Network Working Group                                         R. Housley
Request for Comments: 2951                                    T. Horting
Category: Informational                                           P. Yee
                                                                 SPYRUS
                                                         September 2000


             TELNET Authentication Using KEA and SKIPJACK

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document defines a method to authenticate TELNET using the Key
  Exchange Algorithm (KEA), and encryption of the TELNET stream using
  SKIPJACK.  Two encryption modes are specified; one provides data
  integrity and the other does not.  The method relies on the TELNET
  Authentication Option.

1. Command Names and Codes

  AUTHENTICATION           37

    Authentication Commands:

      IS                       0
      SEND                     1
      REPLY                    2
      NAME                     3

    Authentication Types:

      KEA_SJ                  12
      KEA_SJ_INTEG            13

    Modifiers:

      AUTH_WHO_MASK            1
      AUTH_CLIENT_TO_SERVER    0
      AUTH_SERVER_TO CLIENT    1



Housley, et al.              Informational                      [Page 1]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


      AUTH_HOW_MASK            2
      AUTH_HOW_ONE_WAY         0
      AUTH_HOW_MUTUAL          2

      ENCRYPT_MASK            20
      ENCRYPT_OFF              0
      ENCRYPT_USING_TELOPT     4
      ENCRYPT_AFTER_EXCHANGE  16
      ENCRYPT_RESERVED        20

      INI_CRED_FWD_MASK        8
      INI_CRED_FWD_OFF         0
      INI_CRED_FWD_ON          8

    Sub-option Commands:

      KEA_CERTA_RA             1
      KEA_CERTB_RB_IVB_NONCEB  2
      KEA_IVA_RESPONSEB_NONCEA 3
      KEA_RESPONSEA            4

2. TELNET Security Extensions

  TELNET, as a protocol, has no concept of security.  Without
  negotiated options, it merely passes characters back and forth
  between the NVTs represented by the two TELNET processes.  In its
  most common usage as a protocol for remote terminal access (TCP port
  23), TELNET normally connects to a server that requires user-level
  authentication through a user name and password in the clear.  The
  server does not authenticate itself to the user.

  The TELNET Authentication Option provides for:

    *  User authentication -- replacing or augmenting the normal host
       password mechanism;
    *  Server authentication -- normally done in conjunction with user
       authentication;
    *  Session parameter negotiation -- in particular, encryption key
       and attributes;
    *  Session protection -- primarily encryption of the data and
       embedded command stream, but the encryption algorithm may also
       provide data integrity.

  In order to support these security services, the two TELNET entities
  must first negotiate their willingness to support the TELNET
  Authentication Option.  Upon agreeing to support this option, the
  parties are then able to perform sub-option negotiations to determine




Housley, et al.              Informational                      [Page 2]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


  the authentication protocol to be used, and possibly the remote user
  name to be used for authorization checking.  Encryption is negotiated
  along with the type of the authentication.

  Authentication and parameter negotiation occur within an unbounded
  series of exchanges.  The server proposes a preference-ordered list
  of authentication types (mechanisms) that it supports.  In addition
  to listing the mechanisms it supports, the server qualifies each
  mechanism with a modifier that specifies whether encryption of data
  is desired.  The client selects one mechanism from the list and
  responds to the server indicating its choice and the first set of
  authentication data needed for the selected authentication type.  The
  client may ignore a request to encrypt data and so indicate, but the
  server may also terminate the connection if the client refuses
  encryption.  The server and the client then proceed through whatever
  number of iterations is required to arrive at the requested
  authentication.

  Encryption is started immediately after the Authentication Option is
  completed.

3. Use of Key Exchange Algorithm (KEA)

  This paper specifies the method in which KEA is used to achieve
  TELNET Authentication.  KEA (in conjunction with SKIPJACK) [4]
  provides authentication and confidentiality.  Integrity may also be
  provided.

  TELNET entities may use KEA to provide mutual authentication and
  support for the setup of data encryption keys.  A simple token format
  and set of exchanges delivers these services.

  NonceA and NonceB used in this exchange are 64-bit bit strings.  The
  client generates NonceA, and the server generates NonceB.  The nonce
  value is selected randomly.  The nonce is sent in a big endian form.
  The encryption of the nonce will be done with the same mechanism that
  the session will use, detailed in the next section.

  Ra and Rb used in this exchange are 1024 bit strings and are defined
  by the KEA Algorithm [4].

  The IVa and IVb are 24 byte Initialization Vectors.  They are
  composed of "THIS IS NOT LEAF" followed by 8 random bytes.








Housley, et al.              Informational                      [Page 3]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


  CertA is the client's certificate.  CertB is the server's
  certificate.  Both certificates are X.509 certificates [6] that
  contain KEA public keys [7].  The client must validate the server's
  certificate before using the KEA public key it contains.  Likewise,
  the server must validate the client's certificate before using the
  KEA public key it contains.

  On completing these exchanges, the parties have a common SKIPJACK
  key.  Mutual authentication is provided by verification of the
  certificates used to establish the SKIPJACK encryption key and
  successful use of the derived SKIPJACK session key.  To protect
  against active attacks, encryption will take place after successful
  authentication.  There will be no way to turn off encryption and
  safely turn it back on; repeating the entire authentication is the
  only safe way to restart it.  If the user does not want to use
  encryption, he may disable encryption after the session is
  established.

3.1.  SKIPJACK Modes

  There are two distinct modes for encrypting TELNET streams; one
  provides integrity and the other does not.  Because TELNET is
  normally operated in a character-by-character mode, the SKIPJACK with
  stream integrity mechanism requires the transmission of 4 bytes for
  every TELNET data byte.  However, a simplified mode SKIPJACK without
  integrity mechanism will only require the transmission of one byte
  for every TELNET data byte.

  The cryptographic mode for SKIPJACK with stream integrity is Cipher
  Feedback on 32 bits of data (CFB-32) and the mode of SKIPJACK is
  Cipher Feedback on 8 bits of data (CFB-8).

3.1.1.  SKIPJACK without stream integrity

  The first and least complicated mode uses SKIPJACK CFB-8.  This mode
  provides no stream integrity.

  For SKIPJACK without stream integrity, the two-octet authentication
  type pair is KEA_SJ AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
  ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF.  This indicates that the
  SKIPJACK without integrity mechanism will be used for mutual
  authentication and TELNET stream encryption.  Figure 1 illustrates
  the authentication mechanism of KEA followed by SKIPJACK without
  stream integrity.







Housley, et al.              Informational                      [Page 4]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


---------------------------------------------------------------------
Client (Party A)                   Server (Party B)

                                   <-- IAC DO AUTHENTICATION

IAC WILL AUTHENTICATION        -->

                                   <-- IAC SB AUTHENTICATION SEND
                                       <list of authentication options>
                                       IAC SE

IAC SB AUTHENTICATION
NAME <user name>               -->

IAC SB AUTHENTICATION IS
KEA_SJ
AUTH_CLIENT_TO_SERVER |
    AUTH_HOW_MUTUAL |
    ENCRYPT_AFTER_EXCHANGE |
    INI_CRED_FWD_OFF
KEA_CERTA_RA
CertA||Ra IAC SE               -->

                                   <-- IAC SB AUTHENTICATION REPLY
                                       KEA_SJ
                                       AUTH_CLIENT_TO_SERVER |
                                           AUTH_HOW_MUTUAL |
                                           ENCRYPT_AFTER_EXCHANGE |
                                           INI_CRED_FWD_OFF
                                       IVA_RESPONSEB_NONCEA
                                       KEA_CERTB_RB_IVB_NONCEB
                                       CertB||Rb||IVb||
                                           Encrypt( NonceB )
                                       IAC SE

IAC SB AUTHENTICATION IS
KEA_SJ
AUTH_CLIENT_TO_SERVER |
    AUTH_HOW_MUTUAL |
    ENCRYPT_AFTER_EXCHANGE |
    INI_CRED_FWD_OFF
KEA_IVA_RESPONSEB_NONCEA
IVa||Encrypt( (NonceB XOR 0x0C12)||NonceA )
IAC SE                         -->







Housley, et al.              Informational                      [Page 5]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


Client (Party A)                   Server (Party B)

<client begins encryption>
                                   <-- IAC SB AUTHENTICATION REPLY
                                       KEA_SJ
                                       AUTH_CLIENT_TO_SERVER |
                                           AUTH_HOW_MUTUAL |
                                           ENCRYPT_AFTER_EXCHANGE |
                                           INI_CRED_FWD_OFF
                                       KEA_RESPONSEA
                                       Encrypt( NonceA XOR 0x0C12 )
                                       IAC SE

                                       <server begins encryption>
---------------------------------------------------------------------
                             Figure 1.

3.1.2.  SKIPJACK with stream integrity

  SKIPJACK with stream integrity is more complicated.  It uses the
  SHA-1 [3] one-way hash function to provide integrity of the
  encryption stream as follows:

      Set H0 to be the SHA-1 hash of a zero-length string.
      Cn is the nth character in the TELNET stream.
      Hn = SHA-1( Hn-1||Cn ), where Hn is the hash value
           associated with the nth character in the stream.
      ICVn is set to the three most significant bytes of Hn.
      Transmit Encrypt( Cn||ICVn ).

  The ciphertext that is transmitted is the SKIPJACK CFB-32 encryption
  of ( Cn||ICVn ).  The receiving end of the TELNET link reverses the
  process, first decrypting the ciphertext, separating Cn and ICVn,
  recalculating Hn, recalculating ICVn, and then comparing the received
  ICVn with the recalculated ICVn.  Integrity is indicated if the
  comparison succeeds, and Cn can then be processed normally as part of
  the TELNET stream.  Failure of the comparison indicates some loss of
  integrity, whether due to active manipulation or loss of
  cryptographic synchronization.  In either case, the only recourse is
  to drop the TELNET connection and start over.

  For SKIPJACK with stream integrity, the two-octet authentication type
  pair is KEA_SJ_INTEG AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
  ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF.  This indicates that the
  KEA SKIPJACK with integrity mechanism will be used for mutual
  authentication and TELNET stream encryption.  Figure 2 illustrates
  the authentication mechanism of KEA SKIPJACK with stream integrity.




Housley, et al.              Informational                      [Page 6]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


---------------------------------------------------------------------
Client (Party A)                   Server (Party B)

                                   <-- IAC DO AUTHENTICATION

IAC WILL AUTHENTICATION        -->

                                   <-- IAC SB AUTHENTICATION SEND
                                       <list of authentication options>
                                       IAC SE

IAC SB AUTHENTICATION
NAME <user name>               -->

IAC SB AUTHENTICATION IS
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
    AUTH_HOW_MUTUAL |
    ENCRYPT_AFTER_EXCHANGE |
    INI_CRED_FWD_OFF
KEA_CERTA_RA
CertA||Ra IAC SE               -->

                                   <-- IAC SB AUTHENTICATION REPLY
                                       KEA_SJ_INTEG
                                       AUTH_CLIENT_TO_SERVER |
                                           AUTH_HOW_MUTUAL |
                                           ENCRYPT_AFTER_EXCHANGE |
                                           INI_CRED_FWD_OFF
                                       IVA_RESPONSEB_NONCEA
                                       KEA_CERTB_RB_IVB_NONCEB
                                       CertB||Rb||IVb||
                                           Encrypt( NonceB )
                                       IAC SE

IAC SB AUTHENTICATION IS
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
    AUTH_HOW_MUTUAL |
    ENCRYPT_AFTER_EXCHANGE |
    INI_CRED_FWD_OFF
KEA_IVA_RESPONSEB_NONCEA
IVa||Encrypt( (NonceB XOR 0x0D12)||NonceA )
IAC SE                         -->







Housley, et al.              Informational                      [Page 7]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


Client (Party A)                   Server (Party B)

<client begins encryption>
                                   <-- IAC SB AUTHENTICATION REPLY
                                       KEA_SJ_INTEG
                                       AUTH_CLIENT_TO_SERVER |
                                           AUTH_HOW_MUTUAL |
                                           ENCRYPT_AFTER_EXCHANGE |
                                           INI_CRED_FWD_OFF
                                       KEA_RESPONSEA
                                       Encrypt( NonceA XOR 0x0D12 )
                                       IAC SE

                                       <server begins encryption>
---------------------------------------------------------------------
                             Figure 2

4.0.  Security Considerations

  This entire memo is about security mechanisms.  For KEA to provide
  the authentication discussed, the implementation must protect the
  private key from disclosure.  Likewise, the SKIPJACK keys must be
  protected from disclosure.

  Implementations must randomly generate KEA private keys,
  initialization vectors (IVs), and nonces.  The use of inadequate
  pseudo-random number generators (PRNGs) to generate cryptographic
  keys can result in little or no security.  An attacker may find it
  much easier to reproduce the PRNG environment that produced the keys,
  searching the resulting small set of possibilities, rather than brute
  force searching the whole key space.  The generation of quality
  random numbers is difficult.  RFC 1750 [8] offers important guidance
  in this area, and Appendix 3 of FIPS Pub 186 [9] provides one quality
  PRNG technique.

  By linking the enabling of encryption as a side effect of successful
  authentication, protection is provided against an active attacker.
  If encryption were enabled as a separate negotiation, it would
  provide a window of vulnerability from when the authentication
  completes, up to and including the negotiation to turn on encryption.
  The only safe way to restart encryption, if it is turned off, is to
  repeat the entire authentication process.









Housley, et al.              Informational                      [Page 8]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


5. IANA Considerations

  The authentication types KEA_SJ and KEA_SJ_INTEG and their associated
  suboption values are registered with IANA.  Any suboption values used
  to extend the protocol as described in this document must be
  registered with IANA before use.  IANA is instructed not to issue new
  suboption values without submission of documentation of their use.

6.0.  Acknowledgements

  We would like to thank William Nace for support during implementation
  of this specification.

7.0.  References

  [1] Postel, J. and J. Reynolds, "TELNET Protocol Specification", ASTD
      8, RFC 854, May 1983.

  [2] Ts'o, T. and J. Altman, "Telnet Authentication Option", RFC 2941,
      September 2000.

  [3] Secure Hash Standard. FIPS Pub 180-1. April 17, 1995.

  [4] "SKIPJACK and KEA Algorithm Specification", Version 2.0, May 29,
      1998. Available from http://csrc.nist.gov/encryption/skipjack-
      kea.htm

  [5] Postel, J. and J. Reynolds, "TELNET Option Specifications", STD
      8, RFC 855, May 1983.

  [6] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet X.509
      Public Key Infrastructure: X.509 Certificate and CRL Profile",
      RFC 2459, January 1999.

  [7] Housley, R. and W. Polk, "Internet X.509 Public Key
      Infrastructure - Representation of Key Exchange Algorithm (KEA)
      Keys in Internet X.509 Public Key Infrastructure Certificates",
      RFC 2528, March 1999.

  [8] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
      Recommendations for Security", RFC 1750, December 1994.

  [9) National Institute of Standards and Technology.  FIPS Pub 186:
      Digital Signature Standard.  19 May 1994.







Housley, et al.              Informational                      [Page 9]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


8.0.  Authors' Addresses

  Russell Housley
  SPYRUS
  381 Elden Street, Suite 1120
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Todd Horting
  SPYRUS
  381 Elden Street, Suite 1120
  Herndon, VA 20170
  USA

  EMail: [email protected]


  Peter Yee
  SPYRUS
  5303 Betsy Ross Drive
  Santa Clara, CA 95054
  USA

  EMail: [email protected]
























Housley, et al.              Informational                     [Page 10]

RFC 2951       TELNET Authentication Using KEA & SKIPJACK September 2000


9.  Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Housley, et al.              Informational                     [Page 11]