Network Working Group                                   D. Eastlake, 3rd
Request for Comments: 3174                                      Motorola
Category: Informational                                         P. Jones
                                                          Cisco Systems
                                                         September 2001


                  US Secure Hash Algorithm 1 (SHA1)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

  The purpose of this document is to make the SHA-1 (Secure Hash
  Algorithm 1) hash algorithm conveniently available to the Internet
  community.  The United States of America has adopted the SHA-1 hash
  algorithm described herein as a Federal Information Processing
  Standard.  Most of the text herein was taken by the authors from FIPS
  180-1.  Only the C code implementation is "original".

Acknowledgements

  Most of the text herein was taken from [FIPS 180-1].  Only the C code
  implementation is "original" but its style is similar to the
  previously published MD4 and MD5 RFCs [RFCs 1320, 1321].

  The SHA-1 is based on principles similar to those used by Professor
  Ronald L. Rivest of MIT when designing the MD4 message digest
  algorithm [MD4] and is modeled after that algorithm [RFC 1320].

  Useful comments from the following, which have been incorporated
  herein, are gratefully acknowledged:

     Tony Hansen
     Garrett Wollman








Eastlake & Jones             Informational                      [Page 1]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


Table of Contents

  1. Overview of Contents...........................................  2
  2. Definitions of Bit Strings and Integers........................  3
  3. Operations on Words............................................  3
  4. Message Padding................................................  4
  5. Functions and Constants Used...................................  6
  6. Computing the Message Digest...................................  6
  6.1 Method 1......................................................  6
  6.2 Method 2......................................................  7
  7. C Code.........................................................  8
  7.1 .h file.......................................................  8
  7.2 .c file....................................................... 10
  7.3 Test Driver................................................... 18
  8. Security Considerations........................................ 20
  References........................................................ 21
  Authors' Addresses................................................ 21
  Full Copyright Statement.......................................... 22

1. Overview of Contents

  NOTE: The text below is mostly taken from [FIPS 180-1] and assertions
  therein of the security of SHA-1 are made by the US Government, the
  author of [FIPS 180-1], and not by the authors of this document.

  This document specifies a Secure Hash Algorithm, SHA-1, for computing
  a condensed representation of a message or a data file.  When a
  message of any length < 2^64 bits is input, the SHA-1 produces a
  160-bit output called a message digest.  The message digest can then,
  for example, be input to a signature algorithm which generates or
  verifies the signature for the message.  Signing the message digest
  rather than the message often improves the efficiency of the process
  because the message digest is usually much smaller in size than the
  message.  The same hash algorithm must be used by the verifier of a
  digital signature as was used by the creator of the digital
  signature.  Any change to the message in transit will, with very high
  probability, result in a different message digest, and the signature
  will fail to verify.

  The SHA-1 is called secure because it is computationally infeasible
  to find a message which corresponds to a given message digest, or to
  find two different messages which produce the same message digest.
  Any change to a message in transit will, with very high probability,
  result in a different message digest, and the signature will fail to
  verify.






Eastlake & Jones             Informational                      [Page 2]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


  Section 2 below defines the terminology and functions used as
  building blocks to form SHA-1.

2. Definitions of Bit Strings and Integers

  The following terminology related to bit strings and integers will be
  used:

  a. A hex digit is an element of the set {0, 1, ... , 9, A, ... , F}.
     A hex digit is the representation of a 4-bit string.  Examples:  7
     = 0111, A = 1010.

  b. A word equals a 32-bit string which may be represented as a
     sequence of 8 hex digits.  To convert a word to 8 hex digits each
     4-bit string is converted to its hex equivalent as described in
     (a) above.  Example:

     1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23.

  c. An integer between 0 and 2^32 - 1 inclusive may be represented as
     a word.  The least significant four bits of the integer are
     represented by the right-most hex digit of the word
     representation.  Example: the integer 291 = 2^8+2^5+2^1+2^0 =
     256+32+2+1 is represented by the hex word, 00000123.

     If z is an integer, 0 <= z < 2^64, then z = (2^32)x + y where 0 <=
     x < 2^32 and 0 <= y < 2^32.  Since x and y can be represented as
     words X and Y, respectively, z can be represented as the pair of
     words (X,Y).

  d. block = 512-bit string.  A block (e.g., B) may be represented as a
     sequence of 16 words.

3. Operations on Words

  The following logical operators will be applied to words:

  a. Bitwise logical word operations

     X AND Y  =  bitwise logical "and" of  X and Y.

     X OR Y   =  bitwise logical "inclusive-or" of X and Y.

     X XOR Y  =  bitwise logical "exclusive-or" of X and Y.

     NOT X    =  bitwise logical "complement" of X.





Eastlake & Jones             Informational                      [Page 3]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


     Example:

              01101100101110011101001001111011
        XOR   01100101110000010110100110110111
              --------------------------------
          =   00001001011110001011101111001100

  b. The operation X + Y is defined as follows:  words X and Y
     represent integers x and y, where 0 <= x < 2^32 and 0 <= y < 2^32.
     For positive integers n and m, let n mod m be the remainder upon
     dividing n by m.  Compute

        z  =  (x + y) mod 2^32.

     Then 0 <= z < 2^32.  Convert z to a word,  Z, and define Z = X +
     Y.

  c. The circular left shift operation S^n(X), where X is a word and n
     is an integer with 0 <= n < 32, is defined by

        S^n(X)  =  (X << n) OR (X >> 32-n).

     In the above, X << n is obtained as follows: discard the left-most
     n bits of X and then pad the result with n zeroes on the right
     (the result will still be 32 bits).  X >> n is obtained by
     discarding the right-most n bits of X and then padding the result
     with n zeroes on the left.  Thus S^n(X) is equivalent to a
     circular shift of X by n positions to the left.

4. Message Padding

  SHA-1 is used to compute a message digest for a message or data file
  that is provided as input.  The message or data file should be
  considered to be a bit string.  The length of the message is the
  number of bits in the message (the empty message has length 0).  If
  the number of bits in a message is a multiple of 8, for compactness
  we can represent the message in hex.  The purpose of message padding
  is to make the total length of a padded message a multiple of 512.
  SHA-1 sequentially processes blocks of 512 bits when computing the
  message digest.  The following specifies how this padding shall be
  performed.  As a summary, a "1" followed by m "0"s followed by a 64-
  bit integer are appended to the end of the message to produce a
  padded message of length 512 * n.  The 64-bit integer is the length
  of the original message.  The padded message is then processed by the
  SHA-1 as n 512-bit blocks.






Eastlake & Jones             Informational                      [Page 4]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


  Suppose a message has length l < 2^64.  Before it is input to the
  SHA-1, the message is padded on the right as follows:

  a. "1" is appended.  Example: if the original message is "01010000",
     this is padded to "010100001".

  b. "0"s are appended.  The number of "0"s will depend on the original
     length of the message.  The last 64 bits of the last 512-bit block
     are reserved

     for the length l of the original message.

     Example:  Suppose the original message is the bit string

        01100001 01100010 01100011 01100100 01100101.

     After step (a) this gives

        01100001 01100010 01100011 01100100 01100101 1.

     Since l = 40, the number of bits in the above is 41 and 407 "0"s
     are appended, making the total now 448.  This gives (in hex)

        61626364 65800000 00000000 00000000
        00000000 00000000 00000000 00000000
        00000000 00000000 00000000 00000000
        00000000 00000000.

  c. Obtain the 2-word representation of l, the number of bits in the
     original message.  If l < 2^32 then the first word is all zeroes.
     Append these two words to the padded message.

     Example: Suppose the original message is as in (b).  Then l = 40
     (note that l is computed before any padding).  The two-word
     representation of 40 is hex 00000000 00000028.  Hence the final
     padded message is hex

        61626364 65800000 00000000 00000000
        00000000 00000000 00000000 00000000
        00000000 00000000 00000000 00000000
        00000000 00000000 00000000 00000028.

     The padded message will contain 16 * n words for some n > 0.
     The padded message is regarded as a sequence of n blocks M(1) ,
     M(2), first characters (or bits) of the message.






Eastlake & Jones             Informational                      [Page 5]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


5. Functions and Constants Used

  A sequence of logical functions f(0), f(1),..., f(79) is used in
  SHA-1.  Each f(t), 0 <= t <= 79, operates on three 32-bit words B, C,
  D and produces a 32-bit word as output.  f(t;B,C,D) is defined as
  follows: for words B, C, D,

     f(t;B,C,D) = (B AND C) OR ((NOT B) AND D)         ( 0 <= t <= 19)

     f(t;B,C,D) = B XOR C XOR D                        (20 <= t <= 39)

     f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D)  (40 <= t <= 59)

     f(t;B,C,D) = B XOR C XOR D                        (60 <= t <= 79).

  A sequence of constant words K(0), K(1), ... , K(79) is used in the
  SHA-1.  In hex these are given by

     K(t) = 5A827999         ( 0 <= t <= 19)

     K(t) = 6ED9EBA1         (20 <= t <= 39)

     K(t) = 8F1BBCDC         (40 <= t <= 59)

     K(t) = CA62C1D6         (60 <= t <= 79).

6. Computing the Message Digest

  The methods given in 6.1 and 6.2 below yield the same message digest.
  Although using method 2 saves sixty-four 32-bit words of storage, it
  is likely to lengthen execution time due to the increased complexity
  of the address computations for the { W[t] } in step (c).  There are
  other computation methods which give identical results.

6.1 Method 1

  The message digest is computed using the message padded as described
  in section 4.  The computation is described using two buffers, each
  consisting of five 32-bit words, and a sequence of eighty 32-bit
  words.  The words of the first 5-word buffer are labeled A,B,C,D,E.
  The words of the second 5-word buffer are labeled H0, H1, H2, H3, H4.
  The words of the 80-word sequence are labeled W(0), W(1),..., W(79).
  A single word buffer TEMP is also employed.

  To generate the message digest, the 16-word blocks M(1), M(2),...,
  M(n) defined in section 4 are processed in order.  The processing of
  each M(i) involves 80 steps.




Eastlake & Jones             Informational                      [Page 6]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


  Before processing any blocks, the H's are initialized as follows: in
  hex,

     H0 = 67452301

     H1 = EFCDAB89

     H2 = 98BADCFE

     H3 = 10325476

     H4 = C3D2E1F0.

  Now M(1), M(2), ... , M(n) are processed.  To process M(i), we
  proceed as follows:

     a. Divide M(i) into 16 words W(0), W(1), ... , W(15), where W(0)
        is the left-most word.

     b. For t = 16 to 79 let

        W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)).

     c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

     d. For t = 0 to 79 do

        TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);

        E = D;  D = C;  C = S^30(B);  B = A; A = TEMP;

     e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
        + E.

  After processing M(n), the message digest is the 160-bit string
  represented by the 5 words

        H0 H1 H2 H3 H4.

6.2 Method 2

  The method above assumes that the sequence W(0), ... , W(79) is
  implemented as an array of eighty 32-bit words.  This is efficient
  from the standpoint of minimization of execution time, since the
  addresses of W(t-3), ...  ,W(t-16) in step (b) are easily computed.
  If space is at a premium, an alternative is to regard { W(t) } as a





Eastlake & Jones             Informational                      [Page 7]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


  circular queue, which may be implemented using an array of sixteen
  32-bit words W[0], ... W[15].  In this case, in hex let

  MASK = 0000000F.  Then processing of M(i) is as follows:

     a. Divide M(i) into 16 words W[0], ... , W[15], where W[0] is the
        left-most word.

     b. Let A = H0, B = H1, C = H2, D = H3, E = H4.

     c. For t = 0 to 79 do

        s = t AND MASK;

        if (t >= 16) W[s] = S^1(W[(s + 13) AND MASK] XOR W[(s + 8) AND
        MASK] XOR W[(s + 2) AND MASK] XOR W[s]);

        TEMP = S^5(A) + f(t;B,C,D) + E + W[s] + K(t);

        E = D; D = C; C = S^30(B); B = A; A = TEMP;

     d. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
        + E.

7. C Code

  Below is a demonstration implementation of SHA-1 in C.  Section 7.1
  contains the header file, 7.2 the C code, and 7.3 a test driver.

7.1 .h file

/*
*  sha1.h
*
*  Description:
*      This is the header file for code which implements the Secure
*      Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
*      April 17, 1995.
*
*      Many of the variable names in this code, especially the
*      single character names, were used because those were the names
*      used in the publication.
*
*      Please read the file sha1.c for more information.
*
*/





Eastlake & Jones             Informational                      [Page 8]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


#ifndef _SHA1_H_
#define _SHA1_H_

#include <stdint.h>
/*
* If you do not have the ISO standard stdint.h header file, then you
* must typdef the following:
*    name              meaning
*  uint32_t         unsigned 32 bit integer
*  uint8_t          unsigned 8 bit integer (i.e., unsigned char)
*  int_least16_t    integer of >= 16 bits
*
*/

#ifndef _SHA_enum_
#define _SHA_enum_
enum
{
   shaSuccess = 0,
   shaNull,            /* Null pointer parameter */
   shaInputTooLong,    /* input data too long */
   shaStateError       /* called Input after Result */
};
#endif
#define SHA1HashSize 20

/*
*  This structure will hold context information for the SHA-1
*  hashing operation
*/
typedef struct SHA1Context
{
   uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest  */

   uint32_t Length_Low;            /* Message length in bits      */
   uint32_t Length_High;           /* Message length in bits      */

                              /* Index into message block array   */
   int_least16_t Message_Block_Index;
   uint8_t Message_Block[64];      /* 512-bit message blocks      */

   int Computed;               /* Is the digest computed?         */
   int Corrupted;             /* Is the message digest corrupted? */
} SHA1Context;

/*
*  Function Prototypes
*/



Eastlake & Jones             Informational                      [Page 9]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


int SHA1Reset(  SHA1Context *);
int SHA1Input(  SHA1Context *,
               const uint8_t *,
               unsigned int);
int SHA1Result( SHA1Context *,
               uint8_t Message_Digest[SHA1HashSize]);

#endif

7.2 .c file

/*
*  sha1.c
*
*  Description:
*      This file implements the Secure Hashing Algorithm 1 as
*      defined in FIPS PUB 180-1 published April 17, 1995.
*
*      The SHA-1, produces a 160-bit message digest for a given
*      data stream.  It should take about 2**n steps to find a
*      message with the same digest as a given message and
*      2**(n/2) to find any two messages with the same digest,
*      when n is the digest size in bits.  Therefore, this
*      algorithm can serve as a means of providing a
*      "fingerprint" for a message.
*
*  Portability Issues:
*      SHA-1 is defined in terms of 32-bit "words".  This code
*      uses <stdint.h> (included via "sha1.h" to define 32 and 8
*      bit unsigned integer types.  If your C compiler does not
*      support 32 bit unsigned integers, this code is not
*      appropriate.
*
*  Caveats:
*      SHA-1 is designed to work with messages less than 2^64 bits
*      long.  Although SHA-1 allows a message digest to be generated
*      for messages of any number of bits less than 2^64, this
*      implementation only works with messages with a length that is
*      a multiple of the size of an 8-bit character.
*
*/










Eastlake & Jones             Informational                     [Page 10]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


#include "sha1.h"

/*
*  Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
               (((word) << (bits)) | ((word) >> (32-(bits))))

/* Local Function Prototyptes */
void SHA1PadMessage(SHA1Context *);
void SHA1ProcessMessageBlock(SHA1Context *);

/*
*  SHA1Reset
*
*  Description:
*      This function will initialize the SHA1Context in preparation
*      for computing a new SHA1 message digest.
*
*  Parameters:
*      context: [in/out]
*          The context to reset.
*
*  Returns:
*      sha Error Code.
*
*/
int SHA1Reset(SHA1Context *context)
{
   if (!context)
   {
       return shaNull;
   }

   context->Length_Low             = 0;
   context->Length_High            = 0;
   context->Message_Block_Index    = 0;

   context->Intermediate_Hash[0]   = 0x67452301;
   context->Intermediate_Hash[1]   = 0xEFCDAB89;
   context->Intermediate_Hash[2]   = 0x98BADCFE;
   context->Intermediate_Hash[3]   = 0x10325476;
   context->Intermediate_Hash[4]   = 0xC3D2E1F0;

   context->Computed   = 0;
   context->Corrupted  = 0;





Eastlake & Jones             Informational                     [Page 11]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


   return shaSuccess;
}

/*
*  SHA1Result
*
*  Description:
*      This function will return the 160-bit message digest into the
*      Message_Digest array  provided by the caller.
*      NOTE: The first octet of hash is stored in the 0th element,
*            the last octet of hash in the 19th element.
*
*  Parameters:
*      context: [in/out]
*          The context to use to calculate the SHA-1 hash.
*      Message_Digest: [out]
*          Where the digest is returned.
*
*  Returns:
*      sha Error Code.
*
*/
int SHA1Result( SHA1Context *context,
               uint8_t Message_Digest[SHA1HashSize])
{
   int i;

   if (!context || !Message_Digest)
   {
       return shaNull;
   }

   if (context->Corrupted)
   {
       return context->Corrupted;
   }

   if (!context->Computed)
   {
       SHA1PadMessage(context);
       for(i=0; i<64; ++i)
       {
           /* message may be sensitive, clear it out */
           context->Message_Block[i] = 0;
       }
       context->Length_Low = 0;    /* and clear length */
       context->Length_High = 0;
       context->Computed = 1;



Eastlake & Jones             Informational                     [Page 12]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


   }

   for(i = 0; i < SHA1HashSize; ++i)
   {
       Message_Digest[i] = context->Intermediate_Hash[i>>2]
                           >> 8 * ( 3 - ( i & 0x03 ) );
   }

   return shaSuccess;
}

/*
*  SHA1Input
*
*  Description:
*      This function accepts an array of octets as the next portion
*      of the message.
*
*  Parameters:
*      context: [in/out]
*          The SHA context to update
*      message_array: [in]
*          An array of characters representing the next portion of
*          the message.
*      length: [in]
*          The length of the message in message_array
*
*  Returns:
*      sha Error Code.
*
*/
int SHA1Input(    SHA1Context    *context,
                 const uint8_t  *message_array,
                 unsigned       length)
{
   if (!length)
   {
       return shaSuccess;
   }

   if (!context || !message_array)
   {
       return shaNull;
   }

   if (context->Computed)
   {
       context->Corrupted = shaStateError;



Eastlake & Jones             Informational                     [Page 13]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


       return shaStateError;
   }

   if (context->Corrupted)
   {
        return context->Corrupted;
   }
   while(length-- && !context->Corrupted)
   {
   context->Message_Block[context->Message_Block_Index++] =
                   (*message_array & 0xFF);

   context->Length_Low += 8;
   if (context->Length_Low == 0)
   {
       context->Length_High++;
       if (context->Length_High == 0)
       {
           /* Message is too long */
           context->Corrupted = 1;
       }
   }

   if (context->Message_Block_Index == 64)
   {
       SHA1ProcessMessageBlock(context);
   }

   message_array++;
   }

   return shaSuccess;
}

/*
*  SHA1ProcessMessageBlock
*
*  Description:
*      This function will process the next 512 bits of the message
*      stored in the Message_Block array.
*
*  Parameters:
*      None.
*
*  Returns:
*      Nothing.
*
*  Comments:



Eastlake & Jones             Informational                     [Page 14]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


*      Many of the variable names in this code, especially the
*      single character names, were used because those were the
*      names used in the publication.
*
*
*/
void SHA1ProcessMessageBlock(SHA1Context *context)
{
   const uint32_t K[] =    {       /* Constants defined in SHA-1   */
                           0x5A827999,
                           0x6ED9EBA1,
                           0x8F1BBCDC,
                           0xCA62C1D6
                           };
   int           t;                 /* Loop counter                */
   uint32_t      temp;              /* Temporary word value        */
   uint32_t      W[80];             /* Word sequence               */
   uint32_t      A, B, C, D, E;     /* Word buffers                */

   /*
    *  Initialize the first 16 words in the array W
    */
   for(t = 0; t < 16; t++)
   {
       W[t] = context->Message_Block[t * 4] << 24;
       W[t] |= context->Message_Block[t * 4 + 1] << 16;
       W[t] |= context->Message_Block[t * 4 + 2] << 8;
       W[t] |= context->Message_Block[t * 4 + 3];
   }

   for(t = 16; t < 80; t++)
   {
      W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
   }

   A = context->Intermediate_Hash[0];
   B = context->Intermediate_Hash[1];
   C = context->Intermediate_Hash[2];
   D = context->Intermediate_Hash[3];
   E = context->Intermediate_Hash[4];

   for(t = 0; t < 20; t++)
   {
       temp =  SHA1CircularShift(5,A) +
               ((B & C) | ((~B) & D)) + E + W[t] + K[0];
       E = D;
       D = C;
       C = SHA1CircularShift(30,B);



Eastlake & Jones             Informational                     [Page 15]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


       B = A;
       A = temp;
   }

   for(t = 20; t < 40; t++)
   {
       temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
       E = D;
       D = C;
       C = SHA1CircularShift(30,B);
       B = A;
       A = temp;
   }

   for(t = 40; t < 60; t++)
   {
       temp = SHA1CircularShift(5,A) +
              ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
       E = D;
       D = C;
       C = SHA1CircularShift(30,B);
       B = A;
       A = temp;
   }

   for(t = 60; t < 80; t++)
   {
       temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
       E = D;
       D = C;
       C = SHA1CircularShift(30,B);
       B = A;
       A = temp;
   }

   context->Intermediate_Hash[0] += A;
   context->Intermediate_Hash[1] += B;
   context->Intermediate_Hash[2] += C;
   context->Intermediate_Hash[3] += D;
   context->Intermediate_Hash[4] += E;

   context->Message_Block_Index = 0;
}


/*
*  SHA1PadMessage
*



Eastlake & Jones             Informational                     [Page 16]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


*  Description:
*      According to the standard, the message must be padded to an even
*      512 bits.  The first padding bit must be a '1'.  The last 64
*      bits represent the length of the original message.  All bits in
*      between should be 0.  This function will pad the message
*      according to those rules by filling the Message_Block array
*      accordingly.  It will also call the ProcessMessageBlock function
*      provided appropriately.  When it returns, it can be assumed that
*      the message digest has been computed.
*
*  Parameters:
*      context: [in/out]
*          The context to pad
*      ProcessMessageBlock: [in]
*          The appropriate SHA*ProcessMessageBlock function
*  Returns:
*      Nothing.
*
*/

void SHA1PadMessage(SHA1Context *context)
{
   /*
    *  Check to see if the current message block is too small to hold
    *  the initial padding bits and length.  If so, we will pad the
    *  block, process it, and then continue padding into a second
    *  block.
    */
   if (context->Message_Block_Index > 55)
   {
       context->Message_Block[context->Message_Block_Index++] = 0x80;
       while(context->Message_Block_Index < 64)
       {
           context->Message_Block[context->Message_Block_Index++] = 0;
       }

       SHA1ProcessMessageBlock(context);

       while(context->Message_Block_Index < 56)
       {
           context->Message_Block[context->Message_Block_Index++] = 0;
       }
   }
   else
   {
       context->Message_Block[context->Message_Block_Index++] = 0x80;
       while(context->Message_Block_Index < 56)
       {



Eastlake & Jones             Informational                     [Page 17]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


           context->Message_Block[context->Message_Block_Index++] = 0;
       }
   }

   /*
    *  Store the message length as the last 8 octets
    */
   context->Message_Block[56] = context->Length_High >> 24;
   context->Message_Block[57] = context->Length_High >> 16;
   context->Message_Block[58] = context->Length_High >> 8;
   context->Message_Block[59] = context->Length_High;
   context->Message_Block[60] = context->Length_Low >> 24;
   context->Message_Block[61] = context->Length_Low >> 16;
   context->Message_Block[62] = context->Length_Low >> 8;
   context->Message_Block[63] = context->Length_Low;

   SHA1ProcessMessageBlock(context);
}

7.3 Test Driver

  The following code is a main program test driver to exercise the code
  in sha1.c.

/*
*  sha1test.c
*
*  Description:
*      This file will exercise the SHA-1 code performing the three
*      tests documented in FIPS PUB 180-1 plus one which calls
*      SHA1Input with an exact multiple of 512 bits, plus a few
*      error test checks.
*
*  Portability Issues:
*      None.
*
*/

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "sha1.h"

/*
*  Define patterns for testing
*/
#define TEST1   "abc"
#define TEST2a  "abcdbcdecdefdefgefghfghighijhi"



Eastlake & Jones             Informational                     [Page 18]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


#define TEST2b  "jkijkljklmklmnlmnomnopnopq"
#define TEST2   TEST2a TEST2b
#define TEST3   "a"
#define TEST4a  "01234567012345670123456701234567"
#define TEST4b  "01234567012345670123456701234567"
   /* an exact multiple of 512 bits */
#define TEST4   TEST4a TEST4b
char *testarray[4] =
{
   TEST1,
   TEST2,
   TEST3,
   TEST4
};
long int repeatcount[4] = { 1, 1, 1000000, 10 };
char *resultarray[4] =
{
   "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D",
   "84 98 3E 44 1C 3B D2 6E BA AE 4A A1 F9 51 29 E5 E5 46 70 F1",
   "34 AA 97 3C D4 C4 DA A4 F6 1E EB 2B DB AD 27 31 65 34 01 6F",
   "DE A3 56 A2 CD DD 90 C7 A7 EC ED C5 EB B5 63 93 4F 46 04 52"
};

int main()
{
   SHA1Context sha;
   int i, j, err;
   uint8_t Message_Digest[20];

   /*
    *  Perform SHA-1 tests
    */
   for(j = 0; j < 4; ++j)
   {
       printf( "\nTest %d: %d, '%s'\n",
               j+1,
               repeatcount[j],
               testarray[j]);

       err = SHA1Reset(&sha);
       if (err)
       {
           fprintf(stderr, "SHA1Reset Error %d.\n", err );
           break;    /* out of for j loop */
       }

       for(i = 0; i < repeatcount[j]; ++i)
       {



Eastlake & Jones             Informational                     [Page 19]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


           err = SHA1Input(&sha,
                 (const unsigned char *) testarray[j],
                 strlen(testarray[j]));
           if (err)
           {
               fprintf(stderr, "SHA1Input Error %d.\n", err );
               break;    /* out of for i loop */
           }
       }

       err = SHA1Result(&sha, Message_Digest);
       if (err)
       {
           fprintf(stderr,
           "SHA1Result Error %d, could not compute message digest.\n",
           err );
       }
       else
       {
           printf("\t");
           for(i = 0; i < 20 ; ++i)
           {
               printf("%02X ", Message_Digest[i]);
           }
           printf("\n");
       }
       printf("Should match:\n");
       printf("\t%s\n", resultarray[j]);
   }

   /* Test some error returns */
   err = SHA1Input(&sha,(const unsigned char *) testarray[1], 1);
   printf ("\nError %d. Should be %d.\n", err, shaStateError );
   err = SHA1Reset(0);
   printf ("\nError %d. Should be %d.\n", err, shaNull );
   return 0;
}

8. Security Considerations

  This document is intended to provide convenient open source access by
  the Internet community to the United States of America Federal
  Information Processing Standard Secure Hash Function SHA-1 [FIPS
  180-1].  No independent assertion of the security of this hash
  function by the authors for any particular use is intended.






Eastlake & Jones             Informational                     [Page 20]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


References

  [FIPS 180-1] "Secure Hash Standard", United States of American,
               National Institute of Science and Technology, Federal
               Information Processing Standard (FIPS) 180-1, April
               1993.

  [MD4]        "The MD4 Message Digest Algorithm," Advances in
               Cryptology - CRYPTO '90 Proceedings, Springer-Verlag,
               1991, pp. 303-311.

  [RFC 1320]   Rivest, R., "The MD4 Message-Digest Algorithm", RFC
               1320, April 1992.

  [RFC 1321]   Rivest, R., "The MD5 Message-Digest Algorithm", RFC
               1321, April 1992.

  [RFC 1750]   Eastlake, D., Crocker, S. and J. Schiller, "Randomness
               Requirements for Security", RFC 1750, December 1994.

Authors' Addresses

  Donald E. Eastlake, 3rd
  Motorola
  155 Beaver Street
  Milford, MA 01757 USA

  Phone:   +1 508-634-2066 (h)
           +1 508-261-5434 (w)
  Fax:     +1 508-261-4777
  EMail:   [email protected]


  Paul E. Jones
  Cisco Systems, Inc.
  7025 Kit Creek Road
  Research Triangle Park, NC 27709 USA

  Phone:   +1 919 392 6948
  EMail:   [email protected]











Eastlake & Jones             Informational                     [Page 21]

RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001


Full Copyright Statement

  Copyright (C) The Internet Society (2001).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Eastlake & Jones             Informational                     [Page 22]