Network Working Group                                      H. Lu, Editor
Request for Comments: 2995                                   I. Faynberg
Category: Informational                                       J. Voelker
                                                            M. Weissman
                                                               W. Zhang
                                                    Lucent Technologies
                                                                S. Rhim
                                                               J. Hwang
                                                          Korea Telecom
                                                                 S. Ago
                                                          S. Moeenuddin
                                                             S. Hadvani
                                                                    NEC
                                                          S. Nyckelgard
                                                                  Telia
                                                              J. Yoakum
                                                              L. Robart
                                                        Nortel Networks
                                                          November 2000


        Pre-SPIRITS Implementations of PSTN-initiated Services

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document contains information relevant to the work underway in
  The Services in the PSTN/IN Requesting InTernet Services (SPIRITS)
  Working Group.  It describes four existing implementations of
  SPIRITS-like services from Korea Telecom, Lucent Technologies, NEC,
  and Telia in cooperation with Nortel Networks.  SPIRITS-like services
  are those originating in the Public Switched Telephone Network (PSTN)
  and necessitating the interactions of the Internet and PSTN.









Lu, et al.                   Informational                      [Page 1]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  Surveying the implementations, we can make the following
  observations:

     o  The ICW service plays the role of a benchmark service.  All
        four implementations can support ICW, with three specifically
        designed for it.

     o  Session Initiation Protocol (SIP) is used in most of the
        implementations as the base communications protocol between the
        PSTN and Internet.  (NEC's implementation is the only exception
        that uses a proprietary protocol.  Nevertheless, NEC has a plan
        to support SIP together with the extensions for SPIRITS
        services.)

     o  All implementations use IN-based solutions for the PSTN part.

  It is clear that not all pre-SPIRITS implementations inter-operate
  with each other.  It is also clear that not all SIP-based
  implementations inter-operate with each other given that they do not
  support the same version of SIP.  It is a task of the SPIRITS Working
  Group to define the inter-networking interfaces that will support
  interoperation of the future implementations of SPIRITS services.

Table of Contents

  1. Introduction ................................................  3
  2. Service Description of Internet Call Waiting ................  4
  3. Korea Telecom's ICW Implementation ..........................  5
  3.1. Overview ..................................................  5
  3.2. Network Architecture ......................................  6
  3.3. Network Entities ..........................................  7
  3.3.1. SSP .....................................................  7
  3.3.2. SCP .....................................................  7
  3.3.3. IP ......................................................  7
  3.3.4. ICW Server System .......................................  7
  3.3.5. ICW Client System .......................................  8
  3.3.6. Firewall ................................................  9
  3.4. Network Interfaces ........................................  9
  3.5. Protocols .................................................  9
  3.5.1. Intelligent Network Application Part Protocol (INAP) ....  9
  3.5.2. PINT Protocol ...........................................  9
  3.6.  Example Scenarios ........................................ 11
  3.6.1. ICW Service Subscription ................................ 11
  3.6.2. ICW Client Installation ................................. 11
  3.6.3. ICW Service Activation .................................. 12
  3.6.4. Incoming Call Notification .............................. 14
  3.6.5. Incoming Call Processing ................................ 15
  3.6.5.1. Accept the Call ....................................... 16



Lu, et al.                   Informational                      [Page 2]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  3.6.5.2. Forward the Call to Another Number .................... 18
  3.6.6. ICW service De-activation ............................... 20
  4. The Lucent Technologies Online Communications Center ........ 21
  4.1 Overview ................................................... 21
  4.2. Architecture .............................................. 22
  4.3. Protocol and Operations Considerations .................... 25
  5. NEC's Implementation ........................................ 28
  5.1. Overview .................................................. 28
  5.2. Architecture and Overall Call Flow ........................ 29
  5.3. Interfaces and Protocols .................................. 31
  5.3.1. SCP (SPIRITS Client)-SPIRITS Server Interface ........... 31
  5.3.1.1. Connecting to SPIRITS Services ........................ 31
  5.3.1.2. Message Types ......................................... 31
  5.3.1.2.1 Connection Management Message Type ................... 31
  5.3.1.2.2. Data Message Type ................................... 33
  5.3.2. SPIRITS Server-ICW Client Application Interface ......... 34
  5.3.3. Secure Reliable Hybrid Datagram Session Protocol
  (SRHDSP) for Use  .............................................. 35
  5.3.3.1. Overview .............................................. 35
  5.3.3.2. Session Initiation .................................... 35
  5.3.3.3. Secure Reliable Datagram Transport .................... 36
  5.3.3.4. Session closure ....................................... 36
  6. Telia/Nortel's Implementation ............................... 36
  6.1. Overview .................................................. 36
  6.2. Architecture and Protocols ................................ 37
  6.3. Security .................................................. 39
  7. Security Considerations ..................................... 40
  8. Conclusion .................................................. 40
  9. References .................................................. 41
  10. Authors' Addresses ......................................... 41
  11. Full Copyright Statement ................................... 44

1. Introduction

  This document contains information relevant to the work underway in
  The Services in the PSTN/IN Requesting InTernet Services (SPIRITS)
  Working Group.  It describes four existing implementations of
  SPIRITS-like services from Korea Telecom, Lucent Technologies, NEC,
  and Telia in cooperation with Nortel Networks.  SPIRITS-like services
  are those originating in the Public Switched Telephone Network (PSTN)
  and necessitating the interactions of the Internet and PSTN.

  Invariably supported by the implementations examined in this document
  is the Internet Call Waiting (ICW) service.  With ICW, service
  subscribers, while using their telephone lines for Internet access,
  can be notified of incoming voice calls and specify how to handle the
  calls over the same telephone lines.




Lu, et al.                   Informational                      [Page 3]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  The document first gives a detailed description of the ICW service.
  Then it proceeds to discuss each of the four implementations.  The
  final sections of the document contains security considerations, the
  conclusion and references.

  It is important to note that even though the term "SPIRITS server" is
  used throughout the document, it has no universal meaning.  Its
  connotation depends on the context and varies from implementation to
  implementation.

2. Service Description of Internet Call Waiting

  Internet call waiting is the single service that is specifically
  supported by all the implementations in question.  In a nutshell, the
  service enables a subscriber engaged in an Internet dial-up session
  to

  o  be notified of an incoming call to the very same telephone line
     that is being used for the Internet connection;

  o  specify the desirable treatment of the call; and

  o  have the call handled as specified.

  The details of the ICW service lie in the ways that a waiting call
  can be treated, which vary from implementation to implementation.  In
  this section, we describe the features that are supported by at least
  one of the implementations.  They are as follows:

  o  Incoming Call Notification - The subscriber is notified of an
     incoming call over the Internet, without having any effect on the
     telephone line that is being used by the modem.  When a call comes
     in, the subscriber is presented with a pop-up dialog box on the
     PC.  The dialog box may display any combination of the calling
     party number, calling party name, and calling time.  Note that the
     display of the calling party name (or number) requires the
     availability of the caller name (or number) delivery feature.

  o  Online Incoming Call Disposition - Once informed of the incoming
     call, the subscriber has various options (indicated in the pop-up
     window) for handling the call.  Possible options are:

   + Accepting the call over the PSTN line, thus terminating the
     Internet (modem) connection

   + Accepting the call over the Internet using Voice over IP (VoIP)

   + Rejecting the call



Lu, et al.                   Informational                      [Page 4]

RFC 2995              Pre-SPIRITS Implementations          November 2000


   + Playing a pre-recorded message to the calling party and
     disconnecting the call

   + Forwarding the call to voice mail

   + Forwarding the call to another number

   + Rejecting (or Forwarding) on no Response - If the subscriber fails
     to respond within a certain period time after the dialog box has
     been displayed, the incoming call can be either rejected or
     handled based on the treatment pre-defined by the subscriber.

  o  Automatic Incoming Call Disposition - Incoming calls are
     automatically handled based on dispositions pre-defined by the
     subscriber without his or her real-time intervention.  The
     subscriber can pre-define the default disposition (e.g., re-
     directed to voice mail) for general calls as well as customized
     dispositions for calls from specific numbers.  In the latter case,
     the subscriber selects a particular disposition for each
     originating number and stores this information in a profile.  When
     a call comes in, the subscriber won't be presented the call but
     can examine the treatment and outcome of the call from the caller
     log (as described in the call logging bullet).  Naturally, this
     feature also allows the subscriber to specify the desired
     treatment for calls originating from private or unpublished
     numbers.

  o  Multiple Call Handling - Multiple calls can arrive during call
     disposition processing.  With multiple call handling, the
     subscriber is notified of the multiple calls one by one.

  o  Call Logging - A detailed log of the incoming calls processed
     during the ICW service is kept.  Typical information recorded in
     the log include the incoming call date and time, calling party
     number, calling party name, and call disposition.

3. Korea Telecom's ICW Implementation

3.1. Overview

  Korea Telecom's ICW implementation supports most of the features
  described in Section 2.  (The major exception is the feature of
  receiving the incoming call over the Internet using voice over IP.)
  In addition, the Korea Telecom implementation supports flexible
  activation and de-activation of the ICW service:






Lu, et al.                   Informational                      [Page 5]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  o  Automatic Activation/De-activation - When Internet dial-up
     connection is set up, the ICW service is activated or de-activated
     automatically.

  o  Manual Activation/De-activation - The subscriber can de-activate
     the ICW service manually when call notification is not desired
     during the Internet dial-up session and activate it when needed.

3.2. Network Architecture

  Figure 1 depicts the network architecture of the Korea Telecom ICW
  service.  The Service Switching Point (SSP), Service Control Point
  (SCP), and Intelligent Peripheral (IP) are legacy PSTN IN elements
  based on IN CS-1.  In contrast, both the ICW Server System and the
  ICW Client System are new network elements that are installed in the
  Internet domain to support of the ICW service.

    +---------------------------+      |     +--------------+
    |+--------+propr-+---------+| PINT |     |(Proxy Server)|  PINT
    ||(ICW SL)|ietary|(UAC/UAS)||--- -||-----|     ICW      |----+
    ||SCF/SDF |------|  SCGF   ||   firewall |Server System |    |
    |+--------+ i/f  +---------+|      |     +------------- +    |
    |           SCP             |      |                         |
    +------+--------------+-----+      |                         |
           |INAP          |INAP        |              firewall=====
           |              |            |                         |
       +---+---+      +---+---+                                  |
       |  IP   |      |  SSP  |                                  |
       +-------+      +---+---+                        +-------------+
                          |                   +---+    |  (UAC/UAS)  |
                      +---+---+              ||   ||   |    ICW      |
            |---------|  LEX  |--------------  + +     |Client System|
          +---+       +-------+               +++++----+-------------+
         ||   ||                             (callee)
           + +                           ICW Subscriber's Phone and PC
          +++++
        (caller)

               INAP : Intelligent Network Application Protocol
               PINT : PSTN/Internet Interworking Protocol
               SL   : Service Logic
               UAS  : User Agent Server
               UAC  : User Agent Client

    Figure 1: Network Architecture of the Korea Telecom ICW Service






Lu, et al.                   Informational                      [Page 6]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.3. Network Entities

3.3.1. SSP

  The SSP performs the Service Switching Function (SSF) and Call
  Control Function (CCF).  When detecting that the called party is busy
  (T_Busy), the SSP sends a query to the SCP and processes the call
  under the control of the SCP.

3.3.2. SCP

  The SCP performs the Service Control Function (SCF) and Service Data
  Function (SDF).  It, when queried, instructs the SSP to process the
  call based on the service logic.  In the case of the ICW service, the
  service logic ultimately governs the notification of a waiting call
  to an online ICW subscriber and the disposition of the call.  In
  addition, the SCP performs the Service Control Gateway Function
  (SCGF) for protocol inter-working between the PSTN/IN and Internet.
  It translates the SIP message from the ICW Server to the service
  control interface message and vise versa.  The SCGF is an IP end
  point and behaves as a UAS (User Agent server) or UAC (User Agent
  client).

3.3.3. IP

  The IP contains Service Resource Function (SRF).  It, when necessary,
  plays announcements to the calling party during the ICW service
  before/after receiving the response from the ICW subscriber and
  records the calling party number or voice message from the calling
  party when the call is forwarded to the Voice Mail System (VMS).

3.3.4. ICW Server System

  The ICW Server system serves as a SIP proxy or a redirect server for
  message routing between the ICW Client and SCGF.  The ICW Server is
  also responsible for managing the ICW Clients that are connected to
  it.  When an ICW Client (subscriber) sends a registration request for
  the ICW service, the ICW Server relays that request to the SCP, waits
  for the result of authorization from the SCP, and registers the
  authorized subscriber in its data base.  In addition, the ICW Server
  monitors the connection status of the registered ICW Clients.  As
  soon as a client deactivates the ICW service or terminates the
  Internet connection, the ICW Server detects the status change and
  deactivates the ICW service for the client.  Finally, the ICW Server
  manages profiles for each ICW subscribers as well as logs all the
  call processing results.





Lu, et al.                   Informational                      [Page 7]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.3.5. ICW Client System

  The ICW Client System is an application program running on the
  subscriber's PC.  Launched as soon as the subscriber powers on the
  PC, it monitors the Internet connection status of the PC (or
  subscriber).  Upon the subscriber's connection to the Internet, the
  ICW Client sends a REGISTRATION request to the SCGF via the ICW
  Server and then eventually to the SCP.  In this capacity, the ICW
  Client acts as a UAC to the SCGF, which acts as a UAS.  Thereafter it
  notifies the ICW Server periodically of the connection status of the
  subscriber.

  The ICW Client is also responsible for popping up a dialog box on the
  subscriber's PC to announce an incoming call.  The dialog box
  displays the number and name of calling party, calling time, and the
  call processing options (including Accept, Reject, Forward to another
  number or VMS).  After the subscriber selects the option, the ICW
  Client sends it to the SCP.  In this capacity, the ICW Client acts as
  a UAS.

  Depending on the pre-defined ICW Service Profile, the ICW Client may
  screen the incoming call before notifying the subscriber.

  The ICW Client manages the ICW Service Profile, which contains the
  following fields:

  o  Subscriber Information (including, Name, Directory Number,
     Password)

  o  Service Status (Activation/De-activation)

  o  Automatic Call Processing Method

   + Call Processing Method on No Answer (Reject/Forward/VMS) - The
     call is automatically handled by the method if the subscriber
     doesn't respond after a pre-defined period of time.

   + Do Not Disturb Mode (On/Off) - When this is set on, the subscriber
     won't be notified of the incoming calls.

   + Call Processing Method on Do Not Disturb (Reject/Forward/VMS)

   + Call Processing List by Calling Party Numbers
     (Accept/Reject/Forward/VMS) - Calls originated from a number on
     the list are handled by the associated call processing method.

  o  The ICW Client records the call processing method and the result
     for each incoming call in a log file on the subscriber's PC.  The



Lu, et al.                   Informational                      [Page 8]

RFC 2995              Pre-SPIRITS Implementations          November 2000


     call record in the call log contains the following information:

  - Calling Time
  - Calling Party Number
  - Calling Party Name (optional)
  - Call Processing Method (Accept/Reject/Forward/Forward to VMS)
  - Result (Success/Fail)

3.3.6. Firewall

  Packet Filtering Firewall Systems are between the ICW server and
  clients as well as between the SCGF and ICW server for accessing the
  Korea Telecom IN Nodes.

3.4. Network Interfaces

  o  The SCF-SDF, SCF-SSF, and SCF-SRF interfaces are the same as
     existing PSTN IN Interfaces based on the KT INAP CS-1.

  o  The SCGF-SCF interface relays requests either from the IN or the
     Internet and is implemented based on the internal API of the SCP.

  o  The SCGF-ICW Server and ICW Server-ICW Client interfaces are
     implemented based on the PINT Service Protocol V.1.  We adopted
     UAS-Proxy-UAC relationships as shown in Figure 2.

          +---------+        +-------------+        +---------+
          |(UAC/UAS)|PINT 1.0|   (Proxy)   |PINT 1.0|(UAC/UAS)|
          |         |--------|     ICW     |--------|   ICW   |
          |  SCGF   |        |    Server   |        |  Client |
          +---------+        +-------------+        +---------+

                 Figure 2: PINT Protocol Architecture

3.5. Protocols

3.5.1. Intelligent Network Application Part Protocol (INAP)

  The SCP, SSP, and IP support the KT INAP V1.0, which is based on
  ITU-T INAP CS-1 with the incorporation of two INAP CS-2 messages [PRM
  (PromptAndReceiveMessage) and EM (EraseMessage)] for recording the
  voice message.

3.5.2. PINT Protocol

  The ICW service uses the PINT Service Protocol 1.0 [1] for
  communications between the SCP and the ICW Server System, and between
  the ICW Server System and the ICW Client System.  Developed in the



Lu, et al.                   Informational                      [Page 9]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  IETF PINT Working Group for invoking telephone services from an IP
  network, the PINT Service Protocol 1.0 specifies a set of
  enhancements to SIP 2.0 and SDP.

  Summarized below are the elements of the PINT Service Protocol 1.0
  relevant to the Korea Telecom ICW implementation:

     o REGISTER

     The REGISTER method is used to inform the SCP of the connection
     status of an ICW subscriber.  With this method, the ICW Client
     sends to the ICW Server the IP address (of the PC) and phone
     number of the subscriber when the subscriber is first connected to
     the Internet.  The ICW server relays the information to the SCP,
     which updates the data base (if the subscriber is authorized), and
     in the end sends a registration acknowledgment to the ICW Server
     and then the Client.  After the subscriber is connected to the
     Internet, the ICW Client sends a REGISTER request to the ICW
     Server periodically at a pre-defined interval (e.g., 20 seconds)
     to indicate its connection status.  The request is not relayed to
     the SCP.  The ICW Server only checks if it is from the authorized
     subscriber.  Finally, when the subscriber terminates the Internet
     connection, the Client sends the last REGISTER request to the SCP
     via the ICW Server.  If the REGISTER request does not arrive
     during the pre-defined interval, the ICW Server can also detect
     the change of the connection status of the ICW Client.

     o INVITE

     The SCP uses the INVITE method to notify the ICW Client, via the
     ICW Server, of an incoming call.

     o ACK

     Both the SCP and the ICW Server use the ACK method to confirm the
     receipt of the final responses to their requests.

     o BYE

     The BYE method terminates a service session.  In addition to this
     original usage, we use the value (success or failure) of the
     Subject header to indicate the result of the desired disposition
     of an incoming call in the PSTN.








Lu, et al.                   Informational                     [Page 10]

RFC 2995              Pre-SPIRITS Implementations          November 2000


     o CANCEL

     When the calling party releases the call before the called party
     responds, the SCP sends a CANCEL request to the ICW Client to
     cancel the INVITE request that it sent previously.

     o OPTION

     This method is not used in the KT implementation.

     o Responses

     The SCP responds to a REGISTER request with one of the status
     codes and associated comments below:

     . 100 Trying: Trying
     . 200 OK: Registered

     The ICW Client responds to an INVITE request with one of the
     status codes and associated comments below:

     . 100 Trying: Trying
     . 200 OK: Accept the Call
     . 303 see other: Forward the Call to Another Number
     . 380 alternative service: Forward the Call to the VMS
     . 603 decline: Reject the Call

3.6.  Example Scenarios

3.6.1. ICW Service Subscription

  Access to the Korea Telecom ICW service is by subscription.  Here
  Korea Telecom serves as both the PSTN operator and IN-based ICW
  service provider.  Note that the subscription data need to be loaded
  onto the relevant SSPs, including the local ones that may not be
  operated by Korea Telecom.

3.6.2. ICW Client Installation

  An ICW subscriber should install the ICW Client program in his or her
  PC.  The ICW Client is automatically activated to run as a daemon
  process when the subscriber's PC is turned on.  The Client monitors
  the Internet connection status of the subscriber.








Lu, et al.                   Informational                     [Page 11]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.6.3. ICW Service Activation

  When the subscriber initiates the Internet connection or activates
  the ICW service manually, the ICW service is activated.  That is done
  by sending a REGISTER request with the directory number and IP
  address from the ICW Client to the SCP through the ICW Server.

ICW Subscriber ICW Server    SCGF        SCF/SDF     SSF/CCF    Calling
ICW Client                                                        party
(DN1/IP1)      (IP2)        (IP3)                                 (DN2)
    |            |            |            |            |            |
   0A            |            |            |            |            |
   0BREG(DN1,IP1)|            |            |            |            |
 1  |----------->|REG(DN1,IP1)|            |            |            |
 2  |            |----------->|            |            |            |
    |            |           2A            |            |            |
    |            |            |reg(DN1,IP1)|            |            |
 3  |            |            |-.-.-.-.-.->|            |            |
    |            |            |           3A            |            |
    |            |            |   reg ok  3B            |            |
 4  |            |            |<-.-.-.-.-.-|            |            |
    |            |   200 OK  4A            |            |            |
 5  |            |<-----------|            |            |            |
    |   200 OK  5A            |            |            |            |
 6  |<-----------|            |            |            |            |
   6A            |            |            |            |            |
    |            |            |            |            |            |

   -----> PINT Protocol          -.-.-> SCP Internal API
   --.--> INAP Protocol          +++++> ISUP Protocol
   =====> Bearer

                 Figure 3: ICW Service Activation

  As depicted in Figure 3, the relevant information flows are as
  follows:

  (0A) The ICW subscriber dials the ISP access number and establishes a
  PPP connection.

  (0B) The ICW Client detects the PPP connection.

  1. The ICW Client sends a registration request to the ICW Server in
  order to register the IP address-DN relationship for the dial-up
  connection.

  2. The ICW Server relays registration request to the SCGF.




Lu, et al.                   Informational                     [Page 12]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  2A. The SCGF translates the user registration information from the
  SIP message to the SCP internal API message.

  3. The SCGF relays the user registration message to the SCF/SDF.

  3A. The SCF/SDF authorizes the subscriber with the directory number
  based on the user registration information.

  3B. The SCF/SDF stores the IP address of the ICW Client and sets the
  status to "Internet on-line."

  4. The SCF/SDF sends the result of registration to the SCF/SCGF.

  4A. The SCGF translates the user registration response of the SCP
  internal API message to the PINT message.

  5. The SCGF relays the user registration response to the ICW Server.

  5A. The ICW Server records the user registration information and the
  Internet on-line status for the subscriber in the data base.

  6. The ICW Server sends the user registration response to the ICW
  Client.

  6A. The ICW Client notifies the subscriber that the registration is
  completed successfully and the ICW service is in the active state.

























Lu, et al.                   Informational                     [Page 13]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.5.4. Incoming Call Notification

  When a calling party makes a call to the ICW subscriber, the SCP
  notifies the ICW Client of the incoming call and waits for the
  subscriber's response.

ICW Subscriber ICW Server    SCGF        SCF/SDF     SSF/CCF    Calling
ICW Client                                                        party
(DN1/IP1)      (IP2)        (IP3)                                 (DN2)
    |            |            |            |            |            |
    |            |            |            |           setup(DN1,DN2)|
 1  |            |            |            |            |<+++++++++++|
    |            |            |            |           1A            |
    |            |            |          IDP(T-busy,DN1)|            |
 2  |            |            |            |<--.--.--.--|            |
    |            |            |           2A            |            |
    |            |            |           2B            |            |
    |            |            |           2C            |            |
    |            |        noti(DN1,IP1,DN2)|            |            |
 3  |            |            |<-.-.-.-.-.-|            |            |
    |            |           3A            |            |            |
    |         INV(DN1,IP1,DN2)|            |            |            |
 4  |            |<-----------|            |            |            |
    |           4A            |            |            |            |
    |            | 100 Trying |            |            |            |
 5  |            |----------->|            |            |            |
 INV(DN1,IP1,DN2)|            |            |            |            |
 6  |<-----------|            |            |            |            |
   6A            |            |            |            |            |
    | 100 Trying |            |            |            |            |
 7  |----------->|            |            |            |            |
    |            |            |            |            |            |

      -----> PINT Protocol             -.-.-> SCP Internal API
      --.--> INAP Protocol             +++++> ISUP Protocol
      =====> Bearer

                 Figure 4: Incoming Call Notification

  As depicted in Figure 4, the relevant information flows are as
  follows:

  1. The calling party at DN2 (a telephone user) makes a call to the
  ICW subscriber (PC user) at DN1.  The connection is set up using the
  existing ISDN signaling.

  1A. The SSF/CCF detects that the callee (the ICW subscriber) is busy.




Lu, et al.                   Informational                     [Page 14]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  2. The SSF/CCF sends InitialDP (T_Busy) to the SCF/SDF.

  2A. The SCF/SDF determines whether the user at DN1 is PSTN on-line or
  Internet on-line.  (The SCF/SDF executes the KT Telephone Mail
  Service logic in the PSTN on-line case and the ICW service Logic in
  the Internet on-line case.)

  2B. The SCF/SDF retrieves the IP address corresponding to DN1.

  2C. The SCF/SDF may play an announcement to the calling party, while
  waiting for the response of the called party.

  3. The SCF sends an incoming call notification to the SCGF.

  3A. The SCGF translates the incoming call notification from the SCP
  internal format to the PINT format.

  4. The SCGF relays the notification to the ICW Server.

  4A. The ICW Server double-checks the subscriber's status using the
  ICW subscribers profile in its own data base.

  5. The ICW Server sends trying message to the SCGF.

  6. The ICW Server relays the notification to the ICW Client.

  6A. The ICW Client consults the ICW service profile to see if there
  is a pre-defined call disposition for the incoming call.  If so, then
  the procedure for automatic call processing is performed.

  6B. If there is no pre-defined call disposition for the incoming
  call, the subscriber is notified of the call via a pop-up dialog box.

  7. The ICW Client sends trying message to the ICW Server.

3.6.5. Incoming Call Processing

  The incoming call can be accepted, rejected, forwarded to another
  number, or forwarded to the VMS depending on the on-the-fly or pre-
  defined choice of the subscriber.  This section describes the
  information flows for the cases of "Accept the call" and "Forward the
  call to another number."









Lu, et al.                   Informational                     [Page 15]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.5.5.1. Accept the Call

ICW Subscriber ICW Server    SCGF        SCF/SDF     SSF/CCF    Calling
ICW Client                                                        party
(DN1/IP1)      (IP2)        (IP3)                                 (DN2)
    |            |            |            |            |            |
   0A   200 OK   |            |            |            |            |
 1  |----------->|            |            |            |            |
   1A            |            |            |            |            |
   1B            |   200 OK   |            |            |            |
 2  |            |----------->|            |            |            |
    |            |    ACK    2A            |            |            |
 3  |            |<-----------|            |            |            |
    |            |            |Accept(DN1,IP1,DN2)      |            |
 4  |            |            |-.-.-.-.-.->|            |            |
    |            |            |            |Connect(DN1,DN2)         |
 5  |            |            |            |--.--.--.-->|            |
    |            |            |           Setup(DN1,DN2)|            |
 6  |<++++++++++++++++++++++++++++++++++++++++++++++++++|            |
    |<==============================6A==============================>|
    |            |            |            |    ERB     |            |
 7  |            |            |            |<--.--.--.--|            |
    |            |            |     ok     |            |            |
 8  |            |            |<-.-.-.-.-.-|            |            |
    |            |           8A            |            |            |
    |            |    BYE     |            |            |            |
 9  |            |<-----------|            |            |            |
    |           9A            |            |            |            |
    |            |            |            |            |            |



      -----> PINT Protocol             -.-.-> SCP Internal API
      --.--> INAP Protocol             +++++> ISUP Protocol
      =====> Bearer

          Figure 5: Incoming Call Processing - Accept the Call

  As depicted in Figure 5, the relevant information flows are as
  follows:

  0A. The ICW subscriber chooses to "Accept" the incoming call.

  1. The ICW Client sends the "Accept" indication to the ICW Server.

  1A. The ICW Client records the subscriber's selection for the
  incoming call in the call log.




Lu, et al.                   Informational                     [Page 16]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  1B. The ICW Client terminates the subscriber's Internet connection.

  2. The ICW Server sends an "Accept" message to the SCGF.

  2A. The SCGF translates the "Accept" message to an SCP internal API
  message.

  3. The SCGF sends an "ACK" message to the ICW Server.

  4. The SCGF sends the "Accept" message to the SCF.

  5. The SCF instructs the SSF/CCF to route the call to DN1.

  6. The SSF/CCF initiates the connection setup to DN1.

  6A. The bearer connection between the calling party (DN2) and the ICW
  subscriber(DN1) is set up.

  7. The connection result is returned to the SCF through ERB.

  8. The SCF sends a call completion message to the SCGF.

  8A. The SCGF translates the call completion message to a PINT
  message.

  9. The SCGF sends a "BYE" message to the ICW Server.

  9A. The ICW Server records the call completion result in the log
  file.






















Lu, et al.                   Informational                     [Page 17]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.5.5.2. Forward the Call to Another Number

ICW Subscriber ICW Server SCGF     SCF/SDF    SSF/CCF    Calling Another
ICW Client                                                party   Phone
(DN1/IP1)     (IP2)      (IP3)                           (DN2)    (DN3)
    |          |          |          |          |          |         |
   0A          |          |          |          |          |         |
    |303 SeeOther         |          |          |          |         |
 1  |--------->|          |          |          |          |         |
   1A    ACK   |          |          |          |          |         |
 2  |<---------|303 SeeOther         |          |          |         |
 3  |          |--------->|          |          |          |         |
    |          |    ACK  3A          |          |          |         |
 4  |          |<---------|Connect(DN2,DN3)     |          |         |
 5  |          |          |-.-.-.-.->|          |          |         |
    |          |          |          |Connect(DN2,DN3)     |         |
 6  |          |          |          |.--.--.-->|          |         |
    |          |          |          |          |Setup(DN2,DN3)      |
 7  |          |          |          |          ++++++++++++++++++++>|
 8  |          |          |          |   ERB    |          |<===5A==>|
    |          |          |          |<--.--.--.|          |         |
    |          |          |    ok    |          |          |         |
 9  |          |          |<-.-.-.-.-|          |          |         |
    |          |   BYE   9A          |          |          |         |
10  |          |<---------|          |          |          |         |
    |  BYE    10A         |          |          |          |         |
11  |<---------|          |          |          |          |         |
   11A         |          |          |          |          |         |
    |          |          |          |          |          |         |

      -----> PINT Protocol             -.-.-> SCP Internal API
      --.--> INAP Protocol             +++++> ISUP Protocol
      =====> Bearer

 Figure 6: Incoming Call Processing - Forward the Call to Another

  As depicted in Figure 6, the relevant information flows are as
  follows:

  0A. The ICW subscriber chooses to "Forward to another number (DN3)"
  for the incoming call.

  1. The ICW Client sends the "Forward to another number" indication to
  the ICW Server.

  1A. The ICW Client records the subscriber's selection for the
  incoming call in the call log.




Lu, et al.                   Informational                     [Page 18]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  2. The ICW Server sends an "ACK" message to the ICW Client.

  3. The ICW Server relays the "Forward to another number" message to
  the SCGF.

  3A. The SCGF translates the "Forward to another number" message to an
  SCP internal API message.

  4. The SCGF sends an "ACK" message to the ICW Server.

  5. The SCGF sends the "Forward to another number" message to the SCF.

  6. The SCF instructs the SSF/CCF to route the call to DN3.

  7. The SSF/CCF initiates the connection setup to DN3.

  7A. The bearer connection between the calling party (DN2) and the new
  termination number (DN3) is set up.

  8. The connection result is returned to the SCF through ERB.

  9. The SCF sends a call completion message to the SCGF.

  9A. The SCGF translates the call completion message to a PINT
  message.

  10. The SCGF sends the call completion message to the ICW Server.

  10A. The ICW Server records the call completion result in the log
  file.

  11. The ICW Server sends the success of "Forwarding to another
  number" to the ICW Client.

  11A. The ICW Client records the call completion result in the log
  file.















Lu, et al.                   Informational                     [Page 19]

RFC 2995              Pre-SPIRITS Implementations          November 2000


3.6.6. ICW service De-activation

  The SCP de-activates the ICW service for a subscriber either upon the
  termination of the subscriber's Internet connection or upon the
  subscriber's manual request.  In this section, we illustrate the
  former scenario.

ICW Subscriber ICW Server    SCGF        SCF/SDF     SSF/CCF    Calling
ICW Client                                                        party
(DN1/IP1)      (IP2)        (IP3)                                (DN2)
    |            |            |            |            |            |
   0A            |            |            |            |            |
    |           0B            |            |            |            |
    |            |Unreg(DN1,IP1)           |            |            |
 1  |            |----------->|            |            |            |
    |            |           1A            |            |            |
    |            |            |Unreg(DN1,IP1)           |            |
 2  |            |            |-.-.-.-.-.->|            |            |
    |            |            |           2A            |            |
    |            |            |     ok    2B            |            |
 3  |            |            |<-.-.-.-.-.-|            |            |
    |            |           3A            |            |            |
    |            |   200 OK   |            |            |            |
 4  |            |<-----------|            |            |            |
    |           4A            |            |            |            |
    |            |            |            |            |            |


      -----> PINT Protocol             -.-.-> SCP Internal API
      --.--> INAP Protocol             +++++> ISUP Protocol
      =====> Bearer

                Figure 7: ICW Service De-activation

  As depicted in Figure 7, the relevant information flows are as
  follows:

  0A. The ICW subscriber terminates the Internet connection.

  0B. The ICW Server determines that the Internet connection has been
  terminated when it does not receive the periodic on-line notification
  from the ICW Client.

  1. The ICW Server sends an un-register message to the SCGF.

  1A. The SCGF translates the un-register message to an SCP internal
  API message.




Lu, et al.                   Informational                     [Page 20]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  2. The SCGF sends the un-register message to the SCF.

  2A. The SCF/SDF authorizes the subscriber with the directory number
  based on the un-registration information.

  2B. The SCF/SDF records the Internet off-line status for that ICW
  Client.

  3. The SCF/SDF sends a user un-registration response to the SCF/SCGF.

  3B. The SCGF translates the user un-registration response to a PINT
  message.

  4. The SCGF relays the user un-registration response to the ICW
  Server.

  4A. The ICW Server records the Internet off-line status for the ICW
  Client (subscriber) in the data base.

4. The Lucent Technologies Online Communications Center

4.1 Overview

  The Lucent Technologies Online Communications Center (OCC) is an
  Intelligent Network (IN)-based platform that supports the Internet
  call waiting service.  Its basic components are the OCC Server and
  OCC Client, which are described in detail in the Architecture
  section.  The OCC Server interacts with the PSTN entities over the
  secure intranet via plain-text Session Initiation Protocol (SIP)
  messages [2].  With the PC Client, the OCC Server interacts via
  encrypted SIP messages.

  The OCC Server run-time environment effectively consists of two
  multi-threaded processes responsible for Call Registration and Call
  Notification services, respectively.

  OCC call registration services are initiated from an end-user's PC
  (or Internet appliance).  With those, a subscriber registers his or
  her end-points and activates the notification services.  (The
  registration services are not, strictly speaking, SPIRITS services
  but rather have a flavor of PINT services.)

  All OCC call notification services are PSTN-initiated.  One common
  feature of these services is that of informing the user of the
  incoming telephone call via the Internet, without having any effect
  on the line already used by the modem.  (A typical call waiting tone
  would interrupt the Internet connection, and it is a standard
  practice to disable the  "old" PSTN call waiting service for the



Lu, et al.                   Informational                     [Page 21]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  duration of the call in support of the Internet connection between
  the end-user and the ISP.)

  When a call comes in, the user is presented with a pop-up dialog box,
  which displays the caller's number (if available), name (again, if
  available), as well as the time of the call.  If the called party
  does not initiate an action within a specified period of time the
  call is rejected.

  As far as the disposition of the call is concerned, OCC supports all
  the features described in Section 2.

4.2. Architecture

              +------------+
              | Compact    |            +-------------+
              | Service    |            | Service     |
        +-----| Node (CSN) |            | Management  |
        |     | OCC Server |            | System (SMS)|
        |     | OCC CSN SPA|            +-------------+
        |     +-------:--|-+                   |
        |             |  +-------------[ IP INTRANET ]---------+
      ===== firewall  :                                        |
        |             |                                        |
        |          +-------+                               +-------+
        |          |Central|-..-..-..-..-..-..-..-..-..-..-|Service|
        |      +-%-|Office |-..-..-:                       |Control|
        |      |   +---|---+       |                       |Point  |
        |      %       |           :                       | (SCP) |
        |      |    +--|---+   +-------+    +----------+   |OCC SCP|
        |      %    |  PC  |   | VoIP  |    | VoIP     |   |  SPA  |
        |      |    |OCC Cl|   |Gateway|    |Gatekeeper|   +-------+
        |      %    +------+   +---|---+    +-----|----+
        |      |                 ===== firewall =====
        |      %                   |              |
        |      |   +---------------|---+          |
        |      +-%-|                   |----------+
        +----------|  I N T E R N E T  |
                   |                   |
                   +-------------------+

              Figure 8: The Lucent OCC Physical Architecture

  Figure 8 depicts the joint PSTN/Internet physical architecture
  relevant to the OCC operation.  The Compact Service Node (CSN) and
  SCP are Lucent's implementations of the ITU-T IN Recommendations (in
  particular, the Recommendation Q.1205 where these entities are
  defined) augmented by the requirements of Bellcore's Advanced



Lu, et al.                   Informational                     [Page 22]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  Intelligent Network (AIN) Release 1.0) and equipped with other
  features.  The Central Office (CO) may be any switch supporting the
  Integrated Services Digital Network (ISDN) Primary Rate Interface
  (PRI) and the call forwarding feature that would allow it to
  interwork with the CSN.  Alternatively, in order to interwork with
  the SCP, it needs to be an IN Service Switching Point (SSP).  In the
  latter case, the central office is connected to the SCP via the
  signaling system No. 7 (SS7) and INAP at the application layer.

  The Service Management System (SMS) is responsible for provisioning
  of the SCPs, CSNs, and central offices.  In particular, for IN
  support of the Internet Call Waiting, it must provision the Central
  Office to direct a terminating attempt query to the subsystem number
  corresponding to the OCC SCP SPA based on the Termination Attempt
  Trigger (TAT).  In addition, the Subscriber Directory Number (DN),
  Personal Identification Number (PIN) and Language ID are provisioned
  for each subscriber into the OCC Subscriber entry of the SCP Real
  Time Data Base (RTDB).  Figure 9 shows the structure of an RTDB
  entry.

     +-------------------------------------------------------+
     |DN | PIN | IP Address | Session Key | CNF | Language ID|
     +-------------------------------------------------------+

     Field Descriptions:

     (DN) Directory Number - the subscriber's telephone number

     (PIN) Personal Identification Number - the subscriber's password

     IP Address - Internet Protocol Address of the subscriber

     (CNF) Call Notification In Progress Flag (boolean) - the flag
     indicating if an attempt to notify the subscriber of a call is
     currently in progress

     Session Key - unique identifier for the current registration session
     of the subscriber

     Language ID - language identifier for the subscriber

         Figure 9: Structure of the RTDB Subscriber Record

  The Central Office, SMS, CSN, and SCP are the only PSTN elements of
  the architecture.  The other elements are VoIP Gateway and Gatekeeper
  defined in the ITU-T Recommendation H.323, whose roles are to
  establish and provide the part of the voice path over IP.  The
  Central Office is explicitly connected to the VoIP Gateway via the



Lu, et al.                   Informational                     [Page 23]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  ISDN PRI connection.  In this architecture, CSN, VoIP Gateway, and
  VoIP Gatekeeper are the only entities connected to the Internet, with
  each respective connection protected by a firewall.  The CSN and SCP
  are interconnected via a secure IP Intranet.  There may be more than
  one CSN or SCP (or both) (and the SCPs come in mated pairs
  interconnected by X.25, anyway) in a network, but these details are
  not essential to the level of description chosen for this document.
  However, we note that load balancing and adaptation to failures by
  the use of alternative nodes is incorporated into the architecture.

  When someone attempts to call the subscriber, the central office
  serving that subscriber interrupts normal termination processing and
  notifies the SCP which, in turn, can check whether that subscriber
  has registered that he (or she) is logged onto the Internet.
  Exploiting the standardized layering of service logic that
  characterizes the intelligent network, the central office will do
  this without requiring the installation or development of any central
  office software specific to OCC.  The central office is simply
  provisioned to query the SCP when there is a termination attempt
  (i.e., TAT) directed to the subscriber's directory number.  (Note
  that the Central Office has no bearer circuit connection to the SCP,
  only a signaling one over SS7).

  TCP/IP communication between the SCP and CSN utilizes a secure
  intranet.  The subscriber, of course, is assumed to have access only
  to the Internet.

  The intelligent network entities, the SCP and CSN, do have OCC
  related software.  The OCC server is implemented on the CSN.  In
  addition, one service package application (SPA) is installed on the
  SCP.  Another SPA is located in the CSN and is needed only when the
  subscriber elects to accept an incoming call using voice over IP.

  The OCC Server is a collection of Java servers on the CSN whose
  responsibilities include:

  o  Listening for incoming Call Notification (TCP/IP) messages from
     the SCP SPA.

  o  De-multiplexing/multiplexing incoming Call Notification messages
     sent from the SCP SPA.

  o  Relaying messages between the OCC Client and the SCP SPA.

  o  Listening for and authentication of OCC Client requests for
     service registration.





Lu, et al.                   Informational                     [Page 24]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  o  Handling encryption/decryption of messages exchanged with the OCC
     Client, and generating session-specific encryption/decryption
     keys.

  The OCC Client is a collection of software components that run on the
  Subscriber's PC.  Its components include the SIP User Agent Server
  (which handles the exchange of SIP messages with the OCC Server and
  invokes the Call Notification pop-up window) and a daemon process
  that monitors the Point-to-Point Protocol (PPP) actions and is
  responsible for starting and stopping the SIP User Agent Server.

4.3. Protocol and Operations Considerations

  The OCC Server uses distinct TCP/IP ports configured on the CSN to

  o  Listen for incoming SIP REGISTER messages (in support of
     registration service) sent from the OCC Client.

  o  Listen for incoming SIP INVITE messages (in support of call
     notification service) sent from the SCP.

  During call notification, the SCP SPA is the client and thus is
  started after the OCC Server has been started.  The SCP SPA and OCC
  Server exchange SIP messages over TCP/IP (via the Secure Intranet)
  using a "nailed-up" connection which is initiated by the SCP SPA.
  This connection is initiated at the time the SCP SPA receives the
  very first SIP REGISTER request from the OCC Server, and must prevail
  for as long as the SPA is in the in-service state.  The SCP SPA also
  supports restarting the connection after any failure condition.

  The OCC Server supports multithreading.  For each Call
  Notification/Call Disposition event, a separate thread is used to
  handle the call.  This model supports multi-threading on a "per
  message" basis where every start message (SIP INVITE) received from
  the SCP SPA uses a separate thread of control to handle the call.
  Subsequent messages containing the same session Call-ID (which
  includes the SPA's instance known as "call_index" and the SCP
  hostname) as the original start message is routed to the same thread
  that previously handled the respective initiating message.

  The OCC Server dynamically opens a new TCP/IP socket with the OCC
  Client for each Call Notification/Call Disposition session.  This
  socket connection uses the IP address and a pre-configured port on
  the PC running the OCC Client software.

  For session registration, the OCC Server dynamically opens TCP/IP
  sessions with the SCP SPA.  The SCP SPA listens at a pre-configured
  port to incoming SIP REGISTER messages sent by OCC Clients via the



Lu, et al.                   Informational                     [Page 25]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  OCC Server.  To exchange SIP messages with the OCC Server, the OCC
  Client dynamically opens a TCP/IP socket connection with the OCC
  Server using a pre-configured port number on the CSN and the CSN's IP
  address.

  For the VoIP Scenario, the CSN SPA, acting as a client, dynamically
  opens TCP/IP sessions with the SCP that handled the initial TAT
  query.  As soon as the CSN SPA has successfully made the correlation
  and connected the two incoming call legs pertaining to a VoIP call
  back, the SIP 180 RINGING message will be sent back to the SCP SPA
  running on the actual SCP that instructed the SSP to forward the
  Caller to the CSN.  This SIP message, which contains the VoIP Call
  Back DN dialed by one of the bridged call legs, is an indication to
  the SCP SPA that the VoIP Call Back DN is freed up.

  A typical subscription scenario works like as follows:

  1. Each VoIP Gateway is provisioned with a list of authorized VoIP
     Call Back DNs, each terminating on a particular CSN.  These
     special DNs are used when an on-line subscriber elects to receive
     an incoming call via VoIP.  In particular, they assist in routing
     an outgoing call from the subscriber's NetMeeting to the
     particular CSN to which the SCP is (roughly concurrently)
     forwarding the incoming call.  (These two calls are joined in the
     CSN to connect the incoming call to the subscriber's Netmeeting
     client.)  Furthermore, these special DNs permits that CSN to
     associate, and hence bridge, the correct pair of call legs to join
     the party calling the subscriber to the call from the subscriber's
     NetMeeting client.

  2. The subscriber calls a PSTN service provider and signs up for the
     service.

  3. An active Terminating Attempt Trigger (TAT) is assigned to the
     subscriber's DN at the subscriber's central office.

  4. The PSTN service provider uses the SMS to create a record for the
     subscriber and provision the Subscriber DN and PIN in the OCC RTDB
     table in the SCP.

  5. The subscriber is provided with the OCC Client software, a PIN and
     a file containing the OCC Server IP Addresses.

  Finally, we describe the particular scenario of the OCC Call
  Disposition that involves voice over IP, which proceeds as follows:

  1. The OCC subscriber clicks on "Accept VoIP".




Lu, et al.                   Informational                     [Page 26]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  2.  The OCC Client sends a "SIP 380 Alternative Service" message to
      the OCC Server.  This message includes a reference to the Call
      Back DN which will ultimately be used by the CSN to associate the
      call leg (soon to be initiated by the subscriber's NetMeeting)
      connecting to the subscriber (via the VoIP gateway) with the PSTN
      call leg connecting to the calling party.

  3.  The OCC Server closes the TCP/IP session with the OCC Client and
      sends to the SCP SPA the "SIP 380 Alternative Service" message
      which includes the Call Back DN.

  4.  The SCP SPA instructs the Central Office to forward the call
      incoming to the subscriber to the CSN.  This instruction includes
      the Call Back DN.

  5.  The SSP forwards the Caller to the CSN referencing the Call Back
      DN.  Note that the Call Back DN, originally assigned to the OCC
      client by the SCP when the subscriber was alerted to the presence
      of an incoming call attempt, flowed next to the OCC server when
      the client elected to receive the call via VoIP, then to the SCP,
      then to the central office in association with a SCP command to
      forward the incoming call to the CSN, then to the OCC server on
      the CSN in association with that forwarded call.

  6.  Meanwhile, the OCC Client extracts 1) the VoIP Call Back DN from
      the SIP INVITE message received during Call Notification and 2)
      the H323UID and H323PIN values from its properties file and
      updates the 'netmtg.cnf' file.

  7.  The NetMeeting application is launched and sets up a connection
      with the VoIP Gateway.

  8.  Once a connection is established between NetMeeting and the VoIP
      Gateway, NetMeeting initiates a phone call - passing to the VoIP
      Gateway the Call Back DN as the destination DN.

  9.  The VoIP Gateway consults the VoIP Gatekeeper and authenticates
      the NetMeeting call by verifying the H323UID and H323PIN values,
      and by ensuring the called DN (i.e., Call Back DN) is authorized
      for use.

  10. After passing the authentication step, the VoIP Gateway dials
      (via PSTN) the Call Back DN and gets connected to the CSN.  The
      CSN notes that it was reached by the particular Call Back DN.

  11. The CSN bridges the Calling and Called parties together by
      matching on the basis of the Call Back DN.




Lu, et al.                   Informational                     [Page 27]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  12. The CSN notifies the SCP (SIP 180 Ringing) of status and
      references the Call Back DN so that the SCP can reuse it for
      other calls.

  13. If the central office supports that two B-channel transfer
      (Lucent, Nortel, and perhaps other central office vender's do),
      an optimization is possible.  The CSN can have the central office
      rearrange the topology of the newly connected call in such a way
      that it flows only through the central office and no longer
      through the CSN.

5. NEC's Implementation

5.1. Overview

  The NEC implementation of the ICW service is based on IN.  Via a
  SPIRITS server and an ICW client, incoming calls will be presented to
  the user via a pop-up screen dialogue box.  This dialogue box informs
  the user of the call arrival time and the calling party's number and
  name (if available).  The arrival of the call is also indicated with
  an accompanied audible indication.

  The pop-up dialogue box offers the user various call management
  options.  Selecting a call management option allows the user to
  answer the call, forward it to another destination or to  voice mail,
  or ignore it.

  The user will be able to customize their service through various
  service set-up options.  All calls presented to the user during an
  Internet session will be recorded in a call log.

  Other features include Multiple call arrival management with which
  each new call arrival will generate its own pop-up dialogue box and
  audible indication.

















Lu, et al.                   Informational                     [Page 28]

RFC 2995              Pre-SPIRITS Implementations          November 2000


5.2. Architecture and Overall Call Flow

  Figure 10 depicts the NEC ICW system.

                   ====================================
                   ||         I n t e r n e t         ||
                   ||                                 ||
                   ====================================
                    /                    |        \
                   : (p1)                :         : (p2)
                  /                      |          \
               +-------+             +------------+   +-----+
               |SPIRITS|             |    ISP     |   | W3S |
               |Server |             |    ISP     |   | W3S |
               +-------+             +------------+   +-----+
                  :                      :
  Internet        |                      :
  PSTN/IN         |(p0)                  :
                  :                      :
                  |          ============:======
               +------+ (p3) ||  +-----+ :     ||
               |  SCP |-..-..-..-| SSP | :     ||
               +------+      ||  +-----+ :     ||
                             || (p4)|    :     ||
  +-------+                  ||     :    :     ||
  | ICW   | (p1)+-----+      ||     |    :     ||
  |Client |.....| M/D |............+------+    ||
  +-------+ (p2)+-----+      ||    |  CO  |    ||
               --------------------|      |-------
              /              ||    +------+    || \
    /--\     /               ||     P S T N    ||  \        /--\
   ()/\()   /                ===================    \      ()/\()
   _/__\___/                                         \______/__\_

  ICW Subscriber                                     Calling Party

  Legend:
            ISP :  Internet Service Provider
            W3S :  WWW Server
            SCP :  Service Control Point(acts as SPIRITS Client)
            SSP :  Service Switching Point
            CO :  Central Office
            M/D :  Modem

  Traffic:
            --- : PSTN Voice Traffic
            ... : PPP(IP traffic)
            -..-: Signaling Traffic



Lu, et al.                   Informational                     [Page 29]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  Interfaces:
             p0 : SPIRITS Server-SCP(SPIRITS Client) interface
             p1 : SPIRITS Server-ICW Client interface
             p2 : ICW Client-W3S interface
                  (Web access through HTTP)
             p3 : SCP-SSP interface(INAP)
             p4 : SSP-CO interface(ISUP)

                   Figure 10: the NEC ICW system

  The description below provides the necessary steps to initiate the
  ICW service on a CO line, and how the ICW service is applied to an
  incoming call based on the above architecture:

  1.  The CO line is primed for the ICW service when the customer
     connects to their ISP by inserting a special activation code
     (e.g., *54) prefix in front of the ISP Directory Number.

  2.  The ICW service is activated when the user opens a secured
     session from an ICW client to the SPIRITS server.  Once a session
     is open, the SPIRITS server will know the relationship between the
     line and the PC (i.e., it will know the Directory Number of the
     user's Internet line and the user's IP Address).

  3.  When a call arrives at a busy Internet line, the SSP will trigger
     the ICW service.  The SCP which acts as the SPIRITS client will
     inform the SPIRITS server that a call is terminating to a busy
     Internet line.  The message will include the Caller ID and Calling
     Line Identify Restriction (CLIR) Status of the calling party, and
     DN of the busy line.

  4.  The SPIRITS server will verify that if an ICW session has been
     established for the busy line.  If so, the SPIRITS server will
     communicate with the user's ICW client application.  The user will
     receive a real-time pop-up dialogue box including the Calling Name
     and Number of the Calling Party if available.  The user will then
     select one of the following call management options:

     - Answer the call (the Internet connection will be automatically
       dropped and the phone will ring)
     - Send the call to Voice Mail
     - Forward the call to another destination
     - Ignore the call

  5.  When the Internet user has made a selection, the ICW client
     application will transmit this to the SPIRITS server.  The SPIRITS
     server will instruct the PSTN via the SCP how to handle the call.




Lu, et al.                   Informational                     [Page 30]

RFC 2995              Pre-SPIRITS Implementations          November 2000


5.3. Interfaces and Protocols

5.3.1. SCP (SPIRITS Client)-SPIRITS Server Interface

5.3.1.1. Connecting to SPIRITS Services

  The physical connection between the SCP and the SPIRITS server will
  be via a LAN/WAN.  The logical connection will use the UDP/IP
  communications as defined in RFC 768 and RFC 1122.

  If a socket connection is not currently established, the SCP will
  periodically try to open a connection.  The SCP routing tables will
  be configured so that all available connections to a SPIRITS server
  are used.

5.3.1.2. Message Types

  Two different types of message are used between the SCP and the
  SPIRITS server: "Connection Management Message Type" and the "Data
  Message Type".  These messages will carry the remote operation
  messages which are based on ITU-T Q.1228 SCF-SCF interface with some
  NEC proprietary extensions.

  NEC also has a plan to support SIP/SDP-based protocols for the SPIR-
  ITS client-server interface in the near future.

5.3.1.2.1 Connection Management Message Type

  Connection management messages are to support functions related to
  the opening and closing of connections and monitoring connections to
  ensure reliable communications are maintained between the SCP and a
  SPIRITS server.  The SCP is responsible for establishing a connection
  to a SPIRITS server.  A connection can be closed by either the SCP or
  the SPIRITS server.

  The "Connection Management Message Type" includes the following
  operations:

  - scfBind - scfUnbind - activitytest

  Opening a Connection

  If a connection is not open to an SPIRITS server, the SCP will
  periodically try to open a connection until it is opened.  If after a
  pre-determined number of attempts the connection is not opened, the
  socket connection will be released and then re-established and then
  the attempt to open the connection will be repeated.




Lu, et al.                   Informational                     [Page 31]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  The sequence for opening a connection is:

  1. SCP will transmit a scfBind invokation message to the SPIRITS
  server.  This message also carries the version information and
  activity test interval.

  2. The SPIRITS server, upon receiving an invokation of the scfBind
  from a particular SCP, will reset all the data concerning the
  connection and then responds with either a return result containing
  the Web Server Identification number or a return error with a reason.

  3. When the SCP receives a return result, if the ID number does not
  match the number configured in the SCP, then a scfUnbind will be sent
  indicating the wrong ID number.  If the SCP receives nothing or a
  return error is received, then the scfBind will be retried after a
  pre-determined period of time.

  4. Once the SCP has received a return result, the SCP will send
  Handling Information Request or Activity Test.

  Upon receiving an invokation of activityTest, the SPIRITS server
  should reply with a return result of activityTest.  If the SPIRITS
  server does not receive any invokation messages of Handling
  Information Request or Activity Test from the SCP for four times the
  Activity Test Interval value in milliseconds, the SPIRITS server
  should then close the connection.

  To close a connection an invokation of the scfUnbind is sent by
  either the SCP or SPIRITS server to the remote end.  When an
  invokation message of the scfUnbind is received, the receiving end
  should terminate the connection.

  scfBind

  The scfBind operation is used to open the connection between the SCP
  and the SPIRITS server.  The SCP will send the SPIRITS server an
  invokation of the scfBind to establish an association.  If the
  SPIRITS server is ready to handle the request then it should respond
  with a return result.

  The return result of scfBind contains the identifier of the SPIRITS
  server.  If the SCP receives the return result where the
  identification of the SPIRITS server does not match that registered
  against the SPIRITS server, then the SCP will send an invokation of
  the scfUnbind indicating an incorrect identifier was received.

  If the SPIRITS server is not ready to handle the request or cannot
  handle the version, then it should respond with a return error.



Lu, et al.                   Informational                     [Page 32]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  scfUnbind

  The scfUnbind operation is used to close the connection between the
  SCP and the SPIRITS server.  Either the SCP or the SPIRITS server can
  invoke this operation.

  Upon receiving an invokation message the receiving end should
  terminate the connection.

  activityTest

  If the SCP has not sent a Data Message for the time period specified
  by the "Activity Test Interval", it will send an invokation message
  of activityTest.  When the SPIRITS server receives such an
  invokation, it will reply with a return result message of
  activityTest.

  Its contents should be retained by the SPIRITS server.  They are to
  be echoed back in the return result so that the message reply time
  can be calculated.

5.3.1.2.2. Data Message Type

  SCPs use the following operations, which are sent to the SPIRITS
  server via a Data-Message-Type message, to request execution of some
  service procedure or notification of an event that takes place at the
  SCPs:

  o handlingInformationRequest

    The handlingInformationRequest message will request a SPIRITS
    server the execution of some service procedure.

  o handlingInformationResult

    The handlingInformationResult message will show the SCP the result
    of the execution, which was carried out by the SPIRITS server.

  o confirmedNotificationProvided

    The confirmedNotificationProvided message will indicate to the
    SPIRITS server of an event, which takes place at the SCP.  If the
    confirmedNotificationProvided indicating 'caller abandon' is
    received, the SPIRITS server will inform the client of the caller
    abandon and send the SCP a return result for the
    confirmedNotificationProvided.





Lu, et al.                   Informational                     [Page 33]

RFC 2995              Pre-SPIRITS Implementations          November 2000


    The invoked operation has always a response which is either a
    return result of the operation or an invokation of another
    operation.

    If a Data Message is not replied to within a pre-determined time
    out period then the message will be resent a number of specified
    times.  Once the number of times has been exceeded, if another node
    exists, the message will be sent to another node if it is
    available.  If all available SPIRITS servers have been queried then
    Message Time out will be returned to the calling process.

    If an invokation of the handlingInformationResult is received with
    the cause=63 (Service not available), the
    handlingInformationRequest will be sent to another node if it is
    available.  If all available SPIRITS severs have been queried then
    cause=63 will be returned to the calling process.

5.3.2. SPIRITS Server-ICW Client Application Interface

  The following is a list of the application messages that are sent via
  the secure protocol (refer to section 5.3.3):

  o VersionInfo (ICW client -> SPIRITS server)

    Indicate the current version of ICW client software.  The SPIRITS
    server uses this information to determine if the client software is
    out of date.

  o VersionInfoAck (SPIRITS server -> ICW client)

    If the VersionInfo message from an ICW client indicates to a
    SPIRITS server that it is an out of date version, the URL
    information is returned within the VersionInfoAck message for use
    in downloading the newer version.  If the client software is up to
    date, the message simply indicates so and does not include any URL
    information.

  o CallArrival (SPIRITS server -> ICW client)

    Sent by the server to tell the client someone has called the DN.

  o CallID

    An identifier for this call.  Unique in the domain of this
    client/server session.






Lu, et al.                   Informational                     [Page 34]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  o CallingNumber

  o CallingName

    The name of the calling party is sent to the Client Application
    from the SPIRITS server.  When available, the name is sent as a
    15-character string.  If the name is unavailable it is sent as
    "Name Unavailable".  If the calling party has CLIR set, it is sent
    as empty (" ").

  o CallConnect (ICW client -> SPIRITS server)

    If a corresponding CallConnect is not received within a certain
    period after sending a CallArrival, the SPIRITS server will behave
    as though a CallConnect, Handling=Ignore had been received.

  o CallLost (SPIRITS server -> ICW client)

    Sent by server to cancel a CallArrival before a CallConnect is
    received by the server.

5.3.3. Secure Reliable Hybrid Datagram Session Protocol (SRHDSP) for Use
      Between ICW Client Application and SPIRITS Server

5.3.3.1. Overview

  In principle the solution involves session initiation over SSL
  (meeting requirements for standards based security) after which the
  SSL session is closed, thereby reducing the number of simultaneous
  TCP/IP sessions.  The rest of the session is communicated over
  UDP/IP, secured using keys and other parameters exchanged securely
  during the SSL session.

5.3.3.2. Session Initiation

  The ICW client initiates an SRHDSP session, by reserving a UDP/IP
  port, and opening an SSL session with the service (e.g., ICW) on the
  service's well known SSL/TCP port.  After establishing the SSL
  Session, the ICW client sends the server its IP address, the reserved
  UDP port number, and the set of supported symmetric key algorithms.

  The server responds with a symmetric key algorithm chosen from the
  set, the server's UDP port for further communication, heartbeat
  period, and the value to use for the sequencing window.







Lu, et al.                   Informational                     [Page 35]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  The client then generates a symmetric key using the selected
  algorithm and transmits this to the server.  The SSL session is then
  closed and the SRHDSP session is considered open.

5.3.3.3. Secure Reliable Datagram Transport

  Application, and subsequent session management messages use symmetric
  signaling.  That is, the signaling is the same whether the client is
  sending a message or the server is sending a message.

  The message packets are transmitted securely.  The protocol corrects
  for lost, duplicated and out of sequence packets.

5.3.3.4. Session closure

  The client or server may close the session.

  A session is closed using a Close message including the next sequence
  number, and encrypted with the agreed key.

  The receiver, on processing (as opposed to receiving) a Close
  message, should set a timer, when the timer expires all details of
  the session should be forgotten.  The timer is to allow for
  retransmission of the close if the Ack gets lost, we still need to be
  able to decrypt the subsequent retransmission and re-acknowledgment.

  If any message other than a close is received after a close is
  processed, it is ignored.

6. Telia/Nortel's Implementation

6.1. Overview

  The system implemented by Telia in cooperation with Nortel Networks
  is designed to support services that execute before the end-to-end
  media sessions are established.  These services include, for example:

  - call transfer and number portability for redirecting calls
  - call waiting and call offering for announcing a pending call
  - call screening and don't disturb for filtering incoming calls
  - automatic call distribution and 800-services for selecting
    termination point

  The Telia/Nortel system aims to allow service providers to develop
  the services mentioned above.  Presently, prototypes for online
  incoming call disposition and automatic incoming call disposition
  (described in Section 2) have been developed to prove the concept.




Lu, et al.                   Informational                     [Page 36]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  In the Telia/Nortel architecture, services run on top of SIP Redirect
  Servers.  The distributed nature of SIP enables these servers to be
  hosted, for example, by an enterprise server, a Service Provider's
  server cluster, a user's desktop PC, or even by a hand-held cordless
  device.

  The SIP Redirect Server receives a SIP INVITE message for each call
  regardless of which network the call is being set up in.  The server
  MAY apply any kind of service logic in order to decide on how to
  respond to the invitation.  Service logic may interact with the user
  to allow the user to specify how to handle a call such as described
  in Section 2.  This, however, is not the focus of the Telia/Nortel
  system.

6.2. Architecture and Protocols

  The general idea behind the architecture is to create services as if
  all communication was based on IP and all clients and servers were
  SIP enabled.  This of cause is not true in existing
  telecommunications networks.  Hence, a new type of network element,
  the Service Control Gateways (SCG) hides the true situation from the
  services.

  SCGs convert network-specific call control signaling to SIP messages
  and vice versa.  A SCG behaves as a regular SIP User Agent (UA)
  towards the services and as a network-specific service control node
  in the network where the call is being set up.  For example, when
  connecting to a GSM network, the SCG can play the role of an SCP or a
  MAP or an ISUP proxy.  The specific role depends on what service
  triggers are being used in the GSM network.

  SCGs handle protocol conversions but not address translation, such as
  telephone number to SIP URL, which is handled by a regular SIP Server
  to keep the SCG as simple as possible.

  Consider a service example of number portability.  A conventional
  number portability implementation in a mobile Circuit Switched
  Network (CSN) uses INAP messages to carry number queries to a
  network-internal data base application.  Here, a SCG and a high-
  performance SIP Redirect Server, referred to as the Number Server
  (NS), have replaced the data base typically located in an SCP.  (See
  Figure 11.)









Lu, et al.                   Informational                     [Page 37]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  +-----------+  INAP  +-----+  SIP  +--------------------------+
  |  CSN node |--------| SCG |-------| NS (SIP Redirect Server) |
  +-----------+        +-----+       +--------------------------+

            Figure 11: An Architecture for Number Portability

  The INAP IDP message that carries the number query is converted to a
  SIP INVITE message by the SCG and is then forwarded to the NS (SIP
  Redirect Server).

  If the called number is not registered, then the NS will return "404
  Not Found".  The SCG interprets this as "non ported number" and
  returns a CON message to the CSN network, making it connect the call
  to the called number.

  If the number is ported and hence registered, then the NS will return
  "301 Moved Permanently" with a TEL URL (routing number) in the
  contact field.  The SCG then returns a CON message to the CSN
  network, making it connect the call to the number that was conveyed
  in the contact field.

  The solution above enables the same Number Server to provide Number
  Portability to multiple networks by means of using multiple SCGs.

  If we make the SIP server in the number portability example operate
  in proxy mode for selected numbers, then it will become a kind of
  service router, able to relay number queries to any SIP-Redirect-
  Server-based service anywhere, provided there is an IP connection to
  the host in concern. Figure 12 shows the arrangement.

  +------+ INAP +-----+ SIP +----------------+ SIP +----------+
  |  CSN |------| SCG |-----|       NS       |-----| Service  |
  | node |      |     |     |(redirect/proxy)|     |(redirect)|
  +------+      +-----+     +----------------+     +----------+

            Figure 12: SIP-Based Service Router

  Suppose that we connect a value-added service, such as a Personal
  Call Filtering service hosted by a user's desktop PC, to a certain
  telephone number.  The INAP IDP message is converted to a SIP INVITE
  message by the SCG and is then forwarded to the NS, just as in the
  previous example.  However, in this case, the number is registered
  with a reference to a SIP URL.  This makes the Number Server proxy
  the SIP INVITE message to the registered URL, which is the address of
  the service.






Lu, et al.                   Informational                     [Page 38]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  The service responds as a SIP Redirect Server and the Personal Call
  Filtering service logic determines the response.  The NS sends the
  response back to the SCG which converts the response to an
  appropriate INAP message.  The response from the service is typically
  "302 Moved Temporarily" with a telephone number in the Contact field.

  If the response is 301 or 302, as the examples above suggest, then a
  telephone number is carried in the contact field.  If the user can be
  reached via several different addresses, then all of them SHOULD be
  added to the response by means of multiple contact fields.  The SCG
  then selects an address that is valid for the node or application
  that issued the number query.

  As illustrated by the service examples, the Telia/Nortel system aims
  to allow the introduction of multi-network services without requiring
  multi-protocol support.  The services hence operate in the same way
  regardless of in which network the call is made and common IP
  services can be shared across heterogeneous networks.

  +-----------+   +-------+ SIP +----+    ......  SIP +-----------+
  | Network 1 |---| SCG 1 |-----|    |---:      :-----| Service A |
  +-----------+   +-------+     |    |   :      :     +-----------+
                                |    |   :      :
  +-----------+   +-------+ SIP |    |   :      : SIP +-----------+
  | Network 2 |---| SCG 2 |-----| NS |---:      :-----| Service B |
  +-----------+   +-------+     |    |   : Any  :     +-----------+
                                |    |   :  IP  :
  +-----------+   +-------+ SIP |    |   : net- : SIP +-----------+
  | Network n |---| SCG n |-----|    |---: work :-----| Service C |
  +-----------+   +-------+     +----+   :      :     +-----------+
                                         :      :
  +--------+                SIP          :      : SIP +-----------+
  | SIP UA |-----------------------------:      :-----| Service x |
  +--------+                             '......'     +-----------+

  Figure 13: Interconnecting Heterogeneous Networks via SIP

6.3. Security

  The Telia/Nortel architecture uses security mechanisms available to
  ordinary SIP services, implemented as they would be in a pure SIP
  network.  The architecture described here does not impose any
  additional security considerations.

  General security issues that must be considered include
  interconnection of two different networks.  SCGs must therefore
  include mechanisms that prevent destructive service control signaling
  from one network to the other.  For example, a firewall-type



Lu, et al.                   Informational                     [Page 39]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  mechanism that can block a denial-of- service attack from an Internet
  user toward the PSTN.

7. Security Considerations

  Overall, the SPIRITS security requirements are essentially the same
  as those for PINT [3, 4], which include, for example:

     + Protection of the PSTN from attacks from the Internet.

     + Peer entity authentication to allow a communicating entity to
     prove its identity to another in the network.

     + Authorization and access control to verify if a network entity
     is allowed to use a network resource.

     + Confidentiality to avoid disclosure of information (e.g., the
     end user profile information and data) without the permission of
     its owner.

     + Non-repudiation to account for all operations in case of doubt
     or dispute.

  As seen in the previous sections, most implementations examined in
  this document have employed means (e.g., firewalls and encryption) to
  meet these requirements.  The means are, however, different from
  implementation to implementation.

8. Conclusion

  This document has provided information relevant to the development of
  inter-networking interfaces between the PSTN and Internet for
  supporting SPIRITS services.  Specifically, it described four
  existing implementations of SPIRITS-like services.  Surveying these
  implementations, we can make the following observations:

  o  The ICW service plays the role of a benchmark service.  All four
     implementations can support ICW, with three specifically designed
     for it.

  o  SIP is used in most of the implementations as the based
     communications protocol between the PSTN and Internet.  (NEC's
     implementation is the only exception that uses a proprietary
     protocol.  Nevertheless, NEC has a plan to support SIP together
     with the extensions for SPIRITS services.)

  o  All implementations use IN-based solutions for the PSTN part.




Lu, et al.                   Informational                     [Page 40]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  It is clear that not all pre-SPIRITS implementations inter-operate
  with each other.  It is also clear that not all SIP-based
  implementations inter-operate with each other given that they do not
  support the same version of SIP.  It is a task of the SPIRITS Working
  Group to define the inter-networking interfaces that will support
  inter-operation of the future implementations of SPIRITS services.

9. References

  [1] Petrack, S. and L. Conroy, "The PINT Service Protocol: Extensions
      to SIP and SDP for IP Access to Telephone Call Services", RFC
      2848, June 2000.

  [2] Handley, H., Schulzrinne, H., Schooler, E. and J. Rosenberg,
      "SIP:  Session Initiation Protocol", RFC 2543, March 1999.

  [3] Lu, H. (Ed.), Krishnaswamy, M., Conroy, L., Bellovin, S., Burg,
      F., DeSimone, A., Tewani, F., Davidson, D., Schulzrinne, H. and
      K. Vishwanathan, "Toward the PSTN/Internet Inter-Networking--
      Pre-PINT Implementations", RFC 2458, November 1998.

10. Authors' Addresses

  Igor Faynberg
  Lucent Technologies
  Room 4L-334
  101 Crawfords Corner Road
  Holmdel, NJ,  USA 07733-3030

  Phone: +1 732 949 0137
  EMail: [email protected]

  Hui-Lan Lu
  Lucent Technologies
  Room 4L-317
  101 Crawfords Corner Road
  Holmdel, NJ,  USA 07733-3030

  Phone: +1 732 949 0321
  EMail: [email protected]











Lu, et al.                   Informational                     [Page 41]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  John Voelker
  Lucent Technologies
  Room 1A-417
  263 Shuman Blvd PO Box 3050
  Naperville, IL,  USA 60566-7050

  Phone: +1 630 713 5538
  EMail: [email protected]

  Mark Weissman
  Lucent Technologies
  Room NE406B
  200 Lucent Lane
  Cary, NC, USA 27511-6035

  Phone: +1 919 463 3258
  EMail: [email protected]

  Weizhong Zhang
  Lucent Technologies
  Room 01-A5-17
  2000 Regency Parkway
  Cary, NC,  USA 27511-8506

  Phone: +1 919 380-6638
  EMail: [email protected]

  Sung-Yurn Rhim
  Korea Telecom
  17 Woomyun-dong
  Seocho-gu, Seoul, Korea

  Phone: +82 2 526 6172
  EMail: [email protected]

  Jinkyung Hwang
  Korea Telecom
  17 Woomyun-dong
  Seocho-gu, Seoul, Korea

  Phone: +82 2 526 6830
  EMail: [email protected]









Lu, et al.                   Informational                     [Page 42]

RFC 2995              Pre-SPIRITS Implementations          November 2000


  Shinji. Ago
  NEC Corporation
  1131, Hinode, Abiko,
  Chiba, 270-1198, Japan

  Phone: +81 471 85 7412
  EMail: [email protected]

  S. Moeenuddin
  NEC America, Inc
  1525 Walnut Hill Lane,
  Irving, TX,  USA 75038

  Phone: +1 972 518 5102
  EMail: [email protected]

  S. Hadvani
  NEC America, Inc
  1525 Walnut Hill Lane,
  Irving, TX,  USA 75038

  Phone: +1 972 518 3628
  EMail: [email protected]

  Soren Nyckelgard
  Telia Research
  Chalmers Teknikpark
  41288 Gothenburg
  Sweden

  EMail: [email protected]

  John Yoakum
  Nortel Networks
  507 Airport Blvd, Suite 115,
  Morrisville, NC, USA  27560

  EMail: [email protected]

  Lewis Robart
  Nortel Networks
  P.O. Box 402
  Ogdensburg, NY, USA  13669

  EMail: [email protected]






Lu, et al.                   Informational                     [Page 43]

RFC 2995              Pre-SPIRITS Implementations          November 2000


11. Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Lu, et al.                   Informational                     [Page 44]