Network Working Group                                         R. Housley
Request for Comments: 3370                              RSA Laboratories
Obsoletes: 2630, 3211                                        August 2002
Category: Standards Track


            Cryptographic Message Syntax (CMS) Algorithms

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document describes the conventions for using several
  cryptographic algorithms with the Cryptographic Message Syntax (CMS).
  The CMS is used to digitally sign, digest, authenticate, or encrypt
  arbitrary message contents.

Table of Contents

  1     Introduction ...............................................  2
  1.1   Changes Since RFC 2630 .....................................  2
  1.2   Terminology ................................................  2
  2     Message Digest Algorithms ..................................  3
  2.1   SHA-1 ......................................................  3
  2.2   MD5 ........................................................  3
  3     Signature Algorithms .......................................  4
  3.1   DSA ........................................................  4
  3.2   RSA ........................................................  5
  4     Key Management Algorithms ..................................  6
  4.1   Key Agreement Algorithms ...................................  6
  4.1.1 X9.42 Ephemeral-Static Diffie-Hellman ......................  7
  4.1.2 X9.42 Static-Static Diffie-Hellman .........................  8
  4.2   Key Transport Algorithms ...................................  9
  4.2.1 RSA (PKCS #1 v1.5) ......................................... 10
  4.3   Symmetric Key-Encryption Key Algorithms .................... 10
  4.3.1 Triple-DES Key Wrap ........................................ 11
  4.3.2 RC2 Key Wrap ............................................... 12
  4.4   Key Derivation Algorithms .................................. 12



Housley                     Standards Track                     [Page 1]

RFC 3370                     CMS Algorithms                  August 2002


  4.4.1 PBKDF2 ..................................................... 13
  5     Content Encryption Algorithms .............................. 13
  5.1   Triple-DES CBC ............................................. 14
  5.2   RC2 CBC .................................................... 14
  6     Message Authentication Code (MAC) Algorithms ............... 15
  6.1   HMAC with SHA-1 ............................................ 15
  7     ASN.1 Module ............................................... 16
  8     References ................................................. 18
  9     Security Considerations .................................... 20
  10    Acknowledgments ............................................ 22
  11    Author's Address ........................................... 23
  12    Full Copyright Statement ................................... 24

1  Introduction

  The Cryptographic Message Syntax (CMS) [CMS] is used to digitally
  sign, digest, authenticate, or encrypt arbitrary message contents.
  This companion specification describes the use of common
  cryptographic algorithms with the CMS.  Implementations of the CMS
  may support these algorithms; implementations of the CMS may also
  support other algorithms as well.  However, if an implementation
  chooses to support one of the algorithms discussed in this document,
  then the implementation MUST do so as described in this document.

  The CMS values are generated using ASN.1 [X.208-88], using BER-
  encoding [X.209-88].  Algorithm identifiers (which include ASN.1
  object identifiers) identify cryptographic algorithms, and some
  algorithms require additional parameters.  When needed, parameters
  are specified with an ASN.1 structure.  The algorithm identifier for
  each algorithm is specified, and when needed, the parameter structure
  is specified.  The fields in the CMS employed by each algorithm are
  identified.

1.1  Changes Since RFC 2630

  This document obsoletes section 12 of RFC 2630 [OLDCMS].  RFC 3369
  [CMS] obsoletes the rest of RFC 2630.  Separation of the protocol and
  algorithm specifications allows each one to be updated without
  impacting the other.  However, the conventions for using additional
  algorithms with the CMS are likely to be specified in separate
  documents.

1.2  Terminology

  In this document, the key words MUST, MUST NOT, REQUIRED, SHOULD,
  SHOULD NOT, RECOMMENDED, and MAY are to be interpreted as described
  in [STDWORDS].




Housley                     Standards Track                     [Page 2]

RFC 3370                     CMS Algorithms                  August 2002


2  Message Digest Algorithms

  This section specifies the conventions employed by CMS
  implementations that support SHA-1 or MD5.

  Digest algorithm identifiers are located in the SignedData
  digestAlgorithms field, the SignerInfo digestAlgorithm field, the
  DigestedData digestAlgorithm field, and the AuthenticatedData
  digestAlgorithm field.

  Digest values are located in the DigestedData digest field and the
  Message Digest authenticated attribute.  In addition, digest values
  are input to signature algorithms.

2.1  SHA-1

  The SHA-1 message digest algorithm is defined in FIPS Pub 180-1
  [SHA1].  The algorithm identifier for SHA-1 is:

     sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
         oiw(14) secsig(3) algorithm(2) 26 }

  There are two possible encodings for the SHA-1 AlgorithmIdentifier
  parameters field.  The two alternatives arise from the fact that when
  the 1988 syntax for AlgorithmIdentifier was translated into the 1997
  syntax, the OPTIONAL associated with the AlgorithmIdentifier
  parameters got lost.  Later the OPTIONAL was recovered via a defect
  report, but by then many people thought that algorithm parameters
  were mandatory.  Because of this history some implementations encode
  parameters as a NULL element and others omit them entirely.  The
  correct encoding is to omit the parameters field; however,
  implementations MUST also handle a SHA-1 AlgorithmIdentifier
  parameters field which contains a NULL.

  The AlgorithmIdentifier parameters field is OPTIONAL.  If present,
  the parameters field MUST contain a NULL.  Implementations MUST
  accept SHA-1 AlgorithmIdentifiers with absent parameters.
  Implementations MUST accept SHA-1 AlgorithmIdentifiers with NULL
  parameters.  Implementations SHOULD generate SHA-1
  AlgorithmIdentifiers with absent parameters.

2.2  MD5

  The MD5 digest algorithm is defined in RFC 1321 [MD5].  The algorithm
  identifier for MD5 is:

     md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
         rsadsi(113549) digestAlgorithm(2) 5 }



Housley                     Standards Track                     [Page 3]

RFC 3370                     CMS Algorithms                  August 2002


  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field MUST contain NULL.  Implementations MAY accept the
  MD5 AlgorithmIdentifiers with absent parameters as well as NULL
  parameters.

3  Signature Algorithms

  This section specifies the conventions employed by CMS
  implementations that support DSA or RSA (PKCS #1 v1.5).

  Signature algorithm identifiers are located in the SignerInfo
  signatureAlgorithm field of SignedData.  Also, signature algorithm
  identifiers are located in the SignerInfo signatureAlgorithm field of
  countersignature attributes.

  Signature values are located in the SignerInfo signature field of
  SignedData.  Also, signature values are located in the SignerInfo
  signature field of countersignature attributes.

3.1  DSA

  The DSA signature algorithm is defined in FIPS Pub 186 [DSS].  DSA
  MUST be used with the SHA-1 message digest algorithm.

  The algorithm identifier for DSA subject public keys in certificates
  is:

     id-dsa OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) x9-57 (10040) x9cm(4) 1 }

  DSA signature validation requires three parameters, commonly called
  p, q, and g.  When the id-dsa algorithm identifier is used, the
  AlgorithmIdentifier parameters field is optional.  If present, the
  AlgorithmIdentifier parameters field MUST contain the three DSA
  parameter values encoded using the Dss-Parms type.  If absent, the
  subject DSA public key uses the same DSA parameters as the
  certificate issuer.

     Dss-Parms ::= SEQUENCE {
       p INTEGER,
       q INTEGER,
       g INTEGER  }

  When the id-dsa algorithm identifier is used, the DSA public key,
  commonly called Y, MUST be encoded as an INTEGER.  The output of this
  encoding is carried in the certificate subject public key.

     Dss-Pub-Key ::= INTEGER  -- Y



Housley                     Standards Track                     [Page 4]

RFC 3370                     CMS Algorithms                  August 2002


  The algorithm identifier for DSA with SHA-1 signature values is:

     id-dsa-with-sha1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) x9-57 (10040) x9cm(4) 3 }

  When the id-dsa-with-sha1 algorithm identifier is used, the
  AlgorithmIdentifier parameters field MUST be absent.

  When signing, the DSA algorithm generates two values, commonly called
  r and s.  To transfer these two values as one signature, they MUST be
  encoded using the Dss-Sig-Value type:

     Dss-Sig-Value ::= SEQUENCE {
       r INTEGER,
       s INTEGER }

3.2  RSA

  The RSA (PKCS #1 v1.5) signature algorithm is defined in RFC 2437
  [NEWPKCS#1].  RFC 2437 specifies the use of the RSA signature
  algorithm with the SHA-1 and MD5 message digest algorithms.

  The algorithm identifier for RSA subject public keys in certificates
  is:

     rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

  When the rsaEncryption algorithm identifier is used, the
  AlgorithmIdentifier parameters field MUST contain NULL.

  When the rsaEncryption algorithm identifier is used, the RSA public
  key, which is composed of a modulus and a public exponent, MUST be
  encoded using the RSAPublicKey type.  The output of this encoding is
  carried in the certificate subject public key.

     RSAPublicKey ::= SEQUENCE {
        modulus INTEGER, -- n
        publicExponent INTEGER } -- e

  CMS implementations that include the RSA (PKCS #1 v1.5) signature
  algorithm MUST also implement the SHA-1 message digest algorithm.
  Such implementations SHOULD also support the MD5 message digest
  algorithm.







Housley                     Standards Track                     [Page 5]

RFC 3370                     CMS Algorithms                  August 2002


  The rsaEncryption algorithm identifier is used to identify RSA (PKCS
  #1 v1.5) signature values regardless of the message digest algorithm
  employed.  CMS implementations that include the RSA (PKCS #1 v1.5)
  signature algorithm MUST support the rsaEncryption signature value
  algorithm identifier, and CMS implementations MAY support RSA (PKCS
  #1 v1.5) signature value algorithm identifiers that specify both the
  RSA (PKCS #1 v1.5) signature algorithm and the message digest
  algorithm.

  The algorithm identifier for RSA (PKCS #1 v1.5) with SHA-1 signature
  values is:

     sha1WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)
         member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

  The algorithm identifier for RSA (PKCS #1 v1.5) with MD5 signature
  values is:

     md5WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)
         member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 4 }

  When the rsaEncryption, sha1WithRSAEncryption, or
  md5WithRSAEncryption signature value algorithm identifiers are used,
  the AlgorithmIdentifier parameters field MUST be NULL.

  When signing, the RSA algorithm generates a single value, and that
  value is used directly as the signature value.

4  Key Management Algorithms

  CMS accommodates the following general key management techniques: key
  agreement, key transport, previously distributed symmetric key-
  encryption keys, and passwords.

4.1  Key Agreement Algorithms

  This section specifies the conventions employed by CMS
  implementations that support key agreement using X9.42 Ephemeral-
  Static Diffie-Hellman (X9.42 E-S D-H) and X9.42 Static-Static
  Diffie-Hellman (X9.42 S-S D-H).

  When a key agreement algorithm is used, a key-encryption algorithm is
  also needed.  Therefore, when key agreement is supported, a key-
  encryption algorithm MUST be provided for each content-encryption
  algorithm.  The key wrap algorithms for Triple-DES and RC2 are
  described in RFC 3217 [WRAP].





Housley                     Standards Track                     [Page 6]

RFC 3370                     CMS Algorithms                  August 2002


  For key agreement of RC2 key-encryption keys, 128 bits MUST be
  generated as input to the key expansion process used to compute the
  RC2 effective key [RC2].

  Key agreement algorithm identifiers are located in the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  keyEncryptionAlgorithm fields.

  Key wrap algorithm identifiers are located in the KeyWrapAlgorithm
  parameters within the EnvelopedData RecipientInfos
  KeyAgreeRecipientInfo keyEncryptionAlgorithm and AuthenticatedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm fields.

  Wrapped content-encryption keys are located in the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys
  encryptedKey field.  Wrapped message-authentication keys are located
  in the AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  RecipientEncryptedKeys encryptedKey field.

4.1.1  X9.42 Ephemeral-Static Diffie-Hellman

  Ephemeral-Static Diffie-Hellman key agreement is defined in RFC 2631
  [DH-X9.42].  When using Ephemeral-Static Diffie-Hellman, the
  EnvelopedData RecipientInfos KeyAgreeRecipientInfo field is used as
  follows:

     version MUST be 3.

     originator MUST be the originatorKey alternative.  The
     originatorKey algorithm field MUST contain the dh-public-number
     object identifier with absent parameters.  The originatorKey
     publicKey field MUST contain the sender's ephemeral public key.
     The dh-public-number object identifier is:

        dh-public-number OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) ansi-x942(10046) number-type(2) 1 }

     ukm may be present or absent.  CMS implementations MUST support
     ukm being absent, and CMS implementations SHOULD support ukm being
     present.  When present, the ukm is used to ensure that a different
     key-encryption key is generated when the ephemeral private key
     might be used more than once.








Housley                     Standards Track                     [Page 7]

RFC 3370                     CMS Algorithms                  August 2002


     keyEncryptionAlgorithm MUST be the id-alg-ESDH algorithm
     identifier.  The algorithm identifier parameter field for id-alg-
     ESDH is KeyWrapAlgorithm, and this parameter MUST be present.  The
     KeyWrapAlgorithm denotes the symmetric encryption algorithm used
     to encrypt the content-encryption key with the pairwise key-
     encryption key generated using the X9.42 Ephemeral-Static Diffie-
     Hellman key agreement algorithm. Triple-DES and RC2 key wrap
     algorithms are described in RFC 3217 [WRAP].  The id-alg-ESDH
     algorithm identifier and parameter syntax is:

        id-alg-ESDH OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
            alg(3) 5 }

        KeyWrapAlgorithm ::= AlgorithmIdentifier

     recipientEncryptedKeys contains an identifier and an encrypted key
     for each recipient.  The RecipientEncryptedKey
     KeyAgreeRecipientIdentifier MUST contain either the
     issuerAndSerialNumber identifying the recipient's certificate or
     the RecipientKeyIdentifier containing the subject key identifier
     from the recipient's certificate.  In both cases, the recipient's
     certificate contains the recipient's static public key.
     RecipientEncryptedKey EncryptedKey MUST contain the
     content-encryption key encrypted with the X9.42 Ephemeral-Static
     Diffie-Hellman generated pairwise key-encryption key using the
     algorithm specified by the KeyWrapAlgorithm.

4.1.2  X9.42 Static-Static Diffie-Hellman

  Static-Static Diffie-Hellman key agreement is defined in RFC 2631
  [DH-X9.42].  When using Static-Static Diffie-Hellman, the
  EnvelopedData RecipientInfos KeyAgreeRecipientInfo and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo fields are
  used as follows:

     version MUST be 3.

     originator MUST be either the issuerAndSerialNumber or
     subjectKeyIdentifier alternative.  In both cases, the originator's
     certificate contains the sender's static public key.  RFC 3279
     [CERTALGS] specifies the AlgorithmIdentifier parameters syntax and
     values that are included in the originator's certificate.  The
     originator's certificate subject public key information field MUST
     contain the dh-public-number object identifier:

        dh-public-number OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) ansi-x942(10046) number-type(2) 1 }



Housley                     Standards Track                     [Page 8]

RFC 3370                     CMS Algorithms                  August 2002


     ukm MUST be present.  The ukm ensures that a different key-
     encryption key is generated for each message between the same
     sender and recipient.

     keyEncryptionAlgorithm MUST be the id-alg-SSDH algorithm
     identifier.  The algorithm identifier parameter field for id-alg-
     SSDH is KeyWrapAlgorihtm, and this parameter MUST be present.  The
     KeyWrapAlgorithm denotes the symmetric encryption algorithm used
     to encrypt the content-encryption key with the pairwise key-
     encryption key generated using the X9.42 Static-Static Diffie-
     Hellman key agreement algorithm.  Triple-DES and RC2 key wrap
     algorithms are described in RFC 3217 [WRAP].  The id-alg-SSDH
     algorithm identifier and parameter syntax is:

        id-alg-SSDH OBJECT IDENTIFIER ::= { iso(1) member-body(2)
            us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
            alg(3) 10 }

        KeyWrapAlgorithm ::= AlgorithmIdentifier

     recipientEncryptedKeys contains an identifier and an encrypted key
     for each recipient.  The RecipientEncryptedKey
     KeyAgreeRecipientIdentifier MUST contain either the
     issuerAndSerialNumber identifying the recipient's certificate or
     the RecipientKeyIdentifier containing the subject key identifier
     from the recipient's certificate.  In both cases, the recipient's
     certificate contains the recipient's static public key.
     RecipientEncryptedKey EncryptedKey MUST contain the content-
     encryption key encrypted with the X9.42 Static-Static Diffie-
     Hellman generated pairwise key-encryption key using the algorithm
     specified by the KeyWrapAlgortihm.

4.2  Key Transport Algorithms

  This section specifies the conventions employed by CMS
  implementations that support key transport using RSA (PKCS #1 v1.5).

  Key transport algorithm identifiers are located in the EnvelopedData
  RecipientInfos KeyTransRecipientInfo keyEncryptionAlgorithm field.

  Key transport encrypted content-encryption keys are located in the
  EnvelopedData RecipientInfos KeyTransRecipientInfo encryptedKey
  field.








Housley                     Standards Track                     [Page 9]

RFC 3370                     CMS Algorithms                  August 2002


4.2.1  RSA (PKCS #1 v1.5)

  The RSA key transport algorithm is the RSA encryption scheme defined
  in RFC 2313 [PKCS#1], block type is 02, where the message to be
  encrypted is the content-encryption key.  The algorithm identifier
  for RSA (PKCS #1 v1.5) is:

     rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field MUST contain NULL.

  When using a Triple-DES content-encryption key, CMS implementations
  MUST adjust the parity bits for each DES key comprising the Triple-
  DES key prior to RSA encryption.

  The use of RSA (PKCS #1 v1.5) encryption, as defined in RFC 2313
  [PKCS#1], to provide confidentiality has a known vulnerability.  The
  vulnerability is primarily relevant to usage in interactive
  applications rather than to store-and-forward environments.  Further
  information and proposed countermeasures are discussed in the
  Security Considerations section of this document and RFC 3218 [MMA].

  Note that the same RSA encryption scheme is also defined in RFC 2437
  [NEWPKCS#1].  Within RFC 2437, this RSA encryption scheme is called
  RSAES-PKCS1-v1_5.

4.3  Symmetric Key-Encryption Key Algorithms

  This section specifies the conventions employed by CMS
  implementations that support symmetric key-encryption key management
  using Triple-DES or RC2 key-encryption keys.  When RC2 is supported,
  RC2 128-bit keys MUST be used as key-encryption keys, and they MUST
  be used with the RC2ParameterVersion parameter set to 58.  A CMS
  implementation MAY support mixed key-encryption and content-
  encryptionalgorithms.  For example, a 40-bit RC2 content-encryption
  key MAY be wrapped with a 168-bit Triple-DES key-encryption key or
  with a 128-bit RC2 key-encryption key.

  Key wrap algorithm identifiers are located in the EnvelopedData
  RecipientInfos KEKRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KEKRecipientInfo
  keyEncryptionAlgorithm fields.







Housley                     Standards Track                    [Page 10]

RFC 3370                     CMS Algorithms                  August 2002


  Wrapped content-encryption keys are located in the EnvelopedData
  RecipientInfos KEKRecipientInfo encryptedKey field.  Wrapped
  message-authentication keys are located in the AuthenticatedData
  RecipientInfos KEKRecipientInfo encryptedKey field.

  The output of a key agreement algorithm is a key-encryption key, and
  this key-encryption key is used to encrypt the content-encryption
  key.  To support key agreement, key wrap algorithm identifiers are
  located in the KeyWrapAlgorithm parameter of the EnvelopedData
  RecipientInfos KeyAgreeRecipientInfo keyEncryptionAlgorithm and
  AuthenticatedData RecipientInfos KeyAgreeRecipientInfo
  keyEncryptionAlgorithm fields.  However, only key agreement
  algorithms that inherently provide authentication ought to be used
  with AuthenticatedData.  Wrapped content-encryption keys are located
  in the EnvelopedData RecipientInfos KeyAgreeRecipientInfo
  RecipientEncryptedKeys encryptedKey field, wrapped message-
  authentication keys are located in the AuthenticatedData
  RecipientInfos KeyAgreeRecipientInfo RecipientEncryptedKeys
  encryptedKey field.

4.3.1  Triple-DES Key Wrap

  A CMS implementation MAY support mixed key-encryption and content-
  encryption algorithms.  For example, a 128-bit RC2 content-encryption
  key MAY be wrapped with a 168-bit Triple-DES key-encryption key.

  Triple-DES key encryption has the algorithm identifier:

     id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 6 }

  The AlgorithmIdentifier parameter field MUST be NULL.

  The key wrap algorithm used to encrypt a Triple-DES content-
  encryption key with a Triple-DES key-encryption key is specified in
  section 3.1 of RFC 3217 [WRAP].  The corresponding key unwrap
  algorithm is specified in section 3.2 of RFC 3217 [WRAP].

  Out-of-band distribution of the Triple-DES key-encryption key used to
  encrypt the Triple-DES content-encryption key is beyond the scope of
  this document.










Housley                     Standards Track                    [Page 11]

RFC 3370                     CMS Algorithms                  August 2002


4.3.2  RC2 Key Wrap

  A CMS implementation MAY support mixed key-encryption and content-
  encryption algorithms.  For example, a 128-bit RC2 content-encryption
  key MAY be wrapped with a 168-bit Triple-DES key-encryption key.
  Similarly, a 40-bit RC2 content-encryption key MAY be wrapped with a
  128-bit RC2 key-encryption key.

  RC2 key encryption has the algorithm identifier:

     id-alg-CMSRC2wrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 7 }

  The AlgorithmIdentifier parameter field MUST be RC2wrapParameter:

     RC2wrapParameter ::= RC2ParameterVersion

     RC2ParameterVersion ::= INTEGER

  The RC2 effective-key-bits (key size) greater than 32 and less than
  256 is encoded in the RC2ParameterVersion.  For the effective-key-
  bits of 40, 64, and 128, the rc2ParameterVersion values are 160, 120,
  and 58 respectively.  These values are not simply the RC2 key length.
  Note that the value 160 must be encoded as two octets (00 A0),
  because the one octet (A0) encoding represents a negative number.

  RC2 128-bit keys MUST be used as key-encryption keys, and they MUST
  be used with the RC2ParameterVersion parameter set to 58.

  The key wrap algorithm used to encrypt a RC2 content-encryption key
  with a RC2 key-encryption key is specified in section 4.1 of RFC 3217
  [WRAP].  The corresponding key unwrap algorithm is specified 4.2 of
  RFC 3217 [WRAP].

  Out-of-band distribution of the RC2 key-encryption key used to
  encrypt the RC2 content-encryption key is beyond of the scope of this
  document.

4.4  Key Derivation Algorithms

  This section specifies the conventions employed by CMS
  implementations that support password-based key management using
  PBKDF2.

  Key derivation algorithms are used to convert a password into a key-
  encryption key as part of the password-based key management
  technique.




Housley                     Standards Track                    [Page 12]

RFC 3370                     CMS Algorithms                  August 2002


  Key derivation algorithm identifiers are located in the EnvelopedData
  RecipientInfos PasswordRecipientInfo keyDerivationAlgorithm and
  AuthenticatedData RecipientInfos PasswordRecipientInfo
  keyDerivationAlgorithm fields.

  The key-encryption key that is derived from the password is used to
  encrypt the content-encryption key.

  The content-encryption keys encrypted with password-derived key-
  encryption keys are located in the EnvelopedData RecipientInfos
  PasswordRecipientInfo encryptedKey field.  The message-authentication
  keys encrypted with password-derived key-encryption keys are located
  in the AuthenticatedData RecipientInfos PasswordRecipientInfo
  encryptedKey field.

4.4.1  PBKDF2

  The PBKDF2 key derivation algorithm is specified in RFC 2898
  [PKCS#5].  The KeyDerivationAlgorithmIdentifer identifies the key-
  derivation algorithm, and any associated parameters used to derive
  the key-encryption key from the user-supplied password.  The
  algorithm identifier for the PBKDF2 key derivation algorithm is:

     id-PBKDF2 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
         rsadsi(113549) pkcs(1) pkcs-5(5) 12 }

  The AlgorithmIdentifier parameter field MUST be PBKDF2-params:

     PBKDF2-params ::= SEQUENCE {
       salt CHOICE {
         specified OCTET STRING,
         otherSource AlgorithmIdentifier },
       iterationCount INTEGER (1..MAX),
       keyLength INTEGER (1..MAX) OPTIONAL,
       prf AlgorithmIdentifier
         DEFAULT { algorithm hMAC-SHA1, parameters NULL } }

  Within the PBKDF2-params, the salt MUST use the specified OCTET
  STRING.

5  Content Encryption Algorithms

  This section specifies the conventions employed by CMS
  implementations that support content encryption using Three-Key
  Triple-DES in CBC mode, Two-Key Triple-DES in CBC mode, or RC2 in CBC
  mode.





Housley                     Standards Track                    [Page 13]

RFC 3370                     CMS Algorithms                  August 2002


  Content encryption algorithm identifiers are located in the
  EnvelopedData EncryptedContentInfo contentEncryptionAlgorithm and the
  EncryptedData EncryptedContentInfo contentEncryptionAlgorithm fields.

  Content encryption algorithms are used to encipher the content
  located in the EnvelopedData EncryptedContentInfo encryptedContent
  field and the EncryptedData EncryptedContentInfo encryptedContent
  field.

5.1  Triple-DES CBC

  The Triple-DES algorithm is described in ANSI X9.52 [3DES].  The
  Triple-DES is composed from three sequential DES [DES] operations:
  encrypt, decrypt, and encrypt.  Three-Key Triple-DES uses a different
  key for each DES operation.  Two-Key Triple-DES uses one key for the
  two encrypt operations and a different key for the decrypt operation.
  The same algorithm identifiers are used for Three-Key Triple-DES and
  Two-Key Triple-DES.  The algorithm identifier for Triple-DES in
  Cipher Block Chaining (CBC) mode is:

     des-ede3-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) encryptionAlgorithm(3) 7 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field must contain a CBCParameter:

     CBCParameter ::= IV

     IV ::= OCTET STRING  -- exactly 8 octets

5.2  RC2 CBC

  The RC2 algorithm is described in RFC 2268 [RC2].  The algorithm
  identifier for RC2 in CBC mode is:

     rc2-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
         rsadsi(113549) encryptionAlgorithm(3) 2 }

  The AlgorithmIdentifier parameters field MUST be present, and the
  parameters field MUST contain a RC2CBCParameter:

     RC2CBCParameter ::= SEQUENCE {
       rc2ParameterVersion INTEGER,
       iv OCTET STRING  }  -- exactly 8 octets







Housley                     Standards Track                    [Page 14]

RFC 3370                     CMS Algorithms                  August 2002


  The RC2 effective-key-bits (key size) greater than 32 and less than
  256 is encoded in the rc2ParameterVersion.  For the effective-key-
  bits of 40, 64, and 128, the rc2ParameterVersion values are 160, 120,
  and 58 respectively.  These values are not simply the RC2 key length.
  Note that the value 160 must be encoded as two octets (00 A0), since
  the one octet (A0) encoding represents a negative number.

6  Message Authentication Code Algorithms

  This section specifies the conventions employed by CMS
  implementations that support the HMAC with SHA-1 message
  authentication code (MAC).

  MAC algorithm identifiers are located in the AuthenticatedData
  macAlgorithm field.

  MAC values are located in the AuthenticatedData mac field.

6.1  HMAC with SHA-1

  The HMAC with SHA-1 algorithm is described in RFC 2104 [HMAC].  The
  algorithm identifier for HMAC with SHA-1 is:

     hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1)
        identified-organization(3) dod(6) internet(1) security(5)
        mechanisms(5) 8 1 2 }

  There are two possible encodings for the HMAC with SHA-1
  AlgorithmIdentifier parameters field.  The two alternatives arise
  from the fact that when the 1988 syntax for the AlgorithmIdentifier
  type was translated into the 1997 syntax, the OPTIONAL associated
  with the AlgorithmIdentifier parameters got lost.  Later the OPTIONAL
  was recovered via a defect report, but by then many people thought
  that algorithm parameters were mandatory.  Because of this history
  some implementations may encode parameters as a NULL while others
  omit them entirely.

  The AlgorithmIdentifier parameters field is OPTIONAL.  If present,
  the parameters field MUST contain a NULL.  Implementations MUST
  accept HMAC with SHA-1 AlgorithmIdentifiers with absent parameters.
  Implementations MUST accept HMAC with SHA-1 AlgorithmIdentifiers with
  NULL parameters.  Implementations SHOULD generate HMAC with SHA-1
  AlgorithmIdentifiers with absent parameters.








Housley                     Standards Track                    [Page 15]

RFC 3370                     CMS Algorithms                  August 2002


7  ASN.1 Module

  CryptographicMessageSyntaxAlgorithms
      { iso(1) member-body(2) us(840) rsadsi(113549)
        pkcs(1) pkcs-9(9) smime(16) modules(0) cmsalg-2001(16) }

  DEFINITIONS IMPLICIT TAGS ::=
  BEGIN

  -- EXPORTS All
  -- The types and values defined in this module are exported for use
  -- in the other ASN.1 modules.  Other applications may use them for
  -- their own purposes.

  IMPORTS
    -- Imports from RFC 3280 [PROFILE], Appendix A.1
          AlgorithmIdentifier
             FROM PKIX1Explicit88 { iso(1)
                  identified-organization(3) dod(6) internet(1)
                  security(5) mechanisms(5) pkix(7) mod(0)
                  pkix1-explicit(18) } ;

  -- Algorithm Identifiers

  sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
      oiw(14) secsig(3) algorithm(2) 26 }

  md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
      rsadsi(113549) digestAlgorithm(2) 5 }

  id-dsa OBJECT IDENTIFIER ::=  { iso(1) member-body(2) us(840)
      x9-57(10040) x9cm(4) 1 }

  id-dsa-with-sha1 OBJECT IDENTIFIER ::=  { iso(1) member-body(2)
      us(840) x9-57(10040) x9cm(4) 3 }

  rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

  md5WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 4 }

  sha1WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1)
      member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

  dh-public-number OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) ansi-x942(10046) number-type(2) 1 }




Housley                     Standards Track                    [Page 16]

RFC 3370                     CMS Algorithms                  August 2002


  id-alg-ESDH OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
      rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 5 }

  id-alg-SSDH OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
      rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 10 }

  id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 6 }

  id-alg-CMSRC2wrap OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 7 }

  des-ede3-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) encryptionAlgorithm(3) 7 }

  rc2-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
      rsadsi(113549) encryptionAlgorithm(3) 2 }

  hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
      dod(6) internet(1) security(5) mechanisms(5) 8 1 2 }

  id-PBKDF2 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
      rsadsi(113549) pkcs(1) pkcs-5(5) 12 }

  -- Public Key Types

  Dss-Pub-Key ::= INTEGER  -- Y

  RSAPublicKey ::= SEQUENCE {
    modulus INTEGER,  -- n
    publicExponent INTEGER }  -- e

  DHPublicKey ::= INTEGER  -- y = g^x mod p


  -- Signature Value Types

  Dss-Sig-Value ::= SEQUENCE {
    r INTEGER,
    s INTEGER }

  -- Algorithm Identifier Parameter Types

  Dss-Parms ::= SEQUENCE {
    p INTEGER,
    q INTEGER,
    g INTEGER }




Housley                     Standards Track                    [Page 17]

RFC 3370                     CMS Algorithms                  August 2002


  DHDomainParameters ::= SEQUENCE {
    p INTEGER,  -- odd prime, p=jq +1
    g INTEGER,  -- generator, g
    q INTEGER,  -- factor of p-1
    j INTEGER OPTIONAL,  -- subgroup factor
    validationParms ValidationParms OPTIONAL }

  ValidationParms ::= SEQUENCE {
    seed BIT STRING,
    pgenCounter INTEGER }

  KeyWrapAlgorithm ::= AlgorithmIdentifier

  RC2wrapParameter ::= RC2ParameterVersion

  RC2ParameterVersion ::= INTEGER

  CBCParameter ::= IV

  IV ::= OCTET STRING  -- exactly 8 octets

  RC2CBCParameter ::= SEQUENCE {
    rc2ParameterVersion INTEGER,
    iv OCTET STRING  }  -- exactly 8 octets

  PBKDF2-params ::= SEQUENCE {
    salt CHOICE {
      specified OCTET STRING,
      otherSource AlgorithmIdentifier },
    iterationCount INTEGER (1..MAX),
    keyLength INTEGER (1..MAX) OPTIONAL,
    prf AlgorithmIdentifier
      DEFAULT { algorithm hMAC-SHA1, parameters NULL } }

  END -- of CryptographicMessageSyntaxAlgorithms

8  References

  [3DES]      American National Standards Institute.  ANSI X9.52-1998,
              Triple Data Encryption Algorithm Modes of Operation.
              1998.

  [CERTALGS]  Bassham, L., Housley, R. and W. Polk, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation
              List (CRL) Profile", RFC 3279, April 2002.





Housley                     Standards Track                    [Page 18]

RFC 3370                     CMS Algorithms                  August 2002


  [CMS]       Housley, R., "Cryptographic Message Syntax", RFC 3269,
              August 2002.

  [DES]       American National Standards Institute.  ANSI X3.106,
              "American National Standard for Information Systems -
              Data Link Encryption".  1983.

  [DH-X9.42]  Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
              2631, June 1999.

  [DSS]       National Institute of Standards and Technology.  FIPS Pub
              186: Digital Signature Standard.  19 May 1994.

  [HMAC]      Krawczyk, H., "HMAC: Keyed-Hashing for Message
              Authentication", RFC 2104, February 1997.

  [MD5]       Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
              April 1992.

  [MMA]       Rescorla, E., "Preventing the Million Message Attack on
              CMS", RFC 3218, January 2002.

  [MODES]     National Institute of Standards and Technology.  FIPS Pub
              81: DES Modes of Operation.  2 December 1980.

  [NEWPKCS#1] Kaliski, B. and J. Staddon, "PKCS #1: RSA Encryption,
              Version 2.0, RFC 2437, October 1998.

  [OLDCMS]    Housley, R., "Cryptographic Message Syntax", RFC 2630,
              June 1999.

  [PKCS#1]    Kaliski, B, "PKCS #1: RSA Encryption, Version 2.0", RFC
              2437, October, 1998.

  [PKCS#5]    Kaliski, B., "PKCS #5: Password-Based Cryptography
              Specification", RFC 2898, September 2000.

  [PROFILE]   Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
              X.509 Public Key Infrastructure Certificate and
              Certificate Revocation List (CRL) Profile", RFC 3280,
              April 2002.

  [RANDOM]    Eastlake, D., Crocker, S. and J. Schiller, "Randomness
              Recommendations for Security, RFC 1750, December 1994.

  [RC2]       Rivest, R., "A Description of the RC2 (r) Encryption
              Algorithm", RFC 2268, March 1998.




Housley                     Standards Track                    [Page 19]

RFC 3370                     CMS Algorithms                  August 2002


  [SHA1]      National Institute of Standards and Technology.  FIPS Pub
              180-1: Secure Hash Standard.  17 April 1995.

  [STDWORDS]  Bradner, S., "Key Words for Use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

  [WRAP]      Housley, R., "Triple-DES and RC2 Key Wrapping", RFC 3217,
              December 2001.

  [X.208-88]  CCITT.  Recommendation X.208: Specification of Abstract
              Syntax Notation One (ASN.1).  1988.

  [X.209-88]  CCITT.  Recommendation X.209: Specification of Basic
              Encoding Rules for Abstract Syntax Notation One (ASN.1).
              1988.

9  Security Considerations

  The CMS provides a method for digitally signing data, digesting data,
  encrypting data, and authenticating data.  This document identifies
  the conventions for using several cryptographic algorithms for use
  with the CMS.

  Implementations must protect the signer's private key.  Compromise of
  the signer's private key permits masquerade.

  Implementations must protect the key management private key, the
  key-encryption key, and the content-encryption key.  Compromise of
  the key management private key or the key-encryption key may result
  in the disclosure of all contents protected with that key.
  Similarly, compromise of the content-encryption key may result in
  disclosure of the associated encrypted content.

  Implementations must protect the key management private key and the
  message-authentication key.  Compromise of the key management private
  key permits masquerade of authenticated data.  Similarly, compromise
  of the message-authentication key may result in undetectable
  modification of the authenticated content.

  The key management technique employed to distribute message-
  authentication keys must itself provide authentication, otherwise the
  content is delivered with integrity from an unknown source.  Neither
  RSA [PKCS#1, NEWPKCS#1] nor Ephemeral-Static Diffie-Hellman [DH-
  X9.42] provide the necessary data origin authentication.  Static-
  Static Diffie-Hellman [DH-X9.42] does provide the necessary data
  origin authentication when both the originator and recipient public
  keys are bound to appropriate identities in X.509 certificates
  [PROFILE].



Housley                     Standards Track                    [Page 20]

RFC 3370                     CMS Algorithms                  August 2002


  When more than two parties share the same message-authentication key,
  data origin authentication is not provided.  Any party that knows the
  message-authentication key can compute a valid MAC, therefore the
  content could originate from any one of the parties.

  Implementations must randomly generate content-encryption keys,
  message-authentication keys, initialization vectors (IVs), one-time
  values (such as the k value when generating a DSA signature), and
  padding.  Also, the generation of public/private key pairs relies on
  a random numbers.  The use of inadequate pseudo-random number
  generators (PRNGs) to generate cryptographic such values can result
  in little or no security.  An attacker may find it much easier to
  reproduce the PRNG environment that produced the keys, searching the
  resulting small set of possibilities, rather than brute force
  searching the whole key space.  The generation of quality random
  numbers is difficult.  RFC 1750 [RANDOM] offers important guidance in
  this area, and Appendix 3 of FIPS Pub 186 [DSS] provides one quality
  PRNG technique.

  When using key agreement algorithms or previously distributed
  symmetric key-encryption keys, a key-encryption key is used to
  encrypt the content-encryption key.  If the key-encryption and
  content-encryption algorithms are different, the effective security
  is determined by the weaker of the two algorithms.  If, for example,
  content is encrypted with 168-bit Triple-DES and the Triple-DES
  content-encryption key is wrapped with a 40-bit RC2 key, then at most
  40 bits of protection is provided.  A trivial search to determine the
  value of the 40-bit RC2 key can recover Triple-DES key, and then the
  Triple-DES key can be used to decrypt the content.  Therefore,
  implementers must ensure that key-encryption algorithms are as strong
  or stronger than content-encryption algorithms.

  RFC 3217 [WRAP] specifies key wrap algorithms used to encrypt a
  Triple-DES content-encryption key with a Triple-DES key-encryption
  key [3DES] or to encrypt a RC2 content-encryption key with a RC2
  key-encryption key [RC2].  The key wrap algorithms makes use of CBC
  mode [MODES].  These key wrap algorithms have been reviewed for use
  with Triple-DES and RC2.  They have not been reviewed for use with
  other cryptographic modes or other encryption algorithms.  Therefore,
  if a CMS implementation wishes to support ciphers in addition to
  Triple-DES or RC2, then additional key wrap algorithms need to be
  defined to support the additional ciphers.

  Implementers should be aware that cryptographic algorithms become
  weaker with time.  As new cryptanalysis techniques are developed and
  computing performance improves, the work factor to break a particular
  cryptographic algorithm will reduce.  Therefore, cryptographic




Housley                     Standards Track                    [Page 21]

RFC 3370                     CMS Algorithms                  August 2002


  algorithm implementations should be modular allowing new algorithms
  to be readily inserted.  That is, implementers should be prepared to
  regularly update the set of algorithms in their implementations.

  Users of the CMS, particularly those employing the CMS to support
  interactive applications, should be aware that RSA (PKCS #1 v1.5), as
  specified in RFC 2313 [PKCS#1], is vulnerable to adaptive chosen
  ciphertext attacks when applied for encryption purposes.
  Exploitation of this identified vulnerability, revealing the result
  of a particular RSA decryption, requires access to an oracle which
  will respond to a large number of ciphertexts (based on currently
  available results, hundreds of thousands or more), which are
  constructed adaptively in response to previously-received replies
  providing information on the successes or failures of attempted
  decryption operations.  As a result, the attack appears significantly
  less feasible to perpetrate for store-and-forward S/MIME environments
  than for directly interactive protocols.  Where the CMS constructs
  are applied as an intermediate encryption layer within an interactive
  request-response communications environment, exploitation could be
  more feasible.

  An updated version of PKCS #1 has been published, PKCS #1 Version 2.0
  [NEWPKCS#1].  This updated document supersedes RFC 2313.  PKCS #1
  Version 2.0 preserves support for the encryption padding format
  defined in PKCS #1 Version 1.5 [PKCS#1], and it also defines a new
  alternative.  To resolve the adaptive chosen ciphertext
  vulnerability, the PKCS #1 Version 2.0 specifies and recommends use
  of Optimal Asymmetric Encryption Padding (OAEP) when RSA encryption
  is used to provide confidentiality.  Designers of protocols and
  systems employing CMS for interactive environments should either
  consider usage of OAEP, or should ensure that information which could
  reveal the success or failure of attempted PKCS #1 Version 1.5
  decryption operations is not provided.  Support for OAEP will likely
  be added to a future version of the CMS algorithm specification.

  See RFC 3218 [MMA] for more information about thwarting the adaptive
  chosen ciphertext vulnerability in PKCS #1 Version 1.5
  implementations.

10 Acknowledgments

  This document is the result of contributions from many professionals.
  I appreciate the hard work of all members of the IETF S/MIME Working
  Group.  I extend a special thanks to Rich Ankney, Simon Blake-Wilson,
  Tim Dean, Steve Dusse, Carl Ellison, Peter Gutmann, Bob Jueneman,
  Stephen Henson, Paul Hoffman, Scott Hollenbeck, Don Johnson, Burt
  Kaliski, John Linn, John Pawling, Blake Ramsdell, Francois Rousseau,
  Jim Schaad, and Dave Solo for their efforts and support.



Housley                     Standards Track                    [Page 22]

RFC 3370                     CMS Algorithms                  August 2002


11 Author Address

  Russell Housley
  RSA Laboratories
  918 Spring Knoll Drive
  Herndon, VA 20170
  EMail: [email protected]












































Housley                     Standards Track                    [Page 23]

RFC 3370                     CMS Algorithms                  August 2002


12.  Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Housley                     Standards Track                    [Page 24]