------------------------------------------+ |
  |                                                                   |
  | +---------------------------------------------------------------+ |
  | | PDU Handling                                                  | |
  | | +----------------+  +-----------------+  +-----------------+  | |
  | | | Protocol       |  | Applications    |  | Access          |  | |
  | | | Operations     |  |                 |  | Control         |  | |
  | | +----------------+  +-----------------+  +-----------------+  | |
  | +---------------------------------------------------------------+ |
  |                                                                   |
  | +---------------------------------------------------------------+ |
  | | Information Model                                             | |
  | | +--------------+   +--------------+    +---------------+      | |
  | | | Structure of |   | Textual      |    | Conformance   |      | |
  | | | Management   |   | Conventions  |    | Statements    |      | |
  | | | Information  |   |              |    |               |      | |
  | | +--------------+   +--------------+    +---------------+      | |
  | +---------------------------------------------------------------+ |
  |                                                                   |
  | +---------------------------------------------------------------+ |
  | | MIB Modules written in various formats, e.g.:                 | |
  | | +----------------+ +----------------+                         | |
  | | | SMIv1 (STD 18) | | SMIv2 (STD 58) |                         | |
  | | | format         | | format         |                         | |
  | | +----------------+ +----------------+                         | |
  | +---------------------------------------------------------------+ |
  |                                                                   |
  +-------------------------------------------------------------------+




Harrington, et al.          Standards Track                    [Page 10]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  Each of these documents may be replaced or supplemented.  This
  Architecture document specifically describes how new documents fit
  into the set of documents in the area of Message and PDU handling.

2.1.  Document Roadmap

  One or more documents may be written to describe how sets of
  documents taken together form specific Frameworks.  The configuration
  of document sets might change over time, so the "road map" should be
  maintained in a document separate from the standards documents
  themselves.

  An example of such a roadmap is "Introduction and Applicability
  Statements for the Internet-Standard Management Framework" [RFC3410].

2.2.  Applicability Statement

  SNMP is used in networks that vary widely in size and complexity, by
  organizations that vary widely in their requirements of management.
  Some models will be designed to address specific problems of
  management, such as message security.

  One or more documents may be written to describe the environments to
  which certain versions of SNMP or models within SNMP would be
  appropriately applied, and those to which a given model might be
  inappropriately applied.

2.3.  Coexistence and Transition

  The purpose of an evolutionary architecture is to permit new models
  to replace or supplement existing models.  The interactions between
  models could result in incompatibilities, security "holes", and other
  undesirable effects.

  The purpose of Coexistence documents is to detail recognized
  anomalies and to describe required and recommended behaviors for
  resolving the interactions between models within the architecture.

  Coexistence documents may be prepared separately from model
  definition documents, to describe and resolve interaction anomalies
  between a model definition and one or more other model definitions.

  Additionally, recommendations for transitions between models may also
  be described, either in a coexistence document or in a separate
  document.






Harrington, et al.          Standards Track                    [Page 11]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  One such coexistence document is [RFC2576], "Coexistence between
  Version 1, Version 2, and Version 3 of the Internet-Standard Network
  Management Framework".

2.4.  Transport Mappings

  SNMP messages are sent over various transports.  It is the purpose of
  Transport Mapping documents to define how the mapping between SNMP
  and the transport is done.

2.5.  Message Processing

  A Message Processing Model document defines a message format, which
  is typically identified by a version field in an SNMP message header.
  The document may also define a MIB module for use in message
  processing and for instrumentation of version-specific interactions.

  An SNMP engine includes one or more Message Processing Models, and
  thus may support sending and receiving multiple versions of SNMP
  messages.

2.6.  Security

  Some environments require secure protocol interactions.  Security is
  normally applied at two different stages:

     -  in the transmission/receipt of messages, and

     -  in the processing of the contents of messages.

  For purposes of this document, "security" refers to message-level
  security; "access control" refers to the security applied to protocol
  operations.

  Authentication, encryption, and timeliness checking are common
  functions of message level security.

  A security document describes a Security Model, the threats against
  which the model protects, the goals of the Security Model, the
  protocols which it uses to meet those goals, and it may define a MIB
  module to describe the data used during processing, and to allow the
  remote configuration of message-level security parameters, such as
  keys.

  An SNMP engine may support multiple Security Models concurrently.






Harrington, et al.          Standards Track                    [Page 12]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


2.7.  Access Control

  During processing, it may be required to control access to managed
  objects for operations.

  An Access Control Model defines mechanisms to determine whether
  access to a managed object should be allowed.  An Access Control
  Model may define a MIB module used during processing and to allow the
  remote configuration of access control policies.

2.8.  Protocol Operations

  SNMP messages encapsulate an SNMP Protocol Data Unit (PDU).  SNMP
  PDUs define the operations performed by the receiving SNMP engine.
  It is the purpose of a Protocol Operations document to define the
  operations of the protocol with respect to the processing of the
  PDUs.  Every PDU belongs to one or more of the PDU classes defined
  below:

     1) Read Class:

        The Read Class contains protocol operations that retrieve
        management information.  For example, [RFC3416] defines the
        following protocol operations for the Read Class: GetRequest-
        PDU, GetNextRequest-PDU, and GetBulkRequest-PDU.

     2) Write Class:

        The Write Class contains protocol operations which attempt to
        modify management information.  For example, [RFC3416] defines
        the following protocol operation for the Write Class:
        SetRequest-PDU.

     3) Response Class:

        The Response Class contains protocol operations which are sent
        in response to a previous request.  For example, [RFC3416]
        defines the following for the Response Class: Response-PDU,
        Report-PDU.

     4) Notification Class:

        The Notification Class contains protocol operations which send
        a notification to a notification receiver application.  For
        example, [RFC3416] defines the following operations for the
        Notification Class: Trapv2-PDU, InformRequest-PDU.





Harrington, et al.          Standards Track                    [Page 13]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


     5) Internal Class:

        The Internal Class contains protocol operations which are
        exchanged internally between SNMP engines.  For example,
        [RFC3416] defines the following operation for the Internal
        Class: Report-PDU.

  The preceding five classifications are based on the functional
  properties of a PDU.  It is also useful to classify PDUs based on
  whether a response is expected:

     6) Confirmed Class:

        The Confirmed Class contains all protocol operations which
        cause the receiving SNMP engine to send back a response.  For
        example, [RFC3416] defines the following operations for the
        Confirmed Class: GetRequest-PDU, GetNextRequest-PDU,
        GetBulkRequest-PDU, SetRequest-PDU, and InformRequest-PDU.

     7) Unconfirmed Class:

        The Unconfirmed Class contains all protocol operations which
        are not acknowledged.  For example, [RFC3416] defines the
        following operations for the Unconfirmed Class: Report-PDU,
        Trapv2-PDU, and GetResponse-PDU.

  An application document defines which Protocol Operations are
  supported by the application.

2.9.  Applications

  An SNMP entity normally includes a number of applications.
  Applications use the services of an SNMP engine to accomplish
  specific tasks.  They coordinate the processing of management
  information operations, and may use SNMP messages to communicate with
  other SNMP entities.

  An applications document describes the purpose of an application, the
  services required of the associated SNMP engine, and the protocol
  operations and informational model that the application uses to
  perform management operations.

  An application document defines which set of documents are used to
  specifically define the structure of management information, textual
  conventions, conformance requirements, and operations supported by
  the application.





Harrington, et al.          Standards Track                    [Page 14]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


2.10.  Structure of Management Information

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.

  It is the purpose of a Structure of Management Information document
  to establish the notation for defining objects, modules, and other
  elements of managed information.

2.11.  Textual Conventions

  When designing a MIB module, it is often useful to define new types
  similar to those defined in the SMI, but with more precise semantics,
  or which have special semantics associated with them.  These newly
  defined types are termed textual conventions, and may be defined in
  separate documents, or within a MIB module.

2.12.  Conformance Statements

  It may be useful to define the acceptable lower-bounds of
  implementation, along with the actual level of implementation
  achieved.  It is the purpose of the Conformance Statements document
  to define the notation used for these purposes.

2.13.  Management Information Base Modules

  MIB documents describe collections of managed objects which
  instrument some aspect of a managed node.

2.13.1.  SNMP Instrumentation MIBs

  An SNMP MIB document may define a collection of managed objects which
  instrument the SNMP protocol itself.  In addition, MIB modules may be
  defined within the documents which describe portions of the SNMP
  architecture, such as the documents for Message processing Models,
  Security Models, etc. for the purpose of instrumenting those Models,
  and for the purpose of allowing their remote configuration.

2.14.  SNMP Framework Documents

  This architecture is designed to allow an orderly evolution of
  portions of SNMP Frameworks.

  Throughout the rest of this document, the term "subsystem" refers to
  an abstract and incomplete specification of a portion of a Framework,
  that is further refined by a model specification.



Harrington, et al.          Standards Track                    [Page 15]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  A "model" describes a specific design of a subsystem, defining
  additional constraints and rules for conformance to the model.  A
  model is sufficiently detailed to make it possible to implement the
  specification.

  An "implementation" is an instantiation of a subsystem, conforming to
  one or more specific models.

  SNMP version 1 (SNMPv1), is the original Internet-Standard Network
  Management Framework, as described in RFCs 1155, 1157, and 1212.

  SNMP version 2 (SNMPv2), is the SNMPv2 Framework as derived from the
  SNMPv1 Framework.  It is described in STD 58, RFCs 2578, 2579, 2580,
  and STD 62, RFCs 3416, 3417, and 3418.  SNMPv2 has no message
  definition.

  The Community-based SNMP version 2 (SNMPv2c), is an experimental SNMP
  Framework which supplements the SNMPv2 Framework, as described in
  [RFC1901].  It adds the SNMPv2c message format, which is similar to
  the SNMPv1 message format.

  SNMP version 3 (SNMPv3), is an extensible SNMP Framework which
  supplements the SNMPv2 Framework, by supporting the following:

     -  a new SNMP message format,

     -  Security for Messages,

     -  Access Control, and

     -  Remote configuration of SNMP parameters.

  Other SNMP Frameworks, i.e., other configurations of implemented
  subsystems, are expected to also be consistent with this
  architecture.

3.  Elements of the Architecture

  This section describes the various elements of the architecture and
  how they are named.  There are three kinds of naming:

     1) the naming of entities,

     2) the naming of identities, and

     3) the naming of management information.





Harrington, et al.          Standards Track                    [Page 16]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  This architecture also defines some names for other constructs that
  are used in the documentation.

3.1.  The Naming of Entities

  An SNMP entity is an implementation of this architecture.  Each such
  SNMP entity consists of an SNMP engine and one or more associated
  applications.

  The following figure shows details about an SNMP entity and the
  components within it.

  +-------------------------------------------------------------------+
  |  SNMP entity                                                      |
  |                                                                   |
  |  +-------------------------------------------------------------+  |
  |  |  SNMP engine (identified by snmpEngineID)                   |  |
  |  |                                                             |  |
  |  |  +------------+ +------------+ +-----------+ +-----------+  |  |
  |  |  |            | |            | |           | |           |  |  |
  |  |  | Dispatcher | | Message    | | Security  | | Access    |  |  |
  |  |  |            | | Processing | | Subsystem | | Control   |  |  |
  |  |  |            | | Subsystem  | |           | | Subsystem |  |  |
  |  |  |            | |            | |           | |           |  |  |
  |  |  +------------+ +------------+ +-----------+ +-----------+  |  |
  |  |                                                             |  |
  |  +-------------------------------------------------------------+  |
  |                                                                   |
  |  +-------------------------------------------------------------+  |
  |  |  Application(s)                                             |  |
  |  |                                                             |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |  | Command     |  | Notification |  | Proxy        |        |  |
  |  |  | Generator   |  | Receiver     |  | Forwarder    |        |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |                                                             |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |  | Command     |  | Notification |  | Other        |        |  |
  |  |  | Responder   |  | Originator   |  |              |        |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |                                                             |  |
  |  +-------------------------------------------------------------+  |
  |                                                                   |
  +-------------------------------------------------------------------+







Harrington, et al.          Standards Track                    [Page 17]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.1.  SNMP engine

  An SNMP engine provides services for sending and receiving messages,
  authenticating and encrypting messages, and controlling access to
  managed objects.  There is a one-to-one association between an SNMP
  engine and the SNMP entity which contains it.

  The engine contains:

     1) a Dispatcher,

     2) a Message Processing Subsystem,

     3) a Security Subsystem, and

     4) an Access Control Subsystem.

3.1.1.1.  snmpEngineID

  Within an administrative domain, an snmpEngineID is the unique and
  unambiguous identifier of an SNMP engine.  Since there is a one-to-
  one association between SNMP engines and SNMP entities, it also
  uniquely and unambiguously identifies the SNMP entity within that
  administrative domain.  Note that it is possible for SNMP entities in
  different administrative domains to have the same value for
  snmpEngineID.  Federation of administrative domains may necessitate
  assignment of new values.

3.1.1.2.  Dispatcher

  There is only one Dispatcher in an SNMP engine.  It allows for
  concurrent support of multiple versions of SNMP messages in the SNMP
  engine.  It does so by:

     -  sending and receiving SNMP messages to/from the network,

     -  determining the version of an SNMP message and interacting with
        the corresponding Message Processing Model,

     -  providing an abstract interface to SNMP applications for
        delivery of a PDU to an application.

     -  providing an abstract interface for SNMP applications that
        allows them to send a PDU to a remote SNMP entity.







Harrington, et al.          Standards Track                    [Page 18]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.1.3.  Message Processing Subsystem

  The Message Processing Subsystem is responsible for preparing
  messages for sending, and extracting data from received messages.

  The Message Processing Subsystem potentially contains multiple
  Message Processing Models as shown in the next figure.

  * One or more Message Processing Models may be present.

  +------------------------------------------------------------------+
  |                                                                  |
  |  Message Processing Subsystem                                    |
  |                                                                  |
  |  +------------+  +------------+  +------------+  +------------+  |
  |  |          * |  |          * |  |          * |  |          * |  |
  |  | SNMPv3     |  | SNMPv1     |  | SNMPv2c    |  | Other      |  |
  |  | Message    |  | Message    |  | Message    |  | Message    |  |
  |  | Processing |  | Processing |  | Processing |  | Processing |  |
  |  | Model      |  | Model      |  | Model      |  | Model      |  |
  |  |            |  |            |  |            |  |            |  |
  |  +------------+  +------------+  +------------+  +------------+  |
  |                                                                  |
  +------------------------------------------------------------------+

3.1.1.3.1.  Message Processing Model

  Each Message Processing Model defines the format of a particular
  version of an SNMP message and coordinates the preparation and
  extraction of each such version-specific message format.





















Harrington, et al.          Standards Track                    [Page 19]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.1.4.  Security Subsystem

  The Security Subsystem provides security services such as the
  authentication and privacy of messages and potentially contains
  multiple Security Models as shown in the following figure

  * One or more Security Models may be present.

  +------------------------------------------------------------------+
  |                                                                  |
  |  Security Subsystem                                              |
  |                                                                  |
  |  +----------------+  +-----------------+  +-------------------+  |
  |  |              * |  |               * |  |                 * |  |
  |  | User-Based     |  | Other           |  | Other             |  |
  |  | Security       |  | Security        |  | Security          |  |
  |  | Model          |  | Model           |  | Model             |  |
  |  |                |  |                 |  |                   |  |
  |  +----------------+  +-----------------+  +-------------------+  |
  |                                                                  |
  +------------------------------------------------------------------+

3.1.1.4.1.  Security Model

  A Security Model specifies the threats against which it protects, the
  goals of its services, and the security protocols used to provide
  security services such as authentication and privacy.

3.1.1.4.2.  Security Protocol

  A Security Protocol specifies the mechanisms, procedures, and MIB
  objects used to provide a security service such as authentication or
  privacy.


















Harrington, et al.          Standards Track                    [Page 20]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.2.  Access Control Subsystem

  The Access Control Subsystem provides authorization services by means
  of one or more (*) Access Control Models.

  +------------------------------------------------------------------+
  |                                                                  |
  |  Access Control Subsystem                                        |
  |                                                                  |
  |  +---------------+   +-----------------+   +------------------+  |
  |  |             * |   |               * |   |                * |  |
  |  | View-Based    |   | Other           |   | Other            |  |
  |  | Access        |   | Access          |   | Access           |  |
  |  | Control       |   | Control         |   | Control          |  |
  |  | Model         |   | Model           |   | Model            |  |
  |  |               |   |                 |   |                  |  |
  |  +---------------+   +-----------------+   +------------------+  |
  |                                                                  |
  +------------------------------------------------------------------+

3.1.2.1.  Access Control Model

  An Access Control Model defines a particular access decision function
  in order to support decisions regarding access rights.

3.1.3.  Applications

  There are several types of applications, including:

     -  command generators, which monitor and manipulate management
        data,

     -  command responders, which provide access to management data,

     -  notification originators, which initiate asynchronous messages,

     -  notification receivers, which process asynchronous messages,

     and

     -  proxy forwarders, which forward messages between entities.

  These applications make use of the services provided by the SNMP
  engine.







Harrington, et al.          Standards Track                    [Page 21]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.3.1.  SNMP Manager

  An SNMP entity containing one or more command generator and/or
  notification receiver applications (along with their associated SNMP
  engine) has traditionally been called an SNMP manager.

                      (traditional SNMP manager)
  +-------------------------------------------------------------------+
  | +--------------+  +--------------+  +--------------+  SNMP entity |
  | | NOTIFICATION |  | NOTIFICATION |  |   COMMAND    |              |
  | |  ORIGINATOR  |  |   RECEIVER   |  |  GENERATOR   |              |
  | | applications |  | applications |  | applications |              |
  | +--------------+  +--------------+  +--------------+              |
  |         ^                ^                 ^                      |
  |         |                |                 |                      |
  |         v                v                 v                      |
  |         +-------+--------+-----------------+                      |
  |                 ^                                                 |
  |                 |     +---------------------+  +----------------+ |
  |                 |     | Message Processing  |  | Security       | |
  | Dispatcher      v     | Subsystem           |  | Subsystem      | |
  | +-------------------+ |     +------------+  |  |                | |
  | | PDU Dispatcher    | |  +->| v1MP     * |<--->| +------------+ | |
  | |                   | |  |  +------------+  |  | | Other      | | |
  | |                   | |  |  +------------+  |  | | Security   | | |
  | |                   | |  +->| v2cMP    * |<--->| | Model      | | |
  | | Message           | |  |  +------------+  |  | +------------+ | |
  | | Dispatcher  <--------->+                  |  |                | |
  | |                   | |  |  +------------+  |  | +------------+ | |
  | |                   | |  +->| v3MP     * |<--->| | User-based | | |
  | | Transport         | |  |  +------------+  |  | | Security   | | |
  | | Mapping           | |  |  +------------+  |  | | Model      | | |
  | | (e.g., RFC 3417)  | |  +->| otherMP  * |<--->| +------------+ | |
  | +-------------------+ |     +------------+  |  |                | |
  |          ^            +---------------------+  +----------------+ |
  |          |                                                        |
  |          v                                                        |
  +-------------------------------------------------------------------+
  +-----+ +-----+       +-------+
  | UDP | | IPX | . . . | other |
  +-----+ +-----+       +-------+
     ^       ^              ^
     |       |              |      * One or more models may be present.
     v       v              v
  +------------------------------+
  |           Network            |
  +------------------------------+




Harrington, et al.          Standards Track                    [Page 22]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.1.3.2.  SNMP Agent

  An SNMP entity containing one or more command responder and/or
  notification originator applications (along with their associated
  SNMP engine) has traditionally been called an SNMP agent.














































Harrington, et al.          Standards Track                    [Page 23]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  * One or more models may be present.

  +------------------------------+
  |           Network            |
  +------------------------------+
     ^       ^              ^
     |       |              |
     v       v              v
  +-----+ +-----+       +-------+
  | UDP | | IPX | . . . | other |
  +-----+ +-----+       +-------+              (traditional SNMP agent)
  +-------------------------------------------------------------------+
  |              ^                                                    |
  |              |        +---------------------+  +----------------+ |
  |              |        | Message Processing  |  | Security       | |
  | Dispatcher   v        | Subsystem           |  | Subsystem      | |
  | +-------------------+ |     +------------+  |  |                | |
  | | Transport         | |  +->| v1MP     * |<--->| +------------+ | |
  | | Mapping           | |  |  +------------+  |  | | Other      | | |
  | | (e.g., RFC 3417)  | |  |  +------------+  |  | | Security   | | |
  | |                   | |  +->| v2cMP    * |<--->| | Model      | | |
  | | Message           | |  |  +------------+  |  | +------------+ | |
  | | Dispatcher  <--------->|  +------------+  |  | +------------+ | |
  | |                   | |  +->| v3MP     * |<--->| | User-based | | |
  | |                   | |  |  +------------+  |  | | Security   | | |
  | | PDU Dispatcher    | |  |  +------------+  |  | | Model      | | |
  | +-------------------+ |  +->| otherMP  * |<--->| +------------+ | |
  |              ^        |     +------------+  |  |                | |
  |              |        +---------------------+  +----------------+ |
  |              v                                                    |
  |      +-------+-------------------------+---------------+          |
  |      ^                                 ^               ^          |
  |      |                                 |               |          |
  |      v                                 v               v          |
  | +-------------+   +---------+   +--------------+  +-------------+ |
  | |   COMMAND   |   | ACCESS  |   | NOTIFICATION |  |    PROXY    | |
  | |  RESPONDER  |<->| CONTROL |<->|  ORIGINATOR  |  |  FORWARDER  | |
  | | application |   |         |   | applications |  | application | |
  | +-------------+   +---------+   +--------------+  +-------------+ |
  |      ^                                 ^                          |
  |      |                                 |                          |
  |      v                                 v                          |
  | +----------------------------------------------+                  |
  | |             MIB instrumentation              |      SNMP entity |
  +-------------------------------------------------------------------+






Harrington, et al.          Standards Track                    [Page 24]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.2.  The Naming of Identities

                           principal
                               ^
                               |
                               |
  +----------------------------|-------------+
  | SNMP engine                v             |
  |                    +--------------+      |
  |                    |              |      |
  |  +-----------------| securityName |---+  |
  |  | Security Model  |              |   |  |
  |  |                 +--------------+   |  |
  |  |                         ^          |  |
  |  |                         |          |  |
  |  |                         v          |  |
  |  |  +------------------------------+  |  |
  |  |  |                              |  |  |
  |  |  | Model                        |  |  |
  |  |  | Dependent                    |  |  |
  |  |  | Security ID                  |  |  |
  |  |  |                              |  |  |
  |  |  +------------------------------+  |  |
  |  |                         ^          |  |
  |  |                         |          |  |
  |  +-------------------------|----------+  |
  |                            |             |
  |                            |             |
  +----------------------------|-------------+
                               |
                               v
                            network

3.2.1.  Principal

  A principal is the "who" on whose behalf services are provided or
  processing takes place.

  A principal can be, among other things, an individual acting in a
  particular role; a set of individuals, with each acting in a
  particular role; an application or a set of applications; and
  combinations thereof.

3.2.2.  securityName

  A securityName is a human readable string representing a principal.
  It has a model-independent format, and can be used outside a
  particular Security Model.



Harrington, et al.          Standards Track                    [Page 25]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.2.3.  Model-dependent security ID

  A model-dependent security ID is the model-specific representation of
  a securityName within a particular Security Model.

  Model-dependent security IDs may or may not be human readable, and
  have a model-dependent syntax.  Examples include community names, and
  user names.

  The transformation of model-dependent security IDs into securityNames
  and vice versa is the responsibility of the relevant Security Model.

3.3.  The Naming of Management Information

  Management information resides at an SNMP entity where a Command
  Responder Application has local access to potentially multiple
  contexts.  This application uses a contextEngineID equal to the
  snmpEngineID of its associated SNMP engine.

































Harrington, et al.          Standards Track                    [Page 26]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  +-----------------------------------------------------------------+
  |  SNMP entity (identified by snmpEngineID, for example:          |
  |  '800002b804616263'H (enterpise 696, string "abc")              |
  |                                                                 |
  |  +------------------------------------------------------------+ |
  |  | SNMP engine (identified by snmpEngineID)                   | |
  |  |                                                            | |
  |  | +-------------+ +------------+ +-----------+ +-----------+ | |
  |  | |             | |            | |           | |           | | |
  |  | | Dispatcher  | | Message    | | Security  | | Access    | | |
  |  | |             | | Processing | | Subsystem | | Control   | | |
  |  | |             | | Subsystem  | |           | | Subsystem | | |
  |  | |             | |            | |           | |           | | |
  |  | +-------------+ +------------+ +-----------+ +-----------+ | |
  |  |                                                            | |
  |  +------------------------------------------------------------+ |
  |                                                                 |
  |  +------------------------------------------------------------+ |
  |  |  Command Responder Application                             | |
  |  |  (contextEngineID, example: '800002b804616263'H)           | |
  |  |                                                            | |
  |  |  example contextNames:                                     | |
  |  |                                                            | |
  |  |  "bridge1"          "bridge2"            "" (default)      | |
  |  |  ---------          ---------            ------------      | |
  |  |      |                  |                   |              | |
  |  +------|------------------|-------------------|--------------+ |
  |         |                  |                   |                |
  |  +------|------------------|-------------------|--------------+ |
  |  |  MIB | instrumentation  |                   |              | |
  |  |  +---v------------+ +---v------------+ +----v-----------+  | |
  |  |  | context        | | context        | | context        |  | |
  |  |  |                | |                | |                |  | |
  |  |  | +------------+ | | +------------+ | | +------------+ |  | |
  |  |  | | bridge MIB | | | | bridge MIB | | | | some  MIB  | |  | |
  |  |  | +------------+ | | +------------+ | | +------------+ |  | |
  |  |  |                | |                | |                |  | |
  |  |  |                | |                | | +------------+ |  | |
  |  |  |                | |                | | | other MIB  | |  | |
  |  |  |                | |                | | +------------+ |  | |
  |  |  |                | |                | |                |  | |
  +-----------------------------------------------------------------+









Harrington, et al.          Standards Track                    [Page 27]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.3.1.  An SNMP Context

  An SNMP context, or just "context" for short, is a collection of
  management information accessible by an SNMP entity.  An item of
  management information may exist in more than one context.  An SNMP
  entity potentially has access to many contexts.

  Typically, there are many instances of each managed object type
  within a management domain.  For simplicity, the method for
  identifying instances specified by the MIB module does not allow each
  instance to be distinguished amongst the set of all instances within
  a management domain; rather, it allows each instance to be identified
  only within some scope or "context", where there are multiple such
  contexts within the management domain.  Often, a context is a
  physical device, or perhaps, a logical device, although a context can
  also encompass multiple devices, or a subset of a single device, or
  even a subset of multiple devices, but a context is always defined as
  a subset of a single SNMP entity.  Thus, in order to identify an
  individual item of management information within the management
  domain, its contextName and contextEngineID must be identified in
  addition to its object type and its instance.

  For example, the managed object type ifDescr [RFC2863], is defined as
  the description of a network interface.  To identify the description
  of device-X's first network interface, four pieces of information are
  needed: the snmpEngineID of the SNMP entity which provides access to
  the management information at device-X, the contextName (device-X),
  the managed object type (ifDescr), and the instance ("1").

  Each context has (at least) one unique identification within the
  management domain.  The same item of management information can exist
  in multiple contexts.  An item of management information may have
  multiple unique identifications.  This occurs when an item of
  management information exists in multiple contexts, and this also
  occurs when a context has multiple unique identifications.

  The combination of a contextEngineID and a contextName unambiguously
  identifies a context within an administrative domain; note that there
  may be multiple unique combinations of contextEngineID and
  contextName that unambiguously identify the same context.

3.3.2.  contextEngineID

  Within an administrative domain, a contextEngineID uniquely
  identifies an SNMP entity that may realize an instance of a context
  with a particular contextName.





Harrington, et al.          Standards Track                    [Page 28]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


3.3.3.  contextName

  A contextName is used to name a context.  Each contextName MUST be
  unique within an SNMP entity.

3.3.4.  scopedPDU

  A scopedPDU is a block of data containing a contextEngineID, a
  contextName, and a PDU.

  The PDU is an SNMP Protocol Data Unit containing information named in
  the context which is unambiguously identified within an
  administrative domain by the combination of the contextEngineID and
  the contextName.  See, for example, RFC 3416 for more information
  about SNMP PDUs.

3.4.  Other Constructs

3.4.1.  maxSizeResponseScopedPDU

  The maxSizeResponseScopedPDU is the maximum size of a scopedPDU that
  a PDU's sender would be willing to accept.  Note that the size of a
  scopedPDU does not include the size of the SNMP message header.

3.4.2.  Local Configuration Datastore

  The subsystems, models, and applications within an SNMP entity may
  need to retain their own sets of configuration information.

  Portions of the configuration information may be accessible as
  managed objects.

  The collection of these sets of information is referred to as an
  entity's Local Configuration Datastore (LCD).

3.4.3.  securityLevel

  This architecture recognizes three levels of security:

     -  without authentication and without privacy (noAuthNoPriv)

     -  with authentication but without privacy (authNoPriv)

     -  with authentication and with privacy (authPriv)







Harrington, et al.          Standards Track                    [Page 29]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  These three values are ordered such that noAuthNoPriv is less than
  authNoPriv and authNoPriv is less than authPriv.

  Every message has an associated securityLevel.  All Subsystems
  (Message Processing, Security, Access Control) and applications are
  REQUIRED to either supply a value of securityLevel or to abide by the
  supplied value of securityLevel while processing the message and its
  contents.

4.  Abstract Service Interfaces

  Abstract service interfaces have been defined to describe the
  conceptual interfaces between the various subsystems within an SNMP
  entity.  The abstract service interfaces are intended to help clarify
  the externally observable behavior of SNMP entities, and are not
  intended to constrain the structure or organization of
  implementations in any way.  Most specifically, they should not be
  interpreted as APIs or as requirements statements for APIs.

  These abstract service interfaces are defined by a set of primitives
  that define the services provided and the abstract data elements that
  are to be passed when the services are invoked.  This section lists
  the primitives that have been defined for the various subsystems.

4.1.  Dispatcher Primitives

  The Dispatcher typically provides services to the SNMP applications
  via its PDU Dispatcher.  This section describes the primitives
  provided by the PDU Dispatcher.






















Harrington, et al.          Standards Track                    [Page 30]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.1.1.  Generate Outgoing Request or Notification

  The PDU Dispatcher provides the following primitive for an
  application to send an SNMP Request or Notification to another SNMP
  entity:

  statusInformation =              -- sendPduHandle if success
                                   -- errorIndication if failure
    sendPdu(
    IN   transportDomain           -- transport domain to be used
    IN   transportAddress          -- transport address to be used
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- Security Model to use
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- Level of Security requested
    IN   contextEngineID           -- data from/at this entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   expectResponse            -- TRUE or FALSE
         )

4.1.2.  Process Incoming Request or Notification PDU

  The PDU Dispatcher provides the following primitive to pass an
  incoming SNMP PDU to an application:

  processPdu(                      -- process Request/Notification PDU
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- Security Model in use
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- Level of Security
    IN   contextEngineID           -- data from/at this SNMP entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   maxSizeResponseScopedPDU  -- maximum size of the Response PDU
    IN   stateReference            -- reference to state information
         )                         -- needed when sending a response












Harrington, et al.          Standards Track                    [Page 31]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.1.3.  Generate Outgoing Response

  The PDU Dispatcher provides the following primitive for an
  application to return an SNMP Response PDU to the PDU Dispatcher:

  result =                         -- SUCCESS or FAILURE
  returnResponsePdu(
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- Security Model in use
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- same as on incoming request
    IN   contextEngineID           -- data from/at this SNMP entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   maxSizeResponseScopedPDU  -- maximum size sender can accept
    IN   stateReference            -- reference to state information
                                   -- as presented with the request
    IN   statusInformation         -- success or errorIndication
         )                         -- error counter OID/value if error

4.1.4.  Process Incoming Response PDU

  The PDU Dispatcher provides the following primitive to pass an
  incoming SNMP Response PDU to an application:

  processResponsePdu(              -- process Response PDU
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- Security Model in use
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- Level of Security
    IN   contextEngineID           -- data from/at this SNMP entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   statusInformation         -- success or errorIndication
    IN   sendPduHandle             -- handle from sendPdu
         )

4.1.5.  Registering Responsibility for Handling SNMP PDUs

  Applications can register/unregister responsibility for a specific
  contextEngineID, for specific pduTypes, with the PDU Dispatcher
  according to the following primitives.  The list of particular
  pduTypes that an application can register for is determined by the
  Message Processing Model(s) supported by the SNMP entity that
  contains the PDU Dispatcher.




Harrington, et al.          Standards Track                    [Page 32]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  statusInformation =            -- success or errorIndication
    registerContextEngineID(
    IN   contextEngineID         -- take responsibility for this one
    IN   pduType                 -- the pduType(s) to be registered
         )

  unregisterContextEngineID(
    IN   contextEngineID         -- give up responsibility for this one
    IN   pduType                 -- the pduType(s) to be unregistered
         )

  Note that realizations of the registerContextEngineID and
  unregisterContextEngineID abstract service interfaces may provide
  implementation-specific ways for applications to register/deregister
  responsibility for all possible values of the contextEngineID or
  pduType parameters.

4.2.  Message Processing Subsystem Primitives

  The Dispatcher interacts with a Message Processing Model to process a
  specific version of an SNMP Message.  This section describes the
  primitives provided by the Message Processing Subsystem.

4.2.1.  Prepare Outgoing SNMP Request or Notification Message

  The Message Processing Subsystem provides this service primitive for
  preparing an outgoing SNMP Request or Notification Message:

  statusInformation =              -- success or errorIndication
    prepareOutgoingMessage(
    IN   transportDomain           -- transport domain to be used
    IN   transportAddress          -- transport address to be used
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- Security Model to use
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- Level of Security requested
    IN   contextEngineID           -- data from/at this entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   expectResponse            -- TRUE or FALSE
    IN   sendPduHandle             -- the handle for matching
                                   -- incoming responses
    OUT  destTransportDomain       -- destination transport domain
    OUT  destTransportAddress      -- destination transport address
    OUT  outgoingMessage           -- the message to send
    OUT  outgoingMessageLength     -- its length
         )



Harrington, et al.          Standards Track                    [Page 33]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.2.2.  Prepare an Outgoing SNMP Response Message

  The Message Processing Subsystem provides this service primitive for
  preparing an outgoing SNMP Response Message:

  result =                         -- SUCCESS or FAILURE
    prepareResponseMessage(
    IN   messageProcessingModel    -- typically, SNMP version
    IN   securityModel             -- same as on incoming request
    IN   securityName              -- same as on incoming request
    IN   securityLevel             -- same as on incoming request
    IN   contextEngineID           -- data from/at this SNMP entity
    IN   contextName               -- data from/in this context
    IN   pduVersion                -- the version of the PDU
    IN   PDU                       -- SNMP Protocol Data Unit
    IN   maxSizeResponseScopedPDU  -- maximum size able to accept
    IN   stateReference            -- reference to state information
                                   -- as presented with the request
    IN   statusInformation         -- success or errorIndication
                                   -- error counter OID/value if error
    OUT  destTransportDomain       -- destination transport domain
    OUT  destTransportAddress      -- destination transport address
    OUT  outgoingMessage           -- the message to send
    OUT  outgoingMessageLength     -- its length
         )


























Harrington, et al.          Standards Track                    [Page 34]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.2.3.  Prepare Data Elements from an Incoming SNMP Message

  The Message Processing Subsystem provides this service primitive for
  preparing the abstract data elements from an incoming SNMP message:

  result =                         -- SUCCESS or errorIndication
    prepareDataElements(
    IN   transportDomain           -- origin transport domain
    IN   transportAddress          -- origin transport address
    IN   wholeMsg                  -- as received from the network
    IN   wholeMsgLength            -- as received from the network
    OUT  messageProcessingModel    -- typically, SNMP version
    OUT  securityModel             -- Security Model to use
    OUT  securityName              -- on behalf of this principal
    OUT  securityLevel             -- Level of Security requested
    OUT  contextEngineID           -- data from/at this entity
    OUT  contextName               -- data from/in this context
    OUT  pduVersion                -- the version of the PDU
    OUT  PDU                       -- SNMP Protocol Data Unit
    OUT  pduType                   -- SNMP PDU type
    OUT  sendPduHandle             -- handle for matched request
    OUT  maxSizeResponseScopedPDU  -- maximum size sender can accept
    OUT  statusInformation         -- success or errorIndication
                                   -- error counter OID/value if error
    OUT  stateReference            -- reference to state information
                                   -- to be used for possible Response
         )

4.3.  Access Control Subsystem Primitives

  Applications are the typical clients of the service(s) of the Access
  Control Subsystem.

  The following primitive is provided by the Access Control Subsystem
  to check if access is allowed:

  statusInformation =              -- success or errorIndication
    isAccessAllowed(
    IN   securityModel             -- Security Model in use
    IN   securityName              -- principal who wants to access
    IN   securityLevel             -- Level of Security
    IN   viewType                  -- read, write, or notify view
    IN   contextName               -- context containing variableName
    IN   variableName              -- OID for the managed object
         )






Harrington, et al.          Standards Track                    [Page 35]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.4.  Security Subsystem Primitives

  The Message Processing Subsystem is the typical client of the
  services of the Security Subsystem.

4.4.1.  Generate a Request or Notification Message

  The Security Subsystem provides the following primitive to generate a
  Request or Notification message:

  statusInformation =
    generateRequestMsg(
    IN   messageProcessingModel    -- typically, SNMP version
    IN   globalData                -- message header, admin data
    IN   maxMessageSize            -- of the sending SNMP entity
    IN   securityModel             -- for the outgoing message
    IN   securityEngineID          -- authoritative SNMP entity
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- Level of Security requested
    IN   scopedPDU                 -- message (plaintext) payload
    OUT  securityParameters        -- filled in by Security Module
    OUT  wholeMsg                  -- complete generated message
    OUT  wholeMsgLength            -- length of the generated message
         )

4.4.2.  Process Incoming Message

  The Security Subsystem provides the following primitive to process an
  incoming message:

  statusInformation =              -- errorIndication or success
                                   -- error counter OID/value if error
    processIncomingMsg(
    IN   messageProcessingModel    -- typically, SNMP version
    IN   maxMessageSize            -- of the sending SNMP entity
    IN   securityParameters        -- for the received message
    IN   securityModel             -- for the received message
    IN   securityLevel             -- Level of Security
    IN   wholeMsg                  -- as received on the wire
    IN   wholeMsgLength            -- length as received on the wire
    OUT  securityEngineID          -- authoritative SNMP entity
    OUT  securityName              -- identification of the principal
    OUT  scopedPDU,                -- message (plaintext) payload
    OUT  maxSizeResponseScopedPDU  -- maximum size sender can handle
    OUT  securityStateReference    -- reference to security state
         )                         -- information, needed for response





Harrington, et al.          Standards Track                    [Page 36]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.4.3.  Generate a Response Message

  The Security Subsystem provides the following primitive to generate a
  Response message:

  statusInformation =
    generateResponseMsg(
    IN   messageProcessingModel    -- typically, SNMP version
    IN   globalData                -- message header, admin data
    IN   maxMessageSize            -- of the sending SNMP entity
    IN   securityModel             -- for the outgoing message
    IN   securityEngineID          -- authoritative SNMP entity
    IN   securityName              -- on behalf of this principal
    IN   securityLevel             -- for the outgoing message
    IN   scopedPDU                 -- message (plaintext) payload
    IN   securityStateReference    -- reference to security state
                                   -- information from original request
    OUT  securityParameters        -- filled in by Security Module
    OUT  wholeMsg                  -- complete generated message
    OUT  wholeMsgLength            -- length of the generated message
         )

4.5.  Common Primitives

  These primitive(s) are provided by multiple Subsystems.

4.5.1.  Release State Reference Information

  All Subsystems which pass stateReference information also provide a
  primitive to release the memory that holds the referenced state
  information:

  stateRelease(
    IN   stateReference       -- handle of reference to be released
         )
















Harrington, et al.          Standards Track                    [Page 37]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.6.  Scenario Diagrams

4.6.1.  Command Generator or Notification Originator

  This diagram shows how a Command Generator or Notification Originator
  application requests that a PDU be sent, and how the response is
  returned (asynchronously) to that application.

  Command           Dispatcher               Message           Security
  Generator            |                     Processing           Model
  |                    |                     Model                    |
  |      sendPdu       |                        |                     |
  |------------------->|                        |                     |
  |                    | prepareOutgoingMessage |                     |
  :                    |----------------------->|                     |
  :                    |                        | generateRequestMsg  |
  :                    |                        |-------------------->|
  :                    |                        |                     |
  :                    |                        |<--------------------|
  :                    |                        |                     |
  :                    |<-----------------------|                     |
  :                    |                        |                     |
  :                    |------------------+     |                     |
  :                    | Send SNMP        |     |                     |
  :                    | Request Message  |     |                     |
  :                    | to Network       |     |                     |
  :                    |                  v     |                     |
  :                    :                  :     :                     :
  :                    :                  :     :                     :
  :                    :                  :     :                     :
  :                    |                  |     |                     |
  :                    | Receive SNMP     |     |                     |
  :                    | Response Message |     |                     |
  :                    | from Network     |     |                     |
  :                    |<-----------------+     |                     |
  :                    |                        |                     |
  :                    |   prepareDataElements  |                     |
  :                    |----------------------->|                     |
  :                    |                        | processIncomingMsg  |
  :                    |                        |-------------------->|
  :                    |                        |                     |
  :                    |                        |<--------------------|
  :                    |                        |                     |
  :                    |<-----------------------|                     |
  | processResponsePdu |                        |                     |
  |<-------------------|                        |                     |
  |                    |                        |                     |




Harrington, et al.          Standards Track                    [Page 38]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


4.6.2.  Scenario Diagram for a Command Responder Application

  This diagram shows how a Command Responder or Notification Receiver
  application registers for handling a pduType, how a PDU is dispatched
  to the application after an SNMP message is received, and how the
  Response is (asynchronously) send back to the network.

  Command               Dispatcher            Message          Security
  Responder                 |                 Processing          Model
  |                         |                 Model                   |
  |                         |                    |                    |
  | registerContextEngineID |                    |                    |
  |------------------------>|                    |                    |
  |<------------------------|              |     |                    |
  |                         | Receive SNMP |     |                    |
  :                         | Message      |     |                    |
  :                         | from Network |     |                    |
  :                         |<-------------+     |                    |
  :                         |                    |                    |
  :                         |prepareDataElements |                    |
  :                         |------------------->|                    |
  :                         |                    | processIncomingMsg |
  :                         |                    |------------------->|
  :                         |                    |                    |
  :                         |                    |<-------------------|
  :                         |                    |                    |
  :                         |<-------------------|                    |
  |     processPdu          |                    |                    |
  |<------------------------|                    |                    |
  |                         |                    |                    |
  :                         :                    :                    :
  :                         :                    :                    :
  |    returnResponsePdu    |                    |                    |
  |------------------------>|                    |                    |
  :                         | prepareResponseMsg |                    |
  :                         |------------------->|                    |
  :                         |                    |generateResponseMsg |
  :                         |                    |------------------->|
  :                         |                    |                    |
  :                         |                    |<-------------------|
  :                         |                    |                    |
  :                         |<-------------------|                    |
  :                         |                    |                    |
  :                         |--------------+     |                    |
  :                         | Send SNMP    |     |                    |
  :                         | Message      |     |                    |
  :                         | to Network   |     |                    |
  :                         |              v     |                    |



Harrington, et al.          Standards Track                    [Page 39]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


5.  Managed Object Definitions for SNMP Management Frameworks

SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   OBJECT-IDENTITY,
   snmpModules                           FROM SNMPv2-SMI
   TEXTUAL-CONVENTION                    FROM SNMPv2-TC
   MODULE-COMPLIANCE, OBJECT-GROUP       FROM SNMPv2-CONF;

snmpFrameworkMIB MODULE-IDENTITY
   LAST-UPDATED "200210140000Z"
   ORGANIZATION "SNMPv3 Working Group"
   CONTACT-INFO "WG-EMail:   [email protected]
                 Subscribe:  [email protected]

                 Co-Chair:   Russ Mundy
                             Network Associates Laboratories
                 postal:     15204 Omega Drive, Suite 300
                             Rockville, MD 20850-4601
                             USA
                 EMail:      [email protected]
                 phone:      +1 301-947-7107

                 Co-Chair &
                 Co-editor:  David Harrington
                             Enterasys Networks
                 postal:     35 Industrial Way
                             P. O. Box 5005
                             Rochester, New Hampshire 03866-5005
                             USA
                 EMail:      [email protected]
                 phone:      +1 603-337-2614

                 Co-editor:  Randy Presuhn
                             BMC Software, Inc.
                 postal:     2141 North First Street
                             San Jose, California 95131
                             USA
                 EMail:      [email protected]
                 phone:      +1 408-546-1006

                 Co-editor:  Bert Wijnen
                             Lucent Technologies
                 postal:     Schagen 33
                             3461 GL Linschoten
                             Netherlands



Harrington, et al.          Standards Track                    [Page 40]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                 EMail:      [email protected]
                 phone:      +31 348-680-485
                   "
      DESCRIPTION  "The SNMP Management Architecture MIB

                    Copyright (C) The Internet Society (2002). This
                    version of this MIB module is part of RFC 3411;
                    see the RFC itself for full legal notices.
                   "

      REVISION     "200210140000Z"         -- 14 October 2002
      DESCRIPTION  "Changes in this revision:
                    - Updated various administrative information.
                    - Corrected some typos.
                    - Corrected typo in description of SnmpEngineID
                      that led to range overlap for 127.
                    - Changed '255a' to '255t' in definition of
                      SnmpAdminString to align with current SMI.
                    - Reworded 'reserved' for value zero in
                      DESCRIPTION of SnmpSecurityModel.
                    - The algorithm for allocating security models
                      should give 256 per enterprise block, rather
                      than 255.
                    - The example engine ID of 'abcd' is not
                      legal. Replaced with '800002b804616263'H based
                      on example enterprise 696, string 'abc'.
                    - Added clarification that engineID should
                      persist across re-initializations.
                    This revision published as RFC 3411.
                   "
      REVISION     "199901190000Z"         -- 19 January 1999
      DESCRIPTION  "Updated editors' addresses, fixed typos.
                    Published as RFC 2571.
                   "
      REVISION     "199711200000Z"         -- 20 November 1997
      DESCRIPTION  "The initial version, published in RFC 2271.
                   "
      ::= { snmpModules 10 }

  -- Textual Conventions used in the SNMP Management Architecture ***

SnmpEngineID ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION "An SNMP engine's administratively-unique identifier.
                Objects of this type are for identification, not for
                addressing, even though it is possible that an
                address may have been used in the generation of
                a specific value.



Harrington, et al.          Standards Track                    [Page 41]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                The value for this object may not be all zeros or
                all 'ff'H or the empty (zero length) string.

                The initial value for this object may be configured
                via an operator console entry or via an algorithmic
                function.  In the latter case, the following
                example algorithm is recommended.

                In cases where there are multiple engines on the
                same system, the use of this algorithm is NOT
                appropriate, as it would result in all of those
                engines ending up with the same ID value.

                1) The very first bit is used to indicate how the
                   rest of the data is composed.

                   0 - as defined by enterprise using former methods
                       that existed before SNMPv3. See item 2 below.

                   1 - as defined by this architecture, see item 3
                       below.

                   Note that this allows existing uses of the
                   engineID (also known as AgentID [RFC1910]) to
                   co-exist with any new uses.

                2) The snmpEngineID has a length of 12 octets.

                   The first four octets are set to the binary
                   equivalent of the agent's SNMP management
                   private enterprise number as assigned by the
                   Internet Assigned Numbers Authority (IANA).
                   For example, if Acme Networks has been assigned
                   { enterprises 696 }, the first four octets would
                   be assigned '000002b8'H.

                   The remaining eight octets are determined via
                   one or more enterprise-specific methods. Such
                   methods must be designed so as to maximize the
                   possibility that the value of this object will
                   be unique in the agent's administrative domain.
                   For example, it may be the IP address of the SNMP
                   entity, or the MAC address of one of the
                   interfaces, with each address suitably padded
                   with random octets.  If multiple methods are
                   defined, then it is recommended that the first
                   octet indicate the method being used and the
                   remaining octets be a function of the method.



Harrington, et al.          Standards Track                    [Page 42]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                3) The length of the octet string varies.

                   The first four octets are set to the binary
                   equivalent of the agent's SNMP management
                   private enterprise number as assigned by the
                   Internet Assigned Numbers Authority (IANA).
                   For example, if Acme Networks has been assigned
                   { enterprises 696 }, the first four octets would
                   be assigned '000002b8'H.

                   The very first bit is set to 1. For example, the
                   above value for Acme Networks now changes to be
                   '800002b8'H.

                   The fifth octet indicates how the rest (6th and
                   following octets) are formatted. The values for
                   the fifth octet are:

                     0     - reserved, unused.

                     1     - IPv4 address (4 octets)
                             lowest non-special IP address

                     2     - IPv6 address (16 octets)
                             lowest non-special IP address

                     3     - MAC address (6 octets)
                             lowest IEEE MAC address, canonical
                             order

                     4     - Text, administratively assigned
                             Maximum remaining length 27

                     5     - Octets, administratively assigned
                             Maximum remaining length 27

                     6-127 - reserved, unused

                   128-255 - as defined by the enterprise
                             Maximum remaining length 27
               "
   SYNTAX       OCTET STRING (SIZE(5..32))









Harrington, et al.          Standards Track                    [Page 43]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


SnmpSecurityModel ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION "An identifier that uniquely identifies a
                Security Model of the Security Subsystem within
                this SNMP Management Architecture.

                The values for securityModel are allocated as
                follows:

                - The zero value does not identify any particular
                  security model.

                - Values between 1 and 255, inclusive, are reserved
                  for standards-track Security Models and are
                  managed by the Internet Assigned Numbers Authority
                  (IANA).
                - Values greater than 255 are allocated to
                  enterprise-specific Security Models.  An
                  enterprise-specific securityModel value is defined
                  to be:

                  enterpriseID * 256 + security model within
                  enterprise

                  For example, the fourth Security Model defined by
                  the enterprise whose enterpriseID is 1 would be
                  259.

                This scheme for allocation of securityModel
                values allows for a maximum of 255 standards-
                based Security Models, and for a maximum of
                256 Security Models per enterprise.

                It is believed that the assignment of new
                securityModel values will be rare in practice
                because the larger the number of simultaneously
                utilized Security Models, the larger the
                chance that interoperability will suffer.
                Consequently, it is believed that such a range
                will be sufficient.  In the unlikely event that
                the standards committee finds this number to be
                insufficient over time, an enterprise number
                can be allocated to obtain an additional 256
                possible values.

                Note that the most significant bit must be zero;
                hence, there are 23 bits allocated for various
                organizations to design and define non-standard



Harrington, et al.          Standards Track                    [Page 44]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                securityModels.  This limits the ability to
                define new proprietary implementations of Security
                Models to the first 8,388,608 enterprises.

                It is worthwhile to note that, in its encoded
                form, the securityModel value will normally
                require only a single byte since, in practice,
                the leftmost bits will be zero for most messages
                and sign extension is suppressed by the encoding
                rules.

                As of this writing, there are several values
                of securityModel defined for use with SNMP or
                reserved for use with supporting MIB objects.
                They are as follows:

                    0  reserved for 'any'
                    1  reserved for SNMPv1
                    2  reserved for SNMPv2c
                    3  User-Based Security Model (USM)
               "
   SYNTAX       INTEGER(0 .. 2147483647)


SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION "An identifier that uniquely identifies a Message
                Processing Model of the Message Processing
                Subsystem within this SNMP Management Architecture.

                The values for messageProcessingModel are
                allocated as follows:

                - Values between 0 and 255, inclusive, are
                  reserved for standards-track Message Processing
                  Models and are managed by the Internet Assigned
                  Numbers Authority (IANA).

                - Values greater than 255 are allocated to
                  enterprise-specific Message Processing Models.
                  An enterprise messageProcessingModel value is
                  defined to be:

                  enterpriseID * 256 +
                       messageProcessingModel within enterprise

                  For example, the fourth Message Processing Model
                  defined by the enterprise whose enterpriseID



Harrington, et al.          Standards Track                    [Page 45]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                  is 1 would be 259.

                This scheme for allocating messageProcessingModel
                values allows for a maximum of 255 standards-
                based Message Processing Models, and for a
                maximum of 256 Message Processing Models per
                enterprise.

                It is believed that the assignment of new
                messageProcessingModel values will be rare
                in practice because the larger the number of
                simultaneously utilized Message Processing Models,
                the larger the chance that interoperability
                will suffer. It is believed that such a range
                will be sufficient.  In the unlikely event that
                the standards committee finds this number to be
                insufficient over time, an enterprise number
                can be allocated to obtain an additional 256
                possible values.

                Note that the most significant bit must be zero;
                hence, there are 23 bits allocated for various
                organizations to design and define non-standard
                messageProcessingModels.  This limits the ability
                to define new proprietary implementations of
                Message Processing Models to the first 8,388,608
                enterprises.

                It is worthwhile to note that, in its encoded
                form, the messageProcessingModel value will
                normally require only a single byte since, in
                practice, the leftmost bits will be zero for
                most messages and sign extension is suppressed
                by the encoding rules.

                As of this writing, there are several values of
                messageProcessingModel defined for use with SNMP.
                They are as follows:

                    0  reserved for SNMPv1
                    1  reserved for SNMPv2c
                    2  reserved for SNMPv2u and SNMPv2*
                    3  reserved for SNMPv3
               "
   SYNTAX       INTEGER(0 .. 2147483647)






Harrington, et al.          Standards Track                    [Page 46]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


SnmpSecurityLevel ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION "A Level of Security at which SNMP messages can be
                sent or with which operations are being processed;
                in particular, one of:

                  noAuthNoPriv - without authentication and
                                 without privacy,
                  authNoPriv   - with authentication but
                                 without privacy,
                  authPriv     - with authentication and
                                 with privacy.

                These three values are ordered such that
                noAuthNoPriv is less than authNoPriv and
                authNoPriv is less than authPriv.
               "
   SYNTAX       INTEGER { noAuthNoPriv(1),
                          authNoPriv(2),
                          authPriv(3)
                        }

SnmpAdminString ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "255t"
   STATUS       current
   DESCRIPTION "An octet string containing administrative
                information, preferably in human-readable form.

                To facilitate internationalization, this
                information is represented using the ISO/IEC
                IS 10646-1 character set, encoded as an octet
                string using the UTF-8 transformation format
                described in [RFC2279].

                Since additional code points are added by
                amendments to the 10646 standard from time
                to time, implementations must be prepared to
                encounter any code point from 0x00000000 to
                0x7fffffff.  Byte sequences that do not
                correspond to the valid UTF-8 encoding of a
                code point or are outside this range are
                prohibited.

                The use of control codes should be avoided.

                When it is necessary to represent a newline,
                the control code sequence CR LF should be used.




Harrington, et al.          Standards Track                    [Page 47]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                The use of leading or trailing white space should
                be avoided.

                For code points not directly supported by user
                interface hardware or software, an alternative
                means of entry and display, such as hexadecimal,
                may be provided.

                For information encoded in 7-bit US-ASCII,
                the UTF-8 encoding is identical to the
                US-ASCII encoding.

                UTF-8 may require multiple bytes to represent a
                single character / code point; thus the length
                of this object in octets may be different from
                the number of characters encoded.  Similarly,
                size constraints refer to the number of encoded
                octets, not the number of characters represented
                by an encoding.

                Note that when this TC is used for an object that
                is used or envisioned to be used as an index, then
                a SIZE restriction MUST be specified so that the
                number of sub-identifiers for any object instance
                does not exceed the limit of 128, as defined by
                [RFC3416].

                Note that the size of an SnmpAdminString object is
                measured in octets, not characters.
               "
   SYNTAX       OCTET STRING (SIZE (0..255))


-- Administrative assignments ***************************************

snmpFrameworkAdmin
   OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 }
snmpFrameworkMIBObjects
   OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 }
snmpFrameworkMIBConformance
   OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 }

-- the snmpEngine Group ********************************************

snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 }






Harrington, et al.          Standards Track                    [Page 48]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


snmpEngineID     OBJECT-TYPE
   SYNTAX       SnmpEngineID
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "An SNMP engine's administratively-unique identifier.

                This information SHOULD be stored in non-volatile
                storage so that it remains constant across
                re-initializations of the SNMP engine.
               "
   ::= { snmpEngine 1 }

snmpEngineBoots  OBJECT-TYPE
   SYNTAX       INTEGER (1..2147483647)
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of times that the SNMP engine has
                (re-)initialized itself since snmpEngineID
                was last configured.
               "
   ::= { snmpEngine 2 }

snmpEngineTime   OBJECT-TYPE
   SYNTAX       INTEGER (0..2147483647)
   UNITS        "seconds"
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of seconds since the value of
                the snmpEngineBoots object last changed.
                When incrementing this object's value would
                cause it to exceed its maximum,
                snmpEngineBoots is incremented as if a
                re-initialization had occurred, and this
                object's value consequently reverts to zero.
               "
   ::= { snmpEngine 3 }

snmpEngineMaxMessageSize OBJECT-TYPE
   SYNTAX       INTEGER (484..2147483647)
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The maximum length in octets of an SNMP message
                which this SNMP engine can send or receive and
                process, determined as the minimum of the maximum
                message size values supported among all of the
                transports available to and supported by the engine.
               "
   ::= { snmpEngine 4 }



Harrington, et al.          Standards Track                    [Page 49]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


-- Registration Points for Authentication and Privacy Protocols **

snmpAuthProtocols OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Registration point for standards-track
                 authentication protocols used in SNMP Management
                 Frameworks.
                "
   ::= { snmpFrameworkAdmin 1 }

snmpPrivProtocols OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Registration point for standards-track privacy
                 protocols used in SNMP Management Frameworks.
                "
   ::= { snmpFrameworkAdmin 2 }

-- Conformance information ******************************************

snmpFrameworkMIBCompliances
              OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1}
snmpFrameworkMIBGroups
              OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2}

-- compliance statements

snmpFrameworkMIBCompliance MODULE-COMPLIANCE
   STATUS       current
   DESCRIPTION "The compliance statement for SNMP engines which
                implement the SNMP Management Framework MIB.
               "
   MODULE    -- this module
       MANDATORY-GROUPS { snmpEngineGroup }

   ::= { snmpFrameworkMIBCompliances 1 }

-- units of conformance

snmpEngineGroup OBJECT-GROUP
   OBJECTS {
             snmpEngineID,
             snmpEngineBoots,
             snmpEngineTime,
             snmpEngineMaxMessageSize
           }
   STATUS       current
   DESCRIPTION "A collection of objects for identifying and
                determining the configuration and current timeliness



Harrington, et al.          Standards Track                    [Page 50]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


                values of an SNMP engine.
               "
   ::= { snmpFrameworkMIBGroups 1 }

END

6.  IANA Considerations

  This document defines three number spaces administered by IANA, one
  for security models, another for message processing models, and a
  third for SnmpEngineID formats.

6.1.  Security Models

  The SnmpSecurityModel TEXTUAL-CONVENTION values managed by IANA are
  in the range from 0 to 255 inclusive, and are reserved for
  standards-track Security Models.  If this range should in the future
  prove insufficient, an enterprise number can be allocated to obtain
  an additional 256 possible values.

  As of this writing, there are several values of securityModel defined
  for use with SNMP or reserved for use with supporting MIB objects.
  They are as follows:

                          0  reserved for 'any'
                          1  reserved for SNMPv1
                          2  reserved for SNMPv2c
                          3  User-Based Security Model (USM)

6.2.  Message Processing Models

  The SnmpMessageProcessingModel TEXTUAL-CONVENTION values managed by
  IANA are in the range 0 to 255, inclusive.  Each value uniquely
  identifies a standards-track Message Processing Model of the Message
  Processing Subsystem within the SNMP Management Architecture.

  Should this range prove insufficient in the future, an enterprise
  number may be obtained for the standards committee to get an
  additional 256 possible values.

  As of this writing, there are several values of
  messageProcessingModel defined for use with SNMP.  They are as
  follows:

                          0  reserved for SNMPv1
                          1  reserved for SNMPv2c
                          2  reserved for SNMPv2u and SNMPv2*
                          3  reserved for SNMPv3



Harrington, et al.          Standards Track                    [Page 51]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


6.3.  SnmpEngineID Formats

  The SnmpEngineID TEXTUAL-CONVENTION's fifth octet contains a format
  identifier.  The values managed by IANA are in the range 6 to 127,
  inclusive.  Each value uniquely identifies a standards-track
  SnmpEngineID format.

7.  Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in RFC 2028.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

8.  Acknowledgements

  This document is the result of the efforts of the SNMPv3 Working
  Group.  Some special thanks are in order to the following SNMPv3 WG
  members:

     Harald Tveit Alvestrand (Maxware)
     Dave Battle (SNMP Research, Inc.)
     Alan Beard (Disney Worldwide Services)
     Paul Berrevoets (SWI Systemware/Halcyon Inc.)
     Martin Bjorklund (Ericsson)
     Uri Blumenthal (IBM T.J. Watson Research Center)
     Jeff Case (SNMP Research, Inc.)
     John Curran (BBN)
     Mike Daniele (Compaq Computer Corporation)
     T. Max Devlin (Eltrax Systems)
     John Flick (Hewlett Packard)
     Rob Frye (MCI)
     Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)



Harrington, et al.          Standards Track                    [Page 52]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


     David Harrington (Cabletron Systems Inc.)
     Lauren Heintz (BMC Software, Inc.)
     N.C. Hien (IBM T.J. Watson Research Center)
     Michael Kirkham (InterWorking Labs, Inc.)
     Dave Levi (SNMP Research, Inc.)
     Louis A Mamakos (UUNET Technologies Inc.)
     Joe Marzot (Nortel Networks)
     Paul Meyer (Secure Computing Corporation)
     Keith McCloghrie (Cisco Systems)
     Bob Moore (IBM)
     Russ Mundy (TIS Labs at Network Associates)
     Bob Natale (ACE*COMM Corporation)
     Mike O'Dell (UUNET Technologies Inc.)
     Dave Perkins (DeskTalk)
     Peter Polkinghorne (Brunel University)
     Randy Presuhn (BMC Software, Inc.)
     David Reeder (TIS Labs at Network Associates)
     David Reid (SNMP Research, Inc.)
     Aleksey Romanov (Quality Quorum)
     Shawn Routhier (Epilogue)
     Juergen Schoenwaelder (TU Braunschweig)
     Bob Stewart (Cisco Systems)
     Mike Thatcher (Independent Consultant)
     Bert Wijnen (IBM T.J. Watson Research Center)

  The document is based on recommendations of the IETF Security and
  Administrative Framework Evolution for SNMP Advisory Team.  Members
  of that Advisory Team were:

     David Harrington (Cabletron Systems Inc.)
     Jeff Johnson (Cisco Systems)
     David Levi (SNMP Research Inc.)
     John Linn (Openvision)
     Russ Mundy (Trusted Information Systems) chair
     Shawn Routhier (Epilogue)
     Glenn Waters (Nortel)
     Bert Wijnen (IBM T. J. Watson Research Center)

  As recommended by the Advisory Team and the SNMPv3 Working Group
  Charter, the design incorporates as much as practical from previous
  RFCs and drafts. As a result, special thanks are due to the authors
  of previous designs known as SNMPv2u and SNMPv2*:

     Jeff Case (SNMP Research, Inc.)
     David Harrington (Cabletron Systems Inc.)
     David Levi (SNMP Research, Inc.)
     Keith McCloghrie (Cisco Systems)
     Brian O'Keefe (Hewlett Packard)



Harrington, et al.          Standards Track                    [Page 53]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


     Marshall T. Rose (Dover Beach Consulting)
     Jon Saperia (BGS Systems Inc.)
     Steve Waldbusser (International Network Services)
     Glenn W. Waters (Bell-Northern Research Ltd.)

9.  Security Considerations

  This document describes how an implementation can include a Security
  Model to protect management messages and an Access Control Model to
  control access to management information.

  The level of security provided is determined by the specific Security
  Model implementation(s) and the specific Access Control Model
  implementation(s) used.

  Applications have access to data which is not secured.  Applications
  SHOULD take reasonable steps to protect the data from disclosure.

  It is the responsibility of the purchaser of an implementation to
  ensure that:

     1) an implementation complies with the rules defined by this
        architecture,

     2) the Security and Access Control Models utilized satisfy the
        security and access control needs of the organization,

     3) the implementations of the Models and Applications comply with
        the model and application specifications,

     4) and the implementation protects configuration secrets from
        inadvertent disclosure.

  This document also contains a MIB definition module.  None of the
  objects defined is writable, and the information they represent is
  not deemed to be particularly sensitive.  However, if they are deemed
  sensitive in a particular environment, access to them should be
  restricted through the use of appropriately configured Security and
  Access Control models.

10.  References

10.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.





Harrington, et al.          Standards Track                    [Page 54]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  [RFC2279]   Yergeau, F., "UTF-8, a transformation format of ISO
              10646", RFC 2279, January 1998.

  [RFC2578]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Structure of Management
              Information Version 2 (SMIv2)", STD 58, RFC 2578, April
              1999.

  [RFC2579]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Textual Conventions for
              SMIv2", STD 58, RFC 2579, April 1999.

  [RFC2580]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
              Rose, M. and S. Waldbusser, "Conformance Statements for
              SMIv2", STD 58, RFC 2580, April 1999.

  [RFC3412]   Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
              "Message Processing and Dispatching for the Simple
              Network Management Protocol (SNMP)", STD 62, RFC 3412,
              December 2002.

  [RFC3413]   Levi, D., Meyer, P. and B. Stewart, "Simple Network
              Management Protocol (SNMP) Applications", STD 62, RFC
              3413, December 2002.

  [RFC3414]   Blumenthal, U. and B. Wijnen, "User-Based Security Model
              (USM) for Version 3 of the Simple Network Management
              Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC3415]   Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
              Access Control Model (VACM) for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3415, December
              2002.

  [RFC3416]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
              Waldbusser, "Protocol Operations for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3416, December
              2002.

  [RFC3417]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
              Waldbusser, "Transport Mappings for the Simple Network
              Management Protocol (SNMP)", STD 62, RFC 3417, December
              2002.

  [RFC3418]   Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
              Waldbusser, "Management Information Base (MIB) for the
              Simple Network Management Protocol (SNMP)", STD 62, RFC
              3418, December 2002.



Harrington, et al.          Standards Track                    [Page 55]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


10.2.  Informative References

  [RFC1155]   Rose, M. and K. McCloghrie, "Structure and Identification
              of Management Information for TCP/IP-based internets",
              STD 16, RFC 1155, May 1990.

  [RFC1157]   Case, J., Fedor, M., Schoffstall, M. and J. Davin, "The
              Simple Network Management Protocol", STD 15, RFC 1157,
              May 1990.

  [RFC1212]   Rose, M. and K. McCloghrie, "Concise MIB Definitions",
              STD 16, RFC 1212, March 1991.

  [RFC1901]   Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
              "Introduction to Community-based SNMPv2", RFC 1901,
              January 1996.

  [RFC1909]   McCloghrie, K., Editor, "An Administrative Infrastructure
              for SNMPv2", RFC 1909, February 1996.

  [RFC1910]   Waters, G., Editor, "User-based Security Model for
              SNMPv2", RFC 1910, February 1996.

  [RFC2028]   Hovey, R. and S. Bradner, "The Organizations Involved in
              the IETF Standards Process", BCP 11, RFC 2028, October
              1996.

  [RFC2576]   Frye, R., Levi, D., Routhier, S. and B. Wijnen,
              "Coexistence between Version 1, Version 2, and Version 3
              of the Internet-Standard Network Management Framework",
              RFC 2576, March 2000.

  [RFC2863]   McCloghrie, K. and F. Kastenholz, "The Interfaces Group
              MIB", RFC 2863, June 2000.

  [RFC3410]   Case, J., Mundy, R., Partain, D. and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410, December 2002.













Harrington, et al.          Standards Track                    [Page 56]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


Appendix A

A.  Guidelines for Model Designers

  This appendix describes guidelines for designers of models which are
  expected to fit into the architecture defined in this document.

  SNMPv1 and SNMPv2c are two SNMP frameworks which use communities to
  provide trivial authentication and access control.  SNMPv1 and
  SNMPv2c Frameworks can coexist with Frameworks designed according to
  this architecture, and modified versions of SNMPv1 and SNMPv2c
  Frameworks could be designed to meet the requirements of this
  architecture, but this document does not provide guidelines for that
  coexistence.

  Within any subsystem model, there should be no reference to any
  specific model of another subsystem, or to data defined by a specific
  model of another subsystem.

  Transfer of data between the subsystems is deliberately described as
  a fixed set of abstract data elements and primitive functions which
  can be overloaded to satisfy the needs of multiple model definitions.

  Documents which define models to be used within this architecture
  SHOULD use the standard primitives between subsystems, possibly
  defining specific mechanisms for converting the abstract data
  elements into model-usable formats.  This constraint exists to allow
  subsystem and model documents to be written recognizing common
  borders of the subsystem and model.  Vendors are not constrained to
  recognize these borders in their implementations.

  The architecture defines certain standard services to be provided
  between subsystems, and the architecture defines abstract service
  interfaces to request these services.

  Each model definition for a subsystem SHOULD support the standard
  service interfaces, but whether, or how, or how well, it performs the
  service is dependent on the model definition.

A.1.  Security Model Design Requirements

A.1.1.  Threats

  A document describing a Security Model MUST describe how the model
  protects against the threats described under "Security Requirements
  of this Architecture", section 1.4.





Harrington, et al.          Standards Track                    [Page 57]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


A.1.2.  Security Processing

  Received messages MUST be validated by a Model of the Security
  Subsystem.  Validation includes authentication and privacy processing
  if needed, but it is explicitly allowed to send messages which do not
  require authentication or privacy.

  A received message contains a specified securityLevel to be used
  during processing.  All messages requiring privacy MUST also require
  authentication.

  A Security Model specifies rules by which authentication and privacy
  are to be done.  A model may define mechanisms to provide additional
  security features, but the model definition is constrained to using
  (possibly a subset of) the abstract data elements defined in this
  document for transferring data between subsystems.

  Each Security Model may allow multiple security protocols to be used
  concurrently within an implementation of the model.  Each Security
  Model defines how to determine which protocol to use, given the
  securityLevel and the security parameters relevant to the message.
  Each Security Model, with its associated protocol(s) defines how the
  sending/receiving entities are identified, and how secrets are
  configured.

  Authentication and Privacy protocols supported by Security Models are
  uniquely identified using Object Identifiers.  IETF standard
  protocols for authentication or privacy should have an identifier
  defined within the snmpAuthProtocols or the snmpPrivProtocols
  subtrees.  Enterprise specific protocol identifiers should be defined
  within the enterprise subtree.

  For privacy, the Security Model defines what portion of the message
  is encrypted.

  The persistent data used for security should be SNMP-manageable, but
  the Security Model defines whether an instantiation of the MIB is a
  conformance requirement.

  Security Models are replaceable within the Security Subsystem.
  Multiple Security Model implementations may exist concurrently within
  an SNMP engine.  The number of Security Models defined by the SNMP
  community should remain small to promote interoperability.








Harrington, et al.          Standards Track                    [Page 58]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


A.1.3.  Validate the security-stamp in a received message

  A Message Processing Model requests that a Security Model:

     -  verifies that the message has not been altered,

     -  authenticates the identification of the principal for whom the
        message was generated.

     -  decrypts the message if it was encrypted.

  Additional requirements may be defined by the model, and additional
  services may be provided by the model, but the model is constrained
  to use the following primitives for transferring data between
  subsystems.  Implementations are not so constrained.

  A Message Processing Model uses the processIncomingMsg primitive as
  described in section 4.4.2.

A.1.4.  Security MIBs

  Each Security Model defines the MIB module(s) required for security
  processing, including any MIB module(s) required for the security
  protocol(s) supported.  The MIB module(s) SHOULD be defined
  concurrently with the procedures which use the MIB module(s).  The
  MIB module(s) are subject to normal access control rules.

  The mapping between the model-dependent security ID and the
  securityName MUST be able to be determined using SNMP, if the model-
  dependent MIB is instantiated and if access control policy allows
  access.

A.1.5.  Cached Security Data

  For each message received, the Security Model caches the state
  information such that a Response message can be generated using the
  same security information, even if the Local Configuration Datastore
  is altered between the time of the incoming request and the outgoing
  response.

  A Message Processing Model has the responsibility for explicitly
  releasing the cached data if such data is no longer needed.  To
  enable this, an abstract securityStateReference data element is
  passed from the Security Model to the Message Processing Model.

  The cached security data may be implicitly released via the
  generation of a response, or explicitly released by using the
  stateRelease primitive, as described in section 4.5.1.



Harrington, et al.          Standards Track                    [Page 59]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


A.2.  Message Processing Model Design Requirements

  An SNMP engine contains a Message Processing Subsystem which may
  contain multiple Message Processing Models.

  The Message Processing Model MUST always (conceptually) pass the
  complete PDU, i.e., it never forwards less than the complete list of
  varBinds.

A.2.1.  Receiving an SNMP Message from the Network

  Upon receipt of a message from the network, the Dispatcher in the
  SNMP engine determines the version of the SNMP message and interacts
  with the corresponding Message Processing Model to determine the
  abstract data elements.

  A Message Processing Model specifies the SNMP Message format it
  supports and describes how to determine the values of the abstract
  data elements (like msgID, msgMaxSize, msgFlags,
  msgSecurityParameters, securityModel, securityLevel etc).  A Message
  Processing Model interacts with a Security Model to provide security
  processing for the message using the processIncomingMsg primitive, as
  described in section 4.4.2.

A.2.2.  Sending an SNMP Message to the Network

  The Dispatcher in the SNMP engine interacts with a Message Processing
  Model to prepare an outgoing message.  For that it uses the following
  primitives:

     -  for requests and notifications: prepareOutgoingMessage, as
        described in section 4.2.1.

     -  for response messages: prepareResponseMessage, as described in
        section 4.2.2.

  A Message Processing Model, when preparing an Outgoing SNMP Message,
  interacts with a Security Model to secure the message.  For that it
  uses the following primitives:

     -  for requests and notifications: generateRequestMsg, as
        described in section 4.4.1.

     -  for response messages: generateResponseMsg as described in
        section 4.4.3.






Harrington, et al.          Standards Track                    [Page 60]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


  Once the SNMP message is prepared by a Message Processing Model, the
  Dispatcher sends the message to the desired address using the
  appropriate transport.

A.3.  Application Design Requirements

  Within an application, there may be an explicit binding to a specific
  SNMP message version, i.e., a specific Message Processing Model, and
  to a specific Access Control Model, but there should be no reference
  to any data defined by a specific Message Processing Model or Access
  Control Model.

  Within an application, there should be no reference to any specific
  Security Model, or any data defined by a specific Security Model.

  An application determines whether explicit or implicit access control
  should be applied to the operation, and, if access control is needed,
  which Access Control Model should be used.

  An application has the responsibility to define any MIB module(s)
  used to provide application-specific services.

  Applications interact with the SNMP engine to initiate messages,
  receive responses, receive asynchronous messages, and send responses.

A.3.1.  Applications that Initiate Messages

  Applications may request that the SNMP engine send messages
  containing SNMP commands or notifications using the sendPdu primitive
  as described in section 4.1.1.

  If it is desired that a message be sent to multiple targets, it is
  the responsibility of the application to provide the iteration.

  The SNMP engine assumes necessary access control has been applied to
  the PDU, and provides no access control services.

  The SNMP engine looks at the "expectResponse" parameter, and if a
  response is expected, then the appropriate information is cached such
  that a later response can be associated to this message, and can then
  be returned to the application.  A sendPduHandle is returned to the
  application so it can later correspond the response with this message
  as well.








Harrington, et al.          Standards Track                    [Page 61]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


A.3.2.  Applications that Receive Responses

  The SNMP engine matches the incoming response messages to outstanding
  messages sent by this SNMP engine, and forwards the response to the
  associated application using the processResponsePdu primitive, as
  described in section 4.1.4.

A.3.3.  Applications that Receive Asynchronous Messages

  When an SNMP engine receives a message that is not the response to a
  request from this SNMP engine, it must determine to which application
  the message should be given.

  An Application that wishes to receive asynchronous messages registers
  itself with the engine using the primitive registerContextEngineID as
  described in section 4.1.5.

  An Application that wishes to stop receiving asynchronous messages
  should unregister itself with the SNMP engine using the primitive
  unregisterContextEngineID as described in section 4.1.5.

  Only one registration per combination of PDU type and contextEngineID
  is permitted at the same time.  Duplicate registrations are ignored.
  An errorIndication will be returned to the application that attempts
  to duplicate a registration.

  All asynchronously received messages containing a registered
  combination of PDU type and contextEngineID are sent to the
  application which registered to support that combination.

  The engine forwards the PDU to the registered application, using the
  processPdu primitive, as described in section 4.1.2.

A.3.4.  Applications that Send Responses

  Request operations require responses.  An application sends a
  response via the returnResponsePdu primitive, as described in section
  4.1.3.

  The contextEngineID, contextName, securityModel, securityName,
  securityLevel, and stateReference parameters are from the initial
  processPdu primitive.  The PDU and statusInformation are the results
  of processing.








Harrington, et al.          Standards Track                    [Page 62]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


A.4.  Access Control Model Design Requirements

  An Access Control Model determines whether the specified securityName
  is allowed to perform the requested operation on a specified managed
  object.  The Access Control Model specifies the rules by which access
  control is determined.

  The persistent data used for access control should be manageable
  using SNMP, but the Access Control Model defines whether an
  instantiation of the MIB is a conformance requirement.

  The Access Control Model must provide the primitive isAccessAllowed.

Editors' Addresses

  Bert Wijnen
  Lucent Technologies
  Schagen 33
  3461 GL Linschoten
  Netherlands

  Phone: +31 348-680-485
  EMail: [email protected]


  David Harrington
  Enterasys Networks
  Post Office Box 5005
  35 Industrial Way
  Rochester, New Hampshire 03866-5005
  USA

  Phone: +1 603-337-2614
  EMail: [email protected]


  Randy Presuhn
  BMC Software, Inc.
  2141 North First Street
  San Jose, California 95131
  USA

  Phone: +1 408-546-1006
  Fax: +1 408-965-0359
  EMail: [email protected]






Harrington, et al.          Standards Track                    [Page 63]

RFC 3411      Architecture for SNMP Management Frameworks  December 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Harrington, et al.          Standards Track                    [Page 64]