Network Working Group                                           A. Doria
Request for Comments: 3292                Lulea University of Technology
Category: Standards Track                                  F. Hellstrand
                                                             K. Sundell
                                                        Nortel Networks
                                                             T. Worster
                                                              June 2002


             General Switch Management Protocol (GSMP) V3

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document describes the General Switch Management Protocol
  Version 3 (GSMPv3).  The GSMPv3 is an asymmetric protocol that allows
  one or more external switch controllers to establish and maintain the
  state of a label switch such as, an ATM, frame relay or MPLS switch.
  The GSMPv3 allows control of both unicast and multicast switch
  connection state as well as control of switch system resources and
  QoS features.

Acknowledgement

  GSMP was created by P. Newman, W. Edwards, R. Hinden, E. Hoffman, F.
  Ching Liaw, T. Lyon, and G. Minshall (see [6] and [7]).  This version
  of GSMP is based on their work.

Contributors

  In addition to the authors/editors listed in the heading, many
  members of the GSMP group have made significant contributions to this
  specification.  Among the contributors who have contributed
  materially are: Constantin Adam, Clint Bishard, Joachim Buerkle,
  Torbjorn Hedqvist, Georg Kullgren, Aurel A. Lazar, Mahesan
  Nandikesan, Matt Peters, Hans Sjostrand, Balaji Srinivasan, Jaroslaw
  Sydir, Chao-Chun Wang.



Doria, et. al.              Standards Track                     [Page 1]

RFC 3292         General Switch Management Protocol V3         June 2002


Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

Table of Contents

  1. Introduction ................................................... 4
  2. GSMP Packet Encapsulation ...................................... 6
  3. Common Definitions and Procedures .............................. 6
   3.1 GSMP Packet Format ........................................... 7
     3.1.1 Basic GSMP Message format ................................ 7
     3.1.2 Fields commonly found in GSMP messages .................. 11
     3.1.3 Labels .................................................. 12
     3.1.4 Failure Response Messages ............................... 17
  4. Connection Management Messages ................................ 18
   4.1 General Message Definitions ................................. 18
   4.2 Add Branch Message .......................................... 25
     4.2.1 ATM specific procedures: ................................ 29
   4.3 Delete Tree Message ......................................... 30
   4.4 Verify Tree Message ......................................... 30
   4.5 Delete All Input Port Message ............................... 30
   4.6 Delete All Output Port Message .............................. 31
   4.7 Delete Branches Message ..................................... 32
   4.8 Move Output Branch Message .................................. 35
     4.8.1 ATM Specific Procedures: ................................ 37
   4.9 Move Input Branch Message ................................... 38
     4.9.1 ATM Specific Procedures: ................................ 41
  5. Reservation Management Messages ............................... 42
   5.1 Reservation Request Message ................................. 43
   5.2 Delete Reservation Message .................................. 46
   5.3 Delete All Reservations Message.............................. 47
  6. Management Messages ........................................... 47
   6.1 Port Management Message ..................................... 47
   6.2 Label Range Message ......................................... 53
     6.2.1 Labels .................................................. 56
  7. State and Statistics Messages ................................. 60
   7.1 Connection Activity Message ................................. 61
   7.2 Statistics Messages ......................................... 64
     7.2.1 Port Statistics Message ................................. 67
     7.2.2 Connection Statistics Message ........................... 67
     7.2.3 QoS Class Statistics Message ............................ 68
   7.3 Report Connection State Message ............................. 68
  8. Configuration Messages ........................................ 73
   8.1 Switch Configuration Message ................................ 73
     8.1.1 Configuration Message Processing ........................ 75
   8.2 Port Configuration Message .................................. 75



Doria, et. al.              Standards Track                     [Page 2]

RFC 3292         General Switch Management Protocol V3         June 2002


     8.2.1 PortType Specific Data .................................. 79
   8.3 All Ports Configuration Message ............................. 87
   8.4 Service Configuration Message ............................... 89
  9. Event Messages ................................................ 93
   9.1 Port Up Message ............................................  95
   9.2 Port Down Message ..........................................  95
   9.3 Invalid Label Message ......................................  95
   9.4 New Port Message ...........................................  96
   9.5 Dead Port Message ..........................................  96
   9.6 Adjacency Update Message ...................................  96
  10. Service Model Definition ....................................  96
   10.1 Overview ..................................................  96
   10.2 Service Model Definitions .................................  97
     10.2.1 Original Specifications ...............................  97
     10.2.2 Service Definitions ...................................  98
     10.2.3 Capability Sets .......................................  99
   10.3 Service Model Procedures ..................................  99
   10.4 Service Definitions ....................................... 100
     10.4.1 ATM Forum Service Categories .......................... 101
     10.4.2 Integrated Services ................................... 104
     10.4.3 MPLS CR-LDP ........................................... 105
     10.4.4 Frame Relay ........................................... 105
     10.4.5 DiffServ .............................................. 106
   10.5 Format and Encoding of the Traffic Parameters ............. 106
     10.5.1 Traffic Parameters for ATM Forum Services ............. 106
     10.5.2 Traffic Parameters for Int-Serv Controlled Load Service 107
     10.5.3 Traffic Parameters for CRLDP Service .................. 108
     10.5.4 Traffic Parameters for Frame Relay Service ............ 109
   10.6 Traffic Controls (TC) Flags ............................... 110
  11. Adjacency Protocol .......................................... 111
   11.1 Packet Format ............................................. 112
   11.2 Procedure ................................................. 115
     11.2.1 State Tables .......................................... 117
   11.3 Partition Information State ............................... 118
   11.4 Loss of Synchronisation.................................... 119
   11.5 Multiple Controllers Per Switch Partition ................. 119
     11.5.1 Multiple Controller Adjacency Process ................. 120
  12. Failure Response Codes ...................................... 121
   12.1 Description of Failure and Warning Response Messages ...... 121
   12.2 Summary of Failure Response Codes and Warnings ............ 127
  13. Security Considerations ..................................... 128
  Appendix A  Summary of Messages ................................. 129
  Appendix B  IANA Considerations ................................. 130
  References ...................................................... 134
  Authors' Addresses .............................................. 136
  Full Copyright Statement ........................................ 137





Doria, et. al.              Standards Track                     [Page 3]

RFC 3292         General Switch Management Protocol V3         June 2002


1.  Introduction

  The General Switch Management Protocol (GSMP) is a general purpose
  protocol to control a label switch.  GSMP allows a controller to
  establish and release connections across the switch, add and delete
  leaves on a multicast connection, manage switch ports, request
  configuration information, request and delete reservation of switch
  resources, and request statistics.  It also allows the switch to
  inform the controller of asynchronous events such as a link going
  down.  The GSMP protocol is asymmetric, the controller being the
  master and the switch being the slave.  Multiple switches may be
  controlled by a single controller using multiple instantiations of
  the protocol over separate control connections.  Also a switch may be
  controlled by more than one controller by using the technique of
  partitioning.

  A "physical" switch can be partitioned into several virtual switches
  that are referred to as partitions.  In this version of GSMP, switch
  partitioning is static and occurs prior to running GSMP.  The
  partitions of a physical switch are isolated from each other by the
  implementation and the controller assumes that the resources
  allocated to a partition are at all times available to that
  partition.  A partition appears to its controller as a label switch.
  Throughout the rest of this document, the term switch (or
  equivalently, label switch) is used to refer to either a physical,
  non-partitioned switch or to a partition.  The resources allocated to
  a partition appear to the controller as if they were the actual
  physical resources of the partition.  For example if the bandwidth of
  a port were divided among several partitions, each partition would
  appear to the controller to have its own independent port.

  GSMP controls a partitioned switch through the use of a partition
  identifier that is carried in every GSMP message.  Each partition has
  a one-to-one control relationship with its own logical controller
  entity (which in the remainder of the document is referred to simply
  as a controller) and GSMP independently maintains adjacency between
  each controller-partition pair.

  Kinds of label switches include frame or cell switches that support
  connection oriented switching, using the exact match-forwarding
  algorithm based on labels attached to incoming cells or frames.  A
  switch is assumed to contain multiple "ports".  Each port is a
  combination of one "input port" and one "output port".  Some GSMP
  requests refer to the port as a whole, whereas other requests are
  specific to the input port or the output port.  Cells or labelled
  frames arrive at the switch from an external communication link on





Doria, et. al.              Standards Track                     [Page 4]

RFC 3292         General Switch Management Protocol V3         June 2002


  incoming labelled channels at an input port.  Cells or labelled
  frames depart from the switch to an external communication link on
  labelled channels from an output port.

  A switch may support multiple label types, however, each switch port
  can support only one label type.  The label type supported by a given
  port is indicated by the switch to the controller in a port
  configuration message.  Connections may be established between ports,
  supporting different label types.  Label types include ATM, Frame
  Relay, MPLS Generic and FEC Labels.

  A connection across a switch is formed by connecting an incoming
  labelled channel to one or more outgoing labelled channels.
  Connections are referenced by the input port on which they originate
  and the Label values of their incoming labelled channel.

  GSMP supports point-to-point and point-to-multipoint connections.  A
  multipoint-to-point connection is specified by establishing multiple
  point-to-point connections, each of them specifying the same output
  branch.  A multipoint-to-multipoint connection is specified by
  establishing multiple point-to-multipoint trees each of them
  specifying the same output branches.

  In general a connection is established with a certain quality of
  service (QoS).  This version of GSMP includes a default QoS
  Configuration and additionally allows the negotiation of alternative,
  optional QoS configurations.  The default QoS Configuration includes
  three QoS Models: a Service Model, a Simple Abstract Model (strict
  priorities) and a QoS Profile Model.

  The Service Model is based on service definitions found external to
  GSMP such as in Integrated Services or ATM Service Categories.  Each
  connection is assigned a specific service that defines the handling
  of the connection by the switch.  Additionally, traffic parameters
  and traffic controls may be assigned to the connection depending on
  the assigned service.

  In the Simple Abstract Model, a connection is assigned a priority
  when it is established.  It may be assumed that for connections that
  share the same output port, a cell or frame on a connection with a
  higher priority is much more likely to exit the switch before a cell
  or frame on a connection with a lower priority if they are both in
  the switch at the same time.  The number of priorities that each port
  of the switch supports may be obtained from the port configuration
  message.






Doria, et. al.              Standards Track                     [Page 5]

RFC 3292         General Switch Management Protocol V3         June 2002


  The QoS Profile Model provides a simple mechanism that allows
  connection to be assigned QoS semantics defined externally to GSMP.
  The QoS Profile Model can be used to indicate pre-defined
  Differentiated Service Per Hop Behaviours (PHBs).  Definition of QoS
  profiles is outside of the scope of this specification.

  All GSMP switches MUST support the default QoS Configuration.  A GSMP
  switch may additionally support one or more alternative QoS
  Configurations.  The QoS models of alternative QoS configurations are
  defined outside the GSMP specification.  GSMP includes a negotiation
  mechanism that allows a controller to select from the QoS
  configurations that a switch supports.

  GSMP contains an adjacency protocol.  The adjacency protocol is used
  to synchronise states across the link, to negotiate which version of
  the GSMP protocol to use, to discover the identity of the entity at
  the other end of a link, and to detect when it changes.

2.  GSMP Packet Encapsulation

  GSMP packets may be transported via any suitable medium.  GSMP packet
  encapsulations for ATM, Ethernet and TCP are specified in [15].
  Additional encapsulations for GSMP packets may be defined in separate
  documents.

3.  Common Definitions and Procedures

  GSMP is a master-slave protocol.  The controller issues request
  messages to the switch.  Each request message indicates whether a
  response is required from the switch and contains a transaction
  identifier to enable the response to be associated with the request.
  The switch replies with a response message indicating either a
  successful result or a failure.  There are six classes of GSMP
  request-response message: Connection Management, Reservation
  Management, Port Management, State and Statistics, Configuration, and
  Quality of Service.  The switch may also generate asynchronous Event
  messages to inform the controller of asynchronous events.  The
  controller can be required to acknowledge event messages, but by
  default does not do so.  There is also an adjacency protocol message
  used to establish synchronisation across the link and maintain a
  handshake.

  For the request-response messages, each message type has a format for
  the request message and a format for the success response.  Unless
  otherwise specified a failure response message is identical to the
  request message that caused the failure, with the Code field
  indicating the nature of the failure.




Doria, et. al.              Standards Track                     [Page 6]

RFC 3292         General Switch Management Protocol V3         June 2002


  Switch ports are described by a 32-bit port number.  The switch
  assigns port numbers and it may typically choose to structure the 32
  bits into opaque sub-fields that have meaning to the physical
  structure of the switch (e.g., slot, port).  In general, a port in
  the same physical location on the switch will always have the same
  port number, even across power cycles.  The internal structure of the
  port number is opaque to the GSMP protocol.  However, for the
  purposes of network management such as logging, port naming, and
  graphical representation, a switch may declare the physical location
  (physical slot and port) of each port.  Alternatively, this
  information may be obtained by looking up the product identity in a
  database.

  Each switch port also maintains a port session number assigned by the
  switch.  A message, with an incorrect port session number MUST be
  rejected.  This allows the controller to detect a link failure and to
  keep states synchronised.

  Except for the adjacency protocol message, no GSMP messages may be
  sent across the link until the adjacency protocol has achieved
  synchronisation, and all GSMP messages received on a link that do not
  currently have state synchronisation MUST be discarded.

3.1  GSMP Packet Format

3.1.1  Basic GSMP Message format

  All GSMP messages, except the adjacency protocol message, have the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Message Body                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Doria, et. al.              Standards Track                     [Page 7]

RFC 3292         General Switch Management Protocol V3         June 2002


  (The convention in the documentation of Internet Protocols [5] is to
  express numbers in decimal.  Numbers in hexadecimal format are
  specified by prefacing them with the characters "0x".  Numbers in
  binary format are specified by prefacing them with the characters
  "0b".  Data is pictured in "big-endian" order.  That is, fields are
  described left to right, with the most significant byte on the left
  and the least significant byte on the right.  Whenever a diagram
  shows a group of bytes, the order of transmission of those bytes is
  the normal order in which they are read in English.  Whenever a byte
  represents a numeric quantity, the left most bit in the diagram is
  the high order or most significant bit.  That is, the bit labelled 0
  is the most significant bit.  Similarly, whenever a multi-byte field
  represents a numeric quantity, the left most bit of the whole field
  is the most significant bit.  When a multi-byte quantity is
  transmitted, the most significant byte is transmitted first.  This is
  the same coding convention as is used in the ATM layer [1] and AAL-5
  [2][3].)

     Version
        The version number of the GSMP protocol being used in this
        session.  It SHOULD be set by the sender of the message to the
        GSMP protocol version negotiated by the adjacency protocol.

     Message Type
        The GSMP message type.  GSMP messages fall into the following
        classes: Connection Management, Reservation Management, Port
        Management, State and Statistics, Configuration, Quality of
        Service, Events and messages belonging to an Abstract or
        Resource Model (ARM) extension.  Each class has a number of
        different message types.  In addition, one Message Type is
        allocated to the adjacency protocol.

     Result
        Field in a Connection Management request message, a Port
        Management request message, or a Quality of Service request
        message that is used to indicate whether a response is required
        to the request message if the outcome is successful.  A value
        of "NoSuccessAck" indicates that the request message does not
        expect a response if the outcome is successful, and a value of
        "AckAll" indicates that a response is expected if the outcome
        is successful.  In both cases a failure response MUST be
        generated if the request fails.  For State and Statistics, and
        Configuration request messages, a value of "NoSuccessAck" in
        the request message is ignored and the request message is
        handled as if the field was set to "AckAll".  (This facility
        was added to reduce the control traffic in the case where the





Doria, et. al.              Standards Track                     [Page 8]

RFC 3292         General Switch Management Protocol V3         June 2002


        controller periodically checks that the state in the switch is
        correct.  If the controller does not use this capability, all
        request messages SHOULD be sent with a value of "AckAll".)

        In a response message, the result field can have three values:
        "Success," "More," and "Failure".  The "Success" and "More"
        results both indicate a success response.  All messages that
        belong to the same success response will have the same
        Transaction Identifier.  The "Success" result indicates a
        success response that may be contained in a single message or
        the final message of a success response spanning multiple
        messages.

        "More" in the result indicates that the message, either request
        or response, exceeds the maximum transmission unit of the data
        link and that one or more further messages will be sent to
        complete the success response.

        ReturnReceipt is a result field used in Events to indicate that
        an acknowledgement is required for the message.  The default
        for Events Messages is that the controller will not acknowledge
        Events.  In the case where a switch requires acknowledgement,
        it will set the Result Field to ReturnReceipt in the header of
        the Event Message.

        The encoding of the result field is:

                    NoSuccessAck:       Result = 1
                    AckAll:             Result = 2
                    Success:            Result = 3
                    Failure:            Result = 4
                    More:               Result = 5
                    ReturnReceipt       Result = 6

        The Result field is not used in an adjacency protocol message.

     Code
        Field gives further information concerning the result in a
        response message.  It is mostly used to pass an error code in a
        failure response but can also be used to give further
        information in a success response message or an event message.
        In a request message, the code field is not used and is set to
        zero.  In an adjacency protocol message, the Code field is used
        to determine the function of the message.







Doria, et. al.              Standards Track                     [Page 9]

RFC 3292         General Switch Management Protocol V3         June 2002


     Partition ID
        Field used to associate the command with a specific switch
        partition.  The format of the Partition ID is not defined in
        GSMP.  If desired, the Partition ID can be divided into
        multiple sub-identifiers within a single partition.  For
        example: the Partition ID could be subdivided into a 6-bit
        partition number and a 2-bit sub-identifier which would allow a
        switch to support 64 partitions with 4 available IDs per
        partition.

     Transaction Identifier
        Used to associate a request message with its response message.
        For request messages, the controller may select any transaction
        identifier.  For response messages, the transaction identifier
        is set to the value of the transaction identifier from the
        message to which it is a response.  For event messages, the
        transaction identifier SHOULD be set to zero.  The Transaction
        Identifier is not used, and the field is not present, in the
        adjacency protocol.

     I flag
        If I is set then the SubMessage Number field indicates the
        total number of SubMessage segments that compose the entire
        message.  If it is not set then the SubMessage  Number field
        indicates the sequence number of this SubMessage segment within
        the whole message.

     SubMessage Number
        When a message is segmented because it exceeds the MTU of the
        link layer, each segment will include a submessage number to
        indicate its position.  Alternatively, if it is the first
        submessage in a sequence of submessages, the I flag will be set
        and this field will contain the total count of submessage
        segments.

     Length
        Length of the GSMP message including its header fields and
        defined GSMP message body.  The length of additional data
        appended to the end of the standard message SHOULD be included
        in the Length field.











Doria, et. al.              Standards Track                    [Page 10]

RFC 3292         General Switch Management Protocol V3         June 2002


3.1.2  Fields commonly found in GSMP messages

  The following fields are frequently found in GSMP messages.  They are
  defined here to avoid repetition.

     Port
        Gives the port number of the switch port to which the message
        applies.

     Port Session Number
        Each switch port maintains a Port Session Number assigned by
        the switch.  The port session number of a port remains
        unchanged while the port is continuously in the Available state
        and the link status is continuously Up.  When a port returns to
        the Available state after it has been Unavailable or in any of
        the Loopback states, or when the line status returns to the Up
        state after it has been Down or in Test, or after a power
        cycle, a new Port Session Number MUST be generated.  Port
        session numbers SHOULD be assigned using some form of random
        number.

        If the Port Session Number in a request message does not match
        the current Port Session Number for the specified port, a
        failure response message MUST be returned with the Code field
        indicating, "5: Invalid port session number".  The current port
        session number for a port may be obtained using a Port
        Configuration or an All Ports Configuration message.

3.1.2.1  Additional General Message Information

  1. Any field in a GSMP message that is unused or defined as
     "reserved" MUST be set to zero by the sender and ignored by the
     receiver.

  2. Flags that are undefined will be designated as:  x: reserved

  3. It is not an error for a GSMP message to contain additional data
     after the end of the Message Body.  This is allowed to support
     proprietary and experimental purposes.  However, the maximum
     transmission unit of the GSMP message, as defined by the data link
     layer encapsulation, MUST NOT be exceeded.  The length of
     additional data appended to the end of the standard message SHOULD
     be included in the message length field.

  4. A success response message MUST NOT be sent until the requested
     operation has been successfully completed.





Doria, et. al.              Standards Track                    [Page 11]

RFC 3292         General Switch Management Protocol V3         June 2002


3.1.3  Labels

  All labels in GSMP have a common structure composed of tuples,
  consisting of a Type, a Length, and a Value.  Such tuples are
  commonly known as TLV's, and are a good way of encoding information
  in a flexible and extensible format.  A label TLV is encoded as a 2
  octet field that uses 12 bits to specify a Type and four bits to
  specify certain behaviour specified below, followed by a 2 octet
  Length field, followed by a variable length Value field.
  Additionally, a label field can be composed of many stacked labels
  that together constitute the label.

  A summary of TLV labels supported in this version of the protocol is
  listed below:

     TLV Label      Type       Section Title
     ---------      ----       -------------
     ATM Label      0x100      ATM TLV Labels
     FR Label       0x101      Frame Relay TLV Labels
     MPLS Gen Label 0x102      MPLS Generic TLV Labels
     FEC Label      0x103      FEC TLV Labels

  All Labels will be designated as follow:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|       Label Type      |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Label Value                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     x: Reserved Flags.
        These are generally used by specific messages and will be
        defined in those messages.

     S: Stacked Label Indicator
        Label Stacking is discussed below in section 3.1.3.5

     Label Type
        A 12-bit field indicating the type of label.

     Label Length
        A 16-bit field indicating the length of the Label Value field
        in bytes.




Doria, et. al.              Standards Track                    [Page 12]

RFC 3292         General Switch Management Protocol V3         June 2002


     Label Value
        A variable length field that is an integer number of 32 bit
        words long.  The Label Value field is interpreted according to
        the Label Type as described in the following sections.

3.1.3.1  ATM Labels

  If the Label Type = ATM Label, the labels MUST be interpreted as an
  ATM labels as shown:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|   ATM Label (0x100)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x|           VPI         |              VCI              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  For a virtual path connection (switched as a single virtual path
  connection) or a virtual path (switched as one or more virtual
  channel connections within the virtual path) the VCI field is not
  used.

  ATM distinguishes between virtual path connections and virtual
  channel connections.  The connection management messages apply both
  to virtual channel connections and virtual path connections.  The Add
  Branch and Move Branch connection management messages have two
  Message Types.  One Message Type indicates that a virtual channel
  connection is required, and the other Message Type indicates that a
  virtual path connection is required.  The Delete Branches, Delete
  Tree, and Delete All connection management messages have only a
  single Message Type because they do not need to distinguish between
  virtual channel connections and virtual path connections.  For
  virtual path connections, neither Input VCI fields nor Output VCI
  fields are required.  They SHOULD be set to zero by the sender and
  ignored by the receiver.  Virtual channel branches may not be added
  to an existing virtual path connection.  Conversely, virtual path
  branches may not be added to an existing virtual channel connection.
  In the Port Configuration message each switch input port may declare
  whether it is capable of supporting virtual path switching (i.e.,
  accepting connection management messages requesting virtual path
  connections).









Doria, et. al.              Standards Track                    [Page 13]

RFC 3292         General Switch Management Protocol V3         June 2002


3.1.3.2  Frame Relay Labels

  If the TLV Type = FR Label, the labels MUST be interpreted as a Frame
  Relay labels as shown:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|    FR Label (0x101)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x| Res |Len|                  DLCI                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Res
        The Res field is reserved in [21], i.e., it is not explicitly
        reserved by GSMP.

     Len
        The Len field specifies the number of bits of the DLCI.  The
        following values are supported:

           Len  DLCI bits
           0    10
           2    23

     DLCI
        DLCI is the binary value of the Frame Relay Label.  The
        significant number of bits (10 or 23) of the label value is to
        be encoded into the Data Link Connection Identifier (DLCI)
        field when part of the Frame Relay data link header [13].

3.1.3.3  MPLS Generic Labels

  If a port's attribute PortType=MPLS, then that port's labels are for
  use on links for which label values are independent of the underlying
  link technology.  Examples of such links are PPP and Ethernet.  On
  such links the labels are carried in MPLS label stacks [14].  If the
  Label Type = MPLS Generic Label, the labels MUST be interpreted as
  Generic MPLS labels as shown:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x| MPLS Gen Label (0x102)|          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x|              MPLS Label               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Doria, et. al.              Standards Track                    [Page 14]

RFC 3292         General Switch Management Protocol V3         June 2002


     MPLS Label
        This is a 20-bit label value as specified in [14], represented
        as a 20-bit number in a 4-byte field.

3.1.3.4  FEC Labels

  Labels may be bound to Forwarding Equivalence Classes (FECs) as
  defined in [18].  A FEC is a list of one or more FEC elements.  The
  FEC TLV encodes FEC items.  In this version of the protocol only,
  Prefix FECs are supported.  If the Label Type = FEC Label, the labels
  MUST be interpreted as Forwarding Equivalence Class Labels as shown:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|   FEC Label (0x103)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                        FEC Element 1                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                        FEC Element n                          ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     FEC Element
        The FEC element encoding depends on the type of FEC element.
        In this version of GSMP only, Prefix FECs are supported.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Element Type |         Address Family        | Prefix Length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                            Prefix                             ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Element Type
        In this version of GSMP the only supported Element Type is
        Prefix FEC Elements.  The Prefix FEC Element is a one-octet
        value, encoded as 0x02.

     Address Family
        Two-byte quantity containing a value from ADDRESS FAMILY
        NUMBERS in [5], that encodes the address family for the address
        prefix in the Prefix field.








Doria, et. al.              Standards Track                    [Page 15]

RFC 3292         General Switch Management Protocol V3         June 2002


     Prefix Length
        One byte containing the length in bits of the address prefix
        that follows.  A length of zero indicates a prefix that matches
        all addresses (the default destination); in this case the
        Prefix itself is zero bytes.

     Prefix
        An address prefix encoded according to the Address Family
        field, whose length, in bits, was specified in the Prefix
        Length field.

3.1.3.5  Label Stacking

  Label stacking is a technique used in MPLS [14] that allows
  hierarchical labelling.  MPLS label stacking is similar to, but
  subtly different from, the VPI/VCI hierarchy of labels in ATM.  There
  is no set limit to the depth of label stacks that can be used in
  GSMP.

  When the Stacked Label Indicator S is set to 1 it indicates that an
  additional label field will be appended to the adjacent label field.
  For example, a stacked Input Short Label could be designated as
  follows:

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |x|S|x|x|                                                       |
     +-+-+-+-+                   Input Label                         |
     ~                                                               ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ** |x|S|x|x|                                                       |
     +-+-+-+-+                 Stacked Input Label                   |
     ~                                                               ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     ** Note: There can be zero or more Stacked Labels fields (like
        those marked **) following an Input or Output Label field.  A
        Stacked Label follows the previous label field if and only if
        the S Flag in the previous label is set.

  When a label is extended by stacking, it is treated by the protocol
  as a single extended label, and all operations on that label are
  atomic.  For example, in an add branch message, the entire input
  label is switched for the entire output label.  Likewise, in Move
  Input Branch and Move Output Branch messages, the entire label is
  swapped.  For that reason, in all messages that designate a label
  field, it will be depicted as a single 64-bit field, though it might
  be instantiated by many 64-bit fields in practice.




Doria, et. al.              Standards Track                    [Page 16]

RFC 3292         General Switch Management Protocol V3         June 2002


3.1.4  Failure Response Messages

  A failure response message is formed by returning the request message
  that caused the failure with the Result field in the header
  indicating failure (Result = 4) and the Code field giving the failure
  code.  The failure code specifies the reason for the switch being
  unable to satisfy the request message.

  If the switch issues a failure response in reply to a request
  message, no change should be made to the state of the switch as a
  result of the message causing the failure.  (For request messages
  that contain multiple requests, such as the Delete Branches message,
  the failure response message will specify which requests were
  successful and which failed.  The successful requests may result in
  changed state.)

  A warning response message is a success response (Result = 3) with
  the Code field specifying the warning code.  The warning code
  specifies a warning that was generated during the successful
  operation.

  If the switch issues a failure response it MUST choose the most
  specific failure code according to the following precedence:

     -  Invalid Message

     -  General Message Failure

     -  Specific Message Failure
        A failure response specified in the text defining the message
        type.

     -  Connection Failures

     -  Virtual Path Connection Failures

     -  Multicast Failures

     -  QoS Failures

     -  General Failures

     -  Warnings

  If multiple failures match in any of the categories, the one that is
  listed first should be returned.  Descriptions of the Failure
  response messages can be found in section 12.




Doria, et. al.              Standards Track                    [Page 17]

RFC 3292         General Switch Management Protocol V3         June 2002


4.  Connection Management Messages

4.1  General Message Definitions

  Connection management messages are used by the controller to
  establish, delete, modify and verify connections across the switch.
  The Add Branch, Delete Tree, and Delete All connection management
  messages have the following format, for both request and response
  messages:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Reservation ID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Input Service Selector                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Output Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Output Service Selector                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|              Adaptation Method                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                 Output Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+










Doria, et. al.              Standards Track                    [Page 18]

RFC 3292         General Switch Management Protocol V3         June 2002


     When required, the Add Branch, Move Input Branch and Move Output
     Branch messages have an additional, variable length data block
     appended to the above message.  This will be required when
     indicated by the IQS and OQS flags (if the value of either is set
     to 0b10) and the service selector.  The additional data block has
     the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Input TC Flags|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Output TC Flags|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Reservation ID
        Identifies the reservation that MUST be deployed for the branch
        being added.  Reservations are established using reservation
        management messages (see Chapter 5).  A value of zero indicates
        that no Reservation is being deployed for the branch.  If a
        reservation with a corresponding Reservation ID exists, then
        the reserved resources MUST be applied to the branch.  If the
        numerical value of Reservation ID is greater than the value of
        Max Reservations (from the Switch Configuration message), a
        failure response is returned indicating "20: Reservation ID out
        of Range".  If the value of Input Port differs from the input
        port specified in the reservation, or if the value of Output
        Port differs from the output port specified in the reservation,
        a failure response MUST be returned indicating "21: Mismatched
        reservation ports".  If no reservation corresponding to
        Reservation ID exists, a failure response MUST be returned
        indicating "23: Non-existent reservation ID".









Doria, et. al.              Standards Track                    [Page 19]

RFC 3292         General Switch Management Protocol V3         June 2002


        If a valid Reservation ID is specified and the Service Model is
        used (i.e., IQS or OQS=0b10) then the Traffic Parameters Block
        may be omitted from the Add Branch message indicating that the
        Traffic Parameters specified in the corresponding Reservation
        Request message are to be used.

     Input Port
        Identifies a switch input port.

     Input Label
        Identifies an incoming labelled channel arriving at the switch
        input port indicated by the Input Port field.  The value in the
        Input Label field MUST be interpreted according to the Label
        Type attribute of the switch input port indicated by the Input
        Port field.

     Input Service Selector
        Identifies details of the service specification being used for
        the connection.  The interpretation depends upon the Input QoS
        Model Selector (IQS).

        IQS = 00: In this case, the Input Service Selector indicates a
                  simple priority.

        IQS = 01: In this case, the Input Service Selector is an opaque
                  service profile identifier.  The definition of these
                  service profiles is outside the scope of this
                  specification.  Service Profiles can be used to
                  indicate pre-defined Differentiated Service Per Hop
                  Behaviours.

        IQS = 10: In this case, the Input Service Selector corresponds
                  to a Service Spec as defined in Chapter 8.2.  When
                  the value of either IQS or OQS is set to 0b10, then a
                  Traffic Parameters Block is appended to the message.

        IQS = 11: In this case the Input Service Selector corresponds
                  to an ARM service specification.  Definition of ARM
                  service specifications is outside the scope of this
                  specification and is determined by the MType as
                  defined in Chapter 8.1.

     Output Port
        Identifies a switch output port.







Doria, et. al.              Standards Track                    [Page 20]

RFC 3292         General Switch Management Protocol V3         June 2002


     Output Label
        Identifies an outgoing labelled channel departing at the switch
        output port indicated by the Output Port field.  The value in
        the Output Label field MUST be interpreted according to the
        Label Type attribute of the switch input port indicated by the
        Output Port field

     Output Service Selector
        Identifies details of the service model being used.  The
        interpretation depends upon the Output QoS Model selector
        (OQS).

        OQS = 00: In this case the Output Service Selector indicates a
                  simple priority.

        OQS = 01: In this case the Output Service Selector is an opaque
                  service profile identifier.  The definition of these
                  service profiles is outside the scope of this
                  specification.  Service Profiles can be used to
                  indicate pre-defined Differentiated Service Per Hop
                  Behaviours.

        OQS = 10: In this case the Output Service Selector corresponds
                  to a Service Spec as defined in Chapter 8.2.  When
                  the value of either IQS or OQS is set to 0b10 then a
                  Traffic Parameters Block is appended to the message.

        OQS = 11: In this case the Output Service Selector corresponds
                  to an ARM service specification.  Definition of ARM
                  service specifications is outside the scope of this
                  specification and is determined by the MType as
                  defined in Chapter 8.1.

     IQS, OQS
        Input and Output QoS Model Selector:
        The QoS Model Selector is used to specify a QoS Model for the
        connection.  The values of IQS and OQS determine respectively
        the interpretation of the Input Service Selector and the Output
        Service Selector, and SHOULD be interpreted as a priority, a
        QoS profile, a service specification, or an ARM specification
        as shown:

           IQS/OQS  QoS Model              Service Selector
           -------  ---------              ----------------
           00       Simple Abstract        Model Priority
           01       QoS Profile Model      QoS Profile
           10       Default Service Model  Service Specification
           11       Optional ARM           ARM Specification



Doria, et. al.              Standards Track                    [Page 21]

RFC 3292         General Switch Management Protocol V3         June 2002


     P Flag
        If the Parameter flag is set it indicates that a single
        instance of the Traffic Parameter block is provided.  This
        occurs in cases where the Input Traffic Parameters are
        identical to Output Traffic Parameters.

     N Flag
        The Null flag is used to indicate a null adaptation method.
        This occurs when the branch is connecting two ports of the same
        type.

     O Flag
        The Opaque flag indicates whether the adaptation fields are
        opaque, or whether they are defined by the protocol.  See the
        definition of Adaptation Method below for further information.

     Adaptation Method
        The adaptation method is used to define the adaptation framing
        that may be in use when moving traffic from one port type to
        another port type; e.g., from a frame relay port to an ATM
        port.  The content of this field is defined by the Opaque flag.
        If the Opaque flag is set, then this field is defined by the
        switch manufacturer and is not defined in this protocol.  If
        the opaque flag is not set, the field is divided into two 12-
        bit fields as follows:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|    Input Adaptation   |   Output Adaptation   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Input Adaptation
           Adaptation framing method used on incoming connections.

        Output Adaptation
           Adaptation framing method used on outgoing connections.

           Adaptation Types:

                 0x100                        PPP
                 0x200                        FRF.5
                 0x201                        FRF.8

     Input and Output TC Flags
        TC (Traffic Control) Flags are used in Add Branch, Move Input
        Branch and Move Output Branch messages for connections using
        the Service Model (i.e., when IQS or OQS=0b10).  The TC Flags
        field is defined in Section 10.6.




Doria, et. al.              Standards Track                    [Page 22]

RFC 3292         General Switch Management Protocol V3         June 2002


     Input and Output Traffic Parameters Block
        This variable length field is used in Add Branch, Move Input
        Branch and Move Output Branch messages for connections using
        the Service Model (i.e., when IQS or OQS=0b10).  Traffic
        Parameters Block is defined in Section 10.5.  The Traffic
        Parameters Block may be omitted if a valid, non-zero
        Reservation ID is specified, in which case the Traffic
        Parameters of the corresponding Reservation Request message are
        used.  If the P flag is set, then the appended message block
        will only include a single traffic parameter block which will
        be used for both input and output traffic.

  For all connection management messages, except the Delete Branches
  message, the success response message is a copy of the request
  message returned with the Result field indicating success.  The Code
  field is not used in a connection management success response
  message.

  The failure response message is a copy of the request message
  returned with a Result field indicating failure.

  Fundamentally, no distinction is made between point-to-point and
  point-to-multipoint connections.  By default, the first Add Branch
  message for a particular Input Port and Input Label will establish a
  point-to-point connection.  The second Add Branch message with the
  same Input Port and Input Label fields will convert the connection to
  a point-to-multipoint connection with two branches.  However, to
  avoid possible inefficiency with some switch designs, the Multicast
  Flag is provided.  If the controller knows that a new connection is
  point-to-multipoint when establishing the first branch, it may
  indicate this in the Multicast Flag.  Subsequent Add Branch messages
  with the same Input Port and Input Label fields will add further
  branches to the point-to-multipoint connection.  Use of the Delete
  Branch message on a point-to-multipoint connection with two branches
  will result in a point-to-point connection.  However, the switch may
  structure this connection as a point-to-multipoint connection with a
  single output branch if it chooses.  (For some switch designs this
  structure may be more convenient.)  Use of the Delete Branch message
  on a point-to-point connection will delete the point-to-point
  connection.  There is no concept of a connection with zero output
  branches.  All connections are unidirectional, one input labelled
  channel to one or more output labelled channels.

  In GSMP a multipoint-to-point connection is specified by establishing
  multiple point-to-point connections, each of them specifying the same
  output branch.  (An output branch is specified by an output port and
  output label.)




Doria, et. al.              Standards Track                    [Page 23]

RFC 3292         General Switch Management Protocol V3         June 2002


  The connection management messages may be issued regardless of the
  Port Status of the switch port.  Connections may be established or
  deleted when a switch port is in the Available, Unavailable, or any
  of the Loopback states.  However, all connection states on an input
  port will be deleted when the port returns to the Available state
  from any other state, i.e., when a Port Management message is
  received for that port with the Function field indicating either
  Bring Up, or Reset Input Port.











































Doria, et. al.              Standards Track                    [Page 24]

RFC 3292         General Switch Management Protocol V3         June 2002


4.2  Add Branch Message

  The Add Branch message is a connection management message used to
  establish a connection or to add an additional branch to an existing
  connection.  It may also be used to check the connection state stored
  in the switch.  The connection is specified by the Input Port and
  Input Label fields.  The output branch is specified by the Output
  Port and Output Label fields.  The quality of service requirements of
  the connection are specified by the QoS Model Selector and Service
  Selector fields.  To request a connection the Add Branch message is:

     Message Type = 16

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Reservation ID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Input Service Selector                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Output Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Output Service Selector                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|              Adaptation Method                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|M|B|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|M|R|                                                       |
  +-+-+-+-+                 Output Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Doria, et. al.              Standards Track                    [Page 25]

RFC 3292         General Switch Management Protocol V3         June 2002


  When the value of either IQS or OQS is set to 0b10 then the following
  Traffic Parameters Block is appended to the above message:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Input TC Flags |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~               Input Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Output TC Flags|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~              Output Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.

     M: Multicast
        Multicast flags are used as a hint for point-to-multipoint or
        multipoint-to-point connections in the Add Branch message.
        They are not used in any other connection management messages
        and in these messages they SHOULD be set to zero.  There are
        two instances of the M-bit in the Add Branch message; one for
        input branch specified by the Input Port and Input Label fields
        and one for the output branch specified by the Output Port and
        Output Label fields.  If set for the input branch (in front of
        Input Label field), it indicates that the connection is very
        likely to be a point-to-multipoint connection.  If zero, it
        indicates that this connection is very likely to be a point-
        to-point connection or is unknown.  If set for the output
        branch (in front of the Output Label field), it indicates that
        the connection is very likely to be a multipoint-to-point
        connection.  If zero, it indicates that this connection is very
        likely to be a point-to-point connection or is unknown.

        If M flags are set for input as well as output branches, it
        indicates that the connection is very likely to be a
        multipoint-to-multipoint connection.

        The Multicast flags are only used in the Add Branch message
        when establishing the first branch of a new connection.  It is
        not required to be set when establishing subsequent branches of
        a point-to-multipoint or a multipoint-to-point connection and



Doria, et. al.              Standards Track                    [Page 26]

RFC 3292         General Switch Management Protocol V3         June 2002


        on such connections it SHOULD be ignored by the receiver.
        (Except in cases where the connection replace bit is enabled
        and set, the receipt of the second and subsequent Add Branch
        messages from the receiver indicates a point-to-multipoint or a
        multipoint-to-point connection.)  If it is known that this is
        the first branch of a point-to-multipoint or a multipoint-to-
        point connection, this flag SHOULD be set.  If it is unknown,
        or if it is known that the connection is point-to-point, this
        flag SHOULD be zero.  The use of the multicast flag is not
        mandatory and may be ignored by the switch.  If unused, the
        flags SHOULD be set to zero.  Some switches use a different
        data structure for multicast connections rather than for
        point-to-point connections.  These flags prevent the switch
        from setting up a point-to-point structure for the first branch
        of a multicast connection that MUST immediately be deleted and
        reconfigured as point-to-multipoint or multipoint-to-point when
        the second branch is established.

     B: Bi-directional
        The Bi-directional flag applies only to the Add Branch message.
        In all other Connection Management messages it is not used.  It
        may only be used when establishing a point-to-point connection.
        The Bi-directional flag in an Add Branch message, if set,
        requests that two unidirectional connections be established,
        one in the forward direction, and one in the reverse direction.
        It is equivalent to two Add Branch messages, one specifying the
        forward direction, and one specifying the reverse direction.
        The forward direction uses the values of Input Port, Input
        Label, Output Port and Output Label as specified in the Add
        Branch message.  The reverse direction is derived by exchanging
        the values specified in the Input Port and Input Label fields,
        with those of the Output Port and Output Label fields
        respectively.  Thus, a connection in the reverse direction
        originates at the input port specified by the Output Port
        field, on the label specified by the Output Label field.  It
        departs from the output port specified by the Input Port field,
        on the label specified by the Input Label field.

        The Bi-directional flag is simply a convenience to establish
        two unidirectional connections in opposite directions between
        the same two ports, with identical Labels, using a single Add
        Branch message.  In all future messages the two unidirectional
        connections MUST be handled separately.  There is no bi-
        directional delete message.  However, a single Delete Branches
        message with two Delete Branch Elements, one for the forward
        connection and one for the reverse, may be used.





Doria, et. al.              Standards Track                    [Page 27]

RFC 3292         General Switch Management Protocol V3         June 2002


     R: Connection Replace
        The Connection Replace flag applies only to the Add Branch
        message and is not used in any other Connection Management
        messages.  The R flag is used in cases when creation of
        multipoint-to-point connections is undesirable (e.g., POTS
        applications where fan-in is meaningless).  If the R flag is
        set, the new connection replaces any existing connection if the
        label is already in use at the same Output Port.

        The Connection Replace mechanism allows a single Add Connection
        command to function as either a Move Branch message or a
        combination of Delete Branch/Add Branch messages.  This
        mechanism is provided to support existing 64k call handling
        applications, such as emulating 64k voice switches.

        The use of R flag is optional and MUST be pre-configured in the
        Port Management message [see section 6.1] to activate its use.
        The R flag MUST NOT be set if it is not pre-configured with the
        Port Management message.  The switch MUST then return a Failure
        Response message: "36:  Replace of connection is not activated
        on switch".  Information about whether the function is active
        or not, can be obtained by using the Port Configuration message
        [see section 8.2].

        The R flag MUST NOT be set if either the M flag or the B flag
        is set.  If a switch receives an Add connection request that
        has the R flag set with either the B or the M flag set, it MUST
        return a failure response message of: "37:  Connection
        replacement mode cannot be combined with Bi-directional or
        Multicast mode"

  If the connection specified by the Input Port and Input Label fields
  does not already exist, it MUST be established with the single output
  branch specified in the request message.  If the Bi-directional Flag
  in the Flags field is set, the reverse connection MUST also be
  established.  The output branch SHOULD have the QoS attributes
  specified by the Class of Service field.

  If the connection specified by the Input Port and Input Label fields
  already exists and the R flag is not set, but the specified output
  branch does not, the new output branch MUST be added.  The new output
  branch SHOULD have the QoS attributes specified by the Class of
  Service field.

  If the connection specified by the Input Port and Input Label fields
  already exists and the specified output branch also already exists,
  the QoS attributes of the connection, specified by the Class of
  Service field, if different from the request message, SHOULD be



Doria, et. al.              Standards Track                    [Page 28]

RFC 3292         General Switch Management Protocol V3         June 2002


  changed to that in the request message.  A success response message
  MUST be sent if the Result field of the request message is "AckAll".
  This allows the controller to periodically reassert the state of a
  connection or to change its priority.  If the result field of the
  request message is "NoSuccessAck" a success response message SHOULD
  NOT be returned.  This may be used to reduce the traffic on the
  control link for messages that are reasserting a previously
  established state.  For messages that are reasserting a previously
  established state, the switch MUST always check that this state is
  correctly established in the switch hardware (i.e., the actual
  connection tables used to forward cells or frames).

  If the connection specified by the Input Port and Input Label fields
  already exists, and the Bi-directional Flag in the Flags field is
  set, a failure response MUST be returned indicating: "15:  Point-to-
  point bi-directional connection already exists".

  It should be noted that different switches support multicast in
  different ways.  There may be a limit to the total number of point-
  to-multipoint or multipoint-to-point connections certain switches can
  support, and possibly a limit on the maximum number of branches that
  a point-to-multipoint or multipoint-to-point connection may specify.
  Some switches also impose a limit on the number of different Label
  values that may be assigned e.g., to the output branches of a point-
  to-multipoint connection.  Many switches are incapable of supporting
  more than a single branch of any particular point-to-multipoint
  connection on the same output port.  Specific failure codes are
  defined for some of these conditions.

4.2.1  ATM specific procedures:

  To request an ATM virtual path connection the ATM Virtual Path
  Connection (VPC) Add Branch message is:

     Message Type = 26

  An ATM virtual path connection can only be established between ATM
  ports, i.e., ports with the "ATM" Label Type attribute.  If an ATM
  VPC Add Branch message is received and either the switch input port
  specified by the Input Port field or the switch output port specified
  by the Output Port field is not an ATM port, a failure response
  message MUST be returned indicating, "28: ATM Virtual path switching
  is not supported on non-ATM ports".

  If an ATM VPC Add Branch message is received and the switch input
  port specified by the Input Port field does not support virtual path
  switching, a failure response message MUST be returned indicating,
  "24: ATM virtual path switching is not supported on this input port".



Doria, et. al.              Standards Track                    [Page 29]

RFC 3292         General Switch Management Protocol V3         June 2002


  If an ATM virtual path connection already exists on the virtual path
  specified by the Input Port and Input VPI fields, a failure response
  message MUST be returned, indicating "27:  Attempt to add an ATM
  virtual channel connection branch to an existing virtual path
  connection".  For the VPC Add Branch message, if a virtual channel
  connection already exists on any of the virtual channels within the
  virtual path specified by the Input Port and Input VPI fields, a
  failure response message MUST be returned indicating, "26: Attempt to
  add an ATM virtual path connection branch to an existing virtual
  channel connection".

4.3  Delete Tree Message

  The Delete Tree message is a Connection Management message used to
  delete an entire connection.  All remaining branches of the
  connection are deleted.  A connection is defined by the Input Port
  and the Input Label fields.  The Output Port and Output Label fields
  are not used in this message.  The Delete Tree message is:

     Message Type = 18

  If the Result field of the request message is "AckAll" a success
  response message MUST be sent upon successful deletion of the
  specified connection.  The success message MUST NOT be sent until the
  delete operation has been completed and if possible, not until all
  data on the connection, queued for transmission, has been
  transmitted.

4.4  Verify Tree Message

  The Verify Tree message has been removed from this version of GSMP.

     Message Type = 19

  If a request message is received with Message Type = 19, a failure
  response MUST be returned with the Code field indicating:

  "3: The specified request is not implemented on this switch.".

4.5  Delete All Input Port Message

  The Delete All Input Port message is a connection management message
  used to delete all connections on a switch input port.  All
  connections that originate at the specified input port MUST be
  deleted.  On completion of the operation all dynamically assigned
  Label values for the specified port MUST be unassigned, i.e., there
  MUST be no connections established in the Label space that GSMP
  controls on this port.  The Service Selectors, Output Port, Input



Doria, et. al.              Standards Track                    [Page 30]

RFC 3292         General Switch Management Protocol V3         June 2002


  Label and Output Label fields are not used in this message.  The
  Delete All Input Port message is:

     Message Type = 20

  If the Result field of the request message is "AckAll", a success
  response message MUST be sent upon completion of the operation.  The
  success response message MUST NOT be sent until the operation has
  been completed.

  The following failure response messages may be returned to a Delete
  All Input Port request.

        3: The specified request is not implemented on this switch.

        4: One or more of the specified ports does not exist.

        5: Invalid Port Session Number.

  If any field in a Delete All Input Port message not covered by the
  above failure codes is invalid, a failure response MUST be returned
  indicating: "2: Invalid request message".  Else, the Delete All Input
  Port operation MUST be completed successfully and a success message
  returned.  No other failure messages are permitted.

4.6  Delete All Output Port Message

  The Delete All message is a connection management message used to
  delete all connections on a switch output port.  All connections that
  have the specified output port MUST be deleted.  On completion of the
  operation all dynamically assigned Label values for the specified
  port MUST be unassigned, i.e., there MUST be no connections
  established in the Label space that GSMP controls on this port.  The
  Service Selectors, Input Port, Input Label and Output Label fields
  are not used in this message.  The Delete All Output Port message is:

     Message Type = 21

  If the Result field of the request message is "AckAll", a success
  response message MUST be sent upon completion of the operation.  The
  success response message MUST NOT be sent until the operation has
  been completed.

  The following failure response messages may be returned to a Delete
  All Output Port request.






Doria, et. al.              Standards Track                    [Page 31]

RFC 3292         General Switch Management Protocol V3         June 2002


        3: The specified request is not implemented on this switch.

        4: One or more of the specified ports does not exist.

        5: Invalid Port Session Number.

  If any field in a Delete All Output Port message not covered by the
  above failure codes is invalid, a failure response MUST be returned
  indicating: "2: Invalid request message".  Else, the delete all
  operation MUST be completed successfully and a success message
  returned.  No other failure messages are permitted.

4.7  Delete Branches Message

  The Delete Branches message is a connection management message used
  to request one or more delete branch operations.  Each delete branch
  operation deletes a branch of a channel, or in the case of the last
  branch of a connection, it deletes the connection.  The Delete
  Branches message is:

     Message Type = 17

  The request message has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|      Number of Elements       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                    Delete Branch Elements                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.







Doria, et. al.              Standards Track                    [Page 32]

RFC 3292         General Switch Management Protocol V3         June 2002


     Number of Elements
        Specifies the number of Delete Branch Elements to follow in the
        message.  The number of Delete Branch Elements in a Delete
        Branches message MUST NOT cause the packet length to exceed the
        maximum transmission unit defined by the encapsulation.

  Each Delete Branch Element specifies a branch to be deleted and has
  the following structure:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Error |x|x|x|x|x|x|x|x|x|x|x|x|       Element Length          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Output Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                 Output Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.

     Error
        Is used to return a failure code indicating the reason for the
        failure of a specific Delete Branch Element in a Delete
        Branches failure response message.  The Error field is not used
        in the request message and MUST be set to zero.  A value of
        zero is used to indicate that the delete operation specified by
        this Delete Branch Element was successful.  Values for the
        other failure codes are specified in Section 12, "Failure
        Response Codes".

        All other fields of the Delete Branch Element have the same
        definition as specified for the other connection management
        messages.




Doria, et. al.              Standards Track                    [Page 33]

RFC 3292         General Switch Management Protocol V3         June 2002


  In each Delete Branch Element, a connection is specified by the Input
  Port and Input Label fields.  The specific branch to be deleted is
  indicated by the Output Port and Output Label fields.

  If the Result field of the Delete Branches request message is
  "AckAll" a success response message MUST be sent upon successful
  deletion of the branches specified by all of the Delete Branch
  Elements.  The success response message MUST NOT be sent until all of
  the delete branch operations have been completed.  The success
  response message is only sent if all of the requested delete branch
  operations were successful.  No Delete Branch Elements are returned
  in a Delete Branches success response message and the Number of
  Elements field MUST be set to zero.

  If there is a failure in any of the Delete Branch Elements, a Delete
  Branches failure response message MUST be returned.  The Delete
  Branches failure response message is a copy of the request message
  with the Code field of the entire message set to "10: General Message
  Failure" and the Error field of each Delete Branch Element indicating
  the result of each requested delete operation.  A failure in any of
  the Delete Branch Elements MUST NOT interfere with the processing of
  any other Delete Branch Elements.





























Doria, et. al.              Standards Track                    [Page 34]

RFC 3292         General Switch Management Protocol V3         June 2002


4.8  Move Output Branch Message

  The Move Output Branch message is used to move a branch of an
  existing connection from its current output port label to a new
  output port label in a single atomic transaction.  The Move Output
  Branch connection management message has the following format for
  both request and response messages:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Input Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Input Service Selector                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Old Output Port                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        New Output Port                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Output Service Selector                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|             Adaptation Method                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+               Old Output Label                        |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                New Output Label                       |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Doria, et. al.              Standards Track                    [Page 35]

RFC 3292         General Switch Management Protocol V3         June 2002


  When the value of either IQS or OQS is set to 0b10 then the following
  Traffic Parameters Block is appended to the above message:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Input TC Flags |x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~               Input Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Output TC Flags|x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~              Output Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.

  The Move Output Branch message is a connection management message
  used to move a single output branch of connection from its current
  output port and Output Label, to a new output port and Output Label
  on the same connection.  None of the connection's other output
  branches are modified.  When the operation is complete the original
  Output Label on the original output port will be deleted from the
  connection.

  The Move Output Branch message is:

     Message Type = 22

  For the Move Output Branch message, if the connection specified by
  the Input Port and Input Label fields already exists, and the output
  branch specified by the Old Output Port and Old Output Label fields
  exists as a branch on that connection, the output branch specified by
  the New Output Port and New Output Label fields is added to the
  connection and the branch specified by the Old Output Port and Old
  Output Label fields is deleted.  If the Result field of the request
  message is "AckAll", a success response message MUST be sent upon
  successful completion of the operation.  The success response message
  MUST NOT be sent until the Move Branch operation has been completed.

  For the Move Output Branch message, if the connection specified by
  the Input Port and Input Label fields already exists, but the output
  branch specified by the Old Output Port and Old Output Label fields



Doria, et. al.              Standards Track                    [Page 36]

RFC 3292         General Switch Management Protocol V3         June 2002


  does not exist as a branch on that connection, a failure response
  MUST be returned with the Code field indicating, "12: The specified
  branch does not exist".

4.8.1  ATM Specific Procedures:

  The ATM VPC Move Output Branch message is a connection management
  message used to move a single output branch of a virtual path
  connection from its current output port and output VPI, to a new
  output port and output VPI on the same virtual channel connection.
  None of the other output branches are modified.  When the operation
  is complete the original output VPI on the original output port will
  be deleted from the connection.

  The VPC Move Branch message is:

      Message Type = 27

  For the VPC Move Output Branch message, if the virtual path
  connection specified by the Input Port and Input VPI fields already
  exists, and the output branch specified by the Old Output Port and
  Old Output VPI fields exists as a branch on that connection, the
  output branch specified by the New Output Port and New Output VPI
  fields is added to the connection and the branch specified by the Old
  Output Port and Old Output VPI fields is deleted.  If the Result
  field of the request message is "AckAll", a success response message
  MUST be sent upon successful completion of the operation.  The
  success response message MUST NOT be sent until the Move Branch
  operation has been completed.

  For the VPC Move Output Branch message, if the virtual path
  connection specified by the Input Port and Input VPI fields already
  exists, but the output branch specified by the Old Output Port and
  Old Output VPI fields does not exist as a branch on that connection,
  a failure response MUST be returned with the Code field indicating,
  "12: The specified branch does not exist".

  If the virtual channel connection specified by the Input Port and
  Input Label fields; or the virtual path connection specified by the
  Input Port and Input VPI fields; does not exist, a failure response
  MUST be returned with the Code field indicating, "11: The specified
  connection does not exist".

  If the output branch specified by the New Output Port, New Output
  VPI, and New Output VCI fields for a virtual channel connection; or
  the output branch specified by the New Output Port and New Output VPI
  fields for a virtual path connection; is already in use by any
  connection other than that specified by the Input Port and Input



Doria, et. al.              Standards Track                    [Page 37]

RFC 3292         General Switch Management Protocol V3         June 2002


  Label fields, then the resulting output branch will have multiple
  input branches.  If multiple point-to-point connections share the
  same output branch, the result will be a multipoint-to-point
  connection.  If multiple point-to-multipoint trees share the same
  output branches, the result will be a multipoint-to-multipoint
  connection.

4.9  Move Input Branch Message

  The Move Input Branch message is used to move a branch of an existing
  connection from its current input port label to a new input port
  label in a single atomic transaction.  The Move Input Branch
  connection management message has the following format for both
  request and response messages:





































Doria, et. al.              Standards Track                    [Page 38]

RFC 3292         General Switch Management Protocol V3         June 2002


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Output Port                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Input Service Selector                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Old Input Port                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        New Input Port                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Output Service Selector                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|             Adaptation Method                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                 Output Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                Old Input Label                        |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                New Input Label                        |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
















Doria, et. al.              Standards Track                    [Page 39]

RFC 3292         General Switch Management Protocol V3         June 2002


  When the value of either IQS or OQS is set to 0b10, then the
  following Traffic Parameters Block is appended to the above message:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Input TC Flags |x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~               Input Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Output TC Flags|x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~              Output Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.

  The Move Input Branch message is a connection management message used
  to move a single input branch of connection from its current input
  port and Input Label, to a new input port and Input Label on the same
  connection.  None of the connection's other input branches are
  modified.  When the operation is complete, the original Input Label
  on the original input port will be deleted from the connection.

  The Move Input Branch message is:

     Message Type = 23

















Doria, et. al.              Standards Track                    [Page 40]

RFC 3292         General Switch Management Protocol V3         June 2002


  For the Move Input Branch message, if the connection specified by the
  Output Port and Output Label fields already exists, and the input
  branch specified by the Old Input Port and Old Input Label fields
  exists as a branch on that connection, the input branch specified by
  the New Input Port and New Input Label fields is added to the
  connection and the branch specified by the Old Input Port and Old
  Input Label fields is deleted.  If the Result field of the request
  message is "AckAll", a success response message MUST be sent upon
  successful completion of the operation.  The success response message
  MUST NOT be sent until the Move Input Branch operation has been
  completed.

  For the Move Input Branch message, if the connection specified by the
  Output Port and Output Label fields already exists, but the input
  branch specified by the Old Input Port and Old Input Label fields
  does not exist as a branch on that connection, a failure response
  MUST be returned with the Code field indicating, "12: The specified
  branch does not exist".

4.9.1  ATM Specific Procedures:

  The ATM VPC Move Input Branch message is a connection management
  message used to move a single input branch of a virtual path
  connection from its current input port and input VPI, to a new input
  port and input VPI on the same virtual channel connection.  None of
  the other input branches are modified.  When the operation is
  complete, the original input VPI on the original input port will be
  deleted from the connection.

  The VPC Move Input Branch message is:

      Message Type = 28

  For the VPC Move Input Branch message, if the virtual path connection
  specified by the Output Port and Output VPI fields already exists,
  and the input branch specified by the Old Input Port and Old Input
  VPI fields exists as a branch on that connection, the input branch
  specified by the New Input Port and New Input VPI fields is added to
  the connection and the branch specified by the Old Input Port and Old
  Input VPI fields is deleted.  If the Result field of the request
  message is "AckAll" a success response message MUST be sent upon
  successful completion of the operation.  The success response message
  MUST NOT be sent until the Move Input Branch operation has been
  completed.

  For the VPC Move Input Branch message, if the virtual path connection
  specified by the Output Port and Output VPI fields already exists,
  but the input branch specified by the Old Input Port and Old Input



Doria, et. al.              Standards Track                    [Page 41]

RFC 3292         General Switch Management Protocol V3         June 2002


  VPI fields does not exist as a branch on that connection, a failure
  response MUST be returned with the Code field indicating, "12: The
  specified branch does not exist".

  If the virtual channel connection specified by the Output Port and
  Output Label fields, or if the virtual path connection specified by
  the Output Port and Output VPI fields does not exist, a failure
  response MUST be returned with the Code field indicating, "11: The
  specified connection does not exist".

  If the input branch specified by the New Input Port, New Input VPI,
  and New Input VCI fields for a virtual channel connection, or the
  input branch specified by the New Input Port and New Input VPI fields
  for a virtual path connection, is already in use by any connection
  other than that specified by the Output Port and Output Label fields,
  then the resulting input branch will have multiple output branches.
  If multiple point-to-point connections share the same input branch,
  the result will be a point-to-multipoint connection.  If multiple
  multipoint-to-point trees share the same input branches, the result
  will be a multipoint-to-multipoint connection.

5.  Reservation Management Messages

  GSMP allows switch resources (e.g., bandwidth, buffers, queues,
  labels, etc.) to be reserved for connections before the connections
  themselves are established.  This is achieved through the
  manipulation of Reservations in the switch.

  Reservations are hard state objects in the switch that can be created
  by the controller by sending a Reservation Request message.  Each
  Reservation is uniquely identified by an identifying number called a
  Reservation ID.  Reservation objects can be deleted with the Delete
  Reservation message or the Delete All Reservations message.  A
  reservation object is also deleted when the Reservation is deployed
  by specifying a Reservation ID in a valid Add Branch message.

  The reserved resources MUST remain reserved until either the
  reservation is deployed, in which case the resources are applied to a
  branch, or the reservation is explicitly deleted (with a Delete
  Reservation message or a Delete All Reservations message), in which
  case the resources are freed.  Reservations and reserved resources
  are deleted if the switch is reset.

  A Reservation object includes its Reservation ID plus all the
  connection state associated with a branch with the exception that the
  branch's input label and/or output label may be unspecified.  The
  Request Reservation message is therefore almost identical to the Add
  Branch message.



Doria, et. al.              Standards Track                    [Page 42]

RFC 3292         General Switch Management Protocol V3         June 2002


  The switch establishes the maximum number of reservations it can
  store by setting the value of Max Reservations in the Switch
  Configuration response message.  The switch indicates that it does
  not support reservations by setting Max Reservations to 0.  The valid
  range of Reservation IDs is 1 to Max Reservations).

5.1  Reservation Request Message

  The Reservation Request message creates a Reservation in the switch
  and reserves switch resources for a connection that may later be
  established using an Add Branch message.  The Reservation Request
  Message is:

     Message Type = 70





































Doria, et. al.              Standards Track                    [Page 43]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Reservation Request message has the following format for the
  request message:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Reservation ID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Input Service Selector                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Output Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Output Service Selector                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |IQS|OQS|P|x|N|O|             Adaptation Method                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|M|B|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|M|x|                                                       |
  +-+-+-+-+                 Output Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

















Doria, et. al.              Standards Track                    [Page 44]

RFC 3292         General Switch Management Protocol V3         June 2002


  When the value of either IQS or OQS is set to 0b10 then the following
  Traffic Parameters Block is appended to the above message:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Input TC Flags |x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~               Input Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Output TC Flags|x x x x x x x x x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~              Output Traffic Parameters Block                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general connection message will not be
        explained in this section.  Please refer to section 4.1 for
        details.

  All the fields of the Reservation Request message have the same
  meanings as they do in the Add Branch message with the following
  exceptions:

     Reservation ID
        Specifies the Reservation ID of the Reservation.  If the
        numerical value of the Reservation ID is greater than the value
        of the Max Reservations (from the Switch Configuration
        message), a failure response is returned indicating "20:  the
        Reservation ID out of Range".  If the value of Reservation ID
        matches that of an extant Reservation, a failure response is
        returned indicating "22: Reservation ID in use".

     Input Label
        If a specific input label is specified, then that label is
        reserved along with the required resources.  If the Input Label
        is 0 then the switch reserves the resources, but will not bind
        them to a label until the add branch command is given, which
        references the Reservation Id.  If the input label is 0, then
        all stacked labels MUST also be zeroed.







Doria, et. al.              Standards Track                    [Page 45]

RFC 3292         General Switch Management Protocol V3         June 2002


     Output Label
        If a specific Output Label is specified then that label is
        reserved along with the required resources.  If the Output
        Label is 0 then the switch reserves the resources, but will not
        bind them to a label until the add branch command is given
        which references the Reservation Id.  If the Output Label is 0,
        then all stacked labels MUST also be zeroed

  When the switch receives a valid Reservation Request it reserves all
  the appropriate switch resources needed to establish a branch with
  corresponding attributes.  If sufficient resources are not available,
  a failure response is returned indicating "18: Insufficient
  resources".  Other failure responses are as defined for the Add
  Branch message.

5.2  Delete Reservation Message

  The Delete Reservation message deletes a Reservation object in the
  switch and frees the reserved switch resources associated with that
  reservation object.  The Reservation Request Message is:

     Message Type = 71

  The Delete Reservation message has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Reservation ID                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  If the Reservation ID matches that of an extant Reservation then the
  reservation is deleted and corresponding switch resources are freed.
  If the numerical value of the Reservation ID is greater than the
  value of the Max Reservations (from the Switch Configuration
  message), a failure response is returned indicating "20: Reservation
  ID out of Range".  If the value of Reservation ID does not match that
  of any extant Reservation, a failure response is returned indicating
  "23: Non-existent reservation ID".




Doria, et. al.              Standards Track                    [Page 46]

RFC 3292         General Switch Management Protocol V3         June 2002


5.3  Delete All Reservations Message

  The Delete All Reservation message deletes all extant Reservation
  objects in the switch and frees the reserved switch resources of
  these reservations.  The Reservation Request Message is:

     Message Type = 72

  The Delete All Reservation message has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.  Management Messages

6.1  Port Management Message

  The Port Management message allows a port to be brought into service,
  to be taken out of service, to be set to loop back, reset, or to
  change the transmit data rate.  Only the Bring Up and the Reset Input
  Port functions change the connection state (established connections)
  on the input port.  Only the Bring Up function changes the value of
  the Port Session Number.  The Port Management message MAY also be
  used for enabling the replace connection mechanism.  The Port
  Management message is also used as part of the Event Message flow
  control mechanism.

  If the Result field of the request message is "AckAll", a success
  response message MUST be sent upon successful completion of the
  operation.  The success response message MUST NOT be sent until the
  operation has been completed.  The Port Management Message is:

     Message Type = 32











Doria, et. al.              Standards Track                    [Page 47]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Port Management message has the following format for the request
  and success response messages:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Event Sequence Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |R|x|x|x|x|x|x|x|   Duration    |          Function             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Event Flags         |        Flow Control Flags     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Transmit Data Rate                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Event Sequence Number
        The success response message gives the current value of the
        Event Sequence Number of the switch port indicated by the Port
        field.  The Event Sequence Number is set to zero when the port
        is initialised.  It is incremented by one each time the port
        detects an asynchronous event that the switch would normally
        report via an Event message.  If the Event Sequence Number in
        the success response differs from the Event Sequence Number of
        the most recent Event message received for that port, events
        have occurred that were not reported via an Event message.
        This is most likely to be due to the flow control that
        restricts the rate at which a switch can send Event messages
        for each port.  In the request message this field is not used.

     R: Connection Replace
        The R flag shall only be checked when the Function field = 1
        (Bring Up).  If the R flag is set in the Port Management
        request message, it indicates that a switch controller requests
        the switch port to support the Connection Replace mechanism.



Doria, et. al.              Standards Track                    [Page 48]

RFC 3292         General Switch Management Protocol V3         June 2002


        Connection Replace behaviour is described in chapter 4.2.  If a
        switch does not support the Connection Replace mechanism, it
        MUST reply with the failure response:  "45: Connection Replace
        mechanism not supported on switch" and reset the R-flag.  Upon
        successful response, the R flag SHOULD remain set in the
        response message.

     Duration
        Is the length of time in seconds, that any of the loopback
        states remain in operation.  When the duration has expired, the
        port will automatically be returned to service.  If another
        Port Management message is received for the same port before
        the duration has expired, the loopback will continue to remain
        in operation for the length of time specified by the Duration
        field in the new message.  The Duration field is only used in
        request messages with the Function field set to Internal
        Loopback, External Loopback, or Bothway Loopback.

     Function
        Specifies the action to be taken.  The specified action will be
        taken regardless of the current status of the port (Available,
        Unavailable, or any Loopback state).  If the specified function
        requires a new Port Session Number to be generated, the new
        Port Session Number MUST be returned in the success response
        message.  The defined values of the Function field are:

        Bring Up:
           Function = 1.  Bring the port into service.  All connections
           that originate at the specified input port MUST be deleted
           and a new Port Session Number MUST be selected, preferably
           using some form of random number.  On completion of the
           operation all dynamically assigned Label values for the
           specified input port MUST be unassigned, i.e., no
           connections will be established in the Label space that GSMP
           controls on this input port.  Afterwards, the Port Status of
           the port will be Available.

        Take Down:
           Function = 2.  Take the port out of service.  Any data
           received at this port will be discarded.  No data will be
           transmitted from this port.  Afterwards, the Port Status of
           the port will be Unavailable.

           The behaviour is undefined if the port is taken down over
           which the GSMP session that controls the switch is running.
           (In this case the most probable behaviour would be for the
           switch either to ignore the message or to terminate the
           current GSMP session and to initiate another session,



Doria, et. al.              Standards Track                    [Page 49]

RFC 3292         General Switch Management Protocol V3         June 2002


           possibly with the backup controller, if any.)  The correct
           method to reset the link over which GSMP is running is to
           issue an RSTACK message in the adjacency protocol.

        Internal Loopback:
           Function = 3.  Data arriving at the output port from the
           switch fabric are looped through to the input port to return
           to the switch fabric.  All of the functions of the input
           port above the physical layer, e.g., header translation, are
           performed upon the looped back data.  Afterwards, the Port
           Status of the port will be Internal Loopback.

        External Loopback:
           Function = 4.  Data arriving at the input port from the
           external communications link are immediately looped back to
           the communications link at the physical layer without
           entering the input port.  None of the functions of the input
           port, above the physical layer are performed upon the looped
           back data.  Afterwards, the Port Status of the port will be
           External Loopback.

        Bothway Loopback:
           Function = 5.  Both internal and external loopbacks are
           performed.  Afterwards, the Port Status of the port will be
           Bothway Loopback.

        Reset Input Port:
           Function = 6.  All connections that originate at the
           specified input port MUST be deleted and the input and
           output port hardware re-initialised.  On completion of the
           operation, all dynamically assigned Label values for the
           specified input port MUST be unassigned, i.e., no
           connections will be established in the Label space that GSMP
           controls on this input port.  The range of labels that may
           be controlled by GSMP on this port will be set to the
           default values specified in the Port Configuration message.
           The transmit data rate of the output port MUST be set to its
           default value.  The Port Session Number is not changed by
           the Reset Input Port function.  Afterwards, the Port Status
           of the port will be Unavailable.

        Reset Flags:
           Function = 7.  This function is used to reset the Event
           Flags and Flow Control Flags.  For each bit that is set in
           the Event Flags field, the corresponding Event Flag in the
           switch port MUST be reset to 0.  For each bit that is set in
           the Flow Control Flags field, the corresponding Flow Control
           Flag in the switch port MUST be toggled; i.e., flow control



Doria, et. al.              Standards Track                    [Page 50]

RFC 3292         General Switch Management Protocol V3         June 2002


           for the corresponding event is turned off if is currently on
           and it is turned on if it is currently off.  The Port Status
           of the port is not changed by this function.

        Set Transmit Data Rate:
           Function = 8.  Sets the transmit data rate of the output
           port as close as possible to the rate specified in the
           Transmit Data Rate field.  In the success response message,
           the Transmit Data Rate MUST indicate the actual transmit
           data rate of the output port.  If the transmit data rate of
           the requested output port cannot be changed a failure
           response MUST be returned with the Code field indicating:
           "43: The transmit data rate of this output port cannot be
           changed".  If the transmit data rate of the requested output
           port can be changed, but the value of the Transmit Data Rate
           field is beyond the range of acceptable values, a failure
           response MUST be returned with the Code field indicating:
           "44: Requested transmit data rate out of range for this
           output port".  In the failure response message, the Transmit
           Data Rate MUST contain the same value as contained in the
           request message that caused the failure.  The transmit data
           rate of the output port is not changed by the Bring Up, Take
           Down, or any of the Loopback functions.  It is returned to
           the default value by the Reset Input Port function.

     Transmit Data Rate
        This field is only used in request and success response
        messages with the Function field set to "Set Transmit Data
        Rate".  It is used to set the output data rate of the output
        port.  It is specified in cells/s and bytes/s.  If the Transmit
        Data Rate field contains the value 0xFFFFFFFF the transmit data
        rate of the output port SHOULD be set to the highest valid
        value.

     Event Flags
        Field in the request message that is used to reset the Event
        Flags in the switch port indicated by the Port field.  Each
        Event Flag in a switch port corresponds to a type of Event
        message.  When a switch port sends an Event message, it sets
        the corresponding Event Flag on that port.  Depending on the
        setting in the Flow Control Flag, a port is either subject to
        flow control or not.  If it is subject to flow control, then it
        is not permitted to send another Event message of the same type
        before the Event Flag has been reset.  To reset an event flag,
        the Function field in the request message is set to "Reset
        Flags".  For each bit that is set in the Event Flags field, the
        corresponding Event Flag in the switch port is reset.




Doria, et. al.              Standards Track                    [Page 51]

RFC 3292         General Switch Management Protocol V3         June 2002


        The Event Flags field is only used in a request message with
        the Function field set to "Reset Event Flags".  For all other
        values of the Function field, the Event Flags field is not
        used.  In the success response message the Event Flags field
        MUST be set to the current value of the Event Flags for the
        port, after the completion of the operation specified by the
        request message, for all values of the Function field.  Setting
        the Event Flags field to all zeros in a "Reset Event Flags"
        request message allows the controller to obtain the current
        state of the Event Flags and the current Event Sequence Number
        of the port without changing the state of the Event Flags.

        The correspondence between the types of Event messages and the
        bits of the Event Flags field is as follows:

                                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |U|D|I|N|Z|A|x|x|x|x|x|x|x|x|x|x|
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              U: Port Up          Bit  0, (most significant bit)
              D: Port Down        Bit  1,
              I: Invalid Label    Bit  2,
              N: New Port         Bit  3,
              Z: Dead Port        Bit  4,
              A: Adjacency Event  Bit  5,
              x: Unused           Bits 6-15.

     Flow Control Flags Field
        The flags in this field are used to indicate whether the flow
        control mechanism described in the Events Flag field is turned
        on or not.  If the Flow Control Flag is set, then the flow
        control mechanism for that event on that port is activated.  To
        toggle the flow control mechanism, the Function field in the
        request message is set to "Reset Flags".  When doing a reset,
        for each flag that is set in the Flow Control Flags field, the
        corresponding flow control mechanism MUST be toggled.

        The Flow Control Flags correspond to the same event definitions
        as defined for the Event Flag.










Doria, et. al.              Standards Track                    [Page 52]

RFC 3292         General Switch Management Protocol V3         June 2002


6.2  Label Range Message

  The default label range, Min Label to Max Label, is specified for
  each port by the Port Configuration or the All Ports Configuration
  messages.  When the protocol is initialised, before the transmission
  of any Label Range messages, the label range of each port will be set
  to the default label range.  (The default label range is dependent
  upon the switch design and configuration and is not specified by the
  GSMP protocol.)  The Label Range message allows the range of labels
  supported by a specified port, to be changed.  Each switch port MUST
  declare whether it supports the Label Range message in the Port
  Configuration or the All Ports Configuration messages.  The Label
  Range message is:

     Message Type = 33

  The Label Range message has the following format for the request and
  success response messages:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Q|M|D|x|      Range Count      |          Range Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Label Range Block                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.









Doria, et. al.              Standards Track                    [Page 53]

RFC 3292         General Switch Management Protocol V3         June 2002


  Each element of the Label Range Block has the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|C|                                                       |
  +-+-+-+-+                   Min Label                           |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|                                                       |
  +-+-+-+-+                   Max Label                           |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Remaining Labels                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Flags

        Q: Query
           If the Query flag is set in a request message, the switch
           MUST respond with the current range of valid labels.  The
           current label range is not changed by a request message with
           the Query flag set.  If the Query flag is zero, the message
           is requesting a label change operation.

        M: Multipoint Query
           If the Multipoint Query flag is set the switch MUST respond
           with the current range of valid specialized multipoint
           labels.  The current label range is not changed by a request
           message with the Multipoint Query flag set.

        D: Non-contiguous Label Range Indicator
           This flag will be set in a Query response if the labels
           available for assignment belong to a non-contiguous set.

        V: Label
           The Label flag use is port type specific.

        C: Multipoint Capable
           Indicates label range that can be used for multipoint
           connections.

     Range Count
        Count of Label Range elements contained in the Label Range
        Block.

     Range Length
        Byte count in the Label Range Block.





Doria, et. al.              Standards Track                    [Page 54]

RFC 3292         General Switch Management Protocol V3         June 2002


     Min Label
        The minimum label value in the range.

     Max Label
        The maximum label value in the range.

     Remaining Labels
        The maximum number of remaining labels that could be requested
        for allocation on the specified port.

  The success response to a Label Range message requesting a change of
  label range is a copy of the request message with the Remaining
  Labels field updated to the new values after the Label Range
  operation.

  If the switch is unable to satisfy a request to change the Label
  range, it MUST return a failure response message with the Code field
  set to: "40: Cannot support one or more requested label ranges".  In
  this failure response message, the switch MUST use the Min Label and
  Max Label fields to suggest a label range that it is able to satisfy.

  A Label Range request message may be issued regardless of the Port
  Status or the Line Status of the target switch port.  If the Port
  field of the request message contains an invalid port (a port that
  does not exist or a port that has been removed from the switch) a
  failure response message MUST be returned with the Code field set to,
  "4: One or more of the specified ports does not exist".

  If the Query flag is set in the request message, the switch MUST
  reply with a success response message containing the current range of
  valid labels that are supported by the port.  The Min Label and Max
  Label fields are not used in the request message.

  If the Multipoint Query flag is set in the request message and the
  switch does not support a range of valid multipoint labels, then the
  switch MUST reply with a failure response message with the Code field
  set to, "42: Specialised multipoint labels not supported".  The Min
  Label and Max Label fields are not used in the Multipoint request
  message.

  If a label range changes and there are extant connection states with
  labels used by the previous label range, a success response message
  MUST be returned with the Code field set to, "46: One or more labels
  are still used in the previous Label Range".  This action indicates
  that the label range has successfully changed but with a warning that
  there are extant connection states for the previous label range.





Doria, et. al.              Standards Track                    [Page 55]

RFC 3292         General Switch Management Protocol V3         June 2002


6.2.1  Labels

6.2.1.1  ATM Labels

  If the Label Type = ATM Label, the labels range message MUST be
  interpreted as an ATM Label as shown:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|C|   ATM Label (0x100)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|        min VPI        |            min VCI            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|   ATM Label (0x100)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|        max VPI        |            max VCI            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Remaining VPI's         |        Remaining VCI's        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     V: Label
        If the Label flag is set, the message refers to a range of
        VPI's only.  The Min VCI and Max VCI fields are unused.  If the
        Label flag is zero the message refers to a range of VCI's on
        either one VPI or on a range of VPI's.

     Min VPI, Max VPI
        Specify a range of VPI values, Min VPI to Max VPI inclusive.  A
        single VPI may be specified with a Min VPI and a Max VPI having
        the same value.  In a request message, if the value of the Max
        VPI field is less than or equal to the value of the Min VPI
        field, the requested range is a single VPI with a value equal
        to the Min VPI field.  Zero is a valid value.  In a request
        message, if the Query flag is set, and the Label flag is zero,
        the Max VPI field specifies a single VPI and the Min VPI field
        is not used.  The maximum valid value of these fields for both
        request and response messages is 0xFFF.

     Min VCI, Max VCI
        Specify a range of VCI values, Min VCI to Max VCI inclusive.  A
        single VCI may be specified with a Min VCI and a Max VCI having
        the same value.  In a request message, if the value of the Max
        VCI field is less than or equal to the value of the Min VCI
        field, the requested range is a single VCI with a value equal
        to the Min VCI field.  Zero is a valid value.  (However, VPI=0,
        VCI=0 is not available as a virtual channel connection as it is
        used as a special value in ATM to indicate an unassigned cell.)



Doria, et. al.              Standards Track                    [Page 56]

RFC 3292         General Switch Management Protocol V3         June 2002


     Remaining VPI's, Remaining VCI's
        These fields are unused in the request message.  In the success
        response message and in the failure response message these
        fields give the maximum number of remaining VPI's and VCI's
        that could be requested for allocation on the specified port
        (after completion of the requested operation in the case of the
        success response).  It gives the switch controller an idea of
        how many VPI's and VCI's it could request.  The number given is
        the maximum possible given the constraints of the switch
        hardware.  There is no implication that this number of VPI's
        and VCI's is available to every switch port.

  If the Query flag and the Label flag are set in the request message,
  the switch MUST reply with a success response message containing the
  current range of valid VPI's that are supported by the port.  The Min
  VPI and Max VPI fields are not used in the request message.

  If the Query flag is set and the Label flag is zero in the request
  message, the switch MUST reply with a success response message
  containing the current range of valid VCI's that are supported by the
  VPI specified by the Max VPI field.  If the requested VPI is invalid,
  a failure response MUST be returned indicating: "13: One or more of
  the specified Input Labels is invalid".  The Min VPI field is not
  used in either the request or success response messages.

  If the Query flag is zero and the Label flag is set in the request
  message, the Min VPI and Max VPI fields specify the new range of
  VPI's to be allocated to the input port specified by the Port field.
  The range of VPI's previously allocated to this port SHOULD be
  increased or decreased to the specified value.

  If the Query flag and the Label flag are zero in the request message,
  the Min VCI and Max VCI fields specify the range of VCI's to be
  allocated to each of the VPI's specified by the VPI range.  The range
  of VCI's previously allocated to each of the VPI's within the
  specified VPI range on this port, it SHOULD be increased or decreased
  to the specified value.  The allocated VCI range MUST be the same on
  each of the VPI's within the specified VPI range.

  If the switch is unable to satisfy a request to change the label
  range, it MUST return a failure response message with the Code field
  set to: "40: Cannot support one or more requested label ranges".  If
  the switch is unable to satisfy a request to change the VPI, the
  switch MUST use the Min VPI and Max VPI fields to suggest a VPI range
  that it would be able to satisfy and set the VCI fields to zero, or
  if the switch is unable to satisfy a request to change the VCI range





Doria, et. al.              Standards Track                    [Page 57]

RFC 3292         General Switch Management Protocol V3         June 2002


  on all VPI's within the requested VPI range, the switch MUST use the
  Min VPI, Max VPI, Min VCI, and Max VCI fields to suggest a VPI and
  VCI range that it would be able to satisfy.

  In all other failure response messages for the label range operation,
  the switch MUST return the values of Min VPI, Max VPI, Min VCI, and
  Max VCI from the request message.

  While switches can typically support all 256 or 4096 VPI's, the VCI
  range that can be supported is often more constrained.  Often the Min
  VCI MUST be 0 or 32.  Typically all VCI's within a particular VPI
  MUST be contiguous.  The hint in the failure response message allows
  the switch to suggest a label range that it could satisfy in view of
  its particular architecture.

  While the Label Range message is defined to specify both a range of
  VPI's and a range of VCI's within each VPI, the most likely use is to
  change either the VPI range or the range of VCI's within a single
  VPI.  It is possible for a VPI to be valid but to be allocated no
  valid VCI's.  Such a VPI could be used for a virtual path connection,
  but to support virtual channel connections it would need to be
  allocated a range of VCI's.

6.2.1.2  Frame Relay Labels

  If the Label Type = FR Label, the labels range message MUST be
  interpreted as Frame Relay Labels as shown:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|C|    FR Label (0x101)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x| Res |Len|                Min DLCI                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|    FR Label (0x101)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x| Res |Len|                Max DLCI                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Remaining DLCI                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     V: Label
        The Label flag is not used.

     Res
        The Res field is reserved in [21], i.e., it is not explicitly
        reserved by GSMP.



Doria, et. al.              Standards Track                    [Page 58]

RFC 3292         General Switch Management Protocol V3         June 2002


     Len
        The Len field specifies the number of bits of the DLCI.  The
        following values are supported:

        Len  DLCI bits
        0    10
        2    23

     Min DLCI, Max DLCI
        Specify a range of DLCI values, Min DLCI to Max DLCI inclusive.
        The values SHOULD be right justified in the 23-bit fields and
        the preceding bits SHOULD be set to zero.  A single DLCI may be
        specified with a Min DLCI and a Max DLCI having the same value.
        In a request message, if the value of the Max DLCI field is
        less than or equal to the value of the Min DLCI field, the
        requested range is a single DLCI with a value equal to the Min
        DLCI field.  Zero is a valid value.

     Remaining DLCI's
        This field is unused in the request message.  In the success
        response message and in the failure response message, this
        field gives the maximum number of remaining DLCI's that could
        be requested for allocation on the specified port (after
        completion of the requested operation in the case of the
        success response).  It gives the switch controller an idea of
        how many DLCI's it could request.  The number given is the
        maximum possible given the constraints of the switch hardware.
        There is no implication that this number of DLCI's is available
        to every switch port.

6.2.1.3  MPLS Generic Labels

  The Label Range Block for PortTypes using MPLS labels.  These types
  of labels are for use on links for which label values are independent
  of the underlying link technology.  Examples of such links are PPP
  and Ethernet.  On such links the labels are carried in MPLS label
  stacks [14].  If Label Type = MPLS Gen Label, the labels range
  message MUST be interpreted as MPLS Generic Label as shown:













Doria, et. al.              Standards Track                    [Page 59]

RFC 3292         General Switch Management Protocol V3         June 2002


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|C| MPLS Gen Label (0x102)|          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x|x|x|x|x|          Min MPLS Label               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x| MPLS Gen Label (0x102)|          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x|x|x|x|x|          Max MPLS Label               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Remaining Labels                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     V: Label
        The Label flag is not used.

     Min MPLS Label, Max MPLS Label
        Specify a range of MPLS label values, Min MPLS Label to Max
        MPLS Label inclusive.  The Max and Min MPLS label fields are 20
        bits each.

     Remaining MPLS Labels
        This field is unused in the request message.  In the success
        response message and in the failure response message this field
        gives the maximum number of remaining MPLS Labels that could be
        requested for allocation on the specified port (after
        completion of the requested operation in the case of the
        success response).  It gives the switch controller an idea of
        how many MPLS Labels it could request.  The number given is the
        maximum possible given the constraints of the switch hardware.
        There is no implication that this number of Labels is available
        to every switch port.

6.2.1.4  FEC Labels

  The Label Range message is not used for FEC Labels and is for further
  study.

7.  State and Statistics Messages

  The state and statistics messages permit the controller to request
  the values of various hardware counters associated with the switch
  input and output ports and connections.  They also permit the
  controller to request the connection state of a switch input port.
  The Connection Activity message is used to determine whether one or





Doria, et. al.              Standards Track                    [Page 60]

RFC 3292         General Switch Management Protocol V3         June 2002


  more specific connections have recently been carrying traffic.  The
  Statistics message is used to query the various port and connection
  traffic and error counters.

  The Report Connection State message is used to request an input port
  to report the connection state for a single connection, a single ATM
  virtual path connection, or for the entire input port.

7.1  Connection Activity Message

  The Connection Activity message is used to determine whether one or
  more specific connections have recently been carrying traffic.  The
  Connection Activity message contains one or more Activity Records.
  Each Activity Record is used to request and return activity
  information concerning a single connection.  Each connection is
  specified by its input port and Input Label which are specified in
  the Input Port and Input Label fields of each Activity Record.

  Two forms of activity detection are supported.  If the switch
  supports per connection traffic accounting, the current value of the
  traffic counter for each specified connection MUST be returned.  The
  units of traffic counted are not specified but will typically be
  either cells or frames.  The controller MUST compare the traffic
  counts returned in the message with previous values for each of the
  specified connections to determine whether each connection has been
  active in the intervening period.  If the switch does not support per
  connection traffic accounting, but is capable of detecting per
  connection activity by some other unspecified means, the result may
  be indicated for each connection using the Flags field.  The
  Connection Activity message is:

     Message Type = 48



















Doria, et. al.              Standards Track                    [Page 61]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Connection Activity request and success response messages have
  the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Number of Records       |x x x x x x x x x x x x x x x x|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Activity Records                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Number of Records
        Field specifies the number of Activity Records to follow.  The
        number of Activity records in a single Connection Activity
        message MUST NOT cause the packet length to exceed the maximum
        transmission unit defined by the encapsulation.

  Each Activity Record has the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V|C|A|x|          TC Count     |        TC Block Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                         Traffic Count                         +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Doria, et. al.              Standards Track                    [Page 62]

RFC 3292         General Switch Management Protocol V3         June 2002


     Flags

        V: Valid Record
           In the success response message the Valid Record flag is
           used to indicate an invalid Activity Record.  The flag MUST
           be zero if any of the fields in this Activity Record are
           invalid, if the input port specified by the Input Port field
           does not exist, or if the specified connection does not
           exist.  If the Valid Record flag is zero in a success
           response message, the Counter flag, the Activity flag, and
           the Traffic Count field are undefined.  If the Valid Record
           flag is set, the Activity Record is valid, and the Counter
           and Activity flags are valid.  The Valid Record flag is not
           used in the request message.

        C: Counter
           In a success response message, if the Valid Record flag is
           set, the Counter flag, if zero, indicates that the value in
           the Traffic Count field is valid.  If set, it indicates that
           the value in the Activity flag is valid.  The Counter flag
           is not used in the request message.

        A: Activity
           In a success response message, if the Valid Record and
           Counter flags are set, the Activity flag, if set, indicates
           that there has been some activity on this connection since
           the last Connection Activity message for this connection.
           If zero, it indicates that there has been no activity on
           this connection since the last Connection Activity message
           for this connection.  The Activity flag is not used in the
           request message.

     TC Count
        In cases where per connection traffic counting is supported,
        this field contains the count of Traffic Count entries.

     TC Block Length
        In cases where per connection traffic counting is supported,
        this field contains the Traffic Count block size in bytes.

     Input Port
        Identifies the port number of the input port on which the
        connection of interest originates in order to identify the
        connection (regardless of whether the traffic count for the
        connection is maintained on the input port or the output port).






Doria, et. al.              Standards Track                    [Page 63]

RFC 3292         General Switch Management Protocol V3         June 2002


     Input Label
        Fields identify the specific connection for which statistics
        are being requested.

     Traffic Count
        Field is not used in the request message.  In the success
        response message, if the switch supports per connection traffic
        counting, the Traffic Count field MUST be set to the value of a
        free running, connection specific, 64-bit traffic counter
        counting traffic flowing across the specified connection.  The
        value of the traffic counter is not modified by reading it.  If
        per connection traffic counting is supported, the switch MUST
        report the Connection Activity result using the traffic count
        rather than using the Activity flag.

  The format of the failure response is the same as the request message
  with the Number of Records field set to zero and no Connection
  Activity records returned in the message.  If the switch is incapable
  of detecting per connection activity, a failure response MUST be
  returned indicating, "3: The specified request is not implemented on
  this switch".

7.2  Statistics Messages

  The Statistics messages are used to query the various port,
  connection and error counters.

  The Statistics request messages have the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                     Label                             |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.



Doria, et. al.              Standards Track                    [Page 64]

RFC 3292         General Switch Management Protocol V3         June 2002


     Label
        The Label Fields identifies the specific connection for which
        statistics are being requested.

  The success response for the Statistics message has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |           Transaction Identifier              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                     Label                             |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                       Input Cell Count                        +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                       Input Frame Count                       +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                    Input Cell Discard Count                   +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                   Input Frame Discard Count                   +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                  Header Checksum Error Count                  +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                   Input Invalid Label Count                   +
  |                                                               |






Doria, et. al.              Standards Track                    [Page 65]

RFC 3292         General Switch Management Protocol V3         June 2002


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                       Output Cell Count                       +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                      Output Frame Count                       +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                   Output Cell Discard Count                   +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                  Output Frame Discard Count                   +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Field and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Input Cell Count, Output Cell Count
        Give the value of a free running 64-bit counter counting cells
        arriving at the input or departing from the output
        respectively.  These fields are relevant for label type = ATM,
        for all other label types these fields SHOULD be set to zero by
        the sender and ignored by the receiver.

     Input Frame Count, Output Frame Count
        Give the value of a free running 64-bit counter counting frames
        (packets) arriving at the input or departing from the output
        respectively.  These fields are relevant for label types = FR
        and MPLS, for all other label types these fields SHOULD be set
        to zero by the sender and ignored by the receiver.

     Input Cell Discard Count, Output Cell Discard Count
        Give the value of a free running 64-bit counter counting cells
        discarded due to queue overflow on an input port or on an
        output port respectively.  These fields are relevant for label
        type = ATM, for all other label types these fields SHOULD be
        set to zero by the sender and ignored by the receiver.

     Input Frame Discard Count, Output Frame Discard Count
        Give the value of a free running 64-bit counter counting frames
        discarded due to congestion on an input port or on an output
        port respectively.  These fields are relevant for label




Doria, et. al.              Standards Track                    [Page 66]

RFC 3292         General Switch Management Protocol V3         June 2002


        types = FR and MPLS, for all other label types these fields
        SHOULD be set to zero by the sender and ignored by the
        receiver.

     Header Checksum Error Count
        Gives the value of a free running 64-bit counter counting cells
        or frames discarded due to header checksum errors on arrival at
        an input port.  For an ATM switch this would be the HEC count.

     Invalid Label Count
        Gives the value of a free running 64-bit counter counting cells
        or frames discarded because their Label is invalid on arrival
        at an input port.

7.2.1  Port Statistics Message

  The Port Statistics message requests the statistics for the switch
  port specified in the Port field.  The contents of the Label field in
  the Port Statistics request message is ignored.  All of the count
  fields in the success response message refer to per-port counts
  regardless of the connection to which the cells or frames belong.
  Any of the count fields in the success response message not supported
  by the port MUST be set to zero.  The Port Statistics message is:

     Message Type = 49

7.2.2  Connection Statistics Message

  The Connection Statistics message requests the statistics for the
  connection specified in the Label field that originates on the switch
  input port specified in the Port field.  All of the count fields in
  the success response message refer only to the specified connection.
  The Header Checksum Error Count and Invalid Label Count fields are
  not connection specific and MUST be set to zero.  Any of the other
  count fields not supported on a per connection basis MUST be set to
  zero in the success response message.  The Connection Statistics
  message is:

     Message Type = 50












Doria, et. al.              Standards Track                    [Page 67]

RFC 3292         General Switch Management Protocol V3         June 2002


7.2.3  QoS Class Statistics Message

  The QoS Class Statistics message is not supported in this version of
  GSMP.

     Message Type = 51 is reserved.

7.3  Report Connection State Message

  The Report Connection State message is used to request an input port
  to report the connection state for a single connection or for the
  entire input port.  The Report Connection State message is:

     Message Type = 52

  The Report Connection State request message has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|A|V|                                                       |
  +-+-+-+-+                  Input Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Field and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Input Port
        Identifies the port number of the input port for which the
        connection state is being requested.











Doria, et. al.              Standards Track                    [Page 68]

RFC 3292         General Switch Management Protocol V3         June 2002


     Flags

        A: All Connections
           If the All Connections flag is set, the message requests the
           connection state for all connections that originate at the
           input port specified by the Input Port field.  In this case
           the Input Label field and the Label flag are unused.

        V: ATM VPI
           The ATM VPI flag may only be set for ports with
           PortType=ATM.  If the switch receives a Report Connection
           State message in which the ATM VPI flag set and in which the
           input port specified by the Input Port field does not have
           PortType=ATM, the switch MUST return a Failure response "28:
           ATM Virtual Path switching is not supported on non-ATM
           ports".

           If the All Connections flag is zero and the ATM VPI flag is
           also zero, the message requests the connection state for the
           connection that originates at the input port specified by
           the Port and Input Label fields.

        ATM specific procedures:
           If the All Connections flag is zero and the ATM VPI flag is
           set and the input port specified by the Input Port field has
           LabelType=ATM, the message requests the connection state for
           the virtual path connection that originates at the input
           port specified by the Input Port and Input VPI fields.  If
           the specified Input VPI identifies an ATM virtual path
           connection (i.e., a single switched virtual path) the state
           for that connection is requested.  If the specified Input
           VPI identifies a virtual path containing virtual channel
           connections, the message requests the connection state for
           all virtual channel connections that belong to the specified
           virtual path.

     Input Label
        Field identifies the specific connection for which the
        connection state is being requested.  For requests that do not
        require a connection to be specified, the Input Label field is
        not used.










Doria, et. al.              Standards Track                    [Page 69]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Report Connection State success response message has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Input Port                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sequence Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Connection Records                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Input Port
        Is the same as the Input Port field in the request message.  It
        identifies the port number of the input port for which the
        connection state is being reported.

     Sequence Number
        In the case that the requested connection state cannot be
        reported in a single success response message, each successive
        success response message, in reply to the same request message,
        MUST increment the Sequence Number.  The Sequence Number of the
        first success response message, in response to a new request
        message, MUST be zero.

     Connection Records
        Each success response message MUST contain one or more
        Connection Records.  Each Connection Record specifies a single
        point-to-point or point-to-multipoint connection.  The number
        of Connection Records in a single Report Connection State
        success response MUST NOT cause the packet length to exceed the
        maximum transmission unit defined by the encapsulation.  If the
        requested connection state cannot be reported in a single
        success response message, multiple success response messages
        MUST be sent.  All success response messages that are sent in



Doria, et. al.              Standards Track                    [Page 70]

RFC 3292         General Switch Management Protocol V3         June 2002


        response to the same request message MUST have the same Input
        Port and Transaction Identifier fields as the request message.
        A single Connection Record MUST NOT be split across multiple
        success response messages.  "More" in the Result field of a
        response message indicates that one or more further success
        response messages should be expected in response to the same
        request message.  "Success" in the Result field indicates that
        the response to the request has been completed.  The Result
        values are defined in chapter 3.1.1.

  Each Connection Record has the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |A|V|P|     Record Count    |           Record Length           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                    Input Label                        |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Output Branch Records                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Flags

        A: All Connections

        V: ATM VPI
           For the first Connection Record in each success response
           message, the All Connections and the ATM VPI flags MUST be
           the same as those of the request message.  For successive
           Connection Records in the same success response message,
           these flags are not used.

        P: ATM VPC
           The ATM VPC flag may only be set for ports with
           PortType=ATM.  The ATM VPC flag, if set and only if set,
           indicates that the Connection Record refers to an ATM
           virtual path connection.

     Input Label
        The input label of the connection specified in this Connection
        Record.

     Record Count
        Count of Output Branch Records included in a response message.




Doria, et. al.              Standards Track                    [Page 71]

RFC 3292         General Switch Management Protocol V3         June 2002


     Record Length
        Length in bytes of Output Branch Records field

     Output Branch Records
        Each Connection Record MUST contain one or more Output Branch
        Records.  Each Output Branch Record specifies a single output
        branch belonging to the connection identified by the Input
        Label field of the Connection Record and the Input Port field
        of the Report Connection State message.  A point-to-point
        connection will require only a single Output Branch Record.  A
        point-to-multipoint connection will require multiple Output
        Branch Records.  If a point-to-multipoint connection has more
        output branches than can fit in a single Connection Record
        contained within a single success response message, that
        connection may be reported using multiple Connection Records in
        multiple success response messages.

  Each Output Branch Record has the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Output Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                    Output Label                       |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Output Port
        The output port of the switch to which this output branch is
        routed.

     Output Label
        The output label of the output branch specified in this Output
        Branch Record.

        ATM specific procedures:
           If this Output Branch Record is part of a Connection Record
           that specifies a virtual path connection (the ATM VPC flag
           is set) the Output VCI field is unused.

  A Report Connection State request message may be issued regardless of
  the Port Status or the Line Status of the target switch port.

  If the Input Port of the request message is valid, and the All
  Connections flag is set, but there are no connections established on
  that port, a failure response message MUST be returned with the Code
  field set to, "10: General Message Failure".  For the Report
  Connection State message, this failure code indicates that no



Doria, et. al.              Standards Track                    [Page 72]

RFC 3292         General Switch Management Protocol V3         June 2002


  connections matching the request message were found.  This failure
  message SHOULD also be returned if the Input Port of the request
  message is valid, the All Connections flag is zero, and no
  connections are found on that port matching the specified connection.

8.  Configuration Messages

  The configuration messages permit the controller to discover the
  capabilities of the switch.  Three configuration request messages
  have been defined: Switch, Port, and All Ports.

8.1  Switch Configuration Message

  The Switch Configuration message requests the global (non port-
  specific) configuration for the switch.  The Switch Configuration
  message is:

     Message Type = 64

  The Port field is not used in the switch configuration message.

  The Switch Configuration message has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     MType     |     MType     |     MType     |     MType     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Firmware Version Number    |          Window Size          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Switch Type          |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                          Switch Name                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Max Reservations                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.





Doria, et. al.              Standards Track                    [Page 73]

RFC 3292         General Switch Management Protocol V3         June 2002


     MType
        Represents an alternative QoS Configuration type.  In the
        request message the requested MType is in the most significant
        (leftmost) MType byte; the other three MType bytes are unused.
        The reply message will either accept the MType request by
        including the requested MType in the leftmost MType field of
        the response message or it will reject the MType request by
        responding with MType=0, the default MType, in the first MType
        field.  Optionally, in the case of a rejection, the switch
        reply can include up to 3 additional MType values, each of
        which indicates an available alternative QoS Configuration.  A
        switch that supports only the default QoS Configuration always
        returns MType=0 in all four MType fields.  MType negotiation is
        discussed in section 8.1.1.

           0          -  Indicates use of the default GSMP model
           1-200      -  Reserved
           201-255    -  Experimental

     Firmware Version Number
        The version number of the switch control firmware installed.

     Window Size
        The maximum number of unacknowledged request messages that may
        be transmitted by the controller without the possibility of
        loss.  This field is used to prevent request messages being
        lost in the switch because of overflow in the receive buffer.
        The field is a hint to the controller.  If desired, the
        controller may experiment with higher and lower window sizes to
        determine heuristically the best window size.

     Switch Type
        A 16-bit field allocated by the manufacturer of the switch.
        (For these purposes, the manufacturer of the switch is assumed
        to be the organisation identified by the OUI in the Switch Name
        field.)  The Switch Type identifies the product.  When the
        Switch Type is combined with the OUI from the Switch Name the
        product is uniquely identified.  Network Management may use
        this identification to obtain product related information from
        a database.

     Switch Name
        A 48-bit quantity that is unique within the operational context
        of the device.  A 48-bit IEEE 802 MAC address, if available,
        may be used as the Switch Name.  The most significant 24 bits






Doria, et. al.              Standards Track                    [Page 74]

RFC 3292         General Switch Management Protocol V3         June 2002


        of the Switch Name MUST be an Organisationally Unique
        Identifier (OUI) that identifies the manufacturer of the
        switch.

     Max Reservations
        The maximum number of Reservations that the switch can support
        (see Chapter 5).  A value of 0 indicates that the switch does
        not support Reservations.

8.1.1  Configuration Message Processing

  After adjacency between a controller and after a switch is first
  established the controller that opts to use a QoS Configuration model
  other then the default would send the Switch Configuration request
  including the requested QoS Configuration's MType value in the
  request message.  This request MUST be sent before any connection
  messages are exchanged.  If the switch can support the requested QoS
  configuration, then the switch includes the requested MType value in
  the response message as an indication that it accepts the request.
  If the switch cannot support the requested QoS Configuration, it
  replaces the MType value in the request message with that of the
  default QoS Configuration, i.e., MType=0.

  The switch configuration response messages may additionally include
  the MType values of up to three alternative QoS Configurations that
  the switch supports and that the controller may choose between.

  The exchange continues until the controller sends a requested MType
  that the switch accepts or until it sends a connection request
  message.  If the exchange ends without confirmation of an alternate
  switch model, then the default Mtype=0 is be used.

  Once an MType has been established for the switch, it cannot be
  changed without full restart, that is the re-establishment of
  adjacency with the resetting of all connections.

8.2  Port Configuration Message

  The Port Configuration message requests the switch for the
  configuration information of a single switch port.  The Port field in
  the request message specifies the port for which the configuration is
  requested.  The Port Configuration message is:

     Message Type = 65.







Doria, et. al.              Standards Track                    [Page 75]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Port Configuration success response message has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Port Session Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Event Sequence Number                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Event Flags          |     Port Attribute Flags      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   PortType    |S|x|x|x|x|x|x|x|      Data Fields Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     PortType Specific Data                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x x x x|   Number of Service Specs     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                                                               |
  ~                      Service Specs List                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Port
        The switch port to which the configuration information refers.
        Configuration information relating to both the input and the
        output sides of the switch port is given.  Port numbers are 32
        bits wide and allocated by the switch.  The switch may choose
        to structure the 32 bits into subfields that have meaning to
        the physical structure of the switch hardware (e.g., physical
        slot and port).  This structure may be indicated in the
        Physical Slot Number and Physical Port Number fields.





Doria, et. al.              Standards Track                    [Page 76]

RFC 3292         General Switch Management Protocol V3         June 2002


     Event Sequence Number
        The Event Sequence Number is set to zero when the port is
        initialised.  It is incremented by one each time the port
        detects an asynchronous event that the switch would normally
        report via an Event message.  The Event Sequence Number is
        explained in section 9.

     Event Flags
        Event Flags in a switch port corresponds to a type of Event
        message.

     Port Attribute Flags
        Port Attribute Flags indicate specific behaviour of a switch
        port.  The format of the Port Attribute Flags field is given
        below:

               0                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |R|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        R: Connection Replace flag
           If set, indicates that connections being established by an
           Add Branch message with a corresponding R-bit set will
           replace any previously established connection if a clash
           between the established output branch and the requested
           output branch occurs [see chapter 4.2].

        x: Unused.

     PortType

        1: PortType is ATM
        2: PortType is FR
        3: PortType is MPLS

     S: Service Model
        If set, indicates that Service Model data follows the
        PortSpecific port configuration data.

     Data Fields Length
        The total length in bytes of the combined PortType Specific
        Data and Service Model Data fields.  The length of each of
        these fields may be derived from the other data so the value of
        Data Fields Length serves primarily as a check and to assist
        parsing of the All Ports Configuration message success
        response.



Doria, et. al.              Standards Track                    [Page 77]

RFC 3292         General Switch Management Protocol V3         June 2002


     PortType Specific Data
        This field contains the configuration data specific to the
        particular port type as specified by the PortType field.  The
        field format and length also depends on the value of the
        PortType.  PortType Specific Data is defined below.

     Number of Service Specs
        Field contains the total number of Service Specs following in
        the remainder of the Port Configuration message response or
        Port Configuration Record.

     Service Specs List
        The Service Specs correspond to the Input and Output Service
        selectors used in Connection Management and Reservation
        messages.  Specifically they define the possible values used
        when the Service Selector (IQS or OQS) is set to 0b10
        indicating the use of the default service specification model
        defined in Chapter 10.

     Service Spec
        The format of each service spec is given below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Service ID            |       Capability Set ID       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Each Service Spec identifies a Service supported by the switch
        together with the Capability Set ID that identifies the
        parameters of that instance of the Service.  The Service Spec
        List may contain more than one Service Spec sharing the same
        Service ID.  However, each Service Spec in the Service Specs
        List MUST be unique.

        Service ID
           Field contains the Service ID of a Service supported on the
           port.  Service ID values are defined as part of the Service
           definition in Chapter 9.6.

        Capability Set ID
           Field identifies a Capability Set ID of the Service
           specified by the Service ID that is supported on the port.
           Capability Set ID values are defined by the Switch in the
           Service Configuration response message (see Section 8.4).
           The switch MUST NOT return a {Service ID, Capability Set ID}
           pair that is not reported in a Service Configuration
           response message.



Doria, et. al.              Standards Track                    [Page 78]

RFC 3292         General Switch Management Protocol V3         June 2002


8.2.1  PortType Specific Data

  The length, format and semantics of the PortType Specific Data field
  in the Port Configuration message success response and in the Port
  Records of the All Port Configuration message success response all
  depend on the PortType value of the same message or record
  respectively.  The specification of the PortType Specific Data field
  is given below.  For each defined PortType value the Min and Max
  Label fields are given in the subsequent subsections.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |P|M|L|R|Q|  Label Range Count  |      Label Range Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Default Label Range Block                   ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Receive Data Rate                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Transmit Data Rate                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Port Status  |   Line Type   |  Line Status  |  Priorities   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Physical Slot Number      |     Physical Port Number      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

  Where each of the ranges in the Default Label Range Blocks will have
  the following format:

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|C|                                                       |
  +-+-+-+-+                    Min Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|                                                       |
  +-+-+-+-+                    Max Label                          |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Doria, et. al.              Standards Track                    [Page 79]

RFC 3292         General Switch Management Protocol V3         June 2002


     Flags

        P: VP Switching
           The ATM VPC flag may only be set for ports with
           PortType=ATM.  The VP Switching flag, if set, indicates that
           this input port is capable of supporting virtual path
           switching.  Else, if zero, it indicates that this input port
           is only capable of virtual channel switching.

        M: Multicast Labels
           The Multicast Labels flag, if set, indicates that this
           output port is capable of labelling each output branch of a
           point-to-multipoint tree with a different label.  If zero,
           it indicates that this output port is not able to label each
           output branch of a point-to-multipoint tree with a different
           label.

        L: Logical Multicast
           The Logical Multicast flag, if set, indicates that this
           output port is capable of supporting more than a single
           branch from any point-to-multipoint connection.  This
           capability is often referred to as logical multicast.  If
           zero, it indicates that this output port can only support a
           single output branch from each point-to-multipoint
           connection.

        R: Label Range
           The Label Range flag, if set, indicates that this switch
           port is capable of reallocating its label range and
           therefore accepts the Label Range message.  Else, if zero,
           it indicates that this port does not accept Label Range
           messages.

        Q: QoS
           The QoS flag, if set, indicates that this switch port is
           capable of handling the Quality of Service messages defined
           in section 9 of this specification.  Else, if zero, it
           indicates that this port does not accept the Quality of
           Service messages.

        V: Label
           The Label flag is port type specific.

        C: Multipoint Capable
           This flag indicates that the label range may be used for
           multipoint connections.





Doria, et. al.              Standards Track                    [Page 80]

RFC 3292         General Switch Management Protocol V3         June 2002


     Label Range Count
        The total number of Default Label Range elements contained in
        the Default Label Range Block.

     Label Range Length
        Byte count in the Default Label Range Block.

     Min Label
        The specification of the Min Label field for each defined
        PortType value is given in the subsequent subsections.  The
        default minimum value of a dynamically assigned incoming label
        that the connection table on the input port supports and that
        may be controlled by GSMP.  This value is not changed as a
        result of the Label Range message.

     Max Label
        The specification of the Max Label field for each defined
        PortType value is given in the subsequent subsections.  The
        default maximum value of a dynamically assigned incoming label
        that the connection table on the input port supports and that
        may be controlled by GSMP.  This value is not changed as a
        result of the Label Range message.

     Receive Data Rate

        The maximum rate of data that may arrive at the input port in;

        cells/s          for PortType = ATM
        bytes/s          for PortType = FR
        bytes/s          for PortType = MPLS

     Transmit Data Rate

        The maximum rate of data that may depart from the output port
        in;

        cells/s          for PortType = ATM
        bytes/s          for PortType = FR
        bytes/s          for PortType = MPLS

        (The transmit data rate of the output port may be changed by
        the Set Transmit Data Rate function of the Port Management
        message.)

     Port Status
        Gives the administrative state of the port.  The defined values
        of the Port Status field are:




Doria, et. al.              Standards Track                    [Page 81]

RFC 3292         General Switch Management Protocol V3         June 2002


        Available:
           Port Status = 1.  The port is available to both send and
           receive cells or frames.  When a port changes to the
           Available state from any other administrative state, all
           dynamically assigned connections MUST be cleared and a new
           Port Session Number MUST be generated.

        Unavailable:
           Port Status = 2.  The port has intentionally been taken out
           of service.  No cells or frames will be transmitted from
           this port.  No cells or frames will be received by this
           port.

        Internal Loopback:
           Port Status = 3.  The port has intentionally been taken out
           of service and is in internal loopback: cells or frames
           arriving at the output port from the switch fabric are
           looped through to the input port to return to the switch
           fabric.  All of the functions of the input port above the
           physical layer, e.g., header translation, are performed upon
           the looped back cells or frames.

        External Loopback:
           Port Status = 4.  The port has intentionally been taken out
           of service and is in external loopback:  cells or frames
           arriving at the input port from the external communications
           link are immediately looped back to the communications link
           at the physical layer without entering the input port.  None
           of the functions of the input port above the physical layer
           are performed upon the looped back cells or frames.

        Bothway Loopback:
           Port Status = 5.  The port has intentionally been taken out
           of service and is in both internal and external loopback.

        The Port Status of the port over which the GSMP session
        controlling the switch is running MUST be declared Available.
        The controller will ignore any other Port status for this port.
        The Port Status of switch ports after power-on initialisation
        is not defined by GSMP.

     Line Type
        The type of physical transmission interface for this port.  The
        values for this field are defined by the IANAifType's specified
        in [17].






Doria, et. al.              Standards Track                    [Page 82]

RFC 3292         General Switch Management Protocol V3         June 2002


           The following values are identified for use in this version
           of the protocol.

              PortType = Unknown: other(1)
              PortType = MPLS:    ethernetCsmacd(6),
                                  ppp(23)
              PortType = ATM:     atm(37)
              PortType = FR:      frameRelayService(44)

     Line Status
        The status of the physical transmission medium connected to the
        port.  The defined values of the Line Status field are:

           Up:
                 Line Status = 1.  The line is able to both send and
                    receive.  When the Line Status changes to Up from
                    either the Down or Test states, a new Port Session
                    Number MUST be generated.

           Down:
                 Line Status = 2.  The line is unable either to send
                    or receive or both.

           Test:
                 Line Status = 3.  The port or line is in a test
                    mode, for example, power-on test.

     Priorities
        The number of different priority levels that this output port
        can assign to connections.  Zero is invalid in this field.  If
        an output port is able to support "Q" priorities, the highest
        priority is numbered zero and the lowest priority is numbered
        "Q-1".  The ability to offer different qualities of service to
        different connections based upon their priority is assumed to
        be a property of the output port of the switch.  It may be
        assumed that for connections that share the same output port, a
        cell or frame on a connection with a higher priority is much
        more likely to exit the switch before a cell or frame on a
        connection with a lower priority if they are both in the switch
        at the same time.

     Physical Slot Number
        The physical location of the slot in which the port is located.
        It is an unsigned 16-bit integer that can take any value except
        0xFFFF.  The value 0xFFFF is used to indicate "unknown".  The
        Physical Slot Number is not used by the GSMP protocol.  It is
        provided to assist network management in functions such as
        logging, port naming, and graphical representation.



Doria, et. al.              Standards Track                    [Page 83]

RFC 3292         General Switch Management Protocol V3         June 2002


     Physical Port Number
        The physical location of the port within the slot in which the
        port is located.  It is an unsigned 16-bit integer that can
        take any value except 0xFFFF.  The value 0xFFFF is used to
        indicate "unknown".  The Physical Port Number is not used by
        the GSMP protocol.  It is provided to assist network management
        in functions such as logging, port naming, and graphical
        representation.

        There MUST be a one to one mapping between the Port Number and
        the Physical Slot Number and Physical Port Number combination.
        Two different Port Numbers MUST NOT yield the same Physical
        Slot Number and Physical Port Number combination.  The same
        Port Number MUST yield the same Physical Slot Number and
        Physical Port Number within a single GSMP session.  If both
        Physical Slot Number and Physical Port Number indicate
        "unknown" the physical location of switch ports may be
        discovered by looking up the product identity in a database to
        reveal the physical interpretation of the 32-bit Port Number.

8.2.1.1  PortType Specific data for PortType=ATM

  If PortType=ATM, the Default Label Range Block has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|V|x|   ATM Label (0x100)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x|           VPI         |              VCI              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     V: Label
        If the Label flag is set, the message refers to a range of
        VPI's only.  The Min VCI and Max VCI fields are unused.  If the
        Label flag is zero the message refers to a range of VCI's on
        either one VPI or on a range of VPI's.

     Min VPI
        The default minimum value of dynamically assigned incoming VPI
        that the connection table on the input port supports and that
        may be controlled by GSMP.

     Max VPI
        The default maximum value of dynamically assigned incoming VPI
        that the connection table on the input port supports and that
        may be controlled by GSMP.



Doria, et. al.              Standards Track                    [Page 84]

RFC 3292         General Switch Management Protocol V3         June 2002


        At power-on, after a hardware reset, and after the Reset Input
        Port function of the Port Management message, the input port
        MUST handle all values of VPI within the range Min VPI to Max
        VPI inclusive and GSMP MUST be able to control all values
        within this range.  It should be noted that the range Min VPI
        to Max VPI refers only to the incoming VPI range that can be
        supported by the associated port.  No restriction is placed on
        the values of outgoing VPI's that may be written into the cell
        header.  If the switch does not support virtual paths it is
        acceptable for both Min VPI and Max VPI to specify the same
        value, most likely zero.

        Use of the Label Range message allows the range of VPI's
        supported by the port to be changed.  However, the Min VPI and
        Max VPI fields in the Port Configuration and All Ports
        Configuration messages always report the same default values
        regardless of the operation of the Label Range message.

     Min VCI
        The default minimum value of a dynamically assigned incoming
        VCI that the connection table on the input port can support and
        may be controlled by GSMP.  This value is not changed as a
        result of the Label Range message.

     Max VCI
        The default maximum value of a dynamically assigned incoming
        VCI that the connection table on the input port can support and
        may be controlled by GSMP.

        At power-on, after a hardware reset, and after the Reset Input
        Port function of the Port Management message, the input port
        MUST handle all values of VCI within the range Min VCI to Max
        VCI inclusive, for each of the virtual paths in the range Min
        VPI to Max VPI inclusive, and GSMP MUST be able to control all
        values within this range.  It should be noted that the range
        Min VCI to Max VCI refers only to the incoming VCI range that
        can be supported by the associated port on each of the virtual
        paths in the range Min VPI to Max VPI.  No restriction is
        placed on the values of outgoing VCI's that may be written into
        the cell header.  Use of the Label Range message allows the
        range of VCI's to be changed on each VPI supported by the port.
        However, the Min VCI and Max VCI fields in the Port
        Configuration and All Ports Configuration messages always
        report the same default values regardless of the operation of
        the Label Range message.






Doria, et. al.              Standards Track                    [Page 85]

RFC 3292         General Switch Management Protocol V3         June 2002


  For a port over which the GSMP protocol is operating, the VCI of the
  GSMP control channel may or may not be reported as lying within the
  range Min VCI to Max VCI.  A switch should honour a connection
  request message that specifies the VCI value of the GSMP control
  channel even if it lies outside the range Min VCI to Max VCI

8.2.1.2  PortType Specific data for PortType=FR

  If PortType=FR, the Default Label Range Block has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|    FR Label (0x101)   |          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x|Res|Len|                   DLCI                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Res
        The Res field is reserved in [21], i.e., it is not explicitly
        reserved by GSMP.

     Len
        This field specifies the number of bits of the DLCI.  The
        following values are supported:

        Len  DLCI bits
        0    10
        2    23

     Min DLCI, Max DLCI
        Specify a range of DLCI values, Min DLCI to Max DLCI inclusive.
        The values SHOULD be right justified in the 23-bit fields and
        the preceding bits SHOULD be set to zero.  A single DLCI may be
        specified with a Min DLCI and a Max DLCI having the same value.
        In a request message, if the value of the Max DLCI field is
        less than or equal to the value of the Min DLCI field, the
        requested range is a single DLCI with a value equal to the Min
        DLCI field.  Zero is a valid value.











Doria, et. al.              Standards Track                    [Page 86]

RFC 3292         General Switch Management Protocol V3         June 2002


8.2.1.3  PortType Specific data for PortType=MPLS

  The Default Label Range Block for PortTypes using MPLS labels.  These
  types of labels are for use on links for which label values are
  independent of the underlying link technology.  Examples of such
  links are PPP and Ethernet.  On such links the labels are carried in
  MPLS label stacks [14].  Ports of the Type MPLS have the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x| MPLS Gen Label (0x102)|          Label Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|x|x|x|x|x|x|x|x|x|x|x|              MPLS Label               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Min MPLS Label, Max MPLS Label
        Specify a range of MPLS label values, Min MPLS Label to Max
        MPLS Label inclusive.  The Max and Min MPLS label fields are 20
        bits each.

8.2.1.4  PortType Specific data for PortType=FEC

  The Default Label Range Block for PortTypes using FEC labels is not
  used.  The Label Range Count and Label Range Length fields defined in
  [8.2.1] should be set to 0.

8.3  All Ports Configuration Message

  The All Ports Configuration message requests the switch for the
  configuration information of all of its ports.  The All Ports
  Configuration message is:

     Message Type = 66

  The Port field is not used in the request message.














Doria, et. al.              Standards Track                    [Page 87]

RFC 3292         General Switch Management Protocol V3         June 2002


  The All Ports Configuration success response message has the
  following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x x x x|       Number of Records       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Port Records                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Number of Records
        Field gives the total number of Port Records to be returned in
        response to the All Ports Configuration request message.  The
        number of port records in a single All Ports Configuration
        success response MUST NOT cause the packet length to exceed the
        maximum transmission unit defined by the encapsulation.  If a
        switch has more ports than can be sent in a single success
        response message it MUST send multiple success response
        messages.  All success response messages that are sent in
        response to the same request message MUST have the same
        Transaction Identifier as the request message and the same
        value in the Number of Records field.  All success response
        messages that are sent in response to the same request message,
        except for the last message, MUST have the result field set to
        "More".  The last message, or a single success response
        message, MUST have the result field set to "Success".  All Port
        records within a success response message MUST be complete,
        i.e., a single Port record MUST NOT be split across multiple
        success response messages.









Doria, et. al.              Standards Track                    [Page 88]

RFC 3292         General Switch Management Protocol V3         June 2002


     Port Records
        Follow in the remainder of the message.  Each port record has
        the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Port Session Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Event Sequence Number                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Event Flags          |     Port Attribute Flags      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   PortType    |S|x|x|x|x|x|x|x|      Data Fields Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     PortType Specific Data                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x x x x|    Number of Service Specs    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      Service Specs List                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The definition of the fields in the Port Record is exactly the same
  as that of the Port Configuration message [section 8.2].

8.4  Service Configuration Message

  The Service Configuration message requests the switch for the
  configuration information of the Services that are supported.  The
  Service Configuration message is:

     Message Type = 67













Doria, et. al.              Standards Track                    [Page 89]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Service Configuration success response message has the following
  format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x x x x|   Number of Service Records   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Service Records                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Number of Service Records
        Field gives the total number of Service Records to be returned
        in the Service Records field.

     Service Records
        A sequence of zero or more Service Records.  The switch returns
        one Service Record for each Service that it supports on any of
        its ports.  A Service record contains the configuration data of
        the specified Service.  Each Service Record has the following
        format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Service ID           |  Number of Cap. Set. Records  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     Capability Set Records                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Service ID
        The Service ID Field identifies the Service supported by the
        port.  The Services are defined with their Service ID values as
        described in section 10.2.



Doria, et. al.              Standards Track                    [Page 90]

RFC 3292         General Switch Management Protocol V3         June 2002


     Number of Cap. Set. Records
        Field gives the total number of Capability Set Records to be
        returned in the Service Record field.

     Capability Set Records
        The switch returns one or more Capability Set Records in each
        Service Record.  A Capability Set contains a set of parameters
        that describe the QoS parameter values and traffic controls
        that apply to an instance of the Service.  Each Capability Set
        record has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Cap. Set ID          |       Traffic Controls        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     CLR       |                     CTD                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Frequency   |                     CDV                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Capability Set ID
        The value in this Field defines a Capability Set ID supported
        by the switch.  The values of a Capability Set ID are assigned
        by the switch and used in Port Configuration messages to
        identify Capability Sets supported by individual ports.  Each
        Capability Set Record within a Service Record MUST have a
        unique Capability Set ID.

     Traffic Controls
        Field identifies the availability of Traffic Controls within
        the Capability Set.  Traffic Controls are defined as part of
        the respective Service definition, see Chapter 10.  Some or all
        of the Traffic Controls may be undefined for a given Service,
        in which case the corresponding Flag is ignored by the
        controller.  The Traffic Controls field is formatted into
        Traffic Control Sub-fields as follows:

            0                   1
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           | U | D | I | E | S | V |x x x x|
           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Traffic Control Sub-fields have the following encoding:

           0b00 Indicates that the Traffic Control is not available in
                the Capability Set.



Doria, et. al.              Standards Track                    [Page 91]

RFC 3292         General Switch Management Protocol V3         June 2002


           0b01 Indicates that the Traffic Control is applied to all
                connections that use the Capability Set.

           0b10 Indicates that the Traffic Control is available for
                application to connections that use the Capability Set
                on a per connection basis.

           0b11 Reserved

        Traffic Control Sub-fields:

           U: Usage Parameter Control
                The Usage Parameter Control sub-field indicates the
                availability of Usage Parameter Control for the
                specified Service and Capability Set.

           D: Packet Discard
                The Packet Discard sub-field indicates the availability
                of Packet Discard for the specified Service and
                Capability Set.

           I: Ingress Shaping
                The Ingress Shaping sub-field indicates the
                availability of Ingress Traffic Shaping to the Peak
                Cell Rate and Cell Delay Variation Tolerance for the
                specified Service and Capability Set.

           E: Egress Shaping, Peak Rate
                The Egress Shaping, Peak Rate sub-field indicates the
                availability of Egress Shaping to the Peak Cell Rate
                and Cell Delay Variation Tolerance for the specified
                Service and Capability Set.

           S: Egress Traffic Shaping, Sustainable Rate
                The Egress Shaping, Sustainable Rate sub-field, if set,
                indicates that Egress Traffic Shaping to the
                Sustainable Cell Rate and Maximum Burst Size is
                available for the specified Service and Capability Set.

           V: VC Merge
                The VC Merge sub-field indicates the availability of
                ATM Virtual Channel Merge (i.e., multipoint to point
                ATM switching with a traffic control to avoid AAL5 PDU
                interleaving) capability for the specified Service and
                Capability Set.






Doria, et. al.              Standards Track                    [Page 92]

RFC 3292         General Switch Management Protocol V3         June 2002


     QoS Parameters
        The remaining four fields in the Capability Set Record contain
        the values of QoS Parameters.  QoS Parameters are defined as
        part of the respective Service definition, see Chapter 9.6.
        Some or all of the QoS Parameters may be undefined for a given
        Service, in which case the corresponding field is ignored by
        the controller.

           CLR: Cell Loss Ratio
                The Cell Loss Ratio parameter indicates the CLR
                guaranteed by the switch for the specified Service.  A
                cell loss ratio is expressed as an order of magnitude
                n, where the CLR takes the value of ten raised to the
                power of -n, i.e., log(CLR)=-n.  The value n is coded
                as a binary integer, having a range of 1 <= n <= 15.
                In addition, the value 0b1111 1111 indicates that no
                CLR guarantees are given.

           Frequency
                The frequency field is coded as an 8 bit unsigned
                integer.  Frequency applies to the MPLS CR-LDP Service
                (see Section 10.4.3).  Valid values of Frequency are:

                0 - Very frequent
                1 - Frequent
                2 - Unspecified

           CTD: Cell Transfer Delay
                The CTD value is expressed in units of microseconds.
                It is coded as a 24-bit integer.

           CDV: Peak-to-peak Cell Delay Variation
                The CDV value is expressed in units of microseconds.
                It is coded as a 24-bit integer.

9.  Event Messages

  Event messages allow the switch to inform the controller of certain
  asynchronous events.  By default the controller does not acknowledge
  event messages unless ReturnReceipt is set in the Result field.  The
  Code field is only used in case of Adjacency Update message,
  otherwise it is not used and SHOULD be set to zero.  Event messages
  are not sent during initialisation.  Event messages have the
  following format:







Doria, et. al.              Standards Track                    [Page 93]

RFC 3292         General Switch Management Protocol V3         June 2002


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |    Result     |     Code      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |            Transaction Identifier             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |I|      SubMessage Number      |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Port                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Port Session Number                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Event Sequence Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x|S|x|x|                                                       |
  +-+-+-+-+                     Label                             |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: Fields and Parameters that have been explained in the
        description of the general messages will not be explained in
        this section.  Please refer to section 3.1 for details.

     Event Sequence Number
        The current value of the Event Sequence Number for the
        specified port.  The Event Sequence Number is set to zero when
        the port is initialised.  It is incremented by one each time
        the port detects an asynchronous event that the switch would
        normally report via an Event message.  The Event Sequence
        Number MUST be incremented each time an event occurs even if
        the switch is prevented from sending an Event message due to
        the action of the flow control.

     Label
        Field gives the Label to which the event message refers.  If
        this field is not required by the event message it is set to
        zero.

  Each switch port MUST maintain an Event Sequence Number and a set of
  Event Flags, one Event Flag for each type of Event message.  When a
  switch sends an Event message it MUST set the Event Flag for that
  port corresponding to the Event type.  If Flow Control is activated
  for this Event type for this Port then the switch MUST NOT send
  another Event message of the same type for that port until the Event
  Flag has been reset.  Event Flags are reset by the "Reset Event
  Flags" function of the Port Management message.  This is a simple
  flow control preventing the switch from flooding the controller with



Doria, et. al.              Standards Track                    [Page 94]

RFC 3292         General Switch Management Protocol V3         June 2002


  event messages.  The Event Sequence Number of the port MUST be
  incremented every time an event is detected on that port even if the
  port is prevented from reporting the event due to the action of the
  flow control.  This allows the controller to detect that it has not
  been informed of some events that have occurred on the port due to
  the action of the flow control.

9.1  Port Up Message

  The Port Up message informs the controller that the Line Status of a
  port has changed from, either the Down or Test state to the Up state.
  When the Line Status of a switch port changes to the Up state from
  either the Down or Test state a new Port Session Number MUST be
  generated, preferably using some form of random number.  The new Port
  Session Number is given in the Port Session Number field.  The Label
  field is not used and is set to zero.  The Port Up message is:

     Message Type = 80

9.2  Port Down Message

  The Port Down message informs the controller that the Line Status of
  a port has changed from the Up state or Test state to the Down state.
  This message will be sent to report link failure if the switch is
  capable of detecting link failure.  The port session number that was
  valid before the port went down is reported in the Port Session
  Number field.  The Label field is not used and is set to zero.  The
  Port Down message is:

     Message Type = 81

9.3  Invalid Label Message

  The Invalid Label message is sent to inform the controller that one
  or more cells or frames have arrived at an input port with a Label
  that is currently not allocated to an assigned connection.  The input
  port is indicated in the Port field, and the Label in the Label
  field.  The Invalid Label message is:

     Message Type = 82











Doria, et. al.              Standards Track                    [Page 95]

RFC 3292         General Switch Management Protocol V3         June 2002


9.4  New Port Message

  The New Port message informs the controller that a new port has been
  added to the switch.  The port number of the new port is given in the
  Port field.  A new Port Session Number MUST be assigned, preferably
  using some form of random number.  The new Port Session Number is
  given in the Port Session Number field.  The state of the new port is
  undefined so the Label field is not used and is set to zero.  The New
  Port message is:

     Message Type = 83

9.5  Dead Port Message

  The Dead Port message informs the controller that a port has been
  removed from the switch.  The port number of the port is given in the
  Port field.  The Port Session Number that was valid before the port
  was removed is reported in the Port Session Number field.  The Label
  fields are not used and are set to zero.  The Dead Port message is:

     Message Type = 84

9.6  Adjacency Update Message

  The Adjacency Update message informs the controller when adjacencies,
  i.e., other controllers controlling a specific partition, are joining
  or leaving.  When a new adjacency has been established, the switch
  sends an Adjacency Update message to every controller with an
  established adjacency to that partition.  The Adjacency Update
  message is also sent when adjacency is lost between the partition and
  a controller, provided that there are any remaining adjacencies with
  that partition.  The Code field is used to indicate the number of
  adjacencies known by the switch partition.  The Label field is not
  used and SHOULD be set to zero.  The Adjacency Update message is:

     Message Type = 85

10.  Service Model Definition

10.1  Overview

  In the GSMP Service Model a controller may request the switch to
  establish a connection with a given Service.  The requested Service
  is identified by including a Service ID in the Add Branch message or
  the Reservation Message.  The Service ID refers to a Service
  Definition provided in this chapter of the GSMP specification.





Doria, et. al.              Standards Track                    [Page 96]

RFC 3292         General Switch Management Protocol V3         June 2002


  A switch that implements one or more of the Services, as defined
  below, advertises the availability of these Services in the Service
  Configuration message response (see Section 8.4).  Details of the
  switch's implementation of a given Service that are important to the
  controller (e.g., the value of delay or loss bounds or the
  availability of traffic controls such as policers or shapers) are
  reported in the form of a Capability Set in the Service Configuration
  message response.

  Thus a switch's implementation of a Service is defined in two parts:
  the Service Definition, which is part of the GSMP specification, and
  the Capability Set, which describes attributes of the Service
  specific to the switch.  A switch may support more than one
  Capability Set for a given Service.  For example if a switch supports
  one Service with two different values of a delay bound it could do
  this by reporting two Capability Sets for that Service.

  The Service Definition is identified in GSMP messages by the Service
  ID, a sixteen-bit identifier.  Assigned numbers for the Service ID
  are given with the Service Definitions in Section 10.4.  The
  Capability Set is identified in GSMP messages by the Capability Set
  ID, a sixteen-bit identifier.  Numbers for the Capability Set ID are
  assigned by the switch and are advertised in the Service
  Configuration message response.

  The switch reports all its supported Services and Capability Sets in
  the Service Configuration message response.  The subset of Services
  and Capability Sets supported on an individual port is reported in
  the Port Configuration message response or in the All Ports
  Configuration message response.  In these messages the Services and
  Capability Sets supported on the specified port are indicated by a
  list of {Service ID, Capability Set ID} number pairs.

10.2  Service Model Definitions

  Terms and objects defined for the GSMP Service Model are given in
  this section.

10.2.1  Original Specifications

  Services in GSMP are defined largely with reference to Original
  Specifications, i.e., the standards or implementation agreements
  published by organisations such as ITU-T, IETF, and ATM Forum that
  originally defined the Service.  This version of GSMP refers to 4
  original specifications: [8], [9], [10] and [11].






Doria, et. al.              Standards Track                    [Page 97]

RFC 3292         General Switch Management Protocol V3         June 2002


10.2.2  Service Definitions

  Each Service Definition in GSMP includes definition of:

     Traffic Parameters
        Traffic Parameter definitions are associated with Services
        while Traffic Parameter values are associated with connections.

        Traffic Parameters quantitatively describe a connection's
        requirements on the Service.  For example, Peak Cell Rate is a
        Traffic Parameter of the Service defined by the ATM Forum
        Constant Bit Rate Service Category.

        Some Traffic Parameters are mandatory and some are optional,
        depending on the Service.

        Semantics of Traffic Parameters are defined by reference to
        Original Specifications.

     QoS Parameters
        QoS Parameters and their values are associated with Services.

        QoS Parameters express quantitative characteristics of a
        switch's support of a Service.  They include, for example,
        quantitative bounds on switch induced loss and delay.

        Some QoS Parameters will be mandatory and some will be
        optional.

        Semantics of QoS Parameters are defined by reference to
        Original Specifications.

     Traffic Controls
        The implementation of some Services may include the use of
        Traffic Controls.  Traffic Controls include, for example
        functions such as policing, input shaping, output shaping,
        tagging and marking, frame vs. cell merge, frame vs. cell
        discard.

        Switches are not required to support Traffic Controls.  Any
        function that is always required in the implementation of a
        Service is considered part of the Service and is not considered
        a Traffic Control.

        If a switch supports a Traffic Control then the control may be
        applied either to all connections that use a given Capability
        Set (see below) or to individual connections.




Doria, et. al.              Standards Track                    [Page 98]

RFC 3292         General Switch Management Protocol V3         June 2002


        The definition of a Traffic Control is associated with a
        Service.  Traffic Controls are defined, as far as possible, by
        reference to Original Specifications.

10.2.3  Capability Sets

  For each Service that a switch supports the switch MUST also support
  at least one Capability Set.  A Capability Set establishes
  characteristics of a switch's implementation of a Service.  It may be
  appropriate for a switch to support more than one Capability Set for
  a given Service.

  A Capability Set may contain, depending on the Service definition,
  QoS Parameter values and an indication of availability of Traffic
  Controls.

  If a switch reports QoS Parameter values in a Capability Set then
  these apply to all the connections that use that Capability Set.

  For each Traffic Control defined for a given Service the switch
  reports availability of that control as one of the following:

     Not available in the Capability Set,

     Applied to all connections that use the Capability Set, or

     Available for application to connections that use the Capability
     Set on a per connection basis.  In this case, a controller may
     request application of the Traffic Control in connection
     management messages.

10.3  Service Model Procedures

  A switch's Services and Capability Sets are reported to a controller
  in a Service Configuration message.  A Service Configuration message
  response includes the list of Services defined for GSMP that the
  switch supports and, for each Service, a specification of the
  Capability Sets supported for the Service.  Services are referred to
  by numbers standardised in the GSMP specification.  Capability Sets
  are referred to by a numbering system reported by the switch.  Each
  Capability Set within a given Service includes a unique identifying
  number together with the switch's specification of QoS Parameters and
  Traffic Controls.

  A switch need not support all the defined Services and Capability
  Sets on every port.  The supported Services and Capability Sets are
  reported to the controller on a per port basis in port configuration
  messages.  Port configuration response messages list the supported



Doria, et. al.              Standards Track                    [Page 99]

RFC 3292         General Switch Management Protocol V3         June 2002


  Services using the standardised identifying numbers and the
  Capability Sets by using the identifying numbers established in the
  switch Service configuration messages.

  GSMP does not provide a negotiation mechanism by which a controller
  may establish or modify Capability Sets.

  When a controller establishes a connection, the connection management
  message includes indication of the Service and the Capability Set.
  Depending on these the connection management message may additionally
  include Traffic Parameter values and Traffic Control flags.

  A connection with a given Service can only be established if both the
  requested Service and the requested Capability Set are available on
  all of the connection's input and output ports.

  Refresh of an extant connection is permitted but the add branch
  message requesting the message MUST NOT include indication of
  Service, Capability Sets or Traffic Parameters.

  An extant connection's Traffic Parameters may be changed without
  first deleting the connection.  The Service and Capability Sets of an
  extant connection cannot be changed.

  Move branch messages may be refused on the grounds of resource
  depletion.

10.4  Service Definitions

  This section sets forth the definition of Services.  The following
  Service Identifiers are defined:

        ID          Service Type

        1           CBR= 1
        2           rt-VBR.1
        3           rt-VBR.2
        4           rt-VBR.3
        5           nrt-VBR.1
        6           nrt-VBR.2
        7           nrt-VBR.3
        8           UBR.1
        9           UBR.2
        10-11       Reserved
        12          GFR.1
        13          GFR.2
        14-19       Reserved
        20          Int-Serv Controlled Load



Doria, et. al.              Standards Track                   [Page 100]

RFC 3292         General Switch Management Protocol V3         June 2002


        21-24       Reserved
        25          MPLS CR-LDP QoS
        26-29       Reserved
        30          Frame Relay Service
        31-49       Reserved
        50-69       Reserved GMPLS
        70-65535    Reserved

  Each Service will be defined in its own subsection.  Each Service
  definition includes the following definitions:

     Service Identifier
        The reference number used to identify the Service in GSMP
        messages.

     Service Characteristics
        A definition of the Service.

     Traffic Parameters
        A definition of the Traffic Parameters used in connection
        management messages.

     QoS Parameters
        A definition of the QoS Parameters that are included in the
        Capability Set for instances of the Service.

     Traffic Controls
        A definition of the Traffic Controls that may be supported by
        an instance of the Service.

  Descriptive text is avoided wherever possible in order to minimise
  any possibility of semantic conflict with the Original
  Specifications.

10.4.1  ATM Forum Service Categories

10.4.1.1  CBR

  Service Identifier:
     CBR.1 - Service ID = 1

  Service Characteristics:
     Equivalent to ATM Forum CBR.1 Service, see [8].

  Traffic Parameters:
     -  Peak Cell Rate
     -  Cell Delay Variation Tolerance




Doria, et. al.              Standards Track                   [Page 101]

RFC 3292         General Switch Management Protocol V3         June 2002


  QoS Parameters:
     -  Cell Loss Ratio
     -  Maximum Cell Transfer Delay
     -  Peak-to-peak Cell Delay Variation

  Traffic Controls:
     -  (U) Usage Parameter Control
     -  (I) Ingress Traffic Shaping to the Peak Cell Rate
     -  (E) Egress Traffic Shaping to the Peak Cell Rate and Cell Delay
            Variation Tolerance
     -  (D) Packet Discard

10.4.1.2  rt-VBR

  Service Identifier:
     rt-VBR.1 - Service ID = 2
     rt-VBR.2 - Service ID = 3
     rt-VBR.3 - Service ID = 4

  Service Characteristics:
     Equivalent to ATM Forum rt-VBR Service, see [8].

  Traffic Parameters:
     -  Peak Cell Rate
     -  Cell Delay Variation Tolerance
     -  Sustainable Cell Rate
     -  Maximum Burst Size

  QoS Parameters:
     -  Cell Loss Ratio
     -  Maximum Cell Transfer Delay
     -  Peak-to-peak Cell Delay Variation

  Traffic Controls:
     -  (U) Usage Parameter Control
     -  (I) Ingress Traffic Shaping to the Peak Cell Rate
     -  (E) Egress Traffic Shaping to the Peak Cell Rate and Cell Delay
            Variation Tolerance
     -  (S) Egress Traffic Shaping to the Sustainable Cell Rate and
            Maximum Burst Size
     -  (P) Packet Discard
     -  (V) VC Merge









Doria, et. al.              Standards Track                   [Page 102]

RFC 3292         General Switch Management Protocol V3         June 2002


10.4.1.3  nrt-VBR

  Service Identifier:
     nrt-VBR.1 - Service ID = 5
     nrt-VBR.2 - Service ID = 6
     nrt-VBR.3 - Service ID = 7

  Service Characteristics:
     Equivalent to ATM Forum nrt-VBR Service, see [8].

  Traffic Parameters:
     -  Peak Cell Rate
     -  Cell Delay Variation Tolerance
     -  Sustainable Cell Rate
     -  Maximum Burst Size

  QoS Parameter:
     -  Cell Loss Ratio

  Traffic Controls:
     -  (U) Usage Parameter Control
     -  (I) Ingress Traffic Shaping to the Peak Cell Rate
     -  (E) Egress Traffic Shaping to the Peak Cell Rate and Cell Delay
            Variation Tolerance
     -  (S) Egress Traffic Shaping to the Sustainable Cell Rate and
            Maximum Burst Size
     -  (P) Packet Discard
     -  (V) VC Merge

10.4.1.4  UBR

  Service Identifier:
     UBR.1 - Service ID = 8
     UBR.2 - Service ID = 9

  Service Characteristics:
     Equivalent to ATM Forum UBR Service, see [8].

  Traffic Parameters:
     -  Peak Cell Rate
     -  Cell Delay Variation Tolerance

  QoS Parameter:
     None

  Traffic Controls:
     -  (U) Usage Parameter Control
     -  (I) Ingress Traffic Shaping to the Peak Cell Rate



Doria, et. al.              Standards Track                   [Page 103]

RFC 3292         General Switch Management Protocol V3         June 2002


     -  (E) Egress Traffic Shaping to the Peak Cell Rate and Cell Delay
            Variation Tolerance
     -  (P) Packet Discard
     -  (V) VC Merge

10.4.1.5  ABR

  ABR is not supported in this version of GSMP.

10.4.1.6  GFR

  Service Identifier:
     GFR.1 - Service ID = 12
     GFR.2 - Service ID = 13

  Service Characteristics:
     Equivalent to ATM Forum GFR Service, see [8].

  Traffic Parameters:
     -  Peak Cell Rate
     -  Cell Delay Variation Tolerance
     -  Minimum Cell Rate
     -  Maximum Burst Size
     -  Maximum Frame Size

  QoS Parameter:
     -  Cell Loss Ratio

  Traffic Controls:
     -  (U) Usage Parameter Control
     -  (I) Ingress Traffic Shaping to the Peak Cell Rate
     -  (E) Egress Traffic Shaping to the Peak Cell Rate and Cell Delay
            Variation Tolerance
     -  (V) VC Merge

10.4.2  Integrated Services

10.4.2.1  Controlled Load

  Service Identifier:
     Int-Serv Controlled Load - Service ID = 20

  Service Characteristics:
     See [9].







Doria, et. al.              Standards Track                   [Page 104]

RFC 3292         General Switch Management Protocol V3         June 2002


  Traffic Parameters:
     -  Token bucket rate (r)
     -  Token bucket depth (b)
     -  Peak rate (p)
     -  Minimum policed unit (m)
     -  Maximum packet size (M)

  QoS Parameter:
     None.

  Traffic Controls:
     None.

10.4.3  MPLS CR-LDP

  Service Identifier:
     MPLS CR-LDP QoS - Service ID = 25

  Service Characteristics:
     See [10].

  Traffic Parameters:
     -  Peak Data Rate
     -  Peak Burst Size
     -  Committed Data Rate
     -  Committed Burst Size
     -  Excess Burst Size
     -  Weight

  QoS Parameter:
     -  Frequency

  Traffic Controls:
     None currently defined.

10.4.4  Frame Relay

  Service Identifier:
     Frame Relay Service - Service ID = 30

  Service Characteristics:
     Equivalent to Frame Relay Bearer Service, see [11].

  Traffic Parameters:
     -  Committed Information Rate
     -  Committed Burst Rate
     -  Excess Burst Rate




Doria, et. al.              Standards Track                   [Page 105]

RFC 3292         General Switch Management Protocol V3         June 2002


  QoS Parameters:
     None.

  Traffic Controls:
     -  Usage Parameter Control
     -  Egress Traffic Shaping to the Committed Information Rate and
        Committed Burst Size

10.4.5  DiffServ

  DiffServ is not supported in this version of GSMP.

10.5  Format and encoding of the Traffic Parameters

  Connection management messages that use the GSMP Service Model (i.e.,
  those that have IQS or OQS set to 0b10) include the Traffic
  Parameters Block that specifies the Traffic Parameter values of a
  connection.  The required Traffic Parameters of a given Service are
  given in Section 10.4.  The format and encoding of these parameters
  are given below.

10.5.1  Traffic Parameters for ATM Forum Services

  The Traffic Parameters:

     -  Peak Cell Rate

     -  Cell Delay Variation Tolerance

     -  Sustainable Cell Rate

     -  Maximum Burst Size

     -  Minimum Cell Rate

     -  Maximum Frame Size

  are defined in [8].  These Parameters are encoded as 24-bit unsigned
  integers.  Peak Cell Rate, Sustainable Cell Rate, and Minimum Cell
  Rate are in units of cells per second.  Cell Delay Variation
  Tolerance is in units of microseconds.  Maximum Burst Size and
  Maximum Frame Size are in units of cells.  In GSMP messages, the
  individual Traffic Parameters are encoded as follows:








Doria, et. al.              Standards Track                   [Page 106]

RFC 3292         General Switch Management Protocol V3         June 2002


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x|           24 bit unsigned integer             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The format of the Traffic Parameters Block in connection management
  messages depends on the Service.  It is a sequence of the 32 bit
  words (as shown above) corresponding to the Traffic Parameters as
  specified in the Service Definitions given in Section 10.4.1 in the
  order given there.

10.5.2  Traffic Parameters for Int-Serv Controlled Load Service

  The Traffic Parameters:

     -  Token bucket rate (r)

     -  Token bucket size (b)

     -  Peak rate (p)

  are defined in [9].  They are encoded as 32-bit IEEE single-precision
  floating point numbers.  The Traffic Parameters Token bucket rate (r)
  and Peak rate (p) are in units of bytes per seconds.  The Traffic
  Parameter Token bucket size (b) is in units of bytes.

  The Traffic Parameters:

     -  Minimum policed unit (m)

     -  Maximum packet size (M)

  are defined in [9].  They are encoded as 32 integer in units of
  bytes.
















Doria, et. al.              Standards Track                   [Page 107]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Traffic Parameters Block for the Int-Serv Controlled Load Service
  is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Token bucket rate (r)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Token bucket size (b)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Peak rate (p)                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Minimum policed unit (m)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Maximum packet size (M)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

10.5.3  Traffic Parameters for CRLDP Service

  The Traffic Parameters:

     -  Peak Data Rate

     -  Peak Burst Size

     -  Committed Data Rate

     -  Committed Burst Size

     -  Excess Burst Size

  are defined in [10] to be encoded as a 32-bit IEEE single-precision
  floating point number.  A value of positive infinity is represented
  as an IEEE single-precision floating-point number with an exponent of
  all ones (255) and a sign and mantissa of all zeros.  The values Peak
  Data Rate and Committed Data Rate are in units of bytes per second.
  The values Peak Burst Size, Committed Burst Size and Excess Burst
  Size are in units of bytes.

  The Traffic Parameter

     -  Weight

  is defined in [10] to be an 8-bit unsigned integer indicating the
  weight of the CRLSP.  Valid weight values are from 1 to 255.  The
  value 0 means that weight is not applicable for the CRLSP.





Doria, et. al.              Standards Track                   [Page 108]

RFC 3292         General Switch Management Protocol V3         June 2002


  The Traffic Parameters Block for the CRLDP Service is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Peak Data Rate                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Peak Burst Size                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Committed Data Rate                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Committed Burst Size                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Excess Burst Size                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x x x x x x x x x x x x|    Weight     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

10.5.4  Traffic Parameters for Frame Relay Service

  The Traffic Parameters:

     -  Committed Information Rate

     -  Committed Burst Size

     -  Excess Burst Size

  are defined in [11].  Format and encoding of these parameters for
  frame relay signalling messages are defined in [12].  (Note than in
  [12] the Committed Information Rate is called "Throughput".)  GSMP
  uses the encoding defined in [12] but uses a different format.

  The format of the Traffic Parameters Block for Frame Relay Service is
  as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x| Mag |x x x x x|   CIR Multiplier    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x| Mag |x x|     CBS Multiplier        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |x x x x x x x x x x x x x| Mag |x x|     EBS Multiplier        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Doria, et. al.              Standards Track                   [Page 109]

RFC 3292         General Switch Management Protocol V3         June 2002


     Mag
        This field is an unsigned integer in the range from 0 to 6.
        The value 7 is not allowed.  Mag is the decimal exponent for
        the adjacent multiplier field (which itself functions as a
        mantissa).

     CIR Multiplier
        This field is an unsigned integer.  It functions as the
        mantissa of the Committed Information Rate Traffic Parameter.

     CBS Multiplier
     EBS Multiplier
        These fields are unsigned integers.  They function as the
        mantissas of the Committed Burst Size and Excess Burst Size
        Traffic Parameters respectively.

  The Traffic Parameter Values are related to their encoding in GSMP
  messages as follows:

     Committed Information Rate = 10^(Mag) * (CIR Multiplier)

     Committed Burst Size = 10^(Mag) * (CBS Multiplier)

     Excess Burst Size = 10^(Mag) * (EBS Multiplier)

10.6  Traffic Controls (TC) Flags

  The TC Flags field in Add Branch messages for connections using the
  Service Model are set by the controller to indicate that specific
  traffic controls are requested for the requested connection.  The TC
  Flags field is shown below:

            0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+
           |U|D|I|E|S|V|P|x|
           +-+-+-+-+-+-+-+-+

     U: Usage Parameter Control
           When set, this flag indicates that Usage Parameter Control
           is requested.

     D: Packet Discard
           When set, this flag indicates that Packet Discard is
           requested.







Doria, et. al.              Standards Track                   [Page 110]

RFC 3292         General Switch Management Protocol V3         June 2002


     I: Ingress Shaping
           When set, this flag indicates the availability of Ingress
           Traffic Shaping to the Peak Rate and Delay Variation
           Tolerance is requested.

     E: Egress Shaping, Peak Rate
           When set, this flag indicates that Egress Shaping to the
           Peak Rate and Delay Variation Tolerance is requested.

     S: Egress Traffic Shaping, Sustainable Rate
           When set, this flag indicates that Egress Traffic Shaping to
           the Sustainable Rate and Maximum Burst Size is requested.

     V: VC Merge
           When set, this flag indicates that ATM Virtual Channel Merge
           (i.e., multipoint to point ATM switching with a traffic
           control to avoid AAL5 PDU interleaving) is requested.

     P: Port
           When set indicates that traffic block pertains to Ingress
           Port.

     x: Reserved

  The controller may set (to one) the flag corresponding to the
  requested Traffic Control if the corresponding Traffic Control has
  been indicated in the Service Configuration response message (Section
  8.4) as available for application to connections that use the
  requested Capability Set on a per connection basis.  (The requested
  Capability Set is indicated by the Capability Set ID the least
  significant byte of the Service Selector field of the Add Branch
  message.)  If the Traffic Control has been indicated in the Service
  Configuration response message as either not available in the
  Capability Set or applied to all connections that use the Capability
  Set then the controller sets the flag to zero and the switch ignores
  the flag.

11.  Adjacency Protocol

  The adjacency protocol is used to synchronise state across the link,
  to agree on which version of the protocol to use, to discover the
  identity of the entity at the other end of a link, and to detect when
  it changes.  GSMP is a hard state protocol.  It is therefore
  important to detect loss of contact between switch and controller,
  and to detect any change of identity of switch or controller.  No
  GSMP messages other than those of the adjacency protocol may be sent
  across the link until the adjacency protocol has achieved
  synchronisation.



Doria, et. al.              Standards Track                   [Page 111]

RFC 3292         General Switch Management Protocol V3         June 2002


11.1  Packet Format

  All GSMP messages belonging to the adjacency protocol have the
  following structure:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Version    | Message Type  |     Timer     |M|     Code    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Sender Name                          |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
  |                         Receiver Name                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Sender Port                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Receiver Port                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | PType | PFlag |               Sender Instance                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Partition ID  |              Receiver Instance                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version
        In the adjacency protocol the Version field is used for version
        negotiation.  The version negotiation is performed before
        synchronisation is achieved.  In a SYN message the Version
        field always contains the highest version understood by the
        sender.  A receiver receiving a SYN message with a version
        higher than understood will ignore that message.  A receiver
        receiving a SYN message with a version lower than its own
        highest version, but a version that it understands, will reply
        with a SYNACK with the version from the received SYN in its
        GSMP Version field.  This defines the version of the GSMP
        protocol to be used while the adjacency protocol remains
        synchronised.  All other messages will use the agreed version
        in the Version field.

        The version number for the version of the GSMP protocol defined
        by this specification is Version = 3.

     Message Type
        The adjacency protocol is:

           Message Type = 10




Doria, et. al.              Standards Track                   [Page 112]

RFC 3292         General Switch Management Protocol V3         June 2002


     Timer
        The Timer field is used to inform the receiver of the timer
        value used in the adjacency protocol of the sender.  The timer
        specifies the nominal time between periodic adjacency protocol
        messages.  It is a constant for the duration of a GSMP session.
        The timer field is specified in units of 100ms.

     M-Flag
        The M-Flag is used in the SYN message to indicate whether the
        sender is a master or a slave.  If the M-Flag is set in the SYN
        message, the sender is a master.  If zero, the sender is a
        slave.  The GSMP protocol is asymmetric, the controller being
        the master and the switch being the slave.  The M-Flag prevents
        a master from synchronising with another master, or a slave
        with another slave.  If a slave receives a SYN message with a
        zero M-Flag, it MUST ignore that SYN message.  If a master
        receives a SYN message with the M-Flag set, it MUST ignore that
        SYN message.  In all other messages the M-Flag is not used.

     Code
        Field specifies the function of the message.  Four Codes are
        defined for the adjacency protocol:

                 SYN:     Code = 1
                 SYNACK:  Code = 2
                 ACK:     Code = 3
                 RSTACK:  Code = 4.

     Sender Name
        For the SYN, SYNACK, and ACK messages, is the name of the
        entity sending the message.  The Sender Name is a 48-bit
        quantity that is unique within the operational context of the
        device.  A 48-bit IEEE 802 MAC address, if available, may be
        used for the Sender Name.  If the Ethernet encapsulation is
        used the Sender Name MUST be the Source Address from the MAC
        header.  For the RSTACK message, the Sender Name field is set
        to the value of the Receiver Name field from the incoming
        message that caused the RSTACK message to be generated.

     Receiver Name
        For the SYN, SYNACK, and ACK messages, is the name of the
        entity that the sender of the message believes is at the far
        end of the link.  If the sender of the message does not know
        the name of the entity at the far end of the link, this field
        SHOULD be set to zero.  For the RSTACK message, the Receiver
        Name field is set to the value of the Sender Name field from
        the incoming message that caused the RSTACK message to be
        generated.



Doria, et. al.              Standards Track                   [Page 113]

RFC 3292         General Switch Management Protocol V3         June 2002


     Sender Port
        For the SYN, SYNACK, and ACK messages, is the local port number
        of the link across which the message is being sent.  For the
        RSTACK message, the Sender Port field is set to the value of
        the Receiver Port field from the incoming message that caused
        the RSTACK message to be generated.

     Receiver Port
        For the SYN, SYNACK, and ACK messages, is what the sender
        believes is the local port number for the link, allocated by
        the entity at the far end of the link.  If the sender of the
        message does not know the port number at the far end of the
        link, this field SHOULD be set to zero.  For the RSTACK
        message, the Receiver Port field is set to the value of the
        Sender Port field from the incoming message that caused the
        RSTACK message to be generated.

     PType
        PType is used to specify if partitions are used and how the
        Partition ID is negotiated.

              Type of partition being requested.
              0 No Partition
              1 Fixed Partition Request
              2 Fixed Partition Assigned

     PFlag
        Used to indicate the type of partition request.

              1 - New Adjacency.
                    In the case of a new adjacency, the state of the
                    switch will be reset.

              2 - Recovered Adjacency.
                    In the case of a recovered adjacency, the state of
                    the switch will remain, and the Switch Controller
                    will be responsible for confirming that the state
                    of the switch matches the desired state.

     Sender Instance
        For the SYN, SYNACK, and ACK messages, is the sender's instance
        number for the link.  It is used to detect when the link comes
        back up after going down or when the identity of the entity at
        the other end of the link changes.  The instance number is a
        24-bit number that is guaranteed to be unique within the recent
        past and to change when the link or node comes back up after
        going down.  Zero is not a valid instance number.  For the
        RSTACK message, the Sender Instance field is set to the value



Doria, et. al.              Standards Track                   [Page 114]

RFC 3292         General Switch Management Protocol V3         June 2002


        of the Receiver Instance field from the incoming message that
        caused the RSTACK message to be generated.

     Partition ID
        Field used to associate the message with a specific switch
        partition.

     Receiver Instance
        For the SYN, SYNACK, and ACK messages, is what the sender
        believes is the current instance number for the link, allocated
        by the entity at the far end of the link.  If the sender of the
        message does not know the current instance number at the far
        end of the link, this field SHOULD be set to zero.  For the
        RSTACK message, the Receiver Instance field is set to the value
        of the Sender Instance field from the incoming message that
        caused the RSTACK message to be generated.

11.2  Procedure

  The adjacency protocol is described by the following rules and state
  tables.

  The rules and state tables use the following operations:

  o  The "Update Peer Verifier" operation is defined as storing the
     values of the Sender Instance, Sender Port, Sender Name and
     Partition ID fields from a SYN or SYNACK message received from the
     entity at the far end of the link.

  o  The procedure "Reset the link" is defined as:

     1. Generate a new instance number for the link
     2. Delete the peer verifier (set to zero the values of Sender
        Instance, Sender Port, and Sender Name previously stored by the
        Update Peer Verifier operation)
     3. Send a SYN message
     4. Enter the SYNSENT state.

  o  The state tables use the following Boolean terms and operators:

     A    The Sender Instance in the incoming message matches the value
          stored from a previous message by the "Update Peer Verifier"
          operation.

     B    The Sender Instance, Sender Port, Sender Name and Partition
          ID fields in the incoming message match the values stored
          from a previous message by the "Update Peer Verifier"
          operation.



Doria, et. al.              Standards Track                   [Page 115]

RFC 3292         General Switch Management Protocol V3         June 2002


     C    The Receiver Instance, Receiver Port, Receiver Name and
          Partition ID fields in the incoming message match the values
          of the Sender Instance, Sender Port, Sender Name and
          Partition ID currently sent in outgoing SYN, SYNACK, and ACK
          messages.

     "&&" Represents the logical AND operation

     "||" Represents the logical OR operation

     "!" Represents the logical negation (NOT) operation.

  o  A timer is required for the periodic generation of SYN, SYNACK,
     and ACK messages.  The value of the timer is announced in the
     Timer field.  The period of the timer is unspecified but a value
     of one second is suggested.

     There are two independent events: the timer expires, and a packet
     arrives.  The processing rules for these events are:

        Timer Expires:   Reset Timer
                         If state = SYNSENT Send SYN
                         If state = SYNRCVD Send SYNACK
                         If state = ESTAB   Send ACK

         Packet Arrives:
             If incoming message is an RSTACK:
                 If (A && C && !SYNSENT) Reset the link
                 Else discard the message.
             If incoming message is a SYN, SYNACK, or ACK:
                 Response defined by the following State Tables.
             If incoming message is any other GSMP message and
                 state != ESTAB:
                 Discard incoming message.
                 If state = SYNSENT Send SYN (Note 1)
                 If state = SYNRCVD Send SYNACK (Note 1)

        Note 1: No more than two SYN or SYNACK messages should be sent
        within any time period of length defined by the timer.

  o  State synchronisation across a link is considered to be achieved
     when the protocol reaches the ESTAB state.  All GSMP messages,
     other than adjacency protocol messages, that are received before
     synchronisation is achieved, will be discarded.







Doria, et. al.              Standards Track                   [Page 116]

RFC 3292         General Switch Management Protocol V3         June 2002


11.2.1  State Tables

 State: SYNSENT

 +====================================================================+
 |    Condition     |                Action               | New State |
 +==================+=====================================+===========+
 |   SYNACK && C    |  Update Peer Verifier; Send ACK     |   ESTAB   |
 +------------------+-------------------------------------+-----------+
 |   SYNACK && !C   |            Send RSTACK              |  SYNSENT  |
 +------------------+-------------------------------------+-----------+
 |       SYN        |  Update Peer Verifier; Send SYNACK  |  SYNRCVD  |
 +------------------+-------------------------------------+-----------+
 |       ACK        |            Send RSTACK              |  SYNSENT  |
 +====================================================================+

 State: SYNRCVD

 +====================================================================+
 |    Condition     |                Action               | New State |
 +==================+=====================================+===========+
 |   SYNACK && C    |  Update Peer Verifier; Send ACK     |   ESTAB   |
 +------------------+-------------------------------------+-----------+
 |   SYNACK && !C   |            Send RSTACK              |  SYNRCVD  |
 +------------------+-------------------------------------+-----------+
 |       SYN        |  Update Peer Verifier; Send SYNACK  |  SYNRCVD  |
 +------------------+-------------------------------------+-----------+
 |  ACK && B && C   |              Send ACK               |   ESTAB   |
 +------------------+-------------------------------------+-----------+
 | ACK && !(B && C) |            Send RSTACK              |  SYNRCVD  |
 +====================================================================+

 State: ESTAB

 +====================================================================+
 |    Condition     |                Action               | New State |
 +==================+=====================================+===========+
 |  SYN || SYNACK   |           Send ACK (note 2)         |   ESTAB   |
 +------------------+-------------------------------------+-----------+
 |  ACK && B && C   |           Send ACK (note 3)         |   ESTAB   |
 +------------------+-------------------------------------+-----------+
 | ACK && !(B && C) |              Send RSTACK            |   ESTAB   |
 +====================================================================+








Doria, et. al.              Standards Track                   [Page 117]

RFC 3292         General Switch Management Protocol V3         June 2002


        Note 2: No more than two ACKs should be sent within any time
        period of length defined by the timer.  Thus, one ACK MUST be
        sent every time the timer expires.  In addition, one further
        ACK may be sent between timer expirations if the incoming
        message is a SYN or SYNACK.  This additional ACK allows the
        adjacency protocol to reach synchronisation more quickly.

        Note 3: No more than one ACK should be sent within any time
        period of length defined by the timer.

11.3  Partition Information State

  Each instance of a [switch controller-switch partition] pair will
  need to establish adjacency synchronisation independently.

  Part of the process of establishing synchronisation when using
  partition will be to establish the assignment of partition
  identifiers.  The following scenarios are provided for:

     -  A controller can request a specific partition ID by setting the
        PType to Fixed Partition Request.

     -  A controller can let the switch decide whether it wants to
        assign a fixed partition ID or not, by setting the PType to No
        Partition.

     -  A switch can assign the specific Partition ID to the session by
        setting the PType to Fixed Partition Assigned.  A switch can
        specify that no partitions are handled in the session by
        setting the PType to No Partition.

  The assignment is determined by the following behaviour:

     -  An adjacency message from a controller with PType = 1 and
        Code = SYN SHOULD be treated as a partition request.

     -  An adjacency message from a switch with PType = 2 and
        Code = SYN SHOULD be treated as a partition assignment.

     -  An adjacency message from a controller or a switch with
        PType = 2 and Code = (SYNACK || ACK) SHOULD be treated as a
        success response, the partition is assigned.

     -  An adjacency message from a controller with PType = 0 and
        Code = SYN indicates that the controller has not specified if
        it requests partitions or not.





Doria, et. al.              Standards Track                   [Page 118]

RFC 3292         General Switch Management Protocol V3         June 2002


     -  An adjacency message from a switch with PType = 0 and
        Code = SYN indicates that the switch does not support
        partitions.

     -  An adjacency message from a controller or a switch with
        PType = 0 and Code = (SYNACK || ACK) indicates that the session
        does not support partitions.

     -  An adjacency message from a controller or a switch with
        PType = (1 || 2) and Code = RSTACK indicates that requested
        Partition ID is unavailable.

     -  An adjacency message from a controller or a switch with
        PType = 0 and Code = RSTACK indicates that an unidentified
        error has occurred.  The session SHOULD be reset.

     All other combinations of PType and Code are undefined in this
     version of GSMP.

11.4  Loss of Synchronisation

  If after synchronisation is achieved, no valid GSMP messages are
  received in any period of time in excess of three times the value of
  the Timer field announced in the incoming adjacency protocol
  messages, loss of synchronisation may be declared.

  While re-establishing synchronisation with a controller, a switch
  SHOULD maintain its connection state, deferring the decision about
  resetting the state until after synchronisation is re-established.

  Once synchronisation is re-established the decision about resetting
  the connection state SHOULD be made on the following basis:

     -  If PFLAG = 1, then a new adjacency has been established and the
        state SHOULD be reset

     -  If PFLAG = 2, then adjacency has been re-established and the
        connection state SHOULD be retained.  Verification that
        controller and connection state are the same is the
        responsibility of the controller.

11.5  Multiple Controllers per switch partition

  Multiple switch controllers may jointly control a single switch
  partition.  The controllers may control a switch partition either in
  a primary/standby fashion or as part of multiple controllers
  providing load-sharing for the same partition.  It is the
  responsibility of the controllers to co-ordinate their interactions



Doria, et. al.              Standards Track                   [Page 119]

RFC 3292         General Switch Management Protocol V3         June 2002


  with the switch partition.  In order to assist the controllers in
  tracking multiple controller adjacencies to a single switch
  partition, the Adjacency Update message is used to inform a
  controller that there are other controllers interacting with the same
  partition.  It should be noted that the GSMP does not include
  features that allow the switch to co-ordinate cache synchronization
  information among controllers.  The switch partition will service
  each command it receives in turn as if it were interacting with a
  single controller.  Controller implementations without controller
  entity synchronisation SHOULD NOT use multiple controllers with a
  single switch partition.

11.5.1  Multiple Controller Adjacency Process

  The first adjacency for a specific partition is determined by the
  procedures described in section 11.2 and an Adjacency Update message
  will be sent.  The next adjacencies to the partition are identified
  by a new partition request with the same Partition ID as the first
  one but with the different Sender Name.  Upon establishing adjacency
  the Adjacency count will be increased and an Adjacency Update message
  will be sent.

  When adjacency between one partition and a controller is lost, the
  adjacency count will be decremented and an Adjacency Update message
  will be sent.

  Example:

  A switch partition has never been used.  When the first controller
  (A) achieves adjacency, an adjacency count will be initiated and (A)
  will get an Adjacency Update message about itself with Code field =
  1.  Since (A) receives an adjacency count of 1 this indicates that it
  is the only controller for that partition.

  When a second adjacency (B), using the same Partition ID, achieves
  adjacency, the adjacency counter will be increased by 1.  Both (A)
  and (B) will receive an Adjacency Update message indicating an
  adjacency count of 2 in the Code field.  Since the count is greater
  than 1, this will indicate to both (A) and (B) that there is another
  controller interacting with the switch; identification of the other
  controller will not be provided by GSMP, but will be the
  responsibility of the controllers.

  If (A) looses adjacency, the adjacency count will be decreased and an
  Adjacency Update message will be sent to (B) indicating an adjacency
  count of 1 in the Code field.  If (B) leaves as well, the partition
  is regarded as idle and the adjacency count may be reset.




Doria, et. al.              Standards Track                   [Page 120]

RFC 3292         General Switch Management Protocol V3         June 2002


12.  Failure Response Codes

12.1  Description of Failure and Warning Response Messages

  A failure response message is formed by returning the request message
  that caused the failure with the Result field in the header
  indicating failure (Result = 4) and the Code field giving the failure
  code.  The failure code specifies the reason for the switch being
  unable to satisfy the request message.

  A warning response message is a success response (Result = 3) with
  the Code field specifying the warning code.  The warning code
  specifies a warning that was generated during the successful
  operation.

  If the switch issues a failure response in reply to a request
  message, no change should be made to the state of the switch as a
  result of the message causing the failure.  (For request messages
  that contain multiple requests, such as the Delete Branches message,
  the failure response message will specify which requests were
  successful and which failed.  The successful requests may result in a
  changed state.)

  If the switch issues a failure response it MUST choose the most
  specific failure code according to the following precedence:

     -  Invalid Message

     -  General Message Failure

     -  Specific Message Failure A failure response specified in the
        text defining the message type.

     -  Connection Failures

     -  Virtual Path Connection Failures

     -  Multicast Failures

     -  QoS Failures

     -  General Failures

     -  Warnings

  If multiple failures match in any of the following categories, the
  one that is listed first should be returned.  The following failure
  response messages and failure and warning codes are defined:



Doria, et. al.              Standards Track                   [Page 121]

RFC 3292         General Switch Management Protocol V3         June 2002


  Invalid Message

     3:  The specified request is not implemented on this switch.
             The Message Type field specifies a message that is not
             implemented on the switch or contains a value that is not
             defined in the version of the protocol running in this
             session of GSMP.

     4:  One or more of the specified ports does not exist.
             At least one of the ports specified in the message is
             invalid.  A port is invalid if it does not exist or if it
             has been removed from the switch.

     5:  Invalid Port Session Number.
             The value given in the Port Session Number field does not
             match the current Port Session Number for the specified
             port.

     7: Invalid Partition ID
             The value given in the Partition ID field is not legal for
             this partition.

  General Message Failure

     10: The meaning of this failure is dependent upon the
             particular message type and is specified in the text
             defining the message.

  Specific Message Failure - A failure response that is only used by a
             specific message type

  -  Failure response messages used by the Label Range message

     40: Cannot support one or more requested label ranges.

     41: Cannot support disjoint label ranges.

     42: Specialised multipoint labels not supported.

  -  Failure response messages used by the Set Transmit Data Rate
             function of the Port Management message

     43: The transmit data rate of this output port cannot be changed.








Doria, et. al.              Standards Track                   [Page 122]

RFC 3292         General Switch Management Protocol V3         June 2002


     44: Requested transmit data rate out of range for this output
             port.
             The transmit data rate of the requested output port can be
             changed, but the value of the Transmit Data Rate field is
             beyond the range of acceptable values.

  -  Failure response message of the Port Management message

     45: Connection Replace mechanism not supported on switch.
             The R-flag SHOULD be reset in the Response Port Management
             message.

  -  Failure response message range reserved for the ARM extension

     128-159: These failure response codes will be interpreted
             according to definitions provided by the model
             description.

  Connection Failures

     11:  The specified connection does not exist.
             An operation that expects a connection to be specified
             cannot locate the specified connection.  A connection is
             specified by the input port and input label on which it
             originates.  An ATM virtual path connection is specified
             by the input port and input VPI on which it originates.

     12:  The specified branch does not exist.
             An operation that expects a branch of an existing
             connection to be specified cannot locate the specified
             branch.  A branch of a connection is specified by the
             connection it belongs to and the output port and output
             label on which it departs.  A branch of an ATM virtual
             path connection is specified by the virtual path
             connection it belongs to and the output port and output
             VPI on which it departs.

     13: One or more of the specified Input Labels is invalid.

     14: One or more of the specified Output Labels is invalid.

     15: Point-to-point bi-directional connection already exists.
             The connection specified by the Input Port and Input Label
             fields already exists, and the bi-directional Flag in the
             Flags field is set.






Doria, et. al.              Standards Track                   [Page 123]

RFC 3292         General Switch Management Protocol V3         June 2002


     16: Invalid Service Selector field in a Connection Management
             message.  The value of the Service Selector field is
             invalid.

     17: Insufficient resources for QoS Profile.
             The resources requested by the QoS Profile in the Service
             Selector field are not available.

     18: Insufficient Resources.
             Switch resources needed to establish a branch are not
             available.

     20: Reservation ID out of Range
             The numerical value of Reservation ID is greater than the
             value of Max Reservations (from the Switch Configuration
             message).

     21: Mismatched reservation ports
             The value of Input Port differs from the input port
             specified in the reservation or the value of Output Port
             differs from the output port specified in the reservation.

     22: Reservation ID in use
             The value of Reservation ID matches that of an extant
             Reservation.

     23: Non-existent reservation ID
             No reservation corresponding to Reservation ID exists.

     36: Replace of connection is not activated on switch.
             Only applicable for Add Branch messages.  The Replace
             Connection mechanism has not been activated on port by the
             Port Management message.

     37: Connection replacement mode cannot be combined with Bi-
             directional or Multicast mode.  The R flag MUST NOT be
             used in conjunction with either the M flag or the B flag.

  ATM Virtual Path Connections

     24: ATM virtual path switching is not supported on this input
             port.









Doria, et. al.              Standards Track                   [Page 124]

RFC 3292         General Switch Management Protocol V3         June 2002


     25: Point-to-multipoint ATM virtual path connections are not
             supported on either the requested input port or the
             requested output port.
             One or both of the requested input and output ports is
             unable to support point-to-multipoint ATM virtual path
             connections.

     26: Attempt to add an ATM virtual path connection branch to an
             existing virtual channel connection.
             It is invalid to mix branches switched as virtual channel
             connections with branches switched as ATM virtual path
             connections on the same point-to-multipoint connection.

     27: Attempt to add an ATM virtual channel connection branch to an
             existing ATM virtual path connection.
             It is invalid to mix branches switched as virtual channel
             connections with branches switched as ATM virtual path
             connections on the same point-to-multipoint connection.

     28: ATM Virtual path switching is not supported on non-ATM ports.
             One or both of the requested input and output ports is not
             an ATM port.  ATM virtual path switching is only supported
             on ATM ports.

  Multicast Failures

     29: A branch belonging to the specified point-to-multipoint
             connection is already established on the specified output
             port and the switch cannot support more than a single
             branch of any point-to-multipoint connection on the same
             output port.

     30: The limit on the maximum number of multicast connections that
             the switch can support has been reached.

     31: The limit on the maximum number of branches that the specified
             multicast connection can support has been reached.

     32: Cannot label each output branch of a point-to-multipoint tree
             with a different label.
             Some switch designs, require all output branches of a
             point-to-multipoint connection to use the same value of
             Label.

     33: Cannot add multi-point branch to bi-directional connection.
             It is an error to attempt to add an additional branch to
             an existing connection with the bi-directional flag set.




Doria, et. al.              Standards Track                   [Page 125]

RFC 3292         General Switch Management Protocol V3         June 2002


     34: Unable to assign the requested Label value to the requested
             branch on the specified multicast connection.
             Although the requested Labels are valid, the switch is
             unable to support the request using the specified Label
             values for some reason not covered by the above failure
             responses.  This message implies that a valid value of
             Labels exists that the switch could support.  For example,
             some switch designs restrict the number of distinct Label
             values available to a multicast connection.  (Most switch
             designs will not require this message.)

     35: General problem related to the manner in which multicast is
             supported by the switch.
             Use this message if none of the more specific multicast
             failure messages apply.  (Most switch designs will not
             require this message.)

  QoS Failures

     60-79: These failure response codes will be interpreted according
             to definitions provided by the model description.

     80: Switch does not support different QoS parameters for different
             branches within a multipoint connection.

  General Failures

     2:  Invalid request message.
             There is an error in one of the fields of the message not
             covered by a more specific failure message.

     6:  One or more of the specified ports is down.
             A port is down if its Port Status is Unavailable.
             Connection Management, Connection State, Port Management,
             and Configuration operations are permitted on a port that
             is Unavailable.  Connection Activity and Statistics
             operations are not permitted on a port that is Unavailable
             and will generate this failure response.  A Port
             Management message specifying a Take Down function on a
             port already in the Unavailable state will also generate
             this failure response.

     19: Out of resources.
             The switch has exhausted a resource not covered by a more
             specific failure message, for example, running out of
             memory.





Doria, et. al.              Standards Track                   [Page 126]

RFC 3292         General Switch Management Protocol V3         June 2002


     1:  Unspecified reason not covered by other failure codes.
             The failure message of last resort.

  Warnings

     46: One or more labels are still used in the previous Label Range.

12.2  Summary of Failure Response Codes and Warnings

  The following list gives a summary of the failure codes defined for
  failure response messages:

      1: Unspecified reason not covered by other failure codes.
      2: Invalid request message.
      3: The specified request is not implemented on this switch.
      4: One or more of the specified ports does not exist.
      5: Invalid Port Session Number.
      6: One or more of the specified ports is down.
      7: Invalid Partition ID.
     10: General message failure.  (The meaning of this failure code
           depends upon the Message Type.  It is defined within the
           description of any message that uses it.)
     11: The specified connection does not exist.
     12: The specified branch does not exist.
     13: One or more of the specified Input Labels is invalid.
     14: One or more of the specified Output Labels is invalid.
     15: Point-to-point bi-directional connection already exists.
     16: Invalid service selector field in a connection management
           message.
     17: Insufficient resources for QoS profile.
     18: Insufficient resources.
     19: Out of resources (e.g., memory exhausted, etc.).
     20: Reservation ID out of Range
     21: Mismatched reservation ports
     22: Reservation ID in use
     23: Non-existent reservation ID
     24: ATM virtual path switching is not supported on this input
           port.
     25: Point-to-multipoint ATM virtual path connections are not
           supported on either the requested input port or the
           requested output port.
     26: Attempt to add an ATM virtual path connection branch to an
           existing virtual channel connection.
     27: Attempt to add an ATM virtual channel connection branch to
           an existing virtual path connection.
     28: ATM Virtual Path switching is not supported on non-ATM
           ports.




Doria, et. al.              Standards Track                   [Page 127]

RFC 3292         General Switch Management Protocol V3         June 2002


     29: A branch belonging to the specified point-to-multipoint
           connection is already established on the specified
           output port and the switch cannot support more than a
           single branch of any point-to-multipoint connection on
           the same output port.
     30: The limit on the maximum number of point-to-multipoint
           connections that the switch can support has been
           reached.
     31: The limit on the maximum number of branches that the
           specified point-to-multipoint connection can support has
           been reached.
     32: Cannot label each output branch of a point-to-multipoint
           tree with a different label.
     33: Cannot add multi-point branch to bi-directional
           connection.
     34: Unable to assign the requested Label value to the
           requested branch on the specified point-to-multipoint
           connection.
     35: General problem related to the manner in which point-to-
           multipoint is supported by the switch.
     36: Replace of connection is not activated on switch.
     37: Connection replacement mode cannot be combined with Bi-
           directional or Multicast mode.
     40: Cannot support one or more requested label ranges.
     41: Cannot support disjoint label ranges.
     42: Specialised multipoint labels not supported.
     43: The transmit data rate of this output port cannot be
           changed.
     44: Requested transmit data rate out of range for this output
           port.
     45: Connection Replace mechanism not supported on switch.
     46: Labels are still used in the existing Label Range.
     60-79: Reserved for QoS failures.
     80: Switch does not support different QoS parameters for
           different branches within a multipoint connection.
     128-159: Reserved for the ARM extensions.

13.  Security Considerations

  The security of GSMP's TCP/IP control channel has been addressed in
  [15].  For all uses of GSMP over an IP network it is REQUIRED that
  GSMP be run over TCP/IP using the security considerations discussed
  in [15].








Doria, et. al.              Standards Track                   [Page 128]

RFC 3292         General Switch Management Protocol V3         June 2002


Appendix A  Summary of Messages

  Message Name                      Message Number  Status

  Connection Management Messages
      Add Branch .......................16
         ATM Specific - VPC.............26
      Delete Tree.......................18
      Verify Tree.......................19          Obsoleted
      Delete All Input..................20
      Delete All Output.................21
      Delete Branches...................17
      Move Output Branch................22
          ATM Specific - VPC............27
      Move Input Branch.................23
          ATM Specifc  - VPC............28

  Port Management Messages
      Port Management...................32
      Label Range.......................33

  State and Statistics Messages
      Connection Activity...............48
      Port Statistics...................49
      Connection Statistics.............50
      QoS Class Statistics..............51          Reserved
      Report Connection State...........52

  Configuration Messages
      Switch Configuration..............64
      Port Configuration................65
      All Ports Configuration...........66
      Service Configuration.............67

  Reservation Messages
      Reservation Request...............70
      Delete Reservation................71
      Delete All Reservations...........72

  Event Messages
      Port Up...........................80
      Port Down.........................81
      Invalid Label.....................82
      New Port..........................83
      Dead Port.........................84






Doria, et. al.              Standards Track                   [Page 129]

RFC 3292         General Switch Management Protocol V3         June 2002


  Abstract and Resource Model Extension Messages
      Reserved..........................200-249

  Adjacency Protocol....................10          Required

Appendix B  IANA Considerations

  Following the policies outlined in "Guidelines for Writing an IANA
  Considerations Section in RFCs" (RFC 2434 [19]), the following name
  spaces are defined in GSMPv3.

     -  Message Type Name Space [Appendix A]

     -  Label Type Name Space [3.1.3]

     -  Result Name Space [3.1.1]

     -  Failure Response Message Name Space [3.1.4],[11]

     -  Adaptation Type Name Space [4.1]

     -  Model Type Name Space [8.1]

     -  Port Type Name Space [8.2]

     -  Service ID Name Space [10.4]

     -  Traffic Control Name Space [8.4]

     -  Event Flag Name Space [6.1]

B.1. Message Type Name Space

  GSMPv3 divides the name space for Message Types into four ranges.
  The following are the guidelines for managing these ranges.

     -  Message Types 0-99.
             Message Types in this range are part of the GSMPv3 base
             protocol.  Message types in this range are allocated
             through an IETF consensus action [19].

     -  Message Types 100-199.
             Message Types in this range are Specification Required
             [19].  Message Types using this range must be documented
             in an RFC or other permanent and readily available
             references.





Doria, et. al.              Standards Track                   [Page 130]

RFC 3292         General Switch Management Protocol V3         June 2002


     -  Message Types 200-249.
             Message Types in this range are Specification Required
             [19] and are intended for Abstract and Resource Model
             Extension Messages.  Message Types using this range must
             be documented in an RFC or other permanent and readily
             available references.

     -  Message Types 250-255.
             Message Types in this range are reserved for vendor
             private extensions and are the responsibility of
             individual vendors.  IANA management of this range of the
             Message Type Name Space is unnecessary.

B.2. Label Type Name Space

  GSMPv3 divides the name space for Label Types into three ranges.  The
  following are the guidelines for managing these ranges.

     -  Label Types 0x000-0xAFF.
             Label Types in this range are part of the GSMPv3 base
             protocol.  Label Types in this range are allocated through
             an IETF consensus action [19].

     -  Label Types 0xB00-0xEFF.
             Label Types in this range are Specification Required [19].
             Label Types using this range must be documented in an RFC
             or other permanent and readily available reference.

     -  Label Types 0xF00-0xFFF.
             Label Types in this range are reserved for vendor private
             extensions and are the responsibility of individual
             vendors.  IANA management of this range of the Label Type
             Name Space is unnecessary.

B.3. Result Name Space

  The following is the guideline for managing the Result Name Space:

     -  Result values 0-255.
             Result values in this range need an expert review, i.e.,
             approval by a Designated Expert is required [19].

B.4. Failure Response Name Space

  GSMPv3 divides the name space for Failure Responses into three
  ranges.  The following are the guidelines for managing these ranges:





Doria, et. al.              Standards Track                   [Page 131]

RFC 3292         General Switch Management Protocol V3         June 2002


     -  Failure Responses 0-59, 80-127, 160-255.
             Failure responses in these ranges are part of the GSMPv3
             base protocol.  Failure Responses in these ranges are
             allocated through an IETF consensus action [19].

     -  Failure Responses 60-79, 128-159.
             Failure responses in these ranges are reserved for vendor
             private extensions and are the responsibility of
             individual vendors.  IANA management of these ranges of
             the Failure Response Name Space are unnecessary.

B.5. Adaptation Type Name Space

  GSMPv3 divides the name space for Adaptation Types into two ranges.
  The following are the guidelines for managing these ranges:

     -  Adaptation Type 0x000-0x2FF.
             Adaptation Types in this range are part of the GSMPv3 base
             protocol.  Adaptation Types in this range are allocated
             through an IETF consensus action [19].

     -  Adaptation Type 0x300-0xFFF.
             Adaptation Types in this range are allocated by the first
             come first served principle [19].

B.6. Model Type Name Space

  GSMPv3 divides the name space for Model Types into three ranges.  The
  following are the guidelines for managing these ranges:

     -  Model Type 0.
             Model Types in this range are part of the GSMPv3 base
             protocol.  Model Types in this range are allocated through
             an IETF consensus action [19].

     -  Model Type 1-200.
             Model Types in this range are Specification Required [19].
             Message Types using this range must be documented in an
             RFC or other permanent and readily available references.

     -  Model Type 201-255.
             Model Types in this range are reserved for vendor private
             extensions and are the responsibility of individual
             vendors.  IANA management of these ranges of the Model
             Type Name Space are unnecessary.






Doria, et. al.              Standards Track                   [Page 132]

RFC 3292         General Switch Management Protocol V3         June 2002


B.7. Port Type Name Space

  GSMPv3 divides the name space for Port Types into two ranges.  The
  following are the guidelines for managing these ranges:

     -  Port Type 0-127.
             Port Types in this range are part of the GSMPv3 base
             protocol.  Port Types in this range are allocated through
             an IETF consensus action [19].

     -  Port Type 128-255.
             Port Types in this range are Specification Required [19].
             Port Types using this range must be documented in an RFC
             or other permanent and readily available references.

B.8. Service ID Name Space

  GSMPv3 divides the name space for Service IDs into two ranges.  The
  following are the guidelines for managing these ranges:

     -  Service ID 0-1023.
             Service ID's in this range are part of the GSMPv3 base
             protocol.  Service ID's in this range are allocated
             through an IETF consensus action [19].

     -  Service ID 1024-65535.
             Service ID's in this range are Specification Required
             [19].  Service ID's using this range must be documented in
             an RFC or other permanent and readily available
             references.

B.9. Traffic Control Name Space

  The following are the guidelines for managing Traffic Control Flags
  in GSMPv3:

     -  All Traffic Control Flags are allocated through an expert
        review, i.e., approval by a Designated Expert [19].

B.10. Event Flag Name Space

  The following are the guidelines for managing Event Flags in GSMPv3:

     -  All Event Flags are allocated through an expert review, i.e.,
        approval by a Designated Expert [19].

  The TCP port for establishing GSMP connections has been defined as
  6068.



Doria, et. al.              Standards Track                   [Page 133]

RFC 3292         General Switch Management Protocol V3         June 2002


References

  [1]  "B-ISDN ATM Layer Specification", International
       Telecommunication Union, ITU-T Recommendation I.361, Feb.  1999.

  [2]  "B-ISDN ATM Adaptation Layer (AAL) Specification", International
       Telecommunication Union, ITU-T Recommendation I.363, Mar. 1993.

  [3]  "B-ISDN ATM Adaptation Layer specification: Type 5 AAL",
       International Telecommunication Union, ITU-T, Recommendation
       I.363.5, Aug. 1996.

  [4]  Sjostrand, H., Buerkle, J. and B. Srinivasan, "Definitions of
       Managed Objects for the General Switch Management Protocol
       (GSMP)", RFC 3295, June 2002.

  [5]  IANA Assigned Port Numbers, http://www.iana.org

  [6]  Newman, P, Edwards, W., Hinden, R., Hoffman, E. Ching Liaw, F.,
       Lyon, T. and G. Minshall, "Ipsilon's General Switch Management
       Protocol Specification Version 1.1", RFC 1987, August 1996.

  [7]  Newman, P., Edwards, W., Hinden, R., Hoffman, E., Ching Liaw,
       F., Lyon, T. and G. Minshall, "Ipsilon's General Switch
       Management Protocol Specification Version 2.0", RFC 2297, March
       1998.

  [8]  ATM Forum Technical Committee, "Traffic Management Specification
       Version 4.1", af-tm-0121.000, 1999.

  [9] Wroclawski, J., "Specification of the Controlled-Load Network
       Element Service", RFC 2211, September 1997.

  [10] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu, L.,
       Doolan, P., Worster, T., Feldman, N., Fredette, A., Girish, M.,
       Gray, E., Heinanen, J., Kilty, T. and A. Malis, "Constraint-
       Based LSP Setup using LDP", RFC 3212, January 2002.

  [11] ITU-T Recommendation I.233 Frame Mode Bearer Services, ISDN
       frame relaying bearer services and ISDN switching bearer
       service, Nov. 1991.

  [12] ITU-T Recommendation Q.933, Integrated Services Digital Network
       (ISDN) Digital Subscriber Signaling System No. 1 (DSS 1)
       Signaling Specifications For Frame Mode Switched And Permanent
       Virtual Connection Control And Status Monitoring, 1995.





Doria, et. al.              Standards Track                   [Page 134]

RFC 3292         General Switch Management Protocol V3         June 2002


  [13] ITU-T Recommendation Q.922, Integrated Services Digital Network
       (ISDN) Data Link Layer Specification For Frame Mode Bearer
       Services, 1992

  [14] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D.,
       Li, T. and A. Conta, "MPLS Label Stack Encoding", RFC 3032,
       January 2001.

  [15] Worster, T., Doria, A. and J. Buerkle, "General Switch
       Management Protocol (GSMP) Packet Encapsulations for
       Asynchronous Transfer Mode (ATM), Ethernet and Transmission
       Control Protocol (TCP)", RFC 3293, June 2002.

  [16] Doria, A. and K. Sundell, "General Switch Management Protocol
       Applicability", RFC 3294, June 2002.

  [17] IANAifType - MIB DEFINITIONS, http://www.iana.org, January 2001.

  [18] Anderson, L., Doolan, P., Feldman, N., Fredette, A. and B.
       Thomas, "LDP Specification", RFC 3036, January 2001.

  [19] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
       Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

  [20] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [21] Conta, A., Doolan, P. and A. Malis, "Use of Label Switching on
       Frame Relay Networks Specification", RFC 3034, January 2001.






















Doria, et. al.              Standards Track                   [Page 135]

RFC 3292         General Switch Management Protocol V3         June 2002


Authors' Addresses

  Avri Doria
  Div. of Computer Communications
  Lulea University of Technology
  S-971 87 Lulea
  Sweden

  Phone: +1 401 663 5024
  EMail: [email protected]


  Fiffi Hellstrand
  Nortel Networks AB
  S:t Eriksgatan 115 A
  SE-113 85 Stockholm Sweden

  EMail: [email protected]


  Kenneth Sundell
  Nortel Networks AB
  S:t Eriksgatan 115 A
  SE-113 85 Stockholm Sweden

  EMail: [email protected]


  Tom Worster

  Phone: +1 617 247 2624
  EMail: [email protected]



















Doria, et. al.              Standards Track                   [Page 136]

RFC 3292         General Switch Management Protocol V3         June 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Doria, et. al.              Standards Track                   [Page 137]