Network Working Group                                           J. Stone
Request for Comments: 3309                                      Stanford
Updates: 2960                                                 R. Stewart
Category: Standards                                        Cisco Systems
                                                                D. Otis
                                                               SANlight
                                                         September 2002


     Stream Control Transmission Protocol (SCTP) Checksum Change

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  Stream Control Transmission Protocol (SCTP) currently uses an Adler-
  32 checksum.  For small packets Adler-32 provides weak detection of
  errors.  This document changes that checksum and updates SCTP to use
  a 32 bit CRC checksum.

Table of Contents

  1 Introduction ...................................................  2
  2 Checksum Procedures ............................................  3
  3 Security Considerations.........................................  6
  4 IANA Considerations.............................................  6
  5 Acknowledgments ................................................  6
  6 References .....................................................  7
  Appendix .........................................................  9
  Authors' Addresses ............................................... 16
  Full Copyright Statement ......................................... 17










Stone, et. al.              Standards Track                     [Page 1]

RFC 3309                  SCTP Checksum Change            September 2002


1 Introduction

  A fundamental weakness has been detected in SCTP's current Adler-32
  checksum algorithm [STONE].  This document updates and replaces the
  Adler-32 checksum definition in [RFC 2960].  Note that there is no
  graceful transition mechanism for migrating to the new checksum.
  Implementations are expected to immediately switch to the new
  algorithm; use of the old algorithm is deprecated.

  One requirement of an effective checksum is that it evenly and
  smoothly spreads its input packets over the available check bits.

  From an email from Jonathan Stone, who analyzed the Adler-32 as part
  of his doctoral thesis:

  "Briefly, the problem is that, for very short packets, Adler32 is
  guaranteed to give poor coverage of the available bits.  Don't take
  my word for it, ask Mark Adler.  :-)

  Adler-32 uses two 16-bit counters, s1 and s2.  s1 is the sum of the
  input, taken as 8-bit bytes.  s2 is a running sum of each value of
  s1.  Both s1 and s2 are computed mod-65521 (the largest prime less
  than 2^16).  Consider a packet of 128 bytes.  The *most* that each
  byte can be is 255.  There are only 128 bytes of input, so the
  greatest value which the s1 accumulator can have is 255 * 128 =
  32640.  So, for 128-byte packets, s1 never wraps.  That is critical.
  Why?

  The key is to consider the distribution of the s1 values, over some
  distribution of the values of the individual input bytes in each
  packet.  Because s1 never wraps, s1 is simply the sum of the
  individual input bytes.  (Even Doug's trick of adding 0x5555 doesn't
  help here, and an even larger value doesn't really help: we can get
  at most one mod-65521 reduction.)

  Given the further assumption that the input bytes are drawn
  independently from some distribution (they probably aren't: for file
  system data, it's even worse than that!), the Central Limit Theorem
  tells us that that s1 will tend to have a normal distribution.
  That's bad: it tells us that the value of s1 will have hot-spots at
  around 128 times the mean of the input distribution: around 16k,
  assuming a uniform distribution.  That's bad.  We want the
  accumulator to wrap as many times as possible, so that the resulting
  sum has as close to a uniform distribution as possible.  (I call this
  "fairness".)






Stone, et. al.              Standards Track                     [Page 2]

RFC 3309                  SCTP Checksum Change            September 2002


  So, for short packets, the Adler-32 s1 sum is guaranteed to be
  unfair.  Why is that bad?  It's bad because the space of valid
  packets -- input data, plus checksum values -- is also small.  If all
  packets have checksum values very close to 32640, then the likelihood
  of even a 'small' error leaving a damaged packet with a valid
  checksum is higher than if all checksum values are equally likely."

  Due to this inherent weakness, exacerbated by the fact that SCTP will
  first be used as a signaling transport protocol where signaling
  messages are usually less than 128 bytes, a new checksum algorithm is
  specified by this document, replacing the current Adler-32 algorithm
  with CRC-32c.

1.1 Conventions

  The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
  SHOULD,SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL,
  when they appear in this document, are to be interpreted as described
  in [RFC2119].

  Bit number order is defined in [RFC1700].

2 Checksum Procedures

  The procedures described in section 2.1 of this document MUST be
  followed, replacing the current checksum defined in [RFC2960].

  Furthermore any references within [RFC2960] to Adler-32 MUST be
  treated as a reference to CRC-32c.  Section 2.1 of this document
  describes the new calculation and verification procedures that MUST
  be followed.

2.1 Checksum Calculation

  When sending an SCTP packet, the endpoint MUST strengthen the data
  integrity of the transmission by including the CRC-32c checksum value
  calculated on the packet, as described below.

  After the packet is constructed (containing the SCTP common header
  and one or more control or DATA chunks), the transmitter shall:

  1) Fill in the proper Verification Tag in the SCTP common header and
     initialize the Checksum field to 0's.

  2) Calculate the CRC-32c of the whole packet, including the SCTP
     common header and all the chunks.





Stone, et. al.              Standards Track                     [Page 3]

RFC 3309                  SCTP Checksum Change            September 2002


  3) Put the resulting value into the Checksum field in the common
     header, and leave the rest of the bits unchanged.

  When an SCTP packet is received, the receiver MUST first check the
  CRC-32c checksum:

  1) Store the received CRC-32c value,

  2) Replace the 32 bits of the Checksum field in the received SCTP
     packet with all '0's and calculate a CRC-32c value of the whole
     received packet.  And,

  3) Verify that the calculated CRC-32c value is the same as the
     received CRC-32c value.  If not, the receiver MUST treat the
     packet as an invalid SCTP packet.

  The default procedure for handling invalid SCTP packets is to
  silently discard them.

  Any hardware implementation SHOULD be done in a way that is
  verifiable by the software.

  We define a 'reflected value' as one that is the opposite of the
  normal bit order of the machine.  The 32 bit CRC is calculated as
  described for CRC-32c and uses the polynomial code 0x11EDC6F41
  (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
  +x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0.  The
  CRC is computed using a procedure similar to ETHERNET CRC [ITU32],
  modified to reflect transport level usage.

  CRC computation uses polynomial division.  A message bit-string M is
  transformed to a polynomial, M(X), and the CRC is calculated from
  M(X) using polynomial arithmetic [Peterson 72].

  When CRCs are used at the link layer, the polynomial is derived from
  on-the-wire bit ordering: the first bit 'on the wire' is the high-
  order coefficient.  Since SCTP is a transport-level protocol, it
  cannot know the actual serial-media bit ordering.  Moreover,
  different links in the path between SCTP endpoints may use different
  link-level bit orders.

  A convention must therefore be established for mapping SCTP transport
  messages to polynomials for purposes of CRC computation.  The bit-
  ordering for mapping SCTP messages to polynomials is that bytes are
  taken most-significant first; but within each byte, bits are taken
  least-significant first.  The first byte of the message provides the
  eight highest coefficients.  Within each byte, the least-significant
  SCTP bit gives the most significant polynomial coefficient within



Stone, et. al.              Standards Track                     [Page 4]

RFC 3309                  SCTP Checksum Change            September 2002


  that byte, and the most-significant SCTP bit is the least significant
  polynomial coefficient in that byte.  (This bit ordering is sometimes
  called 'mirrored' or 'reflected' [Williams93].)  CRC polynomials are
  to be transformed back into SCTP transport-level byte values, using a
  consistent mapping.

  The SCTP transport-level CRC value should be calculated as follows:

     -  CRC input data are assigned to a byte stream, numbered from 0
        to N-1.

     -  the transport-level byte-stream is mapped to a polynomial
        value.  An N-byte PDU with j bytes numbered 0 to N-1, is
        considered as coefficients of a polynomial M(x) of order 8N-1,
        with bit 0 of byte j being coefficient x^(8(N-j)-8), bit 7 of
        byte j being coefficient x^(8(N-j)-1).

     -  the CRC remainder register is initialized with all 1s and the
        CRC is computed with an algorithm that simultaneously
        multiplies by x^32 and divides by the CRC polynomial.

     -  the polynomial is multiplied by x^32 and divided by G(x), the
        generator polynomial, producing a remainder R(x) of degree less
        than or equal to 31.

     -  the coefficients of R(x) are considered a 32 bit sequence.

     -  the bit sequence is complemented.  The result is the CRC
        polynomial.

     -  The CRC polynomial is mapped back into SCTP transport-level
        bytes.  Coefficient of x^31 gives the value of bit 7 of SCTP
        byte 0, the coefficient of x^24 gives the value of bit 0 of
        byte 0.  The coefficient of x^7 gives bit 7 of byte 3 and the
        coefficient of x^0 gives bit 0 of byte 3.  The resulting four-
        byte transport-level sequence is the 32-bit SCTP checksum
        value.

  IMPLEMENTATION NOTE: Standards documents, textbooks, and vendor
  literature on CRCs often follow an alternative formulation, in which
  the register used to hold the remainder of the long-division
  algorithm is initialized to zero rather than all-1s, and instead the
  first 32 bits of the message are complemented.  The long-division
  algorithm used in our formulation is specified, such that the the
  initial multiplication by 2^32 and the long-division are combined
  into one simultaneous operation.  For such algorithms, and for
  messages longer than 64 bits, the two specifications are precisely
  equivalent.  That equivalence is the intent of this document.



Stone, et. al.              Standards Track                     [Page 5]

RFC 3309                  SCTP Checksum Change            September 2002


  Implementors of SCTP are warned that both specifications are to be
  found in the literature, sometimes with no restriction on the long-
  division algorithm.  The choice of formulation in this document is to
  permit non-SCTP usage, where the same CRC algorithm may be used to
  protect messages shorter than 64 bits.

  If SCTP could follow link level CRC use, the CRC would be computed
  over the link-level bit-stream.  The first bit on the link mapping to
  the highest-order coefficient, and so on, down to the last link-level
  bit as the lowest-order coefficient.  The CRC value would be
  transmitted immediately after the input message as a link-level
  'trailer'.  The resulting link-level bit-stream would be (M(X)x) *
  x^32) + (M(X)*x^32))/ G(x), which is divisible by G(X).  There would
  thus be a constant CRC remainder for 'good' packets.  However, given
  that implementations of RFC 2960 have already proliferated, the IETF
  discussions considered that the benefit of a 'trailer' CRC did not
  outweigh the cost of making a very large change in the protocol
  processing.  Further, packets accepted by the SCTP 'header' CRC are
  in one-to-one correspondence with packets accepted by a modified
  procedure using a 'trailer' CRC value, and where the SCTP common
  checksum header is set to zero on transmission and is received as
  zero.

  There may be a computational advantage in validating the Association
  against the Verification Tag, prior to performing a checksum, as
  invalid tags will result in the same action as a bad checksum in most
  cases.  The exceptions for this technique would be INIT and some
  SHUTDOWN-COMPLETE exchanges, as well as a stale COOKIE-ECHO.  These
  special case exchanges must represent small packets and will minimize
  the effect of the checksum calculation.

3 Security Considerations

  In general, the security considerations of RFC 2960 apply to the
  protocol with the new checksum as well.

4 IANA Considerations

  There are no IANA considerations required in this document.












Stone, et. al.              Standards Track                     [Page 6]

RFC 3309                  SCTP Checksum Change            September 2002


5 Acknowledgments

  The authors would like to thank the following people that have
  provided comments and input on the checksum issue:

  Mark Adler, Ran Atkinson, Stephen Bailey, David Black, Scott Bradner,
  Mikael Degermark, Laurent Glaude, Klaus Gradischnig, Alf Heidermark,
  Jacob Heitz, Gareth Kiely, David Lehmann, Allision Mankin, Lyndon
  Ong, Craig Partridge, Vern Paxson, Kacheong Poon, Michael Ramalho,
  David Reed, Ian Rytina, Hanns Juergen Schwarzbauer, Chip Sharp, Bill
  Sommerfeld, Michael Tuexen, Jim Williams, Jim Wendt, Michael Welzl,
  Jonathan Wood, Lloyd Wood, Qiaobing Xie, La Monte Yarroll.

  Special thanks to Dafna Scheinwald, Julian Satran, Pat Thaler, Matt
  Wakeley, and Vince Cavanna, for selection criteria of polynomials and
  examination of CRC polynomials, particularly CRC-32c [Castagnoli93].

  Special thanks to Mr. Ross Williams and his document [Williams93].
  This non-formal perspective on software aspects of CRCs furthered
  understanding of authors previously unfamiliar with CRC computation.
  More formal treatments of [Blahut 94] or [Peterson 72], was also
  essential.

6 References

  [Castagnoli93]  G. Castagnoli, S. Braeuer and M. Herrman,
                  "Optimization of Cyclic Redundancy-Check Codes with
                  24 and 32 Parity Bits", IEEE Transactions on
                  Communications, Vol. 41, No. 6, June 1993

  [McKee75]       H. McKee, "Improved {CRC} techniques detects
                  erroneous leading and trailing 0's in transmitted
                  data blocks", Computer Design Volume 14 Number 10
                  Pages 102-4,106, October 1975

  [RFC1700]       Reynolds, J. and J. Postel, "ASSIGNED NUMBERS", RFC
                  1700, October 1994.

  [RFC2026]       Bradner, S., "The Internet Standards Process --
                  Revision 3", BCP 9, RFC 2026, October 1996.

  [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2960]       Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
                  Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
                  Zhang, L. and V. Paxson, "Stream Control Transmission
                  Protocol," RFC 2960, October 2000.



Stone, et. al.              Standards Track                     [Page 7]

RFC 3309                  SCTP Checksum Change            September 2002


  [ITU32]         ITU-T Recommendation V.42, "Error-correcting
                  procedures for DCEs using asynchronous-to-synchronous
                  conversion", section 8.1.1.6.2, October 1996.

7.1 Informative References

  [STONE]         Stone, J.,  "Checksums in the Internet", Doctoral
                  dissertation - August 2001.

  [Williams93]    Williams, R., "A PAINLESS GUIDE TO CRC ERROR
                  DETECTION ALGORITHMS" - Internet publication, August
                  1993,
                  http://www.geocities.com/SiliconValley/Pines/
                  8659/crc.htm.

  [Blahut 1994]   R.E. Blahut, Theory and Practice of Error Control
                  Codes, Addison-Wesley, 1994.

  [Easics 2001]   http://www.easics.be/webtools/crctool.  Online tools
                  for synthesis of CRC Verilog and VHDL.

  [Feldmeier 95]  David C. Feldmeier, Fast software implementation of
                  error detection codes, IEEE Transactions on
                  Networking, vol 3 no 6, pp 640-651, December, 1995.

  [Glaise 1997]   R.  J. Glaise, A two-step computation of cyclic
                  redundancy code CRC-32 for ATM networks, IBM Journal
                  of Research and Development} vol 41 no 6, 1997.
                  http://www.research.ibm.com/journal/rd/416/
                  glaise.html.

  [Prange 1957]   E. Prange, Cyclic Error-Correcting codes in two
                  symbols, Technical report AFCRC-TN-57-103, Air Force
                  Cambridge Research Center, Cambridge, Mass. 1957.

  [Peterson 1972] W. W. Peterson and E.J Weldon, Error Correcting
                  Codes, 2nd. edition, MIT Press, Cambridge,
                  Massachusetts.

  [Shie2001]      Ming-Der Shieh et. al, A Systematic Approach for
                  Parallel CRC Computations. Journal of Information
                  Science and Engineering, Vol.17 No.3, pp.445-461

  [Sprachman2001] Michael Sprachman, Automatic Generation of Parallel
                  CRC Circuits, IEEE Design & Test May-June 2001






Stone, et. al.              Standards Track                     [Page 8]

RFC 3309                  SCTP Checksum Change            September 2002


Appendix

  This appendix is for information only and is NOT part of the
  standard.

  The anticipated deployment of SCTP ranges over several orders of
  magnitude of link speed: from cellular-power telephony devices at
  tens of kilobits, to local links at tens of gigabits.  Implementors
  of SCTP should consider their link speed and choose, from the wide
  range of CRC implementations, one which matches their own design
  point for size, cost, and throughput.  Many techniques for computing
  CRCs are known.  This Appendix surveys just a few, to give a feel for
  the range of techniques available.

  CRCs are derived from early work by Prange in the 1950s [Prange 57].
  The theory underlying CRCs and choice of generator polynomial can be
  introduced by either the theory of Galois fields [Blahut 94] or as
  ideals of an algebra over cyclic codes [cite Peterson 72].

  One of the simplest techniques is direct bit-serial hardware
  implementations, using the generator polynomial as the taps of a
  linear feedback shift register (LSFR).  LSFR computation follows
  directly from the mathematics, and is generally attributed to Prange.
  Tools exist which, a CRC generator polynomial, will produce
  synthesizable Verilog code for CRC hardware [Easics 2001].

  Since LSFRs do not scale well in speed, a variety of other techniques
  have been explored.  One technique exploits the fact that the divisor
  of the polynomial long-division, G, is known in advance.  It is thus
  possible to pre-compute lookup tables giving the polynomial remainder
  of multiple input bits --- typically 2, 4, or 8 bits of input at a
  time.  This technique can be used either in software or in hardware.
  Software to compute lookup tables yielding 2, 4, or 8 bits of result
  is freely available. [Williams93]

  For multi-gigabit links, the above techniques may still not be fast
  enough.  One technique for computing CRCS at OC-48 rates is 'two-
  stage' CRC computation [Glaise 1997].  Here, some multiple of G(x),
  G(x)H(x), is chosen so as to minimize the number of nonzero
  coefficients, or weight, of the product G(x)H(x).  The low weight of
  the product polynomial makes it susceptible to efficient hardware
  divide-by-constant implementations.  This first stage gives M(x)/
  (G(x)H(x)), as its result.  The second stage then divides the result
  of the first stage by H(x), yielding (M(x)/(G(x)H(x)))/H(x).  If H(x)
  is also relatively prime to G(x), this gives M(x)/G(x).  Further
  developments on this approach can be found in [Shie2001] and
  [Sprachman2001].




Stone, et. al.              Standards Track                     [Page 9]

RFC 3309                  SCTP Checksum Change            September 2002


  The literature also includes a variety of software CRC
  implementations.  One approach is to use a carefully-tuned assembly
  code for direct polynomial division.  [Feldmeier 95] reports that for
  low-weight polynomials, tuned polynomial arithmetic gives higher
  throughput than table-lookup algorithms.  Even within table-lookup
  algorithms, the size of the table can be tuned, either for total
  cache footprint, or (for space-restricted environments) to minimize
  total size.

  Implementors should keep in mind, the bit ordering described in
  Section 2: the ordering of bits within bytes for computing CRCs in
  SCTP is the least significant bit of each byte is the most-
  significant polynomial coefficient(and vice-versa).  This 'reflected'
  SCTP CRC bit ordering matches on-the-wire bit order for Ethernet and
  other serial media, but is the reverse of traditional Internet bit
  ordering.

  One technique to accommodate this bit-reversal can be explained as
  follows: sketch out a hardware implementation, assuming the bits are
  in CRC bit order; then perform a left-to-right inversion (mirror
  image) on the entire algorithm.  (We defer, for a moment, the issue
  of byte order within words.)  Then compute that "mirror image" in
  software.  The CRC from the "mirror image" algorithm will be the
  bit-reversal of a correct hardware implementation.  When the link-
  level media sends each byte, the byte is sent in the reverse of the
  host CPU bit-order.  Serialization of each byte of the "reflected"
  CRC value re-reverses the bit order, so in the end, each byte will be
  transmitted on-the-wire in the specified bit order.

  The following non-normative sample code is taken from an open-source
  CRC generator [Williams93], using the "mirroring" technique and
  yielding a lookup table for SCTP CRC32-c with 256 entries, each 32
  bits wide.  While neither especially slow nor especially fast, as
  software table-lookup CRCs go, it has the advantage of working on
  both big-endian and little-endian CPUs, using the same (host-order)
  lookup tables, and using only the pre-defined ntohl() and htonl()
  operations.  The code is somewhat modified from [Williams93], to
  ensure portability between big-endian and little-endian
  architectures.  (Note that if the byte endian-ness of the target
  architecture is known to be little-endian the final bit-reversal and
  byte-reversal steps can be folded into a single operation.)










Stone, et. al.              Standards Track                    [Page 10]

RFC 3309                  SCTP Checksum Change            September 2002


/*************************************************************/
/* Note Definition for Ross Williams table generator would   */
/* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE        */
/* For Mr. Williams direct calculation code use the settings */
/* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF,      */
/* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000        */
/*************************************************************/

/* Example of the crc table file */
#ifndef __crc32cr_table_h__
#define __crc32cr_table_h__

#define CRC32C_POLY 0x1EDC6F41
#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

unsigned long  crc_c[256] =
{
0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,



Stone, et. al.              Standards Track                    [Page 11]

RFC 3309                  SCTP Checksum Change            September 2002


0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
};

#endif

/* Example of table build routine */



#include <stdio.h>
#include <stdlib.h>

#define OUTPUT_FILE   "crc32cr.h"
#define CRC32C_POLY    0x1EDC6F41L
FILE *tf;




Stone, et. al.              Standards Track                    [Page 12]

RFC 3309                  SCTP Checksum Change            September 2002


unsigned long
reflect_32 (unsigned long b)
{
 int i;
 unsigned long rw = 0L;

 for (i = 0; i < 32; i++){
     if (b & 1)
       rw |= 1 << (31 - i);
     b >>= 1;
 }
 return (rw);
}

unsigned long
build_crc_table (int index)
{
 int i;
 unsigned long rb;

 rb = reflect_32 (index);

 for (i = 0; i < 8; i++){
     if (rb & 0x80000000L)
      rb = (rb << 1) ^ CRC32C_POLY;
     else
      rb <<= 1;
 }
 return (reflect_32 (rb));
}

main ()
{
 int i;

 printf ("\nGenerating CRC-32c table file <%s>\n", OUTPUT_FILE);
 if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
     printf ("Unable to open %s\n", OUTPUT_FILE);
     exit (1);
 }
 fprintf (tf, "#ifndef __crc32cr_table_h__\n");
 fprintf (tf, "#define __crc32cr_table_h__\n\n");
 fprintf (tf, "#define CRC32C_POLY 0x%08lX\n", CRC32C_POLY);
 fprintf (tf, "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf (tf, "\nunsigned long  crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++){
     fprintf (tf, "0x%08lXL, ", build_crc_table (i));
     if ((i & 3) == 3)



Stone, et. al.              Standards Track                    [Page 13]

RFC 3309                  SCTP Checksum Change            September 2002


       fprintf (tf, "\n");
 }
  fprintf (tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
   printf ("Unable to close <%s>." OUTPUT_FILE);
 else
   printf ("\nThe CRC-32c table has been written to <%s>.\n",
     OUTPUT_FILE);
}



/* Example of crc insertion */

#include "crc32cr.h"

unsigned long
generate_crc32c(unsigned char *buffer, unsigned int length)
{
 unsigned int i;
 unsigned long crc32 = ~0L;
 unsigned long result;
 unsigned char byte0,byte1,byte2,byte3;

 for (i = 0; i < length; i++){
     CRC32C(crc32, buffer[i]);
 }
 result = ~crc32;

 /*  result  now holds the negated polynomial remainder;
  *  since the table and algorithm is "reflected" [williams95].
  *  That is,  result has the same value as if we mapped the message
  *  to a polynomial, computed the host-bit-order polynomial
  *  remainder, performed final negation, then did an end-for-end
  *  bit-reversal.
  *  Note that a 32-bit bit-reversal is identical to four inplace
  *  8-bit reversals followed by an end-for-end byteswap.
  *  In other words, the bytes of each bit are in the right order,
  *  but the bytes have been byteswapped.  So we now do an explicit
  *  byteswap.  On a little-endian machine, this byteswap and
  *  the final ntohl cancel out and could be elided.
  */

 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;



Stone, et. al.              Standards Track                    [Page 14]

RFC 3309                  SCTP Checksum Change            September 2002


 crc32 = ((byte0 << 24) |
          (byte1 << 16) |
          (byte2 << 8)  |
          byte3);
 return ( crc32 );
}

int
insert_crc32(unsigned char *buffer, unsigned int length)
{
 SCTP_message *message;
 unsigned long crc32;
 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
}

int
validate_crc32(unsigned char *buffer, unsigned int length)
{
 SCTP_message *message;
 unsigned int i;
 unsigned long original_crc32;
 unsigned long crc32 = ~0L;

 /* save and zero checksum */
 message = (SCTP_message *) buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 return ((original_crc32 == crc32)? 1 : -1);
}
















Stone, et. al.              Standards Track                    [Page 15]

RFC 3309                  SCTP Checksum Change            September 2002


Authors' Addresses

  Jonathan Stone
  Room 446, Mail code 9040
  Gates building 4A
  Stanford, Ca 94305

  EMail: [email protected]


  Randall R. Stewart
  24 Burning Bush Trail.
  Crystal Lake, IL 60012
  USA

  EMail: [email protected]


  Douglas Otis
  800 E. Middlefield
  Mountain View, CA 94043
  USA

  EMail: [email protected]



























Stone, et. al.              Standards Track                    [Page 16]

RFC 3309                  SCTP Checksum Change            September 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Stone, et. al.              Standards Track                    [Page 17]