Network Working Group                                    S. Blake-Wilson
Request for Comments: 3278                                      D. Brown
Category: Informational                                    Certicom Corp
                                                             P. Lambert
                                                  Cosine Communications
                                                             April 2002


         Use of Elliptic Curve Cryptography (ECC) Algorithms
                in Cryptographic Message Syntax (CMS)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

  This document describes how to use Elliptic Curve Cryptography (ECC)
  public-key algorithms in the Cryptographic Message Syntax (CMS).  The
  ECC algorithms support the creation of digital signatures and the
  exchange of keys to encrypt or authenticate content.  The definition
  of the algorithm processing is based on the ANSI X9.62 standard,
  developed by the ANSI X9F1 working group, the IEEE 1363 standard, and
  the SEC 1 standard.

  The readers attention is called to the Intellectual Property Rights
  section at the end of this document.


















Blake-Wilson, et al.         Informational                      [Page 1]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


Table of Contents

  1  Introduction ................................................... 2
     1.1  Requirements terminology .................................. 3
  2  SignedData using ECC ..........................................  3
     2.1  SignedData using ECDSA ...................................  3
          2.1.1  Fields of the SignedData ..........................  3
          2.1.2  Actions of the sending agent ......................  4
          2.1.3  Actions of the receiving agent ....................  4
  3  EnvelopedData using ECC .......................................  4
     3.1  EnvelopedData using ECDH .................................  5
          3.1.1  Fields of KeyAgreeRecipientInfo ...................  5
          3.1.2  Actions of the sending agent ......................  5
          3.1.3  Actions of the receiving agent ....................  6
     3.2  EnvelopedData using 1-Pass ECMQV .........................  6
          3.2.1  Fields of KeyAgreeRecipientInfo ...................  6
          3.2.2  Actions of the sending agent ......................  7
          3.2.3  Actions of the receiving agent ....................  7
  4  AuthenticatedData using ECC ............ ......................  8
     4.1  AuthenticatedData using 1-pass ECMQV .....................  8
          4.1.1  Fields of KeyAgreeRecipientInfo ...................  8
          4.1.2  Actions of the sending agent ......................  8
          4.1.3  Actions of the receiving agent ....................  8
  5  Recommended Algorithms and Elliptic Curves ....................  9
  6  Certificates using ECC ........................................  9
  7  SMIMECapabilities Attribute and ECC ...........................  9
  8  ASN.1 Syntax .................................................. 10
     8.1  Algorithm identifiers .................................... 10
     8.2  Other syntax ............................................. 11
  9  Summary ....................................................... 12
  References ....................................................... 13
  Security Considerations .......................................... 14
  Intellectual Property Rights ..................................... 14
  Acknowledgments .................................................. 15
  Authors' Addresses ............................................... 15
  Full Copyright Statement ......................................... 16

1  Introduction

  The Cryptographic Message Syntax (CMS) is cryptographic algorithm
  independent.  This specification defines a profile for the use of
  Elliptic Curve Cryptography (ECC) public key algorithms in the CMS.
  The ECC algorithms are incorporated into the following CMS content
  types:

     -  'SignedData' to support ECC-based digital signature methods
        (ECDSA) to sign content




Blake-Wilson, et al.         Informational                      [Page 2]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


     -  'EnvelopedData' to support ECC-based public-key agreement
        methods (ECDH and ECMQV) to generate pairwise key-encryption
        keys to encrypt content-encryption keys used for content
        encryption

     -  'AuthenticatedData' to support ECC-based public-key agreement
        methods (ECMQV) to generate pairwise key-encryption keys to
        encrypt MAC keys used for content authentication and integrity

  Certification of EC public keys is also described to provide public-
  key distribution in support of the specified techniques.

1.1  Requirements terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in BCP 14, RFC 2119
  [MUST].

2  SignedData using ECC

  This section describes how to use ECC algorithms with the CMS
  SignedData format to sign data.

2.1  SignedData using ECDSA

  This section describes how to use the Elliptic Curve Digital
  Signature Algorithm (ECDSA) with SignedData.  ECDSA is specified in
  [X9.62].  The method is the elliptic curve analog of the Digital
  Signature Algorithm (DSA) [FIPS 186-2].

  In an implementation that uses ECDSA with CMS SignedData, the
  following techniques and formats MUST be used.

2.1.1  Fields of the SignedData

  When using ECDSA with SignedData, the fields of SignerInfo are as in
  [CMS], but with the following restrictions:

     digestAlgorithm MUST contain the algorithm identifier sha-1 (see
     Section 8.1) which identifies the SHA-1 hash algorithm.

     signatureAlgorithm contains the algorithm identifier ecdsa-with-
     SHA1 (see Section 8.1) which identifies the ECDSA signature
     algorithm.

     signature MUST contain the DER encoding (as an octet string) of a
     value of the ASN.1 type ECDSA-Sig-Value (see Section 8.2).



Blake-Wilson, et al.         Informational                      [Page 3]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


  When using ECDSA, the SignedData certificates field MAY include the
  certificate(s) for the EC public key(s) used in the generation of the
  ECDSA signatures in SignedData.  ECC certificates are discussed in
  Section 6.

2.1.2  Actions of the sending agent

  When using ECDSA with SignedData, the sending agent uses the message
  digest calculation process and signature generation process for
  SignedData that are specified in [CMS].  To sign data, the sending
  agent uses the signature method specified in [X9.62, Section 5.3]
  with the following exceptions:

     -  In [X9.62, Section 5.3.1], the integer "e" is instead
        determined by converting the message digest generated according
        to [CMS, Section 5.4] to an integer using the data conversion
        method in [X9.62, Section 4.3.2].

  The sending agent encodes the resulting signature using the ECDSA-
  Sig-Value syntax (see Section 8.2) and places it in the SignerInfo
  signature field.

2.1.3  Actions of the receiving agent

  When using ECDSA with SignedData, the receiving agent uses the
  message digest calculation process and signature verification process
  for SignedData that are specified in [CMS].  To verify SignedData,
  the receiving agent uses the signature verification method specified
  in [X9.62, Section 5.4] with the following exceptions:

     -  In [X9.62, Section 5.4.1] the integer "e'" is instead
        determined by converting the message digest generated according
        to [CMS, Section 5.4] to an integer using the data conversion
        method in [X9.62, Section 4.3.2].

  In order to verify the signature, the receiving agent retrieves the
  integers r and s from the SignerInfo signature field of the received
  message.

3  EnvelopedData using ECC Algorithms

  This section describes how to use ECC algorithms with the CMS
  EnvelopedData format.








Blake-Wilson, et al.         Informational                      [Page 4]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


3.1  EnvelopedData using (ephemeral-static) ECDH

  This section describes how to use the ephemeral-static Elliptic Curve
  Diffie-Hellman (ECDH) key agreement algorithm with EnvelopedData.
  Ephemeral-static ECDH is specified in [SEC1] and [IEEE1363].
  Ephemeral-static ECDH is the the elliptic curve analog of the
  ephemeral-static Diffie-Hellman key agreement algorithm specified
  jointly in the documents [CMS, Section 12.3.1.1] and [CMS-DH].

  In an implementation that uses ECDH with CMS EnvelopedData with key
  agreement, the following techniques and formats MUST be used.

3.1.1  Fields of KeyAgreeRecipientInfo

  When using ephemeral-static ECDH with EnvelopedData, the fields of
  KeyAgreeRecipientInfo are as in [CMS], but with the following
  restrictions:

     originator MUST be the alternative originatorKey.  The
     originatorKey algorithm field MUST contain the id-ecPublicKey
     object identifier (see Section 8.1) with NULL parameters.  The
     originatorKey publicKey field MUST contain the DER-encoding of a
     value of the ASN.1 type ECPoint (see Section 8.2), which
     represents the sending agent's ephemeral EC public key.

     keyEncryptionAlgorithm MUST contain the dhSinglePass-stdDH-
     sha1kdf-scheme object identifier (see Section 8.1) if standard
     ECDH primitive is used, or the dhSinglePass-cofactorDH-sha1kdf-
     scheme object identifier (see Section 8.1) if the cofactor ECDH
     primitive is used.  The parameters field contains
     KeyWrapAlgorithm.  The KeyWrapAlgorithm is the algorithm
     identifier that indicates the symmetric encryption algorithm used
     to encrypt the content-encryption key (CEK) with the key-
     encryption key (KEK).

3.1.2  Actions of the sending agent

  When using ephemeral-static ECDH with EnvelopedData, the sending
  agent first obtains the recipient's EC public key and domain
  parameters (e.g. from the recipient's certificate).  The sending
  agent then determines an integer "keydatalen", which is the
  KeyWrapAlgorithm symmetric key-size in bits, and also a bit string
  "SharedInfo", which is the DER encoding of ECC-CMS-SharedInfo (see
  Section 8.2).  The sending agent then performs the key deployment and
  the key agreement operation of the Elliptic Curve Diffie-Hellman
  Scheme specified in [SEC1, Section 6.1].  As a result the sending
  agent obtains:




Blake-Wilson, et al.         Informational                      [Page 5]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


     -  an ephemeral public key, which is represented as a value of the
        type ECPoint (see Section 8.2), encapsulated in a bit string
        and placed in the KeyAgreeRecipientInfo originator field, and

     -  a shared secret bit string "K", which is used as the pairwise
        key-encryption key for that recipient, as specified in [CMS].

3.1.3  Actions of the receiving agent

  When using ephemeral-static ECDH with EnvelopedData, the receiving
  agent determines the bit string "SharedInfo", which is the DER
  encoding of ECC-CMS-SharedInfo (see Section 8.2), and the integer
  "keydatalen" from the key-size, in bits, of the KeyWrapAlgorithm.
  The receiving agent retrieves the ephemeral EC public key from the
  bit string KeyAgreeRecipientInfo originator, with a value of the type
  ECPoint (see Section 8.2) encapsulated as a bit string.  The
  receiving agent performs the key agreement operation of the Elliptic
  Curve Diffie-Hellman Scheme specified in [SEC1, Section 6.1].  As a
  result, the receiving agent obtains a shared secret bit string "K",
  which is used as the pairwise key-encryption key to unwrap the CEK.

3.2  EnvelopedData using 1-Pass ECMQV

  This section describes how to use the 1-Pass elliptic curve MQV
  (ECMQV) key agreement algorithm with EnvelopedData.  ECMQV is
  specified in [SEC1] and [IEEE1363].  Like the KEA algorithm [CMS-
  KEA], 1-Pass ECMQV uses three key pairs: an ephemeral key pair, a
  static key pair of the sending agent, and a static key pair of the
  receiving agent.  An advantage of using 1-Pass ECMQV is that it can
  be used with both EnvelopedData and AuthenticatedData.

  In an implementation that uses 1-Pass ECMQV with CMS EnvelopedData
  with key agreement, the following techniques and formats MUST be
  used.

3.2.1  Fields of KeyAgreeRecipientInfo

  When using 1-Pass ECMQV with EnvelopedData, the fields of
  KeyAgreeRecipientInfo are:

     originator identifies the static EC public key of the sender.  It
     SHOULD be one of the alternatives, issuerAndSerialNumber or
     subjectKeyIdentifier, and point to one of the sending agent's
     certificates.

     ukm MUST be present.  The ukm field MUST contain an octet string
     which is the DER encoding of the type MQVuserKeyingMaterial (see
     Section 8.2).  The MQVuserKeyingMaterial ephemeralPublicKey



Blake-Wilson, et al.         Informational                      [Page 6]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


     algorithm field MUST contain the id-ecPublicKey object identifier
     (see Section 8.1) with NULL parameters field.  The
     MQVuserKeyingMaterial ephemeralPublicKey publicKey field MUST
     contain the DER-encoding of the ASN.1 type ECPoint (see Section
     8.2) representing sending agent's ephemeral EC public key.  The
     MQVuserKeyingMaterial addedukm field, if present, SHOULD contain
     an octet string of additional user keying material of the sending
     agent.

     keyEncryptionAlgorithm MUST be the mqvSinglePass-sha1kdf-scheme
     algorithm identifier (see Section 8.1), with the parameters field
     KeyWrapAlgorithm. The KeyWrapAlgorithm indicates the symmetric
     encryption algorithm used to encrypt the CEK with the KEK
     generated using the 1-Pass ECMQV algorithm.

3.2.2  Actions of the sending agent

  When using 1-Pass ECMQV with EnvelopedData, the sending agent first
  obtains the recipient's EC public key and domain parameters, (e.g.
  from the recipient's certificate) and checks that the domain
  parameters are the same.  The sending agent then determines an
  integer "keydatalen", which is the KeyWrapAlgorithm symmetric key-
  size in bits, and also a bit string "SharedInfo", which is the DER
  encoding of ECC-CMS-SharedInfo (see Section 8.2).  The sending agent
  then performs the key deployment and key agreement operations of the
  Elliptic Curve MQV Scheme specified in [SEC1, Section 6.2].  As a
  result, the sending agent obtains:

     -  an ephemeral public key, which is represented as a value of
        type ECPoint (see Section 8.2), encapsulated in a bit string,
        placed in an MQVuserKeyingMaterial ephemeralPublicKey publicKey
        field (see Section 8.2), and

     -  a shared secret bit string "K", which is used as the pairwise
        key-encryption key for that recipient, as specified in [CMS].

  The ephemeral public key can be re-used with an AuthenticatedData for
  greater efficiency.

3.2.3  Actions of the receiving agent

  When using 1-Pass ECMQV with EnvelopedData, the receiving agent
  determines the bit string "SharedInfo", which is the DER encoding of
  ECC-CMS-SharedInfo (see Section 8.2), and the integer "keydatalen"
  from the key-size, in bits, of the KeyWrapAlgorithm.  The receiving
  agent then retrieves the static and ephemeral EC public keys of the
  originator, from the originator and ukm fields as described in
  Section 3.2.1, and its static EC public key identified in the rid



Blake-Wilson, et al.         Informational                      [Page 7]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


  field and checks that the domain parameters are the same.  The
  receiving agent then performs the key agreement operation of the
  Elliptic Curve MQV Scheme [SEC1, Section 6.2].  As a result, the
  receiving agent obtains a shared secret bit string "K" which is used
  as the pairwise key-encryption key to unwrap the CEK.

4  AuthenticatedData using ECC

  This section describes how to use ECC algorithms with the CMS
  AuthenticatedData format.  AuthenticatedData lacks non-repudiation,
  and so in some instances is preferable to SignedData.  (For example,
  the sending agent might not want the message to be authenticated when
  forwarded.)

4.1  AuthenticatedData using 1-pass ECMQV

  This section describes how to use the 1-Pass elliptic curve MQV
  (ECMQV) key agreement algorithm with AuthenticatedData.  ECMQV is
  specified in [SEC1].  An advantage of using 1-Pass ECMQV is that it
  can be used with both EnvelopedData and AuthenticatedData.

4.1.1  Fields of the KeyAgreeRecipientInfo

  The AuthenticatedData KeyAgreeRecipientInfo fields are used in the
  same manner as the fields for the corresponding EnvelopedData
  KeyAgreeRecipientInfo fields of Section 3.2.1 of this document.

4.1.2  Actions of the sending agent

  The sending agent uses the same actions as for EnvelopedData with 1-
  Pass ECMQV, as specified in Section 3.2.2 of this document.

  The ephemeral public key can be re-used with an EnvelopedData for
  greater efficiency.

  Note: if there are multiple recipients, an attack is possible where
  one recipient modifies the content without other recipients noticing
  [BON].  A sending agent who is concerned with such an attack SHOULD
  use a separate AuthenticatedData for each recipient.

4.1.3  Actions of the receiving agent

  The receiving agent uses the same actions as for EnvelopedData with
  1-Pass ECMQV, as specified in Section 3.2.3 of this document.

  Note: see Note in Section 4.1.2.





Blake-Wilson, et al.         Informational                      [Page 8]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


5  Recommended Algorithms and Elliptic Curves

  Implementations of this specification MUST implement either
  SignedData with ECDSA or EnvelopedData with ephemeral-static ECDH.
  Implementations of this specification SHOULD implement both
  SignedData with ECDSA and EnvelopedData with ephemeral-static ECDH.
  Implementations MAY implement the other techniques specified, such as
  AuthenticatedData and 1-Pass ECMQV.

  Furthermore, in order to encourage interoperability, implementations
  SHOULD use the elliptic curve domain parameters specified by ANSI
  [X9.62], NIST [FIPS-186-2] and SECG [SEC2].

6  Certificates using ECC

  Internet X.509 certificates [PKI] can be used in conjunction with
  this specification to distribute agents' public keys.  The use of ECC
  algorithms and keys within X.509 certificates is specified in [PKI-
  ALG].

7  SMIMECapabilities Attribute and ECC

  A sending agent MAY announce to receiving agents that it supports one
  or more of the ECC algorithms in this document by using the
  SMIMECapabilities signed attribute [MSG, Section 2.5.2].

  The SMIMECapability value to indicate support for the ECDSA signature
  algorithm is the SEQUENCE with the capabilityID field containing the
  object identifier ecdsa-with-SHA1 with NULL parameters.  The DER
  encoding is:

     30 0b 06 07  2a 86 48 ce   3d 04 01 05  00

  The SMIMECapability capabilityID object identifiers for the supported
  key agreement algorithms in this document are dhSinglePass-stdDH-
  sha1kdf-scheme, dhSinglePass-cofactorDH-sha1kdf-scheme, and
  mqvSinglePass-sha1kdf-scheme.  For each of these SMIMECapability
  SEQUENCEs, the parameters field is present and indicates the
  supported key-encryption algorithm with the KeyWrapAlgorithm
  algorithm identifier.  The DER encodings that indicate capability of
  the three key agreement algorithms with CMS Triple-DES key wrap are:

     30 1c 06 09  2b 81 05 10   86 48 3f 00  02 30 0f 06
     0b 2a 86 48  86 f7 0d 01   09 10 03 06  05 00

  for ephemeral-static ECDH,





Blake-Wilson, et al.         Informational                      [Page 9]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


     30 1c 06 09  2b 81 05 10   86 48 3f 00  03 30 0f 06
     0b 2a 86 48  86 f7 0d 01   09 10 03 06  05 00

  for ephemeral-static ECDH with cofactor method, and

     30 1c 06 09  2b 81 05 10   86 48 3f 00  10 30 0f 06
     0b 2a 86 48  86 f7 0d 01   09 10 03 06  05 00

  for ECMQV.

8  ASN.1 Syntax

  The ASN.1 syntax used in this document is gathered in this section
  for reference purposes.

8.1  Algorithm identifiers

  The algorithm identifiers used in this document are taken from
  [X9.62], [SEC1] and [SEC2].

  The following object identifier indicates the hash algorithm used in
  this document:

     sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
        oiw(14) secsig(3) algorithm(2) 26 }

  The following object identifier is used in this document to indicate
  an elliptic curve public key:

     id-ecPublicKey OBJECT IDENTIFIER ::= { ansi-x9-62 keyType(2) 1 }

  where

     ansi-x9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
       10045 }

  When the object identifier id-ecPublicKey is used here with an
  algorithm identifier, the associated parameters contain NULL.

  The following object identifier indicates the digital signature
  algorithm used in this document:

     ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { ansi-x9-62 signatures(4)
        1 }







Blake-Wilson, et al.         Informational                     [Page 10]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


  When the object identifier ecdsa-with-SHA1 is used within an
  algorithm identifier, the associated parameters field contains NULL.

  The following object identifiers indicate the key agreement
  algorithms used in this document:

     dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 2}

     dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 3}

     mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 16}

  where

     x9-63-scheme OBJECT IDENTIFIER ::= { iso(1)
        identified-organization(3) tc68(133) country(16) x9(840)
        x9-63(63) schemes(0) }

  When the object identifiers are used here within an algorithm
  identifier, the associated parameters field contains the CMS
  KeyWrapAlgorithm algorithm identifier.

8.2  Other syntax

  The following additional syntax is used here.

  When using ECDSA with SignedData, ECDSA signatures are encoded using
  the type:

     ECDSA-Sig-Value ::= SEQUENCE {
        r INTEGER,
        s INTEGER }

  ECDSA-Sig-Value is specified in [X9.62].  Within CMS, ECDSA-Sig-Value
  is DER-encoded and placed within a signature field of SignedData.

  When using ECDH and ECMQV with EnvelopedData and AuthenticatedData,
  ephemeral and static public keys are encoded using the type ECPoint.

     ECPoint ::= OCTET STRING

  When using ECMQV with EnvelopedData and AuthenticatedData, the
  sending agent's ephemeral public key and additional keying material
  are encoded using the type:




Blake-Wilson, et al.         Informational                     [Page 11]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


     MQVuserKeyingMaterial ::= SEQUENCE {
        ephemeralPublicKey OriginatorPublicKey,
        addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL  }

  The ECPoint syntax in used to represent the ephemeral public key and
  placed in the ephemeralPublicKey field.  The additional user keying
  material is placed in the addedukm field.  Then the
  MQVuserKeyingMaterial value is DER-encoded and placed within a ukm
  field of EnvelopedData or AuthenticatedData.

  When using ECDH or ECMQV with EnvelopedData or AuthenticatedData, the
  key-encryption keys are derived by using the type:

     ECC-CMS-SharedInfo ::= SEQUENCE {
        keyInfo AlgorithmIdentifier,
        entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
        suppPubInfo [2] EXPLICIT OCTET STRING   }

  The fields of ECC-CMS-SharedInfo are as follows:

     keyInfo contains the object identifier of the key-encryption
     algorithm (used to wrap the CEK) and NULL parameters.

     entityUInfo optionally contains additional keying material
     supplied by the sending agent.  When used with ECDH and CMS, the
     entityUInfo field contains the octet string ukm.  When used with
     ECMQV and CMS, the entityUInfo contains the octet string addedukm
     (encoded in MQVuserKeyingMaterial).

     suppPubInfo contains the length of the generated KEK, in bits,
     represented as a 32 bit number, as in [CMS-DH].  (E.g. for 3DES it
     would be 00 00 00 c0.)

  Within CMS, ECC-CMS-SharedInfo is DER-encoded and used as input to
  the key derivation function, as specified in [SEC1, Section 3.6.1].
  Note that ECC-CMS-SharedInfo differs from the OtherInfo specified in
  [CMS-DH].  Here, a counter value is not included in the keyInfo field
  because the key derivation function specified in [SEC1, Section
  3.6.1] ensures that sufficient keying data is provided.

9  Summary

  This document specifies how to use ECC algorithms with the S/MIME
  CMS.  Use of ECC algorithm within CMS can result in reduced
  processing requirements for S/MIME agents, and reduced bandwidth for
  CMS messages.





Blake-Wilson, et al.         Informational                     [Page 12]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


References

  [X9.62]      ANSI X9.62-1998, "Public Key Cryptography For The
               Financial Services Industry: The Elliptic Curve Digital
               Signature Algorithm (ECDSA)", American National
               Standards Institute, 1999.

  [PKI-ALG]    Bassham, L., Housley R. and W. Polk, "Algorithms and
               Identifiers for the Internet X.509 Public Key
               Infrastructure Certificate and CRL Profile", RFC 3279,
               April 2002.

  [BON]        D. Boneh, "The Security of Multicast MAC", Presentation
               at Selected Areas of Cryptography 2000, Center for
               Applied Cryptographic Research, University of Waterloo,
               2000.  Paper version available from
               http://crypto.stanford.edu/~dabo/papers/mmac.ps

  [MUST]       Bradner, S., "Key Words for Use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [FIPS-180]   FIPS 180-1, "Secure Hash Standard", National Institute
               of Standards and Technology, April 17, 1995.

  [FIPS-186-2] FIPS 186-2, "Digital Signature Standard", National
               Institute of Standards and Technology, 15 February 2000.

  [PKI]        Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
               X.509 Public Key Infrastructure Certificate and
               Certificate Revocation List (CRL) Profile", RFC 3280,
               April 2002.

  [CMS]        Housley, R., "Cryptographic Message Syntax", RFC 2630,
               June 1999.

  [IEEE1363]   IEEE P1363, "Standard Specifications for Public Key
               Cryptography", Institute of Electrical and Electronics
               Engineers, 2000.

  [K]          B. Kaliski, "MQV Vulnerabilty", Posting to ANSI X9F1 and
               IEEE P1363 newsgroups, 1998.

  [LMQSV]      L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone,
               "An efficient protocol for authenticated key agreement",
               Technical report CORR 98-05, University of Waterloo,
               1998.





Blake-Wilson, et al.         Informational                     [Page 13]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


  [CMS-KEA]    Pawling, J., "CMS KEA and SKIPJACK Conventions", RFC
               2876, July 2000.

  [MSG]        Ramsdell, B., "S/MIME Version 3 Message Specification",
               RFC 2633, June 1999.

  [CMS-DH]     Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
               2631, June 1999.

  [SEC1]       SECG, "Elliptic Curve Cryptography", Standards for
               Efficient Cryptography Group, 2000. Available from
               www.secg.org/collateral/sec1.pdf.

  [SEC2]       SECG, "Recommended Elliptic Curve Domain Parameters",
               Standards for Efficient Cryptography Group, 2000.
               Available from www.secg.org/collateral/sec2.pdf.

Security Considerations

  This specification is based on [CMS], [X9.62] and [SEC1] and the
  appropriate security considerations of those documents apply.

  In addition, implementors of AuthenticatedData should be aware of the
  concerns expressed in [BON] when using AuthenticatedData to send
  messages to more than one recipient.  Also, users of MQV should be
  aware of the vulnerability in [K].

  When 256, 384, and 512 bit hash functions succeed SHA-1 in future
  revisions of [FIPS], [FIPS-186-2], [X9.62] and [SEC1], then they can
  similarly succeed SHA-1 in a future revision of this document.

Intellectual Property Rights

  The IETF has been notified of intellectual property rights claimed in
  regard to the specification contained in this document.  For more
  information, consult the online list of claimed rights
  (http://www.ietf.org/ipr.html).

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights. Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP 11. Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to



Blake-Wilson, et al.         Informational                     [Page 14]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

Acknowledgments

  The methods described in this document are based on work done by the
  ANSI X9F1 working group.  The authors wish to extend their thanks to
  ANSI X9F1 for their assistance.  The authors also wish to thank Peter
  de Rooij for his patient assistance.  The technical comments of
  Francois Rousseau were valuable contributions.

Authors' Addresses

  Simon Blake-Wilson
  Certicom Corp
  5520 Explorer Drive #400
  Mississauga, ON L4W 5L1

  EMail: [email protected]


  Daniel R. L. Brown
  pCerticom Corp
  5520 Explorer Drive #400
  Mississauga, ON L4W 5L1

  EMail: [email protected]


  Paul Lambert

  EMail: [email protected]


















Blake-Wilson, et al.         Informational                     [Page 15]

RFC 3278              Use of ECC Algorithms in CMS            April 2002


Full Copyright Statement

  Copyright (C) The Internet Society (2002).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Blake-Wilson, et al.         Informational                     [Page 16]