Network Working Group                                         R. Stewart
Request for Comments: 2960                                        Q. Xie
Category: Standards Track                                       Motorola
                                                           K. Morneault
                                                               C. Sharp
                                                                  Cisco
                                                        H. Schwarzbauer
                                                                Siemens
                                                              T. Taylor
                                                        Nortel Networks
                                                              I. Rytina
                                                               Ericsson
                                                               M. Kalla
                                                              Telcordia
                                                               L. Zhang
                                                                   UCLA
                                                              V. Paxson
                                                                  ACIRI
                                                           October 2000


                 Stream Control Transmission Protocol

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document describes the Stream Control Transmission Protocol
  (SCTP).  SCTP is designed to transport PSTN signaling messages over
  IP networks, but is capable of broader applications.

  SCTP is a reliable transport protocol operating on top of a
  connectionless packet network such as IP.  It offers the following
  services to its users:

     -- acknowledged error-free non-duplicated transfer of user data,
     -- data fragmentation to conform to discovered path MTU size,




Stewart, et al.             Standards Track                     [Page 1]

RFC 2960          Stream Control Transmission Protocol      October 2000


     -- sequenced delivery of user messages within multiple streams,
        with an option for order-of-arrival delivery of individual user
        messages,
     -- optional bundling of multiple user messages into a single SCTP
        packet, and
     -- network-level fault tolerance through supporting of multi-
        homing at either or both ends of an association.

  The design of SCTP includes appropriate congestion avoidance behavior
  and resistance to flooding and masquerade attacks.









































Stewart, et al.             Standards Track                     [Page 2]

RFC 2960          Stream Control Transmission Protocol      October 2000


Table of Contents

  1.  Introduction..................................................  5
    1.1 Motivation..................................................  6
    1.2 Architectural View of SCTP..................................  6
    1.3 Functional View of SCTP.....................................  7
      1.3.1 Association Startup and Takedown........................  8
      1.3.2 Sequenced Delivery within Streams.......................  9
      1.3.3 User Data Fragmentation.................................  9
      1.3.4 Acknowledgement and Congestion Avoidance................  9
      1.3.5 Chunk Bundling ......................................... 10
      1.3.6 Packet Validation....................................... 10
      1.3.7 Path Management......................................... 11
    1.4 Key Terms................................................... 11
    1.5 Abbreviations............................................... 15
    1.6 Serial Number Arithmetic.................................... 15
  2. Conventions.................................................... 16
  3.  SCTP packet Format............................................ 16
    3.1 SCTP Common Header Field Descriptions....................... 17
    3.2 Chunk Field Descriptions.................................... 18
      3.2.1 Optional/Variable-length Parameter Format............... 20
    3.3 SCTP Chunk Definitions...................................... 21
      3.3.1 Payload Data (DATA)..................................... 22
      3.3.2 Initiation (INIT)....................................... 24
        3.3.2.1 Optional or Variable Length Parameters.............. 26
      3.3.3 Initiation Acknowledgement (INIT ACK)................... 30
        3.3.3.1 Optional or Variable Length Parameters.............. 33
      3.3.4 Selective Acknowledgement (SACK)........................ 33
      3.3.5 Heartbeat Request (HEARTBEAT)........................... 37
      3.3.6 Heartbeat Acknowledgement (HEARTBEAT ACK)............... 38
      3.3.7 Abort Association (ABORT)............................... 39
      3.3.8 Shutdown Association (SHUTDOWN)......................... 40
      3.3.9 Shutdown Acknowledgement (SHUTDOWN ACK)................. 40
      3.3.10 Operation Error (ERROR)................................ 41
        3.3.10.1 Invalid Stream Identifier.......................... 42
        3.3.10.2 Missing Mandatory Parameter........................ 43
        3.3.10.3 Stale Cookie Error................................. 43
        3.3.10.4 Out of Resource.................................... 44
        3.3.10.5 Unresolvable Address............................... 44
        3.3.10.6 Unrecognized Chunk Type............................ 44
        3.3.10.7 Invalid Mandatory Parameter........................ 45
        3.3.10.8 Unrecognized Parameters............................ 45
        3.3.10.9 No User Data....................................... 46
        3.3.10.10 Cookie Received While Shutting Down............... 46
      3.3.11 Cookie Echo (COOKIE ECHO).............................. 46
      3.3.12 Cookie Acknowledgement (COOKIE ACK).................... 47
      3.3.13 Shutdown Complete (SHUTDOWN COMPLETE).................. 48
  4. SCTP Association State Diagram................................. 48



Stewart, et al.             Standards Track                     [Page 3]

RFC 2960          Stream Control Transmission Protocol      October 2000


  5. Association Initialization..................................... 52
    5.1 Normal Establishment of an Association...................... 52
      5.1.1 Handle Stream Parameters................................ 54
      5.1.2 Handle Address Parameters............................... 54
      5.1.3 Generating State Cookie................................. 56
      5.1.4 State Cookie Processing................................. 57
      5.1.5 State Cookie Authentication............................. 57
      5.1.6 An Example of Normal Association Establishment.......... 58
    5.2 Handle Duplicate or unexpected INIT, INIT ACK, COOKIE ECHO,
        and COOKIE ACK.............................................. 60
      5.2.1 Handle Duplicate INIT in COOKIE-WAIT
            or COOKIE-ECHOED States................................. 60
      5.2.2 Unexpected INIT in States Other than CLOSED,
            COOKIE-ECHOED, COOKIE-WAIT and SHUTDOWN-ACK-SENT........ 61
      5.2.3 Unexpected INIT ACK..................................... 61
      5.2.4 Handle a COOKIE ECHO when a TCB exists.................. 62
        5.2.4.1 An Example of a Association Restart................. 64
      5.2.5 Handle Duplicate COOKIE ACK............................. 66
      5.2.6 Handle Stale COOKIE Error............................... 66
    5.3 Other Initialization Issues................................. 67
      5.3.1 Selection of Tag Value.................................. 67
  6. User Data Transfer............................................. 67
    6.1 Transmission of DATA Chunks................................. 69
    6.2 Acknowledgement on Reception of DATA Chunks................. 70
      6.2.1 Tracking Peer's Receive Buffer Space.................... 73
    6.3 Management Retransmission Timer............................. 75
      6.3.1 RTO Calculation......................................... 75
      6.3.2 Retransmission Timer Rules.............................. 76
      6.3.3 Handle T3-rtx Expiration................................ 77
    6.4 Multi-homed SCTP Endpoints.................................. 78
      6.4.1 Failover from Inactive Destination Address.............. 79
    6.5 Stream Identifier and Stream Sequence Number................ 80
    6.6 Ordered and Unordered Delivery.............................. 80
    6.7 Report Gaps in Received DATA TSNs........................... 81
    6.8 Adler-32 Checksum Calculation............................... 82
    6.9 Fragmentation............................................... 83
    6.10 Bundling .................................................. 84
  7. Congestion Control   .......................................... 85
    7.1 SCTP Differences from TCP Congestion Control................ 85
    7.2 SCTP Slow-Start and Congestion Avoidance.................... 87
      7.2.1 Slow-Start.............................................. 87
      7.2.2 Congestion Avoidance.................................... 89
      7.2.3 Congestion Control...................................... 89
      7.2.4 Fast Retransmit on Gap Reports.......................... 90
    7.3 Path MTU Discovery.......................................... 91
  8.  Fault Management.............................................. 92
    8.1 Endpoint Failure Detection.................................. 92
    8.2 Path Failure Detection...................................... 92



Stewart, et al.             Standards Track                     [Page 4]

RFC 2960          Stream Control Transmission Protocol      October 2000


    8.3 Path Heartbeat.............................................. 93
    8.4 Handle "Out of the blue" Packets............................ 95
    8.5 Verification Tag............................................ 96
      8.5.1 Exceptions in Verification Tag Rules.................... 97
  9. Termination of Association..................................... 98
    9.1 Abort of an Association..................................... 98
    9.2 Shutdown of an Association.................................. 98
  10. Interface with Upper Layer....................................101
    10.1 ULP-to-SCTP................................................101
    10.2 SCTP-to-ULP................................................111
  11. Security Considerations.......................................114
    11.1 Security Objectives........................................114
    11.2 SCTP Responses To Potential Threats........................115
      11.2.1 Countering Insider Attacks.............................115
      11.2.2 Protecting against Data Corruption in the Network......115
      11.2.3 Protecting Confidentiality.............................115
      11.2.4 Protecting against Blind Denial of Service Attacks.....116
        11.2.4.1 Flooding...........................................116
        11.2.4.2 Blind Masquerade...................................118
        11.2.4.3 Improper Monopolization of Services................118
    11.3 Protection against Fraud and Repudiation...................119
  12. Recommended Transmission Control Block (TCB) Parameters.......120
    12.1 Parameters necessary for the SCTP instance.................120
    12.2 Parameters necessary per association (i.e. the TCB)........120
    12.3 Per Transport Address Data.................................122
    12.4 General Parameters Needed..................................123
  13. IANA Considerations...........................................123
    13.1 IETF-defined Chunk Extension...............................123
    13.2 IETF-defined Chunk Parameter Extension.....................124
    13.3 IETF-defined Additional Error Causes.......................124
    13.4 Payload Protocol Identifiers...............................125
  14. Suggested SCTP Protocol Parameter Values......................125
  15. Acknowledgements..............................................126
  16. Authors' Addresses............................................126
  17. References....................................................128
  18. Bibliography..................................................129
  Appendix A .......................................................131
  Appendix B .......................................................132
  Full Copyright Statement .........................................134

1. Introduction

  This section explains the reasoning behind the development of the
  Stream Control Transmission Protocol (SCTP), the services it offers,
  and the basic concepts needed to understand the detailed description
  of the protocol.





Stewart, et al.             Standards Track                     [Page 5]

RFC 2960          Stream Control Transmission Protocol      October 2000


1.1 Motivation

  TCP [RFC793] has performed immense service as the primary means of
  reliable data transfer in IP networks.  However, an increasing number
  of recent applications have found TCP too limiting, and have
  incorporated their own reliable data transfer protocol on top of UDP
  [RFC768].  The limitations which users have wished to bypass include
  the following:

     -- TCP provides both reliable data transfer and strict order-of-
     transmission delivery of data.  Some applications need reliable
     transfer without sequence maintenance, while others would be
     satisfied with partial ordering of the data.  In both of these
     cases the head-of-line blocking offered by TCP causes unnecessary
     delay.

     -- The stream-oriented nature of TCP is often an inconvenience.
     Applications must add their own record marking to delineate their
     messages, and must make explicit use of the push facility to
     ensure that a complete message is transferred in a reasonable
     time.

     -- The limited scope of TCP sockets complicates the task of
     providing highly-available data transfer capability using multi-
     homed hosts.

     -- TCP is relatively vulnerable to denial of service attacks, such
     as SYN attacks.

  Transport of PSTN signaling across the IP network is an application
  for which all of these limitations of TCP are relevant.  While this
  application directly motivated the development of SCTP, other
  applications may find SCTP a good match to their requirements.

1.2 Architectural View of SCTP

  SCTP is viewed as a layer between the SCTP user application ("SCTP
  user" for short) and a connectionless packet network service such as
  IP.  The remainder of this document assumes SCTP runs on top of IP.
  The basic service offered by SCTP is the reliable transfer of user
  messages between peer SCTP users.  It performs this service within
  the context of an association between two SCTP endpoints. Section 10
  of this document sketches the API which should exist at the boundary
  between the SCTP and the SCTP user layers.

  SCTP is connection-oriented in nature, but the SCTP association is a
  broader concept than the TCP connection.  SCTP provides the means for
  each SCTP endpoint (Section 1.4) to provide the other endpoint



Stewart, et al.             Standards Track                     [Page 6]

RFC 2960          Stream Control Transmission Protocol      October 2000


  (during association startup) with a list of transport addresses
  (i.e., multiple IP addresses in combination with an SCTP port)
  through which that endpoint can be reached and from which it will
  originate SCTP packets.  The association spans transfers over all of
  the possible source/destination combinations which may be generated
  from each endpoint's lists.

      _____________                                      _____________
     |  SCTP User  |                                    |  SCTP User  |
     | Application |                                    | Application |
     |-------------|                                    |-------------|
     |    SCTP     |                                    |    SCTP     |
     |  Transport  |                                    |  Transport  |
     |   Service   |                                    |   Service   |
     |-------------|                                    |-------------|
     |             |One or more    ----      One or more|             |
     | IP Network  |IP address      \/        IP address| IP Network  |
     |   Service   |appearances     /\       appearances|   Service   |
     |_____________|               ----                 |_____________|

       SCTP Node A |<-------- Network transport ------->| SCTP Node B

                       Figure 1: An SCTP Association

1.3 Functional View of SCTP

  The SCTP transport service can be decomposed into a number of
  functions.  These are depicted in Figure 2 and explained in the
  remainder of this section.






















Stewart, et al.             Standards Track                     [Page 7]

RFC 2960          Stream Control Transmission Protocol      October 2000


                          SCTP User Application

        -----------------------------------------------------
         _____________                  ____________________
        |             |                | Sequenced delivery |
        | Association |                |   within streams   |
        |             |                |____________________|
        |   startup   |
        |             |         ____________________________
        |     and     |        |    User Data Fragmentation |
        |             |        |____________________________|
        |   takedown  |
        |             |         ____________________________
        |             |        |     Acknowledgement        |
        |             |        |          and               |
        |             |        |    Congestion Avoidance    |
        |             |        |____________________________|
        |             |
        |             |         ____________________________
        |             |        |       Chunk Bundling       |
        |             |        |____________________________|
        |             |
        |             |     ________________________________
        |             |    |      Packet Validation         |
        |             |    |________________________________|
        |             |
        |             |     ________________________________
        |             |    |     Path Management            |
        |_____________|    |________________________________|

          Figure 2: Functional View of the SCTP Transport Service

1.3.1 Association Startup and Takedown

  An association is initiated by a request from the SCTP user (see the
  description of the ASSOCIATE (or SEND) primitive in Section 10).

  A cookie mechanism, similar to one described by Karn and Simpson in
  [RFC2522], is employed during the initialization to provide
  protection against security attacks.  The cookie mechanism uses a
  four-way handshake, the last two legs of which are allowed to carry
  user data for fast setup.  The startup sequence is described in
  Section 5 of this document.

  SCTP provides for graceful close (i.e., shutdown) of an active
  association on request from the SCTP user.  See the description of
  the SHUTDOWN primitive in Section 10.  SCTP also allows ungraceful
  close (i.e., abort), either on request from the user (ABORT



Stewart, et al.             Standards Track                     [Page 8]

RFC 2960          Stream Control Transmission Protocol      October 2000


  primitive) or as a result of an error condition detected within the
  SCTP layer.  Section 9 describes both the graceful and the ungraceful
  close procedures.

  SCTP does not support a half-open state (like TCP) wherein one side
  may continue sending data while the other end is closed.  When either
  endpoint performs a shutdown, the association on each peer will stop
  accepting new data from its user and only deliver data in queue at
  the time of the graceful close (see Section 9).

1.3.2 Sequenced Delivery within Streams

  The term "stream" is used in SCTP to refer to a sequence of user
  messages that are to be delivered to the upper-layer protocol in
  order with respect to other messages within the same stream.  This is
  in contrast to its usage in TCP, where it refers to a sequence of
  bytes (in this document a byte is assumed to be eight bits).

  The SCTP user can specify at association startup time the number of
  streams to be supported by the association.  This number is
  negotiated with the remote end (see Section 5.1.1).  User messages
  are associated with stream numbers (SEND, RECEIVE primitives, Section
  10).  Internally, SCTP assigns a stream sequence number to each
  message passed to it by the SCTP user.  On the receiving side, SCTP
  ensures that messages are delivered to the SCTP user in sequence
  within a given stream.  However, while one stream may be blocked
  waiting for the next in-sequence user message, delivery from other
  streams may proceed.

  SCTP provides a mechanism for bypassing the sequenced delivery
  service.  User messages sent using this mechanism are delivered to
  the SCTP user as soon as they are received.

1.3.3 User Data Fragmentation

  When needed, SCTP fragments user messages to ensure that the SCTP
  packet passed to the lower layer conforms to the path MTU.  On
  receipt, fragments are reassembled into complete messages before
  being passed to the SCTP user.

1.3.4 Acknowledgement and Congestion Avoidance

  SCTP assigns a Transmission Sequence Number (TSN) to each user data
  fragment or unfragmented message.  The TSN is independent of any
  stream sequence number assigned at the stream level.  The receiving






Stewart, et al.             Standards Track                     [Page 9]

RFC 2960          Stream Control Transmission Protocol      October 2000


  end acknowledges all TSNs received, even if there are gaps in the
  sequence.  In this way, reliable delivery is kept functionally
  separate from sequenced stream delivery.

  The acknowledgement and congestion avoidance function is responsible
  for packet retransmission when timely acknowledgement has not been
  received.  Packet retransmission is conditioned by congestion
  avoidance procedures similar to those used for TCP.  See Sections 6
  and 7 for a detailed description of the protocol procedures
  associated with this function.

1.3.5 Chunk Bundling

  As described in Section 3, the SCTP packet as delivered to the lower
  layer consists of a common header followed by one or more chunks.
  Each chunk may contain either user data or SCTP control information.
  The SCTP user has the option to request bundling of more than one
  user messages into a single SCTP packet.  The chunk bundling function
  of SCTP is responsible for assembly of the complete SCTP packet and
  its disassembly at the receiving end.

  During times of congestion an SCTP implementation MAY still perform
  bundling even if the user has requested that SCTP not bundle.  The
  user's disabling of bundling only affects SCTP implementations that
  may delay a small period of time before transmission (to attempt to
  encourage bundling).  When the user layer disables bundling, this
  small delay is prohibited but not bundling that is performed during
  congestion or retransmission.

1.3.6 Packet Validation

  A mandatory Verification Tag field and a 32 bit checksum field (see
  Appendix B for a description of the Adler-32 checksum) are included
  in the SCTP common header.  The Verification Tag value is chosen by
  each end of the association during association startup.  Packets
  received without the expected Verification Tag value are discarded,
  as a protection against blind masquerade attacks and against stale
  SCTP packets from a previous association.  The Adler-32 checksum
  should be set by the sender of each SCTP packet to provide additional
  protection against data corruption in the network.  The receiver of
  an SCTP packet with an invalid Adler-32 checksum silently discards
  the packet.









Stewart, et al.             Standards Track                    [Page 10]

RFC 2960          Stream Control Transmission Protocol      October 2000


1.3.7 Path Management

  The sending SCTP user is able to manipulate the set of transport
  addresses used as destinations for SCTP packets through the
  primitives described in Section 10.  The SCTP path management
  function chooses the destination transport address for each outgoing
  SCTP packet based on the SCTP user's instructions and the currently
  perceived reachability status of the eligible destination set.  The
  path management function monitors reachability through heartbeats
  when other packet traffic is inadequate to provide this information
  and advises the SCTP user when reachability of any far-end transport
  address changes.  The path management function is also responsible
  for reporting the eligible set of local transport addresses to the
  far end during association startup, and for reporting the transport
  addresses returned from the far end to the SCTP user.

  At association start-up, a primary path is defined for each SCTP
  endpoint, and is used for normal sending of SCTP packets.

  On the receiving end, the path management is responsible for
  verifying the existence of a valid SCTP association to which the
  inbound SCTP packet belongs before passing it for further processing.

  Note: Path Management and Packet Validation are done at the same
  time, so although described separately above, in reality they cannot
  be performed as separate items.

1.4 Key Terms

  Some of the language used to describe SCTP has been introduced in the
  previous sections.  This section provides a consolidated list of the
  key terms and their definitions.

  o  Active destination transport address: A transport address on a
     peer endpoint which a transmitting endpoint considers available
     for receiving user messages.

  o  Bundling: An optional multiplexing operation, whereby more than
     one user message may be carried in the same SCTP packet.  Each
     user message occupies its own DATA chunk.

  o  Chunk: A unit of information within an SCTP packet, consisting of
     a chunk header and chunk-specific content.

  o  Congestion Window (cwnd): An SCTP variable that limits the data,
     in number of bytes, a sender can send to a particular destination
     transport address before receiving an acknowledgement.




Stewart, et al.             Standards Track                    [Page 11]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  Cumulative TSN Ack Point: The TSN of the last DATA chunk
     acknowledged via the Cumulative TSN Ack field of a SACK.

  o  Idle destination address: An address that has not had user
     messages sent to it within some length of time, normally the
     HEARTBEAT interval or greater.

  o  Inactive destination transport address: An address which is
     considered inactive due to errors and unavailable to transport
     user messages.

  o  Message = user message:  Data submitted to SCTP by the Upper Layer
     Protocol (ULP).

  o  Message Authentication Code (MAC):  An integrity check mechanism
     based on cryptographic hash functions using a secret key.
     Typically, message authentication codes are used between two
     parties that share a secret key in order to validate information
     transmitted between these parties.  In SCTP it is used by an
     endpoint to validate the State Cookie information that is returned
     from the peer in the COOKIE ECHO chunk.  The term "MAC" has
     different meanings in different contexts.  SCTP uses this term
     with the same meaning as in [RFC2104].

  o  Network Byte Order: Most significant byte first, a.k.a., Big
     Endian.

  o  Ordered Message: A user message that is delivered in order with
     respect to all previous user messages sent within the stream the
     message was sent on.

  o  Outstanding TSN (at an SCTP endpoint): A TSN (and the associated
     DATA chunk) that has been sent by the endpoint but for which it
     has not yet received an acknowledgement.

  o  Path: The route taken by the SCTP packets sent by one SCTP
     endpoint to a specific destination transport address of its peer
     SCTP endpoint.  Sending to different destination transport
     addresses does not necessarily guarantee getting separate paths.

  o  Primary Path: The primary path is the destination and source
     address that will be put into a packet outbound to the peer
     endpoint by default.  The definition includes the source address
     since an implementation MAY wish to specify both destination and
     source address to better control the return path taken by reply
     chunks and on which interface the packet is transmitted when the
     data sender is multi-homed.




Stewart, et al.             Standards Track                    [Page 12]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  Receiver Window (rwnd): An SCTP variable a data sender uses to
     store the most recently calculated receiver window of its peer, in
     number of bytes.  This gives the sender an indication of the space
     available in the receiver's inbound buffer.

  o  SCTP association: A protocol relationship between SCTP endpoints,
     composed of the two SCTP endpoints and protocol state information
     including Verification Tags and the currently active set of
     Transmission Sequence Numbers (TSNs), etc.  An association can be
     uniquely identified by the transport addresses used by the
     endpoints in the association.  Two SCTP endpoints MUST NOT have
     more than one SCTP association between them at any given time.

  o  SCTP endpoint: The logical sender/receiver of SCTP packets.  On a
     multi-homed host, an SCTP endpoint is represented to its peers as
     a combination of a set of eligible destination transport addresses
     to which SCTP packets can be sent and a set of eligible source
     transport addresses from which SCTP packets can be received.  All
     transport addresses used by an SCTP endpoint must use the same
     port number, but can use multiple IP addresses.  A transport
     address used by an SCTP endpoint must not be used by another SCTP
     endpoint.  In other words, a transport address is unique to an
     SCTP endpoint.

  o  SCTP packet (or packet): The unit of data delivery across the
     interface between SCTP and the connectionless packet network
     (e.g., IP).  An SCTP packet includes the common SCTP header,
     possible SCTP control chunks, and user data encapsulated within
     SCTP DATA chunks.

  o  SCTP user application (SCTP user): The logical higher-layer
     application entity which uses the services of SCTP, also called
     the Upper-layer Protocol (ULP).

  o  Slow Start Threshold (ssthresh): An SCTP variable.  This is the
     threshold which the endpoint will use to determine whether to
     perform slow start or congestion avoidance on a particular
     destination transport address.  Ssthresh is in number of bytes.

  o  Stream: A uni-directional logical channel established from one to
     another associated SCTP endpoint, within which all user messages
     are delivered in sequence except for those submitted to the
     unordered delivery service.

  Note: The relationship between stream numbers in opposite directions
  is strictly a matter of how the applications use them.  It is the
  responsibility of the SCTP user to create and manage these
  correlations if they are so desired.



Stewart, et al.             Standards Track                    [Page 13]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  Stream Sequence Number: A 16-bit sequence number used internally
     by SCTP to assure sequenced delivery of the user messages within a
     given stream.  One stream sequence number is attached to each user
     message.

  o  Tie-Tags: Verification Tags from a previous association.  These
     Tags are used within a State Cookie so that the newly restarting
     association can be linked to the original association within the
     endpoint that did not restart.

  o  Transmission Control Block (TCB): An internal data structure
     created by an SCTP endpoint for each of its existing SCTP
     associations to other SCTP endpoints.  TCB contains all the status
     and operational information for the endpoint to maintain and
     manage the corresponding association.

  o  Transmission Sequence Number (TSN): A 32-bit sequence number used
     internally by SCTP.  One TSN is attached to each chunk containing
     user data to permit the receiving SCTP endpoint to acknowledge its
     receipt and detect duplicate deliveries.

  o  Transport address:  A Transport Address is traditionally defined
     by Network Layer address, Transport Layer protocol and Transport
     Layer port number.  In the case of SCTP running over IP, a
     transport address is defined by the combination of an IP address
     and an SCTP port number (where SCTP is the Transport protocol).

  o Unacknowledged TSN (at an SCTP endpoint): A TSN (and the associated
     DATA chunk) which has been received by the endpoint but for which
     an acknowledgement has not yet been sent. Or in the opposite case,
     for a packet that has been sent but no acknowledgement has been
     received.

  o  Unordered Message: Unordered messages are "unordered" with respect
     to any other message, this includes both other unordered messages
     as well as other ordered messages.  Unordered message might be
     delivered prior to or later than ordered messages sent on the same
     stream.

  o  User message: The unit of data delivery across the interface
     between SCTP and its user.

  o  Verification Tag: A 32 bit unsigned integer that is randomly
     generated.  The Verification Tag provides a key that allows a
     receiver to verify that the SCTP packet belongs to the current
     association and is not an old or stale packet from a previous
     association.




Stewart, et al.             Standards Track                    [Page 14]

RFC 2960          Stream Control Transmission Protocol      October 2000


1.5. Abbreviations

  MAC    - Message Authentication Code [RFC2104]

  RTO    - Retransmission Time-out

  RTT    - Round-trip Time

  RTTVAR - Round-trip Time Variation

  SCTP   - Stream Control Transmission Protocol

  SRTT   - Smoothed RTT

  TCB    - Transmission Control Block

  TLV    - Type-Length-Value Coding Format

  TSN    - Transmission Sequence Number

  ULP    - Upper-layer Protocol

1.6 Serial Number Arithmetic

  It is essential to remember that the actual Transmission Sequence
  Number space is finite, though very large.  This space ranges from 0
  to 2**32 - 1. Since the space is finite, all arithmetic dealing with
  Transmission Sequence Numbers must be performed modulo 2**32.  This
  unsigned arithmetic preserves the relationship of sequence numbers as
  they cycle from 2**32 - 1 to 0 again.  There are some subtleties to
  computer modulo arithmetic, so great care should be taken in
  programming the comparison of such values.  When referring to TSNs,
  the symbol "=<" means "less than or equal"(modulo 2**32).

  Comparisons and arithmetic on TSNs in this document SHOULD use Serial
  Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 32.

  An endpoint SHOULD NOT transmit a DATA chunk with a TSN that is more
  than 2**31 - 1 above the beginning TSN of its current send window.
  Doing so will cause problems in comparing TSNs.

  Transmission Sequence Numbers wrap around when they reach 2**32 - 1.
  That is, the next TSN a DATA chunk MUST use after transmitting TSN =
  2*32 - 1 is TSN = 0.

  Any arithmetic done on Stream Sequence Numbers SHOULD use Serial
  Number Arithmetic as defined in [RFC1982] where SERIAL_BITS = 16.




Stewart, et al.             Standards Track                    [Page 15]

RFC 2960          Stream Control Transmission Protocol      October 2000


  All other arithmetic and comparisons in this document uses normal
  arithmetic.

2. Conventions

  The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
  SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
  they appear in this document, are to be interpreted as described in
  [RFC2119].

3.  SCTP packet Format

  An SCTP packet is composed of a common header and chunks. A chunk
  contains either control information or user data.

  The SCTP packet format is shown below:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Common Header                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Chunk #1                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           ...                                 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Chunk #n                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Multiple chunks can be bundled into one SCTP packet up to the MTU
  size, except for the INIT, INIT ACK, and SHUTDOWN COMPLETE chunks.
  These chunks MUST NOT be bundled with any other chunk in a packet.
  See Section 6.10 for more details on chunk bundling.

  If a user data message doesn't fit into one SCTP packet it can be
  fragmented into multiple chunks using the procedure defined in
  Section 6.9.

  All integer fields in an SCTP packet MUST be transmitted in network
  byte order, unless otherwise stated.











Stewart, et al.             Standards Track                    [Page 16]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.1 SCTP Common Header Field Descriptions

                        SCTP Common Header Format

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Source Port Number        |     Destination Port Number   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Verification Tag                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Checksum                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Source Port Number: 16 bits (unsigned integer)

     This is the SCTP sender's port number.  It can be used by the
     receiver in combination with the source IP address, the SCTP
     destination port and possibly the destination IP address to
     identify the association to which this packet belongs.

  Destination Port Number: 16 bits (unsigned integer)

     This is the SCTP port number to which this packet is destined.
     The receiving host will use this port number to de-multiplex the
     SCTP packet to the correct receiving endpoint/application.

  Verification Tag: 32 bits (unsigned integer)

     The receiver of this packet uses the Verification Tag to validate
     the sender of this SCTP packet.  On transmit, the value of this
     Verification Tag MUST be set to the value of the Initiate Tag
     received from the peer endpoint during the association
     initialization, with the following exceptions:

     -  A packet containing an INIT chunk MUST have a zero Verification
        Tag.
     -  A packet containing a SHUTDOWN-COMPLETE chunk with the T-bit
        set MUST have the Verification Tag copied from the packet with
        the SHUTDOWN-ACK chunk.
     -  A packet containing an ABORT chunk may have the verification
        tag copied from the packet which caused the ABORT to be sent.
        For details see Section 8.4 and 8.5.

  An INIT chunk MUST be the only chunk in the SCTP packet carrying it.






Stewart, et al.             Standards Track                    [Page 17]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Checksum: 32 bits (unsigned integer)

        This field contains the checksum of this SCTP packet.  Its
        calculation is discussed in Section 6.8.  SCTP uses the Adler-
        32 algorithm as described in Appendix B for calculating the
        checksum

3.2  Chunk Field Descriptions

  The figure below illustrates the field format for the chunks to be
  transmitted in the SCTP packet.  Each chunk is formatted with a Chunk
  Type field, a chunk-specific Flag field, a Chunk Length field, and a
  Value field.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Chunk Type  | Chunk  Flags  |        Chunk Length           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /                          Chunk Value                          /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Type: 8 bits (unsigned integer)

     This field identifies the type of information contained in the
     Chunk Value field.  It takes a value from 0 to 254.  The value of
     255 is reserved for future use as an extension field.

  The values of Chunk Types are defined as follows:

  ID Value    Chunk Type
  -----       ----------
  0          - Payload Data (DATA)
  1          - Initiation (INIT)
  2          - Initiation Acknowledgement (INIT ACK)
  3          - Selective Acknowledgement (SACK)
  4          - Heartbeat Request (HEARTBEAT)
  5          - Heartbeat Acknowledgement (HEARTBEAT ACK)
  6          - Abort (ABORT)
  7          - Shutdown (SHUTDOWN)
  8          - Shutdown Acknowledgement (SHUTDOWN ACK)
  9          - Operation Error (ERROR)
  10         - State Cookie (COOKIE ECHO)
  11         - Cookie Acknowledgement (COOKIE ACK)
  12         - Reserved for Explicit Congestion Notification Echo (ECNE)
  13         - Reserved for Congestion Window Reduced (CWR)



Stewart, et al.             Standards Track                    [Page 18]

RFC 2960          Stream Control Transmission Protocol      October 2000


  14         - Shutdown Complete (SHUTDOWN COMPLETE)
  15 to 62   - reserved by IETF
  63         - IETF-defined Chunk Extensions
  64 to 126  - reserved by IETF
  127        - IETF-defined Chunk Extensions
  128 to 190 - reserved by IETF
  191        - IETF-defined Chunk Extensions
  192 to 254 - reserved by IETF
  255        - IETF-defined Chunk Extensions

  Chunk Types are encoded such that the highest-order two bits specify
  the action that must be taken if the processing endpoint does not
  recognize the Chunk Type.

  00 - Stop processing this SCTP packet and discard it, do not process
       any further chunks within it.

  01 - Stop processing this SCTP packet and discard it, do not process
       any further chunks within it, and report the unrecognized
       parameter in an 'Unrecognized Parameter Type' (in either an
       ERROR or in the INIT ACK).

  10 - Skip this chunk and continue processing.

  11 - Skip this chunk and continue processing, but report in an ERROR
       Chunk using the 'Unrecognized Chunk Type' cause of error.

  Note: The ECNE and CWR chunk types are reserved for future use of
  Explicit Congestion Notification (ECN).

  Chunk Flags: 8 bits

     The usage of these bits depends on the chunk type as given by the
     Chunk Type.  Unless otherwise specified, they are set to zero on
     transmit and are ignored on receipt.

  Chunk Length: 16 bits (unsigned integer)

     This value represents the size of the chunk in bytes including the
     Chunk Type, Chunk Flags, Chunk Length, and Chunk Value fields.
     Therefore, if the Chunk Value field is zero-length, the Length
     field will be set to 4.  The Chunk Length field does not count any
     padding.








Stewart, et al.             Standards Track                    [Page 19]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Chunk Value: variable length

     The Chunk Value field contains the actual information to be
     transferred in the chunk.  The usage and format of this field is
     dependent on the Chunk Type.

  The total length of a chunk (including Type, Length and Value fields)
  MUST be a multiple of 4 bytes.  If the length of the chunk is not a
  multiple of 4 bytes, the sender MUST pad the chunk with all zero
  bytes and this padding is not included in the chunk length field.
  The sender should never pad with more than 3 bytes.  The receiver
  MUST ignore the padding bytes.

  SCTP defined chunks are described in detail in Section 3.3.  The
  guidelines for IETF-defined chunk extensions can be found in Section
  13.1 of this document.

3.2.1  Optional/Variable-length Parameter Format

  Chunk values of SCTP control chunks consist of a chunk-type-specific
  header of required fields, followed by zero or more parameters.  The
  optional and variable-length parameters contained in a chunk are
  defined in a Type-Length-Value format as shown below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Parameter Type       |       Parameter Length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /                       Parameter Value                         /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Parameter Type:  16 bits (unsigned integer)

     The Type field is a 16 bit identifier of the type of parameter.
     It takes a value of 0 to 65534.

     The value of 65535 is reserved for IETF-defined extensions. Values
     other than those defined in specific SCTP chunk description are
     reserved for use by IETF.









Stewart, et al.             Standards Track                    [Page 20]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Chunk Parameter Length:  16 bits (unsigned integer)

     The Parameter Length field contains the size of the parameter in
     bytes, including the Parameter Type, Parameter Length, and
     Parameter Value fields.  Thus, a parameter with a zero-length
     Parameter Value field would have a Length field of 4.  The
     Parameter Length does not include any padding bytes.

  Chunk Parameter Value: variable-length.

     The Parameter Value field contains the actual information to be
     transferred in the parameter.

  The total length of a parameter (including Type, Parameter Length and
  Value fields) MUST be a multiple of 4 bytes.  If the length of the
  parameter is not a multiple of 4 bytes, the sender pads the Parameter
  at the end (i.e., after the Parameter Value field) with all zero
  bytes.  The length of the padding is not included in the parameter
  length field.  A sender SHOULD NOT pad with more than 3 bytes.  The
  receiver MUST ignore the padding bytes.

  The Parameter Types are encoded such that the highest-order two bits
  specify the action that must be taken if the processing endpoint does
  not recognize the Parameter Type.

  00 - Stop processing this SCTP packet and discard it, do not process
       any further chunks within it.

  01 - Stop processing this SCTP packet and discard it, do not process
       any further chunks within it, and report the unrecognized
       parameter in an 'Unrecognized Parameter Type' (in either an
       ERROR or in the INIT ACK).

  10 - Skip this parameter and continue processing.

  11 - Skip this parameter and continue processing but report the
       unrecognized parameter in an 'Unrecognized Parameter Type' (in
       either an ERROR or in the INIT ACK).

  The actual SCTP parameters are defined in the specific SCTP chunk
  sections.  The rules for IETF-defined parameter extensions are
  defined in Section 13.2.

3.3 SCTP Chunk Definitions

  This section defines the format of the different SCTP chunk types.





Stewart, et al.             Standards Track                    [Page 21]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.1 Payload Data (DATA) (0)

  The following format MUST be used for the DATA chunk:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 0    | Reserved|U|B|E|    Length                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              TSN                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      Stream Identifier S      |   Stream Sequence Number n    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                  Payload Protocol Identifier                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /                 User Data (seq n of Stream S)                 /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Reserved: 5 bits

     Should be set to all '0's and ignored by the receiver.

  U bit: 1 bit

     The (U)nordered bit, if set to '1', indicates that this is an
     unordered DATA chunk, and there is no Stream Sequence Number
     assigned to this DATA chunk.  Therefore, the receiver MUST ignore
     the Stream Sequence Number field.

     After re-assembly (if necessary), unordered DATA chunks MUST be
     dispatched to the upper layer by the receiver without any attempt
     to re-order.

     If an unordered user message is fragmented, each fragment of the
     message MUST have its U bit set to '1'.

  B bit: 1 bit

     The (B)eginning fragment bit, if set, indicates the first fragment
     of a user message.

  E bit:  1 bit

     The (E)nding fragment bit, if set, indicates the last fragment of
     a user message.




Stewart, et al.             Standards Track                    [Page 22]

RFC 2960          Stream Control Transmission Protocol      October 2000


  An unfragmented user message shall have both the B and E bits set to
  '1'.  Setting both B and E bits to '0' indicates a middle fragment of
  a multi-fragment user message, as summarized in the following table:

           B E                  Description
        ============================================================
        |  1 0 | First piece of a fragmented user message          |
        +----------------------------------------------------------+
        |  0 0 | Middle piece of a fragmented user message         |
        +----------------------------------------------------------+
        |  0 1 | Last piece of a fragmented user message           |
        +----------------------------------------------------------+
        |  1 1 | Unfragmented Message                              |
        ============================================================
        |             Table 1: Fragment Description Flags          |
        ============================================================

  When a user message is fragmented into multiple chunks, the TSNs are
  used by the receiver to reassemble the message.  This means that the
  TSNs for each fragment of a fragmented user message MUST be strictly
  sequential.

  Length:  16 bits (unsigned integer)

     This field indicates the length of the DATA chunk in bytes from
     the beginning of the type field to the end of the user data field
     excluding any padding.  A DATA chunk with no user data field will
     have Length set to 16 (indicating 16 bytes).

  TSN : 32 bits (unsigned integer)

     This value represents the TSN for this DATA chunk.  The valid
     range of TSN is from 0 to 4294967295 (2**32 - 1).  TSN wraps back
     to 0 after reaching 4294967295.

  Stream Identifier S: 16 bits (unsigned integer)

     Identifies the stream to which the following user data belongs.

  Stream Sequence Number n: 16 bits (unsigned integer)

     This value represents the stream sequence number of the following
     user data within the stream S.  Valid range is 0 to 65535.

     When a user message is fragmented by SCTP for transport, the same
     stream sequence number MUST be carried in each of the fragments of
     the message.




Stewart, et al.             Standards Track                    [Page 23]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Payload Protocol Identifier: 32 bits (unsigned integer)

     This value represents an application (or upper layer) specified
     protocol identifier.  This value is passed to SCTP by its upper
     layer and sent to its peer.  This identifier is not used by SCTP
     but can be used by certain network entities as well as the peer
     application to identify the type of information being carried in
     this DATA chunk. This field must be sent even in fragmented DATA
     chunks (to make sure it is available for agents in the middle of
     the network).

     The value 0 indicates no application identifier is specified by
     the upper layer for this payload data.

  User Data: variable length

     This is the payload user data.  The implementation MUST pad the
     end of the data to a 4 byte boundary with all-zero bytes.  Any
     padding MUST NOT be included in the length field.  A sender MUST
     never add more than 3 bytes of padding.

3.3.2 Initiation (INIT) (1)

  This chunk is used to initiate a SCTP association between two
  endpoints.  The format of the INIT chunk is shown below:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 1    |  Chunk Flags  |      Chunk Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Initiate Tag                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Advertised Receiver Window Credit (a_rwnd)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Number of Outbound Streams   |  Number of Inbound Streams    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Initial TSN                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /              Optional/Variable-Length Parameters              /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The INIT chunk contains the following parameters.  Unless otherwise
  noted, each parameter MUST only be included once in the INIT chunk.





Stewart, et al.             Standards Track                    [Page 24]

RFC 2960          Stream Control Transmission Protocol      October 2000


        Fixed Parameters                     Status
        ----------------------------------------------
        Initiate Tag                        Mandatory
        Advertised Receiver Window Credit   Mandatory
        Number of Outbound Streams          Mandatory
        Number of Inbound Streams           Mandatory
        Initial TSN                         Mandatory

        Variable Parameters                  Status     Type Value
        -------------------------------------------------------------
        IPv4 Address (Note 1)               Optional    5
        IPv6 Address (Note 1)               Optional    6
        Cookie Preservative                 Optional    9
        Reserved for ECN Capable (Note 2)   Optional    32768 (0x8000)
        Host Name Address (Note 3)          Optional    11
        Supported Address Types (Note 4)    Optional    12

  Note 1: The INIT chunks can contain multiple addresses that can be
  IPv4 and/or IPv6 in any combination.

  Note 2: The ECN capable field is reserved for future use of Explicit
  Congestion Notification.

  Note 3: An INIT chunk MUST NOT contain more than one Host Name
  address parameter.  Moreover, the sender of the INIT MUST NOT combine
  any other address types with the Host Name address in the INIT.  The
  receiver of INIT MUST ignore any other address types if the Host Name
  address parameter is present in the received INIT chunk.

  Note 4: This parameter, when present, specifies all the address types
  the sending endpoint can support.  The absence of this parameter
  indicates that the sending endpoint can support any address type.

  The Chunk Flags field in INIT is reserved and all bits in it should
  be set to 0 by the sender and ignored by the receiver.  The sequence
  of parameters within an INIT can be processed in any order.

  Initiate Tag: 32 bits (unsigned integer)

     The receiver of the INIT (the responding end) records the value of
     the Initiate Tag parameter.  This value MUST be placed into the
     Verification Tag field of every SCTP packet that the receiver of
     the INIT transmits within this association.

     The Initiate Tag is allowed to have any value except 0.  See
     Section 5.3.1 for more on the selection of the tag value.





Stewart, et al.             Standards Track                    [Page 25]

RFC 2960          Stream Control Transmission Protocol      October 2000


     If the value of the Initiate Tag in a received INIT chunk is found
     to be 0, the receiver MUST treat it as an error and close the
     association by transmitting an ABORT.

  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
     integer)

     This value represents the dedicated buffer space, in number of
     bytes, the sender of the INIT has reserved in association with
     this window.  During the life of the association this buffer space
     SHOULD not be lessened (i.e. dedicated buffers taken away from
     this association); however, an endpoint MAY change the value of
     a_rwnd it sends in SACK chunks.

  Number of Outbound Streams (OS):  16 bits (unsigned integer)

     Defines the number of outbound streams the sender of this INIT
     chunk wishes to create in this association.  The value of 0 MUST
     NOT be used.

     Note: A receiver of an INIT with the OS value set to 0 SHOULD
     abort the association.

  Number of Inbound Streams (MIS) : 16 bits (unsigned integer)

     Defines the maximum number of streams the sender of this INIT
     chunk allows the peer end to create in this association.  The
     value 0 MUST NOT be used.

     Note: There is no negotiation of the actual number of streams but
     instead the two endpoints will use the min(requested, offered).
     See Section 5.1.1 for details.

     Note: A receiver of an INIT with the MIS value of 0 SHOULD abort
     the association.

  Initial TSN (I-TSN) : 32 bits (unsigned integer)

     Defines the initial TSN that the sender will use.  The valid range
     is from 0 to 4294967295.  This field MAY be set to the value of
     the Initiate Tag field.

3.3.2.1 Optional/Variable Length Parameters in INIT

  The following parameters follow the Type-Length-Value format as
  defined in Section 3.2.1.  Any Type-Length-Value fields MUST come
  after the fixed-length fields defined in the previous section.




Stewart, et al.             Standards Track                    [Page 26]

RFC 2960          Stream Control Transmission Protocol      October 2000


  IPv4 Address Parameter (5)

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Type = 5               |      Length = 8               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        IPv4 Address                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  IPv4 Address: 32 bits (unsigned integer)

     Contains an IPv4 address of the sending endpoint.  It is binary
     encoded.

  IPv6 Address Parameter (6)

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            Type = 6           |          Length = 20          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                         IPv6 Address                          |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv6 Address: 128 bit (unsigned integer)

     Contains an IPv6 address of the sending endpoint.  It is binary
     encoded.

     Note: A sender MUST NOT use an IPv4-mapped IPv6 address [RFC2373]
     but should instead use an IPv4 Address Parameter for an IPv4
     address.

     Combined with the Source Port Number in the SCTP common header,
     the value passed in an IPv4 or IPv6 Address parameter indicates a
     transport address the sender of the INIT will support for the
     association being initiated.  That is, during the lifetime of this
     association, this IP address can appear in the source address
     field of an IP datagram sent from the sender of the INIT, and can
     be used as a destination address of an IP datagram sent from the
     receiver of the INIT.





Stewart, et al.             Standards Track                    [Page 27]

RFC 2960          Stream Control Transmission Protocol      October 2000


     More than one IP Address parameter can be included in an INIT
     chunk when the INIT sender is multi-homed.  Moreover, a multi-
     homed endpoint may have access to different types of network, thus
     more than one address type can be present in one INIT chunk, i.e.,
     IPv4 and IPv6 addresses are allowed in the same INIT chunk.

     If the INIT contains at least one IP Address parameter, then the
     source address of the IP datagram containing the INIT chunk and
     any additional address(es) provided within the INIT can be used as
     destinations by the endpoint receiving the INIT.  If the INIT does
     not contain any IP Address parameters, the endpoint receiving the
     INIT MUST use the source address associated with the received IP
     datagram as its sole destination address for the association.

     Note that not using any IP address parameters in the INIT and
     INIT-ACK is an alternative to make an association more likely to
     work across a NAT box.

  Cookie Preservative (9)

     The sender of the INIT shall use this parameter to suggest to the
     receiver of the INIT for a longer life-span of the State Cookie.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Type = 9             |          Length = 8           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Suggested Cookie Life-span Increment (msec.)          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Suggested Cookie Life-span Increment: 32 bits (unsigned integer)

     This parameter indicates to the receiver how much increment in
     milliseconds the sender wishes the receiver to add to its default
     cookie life-span.

     This optional parameter should be added to the INIT chunk by the
     sender when it re-attempts establishing an association with a peer
     to which its previous attempt of establishing the association failed
     due to a stale cookie operation error.  The receiver MAY choose to
     ignore the suggested cookie life-span increase for its own security
     reasons.








Stewart, et al.             Standards Track                    [Page 28]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Host Name Address (11)

     The sender of INIT uses this parameter to pass its Host Name (in
     place of its IP addresses) to its peer.  The peer is responsible
     for resolving the name.  Using this parameter might make it more
     likely for the association to work across a NAT box.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Type = 11            |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                          Host Name                            /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Host Name: variable length

     This field contains a host name in "host name syntax" per RFC1123
     Section 2.1 [RFC1123].  The method for resolving the host name is
     out of scope of SCTP.

     Note: At least one null terminator is included in the Host Name
     string and must be included in the length.

  Supported Address Types (12)

     The sender of INIT uses this parameter to list all the address
     types it can support.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Type = 12            |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Address Type #1        |        Address Type #2        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        ......
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Address Type: 16 bits (unsigned integer)

     This is filled with the type value of the corresponding address
     TLV (e.g., IPv4 = 5, IPv6 = 6, Hostname = 11).







Stewart, et al.             Standards Track                    [Page 29]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.3 Initiation Acknowledgement (INIT ACK) (2):

  The INIT ACK chunk is used to acknowledge the initiation of an SCTP
  association.

  The parameter part of INIT ACK is formatted similarly to the INIT
  chunk.  It uses two extra variable parameters: The State Cookie and
  the Unrecognized Parameter:

  The format of the INIT ACK chunk is shown below:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 2    |  Chunk Flags  |      Chunk Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Initiate Tag                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Advertised Receiver Window Credit                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Number of Outbound Streams   |  Number of Inbound Streams    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Initial TSN                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /              Optional/Variable-Length Parameters              /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Initiate Tag: 32 bits (unsigned integer)

     The receiver of the INIT ACK records the value of the Initiate Tag
     parameter.  This value MUST be placed into the Verification Tag
     field of every SCTP packet that the INIT ACK receiver transmits
     within this association.

     The Initiate Tag MUST NOT take the value 0.  See Section 5.3.1 for
     more on the selection of the Initiate Tag value.

     If the value of the Initiate Tag in a received INIT ACK chunk is
     found to be 0, the receiver MUST treat it as an error and close
     the association by transmitting an ABORT.









Stewart, et al.             Standards Track                    [Page 30]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
  integer)

     This value represents the dedicated buffer space, in number of
     bytes, the sender of the INIT ACK has reserved in association with
     this window.  During the life of the association this buffer space
     SHOULD not be lessened (i.e. dedicated buffers taken away from
     this association).

  Number of Outbound Streams (OS):  16 bits (unsigned integer)

     Defines the number of outbound streams the sender of this INIT ACK
     chunk wishes to create in this association.  The value of 0 MUST
     NOT be used.

     Note: A receiver of an INIT ACK  with the OS value set to 0 SHOULD
     destroy the association discarding its TCB.

  Number of Inbound Streams (MIS) : 16 bits (unsigned integer)

     Defines the maximum number of streams the sender of this INIT ACK
     chunk allows the peer end to create in this association.  The
     value 0 MUST NOT be used.

     Note: There is no negotiation of the actual number of streams but
     instead the two endpoints will use the min(requested, offered).
     See Section 5.1.1 for details.

     Note: A receiver of an INIT ACK  with the MIS value set to 0
     SHOULD destroy the association discarding its TCB.

  Initial TSN (I-TSN) : 32 bits (unsigned integer)

     Defines the initial TSN that the INIT-ACK sender will use.  The
     valid range is from 0 to 4294967295.  This field MAY be set to the
     value of the Initiate Tag field.

     Fixed Parameters                     Status
     ----------------------------------------------
     Initiate Tag                        Mandatory
     Advertised Receiver Window Credit   Mandatory
     Number of Outbound Streams          Mandatory
     Number of Inbound Streams           Mandatory
     Initial TSN                         Mandatory







Stewart, et al.             Standards Track                    [Page 31]

RFC 2960          Stream Control Transmission Protocol      October 2000


     Variable Parameters                  Status     Type Value
     -------------------------------------------------------------
     State Cookie                        Mandatory   7
     IPv4 Address (Note 1)               Optional    5
     IPv6 Address (Note 1)               Optional    6
     Unrecognized Parameters             Optional    8
     Reserved for ECN Capable (Note 2)   Optional    32768 (0x8000)
     Host Name Address (Note 3)          Optional    11

  Note 1: The INIT ACK chunks can contain any number of IP address
  parameters that can be IPv4 and/or IPv6 in any combination.

  Note 2: The ECN capable field is reserved for future use of Explicit
  Congestion Notification.

  Note 3: The INIT ACK chunks MUST NOT contain more than one Host Name
  address parameter.  Moreover, the sender of the INIT ACK MUST NOT
  combine any other address types with the Host Name address in the
  INIT ACK.  The receiver of the INIT ACK MUST ignore any other address
  types if the Host Name address parameter is present.

  IMPLEMENTATION NOTE: An implementation MUST be prepared to receive a
  INIT ACK that is quite large (more than 1500 bytes) due to the
  variable size of the state cookie AND the variable address list.  For
  example if a responder to the INIT has 1000 IPv4 addresses it wishes
  to send, it would need at least 8,000 bytes to encode this in the
  INIT ACK.

  In combination with the Source Port carried in the SCTP common
  header, each IP Address parameter in the INIT ACK indicates to the
  receiver of the INIT ACK a valid transport address supported by the
  sender of the INIT ACK for the lifetime of the association being
  initiated.

  If the INIT ACK contains at least one IP Address parameter, then the
  source address of the IP datagram containing the INIT ACK and any
  additional address(es) provided within the INIT ACK may be used as
  destinations by the receiver of the INIT-ACK.  If the INIT ACK does
  not contain any IP Address parameters, the receiver of the INIT-ACK
  MUST use the source address associated with the received IP datagram
  as its sole destination address for the association.

  The State Cookie and Unrecognized Parameters use the Type-Length-
  Value format as defined in Section 3.2.1 and are described below.
  The other fields are defined the same as their counterparts in the
  INIT chunk.





Stewart, et al.             Standards Track                    [Page 32]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.3.1 Optional or Variable Length Parameters

  State Cookie

     Parameter Type Value: 7

     Parameter Length:  variable size, depending on Size of Cookie

     Parameter Value:

        This parameter value MUST contain all the necessary state and
        parameter information required for the sender of this INIT ACK
        to create the association, along with a Message Authentication
        Code (MAC).  See Section 5.1.3 for details on State Cookie
        definition.

  Unrecognized Parameters:

     Parameter Type Value: 8

     Parameter Length:  Variable Size.

     Parameter Value:

        This parameter is returned to the originator of the INIT chunk
        when the INIT contains an unrecognized parameter which has a
        value that indicates that it should be reported to the sender.
        This parameter value field will contain unrecognized parameters
        copied from the INIT chunk complete with Parameter Type, Length
        and Value fields.

3.3.4 Selective Acknowledgement (SACK) (3):

  This chunk is sent to the peer endpoint to acknowledge received DATA
  chunks and to inform the peer endpoint of gaps in the received
  subsequences of DATA chunks as represented by their TSNs.

  The SACK MUST contain the Cumulative TSN Ack and Advertised Receiver
  Window Credit (a_rwnd) parameters.

  By definition, the value of the Cumulative TSN Ack parameter is the
  last TSN received before a break in the sequence of received TSNs
  occurs; the next TSN value following this one has not yet been
  received at the endpoint sending the SACK.  This parameter therefore
  acknowledges receipt of all TSNs less than or equal to its value.

  The handling of a_rwnd by the receiver of the SACK is discussed in
  detail in Section 6.2.1.



Stewart, et al.             Standards Track                    [Page 33]

RFC 2960          Stream Control Transmission Protocol      October 2000


  The SACK also contains zero or more Gap Ack Blocks.  Each Gap Ack
  Block acknowledges a subsequence of TSNs received following a break
  in the sequence of received TSNs.  By definition, all TSNs
  acknowledged by Gap Ack Blocks are greater than the value of the
  Cumulative TSN Ack.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 3    |Chunk  Flags   |      Chunk Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Cumulative TSN Ack                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          Advertised Receiver Window Credit (a_rwnd)           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Number of Gap Ack Blocks = N  |  Number of Duplicate TSNs = X |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Gap Ack Block #1 Start       |   Gap Ack Block #1 End        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                                                               /
     \                              ...                              \
     /                                                               /
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Gap Ack Block #N Start      |  Gap Ack Block #N End         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Duplicate TSN 1                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                                                               /
     \                              ...                              \
     /                                                               /
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Duplicate TSN X                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to all zeros on transmit and ignored on receipt.

  Cumulative TSN Ack: 32 bits (unsigned integer)

     This parameter contains the TSN of the last DATA chunk received in
     sequence before a gap.

  Advertised Receiver Window Credit (a_rwnd): 32 bits (unsigned
     integer)

     This field indicates the updated receive buffer space in bytes of
     the sender of this SACK, see Section 6.2.1 for details.



Stewart, et al.             Standards Track                    [Page 34]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Number of Gap Ack Blocks: 16 bits (unsigned integer)

     Indicates the number of Gap Ack Blocks included in this SACK.

  Number of Duplicate TSNs: 16 bit

     This field contains the number of duplicate TSNs the endpoint has
     received.  Each duplicate TSN is listed following the Gap Ack
     Block list.

  Gap Ack Blocks:

     These fields contain the Gap Ack Blocks.  They are repeated for
     each Gap Ack Block up to the number of Gap Ack Blocks defined in
     the Number of Gap Ack Blocks field.  All DATA chunks with TSNs
     greater than or equal to (Cumulative TSN Ack + Gap Ack Block
     Start) and less than or equal to (Cumulative TSN Ack + Gap Ack
     Block End) of each Gap Ack Block are assumed to have been received
     correctly.

  Gap Ack Block Start: 16 bits (unsigned integer)

     Indicates the Start offset TSN for this Gap Ack Block.  To
     calculate the actual TSN number the Cumulative TSN Ack is added to
     this offset number.  This calculated TSN identifies the first TSN
     in this Gap Ack Block that has been received.

  Gap Ack Block End:  16 bits (unsigned integer)

     Indicates the End offset TSN for this Gap Ack Block.  To calculate
     the actual TSN number the Cumulative TSN Ack is added to this
     offset number.  This calculated TSN identifies the TSN of the last
     DATA chunk received in this Gap Ack Block.

  For example, assume the receiver has the following DATA chunks newly
  arrived at the time when it decides to send a Selective ACK,















Stewart, et al.             Standards Track                    [Page 35]

RFC 2960          Stream Control Transmission Protocol      October 2000


                       ----------
                       | TSN=17 |
                       ----------
                       |        | <- still missing
                       ----------
                       | TSN=15 |
                       ----------
                       | TSN=14 |
                       ----------
                       |        | <- still missing
                       ----------
                       | TSN=12 |
                       ----------
                       | TSN=11 |
                       ----------
                       | TSN=10 |
                       ----------

  then, the parameter part of the SACK MUST be constructed as follows
  (assuming the new a_rwnd is set to 4660 by the sender):

                 +--------------------------------+
                 |   Cumulative TSN Ack = 12      |
                 +--------------------------------+
                 |        a_rwnd = 4660           |
                 +----------------+---------------+
                 | num of block=2 | num of dup=0  |
                 +----------------+---------------+
                 |block #1 strt=2 |block #1 end=3 |
                 +----------------+---------------+
                 |block #2 strt=5 |block #2 end=5 |
                 +----------------+---------------+


  Duplicate TSN: 32 bits (unsigned integer)

     Indicates the number of times a TSN was received in duplicate
     since the last SACK was sent.  Every time a receiver gets a
     duplicate TSN (before sending the SACK) it adds it to the list of
     duplicates.  The duplicate count is re-initialized to zero after
     sending each SACK.

     For example, if a receiver were to get the TSN 19 three times it
     would list 19 twice in the outbound SACK.  After sending the SACK
     if it received yet one more TSN 19 it would list 19 as a duplicate
     once in the next outgoing SACK.





Stewart, et al.             Standards Track                    [Page 36]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.5 Heartbeat Request (HEARTBEAT) (4):

  An endpoint should send this chunk to its peer endpoint to probe the
  reachability of a particular destination transport address defined in
  the present association.

  The parameter field contains the Heartbeat Information which is a
  variable length opaque data structure understood only by the sender.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 4    | Chunk  Flags  |      Heartbeat Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /            Heartbeat Information TLV (Variable-Length)        /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to zero on transmit and ignored on receipt.

  Heartbeat Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and the Heartbeat Information field.

  Heartbeat Information: variable length

     Defined as a variable-length parameter using the format described
     in Section 3.2.1, i.e.:

     Variable Parameters                  Status     Type Value
     -------------------------------------------------------------
     Heartbeat Info                       Mandatory   1

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Heartbeat Info Type=1      |         HB Info Length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                  Sender-specific Heartbeat Info               /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Stewart, et al.             Standards Track                    [Page 37]

RFC 2960          Stream Control Transmission Protocol      October 2000


     The Sender-specific Heartbeat Info field should normally include
     information about the sender's current time when this HEARTBEAT
     chunk is sent and the destination transport address to which this
     HEARTBEAT is sent (see Section 8.3).

3.3.6 Heartbeat Acknowledgement (HEARTBEAT ACK) (5):

  An endpoint should send this chunk to its peer endpoint as a response
  to a HEARTBEAT chunk (see Section 8.3).  A HEARTBEAT ACK is always
  sent to the source IP address of the IP datagram containing the
  HEARTBEAT chunk to which this ack is responding.

  The parameter field contains a variable length opaque data structure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 5    | Chunk  Flags  |    Heartbeat Ack Length       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /            Heartbeat Information TLV (Variable-Length)        /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to zero on transmit and ignored on receipt.

  Heartbeat Ack Length:  16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and the Heartbeat Information field.

  Heartbeat Information: variable length

     This field MUST contain the Heartbeat Information parameter of
     the Heartbeat Request to which this Heartbeat Acknowledgement is
     responding.

     Variable Parameters                  Status     Type Value
     -------------------------------------------------------------
     Heartbeat Info                       Mandatory   1









Stewart, et al.             Standards Track                    [Page 38]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.7 Abort Association (ABORT) (6):

  The ABORT chunk is sent to the peer of an association to close the
  association.  The ABORT chunk may contain Cause Parameters to inform
  the receiver the reason of the abort.  DATA chunks MUST NOT be
  bundled with ABORT.  Control chunks (except for INIT, INIT ACK and
  SHUTDOWN COMPLETE) MAY be bundled with an ABORT but they MUST be
  placed before the ABORT in the SCTP packet, or they will be ignored
  by the receiver.

  If an endpoint receives an ABORT with a format error or for an
  association that doesn't exist, it MUST silently discard it.
  Moreover, under any circumstances, an endpoint that receives an ABORT
  MUST NOT respond to that ABORT by sending an ABORT of its own.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 6    |Reserved     |T|           Length              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /                   zero or more Error Causes                   /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

  Reserved:  7 bits

     Set to 0 on transmit and ignored on receipt.

  T bit:  1 bit

     The T bit is set to 0 if the sender had a TCB that it destroyed.
     If the sender did not have a TCB it should set this bit to 1.

  Note: Special rules apply to this chunk for verification, please see
  Section 8.5.1 for details.

  Length:  16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and all the Error Cause fields present.

  See Section 3.3.10 for Error Cause definitions.






Stewart, et al.             Standards Track                    [Page 39]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.8 Shutdown Association (SHUTDOWN) (7):

  An endpoint in an association MUST use this chunk to initiate a
  graceful close of the association with its peer.  This chunk has the
  following format.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 7    | Chunk  Flags  |      Length = 8               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Cumulative TSN Ack                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to zero on transmit and ignored on receipt.

  Length:  16 bits (unsigned integer)

     Indicates the length of the parameter.  Set to 8.

  Cumulative TSN Ack: 32 bits (unsigned integer)

     This parameter contains the TSN of the last chunk received in
     sequence before any gaps.

     Note:  Since the SHUTDOWN message does not contain Gap Ack Blocks,
     it cannot be used to acknowledge TSNs received out of order.  In a
     SACK, lack of Gap Ack Blocks that were previously included
     indicates that the data receiver reneged on the associated DATA
     chunks.  Since SHUTDOWN does not contain Gap Ack Blocks, the
     receiver of the SHUTDOWN shouldn't interpret the lack of a Gap Ack
     Block as a renege. (see Section 6.2 for information on reneging)

3.3.9 Shutdown Acknowledgement (SHUTDOWN ACK) (8):

  This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
  chunk at the completion of the shutdown process, see Section 9.2 for
  details.

  The SHUTDOWN ACK chunk has no parameters.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 8    |Chunk  Flags   |      Length = 4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Stewart, et al.             Standards Track                    [Page 40]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Chunk Flags:  8 bits

     Set to zero on transmit and ignored on receipt.

3.3.10 Operation Error (ERROR) (9):

  An endpoint sends this chunk to its peer endpoint to notify it of
  certain error conditions.  It contains one or more error causes.  An
  Operation Error is not considered fatal in and of itself, but may be
  used with an ABORT chunk to report a fatal condition.  It has the
  following parameters:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 9    | Chunk  Flags  |           Length              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     \                                                               \
     /                    one or more Error Causes                   /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags:  8 bits

     Set to zero on transmit and ignored on receipt.

  Length:  16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the chunk header
     and all the Error Cause fields present.

  Error causes are defined as variable-length parameters using the
  format described in 3.2.1, i.e.:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Cause Code          |       Cause Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                    Cause-specific Information                 /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Cause Code: 16 bits (unsigned integer)

     Defines the type of error conditions being reported.





Stewart, et al.             Standards Track                    [Page 41]

RFC 2960          Stream Control Transmission Protocol      October 2000


     Cause Code
     Value           Cause Code
     ---------      ----------------
      1              Invalid Stream Identifier
      2              Missing Mandatory Parameter
      3              Stale Cookie Error
      4              Out of Resource
      5              Unresolvable Address
      6              Unrecognized Chunk Type
      7              Invalid Mandatory Parameter
      8              Unrecognized Parameters
      9              No User Data
     10              Cookie Received While Shutting Down

  Cause Length: 16 bits (unsigned integer)

     Set to the size of the parameter in bytes, including the Cause
     Code, Cause Length, and Cause-Specific Information fields

  Cause-specific Information: variable length

     This field carries the details of the error condition.

  Sections 3.3.10.1 - 3.3.10.10 define error causes for SCTP.
  Guidelines for the IETF to define new error cause values are
  discussed in Section 13.3.

3.3.10.1 Invalid Stream Identifier (1)

  Cause of error
  ---------------
  Invalid Stream Identifier:  Indicates endpoint received a DATA chunk
  sent to a nonexistent stream.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=1              |      Cause Length=8           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Stream Identifier      |         (Reserved)            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Stream Identifier: 16 bits (unsigned integer)

     Contains the Stream Identifier of the DATA chunk received in
     error.







Stewart, et al.             Standards Track                    [Page 42]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Reserved: 16 bits

     This field is reserved.  It is set to all 0's on transmit and
     Ignored on receipt.

3.3.10.2 Missing Mandatory Parameter (2)

  Cause of error
  ---------------
  Missing Mandatory Parameter:  Indicates that one or more mandatory
  TLV parameters are missing in a received INIT or INIT ACK.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=2              |      Cause Length=8+N*2       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   Number of missing params=N                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Missing Param Type #1       |   Missing Param Type #2       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Missing Param Type #N-1     |   Missing Param Type #N       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Number of Missing params:  32 bits (unsigned integer)

     This field contains the number of parameters contained in the
     Cause-specific Information field.

  Missing Param Type:  16 bits (unsigned integer)

     Each field will contain the missing mandatory parameter number.

3.3.10.3 Stale Cookie Error (3)

  Cause of error
  --------------
  Stale Cookie Error:  Indicates the receipt of a valid State Cookie
  that has expired.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=3              |       Cause Length=8          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 Measure of Staleness (usec.)                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Measure of Staleness:  32 bits (unsigned integer)

     This field contains the difference, in microseconds, between the
     current time and the time the State Cookie expired.



Stewart, et al.             Standards Track                    [Page 43]

RFC 2960          Stream Control Transmission Protocol      October 2000


     The sender of this error cause MAY choose to report how long past
     expiration the State Cookie is by including a non-zero value in
     the Measure of Staleness field.  If the sender does not wish to
     provide this information it should set the Measure of Staleness
     field to the value of zero.

3.3.10.4 Out of Resource (4)

  Cause of error
  ---------------
  Out of Resource: Indicates that the sender is out of resource.  This
  is usually sent in combination with or within an ABORT.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=4              |      Cause Length=4           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.10.5 Unresolvable Address (5)

  Cause of error
  ---------------
  Unresolvable Address: Indicates that the sender is not able to
  resolve the specified address parameter (e.g., type of address is not
  supported by the sender).  This is usually sent in combination with
  or within an ABORT.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=5              |      Cause Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                  Unresolvable Address                         /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unresolvable Address:  variable length

     The unresolvable address field contains the complete Type, Length
     and Value of the address parameter (or Host Name parameter) that
     contains the unresolvable address or host name.

3.3.10.6 Unrecognized Chunk Type (6)

  Cause of error
  ---------------
  Unrecognized Chunk Type:  This error cause is returned to the
  originator of the chunk if the receiver does not understand the chunk
  and the upper bits of the 'Chunk Type' are set to 01 or 11.





Stewart, et al.             Standards Track                    [Page 44]

RFC 2960          Stream Control Transmission Protocol      October 2000


     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=6              |      Cause Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                  Unrecognized Chunk                           /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unrecognized Chunk:  variable length

     The Unrecognized Chunk field contains the unrecognized Chunk from
     the SCTP packet complete with Chunk Type, Chunk Flags and Chunk
     Length.

3.3.10.7 Invalid Mandatory Parameter (7)

  Cause of error
  ---------------
  Invalid Mandatory Parameter:  This error cause is returned to the
  originator of an INIT or INIT ACK chunk when one of the mandatory
  parameters is set to a invalid value.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=7              |      Cause Length=4           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.10.8 Unrecognized Parameters (8)

  Cause of error
  ---------------
  Unrecognized Parameters:  This error cause is returned to the
  originator of the INIT ACK chunk if the receiver does not recognize
  one or more Optional TLV parameters in the INIT ACK chunk.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=8              |      Cause Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                  Unrecognized Parameters                      /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Unrecognized Parameters:  variable length

     The Unrecognized Parameters field contains the unrecognized
     parameters copied from the INIT ACK chunk complete with TLV.  This
     error cause is normally contained in an ERROR chunk bundled with
     the COOKIE ECHO chunk when responding to the INIT ACK, when the
     sender of the COOKIE ECHO chunk wishes to report unrecognized
     parameters.



Stewart, et al.             Standards Track                    [Page 45]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.10.9 No User Data (9)

  Cause of error
  ---------------
  No User Data:  This error cause is returned to the originator of a
  DATA chunk if a received DATA chunk has no user data.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=9              |      Cause Length=8           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                  TSN value                                    /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  TSN value:  32 bits (+unsigned integer)

     The TSN value field contains the TSN of the DATA chunk received
     with no user data field.

     This cause code is normally returned in an ABORT chunk (see
     Section 6.2)

3.3.10.10 Cookie Received While Shutting Down (10)

  Cause of error
  ---------------
  Cookie Received While Shutting Down:  A COOKIE ECHO was received
  While the endpoint was in SHUTDOWN-ACK-SENT state.  This error is
  usually returned in an ERROR chunk bundled with the retransmitted
  SHUTDOWN ACK.

     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Cause Code=10              |      Cause Length=4          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.3.11 Cookie Echo (COOKIE ECHO) (10):

  This chunk is used only during the initialization of an association.
  It is sent by the initiator of an association to its peer to complete
  the initialization process.  This chunk MUST precede any DATA chunk
  sent within the association, but MAY be bundled with one or more DATA
  chunks in the same packet.









Stewart, et al.             Standards Track                    [Page 46]

RFC 2960          Stream Control Transmission Protocol      October 2000


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 10   |Chunk  Flags   |         Length                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /                     Cookie                                    /
     \                                                               \
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bit

     Set to zero on transmit and ignored on receipt.

  Length: 16 bits (unsigned integer)

     Set to the size of the chunk in bytes, including the 4 bytes of
     the chunk header and the size of the Cookie.

  Cookie: variable size

     This field must contain the exact cookie received in the State
     Cookie parameter from the previous INIT ACK.

     An implementation SHOULD make the cookie as small as possible to
     insure interoperability.

3.3.12 Cookie Acknowledgement (COOKIE ACK) (11):

  This chunk is used only during the initialization of an association.
  It is used to acknowledge the receipt of a COOKIE ECHO chunk.  This
  chunk MUST precede any DATA or SACK chunk sent within the
  association, but MAY be bundled with one or more DATA chunks or SACK
  chunk in the same SCTP packet.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 11   |Chunk  Flags   |     Length = 4                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

     Set to zero on transmit and ignored on receipt.








Stewart, et al.             Standards Track                    [Page 47]

RFC 2960          Stream Control Transmission Protocol      October 2000


3.3.13 Shutdown Complete (SHUTDOWN COMPLETE) (14):

  This chunk MUST be used to acknowledge the receipt of the SHUTDOWN
  ACK chunk at the completion of the shutdown process, see Section 9.2
  for details.

  The SHUTDOWN COMPLETE chunk has no parameters.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Type = 14   |Reserved     |T|      Length = 4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Chunk Flags: 8 bits

  Reserved:  7 bits

     Set to 0 on transmit and ignored on receipt.

  T bit:  1 bit

     The T bit is set to 0 if the sender had a TCB that it destroyed.
     If the sender did not have a TCB it should set this bit to 1.

  Note: Special rules apply to this chunk for verification, please see
  Section 8.5.1 for details.

4. SCTP Association State Diagram

  During the lifetime of an SCTP association, the SCTP endpoint's
  association progress from one state to another in response to various
  events.  The events that may potentially advance an association's
  state include:

  o  SCTP user primitive calls, e.g., [ASSOCIATE], [SHUTDOWN], [ABORT],

  o  Reception of INIT, COOKIE ECHO, ABORT, SHUTDOWN, etc., control
     chunks, or

  o  Some timeout events.

  The state diagram in the figures below illustrates state changes,
  together with the causing events and resulting actions.  Note that
  some of the error conditions are not shown in the state diagram.
  Full description of all special cases should be found in the text.





Stewart, et al.             Standards Track                    [Page 48]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Note: Chunk names are given in all capital letters, while parameter
  names have the first letter capitalized, e.g., COOKIE ECHO chunk type
  vs. State Cookie parameter.  If more than one event/message can occur
  which causes a state transition it is labeled (A), (B) etc.

                      -----          -------- (frm any state)
                    /       \      /  rcv ABORT      [ABORT]
   rcv INIT        |         |    |   ----------  or ----------
   --------------- |         v    v   delete TCB     snd ABORT
   generate Cookie  \    +---------+                 delete TCB
   snd INIT ACK       ---|  CLOSED |
                         +---------+
                          /      \      [ASSOCIATE]
                         /        \     ---------------
                        |          |    create TCB
                        |          |    snd INIT
                        |          |    strt init timer
         rcv valid      |          |
       COOKIE  ECHO     |          v
   (1) ---------------- |      +------------+
       create TCB       |      | COOKIE-WAIT| (2)
       snd COOKIE ACK   |      +------------+
                        |          |
                        |          |    rcv INIT ACK
                        |          |    -----------------
                        |          |    snd COOKIE ECHO
                        |          |    stop init timer
                        |          |    strt cookie timer
                        |          v
                        |      +--------------+
                        |      | COOKIE-ECHOED| (3)
                        |      +--------------+
                        |          |
                        |          |    rcv COOKIE ACK
                        |          |    -----------------
                        |          |    stop cookie timer
                        v          v
                      +---------------+
                      |  ESTABLISHED  |
                      +---------------+











Stewart, et al.             Standards Track                    [Page 49]

RFC 2960          Stream Control Transmission Protocol      October 2000


                     (from the ESTABLISHED state only)
                                   |
                                   |
                          /--------+--------\
      [SHUTDOWN]         /                   \
      -------------------|                   |
      check outstanding  |                   |
      DATA chunks        |                   |
                         v                   |
                    +---------+              |
                    |SHUTDOWN-|              | rcv SHUTDOWN/check
                    |PENDING  |              | outstanding DATA
                    +---------+              | chunks
                         |                   |------------------
    No more outstanding  |                   |
    ---------------------|                   |
    snd SHUTDOWN         |                   |
    strt shutdown timer  |                   |
                         v                   v
                    +---------+        +-----------+
                (4) |SHUTDOWN-|        | SHUTDOWN- |  (5,6)
                    |SENT     |        | RECEIVED  |
                    +---------+        +-----------+
                         |  \                |
   (A) rcv SHUTDOWN ACK  |   \               |
   ----------------------|    \              |
   stop shutdown timer   |     \rcv:SHUTDOWN |
   send SHUTDOWN COMPLETE|      \  (B)       |
   delete TCB            |       \           |
                         |        \          | No more outstanding
                         |         \         |-----------------
                         |          \        | send SHUTDOWN ACK
   (B)rcv SHUTDOWN       |           \       | strt shutdown timer
   ----------------------|            \      |
   send SHUTDOWN ACK     |             \     |
   start shutdown timer  |              \    |
   move to SHUTDOWN-     |               \   |
   ACK-SENT              |                |  |
                         |                v  |
                         |             +-----------+
                         |             | SHUTDOWN- | (7)
                         |             | ACK-SENT  |
                         |             +----------+-
                         |                   | (C)rcv SHUTDOWN COMPLETE
                         |                   |-----------------
                         |                   | stop shutdown timer
                         |                   | delete TCB
                         |                   |



Stewart, et al.             Standards Track                    [Page 50]

RFC 2960          Stream Control Transmission Protocol      October 2000


                         |                   | (D)rcv SHUTDOWN ACK
                         |                   |--------------
                         |                   | stop shutdown timer
                         |                   | send SHUTDOWN COMPLETE
                         |                   | delete TCB
                         |                   |
                         \    +---------+    /
                          \-->| CLOSED  |<--/
                              +---------+

             Figure 3: State Transition Diagram of SCTP

  Notes:

  1) If the State Cookie in the received COOKIE ECHO is invalid (i.e.,
     failed to pass the integrity check), the receiver MUST silently
     discard the packet.  Or, if the received State Cookie is expired
     (see Section 5.1.5), the receiver MUST send back an ERROR chunk.
     In either case, the receiver stays in the CLOSED state.

  2) If the T1-init timer expires, the endpoint MUST retransmit INIT
     and re-start the T1-init timer without changing state.  This MUST
     be repeated up to 'Max.Init.Retransmits' times.  After that, the
     endpoint MUST abort the initialization process and report the
     error to SCTP user.

  3) If the T1-cookie timer expires, the endpoint MUST retransmit
     COOKIE ECHO and re-start the T1-cookie timer without changing
     state.  This MUST be repeated up to 'Max.Init.Retransmits' times.
     After that, the endpoint MUST abort the initialization process and
     report the error to SCTP user.

  4) In SHUTDOWN-SENT state the endpoint MUST acknowledge any received
     DATA chunks without delay.

  5) In SHUTDOWN-RECEIVED state, the endpoint MUST NOT accept any new
     send request from its SCTP user.

  6) In SHUTDOWN-RECEIVED state, the endpoint MUST transmit or
     retransmit data and leave this state when all data in queue is
     transmitted.

  7) In SHUTDOWN-ACK-SENT state, the endpoint MUST NOT accept any new
     send request from its SCTP user.

  The CLOSED state is used to indicate that an association is not
  created (i.e., doesn't exist).




Stewart, et al.             Standards Track                    [Page 51]

RFC 2960          Stream Control Transmission Protocol      October 2000


5. Association Initialization

  Before the first data transmission can take place from one SCTP
  endpoint ("A") to another SCTP endpoint ("Z"), the two endpoints must
  complete an initialization process in order to set up an SCTP
  association between them.

  The SCTP user at an endpoint should use the ASSOCIATE primitive to
  initialize an SCTP association to another SCTP endpoint.

  IMPLEMENTATION NOTE: From an SCTP-user's point of view, an
  association may be implicitly opened, without an ASSOCIATE primitive
  (see 10.1 B) being invoked, by the initiating endpoint's sending of
  the first user data to the destination endpoint.  The initiating SCTP
  will assume default values for all mandatory and optional parameters
  for the INIT/INIT ACK.

  Once the association is established, unidirectional streams are open
  for data transfer on both ends (see Section 5.1.1).

5.1 Normal Establishment of an Association

  The initialization process consists of the following steps (assuming
  that SCTP endpoint "A" tries to set up an association with SCTP
  endpoint "Z" and "Z" accepts the new association):

  A) "A" first sends an INIT chunk to "Z".  In the INIT, "A" must
     provide its Verification Tag (Tag_A) in the Initiate Tag field.
     Tag_A SHOULD be a random number in the range of 1 to 4294967295
     (see 5.3.1 for Tag value selection).  After sending the INIT, "A"
     starts the T1-init timer and enters the COOKIE-WAIT state.

  B) "Z" shall respond immediately with an INIT ACK chunk.  The
     destination IP address of the INIT ACK MUST be set to the source
     IP address of the INIT to which this INIT ACK is responding.  In
     the response, besides filling in other parameters, "Z" must set
     the Verification Tag field to Tag_A, and also provide its own
     Verification Tag (Tag_Z) in the Initiate Tag field.

     Moreover, "Z" MUST generate and send along with the INIT ACK a
     State Cookie.  See Section 5.1.3 for State Cookie generation.

     Note: After sending out INIT ACK with the State Cookie parameter,
     "Z" MUST NOT allocate any resources, nor keep any states for the
     new association.  Otherwise, "Z" will be vulnerable to resource
     attacks.





Stewart, et al.             Standards Track                    [Page 52]

RFC 2960          Stream Control Transmission Protocol      October 2000


  C) Upon reception of the INIT ACK from "Z", "A" shall stop the T1-
     init timer and leave COOKIE-WAIT state.  "A" shall then send the
     State Cookie received in the INIT ACK chunk in a COOKIE ECHO
     chunk, start the T1-cookie timer, and enter the COOKIE-ECHOED
     state.

     Note: The COOKIE ECHO chunk can be bundled with any pending
     outbound DATA chunks, but it MUST be the first chunk in the packet
     and until the COOKIE ACK is returned the sender MUST NOT send any
     other packets to the peer.

  D) Upon reception of the COOKIE ECHO chunk, Endpoint "Z" will reply
     with a COOKIE ACK chunk after building a TCB and moving to the
     ESTABLISHED state.  A COOKIE ACK chunk may be bundled with any
     pending DATA chunks (and/or SACK chunks), but the COOKIE ACK chunk
     MUST be the first chunk in the packet.

     IMPLEMENTATION NOTE: An implementation may choose to send the
     Communication Up notification to the SCTP user upon reception of a
     valid COOKIE ECHO chunk.

  E) Upon reception of the COOKIE ACK, endpoint "A" will move from the
     COOKIE-ECHOED state to the ESTABLISHED state, stopping the T1-
     cookie timer.  It may also notify its ULP about the successful
     establishment of the association with a Communication Up
     notification (see Section 10).

  An INIT or INIT ACK chunk MUST NOT be bundled with any other chunk.
  They MUST be the only chunks present in the SCTP packets that carry
  them.

  An endpoint MUST send the INIT ACK to the IP address from which it
  received the INIT.

  Note: T1-init timer and T1-cookie timer shall follow the same rules
  given in Section 6.3.

  If an endpoint receives an INIT, INIT ACK, or COOKIE ECHO chunk but
  decides not to establish the new association due to missing mandatory
  parameters in the received INIT or INIT ACK, invalid parameter
  values, or lack of local resources, it MUST respond with an ABORT
  chunk.  It SHOULD also specify the cause of abort, such as the type
  of the missing mandatory parameters, etc., by including the error
  cause parameters with the ABORT chunk.  The Verification Tag field in
  the common header of the outbound SCTP packet containing the ABORT
  chunk MUST be set to the Initiate Tag value of the peer.





Stewart, et al.             Standards Track                    [Page 53]

RFC 2960          Stream Control Transmission Protocol      October 2000


  After the reception of the first DATA chunk in an association the
  endpoint MUST immediately respond with a SACK to acknowledge the DATA
  chunk.  Subsequent acknowledgements should be done as described in
  Section 6.2.

  When the TCB is created, each endpoint MUST set its internal
  Cumulative TSN Ack Point to the value of its transmitted Initial TSN
  minus one.

  IMPLEMENTATION NOTE:  The IP addresses and SCTP port are generally
  used as the key to find the TCB within an SCTP instance.

5.1.1 Handle Stream Parameters

  In the INIT and INIT ACK chunks, the sender of the chunk shall
  indicate the number of outbound streams (OS) it wishes to have in the
  association, as well as the maximum inbound streams (MIS) it will
  accept from the other endpoint.

  After receiving the stream configuration information from the other
  side, each endpoint shall perform the following check:  If the peer's
  MIS is less than the endpoint's OS, meaning that the peer is
  incapable of supporting all the outbound streams the endpoint wants
  to configure, the endpoint MUST either use MIS outbound streams, or
  abort the association and report to its upper layer the resources
  shortage at its peer.

  After the association is initialized, the valid outbound stream
  identifier range for either endpoint shall be 0 to min(local OS,
  remote MIS)-1.

5.1.2 Handle Address Parameters

  During the association initialization, an endpoint shall use the
  following rules to discover and collect the destination transport
  address(es) of its peer.

  A) If there are no address parameters present in the received INIT or
     INIT ACK chunk, the endpoint shall take the source IP address from
     which the chunk arrives and record it, in combination with the
     SCTP source port number, as the only destination transport address
     for this peer.

  B) If there is a Host Name parameter present in the received INIT or
     INIT ACK chunk, the endpoint shall resolve that host name to a
     list of IP address(es) and derive the transport address(es) of
     this peer by combining the resolved IP address(es) with the SCTP
     source port.



Stewart, et al.             Standards Track                    [Page 54]

RFC 2960          Stream Control Transmission Protocol      October 2000


     The endpoint MUST ignore any other IP address parameters if they
     are also present in the received INIT or INIT ACK chunk.

     The time at which the receiver of an INIT resolves the host name
     has potential security implications to SCTP.  If the receiver of
     an INIT resolves the host name upon the reception of the chunk,
     and the mechanism the receiver uses to resolve the host name
     involves potential long delay (e.g. DNS query), the receiver may
     open itself up to resource attacks for the period of time while it
     is waiting for the name resolution results before it can build the
     State Cookie and release local resources.

     Therefore, in cases where the name translation involves potential
     long delay, the receiver of the INIT MUST postpone the name
     resolution till the reception of the COOKIE ECHO chunk from the
     peer.  In such a case, the receiver of the INIT SHOULD build the
     State Cookie using the received Host Name (instead of destination
     transport addresses) and send the INIT ACK to the source IP
     address from which the INIT was received.

     The receiver of an INIT ACK shall always immediately attempt to
     resolve the name upon the reception of the chunk.

     The receiver of the INIT or INIT ACK MUST NOT send user data
     (piggy-backed or stand-alone) to its peer until the host name is
     successfully resolved.

     If the name resolution is not successful, the endpoint MUST
     immediately send an ABORT with "Unresolvable Address" error cause
     to its peer.  The ABORT shall be sent to the source IP address
     from which the last peer packet was received.

  C) If there are only IPv4/IPv6 addresses present in the received INIT
     or INIT ACK chunk, the receiver shall derive and record all the
     transport address(es) from the received chunk AND the source IP
     address that sent the INIT or INIT ACK.  The transport address(es)
     are derived by the combination of SCTP source port (from the
     common header) and the IP address parameter(s) carried in the INIT
     or INIT ACK chunk and the source IP address of the IP datagram.
     The receiver should use only these transport addresses as
     destination transport addresses when sending subsequent packets to
     its peer.

     IMPLEMENTATION NOTE: In some cases (e.g., when the implementation
     doesn't control the source IP address that is used for
     transmitting), an endpoint might need to include in its INIT or
     INIT ACK all possible IP addresses from which packets to the peer
     could be transmitted.



Stewart, et al.             Standards Track                    [Page 55]

RFC 2960          Stream Control Transmission Protocol      October 2000


  After all transport addresses are derived from the INIT or INIT ACK
  chunk using the above rules, the endpoint shall select one of the
  transport addresses as the initial primary path.

  Note: The INIT-ACK MUST be sent to the source address of the INIT.

  The sender of INIT may include a 'Supported Address Types' parameter
  in the INIT to indicate what types of address are acceptable.  When
  this parameter is present, the receiver of INIT (initiatee) MUST
  either use one of the address types indicated in the Supported
  Address Types parameter when responding to the INIT, or abort the
  association with an "Unresolvable Address" error cause if it is
  unwilling or incapable of using any of the address types indicated by
  its peer.

  IMPLEMENTATION NOTE: In the case that the receiver of an INIT ACK
  fails to resolve the address parameter due to an unsupported type, it
  can abort the initiation process and then attempt a re-initiation by
  using a 'Supported Address Types' parameter in the new INIT to
  indicate what types of address it prefers.

5.1.3 Generating State Cookie

  When sending an INIT ACK as a response to an INIT chunk, the sender
  of INIT ACK creates a State Cookie and sends it in the State Cookie
  parameter of the INIT ACK.  Inside this State Cookie, the sender
  should include a MAC (see [RFC2104] for an example), a time stamp on
  when the State Cookie is created, and the lifespan of the State
  Cookie, along with all the information necessary for it to establish
  the association.

  The following steps SHOULD be taken to generate the State Cookie:

  1) Create an association TCB using information from both the received
     INIT and the outgoing INIT ACK chunk,

  2) In the TCB, set the creation time to the current time of day, and
     the lifespan to the protocol parameter 'Valid.Cookie.Life',

  3) From the TCB, identify and collect the minimal subset of
     information needed to re-create the TCB, and generate a MAC using
     this subset of information and a secret key (see [RFC2104] for an
     example of generating a MAC), and

  4) Generate the State Cookie by combining this subset of information
     and the resultant MAC.





Stewart, et al.             Standards Track                    [Page 56]

RFC 2960          Stream Control Transmission Protocol      October 2000


  After sending the INIT ACK with the State Cookie parameter, the
  sender SHOULD delete the TCB and any other local resource related to
  the new association, so as to prevent resource attacks.

  The hashing method used to generate the MAC is strictly a private
  matter for the receiver of the INIT chunk.  The use of a MAC is
  mandatory to prevent denial of service attacks.  The secret key
  SHOULD be random ([RFC1750] provides some information on randomness
  guidelines); it SHOULD be changed reasonably frequently, and the
  timestamp in the State Cookie MAY be used to determine which key
  should be used to verify the MAC.

  An implementation SHOULD make the cookie as small as possible to
  insure interoperability.

5.1.4 State Cookie Processing

  When an endpoint (in the COOKIE WAIT state) receives an INIT ACK
  chunk with a State Cookie parameter, it MUST immediately send a
  COOKIE ECHO chunk to its peer with the received State Cookie.  The
  sender MAY also add any pending DATA chunks to the packet after the
  COOKIE ECHO chunk.

  The endpoint shall also start the T1-cookie timer after sending out
  the COOKIE ECHO chunk.  If the timer expires, the endpoint shall
  retransmit the COOKIE ECHO chunk and restart the T1-cookie timer.
  This is repeated until either a COOKIE ACK is received or '
  Max.Init.Retransmits' is reached causing the peer endpoint to be
  marked unreachable (and thus the association enters the CLOSED
  state).

5.1.5 State Cookie Authentication

  When an endpoint receives a COOKIE ECHO chunk from another endpoint
  with which it has no association, it shall take the following
  actions:

  1) Compute a MAC using the TCB data carried in the State Cookie and
     the secret key (note the timestamp in the State Cookie MAY be used
     to determine which secret key to use).  Reference [RFC2104] can be
     used as a guideline for generating the MAC,

  2) Authenticate the State Cookie as one that it previously generated
     by comparing the computed MAC against the one carried in the State
     Cookie.  If this comparison fails, the SCTP packet, including the
     COOKIE ECHO and any DATA chunks, should be silently discarded,





Stewart, et al.             Standards Track                    [Page 57]

RFC 2960          Stream Control Transmission Protocol      October 2000


  3) Compare the creation timestamp in the State Cookie to the current
     local time.  If the elapsed time is longer than the lifespan
     carried in the State Cookie, then the packet, including the COOKIE
     ECHO and any attached DATA chunks, SHOULD be discarded and the
     endpoint MUST transmit an ERROR chunk with a "Stale Cookie" error
     cause to the peer endpoint,

  4) If the State Cookie is valid, create an association to the sender
     of the COOKIE ECHO chunk with the information in the TCB data
     carried in the COOKIE ECHO, and enter the ESTABLISHED state,

  5) Send a COOKIE ACK chunk to the peer acknowledging reception of the
     COOKIE ECHO.  The COOKIE ACK MAY be bundled with an outbound DATA
     chunk or SACK chunk; however, the COOKIE ACK MUST be the first
     chunk in the SCTP packet.

  6) Immediately acknowledge any DATA chunk bundled with the COOKIE
     ECHO with a SACK (subsequent DATA chunk acknowledgement should
     follow the rules defined in Section 6.2).  As mentioned in step
     5), if the SACK is bundled with the COOKIE ACK, the COOKIE ACK
     MUST appear first in the SCTP packet.

  If a COOKIE ECHO is received from an endpoint with which the receiver
  of the COOKIE ECHO has an existing association, the procedures in
  Section 5.2 should be followed.

5.1.6 An Example of Normal Association Establishment

  In the following example, "A" initiates the association and then
  sends a user message to "Z", then "Z" sends two user messages to "A"
  later (assuming no bundling or fragmentation occurs):




















Stewart, et al.             Standards Track                    [Page 58]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Endpoint A                                          Endpoint Z
  {app sets association with Z}
  (build TCB)
  INIT [I-Tag=Tag_A
        & other info]  --------\
  (Start T1-init timer)         \
  (Enter COOKIE-WAIT state)      \---> (compose temp TCB and Cookie_Z)

                                  /--- INIT ACK [Veri Tag=Tag_A,
                                 /              I-Tag=Tag_Z,
  (Cancel T1-init timer) <------/               Cookie_Z, & other info]
                                       (destroy temp TCB)
  COOKIE ECHO [Cookie_Z] ------\
  (Start T1-init timer)         \
  (Enter COOKIE-ECHOED state)    \---> (build TCB enter ESTABLISHED
                                        state)


                                 /---- COOKIE-ACK
                                /
  (Cancel T1-init timer, <-----/
   Enter ESTABLISHED state)
  {app sends 1st user data; strm 0}
  DATA [TSN=initial TSN_A
      Strm=0,Seq=1 & user data]--\
   (Start T3-rtx timer)            \
                                    \->
                                /----- SACK [TSN Ack=init
                                            TSN_A,Block=0]
  (Cancel T3-rtx timer) <------/

                                       ...
                                       {app sends 2 messages;strm 0}
                                 /---- DATA
                                /        [TSN=init TSN_Z
                            <--/          Strm=0,Seq=1 & user data 1]
  SACK [TSN Ack=init TSN_Z,      /---- DATA
        Block=0]     --------\  /        [TSN=init TSN_Z +1,
                              \/          Strm=0,Seq=2 & user data 2]
                       <------/\
                                \
                                 \------>

                    Figure 4: INITiation Example

  If the T1-init timer expires at "A" after the INIT or COOKIE ECHO
  chunks are sent, the same INIT or COOKIE ECHO chunk with the same
  Initiate Tag (i.e., Tag_A) or State Cookie shall be retransmitted and



Stewart, et al.             Standards Track                    [Page 59]

RFC 2960          Stream Control Transmission Protocol      October 2000


  the timer restarted.  This shall be repeated Max.Init.Retransmits
  times before "A" considers "Z" unreachable and reports the failure to
  its upper layer (and thus the association enters the CLOSED state).
  When retransmitting the INIT, the endpoint MUST follow the rules
  defined in 6.3 to determine the proper timer value.

5.2 Handle Duplicate or Unexpected INIT, INIT ACK, COOKIE ECHO, and
  COOKIE ACK

  During the lifetime of an association (in one of the possible
  states), an endpoint may receive from its peer endpoint one of the
  setup chunks (INIT, INIT ACK, COOKIE ECHO, and COOKIE ACK).  The
  receiver shall treat such a setup chunk as a duplicate and process it
  as described in this section.

  Note:  An endpoint will not receive the chunk unless the chunk was
  sent to a SCTP transport address and is from a SCTP transport address
  associated with this endpoint.  Therefore, the endpoint processes
  such a chunk as part of its current association.

  The following scenarios can cause duplicated or unexpected chunks:

  A) The peer has crashed without being detected, re-started itself and
     sent out a new INIT chunk trying to restore the association,

  B) Both sides are trying to initialize the association at about the
     same time,

  C) The chunk is from a stale packet that was used to establish the
     present association or a past association that is no longer in
     existence,

  D) The chunk is a false packet generated by an attacker, or

  E) The peer never received the COOKIE ACK and is retransmitting its
     COOKIE ECHO.

  The rules in the following sections shall be applied in order to
  identify and correctly handle these cases.

5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State (Item B)

  This usually indicates an initialization collision, i.e., each
  endpoint is attempting, at about the same time, to establish an
  association with the other endpoint.

  Upon receipt of an INIT in the COOKIE-WAIT or COOKIE-ECHOED state, an
  endpoint MUST respond with an INIT ACK using the same parameters it



Stewart, et al.             Standards Track                    [Page 60]

RFC 2960          Stream Control Transmission Protocol      October 2000


  sent in its original INIT chunk (including its Initiation Tag,
  unchanged).  These original parameters are combined with those from
  the newly received INIT chunk.  The endpoint shall also generate a
  State Cookie with the INIT ACK.  The endpoint uses the parameters
  sent in its INIT to calculate the State Cookie.

  After that, the endpoint MUST NOT change its state, the T1-init timer
  shall be left running and the corresponding TCB MUST NOT be
  destroyed.  The normal procedures for handling State Cookies when a
  TCB exists will resolve the duplicate INITs to a single association.

  For an endpoint that is in the COOKIE-ECHOED state it MUST populate
  its Tie-Tags with the Tag information of itself and its peer (see
  section 5.2.2 for a description of the Tie-Tags).

5.2.2 Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED,
        COOKIE-WAIT and SHUTDOWN-ACK-SENT

  Unless otherwise stated, upon reception of an unexpected INIT for
  this association, the endpoint shall generate an INIT ACK with a
  State Cookie.  In the outbound INIT ACK the endpoint MUST copy its
  current Verification Tag and peer's Verification Tag into a reserved
  place within the state cookie.  We shall refer to these locations as
  the Peer's-Tie-Tag and the Local-Tie-Tag.  The outbound SCTP packet
  containing this INIT ACK MUST carry a Verification Tag value equal to
  the Initiation Tag found in the unexpected INIT.  And the INIT ACK
  MUST contain a new Initiation Tag (randomly generated see Section
  5.3.1).  Other parameters for the endpoint SHOULD be copied from the
  existing parameters of the association (e.g. number of outbound
  streams) into the INIT ACK and cookie.

  After sending out the INIT ACK, the endpoint shall take no further
  actions, i.e., the existing association, including its current state,
  and the corresponding TCB MUST NOT be changed.

  Note: Only when a TCB exists and the association is not in a COOKIE-
  WAIT state are the Tie-Tags populated.  For a normal association INIT
  (i.e. the endpoint is in a COOKIE-WAIT state), the Tie-Tags MUST be
  set to 0 (indicating that no previous TCB existed).  The INIT ACK and
  State Cookie are populated as specified in section 5.2.1.

5.2.3 Unexpected INIT ACK

  If an INIT ACK is received by an endpoint in any state other than the
  COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk.
  An unexpected INIT ACK usually indicates the processing of an old or
  duplicated INIT chunk.




Stewart, et al.             Standards Track                    [Page 61]

RFC 2960          Stream Control Transmission Protocol      October 2000


5.2.4 Handle a COOKIE ECHO when a TCB exists

  When a COOKIE ECHO chunk is received by an endpoint in any state for
  an existing association (i.e., not in the CLOSED state) the following
  rules shall be applied:

  1) Compute a MAC as described in Step 1 of Section 5.1.5,

  2) Authenticate the State Cookie as described in Step 2 of Section
     5.1.5 (this is case C or D above).

  3) Compare the timestamp in the State Cookie to the current time.  If
     the State Cookie is older than the lifespan carried in the State
     Cookie and the Verification Tags contained in the State Cookie do
     not match the current association's Verification Tags, the packet,
     including the COOKIE ECHO and any DATA chunks, should be
     discarded.  The endpoint also MUST transmit an ERROR chunk with a
     "Stale Cookie" error cause to the peer endpoint (this is case C or
     D in section 5.2).

     If both Verification Tags in the State Cookie match the
     Verification Tags of the current association, consider the State
     Cookie valid (this is case E of section 5.2) even if the lifespan
     is exceeded.

  4) If the State Cookie proves to be valid, unpack the TCB into a
     temporary TCB.

  5) Refer to Table 2 to determine the correct action to be taken.






















Stewart, et al.             Standards Track                    [Page 62]

RFC 2960          Stream Control Transmission Protocol      October 2000


+------------+------------+---------------+--------------+-------------+
|  Local Tag | Peer's Tag | Local-Tie-Tag |Peer's-Tie-Tag|   Action/   |
|            |            |               |              | Description |
+------------+------------+---------------+--------------+-------------+
|    X       |     X      |      M        |      M       |     (A)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     X      |      A        |      A       |     (B)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     0      |      A        |      A       |     (B)     |
+------------+------------+---------------+--------------+-------------+
|    X       |     M      |      0        |      0       |     (C)     |
+------------+------------+---------------+--------------+-------------+
|    M       |     M      |      A        |      A       |     (D)     |
+======================================================================+
|       Table 2: Handling of a COOKIE ECHO when a TCB exists           |
+======================================================================+

  Legend:

     X - Tag does not match the existing TCB
     M - Tag matches the existing TCB.
     0 - No Tie-Tag in Cookie (unknown).
     A - All cases, i.e. M, X or 0.

  Note: For any case not shown in Table 2, the cookie should be
  silently discarded.

  Action

  A) In this case, the peer may have restarted.  When the endpoint
     recognizes this potential 'restart', the existing session is
     treated the same as if it received an ABORT followed by a new
     COOKIE ECHO with the following exceptions:

     -  Any SCTP DATA Chunks MAY be retained (this is an implementation
        specific option).

     -  A notification of RESTART SHOULD be sent to the ULP instead of
        a "COMMUNICATION LOST" notification.

     All the congestion control parameters (e.g., cwnd, ssthresh)
     related to this peer MUST be reset to their initial values (see
     Section 6.2.1).

     After this the endpoint shall enter the ESTABLISHED state.






Stewart, et al.             Standards Track                    [Page 63]

RFC 2960          Stream Control Transmission Protocol      October 2000


     If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes
     the peer has restarted (Action A), it MUST NOT setup a new
     association but instead resend the SHUTDOWN ACK and send an ERROR
     chunk with a "Cookie Received while Shutting Down" error cause to
     its peer.

  B) In this case, both sides may be attempting to start an association
     at about the same time but the peer endpoint started its INIT
     after responding to the local endpoint's INIT.  Thus it may have
     picked a new Verification Tag not being aware of the previous Tag
     it had sent this endpoint.  The endpoint should stay in or enter
     the ESTABLISHED state but it MUST update its peer's Verification
     Tag from the State Cookie, stop any init or cookie timers that may
     running and send a COOKIE ACK.

  C) In this case, the local endpoint's cookie has arrived late.
     Before it arrived, the local endpoint sent an INIT and received an
     INIT-ACK and finally sent a COOKIE ECHO with the peer's same tag
     but a new tag of its own.  The cookie should be silently
     discarded.  The endpoint SHOULD NOT change states and should leave
     any timers running.

  D) When both local and remote tags match the endpoint should always
     enter the ESTABLISHED state, if it has not already done so. It
     should stop any init or cookie timers that may be running and send
     a COOKIE ACK.

  Note: The "peer's Verification Tag" is the tag received in the
  Initiate Tag field of the INIT or INIT ACK chunk.

5.2.4.1 An Example of a Association Restart

  In the following example, "A" initiates the association after a
  restart has occurred.  Endpoint "Z" had no knowledge of the restart
  until the exchange (i.e. Heartbeats had not yet detected the failure
  of "A").  (assuming no bundling or fragmentation occurs):















Stewart, et al.             Standards Track                    [Page 64]

RFC 2960          Stream Control Transmission Protocol      October 2000


Endpoint A                                          Endpoint Z
<-------------- Association is established---------------------->
Tag=Tag_A                                             Tag=Tag_Z
<--------------------------------------------------------------->
{A crashes and restarts}
{app sets up a association with Z}
(build TCB)
INIT [I-Tag=Tag_A'
     & other info]  --------\
(Start T1-init timer)         \
(Enter COOKIE-WAIT state)      \---> (find a existing TCB
                                     compose temp TCB and Cookie_Z
                                     with Tie-Tags to previous
                                     association)
                               /--- INIT ACK [Veri Tag=Tag_A',
                              /               I-Tag=Tag_Z',
(Cancel T1-init timer) <------/                Cookie_Z[TieTags=
                                              Tag_A,Tag_Z
                                               & other info]
                                    (destroy temp TCB,leave original
                                     in place)
COOKIE ECHO [Veri=Tag_Z',
            Cookie_Z
            Tie=Tag_A,
            Tag_Z]----------\
(Start T1-init timer)         \
(Enter COOKIE-ECHOED state)    \---> (Find existing association,
                                     Tie-Tags match old tags,
                                     Tags do not match i.e.
                                     case X X M M above,
                                     Announce Restart to ULP
                                     and reset association).
                              /---- COOKIE-ACK
                             /
(Cancel T1-init timer, <-----/
Enter ESTABLISHED state)
{app sends 1st user data; strm 0}
DATA [TSN=initial TSN_A
    Strm=0,Seq=1 & user data]--\
(Start T3-rtx timer)            \
                                \->
                             /----- SACK [TSN Ack=init TSN_A,Block=0]
(Cancel T3-rtx timer) <------/

                 Figure 5: A Restart Example






Stewart, et al.             Standards Track                    [Page 65]

RFC 2960          Stream Control Transmission Protocol      October 2000


5.2.5 Handle Duplicate COOKIE-ACK.

  At any state other than COOKIE-ECHOED, an endpoint should silently
  discard a received COOKIE ACK chunk.

5.2.6 Handle Stale COOKIE Error

  Receipt of an ERROR chunk with a "Stale Cookie" error cause indicates
  one of a number of possible events:

  A) That the association failed to completely setup before the State
     Cookie issued by the sender was processed.

  B) An old State Cookie was processed after setup completed.

  C) An old State Cookie is received from someone that the receiver is
     not interested in having an association with and the ABORT chunk
     was lost.

  When processing an ERROR chunk with a "Stale Cookie" error cause an
  endpoint should first examine if an association is in the process of
  being setup, i.e. the association is in the COOKIE-ECHOED state.  In
  all cases if the association is not in the COOKIE-ECHOED state, the
  ERROR chunk should be silently discarded.

  If the association is in the COOKIE-ECHOED state, the endpoint may
  elect one of the following three alternatives.

  1) Send a new INIT chunk to the endpoint to generate a new State
     Cookie and re-attempt the setup procedure.

  2) Discard the TCB and report to the upper layer the inability to
     setup the association.

  3) Send a new INIT chunk to the endpoint, adding a Cookie
     Preservative parameter requesting an extension to the lifetime of
     the State Cookie.  When calculating the time extension, an
     implementation SHOULD use the RTT information measured based on
     the previous COOKIE ECHO / ERROR exchange, and should add no more
     than 1 second beyond the measured RTT, due to long State Cookie
     lifetimes making the endpoint more subject to a replay attack.










Stewart, et al.             Standards Track                    [Page 66]

RFC 2960          Stream Control Transmission Protocol      October 2000


5.3 Other Initialization Issues

5.3.1 Selection of Tag Value

  Initiate Tag values should be selected from the range of 1 to 2**32 -
  1.  It is very important that the Initiate Tag value be randomized to
  help protect against "man in the middle" and "sequence number"
  attacks.  The methods described in [RFC1750] can be used for the
  Initiate Tag randomization.  Careful selection of Initiate Tags is
  also necessary to prevent old duplicate packets from previous
  associations being mistakenly processed as belonging to the current
  association.

  Moreover, the Verification Tag value used by either endpoint in a
  given association MUST NOT change during the lifetime of an
  association.  A new Verification Tag value MUST be used each time the
  endpoint tears-down and then re-establishes an association to the
  same peer.

6. User Data Transfer

  Data transmission MUST only happen in the ESTABLISHED, SHUTDOWN-
  PENDING, and SHUTDOWN-RECEIVED states.  The only exception to this is
  that DATA chunks are allowed to be bundled with an outbound COOKIE
  ECHO chunk when in COOKIE-WAIT state.

  DATA chunks MUST only be received according to the rules below in
  ESTABLISHED, SHUTDOWN-PENDING, SHUTDOWN-SENT.  A DATA chunk received
  in CLOSED is out of the blue and SHOULD be handled per 8.4.  A DATA
  chunk received in any other state SHOULD be discarded.

  A SACK MUST be processed in ESTABLISHED, SHUTDOWN-PENDING, and
  SHUTDOWN-RECEIVED.  An incoming SACK MAY be processed in COOKIE-
  ECHOED.  A SACK in the CLOSED state is out of the blue and SHOULD be
  processed according to the rules in 8.4.  A SACK chunk received in
  any other state SHOULD be discarded.


  A SCTP receiver MUST be able to receive a minimum of 1500 bytes in
  one SCTP packet.  This means that a SCTP endpoint MUST NOT indicate
  less than 1500 bytes in its Initial a_rwnd sent in the INIT or INIT
  ACK.

  For transmission efficiency, SCTP defines mechanisms for bundling of
  small user messages and fragmentation of large user messages.  The
  following diagram depicts the flow of user messages through SCTP.





Stewart, et al.             Standards Track                    [Page 67]

RFC 2960          Stream Control Transmission Protocol      October 2000


  In this section the term "data sender" refers to the endpoint that
  transmits a DATA chunk and the term "data receiver" refers to the
  endpoint that receives a DATA chunk.  A data receiver will transmit
  SACK chunks.

                +--------------------------+
                |      User Messages       |
                +--------------------------+
      SCTP user        ^  |
     ==================|==|=======================================
                       |  v (1)
            +------------------+    +--------------------+
            | SCTP DATA Chunks |    |SCTP Control Chunks |
            +------------------+    +--------------------+
                       ^  |             ^  |
                       |  v (2)         |  v (2)
                    +--------------------------+
                    |      SCTP packets        |
                    +--------------------------+
      SCTP                      ^  |
     ===========================|==|===========================
                                |  v
            Connectionless Packet Transfer Service (e.g., IP)

  Notes:

     1) When converting user messages into DATA chunks, an endpoint
        will fragment user messages larger than the current association
        path MTU into multiple DATA chunks.  The data receiver will
        normally reassemble the fragmented message from DATA chunks
        before delivery to the user (see Section 6.9 for details).

     2) Multiple DATA and control chunks may be bundled by the sender
        into a single SCTP packet for transmission, as long as the
        final size of the packet does not exceed the current path MTU.
        The receiver will unbundle the packet back into the original
        chunks.  Control chunks MUST come before DATA chunks in the
        packet.

               Figure 6: Illustration of User Data Transfer

  The fragmentation and bundling mechanisms, as detailed in Sections
  6.9 and 6.10, are OPTIONAL to implement by the data sender, but they
  MUST be implemented by the data receiver, i.e., an endpoint MUST
  properly receive and process bundled or fragmented data.






Stewart, et al.             Standards Track                    [Page 68]

RFC 2960          Stream Control Transmission Protocol      October 2000


6.1  Transmission of DATA Chunks

  This document is specified as if there is a single retransmission
  timer per destination transport address, but implementations MAY have
  a retransmission timer for each DATA chunk.

  The following general rules MUST be applied by the data sender for
  transmission and/or retransmission of outbound DATA chunks:

  A) At any given time, the data sender MUST NOT transmit new data to
     any destination transport address if its peer's rwnd indicates
     that the peer has no buffer space (i.e. rwnd is 0, see Section
     6.2.1).  However, regardless of the value of rwnd (including if it
     is 0), the data sender can always have one DATA chunk in flight to
     the receiver if allowed by cwnd (see rule B below).  This rule
     allows the sender to probe for a change in rwnd that the sender
     missed due to the SACK having been lost in transit from the data
     receiver to the data sender.

  B) At any given time, the sender MUST NOT transmit new data to a
     given transport address if it has cwnd or more bytes of data
     outstanding to that transport address.

  C) When the time comes for the sender to transmit, before sending new
     DATA chunks, the sender MUST first transmit any outstanding DATA
     chunks which are marked for retransmission (limited by the current
     cwnd).

  D) Then, the sender can send out as many new DATA chunks as Rule A
     and Rule B above allow.

  Multiple DATA chunks committed for transmission MAY be bundled in a
  single packet.  Furthermore, DATA chunks being retransmitted MAY be
  bundled with new DATA chunks, as long as the resulting packet size
  does not exceed the path MTU.  A ULP may request that no bundling is
  performed but this should only turn off any delays that a SCTP
  implementation may be using to increase bundling efficiency.  It does
  not in itself stop all bundling from occurring (i.e. in case of
  congestion or retransmission).

  Before an endpoint transmits a DATA chunk, if any received DATA
  chunks have not been acknowledged (e.g., due to delayed ack), the
  sender should create a SACK and bundle it with the outbound DATA
  chunk, as long as the size of the final SCTP packet does not exceed
  the current MTU.  See Section 6.2.






Stewart, et al.             Standards Track                    [Page 69]

RFC 2960          Stream Control Transmission Protocol      October 2000


  IMPLEMENTATION NOTE: When the window is full (i.e., transmission is
  disallowed by Rule A and/or Rule B), the sender MAY still accept send
  requests from its upper layer, but MUST transmit no more DATA chunks
  until some or all of the outstanding DATA chunks are acknowledged and
  transmission is allowed by Rule A and Rule B again.

  Whenever a transmission or retransmission is made to any address, if
  the T3-rtx timer of that address is not currently running, the sender
  MUST start that timer.  If the timer for that address is already
  running, the sender MUST restart the timer if the earliest (i.e.,
  lowest TSN) outstanding DATA chunk sent to that address is being
  retransmitted.  Otherwise, the data sender MUST NOT restart the
  timer.

  When starting or restarting the T3-rtx timer, the timer value must be
  adjusted according to the timer rules defined in Sections 6.3.2, and
  6.3.3.

  Note: The data sender SHOULD NOT use a TSN that is more than 2**31 -
  1 above the beginning TSN of the current send window.

6.2  Acknowledgement on Reception of DATA Chunks

  The SCTP endpoint MUST always acknowledge the reception of each valid
  DATA chunk.

  The guidelines on delayed acknowledgement algorithm specified in
  Section 4.2 of [RFC2581] SHOULD be followed.  Specifically, an
  acknowledgement SHOULD be generated for at least every second packet
  (not every second DATA chunk) received, and SHOULD be generated
  within 200 ms of the arrival of any unacknowledged DATA chunk.  In
  some situations it may be beneficial for an SCTP transmitter to be
  more conservative than the algorithms detailed in this document
  allow. However, an SCTP transmitter MUST NOT be more aggressive than
  the following algorithms allow.

  A SCTP receiver MUST NOT generate more than one SACK for every
  incoming packet, other than to update the offered window as the
  receiving application consumes new data.

  IMPLEMENTATION NOTE: The maximum delay for generating an
  acknowledgement may be configured by the SCTP administrator, either
  statically or dynamically, in order to meet the specific timing
  requirement of the protocol being carried.

  An implementation MUST NOT allow the maximum delay to be configured
  to be more than 500 ms.  In other words an implementation MAY lower
  this value below 500ms but MUST NOT raise it above 500ms.



Stewart, et al.             Standards Track                    [Page 70]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Acknowledgements MUST be sent in SACK chunks unless shutdown was
  requested by the ULP in which case an endpoint MAY send an
  acknowledgement in the SHUTDOWN chunk.  A SACK chunk can acknowledge
  the reception of multiple DATA chunks.  See Section 3.3.4 for SACK
  chunk format.  In particular, the SCTP endpoint MUST fill in the
  Cumulative TSN Ack field to indicate the latest sequential TSN (of a
  valid DATA chunk) it has received.  Any received DATA chunks with TSN
  greater than the value in the Cumulative TSN Ack field SHOULD also be
  reported in the Gap Ack Block fields.

  Note:  The SHUTDOWN chunk does not contain Gap Ack Block fields.
  Therefore, the endpoint should use a SACK instead of the SHUTDOWN
  chunk to acknowledge DATA chunks received out of order .

  When a packet arrives with duplicate DATA chunk(s) and with no new
  DATA chunk(s), the endpoint MUST immediately send a SACK with no
  delay.  If a packet arrives with duplicate DATA chunk(s) bundled with
  new DATA chunks, the endpoint MAY immediately send a SACK.  Normally
  receipt of duplicate DATA chunks will occur when the original SACK
  chunk was lost and the peer's RTO has expired.  The duplicate TSN
  number(s) SHOULD be reported in the SACK as duplicate.

  When an endpoint receives a SACK, it MAY use the Duplicate TSN
  information to determine if SACK loss is occurring.  Further use of
  this data is for future study.

  The data receiver is responsible for maintaining its receive buffers.
  The data receiver SHOULD notify the data sender in a timely manner of
  changes in its ability to receive data.  How an implementation
  manages its receive buffers is dependent on many factors (e.g.,
  Operating System, memory management system, amount of memory, etc.).
  However, the data sender strategy defined in Section 6.2.1 is based
  on the assumption of receiver operation similar to the following:

     A) At initialization of the association, the endpoint tells the
        peer how much receive buffer space it has allocated to the
        association in the INIT or INIT ACK.  The endpoint sets a_rwnd
        to this value.

     B) As DATA chunks are received and buffered, decrement a_rwnd by
        the number of bytes received and buffered.  This is, in effect,
        closing rwnd at the data sender and restricting the amount of
        data it can transmit.

     C) As DATA chunks are delivered to the ULP and released from the
        receive buffers, increment a_rwnd by the number of bytes
        delivered to the upper layer.  This is, in effect, opening up
        rwnd on the data sender and allowing it to send more data.  The



Stewart, et al.             Standards Track                    [Page 71]

RFC 2960          Stream Control Transmission Protocol      October 2000


        data receiver SHOULD NOT increment a_rwnd unless it has
        released bytes from its receive buffer.  For example, if the
        receiver is holding fragmented DATA chunks in a reassembly
        queue, it should not increment a_rwnd.

     D) When sending a SACK, the data receiver SHOULD place the current
        value of a_rwnd into the a_rwnd field.  The data receiver
        SHOULD take into account that the data sender will not
        retransmit DATA chunks that are acked via the Cumulative TSN
        Ack (i.e., will drop from its retransmit queue).

  Under certain circumstances, the data receiver may need to drop DATA
  chunks that it has received but hasn't released from its receive
  buffers (i.e., delivered to the ULP).  These DATA chunks may have
  been acked in Gap Ack Blocks.  For example, the data receiver may be
  holding data in its receive buffers while reassembling a fragmented
  user message from its peer when it runs out of receive buffer space.
  It may drop these DATA chunks even though it has acknowledged them in
  Gap Ack Blocks.  If a data receiver drops DATA chunks, it MUST NOT
  include them in Gap Ack Blocks in subsequent SACKs until they are
  received again via retransmission.  In addition, the endpoint should
  take into account the dropped data when calculating its a_rwnd.

  An endpoint SHOULD NOT revoke a SACK and discard data. Only in
  extreme circumstance should an endpoint use this procedure (such as
  out of buffer space).  The data receiver should take into account
  that dropping data that has been acked in Gap Ack Blocks can result
  in suboptimal retransmission strategies in the data sender and thus
  in suboptimal performance.

  The following example illustrates the use of delayed
  acknowledgements:



















Stewart, et al.             Standards Track                    [Page 72]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Endpoint A                                      Endpoint Z

  {App sends 3 messages; strm 0}
  DATA [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
  (Start T3-rtx timer)

  DATA [TSN=8,Strm=0,Seq=4] ------------> (send ack)
                                /------- SACK [TSN Ack=8,block=0]
  (cancel T3-rtx timer)  <-----/

  DATA [TSN=9,Strm=0,Seq=5] ------------> (ack delayed)
  (Start T3-rtx timer)
                                         ...
                                         {App sends 1 message; strm 1}
                                         (bundle SACK with DATA)
                                  /----- SACK [TSN Ack=9,block=0] \
                                 /         DATA [TSN=6,Strm=1,Seq=2]
  (cancel T3-rtx timer)  <------/        (Start T3-rtx timer)

  (ack delayed)
  (send ack)
  SACK [TSN Ack=6,block=0] -------------> (cancel T3-rtx timer)

         Figure 7:  Delayed Acknowledgment Example

  If an endpoint receives a DATA chunk with no user data (i.e., the
  Length field is set to 16) it MUST send an ABORT with error cause set
  to "No User Data".

  An endpoint SHOULD NOT send a DATA chunk with no user data part.

6.2.1  Processing a Received SACK

  Each SACK an endpoint receives contains an a_rwnd value.  This value
  represents the amount of buffer space the data receiver, at the time
  of transmitting the SACK, has left of its total receive buffer space
  (as specified in the INIT/INIT ACK).  Using a_rwnd, Cumulative TSN
  Ack and Gap Ack Blocks, the data sender can develop a representation
  of the peer's receive buffer space.

  One of the problems the data sender must take into account when
  processing a SACK is that a SACK can be received out of order.  That
  is, a SACK sent by the data receiver can pass an earlier SACK and be
  received first by the data sender.  If a SACK is received out of
  order, the data sender can develop an incorrect view of the peer's
  receive buffer space.





Stewart, et al.             Standards Track                    [Page 73]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Since there is no explicit identifier that can be used to detect
  out-of-order SACKs, the data sender must use heuristics to determine
  if a SACK is new.

  An endpoint SHOULD use the following rules to calculate the rwnd,
  using the a_rwnd value, the Cumulative TSN Ack and Gap Ack Blocks in
  a received SACK.

  A) At the establishment of the association, the endpoint initializes
     the rwnd to the Advertised Receiver Window Credit (a_rwnd) the
     peer specified in the INIT or INIT ACK.

  B) Any time a DATA chunk is transmitted (or retransmitted) to a peer,
     the endpoint subtracts the data size of the chunk from the rwnd of
     that peer.

  C) Any time a DATA chunk is marked for retransmission (via either
     T3-rtx timer expiration (Section 6.3.3)or via fast retransmit
     (Section 7.2.4)), add the data size of those chunks to the rwnd.

     Note: If the implementation is maintaining a timer on each DATA
     chunk then only DATA chunks whose timer expired would be marked
     for retransmission.

  D) Any time a SACK arrives, the endpoint performs the following:

        i) If Cumulative TSN Ack is less than the Cumulative TSN Ack
        Point, then drop the SACK.   Since Cumulative TSN Ack is
        monotonically increasing, a SACK whose Cumulative TSN Ack is
        less than the Cumulative TSN Ack Point indicates an out-of-
        order SACK.

        ii) Set rwnd equal to the newly received a_rwnd minus the
        number of bytes still outstanding after processing the
        Cumulative TSN Ack and the Gap Ack Blocks.

        iii) If the SACK is missing a TSN that was previously
        acknowledged via a Gap Ack Block (e.g., the data receiver
        reneged on the data), then mark the corresponding DATA chunk as
        available for retransmit:  Mark it as missing for fast
        retransmit as described in Section 7.2.4 and if no retransmit
        timer is running for the destination address to which the DATA
        chunk was originally transmitted, then T3-rtx is started for
        that destination address.







Stewart, et al.             Standards Track                    [Page 74]

RFC 2960          Stream Control Transmission Protocol      October 2000


6.3 Management of Retransmission Timer

  An SCTP endpoint uses a retransmission timer T3-rtx to ensure data
  delivery in the absence of any feedback from its peer.  The duration
  of this timer is referred to as RTO (retransmission timeout).

  When an endpoint's peer is multi-homed, the endpoint will calculate a
  separate RTO for each different destination transport address of its
  peer endpoint.

  The computation and management of RTO in SCTP follows closely how TCP
  manages its retransmission timer.  To compute the current RTO, an
  endpoint maintains two state variables per destination transport
  address: SRTT (smoothed round-trip time) and RTTVAR (round-trip time
  variation).

6.3.1 RTO Calculation

  The rules governing the computation of SRTT, RTTVAR, and RTO are as
  follows:

  C1) Until an RTT measurement has been made for a packet sent to the
      given destination transport address, set RTO to the protocol
      parameter 'RTO.Initial'.

  C2) When the first RTT measurement R is made, set SRTT <- R, RTTVAR
      <- R/2, and RTO <- SRTT + 4 * RTTVAR.

  C3) When a new RTT measurement R' is made, set

      RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| SRTT
      <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'

      Note: The value of SRTT used in the update to RTTVAR is its value
      before updating SRTT itself using the second assignment.

      After the computation, update RTO <- SRTT + 4 * RTTVAR.

  C4) When data is in flight and when allowed by rule C5 below, a new
      RTT measurement MUST be made each round trip.  Furthermore, new
      RTT measurements SHOULD be made no more than once per round-trip
      for a given destination transport address.  There are two reasons
      for this recommendation:  First, it appears that measuring more
      frequently often does not in practice yield any significant
      benefit [ALLMAN99]; second, if measurements are made more often,
      then the values of RTO.Alpha and RTO.Beta in rule C3 above should
      be adjusted so that SRTT and RTTVAR still adjust to changes at
      roughly the same rate (in terms of how many round trips it takes



Stewart, et al.             Standards Track                    [Page 75]

RFC 2960          Stream Control Transmission Protocol      October 2000


      them to reflect new values) as they would if making only one
      measurement per round-trip and using RTO.Alpha and RTO.Beta as
      given in rule C3.  However, the exact nature of these adjustments
      remains a research issue.

  C5) Karn's algorithm: RTT measurements MUST NOT be made using packets
      that were retransmitted (and thus for which it is ambiguous
      whether the reply was for the first instance of the packet or a
      later instance).

  C6) Whenever RTO is computed, if it is less than RTO.Min seconds then
      it is rounded up to RTO.Min seconds.  The reason for this rule is
      that RTOs that do not have a high minimum value are susceptible
      to unnecessary timeouts [ALLMAN99].

  C7) A maximum value may be placed on RTO provided it is at least
      RTO.max seconds.

  There is no requirement for the clock granularity G used for
  computing RTT measurements and the different state variables, other
  than:

  G1) Whenever RTTVAR is computed, if RTTVAR = 0, then adjust RTTVAR <-
      G.

  Experience [ALLMAN99] has shown that finer clock granularities (<=
  100 msec) perform somewhat better than more coarse granularities.

6.3.2 Retransmission Timer Rules

  The rules for managing the retransmission timer are as follows:

  R1) Every time a DATA chunk is sent to any address (including a
      retransmission), if the T3-rtx timer of that address is not
      running, start it running so that it will expire after the RTO of
      that address.  The RTO used here is that obtained after any
      doubling due to previous T3-rtx timer expirations on the
      corresponding destination address as discussed in rule E2 below.

  R2) Whenever all outstanding data sent to an address have been
      acknowledged, turn off the T3-rtx timer of that address.

  R3) Whenever a SACK is received that acknowledges the DATA chunk with
      the earliest outstanding TSN for that address, restart T3-rtx
      timer for that address with its current RTO (if there is still
      outstanding data on that address).





Stewart, et al.             Standards Track                    [Page 76]

RFC 2960          Stream Control Transmission Protocol      October 2000


  R4) Whenever a SACK is received missing a TSN that was previously
      acknowledged via a Gap Ack Block, start T3-rtx for the
      destination address to which the DATA chunk was originally
      transmitted if it is not already running.

  The following example shows the use of various timer rules (assuming
  the receiver uses delayed acks).

  Endpoint A                                         Endpoint Z
  {App begins to send}
  Data [TSN=7,Strm=0,Seq=3] ------------> (ack delayed)
  (Start T3-rtx timer)
                                          {App sends 1 message; strm 1}
                                          (bundle ack with data)
  DATA [TSN=8,Strm=0,Seq=4] ----\     /-- SACK [TSN Ack=7,Block=0]
                                 \   /      DATA [TSN=6,Strm=1,Seq=2]
                                  \ /     (Start T3-rtx timer)
                                   \
                                  / \
  (Re-start T3-rtx timer) <------/   \--> (ack delayed)
  (ack delayed)
  {send ack}
  SACK [TSN Ack=6,Block=0] --------------> (Cancel T3-rtx timer)
                                          ..
                                          (send ack)
  (Cancel T3-rtx timer)  <-------------- SACK [TSN Ack=8,Block=0]

                Figure 8 - Timer Rule Examples

6.3.3 Handle T3-rtx Expiration

  Whenever the retransmission timer T3-rtx expires for a destination
  address, do the following:

  E1) For the destination address for which the timer expires, adjust
      its ssthresh with rules defined in Section 7.2.3 and set the cwnd
      <- MTU.

  E2) For the destination address for which the timer expires, set RTO
      <- RTO * 2 ("back off the timer").  The maximum value discussed
      in rule C7 above (RTO.max) may be used to provide an upper bound
      to this doubling operation.

  E3) Determine how many of the earliest (i.e., lowest TSN) outstanding
      DATA chunks for the address for which the T3-rtx has expired will
      fit into a single packet, subject to the MTU constraint for the
      path corresponding to the destination transport address to which
      the retransmission is being sent (this may be different from the



Stewart, et al.             Standards Track                    [Page 77]

RFC 2960          Stream Control Transmission Protocol      October 2000


      address for which the timer expires [see Section 6.4]).  Call
      this value K.  Bundle and retransmit those K DATA chunks in a
      single packet to the destination endpoint.

  E4) Start the retransmission timer T3-rtx on the destination address
      to which the retransmission is sent, if rule R1 above indicates
      to do so.  The RTO to be used for starting T3-rtx should be the
      one for the destination address to which the retransmission is
      sent, which, when the receiver is multi-homed, may be different
      from the destination address for which the timer expired (see
      Section 6.4 below).

  After retransmitting, once a new RTT measurement is obtained (which
  can happen only when new data has been sent and acknowledged, per
  rule C5, or for a measurement made from a HEARTBEAT [see Section
  8.3]), the computation in rule C3 is performed, including the
  computation of RTO, which may result in "collapsing" RTO back down
  after it has been subject to doubling (rule E2).

  Note: Any DATA chunks that were sent to the address for which the
  T3-rtx timer expired but did not fit in one MTU (rule E3 above),
  should be marked for retransmission and sent as soon as cwnd allows
  (normally when a SACK arrives).

  The final rule for managing the retransmission timer concerns
  failover (see Section 6.4.1):

  F1) Whenever an endpoint switches from the current destination
      transport address to a different one, the current retransmission
      timers are left running.  As soon as the endpoint transmits a
      packet containing DATA chunk(s) to the new transport address,
      start the timer on that transport address, using the RTO value of
      the destination address to which the data is being sent, if rule
      R1 indicates to do so.

6.4 Multi-homed SCTP Endpoints

  An SCTP endpoint is considered multi-homed if there are more than one
  transport address that can be used as a destination address to reach
  that endpoint.

  Moreover, the ULP of an endpoint shall select one of the multiple
  destination addresses of a multi-homed peer endpoint as the primary
  path (see Sections 5.1.2 and 10.1 for details).

  By default, an endpoint SHOULD always transmit to the primary path,
  unless the SCTP user explicitly specifies the destination transport
  address (and possibly source transport address) to use.



Stewart, et al.             Standards Track                    [Page 78]

RFC 2960          Stream Control Transmission Protocol      October 2000


  An endpoint SHOULD transmit reply chunks (e.g., SACK, HEARTBEAT ACK,
  etc.) to the same destination transport address from which it
  received the DATA or control chunk to which it is replying.  This
  rule should also be followed if the endpoint is bundling DATA chunks
  together with the reply chunk.

  However, when acknowledging multiple DATA chunks received in packets
  from different source addresses in a single SACK, the SACK chunk may
  be transmitted to one of the destination transport addresses from
  which the DATA or control chunks being acknowledged were received.

  When a receiver of a duplicate DATA chunk sends a SACK to a multi-
  homed endpoint it MAY be beneficial to vary the destination address
  and not use the source address of the DATA chunk.  The reason being
  that receiving a duplicate from a multi-homed endpoint might indicate
  that the return path (as specified in the source address of the DATA
  chunk) for the SACK is broken.

  Furthermore, when its peer is multi-homed, an endpoint SHOULD try to
  retransmit a chunk to an active destination transport address that is
  different from the last destination address to which the DATA chunk
  was sent.

  Retransmissions do not affect the total outstanding data count.
  However, if the DATA chunk is retransmitted onto a different
  destination address, both the outstanding data counts on the new
  destination address and the old destination address to which the data
  chunk was last sent shall be adjusted accordingly.

6.4.1 Failover from Inactive Destination Address

  Some of the transport addresses of a multi-homed SCTP endpoint may
  become inactive due to either the occurrence of certain error
  conditions (see Section 8.2) or adjustments from SCTP user.

  When there is outbound data to send and the primary path becomes
  inactive (e.g., due to failures), or where the SCTP user explicitly
  requests to send data to an inactive destination transport address,
  before reporting an error to its ULP, the SCTP endpoint should try to
  send the data to an alternate active destination transport address if
  one exists.

  When retransmitting data, if the endpoint is multi-homed, it should
  consider each source-destination address pair in its retransmission
  selection policy.  When retransmitting the endpoint should attempt to
  pick the most divergent source-destination pair from the original
  source-destination pair to which the packet was transmitted.




Stewart, et al.             Standards Track                    [Page 79]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Note: Rules for picking the most divergent source-destination pair
  are an implementation decision and is not specified within this
  document.

6.5 Stream Identifier and Stream Sequence Number

  Every DATA chunk MUST carry a valid stream identifier.  If an
  endpoint receives a DATA chunk with an invalid stream identifier, it
  shall acknowledge the reception of the DATA chunk following the
  normal procedure, immediately send an ERROR chunk with cause set to
  "Invalid Stream Identifier" (see Section 3.3.10) and discard the DATA
  chunk. The endpoint may bundle the ERROR chunk in the same packet as
  the SACK as long as the ERROR follows the SACK.

  The stream sequence number in all the streams shall start from 0 when
  the association is established.  Also, when the stream sequence
  number reaches the value 65535 the next stream sequence number shall
  be set to 0.

6.6 Ordered and Unordered Delivery

  Within a stream, an endpoint MUST deliver DATA chunks received with
  the U flag set to 0 to the upper layer according to the order of
  their stream sequence number.  If DATA chunks arrive out of order of
  their stream sequence number, the endpoint MUST hold the received
  DATA chunks from delivery to the ULP until they are re-ordered.

  However, an SCTP endpoint can indicate that no ordered delivery is
  required for a particular DATA chunk transmitted within the stream by
  setting the U flag of the DATA chunk to 1.

  When an endpoint receives a DATA chunk with the U flag set to 1, it
  must bypass the ordering mechanism and immediately deliver the data
  to the upper layer (after re-assembly if the user data is fragmented
  by the data sender).

  This provides an effective way of transmitting "out-of-band" data in
  a given stream.  Also, a stream can be used as an "unordered" stream
  by simply setting the U flag to 1 in all DATA chunks sent through
  that stream.

  IMPLEMENTATION NOTE: When sending an unordered DATA chunk, an
  implementation may choose to place the DATA chunk in an outbound
  packet that is at the head of the outbound transmission queue if
  possible.






Stewart, et al.             Standards Track                    [Page 80]

RFC 2960          Stream Control Transmission Protocol      October 2000


  The 'Stream Sequence Number' field in a DATA chunk with U flag set to
  1 has no significance.  The sender can fill it with arbitrary value,
  but the receiver MUST ignore the field.

  Note:  When transmitting ordered and unordered data, an endpoint does
  not increment its Stream Sequence Number when transmitting a DATA
  chunk with U flag set to 1.

6.7 Report Gaps in Received DATA TSNs

  Upon the reception of a new DATA chunk, an endpoint shall examine the
  continuity of the TSNs received.  If the endpoint detects a gap in
  the received DATA chunk sequence, it SHOULD send a SACK with Gap Ack
  Blocks immediately.  The data receiver continues sending a SACK after
  receipt of each SCTP packet that doesn't fill the gap.

  Based on the Gap Ack Block from the received SACK, the endpoint can
  calculate the missing DATA chunks and make decisions on whether to
  retransmit them (see Section 6.2.1 for details).

  Multiple gaps can be reported in one single SACK (see Section 3.3.4).

  When its peer is multi-homed, the SCTP endpoint SHOULD always try to
  send the SACK to the same destination address from which the last
  DATA chunk was received.

  Upon the reception of a SACK, the endpoint MUST remove all DATA
  chunks which have been acknowledged by the SACK's Cumulative TSN Ack
  from its transmit queue.  The endpoint MUST also treat all the DATA
  chunks with TSNs not included in the Gap Ack Blocks reported by the
  SACK as "missing".  The number of "missing" reports for each
  outstanding DATA chunk MUST be recorded by the data sender in order
  to make retransmission decisions.  See Section 7.2.4 for details.

  The following example shows the use of SACK to report a gap.
















Stewart, et al.             Standards Track                    [Page 81]

RFC 2960          Stream Control Transmission Protocol      October 2000


     Endpoint A                                    Endpoint Z
     {App sends 3 messages; strm 0}
     DATA [TSN=6,Strm=0,Seq=2] ---------------> (ack delayed)
     (Start T3-rtx timer)

     DATA [TSN=7,Strm=0,Seq=3] --------> X (lost)

     DATA [TSN=8,Strm=0,Seq=4] ---------------> (gap detected,
                                                 immediately send ack)
                                     /----- SACK [TSN Ack=6,Block=1,
                                    /             Strt=2,End=2]
                             <-----/
     (remove 6 from out-queue,
      and mark 7 as "1" missing report)

                Figure 9 - Reporting a Gap using SACK

  The maximum number of Gap Ack Blocks that can be reported within a
  single SACK chunk is limited by the current path MTU.  When a single
  SACK can not cover all the Gap Ack Blocks needed to be reported due
  to the MTU limitation, the endpoint MUST send only one SACK,
  reporting the Gap Ack Blocks from the lowest to highest TSNs, within
  the size limit set by the MTU, and leave the remaining highest TSN
  numbers unacknowledged.

6.8 Adler-32 Checksum Calculation

  When sending an SCTP packet, the endpoint MUST strengthen the data
  integrity of the transmission by including the Adler-32 checksum
  value calculated on the packet, as described below.

  After the packet is constructed (containing the SCTP common header
  and one or more control or DATA chunks), the transmitter shall:

  1) Fill in the proper Verification Tag in the SCTP common header and
     initialize the checksum field to 0's.

  2) Calculate the Adler-32 checksum of the whole packet, including the
     SCTP common header and all the chunks.  Refer to appendix B for
     details of the Adler-32 algorithm.  And,

  3) Put the resultant value into the checksum field in the common
     header, and leave the rest of the bits unchanged.

  When an SCTP packet is received, the receiver MUST first check the
  Adler-32 checksum:

  1) Store the received Adler-32 checksum value aside,



Stewart, et al.             Standards Track                    [Page 82]

RFC 2960          Stream Control Transmission Protocol      October 2000


  2) Replace the 32 bits of the checksum field in the received SCTP
     packet with all '0's and calculate an Adler-32 checksum value of
     the whole received packet.  And,

  3) Verify that the calculated Adler-32 checksum is the same as the
     received Adler-32 checksum.  If not, the receiver MUST treat the
     packet as an invalid SCTP packet.

  The default procedure for handling invalid SCTP packets is to
  silently discard them.

6.9 Fragmentation and Reassembly

  An endpoint MAY support fragmentation when sending DATA chunks, but
  MUST support reassembly when receiving DATA chunks.  If an endpoint
  supports fragmentation, it MUST fragment a user message if the size
  of the user message to be sent causes the outbound SCTP packet size
  to exceed the current MTU.  If an implementation does not support
  fragmentation of outbound user messages, the endpoint must return an
  error to its upper layer and not attempt to send the user message.

  IMPLEMENTATION NOTE:  In this error case, the Send primitive
  discussed in Section 10.1 would need to return an error to the upper
  layer.

  If its peer is multi-homed, the endpoint shall choose a size no
  larger than the association Path MTU.  The association Path MTU is
  the smallest Path MTU of all destination addresses.

  Note: Once a message is fragmented it cannot be re-fragmented.
  Instead if the PMTU has been reduced, then IP fragmentation must be
  used.  Please see Section 7.3 for details of PMTU discovery.

  When determining when to fragment, the SCTP implementation MUST take
  into account the SCTP packet header as well as the DATA chunk
  header(s).  The implementation MUST also take into account the space
  required for a SACK chunk if bundling a SACK chunk with the DATA
  chunk.

  Fragmentation takes the following steps:

  1) The data sender MUST break the user message into a series of DATA
     chunks such that each chunk plus SCTP overhead fits into an IP
     datagram smaller than or equal to the association Path MTU.

  2) The transmitter MUST then assign, in sequence, a separate TSN to
     each of the DATA chunks in the series.  The transmitter assigns
     the same SSN to each of the DATA chunks.  If the user indicates



Stewart, et al.             Standards Track                    [Page 83]

RFC 2960          Stream Control Transmission Protocol      October 2000


     that the user message is to be delivered using unordered delivery,
     then the U flag of each DATA chunk of the user message MUST be set
     to 1.

  3) The transmitter MUST also set the B/E bits of the first DATA chunk
     in the series to '10', the B/E bits of the last DATA chunk in the
     series to '01', and the B/E bits of all other DATA chunks in the
     series to '00'.

  An endpoint MUST recognize fragmented DATA chunks by examining the
  B/E bits in each of the received DATA chunks, and queue the
  fragmented DATA chunks for re-assembly.  Once the user message is
  reassembled, SCTP shall pass the re-assembled user message to the
  specific stream for possible re-ordering and final dispatching.

  Note: If the data receiver runs out of buffer space while still
  waiting for more fragments to complete the re-assembly of the
  message, it should dispatch part of its inbound message through a
  partial delivery API (see Section 10), freeing some of its receive
  buffer space so that the rest of the message may be received.

6.10 Bundling

  An endpoint bundles chunks by simply including multiple chunks in one
  outbound SCTP packet.  The total size of the resultant IP datagram,
  including the SCTP packet and IP headers, MUST be less or equal to
  the current Path MTU.

  If its peer endpoint is multi-homed, the sending endpoint shall
  choose a size no larger than the latest MTU of the current primary
  path.

  When bundling control chunks with DATA chunks, an endpoint MUST place
  control chunks first in the outbound SCTP packet.  The transmitter
  MUST transmit DATA chunks within a SCTP packet in increasing order of
  TSN.

  Note:  Since control chunks must be placed first in a packet and
  since DATA chunks must be transmitted before SHUTDOWN or SHUTDOWN ACK
  chunks, DATA chunks cannot be bundled with SHUTDOWN or SHUTDOWN ACK
  chunks.

  Partial chunks MUST NOT be placed in an SCTP packet.








Stewart, et al.             Standards Track                    [Page 84]

RFC 2960          Stream Control Transmission Protocol      October 2000


  An endpoint MUST process received chunks in their order in the
  packet. The receiver uses the chunk length field to determine the end
  of a chunk and beginning of the next chunk taking account of the fact
  that all chunks end on a 4 byte boundary.  If the receiver detects a
  partial chunk, it MUST drop the chunk.

  An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN COMPLETE with
  any other chunks.

7. Congestion control

  Congestion control is one of the basic functions in SCTP.  For some
  applications, it may be likely that adequate resources will be
  allocated to SCTP traffic to assure prompt delivery of time-critical
  data - thus it would appear to be unlikely, during normal operations,
  that transmissions encounter severe congestion conditions.  However
  SCTP must operate under adverse operational conditions, which can
  develop upon partial network failures or unexpected traffic surges.
  In such situations SCTP must follow correct congestion control steps
  to recover from congestion quickly in order to get data delivered as
  soon as possible.  In the absence of network congestion, these
  preventive congestion control algorithms should show no impact on the
  protocol performance.

  IMPLEMENTATION NOTE: As far as its specific performance requirements
  are met, an implementation is always allowed to adopt a more
  conservative congestion control algorithm than the one defined below.

  The congestion control algorithms used by SCTP are based on
  [RFC2581].  This section describes how the algorithms defined in
  RFC2581 are adapted for use in SCTP.  We first list differences in
  protocol designs between TCP and SCTP, and then describe SCTP's
  congestion control scheme.  The description will use the same
  terminology as in TCP congestion control whenever appropriate.

  SCTP congestion control is always applied to the entire association,
  and not to individual streams.

7.1 SCTP Differences from TCP Congestion control

  Gap Ack Blocks in the SCTP SACK carry the same semantic meaning as
  the TCP SACK.  TCP considers the information carried in the SACK as
  advisory information only.  SCTP considers the information carried in
  the Gap Ack Blocks in the SACK chunk as advisory.  In SCTP, any DATA
  chunk that has been acknowledged by SACK, including DATA that arrived
  at the receiving end out of order, are not considered fully delivered
  until the Cumulative TSN Ack Point passes the TSN of the DATA chunk
  (i.e., the DATA chunk has been acknowledged by the Cumulative TSN Ack



Stewart, et al.             Standards Track                    [Page 85]

RFC 2960          Stream Control Transmission Protocol      October 2000


  field in the SACK).  Consequently, the value of cwnd controls the
  amount of outstanding data, rather than (as in the case of non-SACK
  TCP) the upper bound between the highest acknowledged sequence number
  and the latest DATA chunk that can be sent within the congestion
  window.  SCTP SACK leads to different implementations of fast-
  retransmit and fast-recovery than non-SACK TCP.  As an example see
  [FALL96].

  The biggest difference between SCTP and TCP, however, is multi-
  homing.  SCTP is designed to establish robust communication
  associations between two endpoints each of which may be reachable by
  more than one transport address.  Potentially different addresses may
  lead to different data paths between the two endpoints, thus ideally
  one may need a separate set of congestion control parameters for each
  of the paths.  The treatment here of congestion control for multi-
  homed receivers is new with SCTP and may require refinement in the
  future.  The current algorithms make the following assumptions:

  o  The sender usually uses the same destination address until being
     instructed by the upper layer otherwise; however, SCTP may change
     to an alternate destination in the event an address is marked
     inactive (see Section 8.2).  Also, SCTP may retransmit to a
     different transport address than the original transmission.

  o  The sender keeps a separate congestion control parameter set for
     each of the destination addresses it can send to (not each
     source-destination pair but for each destination).  The parameters
     should decay if the address is not used for a long enough time
     period.

  o  For each of the destination addresses, an endpoint does slow-start
     upon the first transmission to that address.

  Note:  TCP guarantees in-sequence delivery of data to its upper-layer
  protocol within a single TCP session.  This means that when TCP
  notices a gap in the received sequence number, it waits until the gap
  is filled before delivering the data that was received with sequence
  numbers higher than that of the missing data.  On the other hand,
  SCTP can deliver data to its upper-layer protocol even if there is a
  gap in TSN if the Stream Sequence Numbers are in sequence for a
  particular stream (i.e., the missing DATA chunks are for a different
  stream) or if unordered delivery is indicated.  Although this does
  not affect cwnd, it might affect rwnd calculation.








Stewart, et al.             Standards Track                    [Page 86]

RFC 2960          Stream Control Transmission Protocol      October 2000


7.2 SCTP Slow-Start and Congestion Avoidance

  The slow start and congestion avoidance algorithms MUST be used by an
  endpoint to control the amount of data being injected into the
  network. The congestion control in SCTP is employed in regard to the
  association, not to an individual stream.  In some situations it may
  be beneficial for an SCTP sender to be more conservative than the
  algorithms allow; however, an SCTP sender MUST NOT be more aggressive
  than the following algorithms allow.

  Like TCP, an SCTP endpoint uses the following three control variables
  to regulate its transmission rate.

  o  Receiver advertised window size (rwnd, in bytes), which is set by
     the receiver based on its available buffer space for incoming
     packets.

     Note: This variable is kept on the entire association.

  o  Congestion control window (cwnd, in bytes), which is adjusted by
     the sender based on observed network conditions.

     Note: This variable is maintained on a per-destination address
     basis.

  o  Slow-start threshold (ssthresh, in bytes), which is used by the
     sender to distinguish slow start and congestion avoidance phases.

     Note: This variable is maintained on a per-destination address
     basis.

  SCTP also requires one additional control variable,
  partial_bytes_acked, which is used during congestion avoidance phase
  to facilitate cwnd adjustment.

  Unlike TCP, an SCTP sender MUST keep a set of these control variables
  cwnd, ssthresh and partial_bytes_acked for EACH destination address
  of its peer (when its peer is multi-homed).  Only one rwnd is kept
  for the whole association (no matter if the peer is multi-homed or
  has a single address).

7.2.1 Slow-Start

  Beginning data transmission into a network with unknown conditions or
  after a sufficiently long idle period requires SCTP to probe the
  network to determine the available capacity.  The slow start
  algorithm is used for this purpose at the beginning of a transfer, or
  after repairing loss detected by the retransmission timer.



Stewart, et al.             Standards Track                    [Page 87]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  The initial cwnd before DATA transmission or after a sufficiently
     long idle period MUST be <= 2*MTU.

  o  The initial cwnd after a retransmission timeout MUST be no more
     than 1*MTU.

  o  The initial value of ssthresh MAY be arbitrarily high (for
     example, implementations MAY use the size of the receiver
     advertised window).

  o  Whenever cwnd is greater than zero, the endpoint is allowed to
     have cwnd bytes of data outstanding on that transport address.

  o  When cwnd is less than or equal to ssthresh an SCTP endpoint MUST
     use the slow start algorithm to increase cwnd (assuming the
     current congestion window is being fully utilized).  If an
     incoming SACK advances the Cumulative TSN Ack Point, cwnd MUST be
     increased by at most the lesser of 1) the total size of the
     previously outstanding DATA chunk(s) acknowledged, and 2) the
     destination's path MTU. This protects against the ACK-Splitting
     attack outlined in [SAVAGE99].

  In instances where its peer endpoint is multi-homed, if an endpoint
  receives a SACK that advances its Cumulative TSN Ack Point, then it
  should update its cwnd (or cwnds) apportioned to the destination
  addresses to which it transmitted the acknowledged data.  However if
  the received SACK does not advance the Cumulative TSN Ack Point, the
  endpoint MUST NOT adjust the cwnd of any of the destination
  addresses.

  Because an endpoint's cwnd is not tied to its Cumulative TSN Ack
  Point, as duplicate SACKs come in, even though they may not advance
  the Cumulative TSN Ack Point an endpoint can still use them to clock
  out new data.  That is, the data newly acknowledged by the SACK
  diminishes the amount of data now in flight to less than cwnd; and so
  the current, unchanged value of cwnd now allows new data to be sent.
  On the other hand, the increase of cwnd must be tied to the
  Cumulative TSN Ack Point advancement as specified above.  Otherwise
  the duplicate SACKs will not only clock out new data, but also will
  adversely clock out more new data than what has just left the
  network, during a time of possible congestion.

  o  When the endpoint does not transmit data on a given transport
     address, the cwnd of the transport address should be adjusted to
     max(cwnd/2, 2*MTU) per RTO.






Stewart, et al.             Standards Track                    [Page 88]

RFC 2960          Stream Control Transmission Protocol      October 2000


7.2.2 Congestion Avoidance

  When cwnd is greater than ssthresh, cwnd should be incremented by
  1*MTU per RTT if the sender has cwnd or more bytes of data
  outstanding for the corresponding transport address.

  In practice an implementation can achieve this goal in the following
  way:

  o  partial_bytes_acked is initialized to 0.

  o  Whenever cwnd is greater than ssthresh, upon each SACK arrival
     that advances the Cumulative TSN Ack Point, increase
     partial_bytes_acked by the total number of bytes of all new chunks
     acknowledged in that SACK including chunks acknowledged by the new
     Cumulative TSN Ack and by Gap Ack Blocks.

  o  When partial_bytes_acked is equal to or greater than cwnd and
     before the arrival of the SACK the sender had cwnd or more bytes
     of data outstanding (i.e., before arrival of the SACK, flightsize
     was greater than or equal to cwnd), increase cwnd by MTU, and
     reset partial_bytes_acked to (partial_bytes_acked - cwnd).

  o  Same as in the slow start, when the sender does not transmit DATA
     on a given transport address, the cwnd of the transport address
     should be adjusted to max(cwnd / 2, 2*MTU) per RTO.

  o  When all of the data transmitted by the sender has been
     acknowledged by the receiver, partial_bytes_acked is initialized
     to 0.

7.2.3 Congestion Control

  Upon detection of packet losses from SACK  (see Section 7.2.4), An
  endpoint should do the following:

     ssthresh = max(cwnd/2, 2*MTU)
     cwnd = ssthresh

  Basically, a packet loss causes cwnd to be cut in half.

  When the T3-rtx timer expires on an address, SCTP should perform slow
  start by:

     ssthresh = max(cwnd/2, 2*MTU)
     cwnd = 1*MTU





Stewart, et al.             Standards Track                    [Page 89]

RFC 2960          Stream Control Transmission Protocol      October 2000


  and assure that no more than one SCTP packet will be in flight for
  that address until the endpoint receives acknowledgement for
  successful delivery of data to that address.

7.2.4 Fast Retransmit on Gap Reports

  In the absence of data loss, an endpoint performs delayed
  acknowledgement.  However, whenever an endpoint notices a hole in the
  arriving TSN sequence, it SHOULD start sending a SACK back every time
  a packet arrives carrying data until the hole is filled.

  Whenever an endpoint receives a SACK that indicates some TSN(s)
  missing, it SHOULD wait for 3 further miss indications (via
  subsequent SACK's) on the same TSN(s) before taking action with
  regard to Fast Retransmit.

  When the TSN(s) is reported as missing in the fourth consecutive
  SACK, the data sender shall:

  1) Mark the missing DATA chunk(s) for retransmission,

  2) Adjust the ssthresh and cwnd of the destination address(es) to
     which the missing DATA chunks were last sent, according to the
     formula described in Section 7.2.3.

  3) Determine how many of the earliest (i.e., lowest TSN) DATA chunks
     marked for retransmission will fit into a single packet, subject
     to constraint of the path MTU of the destination transport address
     to which the packet is being sent.  Call this value K. Retransmit
     those K DATA chunks in a single packet.

  4) Restart T3-rtx timer only if the last SACK acknowledged the lowest
     outstanding TSN number sent to that address, or the endpoint is
     retransmitting the first outstanding DATA chunk sent to that
     address.

  Note: Before the above adjustments, if the received SACK also
  acknowledges new DATA chunks and advances the Cumulative TSN Ack
  Point, the cwnd adjustment rules defined in Sections 7.2.1 and 7.2.2
  must be applied first.

  A straightforward implementation of the above keeps a counter for
  each TSN hole reported by a SACK. The counter increments for each
  consecutive SACK reporting the TSN hole.  After reaching 4 and
  starting the fast retransmit procedure, the counter resets to 0.






Stewart, et al.             Standards Track                    [Page 90]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Because cwnd in SCTP indirectly bounds the number of outstanding
  TSN's, the effect of TCP fast-recovery is achieved automatically with
  no adjustment to the congestion control window size.

7.3 Path MTU Discovery

  [RFC1191] specifies "Path MTU Discovery", whereby an endpoint
  maintains an estimate of the maximum transmission unit (MTU) along a
  given Internet path and refrains from sending packets along that path
  which exceed the MTU, other than occasional attempts to probe for a
  change in the Path MTU (PMTU).  RFC 1191 is thorough in its
  discussion of the MTU discovery mechanism and strategies for
  determining the current end-to-end MTU setting as well as detecting
  changes in this value.  [RFC1981] specifies the same mechanisms for
  IPv6.  An SCTP sender using IPv6 MUST use Path MTU Discovery unless
  all packets are less than the minimum IPv6 MTU [RFC2460].

  An endpoint SHOULD apply these techniques, and SHOULD do so on a
  per-destination-address basis.

  There are 4 ways in which SCTP differs from the description in RFC
  1191 of applying MTU discovery to TCP:

  1) SCTP associations can span multiple addresses.  An endpoint MUST
     maintain separate MTU estimates for each destination address of
     its peer.

  2) Elsewhere in this document, when the term "MTU" is discussed, it
     refers to the MTU associated with the destination address
     corresponding to the context of the discussion.

  3) Unlike TCP, SCTP does not have a notion of "Maximum Segment Size".
     Accordingly, the MTU for each destination address SHOULD be
     initialized to a value no larger than the link MTU for the local
     interface to which packets for that remote destination address
     will be routed.

  4) Since data transmission in SCTP is naturally structured in terms
     of TSNs rather than bytes (as is the case for TCP), the discussion
     in Section 6.5 of RFC 1191 applies: When retransmitting an IP
     datagram to a remote address for which the IP datagram appears too
     large for the path MTU to that address, the IP datagram SHOULD be
     retransmitted without the DF bit set, allowing it to possibly be
     fragmented.  Transmissions of new IP datagrams MUST have DF set.







Stewart, et al.             Standards Track                    [Page 91]

RFC 2960          Stream Control Transmission Protocol      October 2000


  5) The sender should track an association PMTU which will be the
     smallest PMTU discovered for all of the peer's destination
     addresses.  When fragmenting messages into multiple parts this
     association PMTU should be used to calculate the size of each
     fragment.  This will allow retransmissions to be seamlessly sent
     to an alternate address without encountering IP fragmentation.

  Other than these differences, the discussion of TCP's use of MTU
  discovery in RFCs 1191 and 1981 applies to SCTP on a per-
  destination-address basis.

  Note: For IPv6 destination addresses the DF bit does not exist,
  instead the IP datagram must be fragmented as described in [RFC2460].

8.  Fault Management

8.1 Endpoint Failure Detection

  An endpoint shall keep a counter on the total number of consecutive
  retransmissions to its peer (including retransmissions to all the
  destination transport addresses of the peer if it is multi-homed).
  If the value of this counter exceeds the limit indicated in the
  protocol parameter 'Association.Max.Retrans', the endpoint shall
  consider the peer endpoint unreachable and shall stop transmitting
  any more data to it (and thus the association enters the CLOSED
  state).  In addition, the endpoint shall report the failure to the
  upper layer, and optionally report back all outstanding user data
  remaining in its outbound queue. The association is automatically
  closed when the peer endpoint becomes unreachable.

  The counter shall be reset each time a DATA chunk sent to that peer
  endpoint is acknowledged (by the reception of a SACK), or a
  HEARTBEAT-ACK is received from the peer endpoint.

8.2 Path Failure Detection

  When its peer endpoint is multi-homed, an endpoint should keep a
  error counter for each of the destination transport addresses of the
  peer endpoint.

  Each time the T3-rtx timer expires on any address, or when a
  HEARTBEAT sent to an idle address is not acknowledged within a RTO,
  the error counter of that destination address will be incremented.
  When the value in the error counter exceeds the protocol parameter
  'Path.Max.Retrans' of that destination address, the endpoint should
  mark the destination transport address as inactive, and a
  notification SHOULD be sent to the upper layer.




Stewart, et al.             Standards Track                    [Page 92]

RFC 2960          Stream Control Transmission Protocol      October 2000


  When an outstanding TSN is acknowledged or a HEARTBEAT sent to that
  address is acknowledged with a HEARTBEAT ACK, the endpoint shall
  clear the error counter of the destination transport address to which
  the DATA chunk was last sent (or HEARTBEAT was sent).  When the peer
  endpoint is multi-homed and the last chunk sent to it was a
  retransmission to an alternate address, there exists an ambiguity as
  to whether or not the acknowledgement should be credited to the
  address of the last chunk sent.  However, this ambiguity does not
  seem to bear any significant consequence to SCTP behavior.  If this
  ambiguity is undesirable, the transmitter may choose not to clear the
  error counter if the last chunk sent was a retransmission.

  Note: When configuring the SCTP endpoint, the user should avoid
  having the value of 'Association.Max.Retrans' larger than the
  summation of the 'Path.Max.Retrans' of all the destination addresses
  for the remote endpoint.  Otherwise, all the destination addresses
  may become inactive while the endpoint still considers the peer
  endpoint reachable.  When this condition occurs, how the SCTP chooses
  to function is implementation specific.

  When the primary path is marked inactive (due to excessive
  retransmissions, for instance), the sender MAY automatically transmit
  new packets to an alternate destination address if one exists and is
  active.  If more than one alternate address is active when the
  primary path is marked inactive only ONE transport address SHOULD be
  chosen and used as the new destination transport address.

8.3 Path Heartbeat

  By default, an SCTP endpoint shall monitor the reachability of the
  idle destination transport address(es) of its peer by sending a
  HEARTBEAT chunk periodically to the destination transport
  address(es).

  A destination transport address is considered "idle" if no new chunk
  which can be used for updating path RTT (usually including first
  transmission DATA, INIT, COOKIE ECHO, HEARTBEAT etc.) and no
  HEARTBEAT has been sent to it within the current heartbeat period of
  that address.  This applies to both active and inactive destination
  addresses.

  The upper layer can optionally initiate the following functions:

  A) Disable heartbeat on a specific destination transport address of a
     given association,

  B) Change the HB.interval,




Stewart, et al.             Standards Track                    [Page 93]

RFC 2960          Stream Control Transmission Protocol      October 2000


  C) Re-enable heartbeat on a specific destination transport address of
     a given association, and,

  D) Request an on-demand HEARTBEAT on a specific destination transport
     address of a given association.

  The endpoint should increment the respective error counter of the
  destination transport address each time a HEARTBEAT is sent to that
  address and not acknowledged within one RTO.

  When the value of this counter reaches the protocol parameter '
  Path.Max.Retrans', the endpoint should mark the corresponding
  destination address as inactive if it is not so marked, and may also
  optionally report to the upper layer the change of reachability of
  this destination address.  After this, the endpoint should continue
  HEARTBEAT on this destination address but should stop increasing the
  counter.

  The sender of the HEARTBEAT chunk should include in the Heartbeat
  Information field of the chunk the current time when the packet is
  sent out and the destination address to which the packet is sent.

  IMPLEMENTATION NOTE: An alternative implementation of the heartbeat
  mechanism that can be used is to increment the error counter variable
  every time a HEARTBEAT is sent to a destination.  Whenever a
  HEARTBEAT ACK arrives, the sender SHOULD clear the error counter of
  the destination that the HEARTBEAT was sent to.  This in effect would
  clear the previously stroked error (and any other error counts as
  well).

  The receiver of the HEARTBEAT should immediately respond with a
  HEARTBEAT ACK that contains the Heartbeat Information field copied
  from the received HEARTBEAT chunk.

  Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
  should clear the error counter of the destination transport address
  to which the HEARTBEAT was sent, and mark the destination transport
  address as active if it is not so marked.  The endpoint may
  optionally report to the upper layer when an inactive destination
  address is marked as active due to the reception of the latest
  HEARTBEAT ACK.  The receiver of the HEARTBEAT ACK must also clear the
  association overall error count as well (as defined in section 8.1).

  The receiver of the HEARTBEAT ACK should also perform an RTT
  measurement for that destination transport address using the time
  value carried in the HEARTBEAT ACK chunk.





Stewart, et al.             Standards Track                    [Page 94]

RFC 2960          Stream Control Transmission Protocol      October 2000


  On an idle destination address that is allowed to heartbeat, a
  HEARTBEAT chunk is RECOMMENDED to be sent once per RTO of that
  destination address plus the protocol parameter 'HB.interval' , with
  jittering of +/- 50%, and exponential back-off of the RTO if the
  previous HEARTBEAT is unanswered.

  A primitive is provided for the SCTP user to change the HB.interval
  and turn on or off the heartbeat on a given destination address.  The
  heartbeat interval set by the SCTP user is added to the RTO of that
  destination (including any exponential backoff).  Only one heartbeat
  should be sent each time the heartbeat timer expires (if multiple
  destinations are idle).  It is a implementation decision on how to
  choose which of the candidate idle destinations to heartbeat to (if
  more than one destination is idle).

  Note: When tuning the heartbeat interval, there is a side effect that
  SHOULD be taken into account.  When this value is increased, i.e.
  the HEARTBEAT takes longer, the detection of lost ABORT messages
  takes longer as well.  If a peer endpoint ABORTs the association for
  any reason and the ABORT chunk is lost, the local endpoint will only
  discover the lost ABORT by sending a DATA chunk or HEARTBEAT chunk
  (thus causing the peer to send another ABORT).  This must be
  considered when tuning the HEARTBEAT timer.  If the HEARTBEAT is
  disabled only sending DATA to the association will discover a lost
  ABORT from the peer.

8.4 Handle "Out of the blue" Packets

  An SCTP packet is called an "out of the blue" (OOTB) packet if it is
  correctly formed, i.e., passed the receiver's Adler-32 check (see
  Section 6.8), but the receiver is not able to identify the
  association to which this packet belongs.

  The receiver of an OOTB packet MUST do the following:

  1) If the OOTB packet is to or from a non-unicast address, silently
     discard the packet.  Otherwise,

  2) If the OOTB packet contains an ABORT chunk, the receiver MUST
     silently discard the OOTB packet and take no further action.
     Otherwise,

  3) If the packet contains an INIT chunk with a Verification Tag set
     to '0', process it as described in Section 5.1.  Otherwise,

  4) If the packet contains a COOKIE ECHO in the first chunk, process
     it as described in Section 5.1.  Otherwise,




Stewart, et al.             Standards Track                    [Page 95]

RFC 2960          Stream Control Transmission Protocol      October 2000


  5) If the packet contains a SHUTDOWN ACK chunk, the receiver should
     respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE.
     When sending the SHUTDOWN COMPLETE, the receiver of the OOTB
     packet must fill in the Verification Tag field of the outbound
     packet with the Verification Tag received in the SHUTDOWN ACK and
     set the T-bit in the Chunk Flags to indicate that no TCB was
     found. Otherwise,

  6) If the packet contains a SHUTDOWN COMPLETE chunk, the receiver
     should silently discard the packet and take no further action.
     Otherwise,

  7) If the packet contains a "Stale cookie" ERROR or a COOKIE ACK the
     SCTP Packet should be silently discarded.  Otherwise,

  8) The receiver should respond to the sender of the OOTB packet with
     an ABORT.  When sending the ABORT, the receiver of the OOTB packet
     MUST fill in the Verification Tag field of the outbound packet
     with the value found in the Verification Tag field of the OOTB
     packet and set the T-bit in the Chunk Flags to indicate that no
     TCB was found.  After sending this ABORT, the receiver of the OOTB
     packet shall discard the OOTB packet and take no further action.

8.5 Verification Tag

  The Verification Tag rules defined in this section apply when sending
  or receiving SCTP packets which do not contain an INIT, SHUTDOWN
  COMPLETE, COOKIE ECHO (see Section 5.1), ABORT or SHUTDOWN ACK chunk.
  The rules for sending and receiving SCTP packets containing one of
  these chunk types are discussed separately in Section 8.5.1.

  When sending an SCTP packet, the endpoint MUST fill in the
  Verification Tag field of the outbound packet with the tag value in
  the Initiate Tag parameter of the INIT or INIT ACK received from its
  peer.

  When receiving an SCTP packet, the endpoint MUST ensure that the
  value in the Verification Tag field of the received SCTP packet
  matches its own Tag.  If the received Verification Tag value does not
  match the receiver's own tag value, the receiver shall silently
  discard the packet and shall not process it any further except for
  those cases listed in Section 8.5.1 below.









Stewart, et al.             Standards Track                    [Page 96]

RFC 2960          Stream Control Transmission Protocol      October 2000


8.5.1 Exceptions in Verification Tag Rules

  A) Rules for packet carrying INIT:

     -  The sender MUST set the Verification Tag of the packet to 0.

     -  When an endpoint receives an SCTP packet with the Verification
        Tag set to 0, it should verify that the packet contains only an
        INIT chunk.  Otherwise, the receiver MUST silently discard the
        packet.

  B) Rules for packet carrying ABORT:

     -  The endpoint shall always fill in the Verification Tag field of
        the outbound packet with the destination endpoint's tag value
        if it is known.

     -  If the ABORT is sent in response to an OOTB packet, the
        endpoint MUST follow the procedure described in Section 8.4.

     -  The receiver MUST accept the packet if the Verification Tag
        matches either its own tag, OR the tag of its peer.  Otherwise,
        the receiver MUST silently discard the packet and take no
        further action.

  C) Rules for packet carrying SHUTDOWN COMPLETE:

     -  When sending a SHUTDOWN COMPLETE, if the receiver of the
        SHUTDOWN ACK has a TCB then the destination endpoint's tag MUST
        be used.  Only where no TCB exists should the sender use the
        Verification Tag from the SHUTDOWN ACK.

     -  The receiver of a SHUTDOWN COMPLETE shall accept the packet if
        the Verification Tag field of the packet matches its own tag OR
        it is set to its peer's tag and the T bit is set in the Chunk
        Flags. Otherwise, the receiver MUST silently discard the packet
        and take no further action.  An endpoint MUST ignore the
        SHUTDOWN COMPLETE if it is not in the SHUTDOWN-ACK-SENT state.

  D) Rules for packet carrying a COOKIE ECHO

     -  When sending a COOKIE ECHO, the endpoint MUST use the value of
        the Initial Tag received in the INIT ACK.

     -  The receiver of a COOKIE ECHO follows the procedures in Section
        5.





Stewart, et al.             Standards Track                    [Page 97]

RFC 2960          Stream Control Transmission Protocol      October 2000


  E) Rules for packet carrying a SHUTDOWN ACK

     -  If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the
        procedures in section 8.4 SHOULD be followed, in other words it
        should be treated as an Out Of The Blue packet.

9. Termination of Association

  An endpoint should terminate its association when it exits from
  service.  An association can be terminated by either abort or
  shutdown.  An abort of an association is abortive by definition in
  that any data pending on either end of the association is discarded
  and not delivered to the peer.  A shutdown of an association is
  considered a graceful close where all data in queue by either
  endpoint is delivered to the respective peers.  However, in the case
  of a shutdown, SCTP does not support a half-open state (like TCP)
  wherein one side may continue sending data while the other end is
  closed.  When either endpoint performs a shutdown, the association on
  each peer will stop accepting new data from its user and only deliver
  data in queue at the time of sending or receiving the SHUTDOWN chunk.

9.1 Abort of an Association

  When an endpoint decides to abort an existing association, it shall
  send an ABORT chunk to its peer endpoint.  The sender MUST fill in
  the peer's Verification Tag in the outbound packet and MUST NOT
  bundle any DATA chunk with the ABORT.

  An endpoint MUST NOT respond to any received packet that contains an
  ABORT chunk (also see Section 8.4).

  An endpoint receiving an ABORT shall apply the special Verification
  Tag check rules described in Section 8.5.1.

  After checking the Verification Tag, the receiving endpoint shall
  remove the association from its record, and shall report the
  termination to its upper layer.

9.2 Shutdown of an Association

  Using the SHUTDOWN primitive (see Section 10.1), the upper layer of
  an endpoint in an association can gracefully close the association.
  This will allow all outstanding DATA chunks from the peer of the
  shutdown initiator to be delivered before the association terminates.

  Upon receipt of the SHUTDOWN primitive from its upper layer, the
  endpoint enters SHUTDOWN-PENDING state and remains there until all
  outstanding data has been acknowledged by its peer.  The endpoint



Stewart, et al.             Standards Track                    [Page 98]

RFC 2960          Stream Control Transmission Protocol      October 2000


  accepts no new data from its upper layer, but retransmits data to the
  far end if necessary to fill gaps.

  Once all its outstanding data has been acknowledged, the endpoint
  shall send a SHUTDOWN chunk to its peer including in the Cumulative
  TSN Ack field the last sequential TSN it has received from the peer.
  It shall then start the T2-shutdown timer and enter the SHUTDOWN-SENT
  state.  If the timer expires, the endpoint must re-send the SHUTDOWN
  with the updated last sequential TSN received from its peer.

  The rules in Section 6.3 MUST be followed to determine the proper
  timer value for T2-shutdown.  To indicate any gaps in TSN, the
  endpoint may also bundle a SACK with the SHUTDOWN chunk in the same
  SCTP packet.

  An endpoint should limit the number of retransmissions of the
  SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
  If this threshold is exceeded the endpoint should destroy the TCB and
  MUST report the peer endpoint unreachable to the upper layer (and
  thus the association enters the CLOSED state).  The reception of any
  packet from its peer (i.e. as the peer sends all of its queued DATA
  chunks) should clear the endpoint's retransmission count and restart
  the T2-Shutdown timer,  giving its peer ample opportunity to transmit
  all of its queued DATA chunks that have not yet been sent.

  Upon the reception of the SHUTDOWN, the peer endpoint shall

  -  enter the SHUTDOWN-RECEIVED state,

  -  stop accepting new data from its SCTP user

  -  verify, by checking the Cumulative TSN Ack field of the chunk,
     that all its outstanding DATA chunks have been received by the
     SHUTDOWN sender.

  Once an endpoint as reached the SHUTDOWN-RECEIVED state it MUST NOT
  send a SHUTDOWN in response to a ULP request, and should discard
  subsequent SHUTDOWN chunks.

  If there are still outstanding DATA chunks left, the SHUTDOWN
  receiver shall continue to follow normal data transmission procedures
  defined in Section 6 until all outstanding DATA chunks are
  acknowledged; however, the SHUTDOWN receiver MUST NOT accept new data
  from its SCTP user.

  While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately
  respond to each received packet containing one or more DATA chunk(s)
  with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer. If



Stewart, et al.             Standards Track                    [Page 99]

RFC 2960          Stream Control Transmission Protocol      October 2000


  it has no more outstanding DATA chunks, the SHUTDOWN receiver shall
  send a SHUTDOWN ACK and start a T2-shutdown timer of its own,
  entering the SHUTDOWN-ACK-SENT state.  If the timer expires, the
  endpoint must re-send the SHUTDOWN ACK.

  The sender of the SHUTDOWN ACK should limit the number of
  retransmissions of the SHUTDOWN ACK chunk to the protocol parameter '
  Association.Max.Retrans'.  If this threshold is exceeded the endpoint
  should destroy the TCB and may report the peer endpoint unreachable
  to the upper layer (and thus the association enters the CLOSED
  state).

  Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall stop
  the T2-shutdown timer, send a SHUTDOWN COMPLETE chunk to its peer,
  and remove all record of the association.

  Upon reception of the SHUTDOWN COMPLETE chunk the endpoint will
  verify that it is in SHUTDOWN-ACK-SENT state, if it is not the chunk
  should be discarded.  If the endpoint is in the SHUTDOWN-ACK-SENT
  state the endpoint should stop the T2-shutdown timer and remove all
  knowledge of the association (and thus the association enters the
  CLOSED state).

  An endpoint SHOULD assure that all its outstanding DATA chunks have
  been acknowledged before initiating the shutdown procedure.

  An endpoint should reject any new data request from its upper layer
  if it is in SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED, or
  SHUTDOWN-ACK-SENT state.

  If an endpoint is in SHUTDOWN-ACK-SENT state and receives an INIT
  chunk (e.g., if the SHUTDOWN COMPLETE was lost) with source and
  destination transport addresses (either in the IP addresses or in the
  INIT chunk) that belong to this association, it should discard the
  INIT chunk and retransmit the SHUTDOWN ACK chunk.

  Note: Receipt of an INIT with the same source and destination IP
  addresses as used in transport addresses assigned to an endpoint but
  with a different port number indicates the initialization of a
  separate association.

  The sender of the INIT or COOKIE ECHO should respond to the receipt
  of a SHUTDOWN-ACK with a stand-alone SHUTDOWN COMPLETE in an SCTP
  packet with the Verification Tag field of its common header set to
  the same tag that was received in the SHUTDOWN ACK packet.  This is
  considered an Out of the Blue packet as defined in Section 8.4.  The
  sender of the INIT lets T1-init continue running and remains in the




Stewart, et al.             Standards Track                   [Page 100]

RFC 2960          Stream Control Transmission Protocol      October 2000


  COOKIE-WAIT or COOKIE-ECHOED state.  Normal T1-init timer expiration
  will cause the INIT or COOKIE chunk to be retransmitted and thus
  start a new association.

  If a SHUTDOWN is received in COOKIE WAIT or COOKIE ECHOED states the
  SHUTDOWN chunk SHOULD be silently discarded.

  If an endpoint is in SHUTDOWN-SENT state and receives a SHUTDOWN
  chunk from its peer, the endpoint shall respond immediately with a
  SHUTDOWN ACK to its peer, and move into a SHUTDOWN-ACK-SENT state
  restarting its T2-shutdown timer.

  If an endpoint is in the SHUTDOWN-ACK-SENT state and receives a
  SHUTDOWN ACK, it shall stop the T2-shutdown timer, send a SHUTDOWN
  COMPLETE chunk to its peer, and remove all record of the association.

10. Interface with Upper Layer

  The Upper Layer Protocols (ULP) shall request for services by passing
  primitives to SCTP and shall receive notifications from SCTP for
  various events.

  The primitives and notifications described in this section should be
  used as a guideline for implementing SCTP.  The following functional
  description of ULP interface primitives is shown for illustrative
  purposes.  Different SCTP implementations may have different ULP
  interfaces.  However, all SCTPs must provide a certain minimum set of
  services to guarantee that all SCTP implementations can support the
  same protocol hierarchy.

10.1 ULP-to-SCTP

  The following sections functionally characterize a ULP/SCTP
  interface.  The notation used is similar to most procedure or
  function calls in high level languages.

  The ULP primitives described below specify the basic functions the
  SCTP must perform to support inter-process communication.  Individual
  implementations must define their own exact format, and may provide
  combinations or subsets of the basic functions in single calls.

  A) Initialize

  Format: INITIALIZE ([local port], [local eligible address list]) ->
  local SCTP instance name






Stewart, et al.             Standards Track                   [Page 101]

RFC 2960          Stream Control Transmission Protocol      October 2000


  This primitive allows SCTP to initialize its internal data structures
  and allocate necessary resources for setting up its operation
  environment.  Once SCTP is initialized, ULP can communicate directly
  with other endpoints without re-invoking this primitive.

  SCTP will return a local SCTP instance name to the ULP.

  Mandatory attributes:

  None.

  Optional attributes:

  The following types of attributes may be passed along with the
  primitive:

  o  local port - SCTP port number, if ULP wants it to be specified;

  o  local eligible address list - An address list that the local SCTP
     endpoint should bind.  By default, if an address list is not
     included, all IP addresses assigned to the host should be used by
     the local endpoint.

  IMPLEMENTATION NOTE: If this optional attribute is supported by an
  implementation, it will be the responsibility of the implementation
  to enforce that the IP source address field of any SCTP packets sent
  out by this endpoint contains one of the IP addresses indicated in
  the local eligible address list.

  B) Associate

  Format: ASSOCIATE(local SCTP instance name, destination transport addr,
          outbound stream count)
  -> association id [,destination transport addr list] [,outbound stream
     count]

  This primitive allows the upper layer to initiate an association to a
  specific peer endpoint.

  The peer endpoint shall be specified by one of the transport
  addresses which defines the endpoint (see Section 1.4).  If the local
  SCTP instance has not been initialized, the ASSOCIATE is considered
  an error.

  An association id, which is a local handle to the SCTP association,
  will be returned on successful establishment of the association.  If
  SCTP is not able to open an SCTP association with the peer endpoint,
  an error is returned.



Stewart, et al.             Standards Track                   [Page 102]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Other association parameters may be returned, including the complete
  destination transport addresses of the peer as well as the outbound
  stream count of the local endpoint.  One of the transport address
  from the returned destination addresses will be selected by the local
  endpoint as default primary path for sending SCTP packets to this
  peer.  The returned "destination transport addr list" can be used by
  the ULP to change the default primary path or to force sending a
  packet to a specific transport address.

  IMPLEMENTATION NOTE: If ASSOCIATE primitive is implemented as a
  blocking function call, the ASSOCIATE primitive can return
  association parameters in addition to the association id upon
  successful establishment.  If ASSOCIATE primitive is implemented as a
  non-blocking call, only the association id shall be returned and
  association parameters shall be passed using the COMMUNICATION UP
  notification.

  Mandatory attributes:

  o  local SCTP instance name - obtained from the INITIALIZE operation.

  o  destination transport addr - specified as one of the transport
     addresses of the peer endpoint with which the association is to be
     established.

  o  outbound stream count - the number of outbound streams the ULP
     would like to open towards this peer endpoint.

  Optional attributes:

  None.

  C) Shutdown

  Format: SHUTDOWN(association id)
  -> result

  Gracefully closes an association.  Any locally queued user data will
  be delivered to the peer.  The association will be terminated only
  after the peer acknowledges all the SCTP packets sent.  A success
  code will be returned on successful termination of the association.
  If attempting to terminate the association results in a failure, an
  error code shall be returned.

  Mandatory attributes:

  o  association id - local handle to the SCTP association




Stewart, et al.             Standards Track                   [Page 103]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Optional attributes:

  None.

  D) Abort

  Format: ABORT(association id [, cause code])
  -> result

  Ungracefully closes an association.  Any locally queued user data
  will be discarded and an ABORT chunk is sent to the peer.  A success
  code will be returned on successful abortion of the association.  If
  attempting to abort the association results in a failure, an error
  code shall be returned.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  Optional attributes:

  o  cause code - reason of the abort to be passed to the peer.

  None.

  E) Send

  Format: SEND(association id, buffer address, byte count [,context]
          [,stream id] [,life time] [,destination transport address]
          [,unorder flag] [,no-bundle flag] [,payload protocol-id] )
  -> result

  This is the main method to send user data via SCTP.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  buffer address - the location where the user message to be
     transmitted is stored;

  o  byte count - The size of the user data in number of bytes;

  Optional attributes:

  o  context - an optional 32 bit integer that will be carried in the
     sending failure notification to the ULP if the transportation of
     this User Message fails.



Stewart, et al.             Standards Track                   [Page 104]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  stream id - to indicate which stream to send the data on.  If not
     specified, stream 0 will be used.

  o  life time - specifies the life time of the user data.  The user
     data will not be sent by SCTP after the life time expires.  This
     parameter can be used to avoid efforts to transmit stale user
     messages.  SCTP notifies the ULP if the data cannot be initiated
     to transport (i.e. sent to the destination via SCTP's send
     primitive) within the life time variable.  However, the user data
     will be transmitted if SCTP has attempted to transmit a chunk
     before the life time expired.

  IMPLEMENTATION NOTE: In order to better support the data lifetime
  option, the transmitter may hold back the assigning of the TSN number
  to an outbound DATA chunk to the last moment.  And, for
  implementation simplicity, once a TSN number has been assigned the
  sender should consider the send of this DATA chunk as committed,
  overriding any lifetime option attached to the DATA chunk.

  o  destination transport address - specified as one of the
     destination transport addresses of the peer endpoint to which this
     packet should be sent.  Whenever possible, SCTP should use this
     destination transport address for sending the packets, instead of
     the current primary path.

  o  unorder flag - this flag, if present, indicates that the user
     would like the data delivered in an unordered fashion to the peer
     (i.e., the U flag is set to 1 on all DATA chunks carrying this
     message).

  o  no-bundle flag - instructs SCTP not to bundle this user data with
     other outbound DATA chunks.  SCTP MAY still bundle even when this
     flag is present, when faced with network congestion.

  o  payload protocol-id - A 32 bit unsigned integer that is to be
     passed to the peer indicating the type of payload protocol data
     being transmitted.  This value is passed as opaque data by SCTP.

  F) Set Primary

  Format: SETPRIMARY(association id, destination transport address,
                     [source transport address] )
  -> result

  Instructs the local SCTP to use the specified destination transport
  address as primary path for sending packets.





Stewart, et al.             Standards Track                   [Page 105]

RFC 2960          Stream Control Transmission Protocol      October 2000


  The result of attempting this operation shall be returned.  If the
  specified destination transport address is not present in the
  "destination transport address list" returned earlier in an associate
  command or communication up notification, an error shall be returned.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  destination transport address - specified as one of the transport
     addresses of the peer endpoint, which should be used as primary
     address for sending packets.  This overrides the current primary
     address information maintained by the local SCTP endpoint.

  Optional attributes:

  o  source transport address - optionally, some implementations may
     allow you to set the default source address placed in all outgoing
     IP datagrams.

  G) Receive

  Format: RECEIVE(association id, buffer address, buffer size
          [,stream id])
  -> byte count [,transport address] [,stream id] [,stream sequence
     number] [,partial flag] [,delivery number] [,payload protocol-id]

  This primitive shall read the first user message in the SCTP in-queue
  into the buffer specified by ULP, if there is one available.  The
  size of the message read, in bytes, will be returned.  It may,
  depending on the specific implementation, also return other
  information such as the sender's address, the stream id on which it
  is received, whether there are more messages available for retrieval,
  etc.  For ordered messages, their stream sequence number may also be
  returned.

  Depending upon the implementation, if this primitive is invoked when
  no message is available the implementation should return an
  indication of this condition or should block the invoking process
  until data does become available.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  buffer address - the memory location indicated by the ULP to store
     the received message.




Stewart, et al.             Standards Track                   [Page 106]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - to indicate which stream to receive the data on.

  o  stream sequence number - the stream sequence number assigned by
     the sending SCTP peer.

  o  partial flag - if this returned flag is set to 1, then this
     Receive contains  a partial delivery of the whole message.  When
     this flag is set, the stream id and stream sequence number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this stream sequence
     number.

  o  payload protocol-id - A 32 bit unsigned integer that is received
     from the peer indicating the type of payload protocol of the
     received data.  This value is passed as opaque data by SCTP.

  H) Status

  Format: STATUS(association id)
  -> status data

  This primitive should return a data block containing the following
  information:
    association connection state,
    destination transport address list,
    destination transport address reachability states,
    current receiver window size,
    current congestion window sizes,
    number of  unacknowledged DATA chunks,
    number of DATA chunks pending receipt,
    primary path,
    most recent SRTT on primary path,
    RTO on primary path,
    SRTT and RTO on other destination addresses, etc.

  Mandatory attributes:

  o association id - local handle to the SCTP association

  Optional attributes:

   None.





Stewart, et al.             Standards Track                   [Page 107]

RFC 2960          Stream Control Transmission Protocol      October 2000


  I) Change Heartbeat

  Format: CHANGEHEARTBEAT(association id, destination transport address,
          new state [,interval])
  -> result

  Instructs the local endpoint to enable or disable heartbeat on the
  specified destination transport address.

  The result of attempting this operation shall be returned.

  Note: Even when enabled, heartbeat will not take place if the
  destination transport address is not idle.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  destination transport address - specified as one of the transport
     addresses of the peer endpoint.

  o  new state - the new state of heartbeat for this destination
     transport address (either enabled or disabled).

  Optional attributes:

  o  interval - if present, indicates the frequency of the heartbeat if
     this is to enable heartbeat on a destination transport address.
     This value is added to the RTO of the destination transport
     address. This value, if present, effects all destinations.

  J) Request HeartBeat

  Format: REQUESTHEARTBEAT(association id, destination transport
          address)
  -> result

  Instructs the local endpoint to perform a HeartBeat on the specified
  destination transport address of the given association.  The returned
  result should indicate whether the transmission of the HEARTBEAT
  chunk to the destination address is successful.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  destination transport address - the transport address of the
     association on which a heartbeat should be issued.



Stewart, et al.             Standards Track                   [Page 108]

RFC 2960          Stream Control Transmission Protocol      October 2000


  K) Get SRTT Report

  Format: GETSRTTREPORT(association id, destination transport address)
  -> srtt result

  Instructs the local SCTP to report the current SRTT measurement on
  the specified destination transport address of the given association.
  The returned result can be an integer containing the most recent SRTT
  in milliseconds.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  destination transport address - the transport address of the
     association on which the SRTT measurement is to be reported.

  L) Set Failure Threshold

  Format: SETFAILURETHRESHOLD(association id, destination transport
          address, failure threshold)
  -> result

  This primitive allows the local SCTP to customize the reachability
  failure detection threshold 'Path.Max.Retrans' for the specified
  destination address.

  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  destination transport address - the transport address of the
     association on which the failure detection threshold is to be set.

  o  failure threshold - the new value of 'Path.Max.Retrans' for the
     destination address.

  M) Set Protocol Parameters

  Format: SETPROTOCOLPARAMETERS(association id, [,destination transport
          address,] protocol parameter list)
  -> result

  This primitive allows the local SCTP to customize the protocol
  parameters.






Stewart, et al.             Standards Track                   [Page 109]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Mandatory attributes:

  o  association id - local handle to the SCTP association

  o  protocol parameter list - The specific names and values of the
     protocol parameters (e.g., Association.Max.Retrans [see Section
     14]) that the SCTP user wishes to customize.

  Optional attributes:

  o  destination transport address - some of the protocol parameters
     may be set on a per destination transport address basis.

  N) Receive unsent message

  Format: RECEIVE_UNSENT(data retrieval id, buffer address, buffer size
          [,stream id] [, stream sequence number] [,partial flag]
          [,payload protocol-id])

  o  data retrieval id - The identification passed to the ULP in the
     failure notification.

  o  buffer address - the memory location indicated by the ULP to store
     the received message.

  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - this is a return value that is set to  indicate
     which stream the data was sent to.

  o  stream sequence number - this value is returned indicating
     the stream sequence number that was associated with the message.

  o  partial flag - if this returned flag is set to 1, then this
     message is a partial delivery of the whole message.  When
     this flag is set, the stream id and stream sequence number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this stream sequence
     number.

  o  payload protocol-id - The 32 bit unsigned integer that was sent to
     be sent to the peer indicating the type of payload protocol of the
     received data.






Stewart, et al.             Standards Track                   [Page 110]

RFC 2960          Stream Control Transmission Protocol      October 2000


  O)  Receive unacknowledged message

  Format: RECEIVE_UNACKED(data retrieval id, buffer address, buffer size,
          [,stream id] [, stream sequence number] [,partial flag]
          [,payload protocol-id])

  o  data retrieval id - The identification passed to the ULP in the
     failure notification.

  o  buffer address - the memory location indicated by the ULP to store
     the received message.

  o  buffer size - the maximum size of data to be received, in bytes.

  Optional attributes:

  o  stream id - this is a return value that is set to  indicate which
     stream the data was sent to.

  o  stream sequence number - this value is returned indicating the
     stream sequence number that was associated with the message.

  o  partial flag - if this returned flag is set to 1, then this
     message is a partial delivery of the whole message.  When this
     flag is set, the stream id and stream sequence number MUST
     accompany this receive.  When this flag is set to 0, it indicates
     that no more deliveries will be received for this stream sequence
     number.

  o  payload protocol-id - The 32 bit unsigned integer that was sent to
     be sent to the peer indicating the type of payload protocol of the
     received data.

  P) Destroy SCTP instance

  Format: DESTROY(local SCTP instance name)

  o  local SCTP instance name - this is the value that was passed to
     the application in the initialize primitive and it indicates which
     SCTP instance to be destroyed.

10.2 SCTP-to-ULP

  It is assumed that the operating system or application environment
  provides a means for the SCTP to asynchronously signal the ULP
  process.  When SCTP does signal an ULP process, certain information
  is passed to the ULP.




Stewart, et al.             Standards Track                   [Page 111]

RFC 2960          Stream Control Transmission Protocol      October 2000


  IMPLEMENTATION NOTE: In some cases this may be done through a
  separate socket or error channel.

  A) DATA ARRIVE notification

  SCTP shall invoke this notification on the ULP when a user message is
  successfully received and ready for retrieval.

  The following may be optionally be passed with the notification:

  o  association id - local handle to the SCTP association

  o  stream id - to indicate which stream the data is received on.

  B) SEND FAILURE notification

  If a message can not be delivered SCTP shall invoke this notification
  on the ULP.

  The following may be optionally be passed with the notification:

  o  association id - local handle to the SCTP association

  o  data retrieval id - an identification used to retrieve unsent and
     unacknowledged data.

  o  cause code - indicating the reason of the failure, e.g., size too
     large, message life-time expiration, etc.

  o  context - optional information associated with this message (see D
     in Section 10.1).

  C) NETWORK STATUS CHANGE notification

  When a destination transport address is marked inactive (e.g., when
  SCTP detects a failure), or marked active (e.g., when SCTP detects a
  recovery), SCTP shall invoke this notification on the ULP.

  The following shall be passed with the notification:

  o  association id - local handle to the SCTP association

  o  destination transport address - This indicates the destination
     transport address of the peer endpoint affected by the change;

  o  new-status - This indicates the new status.





Stewart, et al.             Standards Track                   [Page 112]

RFC 2960          Stream Control Transmission Protocol      October 2000


  D) COMMUNICATION UP notification

  This notification is used when SCTP becomes ready to send or receive
  user messages, or when a lost communication to an endpoint is
  restored.

  IMPLEMENTATION NOTE: If ASSOCIATE primitive is implemented as a
  blocking function call, the association parameters are returned as a
  result of the ASSOCIATE primitive itself.  In that case,
  COMMUNICATION UP notification is optional at the association
  initiator's side.

  The following shall be passed with the notification:

  o  association id - local handle to the SCTP association

  o  status - This indicates what type of event has occurred

  o  destination transport address list - the complete set of transport
     addresses of the peer

  o  outbound stream count - the maximum number of streams allowed to
     be used in this association by the ULP

  o  inbound stream count - the number of streams the peer endpoint has
     requested with this association (this may not be the same number
     as 'outbound stream count').

  E) COMMUNICATION LOST notification

  When SCTP loses communication to an endpoint completely (e.g., via
  Heartbeats) or detects that the endpoint has performed an abort
  operation, it shall invoke this notification on the ULP.

  The following shall be passed with the notification:

  o  association id - local handle to the SCTP association

  o status - This indicates what type of event has occurred; The status
             may indicate a failure OR a normal termination event
             occurred in response to a shutdown or abort request.

  The following may be passed with the notification:

  o  data retrieval id - an identification used to retrieve unsent and
     unacknowledged data.

  o  last-acked - the TSN last acked by that peer endpoint;



Stewart, et al.             Standards Track                   [Page 113]

RFC 2960          Stream Control Transmission Protocol      October 2000


  o  last-sent - the TSN last sent to that peer endpoint;

  F) COMMUNICATION ERROR notification

  When SCTP receives an ERROR chunk from its peer and decides to notify
  its ULP, it can invoke this notification on the ULP.

  The following can be passed with the notification:

  o  association id - local handle to the SCTP association

  o  error info - this indicates the type of error and optionally some
     additional information received through the ERROR chunk.

  G) RESTART notification

  When SCTP detects that the peer has restarted, it may send this
  notification to its ULP.

  The following can be passed with the notification:

  o  association id - local handle to the SCTP association

  H) SHUTDOWN COMPLETE notification

  When SCTP completes the shutdown procedures (section 9.2) this
  notification is passed to the upper layer.

  The following can be passed with the notification:

  o  association id - local handle to the SCTP association

11. Security Considerations

11.1 Security Objectives

  As a common transport protocol designed to reliably carry time-
  sensitive user messages, such as billing or signaling messages for
  telephony services, between two networked endpoints, SCTP has the
  following security objectives.

  -  availability of reliable and timely data transport services
  -  integrity of the user-to-user information carried by SCTP








Stewart, et al.             Standards Track                   [Page 114]

RFC 2960          Stream Control Transmission Protocol      October 2000


11.2 SCTP Responses To Potential Threats

  SCTP may potentially be used in a wide variety of risk situations.
  It is important for operator(s) of systems running SCTP to analyze
  their particular situations and decide on the appropriate counter-
  measures.

  Operators of systems running SCTP should consult [RFC2196] for
  guidance in securing their site.

11.2.1 Countering Insider Attacks

  The principles of [RFC2196] should be applied to minimize the risk of
  theft of information or sabotage by insiders.  Such procedures
  include publication of security policies, control of access at the
  physical, software, and network levels, and separation of services.

11.2.2 Protecting against Data Corruption in the Network

  Where the risk of undetected errors in datagrams delivered by the
  lower layer transport services is considered to be too great,
  additional integrity protection is required.  If this additional
  protection were provided in the application-layer, the SCTP header
  would remain vulnerable to deliberate integrity attacks.  While the
  existing SCTP mechanisms for detection of packet replays are
  considered sufficient for normal operation, stronger protections are
  needed to protect SCTP when the operating environment contains
  significant risk of deliberate attacks from a sophisticated
  adversary.

  In order to promote software code-reuse, to avoid re-inventing the
  wheel, and to avoid gratuitous complexity to SCTP, the IP
  Authentication Header [RFC2402] SHOULD be used when the threat
  environment requires stronger integrity protections, but does not
  require confidentiality.

  A widely implemented BSD Sockets API extension exists for
  applications to request IP security services, such as AH or ESP from
  an operating system kernel.  Applications can use such an API to
  request AH whenever AH use is appropriate.

11.2.3 Protecting Confidentiality

  In most cases, the risk of breach of confidentiality applies to the
  signaling data payload, not to the SCTP or lower-layer protocol
  overheads.  If that is true, encryption of the SCTP user data only
  might be considered.  As with the supplementary checksum service,
  user data encryption MAY be performed by the SCTP user application.



Stewart, et al.             Standards Track                   [Page 115]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Alternately, the user application MAY use an implementation-specific
  API to request that the IP Encapsulating Security Payload (ESP)
  [RFC2406] be used to provide confidentiality and integrity.

  Particularly for mobile users, the requirement for confidentiality
  might include the masking of IP addresses and ports.  In this case
  ESP SHOULD be used instead of application-level confidentiality.  If
  ESP is used to protect confidentiality of SCTP traffic, an ESP
  cryptographic transform that includes cryptographic integrity
  protection MUST be used, because if there is a confidentiality threat
  there will also be a strong integrity threat.

  Whenever ESP is in use, application-level encryption is not generally
  required.

  Regardless of where confidentiality is provided, the ISAKMP [RFC2408]
  and the Internet Key Exchange (IKE) [RFC2409] SHOULD be used for key
  management.

  Operators should consult [RFC2401] for more information on the
  security services available at and immediately above the Internet
  Protocol layer.

11.2.4 Protecting against Blind Denial of Service Attacks

  A blind attack is one where the attacker is unable to intercept or
  otherwise see the content of data flows passing to and from the
  target SCTP node.  Blind denial of service attacks may take the form
  of flooding, masquerade, or improper monopolization of services.

11.2.4.1 Flooding

  The objective of flooding is to cause loss of service and incorrect
  behavior at target systems through resource exhaustion, interference
  with legitimate transactions, and exploitation of buffer-related
  software bugs.  Flooding may be directed either at the SCTP node or
  at resources in the intervening IP Access Links or the Internet.
  Where the latter entities are the target, flooding will manifest
  itself as loss of network services, including potentially the breach
  of any firewalls in place.

  In general, protection against flooding begins at the equipment
  design level, where it includes measures such as:

  -  avoiding commitment of limited resources before determining that
     the request for service is legitimate





Stewart, et al.             Standards Track                   [Page 116]

RFC 2960          Stream Control Transmission Protocol      October 2000


  -  giving priority to completion of processing in progress over the
     acceptance of new work

  -  identification and removal of duplicate or stale queued requests
     for service.

  -  not responding to unexpected packets sent to non-unicast
     addresses.

  Network equipment should be capable of generating an alarm and log if
  a suspicious increase in traffic occurs.  The log should provide
  information such as the identity of the incoming link and source
  address(es) used which will help the network or SCTP system operator
  to take protective measures.  Procedures should be in place for the
  operator to act on such alarms if a clear pattern of abuse emerges.

  The design of SCTP is resistant to flooding attacks, particularly in
  its use of a four-way start-up handshake, its use of a cookie to
  defer commitment of resources at the responding SCTP node until the
  handshake is completed, and its use of a Verification Tag to prevent
  insertion of extraneous packets into the flow of an established
  association.

  The IP Authentication Header and Encapsulating Security Payload might
  be useful in reducing the risk of certain kinds of denial of service
  attacks."

  The use of the Host Name feature in the INIT chunk could be used to
  flood a target DNS server.  A large backlog of DNS queries, resolving
  the Host Name received in the INIT chunk to IP addresses, could be
  accomplished by sending INIT's to multiple hosts in a given domain.
  In addition, an attacker could use the Host Name feature in an
  indirect attack on a third party by sending large numbers of INITs to
  random hosts containing the host name of the target.  In addition to
  the strain on DNS resources, this could also result in large numbers
  of INIT ACKs being sent to the target.  One method to protect against
  this type of attack is to verify that the IP addresses received from
  DNS include the source IP address of the original INIT.  If the list
  of IP addresses received from DNS does not include the source IP
  address of the INIT, the endpoint MAY silently discard the INIT.
  This last option will not protect against the attack against the DNS.










Stewart, et al.             Standards Track                   [Page 117]

RFC 2960          Stream Control Transmission Protocol      October 2000


11.2.4.2 Blind Masquerade

  Masquerade can be used to deny service in several ways:

  -  by tying up resources at the target SCTP node to which the
     impersonated node has limited access.  For example, the target
     node may by policy permit a maximum of one SCTP association with
     the impersonated SCTP node.  The masquerading attacker may attempt
     to establish an association purporting to come from the
     impersonated node so that the latter cannot do so when it requires
     it.

  -  by deliberately allowing the impersonation to be detected, thereby
     provoking counter-measures which cause the impersonated node to be
     locked out of the target SCTP node.

  -  by interfering with an established association by inserting
     extraneous content such as a SHUTDOWN request.

  SCTP reduces the risk of blind masquerade attacks through IP spoofing
  by use of the four-way startup handshake.  Man-in-the-middle
  masquerade attacks are discussed in Section 11.3 below.  Because the
  initial exchange is memoryless, no lockout mechanism is triggered by
  blind masquerade attacks.  In addition, the INIT ACK containing the
  State Cookie is transmitted back to the IP address from which it
  received the INIT.  Thus the attacker would not receive the INIT ACK
  containing the State Cookie.  SCTP protects against insertion of
  extraneous packets into the flow of an established association by use
  of the Verification Tag.

  Logging of received INIT requests and abnormalities such as
  unexpected INIT ACKs might be considered as a way to detect patterns
  of hostile activity.  However, the potential usefulness of such
  logging must be weighed against the increased SCTP startup processing
  it implies, rendering the SCTP node more vulnerable to flooding
  attacks.  Logging is pointless without the establishment of operating
  procedures to review and analyze the logs on a routine basis.

11.2.4.3 Improper Monopolization of Services

  Attacks under this heading are performed openly and legitimately by
  the attacker.  They are directed against fellow users of the target
  SCTP node or of the shared resources between the attacker and the
  target node.  Possible attacks include the opening of a large number
  of associations between the attacker's node and the target, or
  transfer of large volumes of information within a legitimately-
  established association.




Stewart, et al.             Standards Track                   [Page 118]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Policy limits should be placed on the number of associations per
  adjoining SCTP node.  SCTP user applications should be capable of
  detecting large volumes of illegitimate or "no-op" messages within a
  given association and either logging or terminating the association
  as a result, based on local policy.

11.3 Protection against Fraud and Repudiation

  The objective of fraud is to obtain services without authorization
  and specifically without paying for them.  In order to achieve this
  objective, the attacker must induce the SCTP user application at the
  target SCTP node to provide the desired service while accepting
  invalid billing data or failing to collect it.  Repudiation is a
  related problem, since it may occur as a deliberate act of fraud or
  simply because the repudiating party kept inadequate records of
  service received.

  Potential fraudulent attacks include interception and misuse of
  authorizing information such as credit card numbers, blind masquerade
  and replay, and man-in-the middle attacks which modify the packets
  passing through a target SCTP association in real time.

  The interception attack is countered by the confidentiality measures
  discussed in Section 11.2.3 above.

  Section 11.2.4.2 describes how SCTP is resistant to blind masquerade
  attacks, as a result of the four-way startup handshake and the
  Verification Tag.  The Verification Tag and TSN together are
  protections against blind replay attacks, where the replay is into an
  existing association.

  However, SCTP does not protect against man-in-the-middle attacks
  where the attacker is able to intercept and alter the packets sent
  and received in an association.  For example, the INIT ACK will have
  sufficient information sent on the wire for an adversary in the
  middle to hijack an existing SCTP association.  Where a significant
  possibility of such attacks is seen to exist, or where possible
  repudiation is an issue, the use of the IPSEC AH service is
  recommended to ensure both the integrity and the authenticity of the
  SCTP packets passed.

  SCTP also provides no protection against attacks originating at or
  beyond the SCTP node and taking place within the context of an
  existing association.  Prevention of such attacks should be covered
  by appropriate security policies at the host site, as discussed in
  Section 11.2.1.





Stewart, et al.             Standards Track                   [Page 119]

RFC 2960          Stream Control Transmission Protocol      October 2000


12. Recommended Transmission Control Block (TCB) Parameters

  This section details a recommended set of parameters that should be
  contained within the TCB for an implementation.  This section is for
  illustrative purposes and should not be deemed as requirements on an
  implementation or as an exhaustive list of all parameters inside an
  SCTP TCB.  Each implementation may need its own additional parameters
  for optimization.

12.1 Parameters necessary for the SCTP instance

  Associations: A list of current associations and mappings to the data
                consumers for each association.  This may be in the
                form of a hash table or other implementation dependent
                structure.  The data consumers may be process
                identification information such as file descriptors,
                named pipe pointer, or table pointers dependent on how
                SCTP is implemented.

  Secret Key:   A secret key used by this endpoint to compute the MAC.
                This SHOULD be a cryptographic quality random number
                with a sufficient length.  Discussion in [RFC1750] can
                be helpful in selection of the key.

  Address List: The list of IP addresses that this instance has bound.
                This information is passed to one's peer(s) in INIT and
                INIT ACK chunks.

  SCTP Port:    The local SCTP port number the endpoint is bound to.

12.2 Parameters necessary per association (i.e. the TCB)

  Peer        : Tag value to be sent in every packet and is received
  Verification: in the INIT or INIT ACK chunk.
  Tag         :

  My          : Tag expected in every inbound packet and sent in the
  Verification: INIT or INIT ACK chunk.
  Tag         :

  State       : A state variable indicating what state the association
              : is in, i.e. COOKIE-WAIT, COOKIE-ECHOED, ESTABLISHED,
              : SHUTDOWN-PENDING, SHUTDOWN-SENT, SHUTDOWN-RECEIVED,
              : SHUTDOWN-ACK-SENT.

                Note: No "CLOSED" state is illustrated since if a
                association is "CLOSED" its TCB SHOULD be removed.




Stewart, et al.             Standards Track                   [Page 120]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Peer        : A list of SCTP transport addresses that the peer is
  Transport   : bound to.  This information is derived from the INIT or
  Address     : INIT ACK and is used to associate an inbound packet
  List        : with a given association.  Normally this information is
              : hashed or keyed for quick lookup and access of the TCB.

  Primary     : This is the current primary destination transport
  Path        : address of the peer endpoint.  It may also specify a
              : source transport address on this endpoint.

  Overall     : The overall association error count.
  Error Count :

  Overall     : The threshold for this association that if the Overall
  Error       : Error Count reaches will cause this association to be
  Threshold   : torn down.

  Peer Rwnd   : Current calculated value of the peer's rwnd.

  Next TSN    : The next TSN number to be assigned to a new DATA chunk.
              : This is sent in the INIT or INIT ACK chunk to the peer
              : and incremented each time a DATA chunk is assigned a
              : TSN (normally just prior to transmit or during
              : fragmentation).

  Last Rcvd   : This is the last TSN received in sequence.  This value
  TSN         : is set initially by taking the peer's Initial TSN,
              : received in the INIT or INIT ACK chunk, and
              : subtracting one from it.

  Mapping     : An array of bits or bytes indicating which out of
  Array       : order TSN's have been received (relative to the
              : Last Rcvd TSN).  If no gaps exist, i.e. no out of order
              : packets have been received, this array will be set to
              : all zero.  This structure may be in the form of a
              : circular buffer or bit array.

  Ack State   : This flag indicates if the next received packet
              : is to be responded to with a SACK.  This is initialized
              : to 0.  When a packet is received it is incremented.
              : If this value reaches 2 or more, a SACK is sent and the
              : value is reset to 0.  Note: This is used only when no
              : DATA chunks are received out of order.  When DATA chunks
              : are out of order, SACK's are not delayed (see Section
              : 6).






Stewart, et al.             Standards Track                   [Page 121]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Inbound     : An array of structures to track the inbound streams.
  Streams     : Normally including the next sequence number expected
              : and possibly the stream number.

  Outbound    : An array of structures to track the outbound streams.
  Streams     : Normally including the next sequence number to
              : be sent on the stream.

  Reasm Queue : A re-assembly queue.

  Local       : The list of local IP addresses bound in to this
  Transport   : association.
  Address     :
  List        :

  Association : The smallest PMTU discovered for all of the
  PMTU        : peer's transport addresses.

12.3 Per Transport Address Data

  For each destination transport address in the peer's address list
  derived from the INIT or INIT ACK chunk, a number of data elements
  needs to be maintained including:

  Error count : The current error count for this destination.

  Error       : Current error threshold for this destination i.e.
  Threshold   : what value marks the destination down if Error count
              : reaches this value.

  cwnd        : The current congestion window.

  ssthresh    : The current ssthresh value.

  RTO         : The current retransmission timeout value.

  SRTT        : The current smoothed round trip time.

  RTTVAR      : The current RTT variation.

  partial     : The tracking method for increase of cwnd when in
  bytes acked : congestion avoidance mode (see Section 6.2.2)

  state       : The current state of this destination, i.e. DOWN, UP,
              : ALLOW-HB, NO-HEARTBEAT, etc.

  PMTU        : The current known path MTU.




Stewart, et al.             Standards Track                   [Page 122]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Per         : A timer used by each destination.
  Destination :
  Timer       :

  RTO-Pending : A flag used to track if one of the DATA chunks sent to
                this address is currently being used to compute a
                RTT.  If this flag is 0, the next DATA chunk sent to this
                destination should be used to compute a RTT and this
                flag should be set.  Every time the RTT calculation
                completes (i.e. the DATA chunk is SACK'd) clear this
                flag.

  last-time   : The time this destination was last sent to.  This can be
  used        : used to determine if a HEARTBEAT is needed.

12.4 General Parameters Needed

  Out Queue   : A queue of outbound DATA chunks.

  In Queue    : A queue of inbound DATA chunks.

13. IANA Considerations

  This protocol will require port reservation like TCP for the use of
  "well known" servers within the Internet.  All current TCP ports
  shall be automatically reserved in the SCTP port address space.  New
  requests should follow IANA's current mechanisms for TCP.

  This protocol may also be extended through IANA in three ways:

   -- through definition of additional chunk types,
   -- through definition of additional parameter types, or
   -- through definition of additional cause codes within
      ERROR chunks

  In the case where a particular ULP using SCTP desires to have its own
  ports, the ULP should be responsible for registering with IANA for
  getting its ports assigned.

13.1 IETF-defined Chunk Extension

  The definition and use of new chunk types is an integral part of
  SCTP.  Thus, new chunk types are assigned by IANA through an IETF
  Consensus action as defined in [RFC2434].

  The documentation for a new chunk code type must include the
  following information:




Stewart, et al.             Standards Track                   [Page 123]

RFC 2960          Stream Control Transmission Protocol      October 2000


  a) A long and short name for the new chunk type;

  b) A detailed description of the structure of the chunk, which MUST
     conform to the basic structure defined in Section 3.2;

  c) A detailed definition and description of intended use of each
     field within the chunk, including the chunk flags if any;

  d) A detailed procedural description of the use of the new chunk type
     within the operation of the protocol.

  The last chunk type (255) is reserved for future extension if
  necessary.

13.2 IETF-defined Chunk Parameter Extension

  The assignment of new chunk parameter type codes is done through an
  IETF Consensus action as defined in [RFC2434].  Documentation of the
  chunk parameter MUST contain the following information:

  a) Name of the parameter type.

  b) Detailed description of the structure of the parameter field.
     This structure MUST conform to the general type-length-value
     format described in Section 3.2.1.

  c) Detailed definition of each component of the parameter value.

  d) Detailed description of the intended use of this parameter type,
     and an indication of whether and under what circumstances multiple
     instances of this parameter type may be found within the same
     chunk.

13.3 IETF-defined Additional Error Causes

  Additional cause codes may be allocated in the range 11 to 65535
  through a Specification Required action as defined in [RFC2434].
  Provided documentation must include the following information:

  a) Name of the error condition.

  b) Detailed description of the conditions under which an SCTP
     endpoint should issue an ERROR (or ABORT) with this cause code.

  c) Expected action by the SCTP endpoint which receives an ERROR (or
     ABORT) chunk containing this cause code.





Stewart, et al.             Standards Track                   [Page 124]

RFC 2960          Stream Control Transmission Protocol      October 2000


  d) Detailed description of the structure and content of data fields
     which accompany this cause code.

  The initial word (32 bits) of a cause code parameter MUST conform to
  the format shown in Section 3.3.10, i.e.:

  -- first two bytes contain the cause code value
  -- last two bytes contain length of the Cause Parameter.

13.4 Payload Protocol Identifiers

  Except for value 0 which is reserved by SCTP to indicate an
  unspecified payload protocol identifier in a DATA chunk, SCTP will
  not be responsible for standardizing or verifying any payload
  protocol identifiers; SCTP simply receives the identifier from the
  upper layer and carries it with the corresponding payload data.

  The upper layer, i.e., the SCTP user, SHOULD standardize any specific
  protocol identifier with IANA if it is so desired.  The use of any
  specific payload protocol identifier is out of the scope of SCTP.

14. Suggested SCTP Protocol Parameter Values

  The following protocol parameters are RECOMMENDED:

  RTO.Initial              - 3  seconds
  RTO.Min                  - 1  second
  RTO.Max                 -  60 seconds
  RTO.Alpha                - 1/8
  RTO.Beta                 - 1/4
  Valid.Cookie.Life        - 60  seconds
  Association.Max.Retrans  - 10 attempts
  Path.Max.Retrans         - 5  attempts (per destination address)
  Max.Init.Retransmits     - 8  attempts
  HB.interval              - 30 seconds

  IMPLEMENTATION NOTE: The SCTP implementation may allow ULP to
  customize some of these protocol parameters (see Section 10).

  Note: RTO.Min SHOULD be set as recommended above.











Stewart, et al.             Standards Track                   [Page 125]

RFC 2960          Stream Control Transmission Protocol      October 2000


15. Acknowledgements

  The authors wish to thank Mark Allman, R.J. Atkinson, Richard Band,
  Scott Bradner, Steve Bellovin, Peter Butler, Ram Dantu, R.
  Ezhirpavai, Mike Fisk, Sally Floyd, Atsushi Fukumoto, Matt Holdrege,
  Henry Houh, Christian Huitema, Gary Lehecka, Jonathan Lee, David
  Lehmann, John Loughney, Daniel Luan, Barry Nagelberg, Thomas Narten,
  Erik Nordmark, Lyndon Ong, Shyamal Prasad, Kelvin Porter, Heinz
  Prantner, Jarno Rajahalme, Raymond E. Reeves, Renee Revis, Ivan Arias
  Rodriguez, A. Sankar, Greg Sidebottom, Brian Wyld, La Monte Yarroll,
  and many others for their invaluable comments.

16.  Authors' Addresses

  Randall R. Stewart
  24 Burning Bush Trail.
  Crystal Lake, IL 60012
  USA

  Phone: +1-815-477-2127
  EMail: [email protected]


  Qiaobing Xie
  Motorola, Inc.
  1501 W. Shure Drive, #2309
  Arlington Heights, IL 60004
  USA

  Phone: +1-847-632-3028
  EMail: [email protected]


  Ken Morneault
  Cisco Systems Inc.
  13615 Dulles Technology Drive
  Herndon, VA. 20171
  USA

  Phone: +1-703-484-3323
  EMail: [email protected]










Stewart, et al.             Standards Track                   [Page 126]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Chip Sharp
  Cisco Systems Inc.
  7025 Kit Creek Road
  Research Triangle Park, NC  27709
  USA

  Phone: +1-919-392-3121
  EMail: [email protected]


  Hanns Juergen Schwarzbauer
  SIEMENS AG
  Hofmannstr. 51
  81359 Munich
  Germany

  Phone: +49-89-722-24236
  EMail: [email protected]


  Tom Taylor
  Nortel Networks
  1852 Lorraine Ave.
  Ottawa, Ontario
  Canada K1H 6Z8

  Phone: +1-613-736-0961
  EMail: [email protected]


  Ian Rytina
  Ericsson Australia
  37/360 Elizabeth Street
  Melbourne, Victoria 3000
  Australia

  Phone: +61-3-9301-6164
  EMail: [email protected]













Stewart, et al.             Standards Track                   [Page 127]

RFC 2960          Stream Control Transmission Protocol      October 2000


  Malleswar Kalla
  Telcordia Technologies
  3 Corporate Place
  PYA-2J-341
  Piscataway, NJ  08854
  USA

  Phone: +1-732-699-3728
  EMail: [email protected]

  Lixia Zhang
  UCLA Computer Science Department
  4531G Boelter Hall
  Los Angeles, CA 90095-1596
  USA

  Phone: +1-310-825-2695
  EMail: [email protected]

  Vern Paxson
  ACIRI
  1947 Center St., Suite 600,
  Berkeley, CA 94704-1198
  USA

  Phone: +1-510-666-2882
  EMail: [email protected]

17. References

  [RFC768]   Postel, J. (ed.), "User Datagram Protocol", STD 6, RFC
             768, August 1980.

  [RFC793]   Postel, J. (ed.), "Transmission Control Protocol", STD 7,
             RFC 793, September 1981.

  [RFC1123]  Braden, R., "Requirements for Internet hosts - application
             and support", STD 3, RFC 1123, October 1989.

  [RFC1191]  Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191,
             November 1990.

  [RFC1700]  Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC
             1700, October 1994.

  [RFC1981]  McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, August 1996.




Stewart, et al.             Standards Track                   [Page 128]

RFC 2960          Stream Control Transmission Protocol      October 2000


  [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
             August 1996.

  [RFC2026]  Bradner, S., "The Internet Standards Process -- Revision
             3", BCP 9, RFC 2026, October 1996.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2401]  Kent, S. and R. Atkinson, "Security Architecture for the
             Internet Protocol", RFC 2401,  November 1998.

  [RFC2402]  Kent, S. and R. Atkinson, "IP Authentication Header", RFC
             2402, November 1998.

  [RFC2406]  Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

  [RFC2408]  Maughan, D., Schertler, M., Schneider, M. and J. Turner,
             "Internet Security Association and Key Management
             Protocol", RFC 2408, November 1998.

  [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
             (IKE)", RFC 2409, November 1998.

  [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, December 1998.

  [RFC2581]  Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
             Control", RFC 2581, April 1999.

18. Bibliography

  [ALLMAN99] Allman, M. and Paxson, V., "On Estimating End-to-End
             Network Path Properties", Proc. SIGCOMM'99, 1999.

  [FALL96]   Fall, K. and Floyd, S., Simulation-based Comparisons of
             Tahoe, Reno, and SACK TCP, Computer Communications Review,
             V. 26 N. 3, July 1996, pp. 5-21.

  [RFC1750]  Eastlake, D. (ed.), "Randomness Recommendations for
             Security", RFC 1750, December 1994.





Stewart, et al.             Standards Track                   [Page 129]

RFC 2960          Stream Control Transmission Protocol      October 2000


  [RFC1950]  Deutsch P. and J. Gailly, "ZLIB Compressed Data Format
             Specification version 3.3", RFC 1950, May 1996.

  [RFC2104]  Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:  Keyed-
             Hashing for Message Authentication", RFC 2104, March 1997.

  [RFC2196]  Fraser, B., "Site Security Handbook", FYI 8, RFC 2196,
             September 1997.

  [RFC2522]  Karn, P. and W. Simpson, "Photuris: Session-Key Management
             Protocol", RFC 2522, March 1999.

  [SAVAGE99] Savage, S., Cardwell, N., Wetherall, D., and Anderson, T.,
             "TCP Congestion Control with a Misbehaving Receiver",  ACM
             Computer Communication Review, 29(5), October 1999.




































Stewart, et al.             Standards Track                   [Page 130]

RFC 2960          Stream Control Transmission Protocol      October 2000


Appendix A: Explicit Congestion Notification

  ECN (Ramakrishnan, K., Floyd, S., "Explicit Congestion Notification",
  RFC 2481, January 1999) describes a proposed extension to IP that
  details a method to become aware of congestion outside of datagram
  loss.  This is an optional feature that an implementation MAY choose
  to add to SCTP.  This appendix details the minor differences
  implementers will need to be aware of if they choose to implement
  this feature.  In general RFC 2481 should be followed with the
  following exceptions.

  Negotiation:

  RFC2481 details negotiation of ECN during the SYN and SYN-ACK stages
  of a TCP connection.  The sender of the SYN sets two bits in the TCP
  flags, and the sender of the SYN-ACK sets only 1 bit.  The reasoning
  behind this is to assure both sides are truly ECN capable.  For SCTP
  this is not necessary.  To indicate that an endpoint is ECN capable
  an endpoint SHOULD add to the INIT and or INIT ACK chunk the TLV
  reserved for ECN.  This TLV contains no parameters, and thus has the
  following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Parameter Type = 32768      |     Parameter Length = 4      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  ECN-Echo:

  RFC 2481 details a specific bit for a receiver to send back in its
  TCP acknowledgements to notify the sender of the Congestion
  Experienced (CE) bit having arrived from the network.  For SCTP this
  same indication is made by including the ECNE chunk.  This chunk
  contains one data element, i.e. the lowest TSN associated with the IP
  datagram marked with the CE bit, and looks as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Chunk Type=12 | Flags=00000000|    Chunk Length = 8           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Lowest TSN Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: The ECNE is considered a Control chunk.





Stewart, et al.             Standards Track                   [Page 131]

RFC 2960          Stream Control Transmission Protocol      October 2000


  CWR:

  RFC 2481 details a specific bit for a sender to send in the header of
  its next outbound TCP segment to indicate to its peer that it has
  reduced its congestion window.  This is termed the CWR bit.  For
  SCTP the same indication is made by including the CWR chunk.
  This chunk contains one data element, i.e. the TSN number that
  was sent in the ECNE chunk.  This element represents the lowest
  TSN number in the datagram that was originally marked with the
  CE bit.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Chunk Type=13 | Flags=00000000|    Chunk Length = 8           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Lowest TSN Number                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Note: The CWR is considered a Control chunk.

Appendix B Alder 32 bit checksum calculation

  The Adler-32 checksum calculation given in this appendix is copied from
  [RFC1950].

  Adler-32 is composed of two sums accumulated per byte: s1 is the sum
  of all bytes, s2 is the sum of all s1 values.  Both sums are done
  modulo 65521.  s1 is initialized to 1, s2 to zero.  The Adler-32
  checksum is stored as s2*65536 + s1 in network byte order.

  The following C code computes the Adler-32 checksum of a data buffer.
  It is written for clarity, not for speed.  The sample code is in the
  ANSI C programming language.  Non C users may find it easier to read
  with these hints:
















Stewart, et al.             Standards Track                   [Page 132]

RFC 2960          Stream Control Transmission Protocol      October 2000


  &      Bitwise AND operator.
  >>     Bitwise right shift operator.  When applied to an
         unsigned quantity, as here, right shift inserts zero bit(s)
         at the left.
  <<     Bitwise left shift operator.  Left shift inserts zero
         bit(s) at the right.
  ++     "n++" increments the variable n.
  %      modulo operator: a % b is the remainder of a divided by b.
   #define BASE 65521 /* largest prime smaller than 65536 */
   /*
     Update a running Adler-32 checksum with the bytes buf[0..len-1]
     and return the updated checksum.  The Adler-32 checksum should be
     initialized to 1.

      Usage example:

        unsigned long adler = 1L;

        while (read_buffer(buffer, length) != EOF) {
          adler = update_adler32(adler, buffer, length);
        }
        if (adler != original_adler) error();
     */
     unsigned long update_adler32(unsigned long adler,
        unsigned char *buf, int len)
     {
       unsigned long s1 = adler & 0xffff;
       unsigned long s2 = (adler >> 16) & 0xffff;
       int n;

       for (n = 0; n < len; n++) {
         s1 = (s1 + buf[n]) % BASE;
         s2 = (s2 + s1)     % BASE;
       }
       return (s2 << 16) + s1;
     }

     /* Return the adler32 of the bytes buf[0..len-1] */
     unsigned long adler32(unsigned char *buf, int len)
     {
       return update_adler32(1L, buf, len);
     }









Stewart, et al.             Standards Track                   [Page 133]

RFC 2960          Stream Control Transmission Protocol      October 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Stewart, et al.             Standards Track                   [Page 134]