Network Working Group                                          F. Cuervo
Request for Comments: 2885                                     N. Greene
Category: Standards Track                                Nortel Networks
                                                             C. Huitema
                                                  Microsoft Corporation
                                                              A. Rayhan
                                                        Nortel Networks
                                                               B. Rosen
                                                                Marconi
                                                              J. Segers
                                                    Lucent Technologies
                                                            August 2000


                     Megaco Protocol version 0.8

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document is common text with Recommendation H.248 as
  redetermined in Geneva, February 2000.  It must be read in
  conjunction with the Megaco Errata, RFC 2886.  A merged document
  presenting the Megaco protocol with the Errata incorporated will be
  available shortly.

  The protocol presented in this document meets the requirements for a
  media gateway control protocol as presented in RFC 2805.













Cuervo, et al.              Standards Track                     [Page 1]

RFC 2885                    Megaco Protocol                  August 2000


TABLE OF CONTENTS

  1. SCOPE..........................................................6
  2. REFERENCES.....................................................6
  2.1 Normative references..........................................6
  2.2 Informative references........................................8
  3. DEFINITIONS....................................................9
  4. ABBREVIATIONS.................................................10
  5. CONVENTIONS...................................................11
  6. CONNECTION MODEL..............................................11
  6.1 Contexts.....................................................14
       6.1.1 Context Attributes and Descriptors....................15
       6.1.2 Creating, Deleting and Modifying Contexts.............15
  6.2 Terminations.................................................15
       6.2.1 Termination Dynamics..................................16
       6.2.2 TerminationIDs........................................17
       6.2.3 Packages..............................................17
       6.2.4 Termination Properties and Descriptors................18
       6.2.5 Root Termination......................................20
  7. COMMANDS......................................................20
  7.1 Descriptors..................................................21
       7.1.1 Specifying Parameters.................................21
       7.1.2 Modem Descriptor......................................22
       7.1.3 Multiplex Descriptor..................................22
       7.1.4 Media Descriptor......................................23
       7.1.5 Termination State Descriptor..........................23
       7.1.6 Stream Descriptor.....................................24
       7.1.7 LocalControl Descriptor...............................24
       7.1.8 Local and Remote Descriptors..........................25
       7.1.9 Events Descriptor.....................................28
       7.1.10 EventBuffer Descriptor...............................31
       7.1.11 Signals Descriptor...................................31
       7.1.12 Audit Descriptor.....................................32
       7.1.13 ServiceChange Descriptor.............................33
       7.1.14 DigitMap Descriptor..................................33
       7.1.15 Statistics Descriptor................................38
       7.1.16 Packages Descriptor..................................39
       7.1.17 ObservedEvents Descriptor............................39
       7.1.18  Topology Descriptor.................................39
  7.2 Command Application Programming Interface....................42
       7.2.1 Add...................................................43
       7.2.2 Modify................................................44
       7.2.3 Subtract..............................................45
       7.2.4 Move..................................................46
       7.2.5 AuditValue............................................47
       7.2.6 AuditCapabilities.....................................48
       7.2.7 Notify................................................49
       7.2.8 ServiceChange.........................................50



Cuervo, et al.              Standards Track                     [Page 2]

RFC 2885                    Megaco Protocol                  August 2000


       7.2.9 Manipulating and Auditing Context Attributes..........54
       7.2.10 Generic Command Syntax...............................54
  7.3 Command Error Codes..........................................55
  8. TRANSACTIONS..................................................56
  8.1 Common Parameters............................................58
       8.1.1 Transaction Identifiers...............................58
       8.1.2 Context Identifiers...................................58
  8.2 Transaction Application Programming Interface................58
       8.2.1 TransactionRequest....................................59
       8.2.2 TransactionReply......................................59
       8.2.3 TransactionPending....................................60
  8.3 Messages.....................................................61
  9. TRANSPORT.....................................................61
  9.1 Ordering of Commands.........................................62
  9.2 Protection against Restart Avalanche.........................63
  10. SECURITY CONSIDERATIONS......................................64
  10.1 Protection of Protocol Connections..........................64
  10.2 Interim AH scheme...........................................65
  10.3 Protection of Media Connections.............................66
  11.  MG-MGC CONTROL INTERFACE....................................66
  11.1 Multiple Virtual MGs........................................67
  11.2 Cold Start..................................................68
  11.3 Negotiation of Protocol Version.............................68
  11.4 Failure of an MG............................................69
  11.5 Failure of an MGC...........................................69
  12. PACKAGE DEFINITION...........................................70
  12.1 Guidelines for defining packages............................71
       12.1.1 Package..............................................71
       12.1.2 Properties...........................................72
       12.1.3 Events...............................................72
       12.1.4 Signals..............................................73
       12.1.5 Statistics...........................................73
       12.1.6 Procedures...........................................73
  12.2 Guidelines to defining Properties, Statistics and Parameters
       to Events and Signals.......................................73
  12.3 Lists.......................................................74
  12.4 Identifiers.................................................74
  12.5 Package Registration........................................74
  13.  IANA CONSIDERATIONS.........................................74
  13.1 Packages....................................................74
  13.2 Error Codes.................................................75
  13.3 ServiceChange Reasons.......................................76
  ANNEX A: BINARY ENCODING OF THE PROTOCOL (NORMATIVE).............77
  A.1 Coding of wildcards..........................................77
  A.2 ASN.1 syntax specification...................................78
  A.3 Digit maps and path names....................................94
  ANNEX B TEXT ENCODING OF THE PROTOCOL (NORMATIVE)................95
  B.1 Coding of wildcards..........................................95



Cuervo, et al.              Standards Track                     [Page 3]

RFC 2885                    Megaco Protocol                  August 2000


  B.2 ABNF specification...........................................95
  ANNEX C TAGS FOR MEDIA STREAM PROPERTIES (NORMATIVE)............107
  C.1 General Media Attributes....................................107
  C.2 Mux Properties..............................................108
  C.3 General bearer properties...................................109
  C.4 General ATM properties......................................109
  C.5 Frame Relay.................................................112
  C.6 IP..........................................................113
  C.7 ATM AAL2....................................................113
  C.8 ATM AAL1....................................................114
  C.9 Bearer Capabilities.........................................116
  C.10 AAL5 Properties............................................123
  C.11 SDP Equivalents............................................124
  C.12 H.245......................................................124
  ANNEX D TRANSPORT OVER IP (NORMATIVE)...........................125
  D.1 Transport over IP/UDP using Application Level Framing.......125
       D.1.1 Providing At-Most-Once Functionality.................125
       D.1.2 Transaction identifiers and three-way handshake......126
               D.1.2.1 Transaction identifiers....................126
               D.1.2.2 Three-way handshake........................126
       D.1.3 Computing retransmission timers......................127
       D.1.4 Provisional responses................................128
       D.1.5 Repeating Requests, Responses and Acknowledgements...128
  D.2  using TCP..................................................130
          D.2.1 Providing the At-Most-Once functionality..........130
          D.2.2 Transaction identifiers and three way handshake...130
          D.2.3 Computing retransmission timers...................131
          D.2.4 Provisional responses.............................131
          D.2.5 Ordering of commands..............................131
  ANNEX E BASIC PACKAGES..........................................131
  E.1 Generic.....................................................131
       E.1.1 Properties...........................................132
       E.1.2 Events...............................................132
       E.1.3 Signals..............................................133
       E.1.4 Statistics...........................................133
  E.2 Base Root Package...........................................133
       E.2.1 Properties...........................................134
       E.2.2 Events...............................................135
       E.2.3 Signals..............................................135
       E.2.4 Statistics...........................................135
       E.2.5 Procedures...........................................135
  E.3 Tone Generator Package......................................135
       E.3.1 Properties...........................................135
       E.3.2 Events...............................................136
       E.3.3 Signals..............................................136
       E.3.4 Statistics...........................................136
       E.3.5 Procedures...........................................136
  E.4 Tone Detection Package......................................137



Cuervo, et al.              Standards Track                     [Page 4]

RFC 2885                    Megaco Protocol                  August 2000


       E.4.1 Properties...........................................137
       E.4.2 Events...............................................137
       E.4.3 Signals..............................................139
       E.4.4 Statistics...........................................139
       E.4.5 Procedures...........................................139
  E.5 Basic DTMF Generator Package................................140
       E.5.1 Properties...........................................140
       E.5.2 Events...............................................140
       E.5.3 Signals..............................................140
       E.5.4 Statistics...........................................141
       E.5.5 Procedures...........................................141
  E.6 DTMF detection Package......................................141
       E.6.1 Properties...........................................142
       E.6.2 Events...............................................142
       E.6.3 Signals..............................................143
       E.6.4 Statistics...........................................143
       E.6.5 Procedures...........................................143
  E.7 Call Progress Tones Generator Package.......................143
       E.7.1 Properties...........................................144
       E.7.2 Events...............................................144
       E.7.3 Signals..............................................144
       E.7.4 Statistics...........................................145
       E.7.5 Procedures...........................................145
  E.8 Call Progress Tones Detection Package.......................145
       E.8.1 Properties...........................................145
       E.8.2 Events...............................................145
       E.8.3 Signals..............................................145
       E.8.4 Statistics...........................................145
       E.8.5 Procedures...........................................146
  E.9 Analog Line Supervision Package.............................146
       E.9.1 Properties...........................................146
       E.9.2 Events...............................................146
       E.9.3 Signals..............................................147
       E.9.4 Statistics...........................................148
       E.9.5 Procedures...........................................148
  E.10 Basic Continuity Package...................................148
       E.10.1 Properties..........................................148
       E.10.2 Events..............................................148
       E.10.3 Signals.............................................149
       E.10.4 Statistics..........................................150
       E.10.5 Procedures..........................................150
  E.11 Network Package............................................150
       E.11.1 Properties..........................................150
       E.11.2 Events..............................................151
       E.11.3 Signals.............................................152
       E.11.4 Statistics..........................................152
       E.11.5 Procedures..........................................153
  E.12 RTP  Package...............................................153



Cuervo, et al.              Standards Track                     [Page 5]

RFC 2885                    Megaco Protocol                  August 2000


       E.12.1 Properties..........................................153
       E.12.2 Events..............................................153
       E.12.3 Signals.............................................153
       E.12.4 Statistics..........................................153
       E.12.5 Procedures..........................................154
  E.13 TDM Circuit Package........................................154
       E.13.1 Properties..........................................155
       E.13.2 Events..............................................155
       E.13.3 Signals.............................................155
       E.13.4 Statistics..........................................156
       E.13.5 Procedures..........................................156
  APPENDIX A EXAMPLE CALL FLOWS (INFORMATIVE).....................157
  A.1 Residential Gateway to Residential Gateway Call.............157
       A.1.1 Programming Residential GW Analog Line Terminations for
       Idle Behavior..............................................157
       A.1.2 Collecting Originator Digits and Initiating Termination
       ...........................................................159
  Authors' Addresses..............................................168
  Full Copyright Statement........................................170

1. SCOPE

  This document defines the protocol used between elements of a
  physically decomposed multimedia gateway.  There are no functional
  differences from a system view between a decomposed gateway, with
  distributed sub-components potentially on more than one physical
  device, and a monolithic gateway such as described in H.246. This
  recommendation does not define how gateways, multipoint control units
  or integrated voice response units (IVRs) work.  Instead it creates a
  general framework that is suitable for these applications.  Packet
  network interfaces may include IP, ATM or possibly others.  The
  interfaces will support a variety of SCN signalling systems,
  including tone signalling, ISDN, ISUP, QSIG, and GSM.  National
  variants of these signalling systems will be supported where
  applicable.

  The protocol definition in this document is common text with ITU-T
  Recommendation H.248.  It meets the requirements documented in RFC
  2805.

2. REFERENCES

2.1 Normative references

  ITU-T Recommendation H.225.0 (1998): "Call Signalling Protocols and
  Media Stream Packetization for Packet Based Multimedia Communications
  Systems".




Cuervo, et al.              Standards Track                     [Page 6]

RFC 2885                    Megaco Protocol                  August 2000


  ITU-T Recommendation H.235 (02/98): "Security and encryption for
  H-Series (H.323 and other H.245-based) multimedia terminals".

  ITU-T Recommendation H.245 (1998): "Control Protocol for Multimedia
  Communication".

  ITU-T Recommendation H.323 (1998): "Packet Based Multimedia
  Communication Systems".

  ITU-T Recommendation I.363.1 (08/96), "B-ISDN ATM Adaptation Layer
  specification: Type 1 AAL".

  ITU-T Recommendation I.363.2 (09/97), "B-ISDN ATM Adaptation Layer
  specification: Type 2 AAL".

  ITU-T Recommendation I.363.5 (08/96), "B-ISDN ATM Adaptation Layer
  specification: Type 5 AAL".

  ITU-T Recommendation I.366.1 (06/98), "Segmentation and Reassembly
  Service Specific Convergence Sublayer for the AAL type 2".

  ITU-T Recommendation I.366.2 (02/99), "AAL type 2 service specific
  convergence sublayer for trunking".

  ITU-T Recommendation I.371 (08/96), "Traffic control and congestion
  control in B-ISDN".

  ITU-T Recommendation Q.763 (09/97), "Signalling System No. 7 - ISDN
  user part formats and codes".

  ITU-T Recommendation Q.765, "Signalling System No. 7 - Application
  transport mechanism".

  ITU-T Recommendation Q.931 (05/98): "Digital Subscriber Signalling
  System No.  1 (DSS 1) - ISDN User-Network Interface Layer 3
  Specification for Basic Call Control".

  ITU-T Recommendation Q.2630.1 (1999), "AAL Type 2 Signalling Protocol
  (Capability Set 1)".

  ITU-T Recommendation Q.2931 (10/95), "Broadband Integrated Services
  Digital Network (B-ISDN) - Digital Subscriber Signalling System No.
  2 (DSS 2) - User-Network Interface (UNI) - Layer 3 specification for
  basic call/connection control".

  ITU-T Recommendation Q.2941.1 (09/97), "Digital Subscriber Signalling
  System No. 2 - Generic Identifier Transport".




Cuervo, et al.              Standards Track                     [Page 7]

RFC 2885                    Megaco Protocol                  August 2000


  ITU-T Recommendation Q.2961 (10/95), "Broadband integrated services
  digital network (B-ISDN) - Digital subscriber signalling system no.2
  (DSS 2) - additional traffic parameters".

  ITU-T Recommendation Q.2961.2 (06/97), "Digital subscriber signalling
  system No. 2 - Additional traffic parameters: Support of ATM transfer
  capability in the broadband bearer capability information element."

  ITU-T Recommendation X.213 (11/1995), "Information technology - Open
  System Interconnection - Network service definition plus Amendment 1
  (08/1997), Addition of the Internet protocol address format
  identifier".

  ITU-T Recommendation V.76 (08/96), "Generic multiplexer using V.42
  LAPM-based procedures".

  ITU-T Recommendation X.680 (1997): "Information technology-Abstract
  Syntax Notation One (ASN.1): Specification of basic notation".

  ITU-T Recommendation H.246 (1998), "Interworking of H-series
  multimedia terminals with H-series multimedia terminals and
  voice/voiceband terminals on GSTN and ISDN".

  Rose, M. and D. Cass, "ISO Transport Service on top of the TCP,
  Version 3", RFC 1006, May 1987.

  Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications:
  ABNF", RFC 2234, November 1997.

  Handley, M. and  V. Jacobson, "SDP: Session Description Protocol",
  RFC 2327, April 1998.

  Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
  November 1998.

  Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)",
  RFC 2406, November 1998.

2.2 Informative references

  ITU-T Recommendation E.180/Q.35 (1998): "Technical characteristics of
  tones for the telephone service".

  CCITT Recommendation G.711 (1988), "Pulse Code Modulation (PCM) of
  voice frequencies".

  ITU-T Recommendation H.221 (05/99),"Frame structure for a 64 to 1920
  kbit/s channel in audiovisual teleservices".



Cuervo, et al.              Standards Track                     [Page 8]

RFC 2885                    Megaco Protocol                  August 2000


  ITU-T Recommendation H.223 (1996), "Multiplexing protocol for low bit
  rate multimedia communication".

  ITU-T Recommendation Q.724 (1988): "Signalling procedures".

  Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980.

  Postel, J., "Internet protocol", STD 5, RFC 791, September 1981.

  Postel, J., "TRANSMISSION CONTROL PROTOCOL", STD 7, RFC 793,
  September 1981.

  Simpson, W., "The Point-to-Point Protocol", STD 51, RFC 1661, July
  1994.

  Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A
  Transport Protocol for Real-Time Applications", RFC 1889, January
  1996.

  Schulzrinne, H., "RTP Profile for Audio and Video Conferences with
  Minimal Control", RFC 1890, January 1996.

  Kent, S. and R. Atkinson, "Security Architecture for the Internet
  Protocol", RFC 2401, November 1998.

  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
  Specification", RFC 2460, December 1998.

  Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg, "SIP:
  Session Initiation Protocol", RFC 2543, March 1999.

  Greene, N., Ramalho, M. and B. Rosen, "Media Gateway control protocol
  architecture and requirements", RFC 2805, April 1999.

3. DEFINITIONS

  Access Gateway: A type of gateway that provides a User to Network
  Interface (UNI) such as ISDN.

  Descriptor: A syntactic element of the protocol that groups related
  properties.  For instance, the properties of a media flow on the MG
  can be set by the MGC by including the appropriate descriptor in a
  command.

  Media Gateway (MG): The media gateway converts media provided in one
  type of network to the format required in another type of network.
  For example, a MG could terminate bearer channels from a switched
  circuit network (e.g., DS0s) and media streams from a packet network



Cuervo, et al.              Standards Track                     [Page 9]

RFC 2885                    Megaco Protocol                  August 2000


  (e.g., RTP streams in an IP network).  This gateway may be capable of
  processing audio, video and T.120 alone or in any combination, and
  will be capable of full duplex media translations.  The MG may also
  play audio/video messages and performs other IVR functions, or may
  perform media conferencing.

  Media Gateway Controller (MGC): Controls the parts of the call state
  that pertain to connection control for media channels in a MG.

  Multipoint Control Unit (MCU): An entity that controls the setup and
  coordination of a multi-user conference that typically includes
  processing of audio, video and data.

  Residential Gateway: A gateway that interworks an analogue line to a
  packet network. A residential gateway typically contains one or two
  analogue lines and is located at the customer premises.

  SCN FAS Signalling Gateway: This function contains the SCN Signalling
  Interface that terminates SS7, ISDN or other signalling links where
  the call control channel and bearer channels are collocated in the
  same physical span.

  SCN NFAS Signalling Gateway: This function contains the SCN
  Signalling Interface that terminates SS7 or other signalling links
  where the call control channels are separated from bearer channels.

  Stream: Bidirectional media or control flow received/sent by a media
  gateway as part of a call or conference.

  Trunk: A communication channel between two switching systems such as
  a DS0 on a T1 or E1 line.

  Trunking Gateway: A gateway between SCN network and packet network
  that typically terminates a large number of digital circuits.

4. ABBREVIATIONS

  This recommendation defines the following terms.

  ATM          Asynchronous Transfer Mode
  BRI          Basic Rate Interface
  CAS          Channel Associated Signalling
  DTMF         Dual Tone Multi-Frequency
  FAS          Facility Associated Signalling
  GW           GateWay
  IANA         Internet Assigned Numbers Authority
  IP           Internet Protocol
  ISUP         ISDN User Part



Cuervo, et al.              Standards Track                    [Page 10]

RFC 2885                    Megaco Protocol                  August 2000


  MG           Media Gateway
  MGC          Media Gateway Controller
  NFAS         Non-Facility Associated Signalling
  PRI          Primary Rate Interface
  PSTN         Public Switched Telephone Network
  QoS          Quality of Service
  RTP          Real-time Transport Protocol
  SCN          Switched Circuit Network
  SG           Signalling Gateway
  SS7          Signalling System No. 7

5. CONVENTIONS

  In this recommendation, "shall" refers to a mandatory requirement,
  while "should" refers to a suggested but optional feature or
  procedure. The term "may" refers to an optional course of action
  without expressing a preference.

6. CONNECTION MODEL

  The connection model for the protocol describes the logical entities,
  or objects, within the Media Gateway that can be controlled by the
  Media Gateway Controller.  The main abstractions used in the
  connection model are Terminations and Contexts.

  A Termination sources and/or sinks one or more streams.  In a
  multimedia conference, a Termination can be multimedia and sources or
  sinks multiple media streams.  The media stream parameters, as well
  as modem, and bearer parameters are encapsulated within the
  Termination.

  A Context is an association between a collection of Terminations.
  There is a special type of Context, the null Context, which contains
  all Terminations that are not associated to any other Termination.

  For instance, in a decomposed access gateway, all idle lines are
  represented by Terminations in the null Context.














Cuervo, et al.              Standards Track                    [Page 11]

RFC 2885                    Megaco Protocol                  August 2000


         +------------------------------------------------------+
         |Media Gateway                                         |
         | +-------------------------------------------------+  |
         | |Context                          +-------------+ |  |
         | |                                 | Termination | |  |
         | |                                 |-------------| |  |
         | |  +-------------+             +->| SCN Bearer  |<---+->
         | |  | Termination |   +-----+   |  |   Channel   | |  |
         | |  |-------------|   |     |---+  +-------------+ |  |
       <-+--->| RTP Stream  |---|  *  |                      |  |
         | |  |             |   |     |---+  +-------------+ |  |
         | |  +-------------+   +-----+   |  | Termination | |  |
         | |                              |  |-------------| |  |
         | |                              +->| SCN Bearer  |<---+->
         | |                                 |   Channel   | |  |
         | |                                 +-------------+ |  |
         | +-------------------------------------------------+  |
         |                                                      |
         |                                                      |
         |                    +------------------------------+  |
         |                    |Context                       |  |
         |  +-------------+   |              +-------------+ |  |
         |  | Termination |   | +-----+      | Termination | |  |
         |  |-------------|   | |     |      |-------------| |  |
       <-+->| SCN Bearer  |   | |  *  |------| SCN Bearer  |<---+->
         |  |   Channel   |   | |     |      |   Channel   | |  |
         |  +-------------+   | +-----+      +-------------+ |  |
         |                    +------------------------------+  |
         |                                                      |
         |                                                      |
         | +-------------------------------------------------+  |
         | |Context                                          |  |
         | |  +-------------+                +-------------+ |  |
         | |  | Termination |   +-----+      | Termination | |  |
         | |  |-------------|   |     |      |-------------| |  |
       <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
         | |  |   Channel   |   |     |      |   Channel   | |  |
         | |  +-------------+   +-----+      +-------------+ |  |
         | +-------------------------------------------------+  |
         | ___________________________________________________  |
         +------------------------------------------------------+

               Figure 1: Example of H.248 Connection Model








Cuervo, et al.              Standards Track                    [Page 12]

RFC 2885                    Megaco Protocol                  August 2000


  Figure 1 is a graphical depiction of these concepts.  The diagram of
  Figure 1 gives several examples and is not meant to be an all-
  inclusive illustration.  The asterisk box in each of the Contexts
  represents the logical association of Terminations implied by the
  Context.

  The example below shows an example of one way to accomplish a call-
  waiting scenario in a decomposed access gateway, illustrating the
  relocation of a Termination between Contexts.   Terminations T1 and
  T2 belong to Context C1 in a two-way audio call.  A second audio call
  is waiting for T1 from Termination T3.  T3 is alone in Context C2.
  T1 accepts the call from T3, placing T2 on hold.  This action results
  in T1 moving into Context C2, as shown below.

         +------------------------------------------------------+
         |Media Gateway                                         |
         | +-------------------------------------------------+  |
         | |Context C1                                       |  |
         | |  +-------------+                +-------------+ |  |
         | |  | Term. T2    |   +-----+      | Term. T1    | |  |
         | |  |-------------|   |     |      |-------------| |  |
       <-+--->| RTP Stream  |---|  *  |------| SCN Bearer  |<---+->
         | |  |             |   |     |      |   Channel   | |  |
         | |  +-------------+   +-----+      +-------------+ |  |
         | +-------------------------------------------------+  |
         |                                                      |
         | +-------------------------------------------------+  |
         | |Context C2                                       |  |
         | |                                 +-------------+ |  |
         | |                    +-----+      | Term. T3    | |  |
         | |                    |     |      |-------------| |  |
         | |                    |  *  |------| SCN Bearer  |<---+->
         | |                    |     |      |   Channel   | |  |
         | |                    +-----+      +-------------+ |  |
         | +-------------------------------------------------+  |
         +------------------------------------------------------+

     Figure 2: Example Call Waiting Scenario / Alerting Applied to T1













Cuervo, et al.              Standards Track                    [Page 13]

RFC 2885                    Megaco Protocol                  August 2000


         +------------------------------------------------------+
         |Media Gateway                                         |
         | +-------------------------------------------------+  |
         | |Context C1                                       |  |
         | |  +-------------+                                |  |
         | |  | Term. T2    |   +-----+                      |  |
         | |  |-------------|   |     |                      |  |
       <-+--->| RTP Stream  |---|  *  |                      |  |
         | |  |             |   |     |                      |  |
         | |  +-------------+   +-----+                      |  |
         | +-------------------------------------------------+  |
         |                                                      |
         | +-------------------------------------------------+  |
         | |Context C2                                       |  |
         | |  +-------------+                +-------------+ |  |
         | |  | Term. T1    |   +-----+      | Term. T3    | |  |
         | |  |-------------|   |     |      |-------------| |  |
       <-+--->| SCN Bearer  |---|  *  |------| SCN Bearer  |<---+->
         | |  |   Channel   |   |     |      |   Channel   | |  |
         | |  +-------------+   +-----+      +-------------+ |  |
         | +-------------------------------------------------+  |
         +------------------------------------------------------+

          Figure 3. Example Call Waiting Scenario / Answer by T1

6.1 Contexts

  A Context is an association between a number of Terminations.  The
  Context describes the topology (who hears/sees whom) and the media
  mixing and/or switching parameters if more than two Terminations are
  involved in the association.

  There is a special Context called the null Context. It contains
  Terminations that are not associated to any other Termination.
  Terminations in the null Context can have their parameters examined
  or modified, and may have events detected on them.

  In general, an Add command is used to add Terminations to Contexts.
  If the MGC does not specify an existing Context to which the
  Termination is to be added, the MG creates a new Context.  A
  Termination may be removed from a Context with a Subtract command,
  and a Termination may be moved from one Context to another with a
  Move command. A Termination SHALL exist in only one Context at a
  time.







Cuervo, et al.              Standards Track                    [Page 14]

RFC 2885                    Megaco Protocol                  August 2000


  The maximum number of Terminations in a Context is a MG property.
  Media gateways that offer only point-to-point connectivity might
  allow at most two Terminations per Context. Media gateways that
  support multipoint conferences might allow three or more terminations
  per Context.

6.1.1 Context Attributes and Descriptors

  The attributes of Contexts are:

   .  ContextID.

   .  The topology (who hears/sees whom).  The topology of a Context
      describes the flow of media between the Terminations within a
      Context.  In contrast, the mode of a Termination (send/receive/_)
      describes the flow of the media at the ingress/egress of the
      media gateway.

   .  The priority is used for a context in order to provide the MG
      with information about a certain precedence handling for a
      context. The MGC can also use the priority to control
      autonomously the traffic precedence in the MG in a smooth way in
      certain situations (e.g.  restart), when a lot of contexts must
      be handled simultaneously.

   .  An indicator for an emergency call is also provided to allow a
      preference handling in the MG.

6.1.2 Creating, Deleting and Modifying Contexts

  The protocol can be used to (implicitly) create Contexts and modify
  the parameter values of existing Contexts.  The protocol has commands
  to add Terminations to Contexts, subtract them from Contexts, and to
  move Terminations between Contexts.  Contexts are deleted implicitly
  when the last remaining Termination is subtracted or moved out.

6.2 Terminations

  A Termination is a logical entity on a MG that sources and/or sinks
  media and/or control streams.  A Termination is described by a number
  of characterizing Properties, which are grouped in a set of
  Descriptors that are included in commands. Terminations have unique
  identities (TerminationIDs), assigned by the MG at the time of their
  creation.

  Terminations representing physical entities have a semi-permanent
  existence.  For example, a Termination representing a TDM channel
  might exist for as long as it is provisioned in the gateway.



Cuervo, et al.              Standards Track                    [Page 15]

RFC 2885                    Megaco Protocol                  August 2000


  Terminations representing ephemeral information flows, such as RTP
  flows, would usually exist only for the duration of their use.

  Ephemeral Terminations are created by means of an Add command.  They
  are destroyed by means of a Subtract command.  In contrast, when a
  physical Termination is Added to or Subtracted from a Context, it is
  taken from or to the null Context, respectively.

  Terminations may have signals applied to them.  Signals are MG
  generated media streams such as tones and announcements as well as
  line signals such as hookswitch.  Terminations may be programmed to
  detect Events, the occurrence of which can trigger notification
  messages to the MGC, or action by the MG.  Statistics may be
  accumulated on a Termination.  Statistics are reported to the MGC
  upon request (by means of the AuditValue command, see section 7.2.5)
  and when the Termination is taken out of the call it is in.

  Multimedia gateways may process multiplexed media streams.  For
  example, Recommendation H.221 describes a frame structure for
  multiple media streams multiplexed on a number of digital 64 kbit/s
  channels.  Such a case is handled in the connection model in the
  following way.  For every bearer channel that carries part of the
  multiplexed streams, there is a Termination.  The Terminations that
  source/sink the digital channels are connected to a separate
  Termination called the multiplexing Termination. This Termination
  describes the multiplex used (e.g. how the H.221 frames are carried
  over the digital channels used).  The MuxDescriptor is used to this
  end.  If multiple media are carried, this Termination contains
  multiple StreamDescriptors. The media streams can be associated with
  streams sourced/sunk by other Terminations in the Context.

  Terminations may be created which represent multiplexed bearers, such
  as an ATM AAL2.  When a new multiplexed bearer is to be created, an
  ephemeral termination is created in a context established for this
  purpose.  When the termination is subtracted, the multiplexed bearer
  is destroyed.

6.2.1 Termination Dynamics

  The protocol can be used to create new Terminations and to modify
  property values of existing Terminations.  These modifications
  include the possibility of adding or removing events and/or signals.
  The Termination properties, and events and signals are described in
  the ensuing sections. An MGC can only release/modify terminations and
  the resources that the termination represents which it has previously
  seized via, e.g., the Add command.





Cuervo, et al.              Standards Track                    [Page 16]

RFC 2885                    Megaco Protocol                  August 2000


6.2.2 TerminationIDs

  Terminations are referenced by a TerminationID, which is an arbitrary
  schema chosen by the MG.

  TerminationIDs of physical Terminations are provisioned in the Media
  Gateway. The TerminationIDs may be chosen to have structure.  For
  instance, a TerminationID may consist of trunk group and a trunk
  within the group.

  A wildcarding mechanism using two types of wildcards can be used with
  TerminationIDs.  The two wildcards are ALL and CHOOSE.  The former is
  used to address multiple Terminations at once, while the latter is
  used to indicate to a media gateway that it must select a Termination
  satisfying the partially specified TerminationID.  This allows, for
  instance, that a MGC instructs a MG to choose a circuit within a
  trunk group.

  When ALL is used in the TerminationID of a command, the effect is
  identical to repeating the command with each of the matching
  TerminationIDs.  Since each of these commands may generate a
  response, the size of the entire response may be large.  If
  individual responses are not required, a wildcard response may be
  requested.  In such a case, a single response is generated, which
  contains the UNION of all of the individual responses which otherwise
  would have been generated, with duplicate values suppressed.
  Wildcard response may be particularly useful in the Audit commands.

  The encoding of the wildcarding mechanism is detailed in Annexes A
  and B.

6.2.3 Packages

  Different types of gateways may implement Terminations that have
  widely differing characteristics.  Variations in Terminations are
  accommodated in the protocol by allowing Terminations to have
  optional Properties, Events, Signals and Statistics implemented by
  MGs.

  In order to achieve MG/MGC interoperability, such options are grouped
  into Packages, and a Termination realizes a set of such Packages.
  More information on definition of packages can be found in section
  12.  An MGC can audit a Termination to determine which Packages it
  realizes.

  Properties, Events, Signals and Statistics defined in Packages, as
  well as parameters to them, are referenced by identifiers (Ids).
  Identifiers are scoped. For each package, PropertyIds, EventIds,



Cuervo, et al.              Standards Track                    [Page 17]

RFC 2885                    Megaco Protocol                  August 2000


  SignalIds, StatisticsIds and ParameterIds have unique name spaces and
  the same identifier may be used in each of them.  Two PropertyIds in
  different packages may also have the same identifier, etc.

6.2.4 Termination Properties and Descriptors

  Terminations have properties.  The properties have unique
  PropertyIDs.  Most properties have default values.  When a
  Termination is created, properties get their default values, unless
  the controller specifically sets a different value.  The default
  value of a property of a physical Termination can be changed by
  setting it to a different value when the Termination is in the null
  Context.  Every time such a Termination returns to the null Context,
  the values of its properties are reset to this default value.

  There are a number of common properties for Terminations and
  properties specific to media streams. The common properties are also
  called the termination state properties.  For each media stream,
  there are local properties and properties of the received and
  transmitted flows.

  Properties not included in the base protocol are defined in Packages.
  These properties are referred to by a name consisting of the
  PackageName and a PropertyId.  Most properties have default values
  described in the Package description. Properties may be read- only or
  read/write.  The possible values of a property may be audited, as can
  their current values.  For properties that are read/write, the MGC
  can set their values.  A property may be declared as "Global" which
  has a single value shared by all terminations realizing the package.
  Related properties are grouped into descriptors for convenience.

  When a Termination is Added to a Context, the value of its read/write
  properties can be set by including the appropriate descriptors as
  parameters to the Add command.  Properties not mentioned in the
  command retain their prior values.  Similarly, a property of a
  Termination in a Context may have its value changed by the Modify
  command.  Properties not mentioned in the Modify command retain their
  prior values. Properties may also have their values changed when a
  Termination is moved from one Context to another as a result of a
  Move command.  In some cases, descriptors are returned as output from
  a command.

  The following table lists all of the possible Descriptors and their
  use.  Not all descriptors are legal as input or output parameters to
  every command.






Cuervo, et al.              Standards Track                    [Page 18]

RFC 2885                    Megaco Protocol                  August 2000


  Descriptor Name           Description

  Modem                     Identifies modem type and properties when
                            applicable.
  Mux                       Describes multiplex type for multimedia
                            terminations (e.g. H.221, H.223, H.225.0)
                            and Terminations forming the input mux.
  Media                     A list of media stream specifications (see
                            7.1.4).
  TerminationState          Properties of a Termination (which can be
                            defined in Packages) that are not stream
                            specific.
  Stream                    A list of remote/local/localControl
                            descriptors for a single stream.
  Local                     Contains properties that specify the media
                            flows that the MG receives from the remote
                            entity.
  Remote                    Contains properties that specify the media
                            flows that the MG sends to the remote
                            entity.
  LocalControl              Contains properties (which can be defined
                            in packages) that are of interest between
                            the MG and the MGC.
  Events                    Describes events to be detected by the MG
                            and what to do when an event is detected.
  EventBuffer               Describes events to be detected by the MG
                            when Event Buffering is active.
  Signals                   Describes signals and/or actions to be
                            applied (e.g. Busy Tone) to the
                            Terminations.
  Audit                     In Audit commands, identifies which
                            information is desired.
  Packages                  In AuditValue, returns a list of Packages
                            realized by Termination.
  DigitMap                  Instructions for handling DTMF tones at
                            the MG.
  ServiceChange             In ServiceChange, what, why service change
                            occurred, etc.
  ObservedEvents            In Notify or AuditValue, report of events
                            observed.
  Statistics                In Subtract and Audit, Report of
                            Statistics kept on a Termination.









Cuervo, et al.              Standards Track                    [Page 19]

RFC 2885                    Megaco Protocol                  August 2000


6.2.5 Root Termination

  Occasionally, a command must refer to the entire gateway, rather than
  a termination within it.  A special TerminationID, "Root" is reserved
  for this purpose.  Packages may be defined on Root.  Root thus may
  have properties and events (signals  are not appropriate for root).
  Accordingly, the root TerminationID may appear in:

   .  a Modify command - to change a property or set an event
   .  a Notify command - to report an event
   .  an AuditValue return - to examine the values of properties
      implemented on root
   .  an AuditCapability - to determine what properties of root are
      implemented
   .  a ServiceChange - to declare the gateway in or out of service.

  Any other use of the root TerminationID is an error.

7. COMMANDS

  The protocol provides commands for manipulating the logical entities
  of the protocol connection model, Contexts and Terminations.
  Commands provide control at the finest level of granularity supported
  by the protocol.  For example, Commands exist to add Terminations to
  a Context, modify Terminations, subtract Terminations from a Context,
  and audit properties of Contexts or Terminations. Commands provide
  for complete control of the properties of Contexts and Terminations.
  This includes specifying which events a Termination is to report,
  which signals/actions are to be applied to a Termination and
  specifying the topology of a Context (who hears/sees whom).

  Most commands are for the specific use of the Media Gateway
  Controller as command initiator in controlling Media Gateways as
  command responders.  The exceptions are the Notify and ServiceChange
  commands: Notify is sent from Media Gateway to Media Gateway
  Controller, and ServiceChange may be sent by either entity.  Below is
  an overview of the commands; they are explained in more detail in
  section 7.2.

  1. Add. The Add command adds a termination to a context.  The Add
     command on the first Termination in a Context is used to create a
     Context.

  2. Modify. The Modify command modifies the properties, events and
     signals of a termination.






Cuervo, et al.              Standards Track                    [Page 20]

RFC 2885                    Megaco Protocol                  August 2000


  3. Subtract. The Subtract command disconnects a Termination from its
     Context and returns statistics on the Termination's participation
     in the Context.  The Subtract command on the last Termination in a
     Context deletes the Context.

  4. Move. The Move command atomically moves a Termination to another
     context.

  5. AuditValue. The AuditValue command returns the current state of
     properties, events,  signals and statistics of Terminations.

  6. AuditCapabilities. The AuditCapabilities command returns all the
     possible values for Termination properties, events and signals
     allowed by the Media Gateway.

  7. Notify. The Notify command allows the Media Gateway to inform the
     Media Gateway Controller of the occurrence of events in the Media
     Gateway.

  8. ServiceChange. The ServiceChange Command allows the Media Gateway
     to notify the Media Gateway Controller that a Termination or group
     of Terminations is about to be taken out of service or has just
     been returned to service.   ServiceChange is also used by the MG
     to announce its availability to an MGC (registration), and to
     notify the MGC of impending or completed restart of the MG.  The
     MGC may announce a handover to the MG by sending it a
     ServiceChange command.  The MGC may also use ServiceChange to
     instruct the MG to take a Termination or group of Terminations in
     or out of service.

  These commands are detailed in sections 7.2.1 through 7.2.8

7.1 Descriptors

  The parameters to a command are termed Descriptors. A Descriptor
  consists of a name and a list of items. Some items may have values.
  Many Commands share common Descriptors.  This subsection enumerates
  these Descriptors.  Descriptors may be returned as output from a
  command.  Parameters and parameter usage specific to a given Command
  type are described in the subsection that describes the Command.

7.1.1 Specifying Parameters

  Command parameters are structured into a number of descriptors. In
  general, the text format of descriptors is
  DescriptorName=<someID>{parm=value, parm=value_.}.





Cuervo, et al.              Standards Track                    [Page 21]

RFC 2885                    Megaco Protocol                  August 2000


  Parameters may be fully specified, over-specified or under-specified:

  1. Fully specified parameters have a single, unambiguous value that
     the command initiator is instructing the command responder to use
     for the specified parameter.

  2. Under-specified parameters, using the CHOOSE value, allow the
     command responder to choose any value it can support.

  3. Over-specified parameters have a list of potential values.  The
     list order specifies the command initiator's order of preference
     of selection.  The command responder chooses one value from the
     offered list and returns that value to the command initiator.

  Unspecified mandatory parameters (i.e. mandatory parameters not
  specified in a descriptor) result in the command responder retaining
  the previous value for that parameter.  Unspecified optional
  parameters result in the command responder using the default value of
  the parameter.  Whenever a parameter is underspecified or
  overspecified, the descriptor containing the value chosen by the
  responder is included as output from the command.

  Each command specifies the TerminationId the command operates on.
  This TerminationId may be "wildcarded".  When the TerminationId of a
  command is wildcarded, the effect shall be as if the command was
  repeated with each of the TerminationIds matched.

7.1.2 Modem Descriptor

  The Modem descriptor specifies the modem type and parameters, if any,
  required for use in e.g. H.324 and text conversation.  The descriptor
  includes the following modem types: V.18, V.22, V.22bis, V.32,
  V.32bis, V.34, V.90, V.91, Synchronous ISDN, and allows for
  extensions.  By default, no modem descriptor is present in a
  Termination.

7.1.3 Multiplex Descriptor

  In multimedia calls, a number of media streams are carried on a
  (possibly different) number of bearers.  The multiplex descriptor
  associates the media and the bearers. The descriptor includes the
  multiplex type:

   . H.221
   . H.223,
   . H.226,
   . V.76,
   . Possible Extensions



Cuervo, et al.              Standards Track                    [Page 22]

RFC 2885                    Megaco Protocol                  August 2000


  and a set of TerminationIDs representing the multiplexed inputs, in
  order.  For example:

      Mux = H.221{ MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}

7.1.4 Media Descriptor

  The Media Descriptor specifies the parameters for all the media
  streams.  These parameters are structured into two descriptors, a
  Termination State Descriptor, which specifies the properties of a
  termination that are not stream dependent, and one or more Stream
  Descriptors each of which describes a single media stream.

  A stream is identified by a StreamID.  The StreamID is used to link
  the streams in a Context that belong together. Multiple streams
  exiting a termination shall be synchronized with each other.  Within
  the Stream Descriptor, there are up to three subsidiary descriptors,
  LocalControl, Local, and Remote. The relationship between these
  descriptors is thus:

  Media Descriptor
       TerminationStateDescriptor
       Stream Descriptor
               LocalControl Descriptor
               Local Descriptor
               Remote Descriptor

  As a convenience a LocalControl, Local, or Remote descriptor may be
  included in the Media Descriptor without an enclosing Stream
  descriptor.  In this case, the StreamID is assumed to be 1.

7.1.5 Termination State Descriptor

  The Termination State Descriptor contains the ServiceStates property,
  the EventBufferControl property and properties of a termination
  (defined in Packages) that are not stream specific.

  The ServiceStates property describes the overall state of the
  termination (not stream-specific).  A Termination can be in one of
  the following states: "test", "out of service", or "in service".  The
  "test" state indicates that the termination is being tested. The
  state "out of service" indicates that the termination cannot be used
  for traffic.  The state "in service" indicates that a termination can
  be used or is being used for normal traffic.  "in service" is the
  default state.






Cuervo, et al.              Standards Track                    [Page 23]

RFC 2885                    Megaco Protocol                  August 2000


  Values assigned to Properties may be simple values
  (integer/string/enumeration) or may be underspecified, where more
  than one value is supplied and the MG may make a choice:
   .  Alternative Values: multiple values in a list, one of which must
      be selected
   .  Ranges: minimum and maximum values, any value between min and max
      must be selected, boundary values included
   .  Greater Than/Less Than: value must be greater/less than specified
      value
   .  CHOOSE Wildcard: the MG chooses from the allowed values for the
      property

  The EventBufferControl property  specifies whether events are
  buffered following detection of an event in the Events Descriptor, or
  processed immediately.  See section 7.1.9 for details.

7.1.6 Stream Descriptor

  A Stream descriptor specifies the parameters of a single bi-
  directional stream.  These parameters are structured into three
  descriptors: one that contains termination properties specific to a
  stream and one each for local and remote flows. The Stream Descriptor
  includes a StreamID which identifies the stream.  Streams are created
  by specifying a new StreamID on one of the terminations in a Context.
  A stream is deleted by setting empty Local and Remote descriptors for
  the stream with ReserveGroup and ReserveValue in LocalControl set to
  "false" on all terminations in the context that previously supported
  that stream.

  StreamIDs are of local significance between MGC and MG and they are
  assigned by the MGC.  Within a context, StreamID is a means by which
  to indicate which media flows are interconnected:  streams with the
  same StreamID are connected.

  If a termination is moved from one context to another, the effect on
  the context to which the termination is moved is the same as in the
  case that a new termination were added with the same StreamIDs as the
  moved termination.

7.1.7 LocalControl Descriptor

  The LocalControl Descriptor contains the Mode property, the
  ReserveGroup and ReserveValue properties and properties of a
  termination (defined in Packages) that are stream specific, and are
  of interest between the MG and the MGC.  Values of properties may be
  underspecified as in section 7.1.1.





Cuervo, et al.              Standards Track                    [Page 24]

RFC 2885                    Megaco Protocol                  August 2000


  The allowed values for the mode property are send-only, receive-only,
  send/receive, inactive and loop-back.  "Send" and "receive" are with
  respect to the exterior of the context, so that, for example, a
  stream set to mode=sendonly does not pass received media into the
  context.  Signals and Events are not affected by mode.

  The boolean-valued Reserve properties, ReserveValue and ReserveGroup,
  of a Termination indicate what the MG is expected to do when it
  receives a  local and/or remote descriptor.

  If the value of a Reserve property is True, the MG SHALL reserve
  resources for all alternatives specified in the local and/or remote
  descriptors for which it currently has resources available.  It SHALL
  respond with the alternatives for which it reserves resources.  If it
  cannot not support any of the alternatives, it SHALL respond with a
  reply to the MGC that contains empty local and/or remote descriptors.

  If the value of a Reserve property is False, the MG SHALL choose one
  of the alternatives specified in the local descriptor (if present)
  and one of the alternatives specified in the remote descriptor (if
  present).  If the MG has not yet reserved resources to support the
  selected alternative, it SHALL reserve the resources.  If, on the
  other hand, it already reserved resources for the Termination
  addressed (because of a prior exchange with ReserveValue and/or
  ReserveGroup equal to True), it SHALL release any excess resources it
  reserved previously.  Finally, the MG shall send a reply to the MGC
  containing the alternatives for the local and/or remote descriptor
  that it selected.  If the MG does not have sufficient resources to
  support any of the alternatives specified, is SHALL respond with
  error 510 (insufficient resources).

  The default value of ReserveValue and ReserveGroup is False.

  A new setting of the LocalControl Descriptor completely replaces the
  previous setting of that descriptor in the MG.  Thus to retain
  information from the previous setting the MGC must include that
  information in the new setting.  If the MGC wishes to delete some
  information from the existing descriptor, it merely resends the
  descriptor (in a Modify command) with the unwanted information
  stripped out.

7.1.8 Local and Remote Descriptors

  The MGC uses Local and Remote descriptors to reserve and commit MG
  resources for media decoding and encoding for the given Stream(s) and
  Termination to which they apply.  The MG includes these descriptors
  in its response to indicate what it is actually prepared to support.
  The MG SHALL include additional properties and their values in its



Cuervo, et al.              Standards Track                    [Page 25]

RFC 2885                    Megaco Protocol                  August 2000


  response if these properties are mandatory yet not present in the
  requests made by the MGC (e.g., by specifying detailed video encoding
  parameters where the MGC only specified the payload type).

  Local refers to the media received by the MG and Remote refers to the
  media sent by the MG.

  When text encoding the protocol, the descriptors consist of session
  descriptions as defined in SDP (RFC2327).  In session descriptions
  sent from the MGC to the MG, the following exceptions to the syntax
  of RFC 2327 are allowed:

   .  the "s=", "t=" and "o=" lines are optional,
   .  the use of CHOOSE is allowed in place of a single parameter
      value, and
   .  the use of alternatives is allowed in place of a single parameter
      value.

  When multiple session descriptions are provided in one descriptor,
  the "v=" lines are required as delimiters; otherwise they are
  optional in session descriptions sent to the MG.  Implementations
  shall accept session descriptions that are fully conformant to
  RFC2327. When binary encoding the protocol the descriptor consists of
  groups of properties (tag-value pairs) as specified in Annex C.  Each
  such group may contain the parameters of a session description.

  Below, the semantics of the local and remote descriptors are
  specified in detail.  The specification consists of two parts.  The
  first part specifies the interpretation of the contents of the
  descriptor.  The second part specifies the actions the MG must take
  upon receiving the local and remote descriptors.  The actions to be
  taken by the MG depend on the values of the ReserveValue and
  ReserveGroup properties of the LocalControl descriptor.

  Either the local or the remote descriptor or both may be

   .  unspecified (i.e., absent),
   .  empty,
   .  underspecified through use of CHOOSE in a property value,
   .  fully specified, or
   .  overspecified through presentation of multiple groups of
      properties and possibly multiple property values in one or more
      of these groups.

  Where the descriptors have been passed from the MGC to the MG, they
  are interpreted according to the rules given in section 7.1.1, with
  the following additional comments for clarification:




Cuervo, et al.              Standards Track                    [Page 26]

RFC 2885                    Megaco Protocol                  August 2000


  (a) An unspecified Local or Remote descriptor is considered to be a
  missing mandatory parameter.  It requires the MG to use whatever was
  last specified for that descriptor.  It is possible that there was no
  previously-specified value, in which case the descriptor concerned is
  ignored in further processing of the command.

  (b) An empty Local (Remote) descriptor in a message from the MGC
  signifies a request to release any resources reserved for the media
  flow received (sent).

  (c) If multiple groups of properties are present in a Local or Remote
  descriptor or multiple values within a group, the order of preference
  is descending.

  (d) Underspecified or overspecified properties within a group of
  properties sent by the MGC are requests for  the MG to choose one or
  more values which it can support for each of those properties.  In
  case of an overspecified property, the list of values is in
  descending order of preference.

  Subject to the above rules, subsequent action depends on the values
  of the ReserveValue and ReserveGroup properties in LocalControl.

  If ReserveGroup is true, the MG reserves the resources required to
  support any of the requested property group alternatives that it can
  currently support.  If ReserveValue is true, the MG reserves the
  resources required to support any of the requested property value
  alternatives that it can currently support.

  NOTE -  If a Local or Remote descriptor contains multiple groups of
  properties, and ReserveGroup is true, then the MG is requested to
  reserve resources so that it can decode or encode the media stream
  according to any of the alternatives.  For instance, if the Local
  descriptor contains two groups of properties, one specifying
  packetized G.711 A-law audio and the other G.723.1 audio, the MG
  reserves resources so that it can decode one audio stream encoded in
  either G.711 A-law format or G.723.1 format.  The MG does not have to
  reserve resources to decode two audio streams simultaneously, one
  encoded in G.711 A-law and one in G.723.1.  The intention for the use
  of  ReserveValue is analogous.

  If ReserveGroup is true or ReserveValue is true, then the following
  rules apply.

   .  If the MG has insufficient resources to support all alternatives
      requested by the MGC and the MGC requested resources in both
      Local and Remote,  the MG should reserve resources to support at
      least one alternative each within Local and Remote.



Cuervo, et al.              Standards Track                    [Page 27]

RFC 2885                    Megaco Protocol                  August 2000


   .  If the MG has insufficient resources to support at least one
      alternative  within a Local  (Remote) descriptor received from
      the MGC, it shall return an empty Local (Remote) in response.

   .  In its response to the MGC, when the MGC included Local and
      Remote descriptors, the MG SHALL include Local and Remote
      descriptors for all groups of properties and property values it
      reserved resources for.  If the MG is incapable of supporting at
      least one of the alternatives within the Local (Remote)
      descriptor received from the MGC, it SHALL return an empty Local
      (Remote) descriptor.

   .  If the Mode property of the LocalControl descriptor is RecvOnly
      or SendRecv, the MG must be prepared to receive media encoded
      according to any of the alternatives included in its response to
      the MGC.

   .  If ReserveGroup is False and ReserveValue is false, then the MG
      SHOULD apply the following rules to resolve Local and Remote to a
      single alternative each:

   .  The MG chooses the first alternative in Local for which it is
      able to support at least one alternative in Remote.

   .  If the MG is unable to support at least one Local and one Remote
      alternative, it returns Error 510 (Insufficient Resources).

   .  The MG returns its selected alternative in each of Local and
      Remote.

  A new setting of a Local or Remote Descriptor completely replaces the
  previous setting of that descriptor in the MG.  Thus to retain
  information from the previous setting the MGC must include that
  information in the new setting.  If the MGC wishes to delete some
  information from the existing descriptor, it merely resends the
  descriptor (in a Modify command) with the unwanted information
  stripped out.

7.1.9 Events Descriptor

  The EventsDescriptor parameter contains a RequestIdentifier and a
  list of events that the Media Gateway is requested to detect and
  report.  The RequestIdentifier is used to correlate the request with
  the notifications that it may trigger.  Requested events include, for
  example, fax tones, continuity test results, and on-hook and off-hook
  transitions.





Cuervo, et al.              Standards Track                    [Page 28]

RFC 2885                    Megaco Protocol                  August 2000


  Each event in the descriptor contains the Event name, an optional
  streamID, an optional KeepActive flag, and optional parameters.  The
  Event name consists of a Package Name (where the event is defined)
  and an EventID. The ALL wildcard may be used for the EventID,
  indicating that all events from the specified package have to be
  detected.  The default streamID is 0, indicating that the event to be
  detected is not related to a particular media stream.  Events can
  have parameters.  This allows a single event description to have some
  variation in meaning without creating large numbers of individual
  events.  Further event parameters are defined in the package.

  The default action of the MG, when it detects an event in the Events
  Descriptor, is to send a Notify command to the MG.  Any other action
  is for further study.

  If the value of the EventBufferControl property equals LockStep,
  following detection of such an event, normal handling of events is
  suspended. Any event which is subsequently detected and occurs in the
  EventBuffer Descriptor is added to the end of the EventBuffer (a FIFO
  queue), along with the time that it was detected.  The MG SHALL wait
  for a new EventsDescriptor to be loaded.  A new EventsDescriptor can
  be loaded either as the result of receiving a command with a new
  EventsDescriptor, or by activating an embedded EventsDescriptor.

  If EventBufferControl equals Off, the MG continues processing based
  on the active EventsDescriptor.

  In the case that an embedded EventsDescriptor being activated, the MG
  continues event processing based on the newly activated
  EventsDescriptor (Note -  for purposes of EventBuffer handling,
  activation of an embedded EventsDescriptor is equivalent to receipt
  of a new EventsDescriptor).

  When the MG receives a command with a new EventsDescriptor, one or
  more events may have been buffered in the EventBuffer in the MG. The
  value of EventBufferControl then determines how the MG treats such
  buffered events.

  Case 1

  If EventBufferControl = LockStep  and the MG receives a new
  EventsDescriptor it will check the FIFO EventBuffer and take the
  following actions:

  1. If the EventBuffer is empty, the MG waits for detection of events
     based on the new EventsDescriptor.





Cuervo, et al.              Standards Track                    [Page 29]

RFC 2885                    Megaco Protocol                  August 2000


  2. If the EventBuffer is non-empty, the MG processes the FIFO queue
     starting with the first event:

        a) If the event in the queue is in the events listed in the new
        EventsDescriptor, the default action of the MG is to send a
        Notify command to the MGC and remove the event from the
        EventBuffer.  Any other action is for further study.  The time
        stamp of the Notify shall be the time the event was actually
        detected.  The MG then waits for a new EventsDescriptor. While
        waiting for a new EventsDescriptor, any events matching the
        EventsBufferDescriptor will be placed in  the EventBuffer and
        the event processing will repeat from step 1.

        b) If the event is not in the new EventsDescriptor, the MG
        SHALL discard the event and repeat from step 1.

  Case 2

  If EventBufferControl equals Off and the MG receives a new
  EventsDescriptor, it processes new events with the new
  EventsDescriptor.

  If the MG receives a command instructing it to set the value of
  EventBufferControl to Off, all events in the EventBuffer SHALL be
  discarded.

  The MG may report several events in a single Transaction as long as
  this does not unnecessarily delay the reporting of individual events.

  For procedures regarding transmitting the Notify command, refer to
  the appropriate annex for specific transport considerations.

  The default value of EventBufferControl is Off.

  Note -  Since the EventBufferControl property is in the
  TerminationStateDescriptor, the MG might receive a command that
  changes the EventBufferControl property and does not include an
  EventsDescriptor.

  Normally, detection of an event shall cause any active signals to
  stop.  When KeepActive is specified in the event, the MG shall not
  interrupt any signals active on the Termination on which the event is
  detected.

  An event can include an Embedded Signals descriptor and/or an
  Embedded Events Descriptor which, if present, replaces the current
  Signals/Events descriptor when the event is detected.  It is
  possible, for example, to specify that the dial-tone Signal be



Cuervo, et al.              Standards Track                    [Page 30]

RFC 2885                    Megaco Protocol                  August 2000


  generated when an off-hook Event is detected, or that the dial-tone
  Signal be stopped when a digit is detected.  A media gateway
  controller shall not send EventsDescriptors with an event both marked
  KeepActive and containing an embedded SignalsDescriptor.

  Only one level of embedding is permitted.  An embedded
  EventsDescriptor SHALL NOT contain another embedded EventsDescriptor;
  an embedded EventsDescriptor may contain an embedded
  SignalsDescriptor.

  An EventsDescriptor received by a media gateway replaces any previous
  Events Descriptor.  Event notification in process shall complete, and
  events detected after the command containing the new EventsDescriptor
  executes, shall be processed according to the new EventsDescriptor.

7.1.10 EventBuffer Descriptor

  The EventBuffer Descriptor contains a list of events, with their
  parameters if any, that the MG is requested to detect and buffer when
  EventBufferControl equals LockStep (see 7.1.9).

7.1.11 Signals Descriptor

  A SignalsDescriptor is a parameter that contains the set of signals
  that the Media Gateway is asked to apply to a Termination. A
  SignalsDescriptor contains a number of signals and/or sequential
  signal lists.  A SignalsDescriptor may contain zero signals and
  sequential signal lists.  Support of sequential signal lists is
  optional.

  Signals are defined in packages.  Signals shall be named with a
  Package name (in which the signal is defined) and a SignalID.  No
  wildcard shall be used in the SignalID.  Signals that occur in a
  SignalsDescriptor have an optional StreamID parameter (default is 0,
  to indicate that the signal is not related to a particular media
  stream), an optional signal type (see below), an optional duration
  and possibly parameters defined in the package that defines the
  signal.  This allows a single signal to have some variation in
  meaning, obviating the need to create large numbers of individual
  signals.  Finally, the optional parameter "notifyCompletion" allows a
  MGC to indicate that it wishes to be  notified when the signal
  finishes playout.  When the MGC enables the signal completion event
  (see section E.1.2) in an Events Descriptor, that event is detected
  whenever a signal terminates and "notifyCompletion" for that signal
  is set to TRUE.  The signal completion event of section E.1.2 has a
  parameter that indicates how the signal terminated: it played to





Cuervo, et al.              Standards Track                    [Page 31]

RFC 2885                    Megaco Protocol                  August 2000


  completion, it was interrupted by an event, it was halted because a
  new SignalsDescriptor arrived, or the signal did not complete for
  some other reason.

  The duration is an integer value that is expressed in hundredths of a
  second.

  There are three types of signals:

   .  on/off - the signal lasts until it is turned off,
   .  timeout - the signal lasts until it is turned off or a specific
      period of time elapses,
   .  brief - the signal duration is so short that it will stop on its
      own unless a new signal is applied that causes it to stop; no
      timeout value is needed.

  If the signal type is specified in a SignalsDescriptor, it overrides
  the default signal type (see Section 12.1.4). If duration is
  specified for an on/off signal, it SHALL be ignored.

  A sequential signal list consists of a signal list identifier, a
  sequence of signals to be played sequentially, and a signal type.

  Only the trailing element of the sequence of signals in a sequential
  signal list may be an on/off signal.  If the trailing element of the
  sequence is an on/off signal, the signal type of the sequential
  signal list shall be on/off as well.  If the sequence of signals in a
  sequential signal list contains signals of type timeout and the
  trailing element is not of type on/off, the type of the sequential
  signal list SHALL be set to timeout.  The duration of a sequential
  signal list with type timeout is the sum of the durations of the
  signals it contains.  If the sequence of signals in a sequential
  signal list contains only signals of type brief, the type of the
  sequential signal list SHALL be set to brief.  A signal list is
  treated as a single signal of the specified type when played out.

  Multiple signals and sequential signal lists in the same
  SignalsDescriptor shall be played simultaneously.

  Signals are defined as proceeding from the termination towards the
  exterior of the Context unless otherwise specified in a package.
  When the same Signal is applied to multiple Terminations within one
  Transaction, the MG should consider using the same resource to
  generate these Signals.

  Production of a Signal on a Termination is stopped by application of
  a new SignalsDescriptor, or detection of an Event on the Termination
  (see section 7.1.9).



Cuervo, et al.              Standards Track                    [Page 32]

RFC 2885                    Megaco Protocol                  August 2000


  A new SignalsDescriptor replaces any existing SignalsDescriptor.  Any
  signals applied to the Termination not in the replacement descriptor
  shall be stopped, and new signals are applied, except as follows.
  Signals present in the replacement descriptor and containing the
  KeepActive flagshall be continued if they are currently playing and
  have not already completed.  If a replacement signal descriptor
  contains a signal that is not currently playing and contains the
  KeepActive flag, that signal SHALL be ignored.  If the replacement
  descriptor contains a sequential signal list with the same identifier
  as the existing descriptor, then

   .  the signal type and sequence of signals in the sequential signal
      list in the replacement descriptor shall be ignored, and

   .  the playing of the signals in the sequential signal list in the
      existing descriptor shall not be interrupted.

7.1.12 Audit Descriptor

  The Audit Descriptor specifies what information is to be audited.
  The Audit Descriptor specifies the list of descriptors to be
  returned.  Audit may be used in any command to force the return of a
  descriptor even if the descriptor in the command was not present, or
  had no underspecified parameters.  Possible items in the Audit
  Descriptor are:

        Modem
        Mux
        Events
        Media
        Signals
        ObservedEvents
        DigitMap
        Statistics
        Packages
        EventBuffer

  Audit may be empty, in which case, no descriptors are returned.  This
  is useful in Subtract, to inhibit return of statistics, especially
  when using wildcard.

7.1.13 ServiceChange Descriptor

  The ServiceChangeDescriptor contains the following parameters:

   . ServiceChangeMethod
   . ServiceChangeReason
   . ServiceChangeAddress



Cuervo, et al.              Standards Track                    [Page 33]

RFC 2885                    Megaco Protocol                  August 2000


   . ServiceChangeDelay
   . ServiceChangeProfile
   . ServiceChangeVersion
   . ServiceChangeMGCId
   . TimeStamp

  See section 7.2.8.

7.1.14 DigitMap Descriptor

  A DigitMap is a dialing plan resident in the Media Gateway used for
  detecting and reporting digit events received on a Termination.  The
  DigitMap Descriptor contains a DigitMap name and the DigitMap to be
  assigned.  A digit map may be preloaded into the MG by management
  action and referenced by name in an EventsDescriptor, may be defined
  dynamically and subsequently referenced by name, or the actual
  digitmap itself may be specified in the EventsDescriptor. It is
  permissible for a digit map completion event within an Events
  Descriptor to refer by name to a DigitMap which is defined by a
  DigitMap Descriptor within the same command, regardless of the
  transmitted order of the respective descriptors.

  DigitMaps defined in a DigitMapDescriptor can occur in any of the
  standard Termination manipulation Commands of the protocol.  A
  DigitMap, once defined, can be used on all Terminations specified by
  the (possibly wildcarded) TerminationID in such a command.  DigitMaps
  defined on the root Termination are global and can be used on every
  Termination in the MG, provided that a DigitMap with the same name
  has not been defined on the given Termination. When a DigitMap is
  defined dynamically in a DigitMap Descriptor:

   .  A new DigitMap is created by specifying a name that is not yet
      defined.  The value shall be present.

   .  A DigitMap value is updated by supplying a new value for a name
      that is already defined.  Terminations presently using the
      digitmap shall continue to use the old definition; subsequent
      EventsDescriptors specifying the name, including any
      EventsDescriptor in the command containing the DigitMap
      descriptor, shall use the new one.

   .  A DigitMap is deleted by supplying an empty value for a name that
      is already defined.  Terminations presently using the digitmap
      shall continue to use the old definition.

  The collection of digits according to a DigitMap may be protected by
  three timers, viz. a start timer (T), short timer (S), and long timer
  (L).



Cuervo, et al.              Standards Track                    [Page 34]

RFC 2885                    Megaco Protocol                  August 2000


  1. The start timer (T) is used prior to any digits having been
     dialed.

  2. If the Media Gateway can determine that at least one more digit is
     needed for a digit string to match any of the allowed patterns in
     the digit map, then the interdigit timer value should be set to a
     long (L) duration (e.g. 16 seconds).

  3. If the digit string has matched one of the patterns in a digit
     map, but it is possible that more digits could be received which
     would cause a match with a different pattern, then instead of
     reporting the match immediately, the MG must apply the short timer
     (S) and wait for more digits.

  The timers are configurable parameters to a DigitMap.  The Start
  timer is started at the beginning of every digit map use, but can be
  overridden.

  The formal syntax of the digit map is described by the DigitMap rule
  in the formal syntax description of the protocol (see Annex A and
  Annex B). A DigitMap, according to this syntax, is defined either by
  a string or by a list of strings. Each string in the list is an
  alternative event sequence, specified either as a sequence of digit
  map symbols or as a regular expression of digit map symbols.  These
  digit map symbols, the digits "0" through "9" and letters "A" through
  a maximum value depending on the signalling system concerned, but
  never exceeding "K", correspond to specified events within a package
  which has been designated in the Events Descriptor on the termination
  to which the digit map is being applied.  (The mapping between events
  and digit map symbols is defined in the documentation for packages
  associated with channel-associated signalling systems such as DTMF,
  MF, or R2.  Digits "0" through "9" MUST be mapped to the
  corresponding digit events within the signalling system concerned.
  Letters should be allocated in logical fashion, facilitating the use
  of range notation for alternative events.)

  The letter "x" is used as a wildcard, designating any event
  corresponding to symbols in the range "0"-"9".  The string may also
  contain explicit ranges and, more generally, explicit sets of
  symbols, designating alternative events any one of which satisfies
  that position of the digit map.  Finally, the dot symbol "." stands
  for zero or more repetitions of the event selector (event, range of
  events, set of alternative events, or wildcard) that precedes it.  As
  a consequence of the third timing rule above, inter-event timing
  while matching the dot symbol uses the short timer by default.

  In addition to these event symbols, the string may contain "S" and
  "L" inter-event timing specifiers and the "Z" duration modifier.  "S"



Cuervo, et al.              Standards Track                    [Page 35]

RFC 2885                    Megaco Protocol                  August 2000


  and "L" respectively indicate that the MG should use the short (S)
  timer or the long (L) timer for subsequent events, over-riding the
  timing rules described above. A timer specifier following a dot
  specifies inter-event timing for all events matching the dot as well
  as for subsequent events.  If an explicit timing specifier is in
  effect in one alternative event sequence, but none is given in any
  other candidate alternative, the timer value set by the explicit
  timing specifier must be used.  If all sequences with explicit timing
  controls are dropped from the candidate set, timing reverts to the
  default rules given above.  Finally, if conflicting timing specifiers
  are in effect in different alternative sequences, the results are
  undefined.

  A "Z" designates a long duration event: placed in front of the
  symbol(s) designating the event(s) which satisfy a given digit
  position, it indicates that that position is satisfied only if the
  duration of the event exceeds the long-duration threshold.  The value
  of this threshold is assumed to be provisioned in the MG.

  A digit map is active while the events descriptor which invoked it is
  active and it has not completed.  A digit map completes when:

   .  a timer has expired, or

   .  an alternative event sequence has been matched and no other
      alternative event sequence in the digit map could be matched
      through detection of an additional event (unambiguous match), or

   .  an event has been detected such that a match to a complete
      alternative event sequence of the digit map will be impossible no
      matter what additional events are received.

  Upon completion, a digit map completion event as defined in the
  package providing the events being mapped into the digit map shall be
  generated.  At that point the digit map is deactivated.  Subsequent
  events in the package are processed as per the currently active event
  processing mechanisms.

  Pending completion, successive events shall be processed according to
  the following rules:

  1. The "current dial string", an internal variable, is initially
     empty.  The set of candidate alternative event sequences includes
     all of the alternatives specified in the digit map.

  2. At each step, a timer is set to wait for the next event, based
     either on the default timing rules given above or on explicit
     timing specified in one or more alternative event sequences. If



Cuervo, et al.              Standards Track                    [Page 36]

RFC 2885                    Megaco Protocol                  August 2000


     the timer expires and a member of the candidate set of
     alternatives is fully satisfied, a timeout completion with full
     match is reported.  If the timer expires and part or none of any
     candidate alternative is satisfied, a timeout completion with
     partial match is reported.

  3. If an event is detected before the timer expires, it is mapped to
     a digit string symbol and provisionally added to the end of the
     current dial string.  The duration of the event (long or not long)
     is noted if and only if this is relevant in the current symbol
     position (because at least one of the candidate alternative event
     sequences includes the "Z" modifier at this position in the
     sequence).

  4. The current dial string is compared to the candidate alternative
     event sequences.  If and only if a sequence expecting a long-
     duration event at this position is matched (i.e. the event had
     long duration and met the specification for this position), then
     any alternative event sequences not specifying a long duration
     event at this position are discarded, and the current dial string
     is modified by inserting a "Z" in front of the symbol representing
     the latest event.  Any sequence expecting a long-duration event at
     this position but not matching the observed event is discarded
     from the candidate set.   If alternative event sequences not
     specifying a long duration event in the given position remain in
     the candidate set after application of the above rules, the
     observed event duration is treated as irrelevant in assessing
     matches to them.

  5. If exactly one candidate remains, a completion event is generated
     indicating an unambiguous match.  If no candidates remain, the
     latest event is removed from the current dial string and a
     completion event is generated indicating full match if one of the
     candidates from the previous step was fully satisfied before the
     latest event was detected, or partial match otherwise.  The event
     removed from the current dial string will then be reported as per
     the currently active event processing mechanisms.

  6. If no completion event is reported out of step 5 (because the
     candidate set still contains more than one alternative event
     sequence), processing returns to step 2.

  A digit map is activated whenever a new event descriptor is applied
  to the termination or embedded event descriptor is activated, and
  that event descriptor contains a digit map completion event which
  itself contains a digit map parameter.  Each new activation of a
  digit map begins at step 1 of the above procedure, with a clear
  current dial string.  Any previous contents of the current dial



Cuervo, et al.              Standards Track                    [Page 37]

RFC 2885                    Megaco Protocol                  August 2000


  string from an earlier activation are lost.  While the digit map is
  activated, detection is enabled for all events defined in the package
  containing the specified digit map completion event.  Normal event
  behaviour (e.g. stopping of signals unless the digit completion event
  has the KeepActive flag enabled) continues to apply for each such
  event detected, except that the events in the package containing the
  specified digit map completion event other than the completion event
  itself are not individually notified.

  Note that if a package contains a digit map completion event, then an
  event specification consisting of the package name with a wildcarded
  ItemID (Property Name) will activate a digit map if the event
  includes a digit map parameter.  Regardless of whether a digit map is
  activated, this form of event specification will cause the individual
  events to be reported to the MGC as they are detected.

  As an example, consider the following dial plan:

     0                             Local operator
     00                            Long distance operator
     xxxx                          Local extension number
                                   (starts with 1-7)
     8xxxxxxx                      Local number
     #xxxxxxx                      Off-site extension
     *xx                           Star services
     91xxxxxxxxxx                  Long distance number
     9011 + up to 15 digits        International number

  If the DTMF detection package described in Annex E (section E.6) is
  used to collect the dialled digits, then the dialling plan shown
  above results in the following digit map:

     (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)

7.1.15 Statistics Descriptor

  The Statistics parameter provides information describing the status
  and usage of a Termination during its existence within a specific
  Context.  There is a set of standard statistics kept for each
  termination where appropriate (number of octets sent and received for
  example).  The particular statistical properties that are reported
  for a given Termination are determined by the Packages realized by
  the Termination.  By default, statistics are reported when the
  Termination is Subtracted from the Context.  This behavior can be
  overridden by including an empty AuditDescriptor in the Subtract
  command.  Statistics may also be returned from the AuditValue
  command, or any Add/Move/Modify command using the Audit descriptor.




Cuervo, et al.              Standards Track                    [Page 38]

RFC 2885                    Megaco Protocol                  August 2000


  Statistics are cumulative; reporting Statistics does not reset them.
  Statistics are reset when a Termination is Subtracted from a Context.

7.1.16 Packages Descriptor

  Used only with the AuditValue command, the PackageDescriptor returns
  a list of Packages realized by the Termination.

7.1.17 ObservedEvents Descriptor

  ObservedEvents is supplied with the Notify command to inform the MGC
  of which event(s) were detected.  Used with the AuditValue command,
  the ObservedEventsDescriptor returns events in the event buffer which
  have not been Notified. ObservedEvents contains the RequestIdentifier
  of the EventsDescriptor that triggered the notification, the event(s)
  detected and the detection time(s).  Detection times are reported
  with a precision of hundredths of a second.  Time is expressed in
  UTC.

7.1.18  Topology Descriptor

  A topology descriptor is used to specify flow directions between
  terminations in a Context.  Contrary to the descriptors in previous
  sections, the topology descriptor applies to a Context instead of a
  Termination.  The default topology of a Context is that each
  termination's transmission is received by all other terminations.
  The Topology Descriptor is optional to implement.

  The Topology Descriptor occurs before the commands in an action.  It
  is possible to have an action containing only a Topology Descriptor,
  provided that the context to which the action applies already exists.

  A topology descriptor consists of a sequence of triples of the form
  (T1, T2, association). T1 and T2 specify Terminations within the
  Context, possibly using the ALL or CHOOSE wildcard.  The association
  specifies how media flows between these two Terminations as follows.

   .  (T1, T2, isolate) means that the Terminations matching T2 do not
      receive media from the Terminations matching T1, nor vice versa.

   .  (T1, T2, oneway) means that the Terminations that match T2
      receive media from the Terminations matching T1, but not vice
      versa.  In this case use of the ALL wildcard such that there are
      Terminations that match both T1 and T2 is not allowed.

   .  (T1, T2, bothway) means that the Terminations matching T2 receive
      media from the Terminations matching T1, and vice versa.  In this
      case it is allowed to use wildcards such that there are



Cuervo, et al.              Standards Track                    [Page 39]

RFC 2885                    Megaco Protocol                  August 2000


      Terminations that match both T1 and T2.  However, if there is a
      Termination that matches both, no loopback is introduced;
      loopbacks are created by setting the TerminationMode.  CHOOSE
      wildcards may be used in T1 and T2 as well, under the following
      restrictions:

   .  the action (see section 8) of which the topology descriptor is
      part contains an Add command in which a CHOOSE wildcard is used;

   .  if a CHOOSE wildcard occurs in T1 or T2, then a partial name
      SHALL NOT be specified.

  The CHOOSE wildcard in a topology descriptor matches the
  TerminationID that the MG assigns in the first Add command that uses
  a CHOOSE wildcard in the same action.  An existing Termination that
  matches T1 or T2 in the Context to which a Termination is added, is
  connected to the newly added Termination as specified by the topology
  descriptor. The default association when a termination is not
  mentioned in the Topology descriptor is bothway (if T3 is added to a
  context with T1 and T2 with topology (T3,T1,oneway) it will be
  connected bothway to T2).






























Cuervo, et al.              Standards Track                    [Page 40]

RFC 2885                    Megaco Protocol                  August 2000


  The figure below and the table following it show some examples of the
  effect of including topology descriptors in actions.  In these
  examples it is assumed that the topology descriptors are applied in
  sequence.

           Context 1           Context 2           Context 3
     +------------------+  +------------------+  +------------------+
     |      +----+      |  |      +----+      |  |      +----+      |
     |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
     |      +----+      |  |      +----+      |  |      +----+      |
     |       ^  ^       |  |          ^       |  |          ^       |
     |       |  |       |  |          |       |  |          |       |
     |    +--+  +--+    |  |          +---+   |  |          +--+    |
     |    |        |    |  |              |   |  |             |    |
     |    v        v    |  |              v   |  |             |    |
     | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
     | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
     | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
     +------------------+  +------------------+  +------------------+
      1. No Topology Desc.  2. T1, T2 Isolate     3. T3, T2 oneway

           Context 1           Context 2           Context 3
     +------------------+  +------------------+  +------------------+
     |      +----+      |  |      +----+      |  |      +----+      |
     |      | T2 |      |  |      | T2 |      |  |      | T2 |      |
     |      +----+      |  |      +----+      |  |      +----+      |
     |          |       |  |          ^       |  |       ^  ^       |
     |          |       |  |          |       |  |       |  |       |
     |          +--+    |  |          +---+   |  |    +--+  +--+    |
     |             |    |  |              |   |  |    |        |    |
     |             v    |  |              v   |  |    v        v    |
     | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
     | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |  | | T1 |<-->| T3 | |
     | +----+    +----+ |  | +----+    +----+ |  | +----+    +----+ |
     +------------------+  +------------------+  +------------------+
      4. T2, T3 oneway      5. T2, T3 bothway     6. T1, T2 bothway

             Figure 4: A Sequence Of Example Topologies













Cuervo, et al.              Standards Track                    [Page 41]

RFC 2885                    Megaco Protocol                  August 2000


             Topology                Description

                 1             No topology descriptors
          When no topology descriptors are included, all
          terminations have a both way connection to all
          other terminations.

                 2                 T1, T2, Isolate
          Removes the connection between T1 and T2.
            T3 has a both way connection with both T1 and
            T2.  T1 and T2 have bothway connection to T3.

                 3                 T3, T2, oneway
          A oneway connection from T3 to T2 (i.e. T2
          receives media flow from T3).  A bothway
          connection between T1 and T3.

                 4       T2, T3, oneway
          A oneway connection between T2 to T3.
          T1 and T3 remain bothway connected

                 5       T2, T3 bothway
          T2 is bothway connected to T3.  This results in
          the same as 2.

                 6       T1, T2 bothway (T2, T3 bothway
                         and T1,T3 bothway may be implied
                         or explicit).
          All terminations have a bothway connection to
          all other terminations.

  A oneway connection must implemented in such a way that the other
  Terminations in the Context are not aware of the change in topology.

7.2 Command Application Programming Interface

  Following is an Application Programming Interface (API) describing
  the Commands of the protocol.  This API is shown to illustrate the
  Commands and their parameters and is not intended to specify
  implementation (e.g. via use of blocking function calls).  It
  describes the input parameters in parentheses after the command name
  and the return values in front of the Command. This is only for
  descriptive purposes; the actual Command syntax and encoding are
  specified in later subsections.  All parameters enclosed by square
  brackets ([. . . ]) are considered optional.






Cuervo, et al.              Standards Track                    [Page 42]

RFC 2885                    Megaco Protocol                  August 2000


7.2.1 Add

  The Add Command adds a Termination to a Context.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
       Add( TerminationID
       [, MediaDescriptor]
       [, ModemDescriptor]
       [, MuxDescriptor]
       [, EventsDescriptor]
       [, SignalsDescriptor]
       [, DigitMapDescriptor]
       [, AuditDescriptor]
       )

  The TerminationID specifies the termination to be added to the
  Context.  The Termination is either created, or taken from the null
  Context.  For an existing Termination, the TerminationID would be
  specific.  For a Termination that does not yet exist, the
  TerminationID is specified as CHOOSE  in the command. The new
  TerminationID will be returned.  Wildcards may be used in an Add, but
  such usage would be unusual.  If the wildcard matches more than one
  TerminationID, all possible matches are attempted, with results
  reported for each one.  The order of attempts when multiple
  TerminationIDs match is not specified.

  The optional MediaDescriptor describes all media streams.

  The optional ModemDescriptor and MuxDescriptor specify a modem and
  multiplexer if applicable. For convenience, if a Multiplex Descriptor
  is present in an Add command and lists any Terminations that are not
  currently in the Context, such Terminations are added to the context
  as if individual Add commands listing the Terminations were invoked.
  If an error occurs on such an implied Add, error 471 - Implied Add
  for Multiplex failure shall be returned and further processing of the
  command shall cease.





Cuervo, et al.              Standards Track                    [Page 43]

RFC 2885                    Megaco Protocol                  August 2000


  The EventsDescriptor parameter is optional.  If present, it provides
  the list of events that should be detected on the Termination.

  The SignalsDescriptor parameter is optional.  If present, it provides
  the list of signals that should be applied to the Termination.

  The DigitMapDescriptor parameter is optional.  If present, defines a
  DigitMap definition that may be used in an EventsDescriptor.

  The AuditDescriptor is optional.  If present, the command will return
  descriptors as specified in the AuditDescriptor.

  All descriptors that can be modified could be returned by MG if a
  parameter was underspecified or overspecified.  ObservedEvents,
  Statistics, and Packages, and the EventBuffer Descriptors are
  returned only if requested in the AuditDescriptor.  Add SHALL NOT be
  used on a Termination with a serviceState of "OutofService".

7.2.2 Modify

  The Modify Command modifies the properties of a Termination.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
       Modify( TerminationID
       [, MediaDescriptor]
       [, ModemDescriptor]
       [, MuxDescriptor]
       [, EventsDescriptor]
       [, SignalsDescriptor]
       [, DigitMapDescriptor]
       [, AuditDescriptor]
       )

  The TerminationID may be specific if a single Termination in the
  Context is to be modified.  Use of wildcards in the TerminationID may
  be appropriate for some operations. If the wildcard matches more than
  one TerminationID, all possible matches are attempted, with results
  reported for each one.  The order of attempts when multiple



Cuervo, et al.              Standards Track                    [Page 44]

RFC 2885                    Megaco Protocol                  August 2000


  TerminationIDs match is not specified. The CHOOSE option is an error,
  as the Modify command may only be used on existing Terminations.

  The remaining parameters to Modify are the same as those to Add.
  Possible return values are the same as those to Add.

7.2.3 Subtract

  The Subtract Command disconnects a Termination from its Context and
  returns statistics on the Termination's participation in the Context.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
       Subtract(TerminationID
       [, AuditDescriptor]
       )

  TerminationID in the input parameters represents the Termination that
  is being subtracted.  The TerminationID may be specific or may be a
  wildcard value indicating that all (or a set of related) Terminations
  in the Context of the Subtract Command are to be subtracted. If the
  wildcard matches more than one TerminationID, all possible matches
  are attempted, with results reported for each one.  The order of
  attempts when multiple TerminationIDs match is not specified. The
  CHOOSE option is an error, as the Subtract command may only be used
  on existing Terminations.  ALL may be used as the ContextID as well
  as the TerminationId in a Subtract, which would have the effect of
  deleting all contexts, deleting all ephemeral terminations, and
  returning all physical terminations to Null context.

  By default, the Statistics parameter is returned to report
  information collected on the Termination or Terminations specified in
  the Command.  The information reported applies to the Termination's
  or Terminations' existence in the Context from which it or they are
  being subtracted.

  The AuditDescriptor is optional.  If present, the command will return
  descriptors as specified in the AuditDescriptor.   Possible return
  values are the same as those to Add.



Cuervo, et al.              Standards Track                    [Page 45]

RFC 2885                    Megaco Protocol                  August 2000


  When a provisioned Termination is Subtracted from a context, its
  property values shall revert to:

   .  the default value, if specified for the property and not
      overridden by provisioning,
   .  otherwise, the provisioned value.

7.2.4 Move

  The Move Command moves a Termination to another Context from its
  current Context in one atomic operation.  The Move command is the
  only command that refers to a Termination in a Context different from
  that to which the command is applied.  The Move command shall not be
  used to move Terminations to or from the null Context.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
       Move( TerminationID
       [, MediaDescriptor]
       [, ModemDescriptor]
       [, MuxDescriptor]
       [, EventsDescriptor]
       [, SignalsDescriptor]
       [, DigitMapDescriptor]
       [, AuditDescriptor]
       )

  The TerminationID specifies the Termination to be moved.  It may be
  wildcarded.  If the wildcard matches more than one TerminationID, all
  possible matches are attempted, with results reported for each one.
  The order of attempts when multiple TerminationIDs match is not
  specified. By convention, the Termination is subtracted from its
  previous Context. The Context to which the Termination is moved is
  indicated by the target ContextId in the Action.  If the last
  remaining Termination is moved out of a Context, the Context is
  deleted.






Cuervo, et al.              Standards Track                    [Page 46]

RFC 2885                    Megaco Protocol                  August 2000


  The remaining descriptors are processed as in the Modify Command.
  The AuditDescriptor with the Statistics option, for example, would
  return statistics on the Termination just prior to the Move.
  Possible descriptors returned from Move are the same as for Add.
  Move SHALL NOT be used on a Termination with a serviceState of
  "OutofService".

7.2.5 AuditValue

  The AuditValue Command returns the current values of properties,
  events, signals and statistics associated with Terminations.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,DigitMapDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]
  [,StatisticsDescriptor]
  [,PackagesDescriptor]
       AuditValue(TerminationID,
       AuditDescriptor
       )

  TerminationID may be specific or wildcarded. If the wildcard matches
  more than one TerminationID, all possible matches are attempted, with
  results reported for each one.  The order of attempts when multiple
  TerminationIDs match is not specified. If a wildcarded response is
  requested, only one command return is generated, with the contents
  containing the union of the values of all Terminations matching the
  wildcard.  This convention may reduce the volume of data required to
  audit a group of Terminations.  Use of CHOOSE is an error.

  The appropriate descriptors, with the current values for the
  Termination, are returned from AuditValue.  Values appearing in
  multiple instances of a descriptor are defined to be alternate values
  supported, with each parameter in a descriptor considered
  independent.

  ObservedEvents returns a list of events in the EventBuffer,
  PackagesDescriptor returns a list of packages realized by the
  Termination.  DigitMapDescriptor returns the name or value of the
  current DigitMap for the Termination.  DigitMap requested in an
  AuditValue command with TerminationID ALL returns all DigitMaps in
  the gateway.  Statistics returns the current values of all statistics



Cuervo, et al.              Standards Track                    [Page 47]

RFC 2885                    Megaco Protocol                  August 2000


  being kept on the Termination.  Specifying an empty Audit Descriptor
  results in only the TerminationID being returned.  This may be useful
  to get a list of TerminationIDs when used with wildcard.

  AuditValue results depend on the Context, viz. specific, null, or
  wildcarded.  The TerminationID may be specific, or wildcarded.  The
  following illustrates other information that can be obtained with the
  Audit Command:

     ContextID     TerminationID   Information Obtained

     Specific      wildcard        Audit of matching
                                   Terminations in a Context

     Specific      specific        Audit of a single
                                   Termination in a Context

     Null          Root            Audit of Media Gateway state
                                   and events

     Null          wildcard        Audit of all matching
                                   Terminations in the Null
                                   Context

     Null          specific        Audit of a single
                                   Termination outside of any
                                   Context

     All           wildcard        Audit of all matching
                                   Terminations and the Context
                                   to which they are associated

     All           Root            List of all ContextIds

7.2.6 AuditCapabilities

  The AuditCapabilities Command returns the possible values of
  properties, events, signals and statistics associated with
  Terminations.

  TerminationID
  [,MediaDescriptor]
  [,ModemDescriptor]
  [,MuxDescriptor]
  [,EventsDescriptor]
  [,SignalsDescriptor]
  [,ObservedEventsDescriptor]
  [,EventBufferDescriptor]



Cuervo, et al.              Standards Track                    [Page 48]

RFC 2885                    Megaco Protocol                  August 2000


  [,StatisticsDescriptor]
       AuditCapabilities(TerminationID,
       AuditDescriptor
       )

  The appropriate descriptors, with the possible values for the
  Termination are returned from AuditCapabilities.  Descriptors may be
  repeated where there are multiple possible values.  If a wildcarded
  response is requested, only one command return is generated, with the
  contents containing the union of the values of all Terminations
  matching the wildcard.  This convention may reduce the volume of data
  required to audit a group of Terminations.

  Interpretation of what capabilities are requested for various values
  of ContextID and TerminationID is the same as in AuditValue.

  The EventsDescriptor returns the list of possible events on the
  Termination together with the list of all possible values for the
  EventsDescriptor Parameters.  The SignalsDescriptor returns the list
  of possible signals that could be applied to the Termination together
  with the list of all possible values for the Signals Parameters.
  StatisticsDescriptor returns the names of the statistics being kept
  on the termination.  ObservedEventsDescriptor returns the names of
  active events on the termination.  DigitMap and Packages are not
  legal in AuditCapability.

7.2.7 Notify

  The Notify Command allows the Media Gateway to notify the Media
  Gateway Controller of events occurring within the Media Gateway.

       Notify(TerminationID,
       ObservedEventsDescriptor,
       [ErrorDescriptor]
       )

  The TerminationID parameter specifies the Termination issuing the
  Notify Command.  The TerminationID shall be a fully qualified name.

  The ObservedEventsDescriptor contains the RequestID and a list of
  events that the Media Gateway detected in the order that they were
  detected. Each event in the list is accompanied by parameters
  associated with the event and an indication of the time that the
  event was detected.  Procedures for sending Notify commands with
  RequestID equal to 0 are for further study.






Cuervo, et al.              Standards Track                    [Page 49]

RFC 2885                    Megaco Protocol                  August 2000


  Notify Commands with RequestID not equal to 0 shall occur only as the
  result of detection of an event specified by an Events Descriptor
  which is active on the termination concerned.

  The RequestID returns the RequestID parameter of the EventsDescriptor
  that triggered the Notify Command.  It is used to correlate the
  notification with the request that triggered it.  The events in the
  list must have been requested via the triggering EventsDescriptor or
  embedded events descriptor unless the RequestID is 0 (which is for
  further study).

7.2.8 ServiceChange

  The ServiceChange Command allows the Media Gateway to notify the
  Media Gateway Controller that a Termination or group of Terminations
  is about to be taken out of service or has just been returned to
  service.   The Media Gateway Controller may indicate that
  Termination(s) shall be taken out of or returned to service.  The
  Media Gateway may notify the MGC that the capability of a Termination
  has changed.  It also allows a MGC to hand over control of a MG to
  another MGC.

  TerminationID,
  [ServiceChangeDescriptor]
       ServiceChange(TerminationID,
       ServiceChangeDescriptor
       )

  The TerminationID parameter specifies the Termination(s) that are
  taken out of or returned to service.  Wildcarding of Termination
  names is permitted, with the exception that the CHOOSE mechanism
  shall not be used.  Use of the "Root" TerminationID indicates a
  ServiceChange affecting the entire Media Gateway.

  The ServiceChangeDescriptor contains the following parameters as
  required:

   .  ServiceChangeMethod
   .  ServiceChangeReason
   .  ServiceChangeDelay
   .  ServiceChangeAddress
   .  ServiceChangeProfile
   .  ServiceChangeVersion
   .  ServiceChangeMgcId
   .  TimeStamp

  The ServiceChangeMethod parameter specifies the type of ServiceChange
  that will or has occurred:



Cuervo, et al.              Standards Track                    [Page 50]

RFC 2885                    Megaco Protocol                  August 2000


  1) Graceful - indicates that the specified Terminations will be taken
     out of service after the specified ServiceChangeDelay; established
     connections are not yet affected, but the Media Gateway Controller
     should refrain from establishing new connections and should
     attempt to gracefully tear down existing connections. The MG
     should set termination serviceState at the expiry of
     ServiceChangeDelay or the removal of the termination from an
     active context (whichever is first), to "out of service".

  2) Forced - indicates that the specified Terminations were taken
     abruptly out of service and any established connections associated
     with them were lost. The MGC is responsible for cleaning up the
     context (if any) with which the failed termination is associated.
     At a minimum the termination shall be subtracted from the context.
     The termination serviceState should be "out of service".

  3) Restart - indicates that service will be restored on the specified
     Terminations after expiration of the ServiceChangeDelay. The
     serviceState should be set  to "inService" upon expiry of
     ServiceChangeDelay.

  4) Disconnected - always applied with the Root TerminationID,
     indicates that the MG lost communication with the MGC, but it was
     subsequently restored.  Since MG state may have changed, the MGC
     may wish to use the Audit command to resynchronize its state with
     the MG's.

  5) Handoff - sent from the MGC to the MG, this reason indicates that
     the MGC is going out of service and a new MGC association must be
     established. Sent from the MG to the MGC, this indicates that the
     MG is attempting to establish a new association in accordance with
     a Handoff received from the MGC with which it was previously
     associated.

  6) Failover - sent from MG to MGC to indicate the primary MG is out
     of service and a secondary MG is taking over.

  7) Another value whose meaning is mutually understood between the MG
     and the MGC.

  The ServiceChangeReason parameter specifies the reason why the
  ServiceChange has or will occur.  It consists of an alphanumeric
  token (IANA registered) and an explanatory string.

  The optional ServiceChangeAddress parameter specifies the address
  (e.g., IP port number for IP networks) to be used for subsequent
  communications.  It can be specified in the input parameter
  descriptor or the returned result descriptor.  ServiceChangeAddress



Cuervo, et al.              Standards Track                    [Page 51]

RFC 2885                    Megaco Protocol                  August 2000


  and ServiceChangeMgcId parameters must not both be present in the
  ServiceChangeDescriptor or the ServiceChangeResultDescriptor.  The
  serviceChangeAddress provides an address to be used within the
  context of the association currently being negotiated, while the
  ServiceChangeMgcId provides an alternate address where the MG should
  seek to establish another association.

  The optional ServiceChangeDelay parameter is expressed in seconds.
  If the delay is absent or set to zero, the delay value should be
  considered to be null.  In the case of a "graceful"
  ServiceChangeMethod, a null delay indicates that the Media Gateway
  Controller should wait for the natural removal of existing
  connections and should not establish new connections.  .  For
  "graceful" only, a null delay means the MG must not set serviceState
  "out of service" until the termination is in the null context.

  The optional ServiceChangeProfile parameter specifies the Profile (if
  any) of the protocol supported.  The ServiceChangeProfile includes
  the version of the profile supported.

  The optional ServiceChangeVersion parameter contains the protocol
  version and is used if protocol version negotiation occurs (see
  section 11.3).

  The optional TimeStamp parameter specifies the actual time as kept by
  the sender.  It can be used by the responder to determine how its
  notion of time differs from that of its correspondent.  TimeStamp is
  sent with a precision of hundredths of a second, and is expressed in
  UTC.

  The optional Extension parameter may contain any value whose meaning
  is mutually understood by the MG and MGC.

  A ServiceChange Command specifying the "Root" for the TerminationID
  and ServiceChangeMethod equal to Restart is a registration command by
  which a Media Gateway announces its existence to the Media Gateway
  Controller.  The Media Gateway is expected to be provisioned with the
  name of one primary and optionally some number of alternate Media
  Gateway Controllers.    Acknowledgement of the ServiceChange Command
  completes the registration process.  The MG may specify the transport
  ServiceChangeAddress to be used by the MGC for sending messages in
  the ServiceChangeAddress parameter in the input
  ServiceChangeDescriptor. The MG may specify an address in the
  ServiceChangeAddress parameter of the ServiceChange request, and the
  MGC may also do so in the ServiceChange reply.  In either case, the
  recipient must use the supplied address as the destination for all
  subsequent transaction requests within the association.  At the same
  time, as indicated in section 9, transaction replies and pending



Cuervo, et al.              Standards Track                    [Page 52]

RFC 2885                    Megaco Protocol                  August 2000


  indications must be sent to the address from which the corresponding
  requests originated.  This must be done even if it implies extra
  messaging because commands and responses cannot be packed together.
  The TimeStamp parameter shall be sent with a registration command and
  its response.

  The Media Gateway Controller may return an ServiceChangeMgcId
  parameter that describes the Media Gateway Controller that should
  preferably be contacted for further service by the Media Gateway.  In
  this case the Media Gateway shall reissue the ServiceChange command
  to the new Media Gateway Controller.   The Gateway specified in an
  ServiceChangeMgcId, if provided, shall be contacted before any
  further alternate MGCs.  On a HandOff message from MGC to MG, the
  ServiceChangeMgcId is the new MGC that will take over from the
  current MGC.

  The return from ServiceChange is empty except when the Root
  terminationID is used.  In that case it includes the following
  parameters as required:

   .  ServiceChangeAddress, if the responding MGC wishes to specify an
      new destination for messages from the MG for the remainder of the
      association;

   .  ServiceChangeMgcId, if the responding MGC does not wish to
      sustain an association with the MG;

   .  ServiceChangeProfile, if the responder wishes to negotiate the
      profile to be used for the association;

   .  ServiceChangeVersion, if the responder wishes to negotiate the
      version of the protocol to be used for the association.

  The following ServiceChangeReasons are defined.  This list may be
  extended by an IANA registration as outlined in section 13.3

       900 Service Restored
       901 Cold Boot
       902 Warm Boot
       903 MGC Directed Change
       904 Termination malfunctioning
       905 Termination taken out of service
       906 Loss of lower layer connectivity (e.g. downstream sync)
       907 Transmission Failure
       908 MG Impending Failure
       909 MGC Impending Failure
       910 Media Capability Failure
       911 Modem Capability Failure



Cuervo, et al.              Standards Track                    [Page 53]

RFC 2885                    Megaco Protocol                  August 2000


       912 Mux Capability Failure
       913 Signal Capability Failure
       914 Event Capability Failure
       915 State Loss

7.2.9 Manipulating and Auditing Context Attributes

  The commands of the protocol as discussed in the preceding sections
  apply to terminations.  This section specifies how contexts are
  manipulated and audited.

  Commands are grouped into actions (see section 8).  An action applies
  to one context.  In addition to commands, an action may contain
  context manipulation and auditing instructions.

  An action request sent to a MG may include a request to audit
  attributes of a context.  An action may also include a request to
  change the attributes of a context.

  The context properties that may be included in an action reply are
  used to return information to a MGC.  This can be information
  requested by an audit of context attributes or details of the effect
  of manipulation of a context.

  If a MG receives an action which contains both a request to audit
  context attributes and a request to manipulate those attributes, the
  response SHALL include the values of the attributes after processing
  the manipulation request.

7.2.10 Generic Command Syntax

  The protocol can be encoded in a binary format or in a text format.
  MGCs should support both encoding formats.  MGs may support both
  formats.

  The protocol syntax for the binary format of the protocol is defined
  in Annex A.  Annex C specifies the encoding of the Local and Remote
  descriptors for use with the binary format.

  A complete ABNF of the text encoding of the protocol per RFC2234 is
  given in Annex B.  SDP is used as the encoding of the Local and
  Remote Descriptors for use with the text encoding as modified in
  section 7.1.8.








Cuervo, et al.              Standards Track                    [Page 54]

RFC 2885                    Megaco Protocol                  August 2000


7.3 Command Error Codes

  Errors consist of an IANA registered error code and an explanatory
  string.  Sending the explanatory string is optional.  Implementations
  are encouraged to append diagnostic information to the end of the
  string.

  When a MG reports an error to a MGC, it does so in an error
  descriptor.  An error descriptor consists of an error code and
  optionally the associated explanatory string.

  The identified error codes are:

       400 - Bad Request
       401 - Protocol Error
       402 - Unauthorized
       403 - Syntax Error in Transaction
       404 - Syntax Error in TransactionReply
       405 - Syntax Error in TransactionPending
       406 - Version Not Supported
       410 - Incorrect identifier
       411 - The transaction refers to an unknown ContextId
       412 - No ContextIDs available

       421 - Unknown action or illegal combination of actions
       422 - Syntax Error in Action
       430 - Unknown TerminationID
       431 - No TerminationID matched a wildcard
       432 - Out of TerminationIDs or No TerminationID available
       433 - TerminationID is already in a Context
       440 - Unsupported or unknown Package
       441 - Missing RemoteDescriptor
       442 - Syntax Error in Command
       443 - Unsupported or Unknown Command
       444 - Unsupported or Unknown Descriptor
       445 - Unsupported or Unknown Property
       446 - Unsupported or Unknown Parameter
       447 - Descriptor not legal in this command
       448 - Descriptor appears twice in a command
       450 - No such property in this package
       451 - No such event in this package
       452 - No such signal in this package
       453 - No such statistic in this package
       454 - No such parameter value in this package
       455 - Parameter illegal in this Descriptor
       456 - Parameter or Property appears twice in this Descriptor
       461 - TransactionIDs in Reply do not match Request




Cuervo, et al.              Standards Track                    [Page 55]

RFC 2885                    Megaco Protocol                  August 2000


       462 - Commands in Transaction Reply do not match commands in
             request
       463 - TerminationID of Transaction Reply does not match
             request
       464 - Missing reply in Transaction Reply
       465 - TransactionID in Transaction Pending does not match any
             open request
       466 - Illegal Duplicate Transaction Request
       467 - Illegal Duplicate Transaction Reply
       471 - Implied Add for Multiplex failure

       500 - Internal Gateway Error
       501 - Not Implemented
       502 - Not ready.
       503 - Service Unavailable
       504 - Command Received from unauthorized entity
       505 - Command Received before Restart Response
       510 - Insufficient resources
       512 - Media Gateway unequipped to detect requested Event
       513 - Media Gateway unequipped to generate requested Signals
       514 - Media Gateway cannot send the specified announcement
       515 - Unsupported Media Type
       517 - Unsupported or invalid mode
       518 - Event buffer full
       519 - Out of space to store digit map
       520 - Media Gateway does not have a digit map
       521 - Termination is "ServiceChangeing"
       526 - Insufficient bandwidth
       529 - Internal hardware failure
       530 - Temporary Network failure
       531 - Permanent Network failure
       581 - Does Not Exist

8. TRANSACTIONS

  Commands between the Media Gateway Controller and the Media Gateway
  are grouped into Transactions, each of which is identified by a
  TransactionID.  Transactions consist of one or more Actions.  An
  Action consists of a series of Commands that are limited to operating
  within a single Context.   Consequently each Action typically
  specifies a ContextID.  However, there are two circumstances where a
  specific ContextID is not provided with an Action.  One is the case
  of modification of a Termination outside of a Context.  The other is
  where the controller requests the gateway to create a new Context.
  Following is a graphic representation of the Transaction, Action and
  Command relationships.





Cuervo, et al.              Standards Track                    [Page 56]

RFC 2885                    Megaco Protocol                  August 2000


      +----------------------------------------------------------+
      | Transaction x                                            |
      |  +----------------------------------------------------+  |
      |  | Action 1                                           |  |
      |  | +---------+  +---------+  +---------+  +---------+ |  |
      |  | | Command |  | Command |  | Command |  | Command | |  |
      |  | |    1    |  |    2    |  |    3    |  |    4    | |  |
      |  | +---------+  +---------+  +---------+  +---------+ |  |
      |  +----------------------------------------------------+  |
      |                                                          |
      |  +----------------------------------------------------+  |
      |  | Action 2                                           |  |
      |  | +---------+                                        |  |
      |  | | Command |                                        |  |
      |  | |    1    |                                        |  |
      |  | +---------+                                        |  |
      |  +----------------------------------------------------+  |
      |                                                          |
      |  +----------------------------------------------------+  |
      |  | Action 3                                           |  |
      |  | +---------+  +---------+  +---------+              |  |
      |  | | Command |  | Command |  | Command |              |  |
      |  | |    1    |  |    2    |  |    3    |              |  |
      |  | +---------+  +---------+  +---------+              |  |
      |  +----------------------------------------------------+  |
      +----------------------------------------------------------+

             Figure 5 Transactions, Actions and Commands

  Transactions are presented as TransactionRequests.  Corresponding
  responses to a TransactionRequest are received in a single reply,
  possibly preceded by a number of TransactionPending messages (see
  section 8.2.3).

  Transactions guarantee ordered Command processing.  That is, Commands
  within a Transaction are executed sequentially. Ordering of
  Transactions is NOT guaranteed - transactions may be executed in any
  order, or simultaneously.

  At the first failing Command in a Transaction, processing of the
  remaining Commands in that Transaction stops.  If a command contains
  a wildcarded TerminationID, the command is attempted with each of the
  actual TerminationIDs matching the wildcard.  A response within the
  TransactionReply is included for each matching TerminationID, even if
  one or more instances generated an error.  If any TerminationID
  matching a wildcard results in an error when executed, any commands
  following the wildcarded command are not attempted.  Commands may be
  marked as "Optional" which can override this behaviour -  if a



Cuervo, et al.              Standards Track                    [Page 57]

RFC 2885                    Megaco Protocol                  August 2000


  command marked as Optional results in an error, subsequent commands
  in the Transaction will be executed.  A TransactionReply includes the
  results for all of the Commands in the corresponding
  TransactionRequest.  The TransactionReply includes the return values
  for the Commands that were executed successfully, and the Command and
  error descriptor for any Command that failed.  TransactionPending is
  used to periodically notify the receiver that a Transaction has not
  completed yet, but is actively being processed.

  Applications SHOULD implement an application level timer per
  transaction.  Expiration of the timer should cause a retransmission
  of the request.  Receipt of a Reply should cancel the timer.  Receipt
  of Pending should restart the timer.

8.1 Common Parameters

8.1.1 Transaction Identifiers

  Transactions are identified by a TransactionID, which is assigned by
  sender and is unique within the scope of the sender.

8.1.2 Context Identifiers

  Contexts are identified by a ContextID, which is assigned by the
  Media Gateway and is unique within the scope of the Media Gateway.
  The Media Gateway Controller shall use the ContextID supplied by the
  Media Gateway in all subsequent Transactions relating to that
  Context.  The protocol makes reference to a distinguished value that
  may be used by the Media Gateway Controller when referring to a
  Termination that is currently not associated with a Context, namely
  the null ContextID.

  The CHOOSE wildcard is used to request that the Media Gateway create
  a new Context.  The MGC shall not use partially specified ContextIDs
  containing the CHOOSE wildcard.

  The MGC may use the ALL wildcard to address all Contexts on the MG.

8.2 Transaction Application Programming Interface

  Following is an Application Programming Interface (API) describing
  the Transactions of the protocol.  This API is shown to illustrate
  the Transactions and their parameters and is not intended to specify
  implementation (e.g. via use of blocking function calls).  It will
  describe the input parameters and return values expected to be used
  by the various Transactions of the protocol from a very high level.
  Transaction syntax and encodings are specified in later subsections.




Cuervo, et al.              Standards Track                    [Page 58]

RFC 2885                    Megaco Protocol                  August 2000


8.2.1 TransactionRequest

  The TransactionRequest is invoked by the sender.  There is one
  Transaction per request invocation.  A request contains one or more
  Actions, each of which specifies its target Context and one or more
  Commands per Context.

      TransactionRequest(TransactionId {
             ContextID {Command _ Command},
                              . . .
             ContextID  {Command _ Command } })

  The TransactionID parameter must specify a value for later
  correlation with the TransactionReply or TransactionPending response
  from the receiver.

  The ContextID parameter must specify a value to pertain to all
  Commands that follow up to either the next specification of a
  ContextID parameter or the end of the TransactionRequest, whichever
  comes first.

  The Command parameter represents one of the Commands mentioned in the
  "Command Details" subsection titled "Application Programming
  Interface".

8.2.2 TransactionReply

  The TransactionReply is invoked by the receiver.  There is one reply
  invocation per transaction.  A reply contains one or more Actions,
  each of which must specify its target Context and one or more
  Responses per Context.

       TransactionReply(TransactionID {
               ContextID { Response _ Response },
                               . . .
               ContextID { Response _ Response } })

  The TransactionID parameter must be the same as that of the
  corresponding TransactionRequest.

  The ContextID parameter must specify a value to pertain to all
  Responses for the action.  The ContextID may be specific or null.

  Each of the Response parameters represents a return value as
  mentioned in section 7.2, or an error descriptor if the command
  execution encountered an error. Commands after the point of failure
  are not processed and, therefore, Responses are not issued for them.




Cuervo, et al.              Standards Track                    [Page 59]

RFC 2885                    Megaco Protocol                  August 2000


  An exception to this occurs if a command has been marked as optional
  in the Transaction request. If the optional command  generates an
  error, the transaction still continues to execute, so the Reply
  would, in this case, have Responses after an Error.

  If the receiver encounters an error in processing a ContextID, the
  requested Action response will consist of the context ID and a single
  error descriptor, 422 Syntax Error in Action.

  If the receiver encounters an error such that it cannot determine a
  legal Action, it will return a TransactionReply consisting of the
  TransactionID and a single error descriptor, 422 Syntax Error in
  Action. If the end of an action cannot be reliably determined but one
  or more Actions can be parsed, it will process them and then send 422
  Syntax Error in Action as the last action for the transaction.  If
  the receiver encounters an error such that is cannot determine a
  legal Transaction, it will return a TransactionReply with a null
  TransactionID and a single error descriptor (403 Syntax Error in
  Transaction).

  If the end of a transaction can not be reliably determined and one or
  more Actions can be parsed, it will process them and then return 403
  Syntax Error in Transaction as the last action reply for the
  transaction.  If no Actions can be parsed, it will return 403 Syntax
  Error in Transaction as the only reply

  If the terminationID cannot be reliably determined it will send 442
  Syntax Error in Command as the action reply.

  If the end of a command cannot be reliably determined it will return
  442 Syntax Error in Transaction as the reply to the last action it
  can parse.

8.2.3 TransactionPending

  The receiver invokes the TransactionPending.  A TransactionPending
  indicates that the Transaction is actively being processed, but has
  not been completed.  It is used to prevent the sender from assuming
  the TransactionRequest was lost where the Transaction will take some
  time to complete.

       TransactionPending(TransactionID { } )

  The TransactionID parameter must be the same as that of the
  corresponding TransactionRequest.  A property of root
  (normalMGExecutionTime) is settable by the MGC to indicate the
  interval within which the MGC expects a response to any transaction
  from the MG.  Another property (normalMGCExecutionTime) is settable



Cuervo, et al.              Standards Track                    [Page 60]

RFC 2885                    Megaco Protocol                  August 2000


  by the MGC to indicate the interval within which the MG should
  expects a response to any transaction from the MGC.  Senders may
  receive more than one TransactionPending for a command.  If a
  duplicate request is received when pending, the responder may send a
  duplicate pending immediately, or continue waiting for its timer to
  trigger another Transaction Pending.

8.3 Messages

  Multiple Transactions can be concatenated into a Message.  Messages
  have a header, which includes the identity of the sender. The Message
  Identifier (MID) of a message is set to a provisioned name (e.g.
  domain address/domain name/device name) of the entity transmitting
  the message.  Domain name is a suggested default.

  Every Message contains a Version Number identifying the version of
  the protocol the message conforms to.  Versions consist of one or two
  digits, beginning with version 1 for the present version of the
  protocol.

  The transactions in a message are treated independently.  There is no
  order implied, there is no application or protocol acknowledgement of
  a message.

9. TRANSPORT

  The transport mechanism for the protocol should allow the reliable
  transport of transactions between an MGC and MG. The transport shall
  remain independent of what particular commands are being sent and
  shall be applicable to all application states.  There are several
  transports defined for the protocol, which are defined in normative
  Annexes to this document.  Additional Transports may be defined as
  additional annexes in subsequent editions of this document, or in
  separate documents.  For transport of the protocol over IP, MGCs
  shall implement both TCP and UDP/ALF, an MG shall implement TCP or
  UDP/ALF or both.

  The MG is provisioned with a name or address (such as DNS name or IP
  address) of a primary and zero or more secondary MGCs (see section
  7.2.8) that is the address the MG uses to send messages to the MGC.
  If TCP or UDP is used as the protocol transport and the port to which
  the initial ServiceChange request is to be sent is not otherwise
  known, that request should be sent to the default port number for the
  protocol.  This port number is 2944 for text-encoded operation or
  2945 for binary-encoded operation, for either UDP or TCP.  The MGC
  receives the message containing the ServiceChange request from the MG
  and can determine the MG's address from it.  As described in section
  7.2.8, either the MG or the MGC may supply an address in the



Cuervo, et al.              Standards Track                    [Page 61]

RFC 2885                    Megaco Protocol                  August 2000


  ServiceChangeAddress parameter to which subsequent transaction
  requests must be addressed, but responses (including the response to
  the initial ServiceChange request) must always be sent back to the
  address which was the source of the corresponding request.

9.1 Ordering of Commands

  This document does not mandate that the underlying transport protocol
  guarantees the sequencing of transactions sent to an entity.  This
  property tends to maximize the timeliness of actions, but it has a
  few drawbacks.  For example:

   .  Notify commands may be delayed and arrive at the MGC after the
      transmission of a new command changing the EventsDescriptor

   .  If a new command is transmitted before a previous one is
      acknowledged, there is no guarantee that prior command will be
      executed before the new one.

  Media Gateway Controllers that want to guarantee consistent operation
  of the Media Gateway may use the following rules.  These rules are
  with respect to commands that are in different transactions.
  Commands that are in the same transaction are executed in order (see
  section 8).

  1. When a Media Gateway handles several Terminations, commands
     pertaining to the different Terminations may be sent in parallel,
     for example following a model where each Termination (or group of
     Terminations) is controlled by its own process or its own thread.

  2. On a Termination, there should normally be at most one outstanding
     command (Add or Modify or Move), unless the outstanding commands
     are in the same transaction.  However, a Subtract command may be
     issued at any time.  In consequence, a Media Gateway may sometimes
     receive a Modify command that applies to a previously subtracted
     Termination.  Such commands should be ignored, and an error code
     should be returned.

  3. On a given Termination, there should normally be at most one
     outstanding Notify command at any time.

  4. In some cases, an implicitly or explicitly wildcarded Subtract
     command that applies to a group of Terminations may step in front
     of a pending Add command.  The Media Gateway Controller should
     individually delete all Terminations for which an Add command was
     pending at the time of the global Subtract command.  Also, new Add





Cuervo, et al.              Standards Track                    [Page 62]

RFC 2885                    Megaco Protocol                  August 2000


     commands for Terminations named by the wild-carding (or implied in
     a Multiplex descriptor) should not be sent until the wild-carded
     Subtract command is acknowledged.

  5. AuditValue and AuditCapability are not subject to any sequencing.

  6. ServiceChange shall always be the first command sent by a MG as
     defined by the restart procedure. Any other command or response
     must be delivered after this ServiceChange command.

  These rules do not affect the command responder, which should always
  respond to commands.

9.2 Protection against Restart Avalanche

  In the event that a large number of Media Gateways are powered on
  simultaneously and they were to all initiate a ServiceChange
  transaction, the Media Gateway Controller would very likely be
  swamped, leading to message losses and network congestion during the
  critical period of service restoration. In order to prevent such
  avalanches, the following behavior is suggested:

  1. When a Media Gateway is powered on, it should initiate a restart
     timer to a random value, uniformly distributed between 0 and a
     maximum waiting delay (MWD). Care should be taken to avoid
     synchronicity of the random number generation between multiple
     Media Gateways that would use the same algorithm.

  2. The Media Gateway should then wait for either the end of this
     timer or the detection of a local user activity, such as for
     example an off-hook transition on a residential Media Gateway.

  3. When the timer elapses, or when an activity is detected, the Media
     Gateway should initiate the restart procedure.

  The restart procedure simply requires the MG to guarantee that the
  first message that the Media Gateway Controller sees from this MG is
  a ServiceChange message informing the Media Gateway Controller about
  the restart.

  Note -  The value of MWD is a configuration parameter that depends on
  the type of the Media Gateway. The following reasoning may be used to
  determine the value of this delay on residential gateways.

  Media Gateway Controllers are typically dimensioned to handle the
  peak hour traffic load, during which, in average, 10% of the lines
  will be busy, placing calls whose average duration is typically 3
  minutes.  The processing of a call typically involves 5 to 6 Media



Cuervo, et al.              Standards Track                    [Page 63]

RFC 2885                    Megaco Protocol                  August 2000


  Gateway Controller transactions between each Media Gateway and the
  Media Gateway Controller.  This simple calculation shows that the
  Media Gateway Controller is expected to handle 5 to 6 transactions
  for each Termination, every 30 minutes on average, or, to put it
  otherwise, about one transaction per Termination every 5 to 6 minutes
  on average.  This suggests that a reasonable value of MWD for a
  residential gateway would be 10 to 12 minutes.  In the absence of
  explicit configuration, residential gateways should adopt a value of
  600 seconds for MWD.

  The same reasoning suggests that the value of MWD should be much
  shorter for trunking gateways or for business gateways, because they
  handle a large number of Terminations, and also because the usage
  rate of these Terminations is much higher than 10% during the peak
  busy hour, a typical value being 60%.  These Terminations, during the
  peak hour, are this expected to contribute about one transaction per
  minute to the Media Gateway Controller load. A reasonable algorithm
  is to make the value of MWD per "trunk" Termination six times shorter
  than the MWD per residential gateway, and also inversely proportional
  to the number of Terminations that are being restarted. For example
  MWD should be set to 2.5 seconds for a gateway that handles a T1
  line, or to 60 milliseconds for a gateway that handles a T3 line.

10. SECURITY CONSIDERATIONS

  This section covers security when using the protocol in an IP
  environment.

10.1 Protection of Protocol Connections

  A security mechanism is clearly needed to prevent unauthorized
  entities from using the protocol defined in this document for setting
  up unauthorized calls or interfering with authorized calls.  The
  security mechanism for the protocol when transported over IP networks
  is IPsec [RFC2401 to RFC2411].

  The AH header [RFC2402] affords data origin authentication,
  connectionless integrity and optional anti-replay protection of
  messages passed between the MG and the MGC. The ESP header [RFC2406]
  provides confidentiality of messages, if desired. For instance, the
  ESP encryption service should be requested if the session
  descriptions are used to carry session keys, as defined in SDP.

  Implementations of the protocol defined in this document employing
  the ESP header SHALL comply with section 5 of [RFC2406], which
  defines a minimum set of algorithms for integrity checking and





Cuervo, et al.              Standards Track                    [Page 64]

RFC 2885                    Megaco Protocol                  August 2000


  encryption. Similarly, implementations employing the AH header SHALL
  comply with section 5 of [RFC2402], which defines a minimum set of
  algorithms for integrity checking using manual keys.

  Implementations SHOULD use IKE [RFC2409] to permit more robust keying
  options. Implementations employing IKE SHOULD support authentication
  with RSA signatures and RSA public key encryption.

10.2 Interim AH scheme

  Implementation of IPsec requires that the AH or ESP header be
  inserted immediately after the IP header. This cannot be easily done
  at the application level.  Therefore, this presents a deployment
  problem for the protocol defined in this document where the
  underlying network implementation does not support IPsec.

  As an interim solution, an optional AH header is defined within the
  H.248 protocol header. The header fields are exactly those of the
  SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC2402]. The
  semantics of the header fields are the same as the "transport mode"
  of [RFC2402], except for the calculation of the Integrity Check value
  (ICV). In IPsec, the ICV is calculated over the entire IP packet
  including the IP header. This prevents spoofing of the IP addresses.
  To retain the same functionality, the ICV calculation should be
  performed across the entire transaction prepended by a synthesized IP
  header consisting of a 32 bit source IP address, a 32 bit destination
  address and an 16 bit UDP encoded as 10 hex digits.  When the interim
  AH mechanism is employed when TCP is the transport Layer, the UDP
  Port above becomes the TCP port, and all other operations are the
  same.

  Implementations of the H.248 protocol SHALL implement IPsec where the
  underlying operating system and the transport network supports IPsec.
  Implementations of the protocol using IPv4 SHALL implement the
  interim AH scheme. However, this interim scheme SHALL NOT be used
  when the underlying network layer supports IPsec. IPv6
  implementations are assumed to support IPsec and SHALL NOT use the
  interim AH scheme.

  All implementations of the interim AH mechanism SHALL comply with
  section 5 of [RFC2402] which defines a minimum set of algorithms for
  integrity checking using manual keys.

  The interim AH interim scheme does not provide protection against
  eavesdropping; thus forbidding third parties from monitoring the
  connections set up by a given termination. Also, it does not provide
  protection against replay attacks.  These procedures do not
  necessarily protect against denial of service attacks by misbehaving



Cuervo, et al.              Standards Track                    [Page 65]

RFC 2885                    Megaco Protocol                  August 2000


  MGs or misbehaving MGCs. However, they will provide an identification
  of these misbehaving entities, which should then be deprived of their
  authorization through maintenance procedures.

10.3 Protection of Media Connections

  The protocol allows the MGC to provide MGs with "session keys" that
  can be used to encrypt the audio messages, protecting against
  eavesdropping.

  A specific problem of packet networks is "uncontrolled barge-in".
  This attack can be performed by directing media packets to the IP
  address and UDP port used by a connection. If no protection is
  implemented, the packets must be decompressed and the signals must be
  played on the "line side".

  A basic protection against this attack is to only accept packets from
  known sources, checking for example that the IP source address and
  UDP source port match the values announced in the Remote Descriptor.
  This has two inconveniences: it slows down connection establishment
  and it can be fooled by source spoofing:

   .  To enable the address-based protection, the MGC must obtain the
      remote session description of the egress MG and pass it to the
      ingress MG.  This requires at least one network roundtrip, and
      leaves us with a dilemma: either allow the call to proceed
      without waiting for the round trip to complete, and risk for
      example, "clipping" a remote announcement, or wait for the full
      roundtrip and settle for slower call-set-up procedures.

   .  Source spoofing is only effective if the attacker can obtain
      valid pairs of source destination addresses and ports, for
      example by listening to a fraction of the traffic. To fight
      source spoofing, one could try to control all access points to
      the network.  But this is in practice very hard to achieve.

  An alternative to checking the source address is to encrypt and
  authenticate the packets, using a secret key that is conveyed during
  the call set-up procedure. This will not slow down the call set-up,
  and provides strong protection against address spoofing.

11.  MG-MGC CONTROL INTERFACE

  The control association between MG and MGC is initiated at MG cold
  start, and announced by a ServiceChange message, but can be changed
  by subsequent events, such as failures or manual service events.
  While the protocol does not have an explicit mechanism to support




Cuervo, et al.              Standards Track                    [Page 66]

RFC 2885                    Megaco Protocol                  August 2000


  multiple MGCs controlling a physical MG, it has been designed to
  support the multiple logical MG (within a single physical MG) that
  can be associated with different MGCs.

11.1 Multiple Virtual MGs

  A physical Media Gateway may be partitioned into one or more Virtual
  MGs.  A virtual MG consists of a set of statically partitioned
  physical Terminations and/or sets of ephemeral Terminations.  A
  physical Termination is controlled by one MGC.  The model does not
  require that other resources be statically allocated, just
  Terminations.  The mechanism for allocating Terminations to virtual
  MGs is a management method outside the scope of the protocol.  Each
  of the virtual MGs appears to the MGC as a complete MG client.

  A physical MG may have only one network interface, which must be
  shared across virtual MGs.  In such a case, the packet/cell side
  Termination is shared.  It should be noted however, that in use, such
  interfaces require an ephemeral instance of the Termination to be
  created per flow, and thus sharing the Termination is
  straightforward.  This mechanism does lead to a complication, namely
  that the MG must always know which of its controlling MGCs should be
  notified if an event occurs on the interface.

  In normal operation, the Virtual MG will be instructed by the MGC to
  create network flows (if it is the originating side), or to expect
  flow requests (if it is the terminating side), and no confusion will
  arise.  However, if an unexpected event occurs, the Virtual MG must
  know what to do with respect to the physical resources it is
  controlling.

  If recovering from the event requires manipulation of a physical
  interface's state, only one MGC should do so.  These issues are
  resolved by allowing any of the MGCs to create EventsDescriptors to
  be notified of such events, but only one MGC can have read/write
  access to the physical interface properties; all other MGCs have
  read-only access.  The management mechanism is used to designate
  which MGC has read/write capability, and is designated the Master
  MGC.

  Each virtual MG has its own Root Termination.  In most cases the
  values for the properties of the Root Termination are independently
  settable by each MGC.  Where there can only be one value, the
  parameter is read-only to all but the Master MGC.

  ServiceChange may only be applied to a Termination or set of
  Terminations partitioned to the Virtual MG or created (in the case of
  ephemeral Terminations) by that Virtual MG.



Cuervo, et al.              Standards Track                    [Page 67]

RFC 2885                    Megaco Protocol                  August 2000


11.2 Cold Start

  A MG is pre-provisioned by a management mechanism outside the scope
  of this protocol with a Primary and (optionally) an ordered list of
  Secondary MGCs.  Upon a cold start of the MG, it will issue a
  ServiceChange command with a "Restart" method, on the Root
  Termination to its primary MGC.  If the MGC accepts the MG, it will
  send a Transaction Accept, with the ServiceChangeMgcId set to itself.
  If the MG receives an ServiceChangeMgcId not equal to the MGC it
  contacted, it sends a ServiceChange to the MGC specified in the
  ServiceChangeMgcId.  It continues this process until it gets a
  controlling MGC to accept its registration, or it fails to get a
  reply.  Upon failure to obtain a reply, either from the Primary MGC,
  or a designated successor, the MG tries its pre-provisioned Secondary
  MGCs, in order.  If the MG is unable to comply and it has established
  a transport connection to the MGC, it should close that connection.
  In any event, it should reject all subsequent requests from the MGC
  with Error 406 Version Not Supported.

  It is possible that the reply to a ServiceChange with Restart will be
  lost, and a command will be received by the MG prior to the receipt
  of the ServiceChange response.  The MG shall issue error 505 -
  Command Received before Restart Response.

11.3 Negotiation of Protocol Version

  The first ServiceChange command from an MG shall contain the version
  number of the protocol supported by the MG in the
  ServiceChangeVersion parameter. Upon receiving such a message, if the
  MGC supports only a lower version, then the MGC shall send a
  ServiceChangeReply with the lower version and thereafter all the
  messages between MG and MGC shall conform to the lower version of the
  protocol.  If the MG is unable to comply and it has established a
  transport connection to the MGC, it should close that connection.  In
  any event, it should reject all subsequent requests from the MGC with
  Error 406 Version Not supported.

  If the MGC supports a higher version than the MG but is able to
  support the lower version proposed by the MG, it shall send a
  ServiceChangeReply with the lower version and thereafter all the
  messages between MG and MGC shall conform to the lower version of the
  protocol. If the MGC is unable to comply, it shall reject the
  association, with Error 406 Version Not Supported.

  Protocol version negotiation may also occur at "handoff" and
  "failover" ServiceChanges.





Cuervo, et al.              Standards Track                    [Page 68]

RFC 2885                    Megaco Protocol                  August 2000


  When extending the protocol with new versions, the following rules
  should be followed.

  1. Existing protocol elements, i.e., procedures, parameters,
     descriptor, property,  values, should not be changed unless a
     protocol error needs to be corrected or it becomes necessary to
     change the operation of the service that is being supported by the
     protocol.

  2. The semantics of a command, a parameter, descriptor, property,
     value should not be changed.

  3. Established rules for formatting and encoding messages and
     parameters should not be modified.

  4. When information elements are found to be obsolete they can be
     marked as not used. However, the identifier for that information
     element will be marked as reserved. In that way it can not be used
     in future versions.

11.4 Failure of an MG

  If a MG fails, but is capable of sending a message to the MGC, it
  sends a ServiceChange with an appropriate method (graceful or forced)
  and specifies the Root TerminationID.  When it returns to service, it
  sends a ServiceChange with a "Restart" method.

  Allowing the MGC to send duplicate messages to both MGs accommodates
  pairs of MGs that are capable of redundant failover of one of the
  MGs.  Only the Working MG shall accept or reject transactions.  Upon
  failover, the Primary MG sends a ServiceChange command with a
  "Failover" method and a "MG Impending Failure" reason.  The MGC then
  uses the primary MG as the active MG.  When the error condition is
  repaired, the Working MG can send a "ServiceChange" with a "Restart"
  method.

11.5 Failure of an MGC

  If the MG detects a failure of its controlling MGC, it attempts to
  contact the next MGC on its pre-provisioned list.  It starts its
  attempts at the beginning (Primary MGC), unless that was the MGC that
  failed, in which case it starts at its first Secondary MGC.  It sends
  a ServiceChange message with a "Failover" method and a " MGC
  Impending Failure" reason.

  In partial failure, or manual maintenance reasons, an MGC may wish to
  direct its controlled MGs to use a different MGC.  To do so, it sends
  a ServiceChange method to the MG with a "HandOff" method, and its



Cuervo, et al.              Standards Track                    [Page 69]

RFC 2885                    Megaco Protocol                  August 2000


  designated replacement in ServiceChangeMgcId. The MG should send a
  ServiceChange message with a "Handoff" method and a "MGC directed
  change" reason to the designated MGC.  If it fails to get a reply, or
  fails to see an Audit command subsequently, it should behave as if
  its MGC failed, and start contacting secondary MGCs.  If the MG is
  unable to establish a control relationship with any MGC, it shall
  wait a random amount of time as described in section 9.2 and then
  start contacting its primary, and if necessary, its secondary MGCs
  again.

  No recommendation is made on how the MGCs involved in the Handoff
  maintain state information; this is considered to be out of scope of
  this recommendation. The MGC and MG may take the following steps when
  Handoff occurs.  When the MGC initiates a HandOff, the handover
  should be transparent to Operations on the Media Gateway.
  Transactions can be executed in any order, and could be in progress
  when the ServiceChange is executed.  Accordingly, commands in
  progress continue, transaction replies are sent to the new MGC (after
  a new control association is established), and the MG should expect
  outstanding transaction replies from the new MGC.  No new messages
  shall be sent to the new MGC until the control association is
  established.  Repeated transaction requests shall be directed to the
  new MGC.  The MG shall maintain state on all terminations and
  contexts.

  It is possible that the MGC could be implemented in such a way that a
  failed MGC is replaced by a working MGC where the identity of the new
  MGC is the same as the failed one.  In such a case,
  ServiceChangeMgcId would be specified with the previous value and the
  MG shall behave as if the value was changed, and send a ServiceChange
  message, as above.

  Pairs of MGCs that are capable of redundant failover can notify the
  controlled MGs of the failover by the above mechanism.

12. PACKAGE DEFINITION

  The primary mechanism for extension is by means of Packages.
  Packages define additional Properties, Events, Signals and Statistics
  that may occur on Terminations.

  Packages defined by IETF will appear in separate RFCs.

  Packages defined by ITU-T may appear in the relevant recommendations
  (e.g. as annexes).






Cuervo, et al.              Standards Track                    [Page 70]

RFC 2885                    Megaco Protocol                  August 2000


  1. A public document or a standard forum document, which can be
     referenced as the document that describes the package following
     the guideline above, should be specified.

  2. The document shall specify the version of the Package that it
     describes.

  3. The document should be available on a public web server and should
     have a stable URL. The site should provide a mechanism to provide
     comments and appropriate responses should be returned.

12.1 Guidelines for defining packages

  Packages define Properties, Events, Signals, and Statistics.

  Packages may also define new error codes according to the guidelines
  given in section 13.2. This is a matter of documentary convenience:
  the package documentation is submitted to IANA in support of the
  error code registration. If a package is modified, it is unnecessary
  to provide IANA with a new document reference in support of the error
  code unless the description of the error code itself is modified.

  Names of all such defined constructs shall consist of the PackageID
  (which uniquely identifies the package) and the ID of the item (which
  uniquely identifies the item in that package).  In the text encoding
  the two shall be separated by a forward slash ("/") character.
  Example: togen/playtone is the text encoding to refer to the play
  tone signal in the tone generation package.

  A Package will contain the following sections:

12.1.1 Package

  Overall description of the package, specifying:

   .  Package Name: only descriptive,
   .  PackageID:  Is an identifier
   .  Description:
   .  Version: A new version of a package can only add additional
      Properties, Events, Signals, Statistics and new possible values
      for an existing parameter described in the original package. No
      deletions or modifications shall be allowed. A version is  an
      integer in the range from 1 to 99.

   .  Extends (Optional): A package may extend an existing package. The
      version of the original package must be specified. When a package
      extends another package it shall only add additional Properties,
      Events, Signals, Statistics and new possible values for an



Cuervo, et al.              Standards Track                    [Page 71]

RFC 2885                    Megaco Protocol                  August 2000


      existing parameter described in the original package. An extended
      package shall not redefine or overload a name defined in the
      original package.  Hence, if package B version 1 extends package A
      version 1, version 2 of B will not be able to extend the A version
      2 if A version 2 defines a name already in B version 1.

12.1.2 Properties

  Properties defined by the package, specifying:

   .  Property Name: only descriptive.
   .  PropertyID:  Is an identifier
   .  Description:
   .  Type: One of:
         String: UTF-8 string
         Integer: 4 byte signed integer
         Double: 8 byte signed integer
         Character: Unicode UTF-8 encoding of a single letter.
                 Could be more than one octet.
         Enumeration: One of a list of possible unique values (See 12.3)
         Sub-list: A list of several values from a list
         Boolean

   .  Possible Values:
   .  Defined in: Which H.248 descriptor the property is defined in.
      LocalControl is for stream dependent properties. TerminationState
      is for stream independent properties.

   .  Characteristics: Read / Write or both, and (optionally), global:
      Indicates whether a property is read-only, or read-write, and if
      it is global.  If Global is omitted, the property is not global.
      If a property is declared as global, the value of the property is
      shared by all terminations realizing the package.

12.1.3 Events

  Events defined by the package, specifying:

   .  Event name: only descriptive.
   .  EventID:  Is an identifier
   .  Description:
   .  EventsDescriptor Parameters: Parameters used by the MGC to
      configure the event, and found in the EventsDescriptor.  See
      section 12.2.







Cuervo, et al.              Standards Track                    [Page 72]

RFC 2885                    Megaco Protocol                  August 2000


   .  ObservedEventsDescriptor Parameters: Parameters returned to the
      MGC in  Notify requests and in replies to command requests from
      the MGC that audit ObservedEventsDescriptor, and found in the
      ObservedEventsDescriptor.  See section 12.2.

12.1.4 Signals

   .  Signals defined by the package, specifying:
   .  Signal Name: only descriptive.
   .  SignalID:  Is an identifier. SignalID is used in a
      SignalsDescriptor
   .  Description
   .  SignalType: One of:
          - OO (On/Off)
          - TO (TimeOut)
          - BR (Brief)

  Note -  SignalType may be defined such that it is dependent on the
  value of one or more parameters. Signals that would be played with
  SignalType BR should have a default duration. The package has to
  define the default duration and signalType.

   .  Duration: in hundredths of seconds
   .  Additional Parameters: See section 12.2

12.1.5 Statistics

  Statistics defined by the package, specifying:

   .  Statistic name: only descriptive.
   .  StatisticID:  Is an identifier.  StatisticID is used in a
      StatisticsDescriptor.
   .  Description
   .  Units: unit of measure, e.g. milliseconds, packets.

12.1.6 Procedures

  Additional guidance on the use of the package.

12.2 Guidelines to defining Properties, Statistics and Parameters to
    Events and Signals.

   . Parameter Name: only descriptive
   . ParameterID: Is an identifier
   . Type: One of:
        String: UTF-8 octet string
        Integer: 4 octet signed integer
        Double: 8 octet signed integer



Cuervo, et al.              Standards Track                    [Page 73]

RFC 2885                    Megaco Protocol                  August 2000


        Character: Unicode UTF-8 encoding of a single letter. Could be
        more than one octet.
        Enumeration: One of a list of possible unique values (See 12.3)
        Sub-list: A list of several values from a list
        Boolean

   . Possible values:
   . Description:

12.3 Lists

  Possible values for parameters include enumerations.  Enumerations
  may be defined in a list.  It is recommended that the list be IANA
  registered so that packages that extend the list can be defined
  without concern for conflicting names.

12.4 Identifiers

  Identifiers in text encoding shall be strings of up to 64 characters,
  containing no spaces, starting with an alphanumeric character and
  consisting of alphanumeric characters and / or digits, and possibly
  including the special character underscore ("_").

  Identifiers in binary encoding are 2 octets long.

  Both text and binary values shall be specified for each identifier,
  including identifiers used as values in enumerated types.

12.5 Package Registration

  A package can be registered with IANA for interoperability reasons.
  See section 13 for IANA considerations.

13.  IANA CONSIDERATIONS

13.1 Packages

  The following considerations SHALL be met to register a package with
  IANA:

  1. A unique string name, unique serial number and version number is
     registered for each package.  The string name is used with text
     encoding.  The serial number shall be used with binary encoding.
     Serial Numbers 60000-64565 are reserved for private use. Serial
     number 0 is reserved.






Cuervo, et al.              Standards Track                    [Page 74]

RFC 2885                    Megaco Protocol                  August 2000


  2. A contact name, email and postal addresses for that contact shall
     be specified.  The contact information shall be updated by the
     defining organization as necessary.

  3. A reference to a document that describes the package, which should
     be public:

     The document shall specify the version of the Package that it
     describes.

     If the document is public, it should be located on a public web
     server and should have a stable URL. The site should provide a
     mechanism to provide comments and appropriate responses should be
     returned.

  4. Packages registered by other than recognized standards bodies
     shall have a minimum package name length of 8 characters.

  5. All other package names are first come-first served if all other
     conditions are met

13.2 Error Codes

  The following considerations SHALL be met to register an error code
  with IANA:

  1. An error number and a one line (80 character maximum) string is
     registered for each error.

  2. A complete description of the conditions under which the error is
     detected shall be included in a publicly available document.  The
     description shall be sufficiently clear to differentiate the error
     from all other existing error codes.

  3. The document should be available on a public web server and should
     have a stable URL.

  4. Error numbers registered by recognized standards bodies shall have
     3 or 4 character error numbers.

  5. Error numbers registered by all other organizations or individuals
     shall have 4 character error numbers.

  6. An error number shall not be redefined, nor modified except by the
     organization or individual that originally defined it, or their
     successors or assigns.





Cuervo, et al.              Standards Track                    [Page 75]

RFC 2885                    Megaco Protocol                  August 2000


13.3 ServiceChange Reasons

  The following considerations SHALL be met to register service change
  reason with IANA:

  1. A one phrase, 80-character maximum, unique reason code is
     registered for each reason.

  2. A complete description of the conditions under which the reason is
     used is detected shall be included in a publicly available
     document.  The description shall be sufficiently clear to
     differentiate the reason from all other existing reasons.

  3. The document should be available on a public web server and should
     have a stable URL.




































Cuervo, et al.              Standards Track                    [Page 76]

RFC 2885                    Megaco Protocol                  August 2000


ANNEX A: BINARY ENCODING OF THE PROTOCOL (NORMATIVE)

  This Annex specifies the syntax of messages using the notation
  defined in ASN.1 [ITU-T Recommendation X.680 (1997): Information
  Technology - Abstract Syntax Notation One (ASN.1) - Specification of
  basic notation.]. Messages shall be encoded for transmission by
  applying the basic encoding rules specified in [ITU-T Recommendation
  X.690(1994) Information Technology - ASN.1 Encoding Rules:
  Specification of Basic Encoding Rules (BER)].

A.1 Coding of wildcards

  The use of wildcards ALL and CHOOSE is allowed in the protocol.  This
  allows a MGC to partially specify Termination IDs and let the MG
  choose from the values that conform to the partial specification.
  Termination IDs may encode a hierarchy of names.  This hierarchy is
  provisioned. For instance, a TerminationID may consist of a trunk
  group, a trunk within the group and a circuit.  Wildcarding must be
  possible at all levels.  The following paragraphs explain how this is
  achieved.

  The ASN.1 description uses octet strings of up to 8 octets in length
  for Termination IDs.  This means that Termination IDs consist of at
  most 64 bits.  A fully specified Termination ID may be preceded by a
  sequence of wildcarding fields.  A wildcarding field is octet in
  length.  Bit 7 (the most significant bit) of this octet specifies
  what type of wildcarding is invoked:  if the bit value equals 1, then
  the ALL wildcard is used; if the bit value if 0, then the CHOOSE
  wildcard is used.  Bit 6 of the wildcarding field specifies whether
  the wildcarding pertains to one level in the hierarchical naming
  scheme (bit value 0) or to the level of the hierarchy specified in
  the wildcarding field plus all lower levels (bit value 1).  Bits 0
  through 5 of the wildcarding field specify the bit position in the
  Termination ID at which the starts.

  We illustrate this scheme with some examples.  In these examples, the
  most significant bit in a string of bits appears on the left hand
  side.

  Assume that Termination IDs are three octets long and that each octet
  represents a level in a hierarchical naming scheme.  A valid
  Termination ID is
       00000001 00011110 01010101.

  Addressing ALL names with prefix 00000001 00011110 is done as
  follows:
       wildcarding field: 10000111
       Termination ID: 00000001 00011110 xxxxxxxx.



Cuervo, et al.              Standards Track                    [Page 77]

RFC 2885                    Megaco Protocol                  August 2000


  The values of the bits labeled "x" is irrelevant and shall be ignored
  by the receiver.

  Indicating to the receiver that is must choose a name with 00011110
  as the second octet is done as follows:
       wildcarding fields: 00010111 followed by 00000111
       Termination ID: xxxxxxxx 00011110 xxxxxxxx.

  The first wildcard field indicates a CHOOSE wildcard for the level in
  the naming hierarchy starting at bit 23, the highest level in our
  assumed naming scheme.  The second wildcard field indicates a CHOOSE
  wildcard for the level in the naming hierarchy starting at bit 7, the
  lowest level in our assumed naming scheme.

  Finally, a CHOOSE-wildcarded name with the highest level of the name
  equal to 00000001 is specified as follows:
       wildcard field: 01001111
       Termination ID: 0000001 xxxxxxxx xxxxxxxx .

  Bit value 1 at bit position 6 of the first octet of the wildcard
  field indicates that the wildcarding pertains to the specified level
  in the naming hierarchy and all lower levels.

  Context IDs may also be wildcarded.  In the case of Context IDs,
  however, specifying partial names is not allowed.  Context ID 0x0
  SHALL be used to indicate the NULL Context, Context ID 0xFFFFFFFE
  SHALL be used to indicate a CHOOSE wildcard, and Context ID
  0xFFFFFFFF SHALL be used to indicate an ALL wildcard.

  TerminationID 0xFFFFFFFFFFFFFFFF SHALL be used to indicate the ROOT
  Termination.

A.2 ASN.1 syntax specification

  This section contains the ASN.1 specification of the H.248 protocol
  syntax.

  NOTE -  In case a transport mechanism is used that employs
  application level framing, the definition of Transaction below
  changes.  Refer to the annex defining the transport mechanism for the
  definition that applies in that case.

  NOTE - The ASN.1 specification below contains a clause defining
  TerminationIDList as a sequence of TerminationIDs.  The length of
  this sequence SHALL be one.  The SEQUENCE OF construct is present
  only to allow future extensions.

  MEDIA-GATEWAY-CONTROL DEFINITIONS AUTOMATIC TAGS::= BEGIN



Cuervo, et al.              Standards Track                    [Page 78]

RFC 2885                    Megaco Protocol                  August 2000


  MegacoMessage ::= SEQUENCE
  {
       authHeader      AuthenticationHeader OPTIONAL,
       mess            Message
  }

  AuthenticationHeader ::= SEQUENCE
  {
       secParmIndex    SecurityParmIndex,
       seqNum          SequenceNum,
       ad              AuthData
  }

  SecurityParmIndex ::= OCTET STRING(SIZE(4))

  SequenceNum       ::= OCTET STRING(SIZE(4))

  AuthData          ::= OCTET STRING (SIZE (16..32))

  Message ::= SEQUENCE
  {
       version         INTEGER(0..99),
  -- The version of the protocol defined here is equal to 1.
       mId             MId,    -- Name/address of message originator
       messageBody             CHOICE
       {
               messageError    ErrorDescriptor,
               transactions    SEQUENCE OF Transaction
       },
       ...
  }

  MId ::= CHOICE
  {
       ip4Address                      IP4Address,
       ip6Address                      IP6Address,
       domainName                      DomainName,
       deviceName                      PathName,
       mtpAddress                      OCTET STRING(SIZE(2)),
   -- Addressing structure of mtpAddress:
   --        15                0
   --        |  PC        | NI |
   --           14 bits    2 bits
        ...
  }

  DomainName ::= SEQUENCE
  {



Cuervo, et al.              Standards Track                    [Page 79]

RFC 2885                    Megaco Protocol                  August 2000


       name            IA5String,
       -- The name starts with an alphanumeric digit followed by a
       -- sequence of alphanumeric digits, hyphens and dots.  No two
       -- dots shall occur consecutively.
       portNumber      INTEGER(0..65535) OPTIONAL
  }

  IP4Address ::= SEQUENCE
  {
       address         OCTET STRING (SIZE(4)),
       portNumber      INTEGER(0..65535) OPTIONAL
  }

  IP6Address ::= SEQUENCE
  {
       address         OCTET STRING (SIZE(16)),
       portNumber      INTEGER(0..65535) OPTIONAL
  }

  PathName ::= IA5String(SIZE (1..64))
  -- See section A.3

  Transaction ::= CHOICE
  {
       transactionRequest      TransactionRequest,
       transactionPending      TransactionPending,
       transactionReply        TransactionReply,
       transactionResponseAck  TransactionResponseAck,
            -- use of response acks is dependent on underlying
  transport
       ...
  }

  TransactionId ::= INTEGER(0..4294967295)  -- 32 bit unsigned integer

  TransactionRequest ::= SEQUENCE
  {
       transactionId           TransactionId,
       actions                 SEQUENCE OF ActionRequest,
       ...
  }

  TransactionPending ::= SEQUENCE
  {
       transactionId           TransactionId,
       ...
  }




Cuervo, et al.              Standards Track                    [Page 80]

RFC 2885                    Megaco Protocol                  August 2000


  TransactionReply ::= SEQUENCE
  {
       transactionId           TransactionId,
       transactionResult       CHOICE
       {
            transactionError   ErrorDescriptor,
            actionReplies      SEQUENCE OF ActionReply
       },
       ...
  }

  TransactionResponseAck ::= SEQUENCE
  {
       firstAck        TransactionId,
       lastAck         TransactionId OPTIONAL
  }

  ErrorDescriptor ::= SEQUENCE
  {
       errorCode       ErrorCode,
       errorText       ErrorText OPTIONAL
  }

  ErrorCode ::= INTEGER(0..65535)
  -- See section 13 for IANA considerations w.r.t. error codes

  ErrorText ::= IA5String

  ContextID ::= INTEGER(0..4294967295)

  -- Context NULL Value: 0
  -- Context CHOOSE Value: 429467294 (0xFFFFFFFE)
  -- Context ALL Value: 4294967295 (0xFFFFFFFF)


  ActionRequest ::= SEQUENCE
  {
       contextId               ContextID,
       contextRequest          ContextRequest OPTIONAL,
       contextAttrAuditReq     ContextAttrAuditRequest OPTIONAL,
       commandRequests         SEQUENCE OF CommandRequest
  }

  ActionReply ::= SEQUENCE
  {
       contextId               ContextID,
       errorDescriptor         ErrorDescriptor OPTIONAL,
       contextReply            ContextRequest OPTIONAL,



Cuervo, et al.              Standards Track                    [Page 81]

RFC 2885                    Megaco Protocol                  August 2000


       commandReply            SEQUENCE OF CommandReply
  }

  ContextRequest ::= SEQUENCE
  {
       priority                INTEGER(0..15) OPTIONAL,
       emergency               BOOLEAN OPTIONAL,
       topologyReq             SEQUENCE OF TopologyRequest OPTIONAL,
       ...
  }

  ContextAttrAuditRequest ::= SEQUENCE
  {
  topology     NULL OPTIONAL,
       emergency       NULL OPTIONAL,
       priority        NULL OPTIONAL,
       ...
  }

  CommandRequest ::= SEQUENCE
  {
       command                 Command,
       optional                NULL OPTIONAL,
       wildcardReturn          NULL OPTIONAL,
       ...
  }

  Command ::= CHOICE
  {
       addReq                  AmmRequest,
       moveReq                 AmmRequest,
       modReq                  AmmRequest,
       -- Add, Move, Modify requests have the same parameters
       subtractReq             SubtractRequest,
       auditCapRequest         AuditRequest,
       auditValueRequest       AuditRequest,
       notifyReq               NotifyRequest,
       serviceChangeReq        ServiceChangeRequest,
       ...
  }

  CommandReply ::= CHOICE
  {
       addReply                AmmsReply,
       moveReply               AmmsReply,
       modReply                AmmsReply,
       subtractReply           AmmsReply,
       -- Add, Move, Modify, Subtract replies have the same parameters



Cuervo, et al.              Standards Track                    [Page 82]

RFC 2885                    Megaco Protocol                  August 2000


       auditCapReply           AuditReply,
       auditValueReply         AuditReply,
       notifyReply             NotifyReply,
       serviceChangeReply      ServiceChangeReply,
       ...
  }

  TopologyRequest ::= SEQUENCE
  {
       terminationFrom         TerminationID,
       terminationTo           TerminationID,
       topologyDirection       ENUMERATED
       {
               bothway(0),
               isolate(1),
               oneway(2)
       }
  }

  AmmRequest ::= SEQUENCE
  {
       terminationID           TerminationIDList,
       mediaDescriptor         MediaDescriptor OPTIONAL,
       modemDescriptor         ModemDescriptor OPTIONAL,
       muxDescriptor           MuxDescriptor OPTIONAL,
       eventsDescriptor        EventsDescriptor OPTIONAL,
       eventBufferDescriptor   EventBufferDescriptor OPTIONAL,
       signalsDescriptor       SignalsDescriptor OPTIONAL,
       digitMapDescriptor      DigitMapDescriptor OPTIONAL,
       auditDescriptor         AuditDescriptor OPTIONAL,
       ...
  }

  AmmsReply ::= SEQUENCE
  {
       terminationID           TerminationIDList,
       terminationAudit        TerminationAudit OPTIONAL
  }

  SubtractRequest ::= SEQUENCE
  {
       terminationID           TerminationIDList,
       auditDescriptor         AuditDescriptor OPTIONAL,
       ...
  }

  AuditRequest ::= SEQUENCE
  {



Cuervo, et al.              Standards Track                    [Page 83]

RFC 2885                    Megaco Protocol                  August 2000


       terminationID           TerminationID,
       auditDescriptor         AuditDescriptor,
       ...
  }

  AuditReply ::= SEQUENCE
  {
       terminationID           TerminationID,
       auditResult             AuditResult
  }

  AuditResult ::= CHOICE
  {
       contextAuditResult      TerminationIDList,
       terminationAuditResult  TerminationAudit
  }

  AuditDescriptor ::= SEQUENCE
  {
       auditToken      BIT STRING
       {
               muxToken(0), modemToken(1), mediaToken(2),
               eventsToken(3), signalsToken(4),
               digitMapToken(5), statsToken(6),
               observedEventsToken(7),
               packagesToken(8), eventBufferToken(9)
       } OPTIONAL,
       ...
  }

  TerminationAudit ::= SEQUENCE OF AuditReturnParameter

  AuditReturnParameter ::= CHOICE
  {
       errorDescriptor                 ErrorDescriptor,
       mediaDescriptor                 MediaDescriptor,
       modemDescriptor                 ModemDescriptor,
       muxDescriptor                   MuxDescriptor,
       eventsDescriptor                EventsDescriptor,
       eventBufferDescriptor           EventBufferDescriptor,
       signalsDescriptor               SignalsDescriptor,
       digitMapDescriptor              DigitMapDescriptor,
       observedEventsDescriptor        ObservedEventsDescriptor,
       statisticsDescriptor            StatisticsDescriptor,
       packagesDescriptor              PackagesDescriptor,
       ...
  }




Cuervo, et al.              Standards Track                    [Page 84]

RFC 2885                    Megaco Protocol                  August 2000


  NotifyRequest ::= SEQUENCE
  {
       terminationID                   TerminationIDList,
       observedEventsDescriptor        ObservedEventsDescriptor,
       errorDescriptor                 ErrorDescriptor OPTIONAL,
       ...
  }

  NotifyReply ::= SEQUENCE
  {
       terminationID                   TerminationIDList OPTIONAL,
       errorDescriptor                 ErrorDescriptor OPTIONAL,
       ...
  }

  ObservedEventsDescriptor ::= SEQUENCE
  {
       requestId                       RequestID,
       observedEventLst                SEQUENCE OF ObservedEvent
  }

  ObservedEvent ::= SEQUENCE
  {
       eventName                       EventName,
       streamID                        StreamID OPTIONAL,
       eventParList                    SEQUENCE OF EventParameter,
       timeNotation                    TimeNotation OPTIONAL
  }

  EventName ::= PkgdName

  EventParameter ::= SEQUENCE
  {
       eventParameterName              Name,
       value                           Value
  }

  ServiceChangeRequest ::= SEQUENCE
  {
       terminationID                   TerminationIDList,
       serviceChangeParms              ServiceChangeParm,
       ...
  }

  ServiceChangeReply ::= SEQUENCE
  {
       terminationID                   TerminationIDList,
       serviceChangeResult             ServiceChangeResult,



Cuervo, et al.              Standards Track                    [Page 85]

RFC 2885                    Megaco Protocol                  August 2000


       ...
  }

  -- For ServiceChangeResult, no parameters are mandatory.  Hence the
  -- distinction between ServiceChangeParm and ServiceChangeResParm.

  ServiceChangeResult ::= CHOICE
  {
       errorDescriptor                 ErrorDescriptor,
       serviceChangeResParms           ServiceChangeResParm
  }

  WildcardField ::= OCTET STRING(SIZE(1))

  TerminationID ::= SEQUENCE
  {
       wildcard        SEQUENCE OF WildcardField,
       id              OCTET STRING(SIZE(1..8))
  }
  -- See Section A.1 for explanation of wildcarding mechanism.
  -- Termination ID 0xFFFFFFFFFFFFFFFF indicates the ROOT Termination.

  TerminationIDList ::= SEQUENCE OF TerminationID
  MediaDescriptor ::= SEQUENCE
  {

       termStateDescr  TerminationStateDescriptor OPTIONAL,
       streams         CHOICE
               {
                       oneStream       StreamParms,
                       multiStream     SEQUENCE OF StreamDescriptor
               },
       ...
  }

  StreamDescriptor ::= SEQUENCE
  {
       streamID                        StreamID,
       streamParms                     StreamParms
  }

  StreamParms ::= SEQUENCE
  {
       localControlDescriptor     LocalControlDescriptor OPTIONAL,
       localDescriptor            LocalRemoteDescriptor OPTIONAL,
       remoteDescriptor           LocalRemoteDescriptor OPTIONAL,
       ...
  }



Cuervo, et al.              Standards Track                    [Page 86]

RFC 2885                    Megaco Protocol                  August 2000


  LocalControlDescriptor ::= SEQUENCE
  {
       streamMode      StreamMode OPTIONAL,
       reserveValue    BOOLEAN,
       reserveGroup    BOOLEAN,
       propertyParms   SEQUENCE OF PropertyParm,
       ...
  }

  StreamMode ::= ENUMERATED
  {
       sendOnly(0),
       recvOnly(1),
       sendRecv(2),
       inactive(3),
       loopBack(4),
               ...
  }

  -- In PropertyParm, value is a SEQUENCE OF octet string.  When sent
  -- by an MGC the interpretation is as follows:
  -- empty sequence means CHOOSE
  -- one element sequence specifies value
  -- longer sequence means "choose one of the values"
  -- The relation field may only be selected if the value sequence
  -- has length 1.  It indicates that the MG has to choose a value
  -- for the property. E.g., x > 3 (using the greaterThan
  -- value for relation) instructs the MG to choose any value larger
  -- than 3 for property x.
  -- The range field may only be selected if the value sequence
  -- has length 2.  It indicates that the MG has to choose a value
  -- in the range between the first octet in the value sequence and
  -- the trailing octet in the value sequence, including the
  -- boundary values.
  -- When sent by the MG, only responses to an AuditCapability request
  -- may contain multiple values, a range, or a relation field.

  PropertyParm ::= SEQUENCE
  {
       name            PkgdName,
       value           SEQUENCE OF OCTET STRING,
       extraInfo       CHOICE
               {
                       relation        Relation,
                       range           BOOLEAN
               } OPTIONAL

  }



Cuervo, et al.              Standards Track                    [Page 87]

RFC 2885                    Megaco Protocol                  August 2000


  Name ::= OCTET STRING(SIZE(2))

  PkgdName ::= OCTET STRING(SIZE(4))
  -- represents Package Name (2 octets) plus Property Name (2 octets)
  -- To wildcard a package use 0xFFFF for first two octets, choose
  -- is not allowed. To reference native property tag specified in
  -- Annex C, use 0x0000 as first two octets.
  -- Wildcarding of Package Name is permitted only if Property Name is
  -- also wildcarded.

  Relation ::= ENUMERATED
  {
       greaterThan(0),
       smallerThan(1),
       unequalTo(2),
       ...
  }

  LocalRemoteDescriptor ::= SEQUENCE
  {
       propGrps        SEQUENCE OF PropertyGroup,
       ...
  }

  PropertyGroup ::= SEQUENCE OF PropertyParm
  TerminationStateDescriptor ::= SEQUENCE
  {
       propertyParms           SEQUENCE OF PropertyParm,
       eventBufferControl      EventBufferControl OPTIONAL,
       serviceState            ServiceState OPTIONAL,
       ...
  }

  EventBufferControl ::= ENUMERATED
  {
       Off(0),
       LockStep(1),
       ...
  }

  ServiceState ::= ENUMERATED
  {
       test(0),
       outOfSvc(1),
       inSvc(2),
        ...
  }




Cuervo, et al.              Standards Track                    [Page 88]

RFC 2885                    Megaco Protocol                  August 2000


  MuxDescriptor   ::= SEQUENCE
  {
       muxType                 MuxType,
       termList                SEQUENCE OF TerminationID,
       nonStandardData         NonStandardData OPTIONAL,
       ...
  }

  MuxType ::= ENUMERATED
  {
       h221(0),
       h223(1),
       h226(2),
       v76(3),
       ...
  }

  StreamID ::= INTEGER(0..65535)  -- 16 bit unsigned integer

  EventsDescriptor ::= SEQUENCE
  {
       requestID               RequestID,
       eventList               SEQUENCE OF RequestedEvent
  }

  RequestedEvent ::= SEQUENCE
  {
       pkgdName                PkgdName,
       streamID                StreamID OPTIONAL,
       eventAction             RequestedActions OPTIONAL,
       evParList               SEQUENCE OF EventParameter
  }

  RequestedActions ::= SEQUENCE
  {
       keepActive              BOOLEAN,
       eventDM                 EventDM OPTIONAL,
       secondEvent             SecondEventsDescriptor OPTIONAL,
       signalsDescriptor       SignalsDescriptor OPTIONAL,
       ...
  }


  EventDM ::= CHOICE
  {    digitMapName    DigitMapName,
       digitMapValue   DigitMapValue
  }




Cuervo, et al.              Standards Track                    [Page 89]

RFC 2885                    Megaco Protocol                  August 2000


  SecondEventsDescriptor ::= SEQUENCE
  {
       requestID               RequestID,
       eventList               SEQUENCE OF SecondRequestedEvent
  }

  SecondRequestedEvent ::= SEQUENCE
  {
       pkgdName                PkgdName,
       streamID                StreamID OPTIONAL,
       eventAction             SecondRequestedActions OPTIONAL,
       evParList               SEQUENCE OF EventParameter
  }

  SecondRequestedActions ::= SEQUENCE
  {
       keepActive              BOOLEAN,
       eventDM                 EventDM OPTIONAL,
       signalsDescriptor       SignalsDescriptor OPTIONAL,
       ...
  }

  EventBufferDescriptor ::= SEQUENCE OF ObservedEvent

  SignalsDescriptor ::= SEQUENCE OF SignalRequest
  SignalRequest ::=CHOICE
  {
       signal          Signal,
       seqSigList      SeqSigList
  }

  SeqSigList ::= SEQUENCE
  {
       id              INTEGER(0..65535),
       signalList      SEQUENCE OF Signal
  }

  Signal ::= SEQUENCE
  {
       signalName              SignalName,
       streamID                StreamID OPTIONAL,
       sigType                 SignalType OPTIONAL,
       duration                INTEGER (0..65535) OPTIONAL,
       notifyCompletion        BOOLEAN OPTIONAL,
       keepActive              BOOLEAN OPTIONAL,
       sigParList              SEQUENCE OF SigParameter
  }




Cuervo, et al.              Standards Track                    [Page 90]

RFC 2885                    Megaco Protocol                  August 2000


  SignalType ::= ENUMERATED
  {
       brief(0),
       onOff(1),
       timeOut(2),
       ...
  }

  SignalName ::= PkgdName

  SigParameter ::= SEQUENCE
  {
       sigParameterName                Name,
       value                           Value
  }

  RequestID ::= INTEGER(0..4294967295)   -- 32 bit unsigned integer

  ModemDescriptor ::= SEQUENCE
  {
       mtl                     SEQUENCE OF ModemType,
       mpl                     SEQUENCE OF PropertyParm,
       nonStandardData         NonStandardData OPTIONAL
  }

  ModemType ::= ENUMERATED
  {
       v18(0),
       v22(1),
       v22bis(2),
       v32(3),
       v32bis(4),
       v34(5),
       v90(6),
       v91(7),
       synchISDN(8),
       ...
  }

  DigitMapDescriptor ::= SEQUENCE
  {
       digitMapName            DigitMapName,
       digitMapValue           DigitMapValue
  }

  DigitMapName ::= Name

  DigitMapValue ::= SEQUENCE



Cuervo, et al.              Standards Track                    [Page 91]

RFC 2885                    Megaco Protocol                  August 2000


  {
       startTimer              INTEGER(0..99) OPTIONAL,
       shortTimer              INTEGER(0..99) OPTIONAL,
       longTimer               INTEGER(0..99) OPTIONAL,
       digitMapBody            IA5String
       -- See Section A.3 for explanation of digit map syntax
  }

  ServiceChangeParm ::= SEQUENCE
  {
       serviceChangeMethod     ServiceChangeMethod,
       serviceChangeAddress    ServiceChangeAddress OPTIONAL,
       serviceChangeVersion    INTEGER(0..99) OPTIONAL,
       serviceChangeProfile    ServiceChangeProfile OPTIONAL,
       serviceChangeReason     Value,
       serviceChangeDelay      INTEGER(0..4294967295) OPTIONAL,
                                   -- 32 bit unsigned integer
       serviceChangeMgcId      MId OPTIONAL,
       timeStamp               TimeNotation OPTIONAL,
       nonStandardData         NonStandardData OPTIONAL,
  }

  ServiceChangeAddress ::= CHOICE
  {
       portNumber      INTEGER(0..65535), -- TCP/UDP port number
       ip4Address      IP4Address,
       ip6Address      IP6Address,
       domainName      DomainName,
       deviceName      PathName,
       mtpAddress      OCTET STRING(SIZE(2)),
       ...
  }

  ServiceChangeResParm ::= SEQUENCE
  {
       serviceChangeMgcId      MId OPTIONAL,
       serviceChangeAddress    ServiceChangeAddress OPTIONAL,
       serviceChangeVersion    INTEGER(0..99) OPTIONAL,
       serviceChangeProfile    ServiceChangeProfile OPTIONAL
  }

  ServiceChangeMethod ::= ENUMERATED
  {
       failover(0),
       forced(1),
       graceful(2),
       restart(3),
       disconnected(4),



Cuervo, et al.              Standards Track                    [Page 92]

RFC 2885                    Megaco Protocol                  August 2000


       handOff(5),
       ...
  }

  ServiceChangeProfile ::= SEQUENCE
  {
       profileName     Name,
       version         INTEGER(0..99)
  }

  PackagesDescriptor ::= SEQUENCE OF PackagesItem

  PackagesItem ::= SEQUENCE
  {
       packageName             Name,
       packageVersion  INTEGER(0..99)
  }

  StatisticsDescriptor ::= SEQUENCE OF StatisticsParameter

  StatisticsParameter ::= SEQUENCE
  {
       statName                PkgdName,
       statValue               Value
  }

  NonStandardData ::= SEQUENCE
  {
       nonStandardIdentifier   NonStandardIdentifier,
       data                    OCTET STRING
  }

  NonStandardIdentifier                ::= CHOICE
  {
       object                  OBJECT IDENTIFIER,
       h221NonStandard         H221NonStandard,
       experimental            IA5STRING(SIZE(8)),
   -- first two characters should be "X-" or "X+"
       ...
  }

  H221NonStandard ::= SEQUENCE
  {    t35CountryCode     INTEGER(0..255), -- country, as per T.35
       t35Extension       INTEGER(0..255), -- assigned nationally
       manufacturerCode   INTEGER(0..65535), -- assigned nationally
       ...
  }




Cuervo, et al.              Standards Track                    [Page 93]

RFC 2885                    Megaco Protocol                  August 2000


  TimeNotation ::= SEQUENCE
  {
       date            IA5String(SIZE(8)),  -- yyyymmdd format
       time            IA5String(SIZE(8))  -- hhmmssss format
  }

  Value ::= OCTET STRING


  END

A.3 Digit maps and path names

  From a syntactic viewpoint, digit maps are strings with syntactic
  restrictions imposed upon them.  The syntax of valid digit maps is
  specified in ABNF [RFC 2234].  The syntax for digit maps presented in
  this section is for illustrative purposes only. The definition of
  digitMap in Annex B takes precedence in the case of differences
  between the two.

  digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")"
  LWSP)
  digitStringList = digitString *( LWSP "/" LWSP digitString )
  digitString = 1*(digitStringElement)
  digitStringElement = digitPosition [DOT]
  digitPosition = digitMapLetter / digitMapRange
  digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP)
  digitLetter = *((DIGIT "-" DIGIT) /digitMapLetter)

  digitMapLetter = DIGIT               ;digits 0-9
       / %x41-4B / %x61-6B             ;a-k and A-K
       / "L"   / "S"                   ;Inter-event timers
                                       ;(long, short)
       / "Z"                           ;Long duration event
  LWSP = *(WSP / COMMENT / EOL)
  WSP = SP / HTAB
  COMMENT = ";" *(SafeChar / RestChar / WSP) EOL
  EOL = (CR [LF]) / LF
  SP = %x20
  HTAB = %x09
  CR = %x0D
  LF = %x0A
  SafeChar = DIGIT / ALPHA / "+" / "-" / "&" / "!" / "_" / "/" /
   "'" / "?" / "@" / "^" / "`" / "~" / "*" / "$" / "\" /
  "(" / ")" / "%" / "."
  RestChar = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#" /
               "<" / ">" / "=" / %x22
  DIGIT = %x30-39                      ; digits 0 through 9



Cuervo, et al.              Standards Track                    [Page 94]

RFC 2885                    Megaco Protocol                  August 2000


  ALPHA = %x41-5A / %x61-7A    ; A-Z, a-z
  A path name is also a string with syntactic restrictions imposed
  upon it.  The ABNF production defining it is copied from Annex B.

  PathName = NAME *(["/"] ["*"] ["@"] (ALPHA / DIGIT)) ["*"]
  NAME = ALPHA *63(ALPHA / DIGIT / "_" )

ANNEX B TEXT ENCODING OF THE PROTOCOL (NORMATIVE)

B.1 Coding of wildcards

  In a text encoding of the protocol, while TerminationIDs are
  arbitrary, by judicious choice of names, the wildcard character, "*"
  may be made more useful.  When the wildcard character is encountered,
  it will "match" all TerminationIDs having the same previous and
  following characters (if appropriate).  For example, if there were
  TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID
  R13/3/* would match all of them.  There are some circumstances where
  ALL Terminations must be referred to.  The TerminationID "*"
  suffices, and is referred to as ALL. The CHOOSE TerminationID "$" may
  be used to signal to the MG that it has to create an ephemeral
  Termination or select an idle physical Termination.

B.2 ABNF specification

  The protocol syntax is presented in ABNF according to RFC2234.

  megacoMessage        = LWSP [authenticationHeader SEP ] message

  authenticationHeader = AuthToken EQUAL SecurityParmIndex COLON
                         SequenceNum COLON AuthData

  SecurityParmIndex    = "0x" 8(HEXDIG)
  SequenceNum          = "0x" 8(HEXDIG)
  AuthData             = "0x" 32*64(HEXDIG)

  message    = MegacopToken SLASH Version SEP mId SEP messageBody
  ; The version of the protocol defined here is equal to 1.

  messageBody          = ( errorDescriptor / transactionList )

  transactionList      = 1*( transactionRequest / transactionReply /
                         transactionPending / transactionResponseAck )
  ;Use of response acks is dependent on underlying transport

  transactionPending   = PendingToken EQUAL TransactionID LBRKT RBRKT





Cuervo, et al.              Standards Track                    [Page 95]

RFC 2885                    Megaco Protocol                  August 2000


  transactionResponseAck = ResponseAckToken LBRKT transactionAck
                                       *(COMMA transactionAck) RBRKT
  transactionAck = transactionID / (transactionID "-" transactionID)

  transactionRequest   = TransToken EQUAL TransactionID LBRKT
                         actionRequest *(COMMA actionRequest) RBRKT

  actionRequest        = CtxToken EQUAL ContextID LBRKT ((
                         contextRequest [COMMA  commandRequestList])
                         / commandRequestList) RBRKT

  contextRequest          = ((contextProperties [COMMA contextAudit])
                          / contextAudit)

  contextProperties    = contextProperty *(COMMA contextProperty)

  ; at-most-once
  contextProperty  = (topologyDescriptor / priority / EmergencyToken)

  contextAudit    = ContextAuditToken LBRKT
                         contextAuditProperties *(COMMA
                         contextAuditProperties) RBRKT

  ; at-most-once
  contextAuditProperties = ( TopologyToken / EmergencyToken /
                             PriorityToken )

  commandRequestList= ["O-"] commandRequest *(COMMA ["O-"]
  commandRequest)

  commandRequest     = ( ammRequest / subtractRequest / auditRequest
                          / notifyRequest / serviceChangeRequest)

  transactionReply     = ReplyToken EQUAL TransactionID LBRKT
                         ( errorDescriptor / actionReplyList ) RBRKT

  actionReplyList      = actionReply *(COMMA actionReply )

  actionReply          = CtxToken EQUAL ContextID LBRKT
                         ( errorDescriptor / commandReply ) RBRKT

  commandReply       = (( contextProperties [COMMA commandReplyList] )
                          / commandReplyList )


  commandReplyList     = commandReplys *(COMMA commandReplys )





Cuervo, et al.              Standards Track                    [Page 96]

RFC 2885                    Megaco Protocol                  August 2000


  commandReplys        = (serviceChangeReply / auditReply / ammsReply
                          / notifyReply )

  ;Add Move and Modify have the same request parameters
  ammRequest           = (AddToken / MoveToken / ModifyToken ) EQUAL
                         TerminationID [LBRKT ammParameter *(COMMA
                         ammParameter) RBRKT]

  ;at-most-once
  ammParameter         = (mediaDescriptor / modemDescriptor /
                          muxDescriptor / eventsDescriptor /
                          signalsDescriptor / digitMapDescriptor /
                          eventBufferDescriptor / auditDescriptor)

  ammsReply            = (AddToken / MoveToken / ModifyToken /
                          SubtractToken ) EQUAL TerminationID [ LBRKT
                          terminationAudit RBRKT ]

  subtractRequest      =  ["W-"] SubtractToken EQUAL TerminationID
                          [ LBRKT auditDescriptor RBRKT]

  auditRequest         = ["W-"] (AuditValueToken / AuditCapToken )
                       EQUAL TerminationID LBRKT auditDescriptor RBRKT

  auditReply           = (AuditValueToken / AuditCapToken )
                         ( contextTerminationAudit  / auditOther)

  auditOther           = EQUAL TerminationID LBRKT
                         terminationAudit RBRKT

  terminationAudit     = auditReturnParameter *(COMMA
                       auditReturnParameter)

  contextTerminationAudit = EQUAL CtxToken ( terminationIDList /
                         LBRKT errorDescriptor RBRKT )

  ;at-most-once except errorDescriptor
  auditReturnParameter = (mediaDescriptor / modemDescriptor /
                          muxDescriptor / eventsDescriptor /
                          signalsDescriptor / digitMapDescriptor /
                    observedEventsDescriptor / eventBufferDescriptor /
                          statisticsDescriptor / packagesDescriptor /
                           errorDescriptor )

  auditDescriptor      = AuditToken LBRKT [ auditItem
                         *(COMMA auditItem) ] RBRKT





Cuervo, et al.              Standards Track                    [Page 97]

RFC 2885                    Megaco Protocol                  August 2000


  notifyRequest        = NotifyToken EQUAL TerminationID
                         LBRKT ( observedEventsDescriptor
                               [ COMMA errorDescriptor ] ) RBRKT

  notifyReply          = NotifyToken EQUAL TerminationID
                         [ LBRKT errorDescriptor RBRKT ]

  serviceChangeRequest = ServiceChangeToken EQUAL TerminationID
                         LBRKT serviceChangeDescriptor RBRKT

  serviceChangeReply   = ServiceChangeToken EQUAL TerminationID
                         [LBRKT (errorDescriptor /
                         serviceChangeReplyDescriptor) RBRKT]

  errorDescriptor   = ErrorToken EQUAL ErrorCode
                      LBRKT [quotedString] RBRKT

  ErrorCode            = 1*4(DIGIT) ; could be extended

  TransactionID        = UINT32

  mId                  = (( domainAddress / domainName )
                         [":" portNumber]) / mtpAddress / deviceName

  ; ABNF allows two or more consecutive "." although it is meaningless
  ; in a domain name.
  domainName           = "<" (ALPHA / DIGIT) *63(ALPHA / DIGIT / "-" /
                         ".") ">"
  deviceName           = pathNAME

  ContextID            = (UINT32 / "*" / "-" / "$")

  domainAddress        = "[" (IPv4address / IPv6address) "]"
  ;RFC2373 contains the definition of IP6Addresses.
  IPv6address          = hexpart [ ":" IPv4address ]
  IPv4address          = V4hex DOT V4hex DOT V4hex DOT V4hex
  V4hex                = 1*3(DIGIT) ; "0".."225"
  ; this production, while occurring in RFC2373, is not referenced
  ; IPv6prefix           = hexpart SLASH 1*2DIGIT
  hexpart          = hexseq "::" [ hexseq ] / "::" [ hexseq ] / hexseq
  hexseq               = hex4 *( ":" hex4)
  hex4                 = 1*4HEXDIG

  portNumber           = UINT16

  ; An mtp address is two octets long
  mtpAddress           = MTPToken LBRKT octetString RBRKT




Cuervo, et al.              Standards Track                    [Page 98]

RFC 2885                    Megaco Protocol                  August 2000


  terminationIDList    = LBRKT TerminationID *(COMMA TerminationID)
  RBRKT

  ; Total length of pathNAME must not exceed 64 chars.
  pathNAME        = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$" )
                         ["@" pathDomainName ]

  ; ABNF allows two or more consecutive "." although it is meaningless
  ; in a path domain name.
  pathDomainName       = (ALPHA / DIGIT / "*" )
                         *63(ALPHA / DIGIT / "-" / "*" / ".")

  TerminationID        = "ROOT" / pathNAME / "$" / "*"

  mediaDescriptor = MediaToken LBRKT mediaParm *(COMMA mediaParm)
                       RBRKT

  ; at-most-once per item
  ; and either streamParm or streamDescriptor but not both
  mediaParm            = (streamParm / streamDescriptor /
                          terminationStateDescriptor)

  ; at-most-once
  streamParm           = ( localDescriptor / remoteDescriptor /
                          localControlDescriptor )

  streamDescriptor     = StreamToken EQUAL StreamID LBRKT streamParm
                         *(COMMA streamParm) RBRKT

  localControlDescriptor = LocalControlToken LBRKT localParm
                           *(COMMA localParm) RBRKT

  ; at-most-once per item
  localParm            = ( streamMode / propertyParm /
  reservedValueMode
       / reservedGroupMode )

  reservedValueMode       = ReservedValueToken EQUAL ( "ON" / "OFF" )
  reservedGroupMode       = ReservedGroupToken EQUAL ( "ON" / "OFF" )

  streamMode           = ModeToken EQUAL streamModes

  streamModes          = (SendonlyToken / RecvonlyToken /
  SendrecvToken /
                         InactiveToken / LoopbackToken )






Cuervo, et al.              Standards Track                    [Page 99]

RFC 2885                    Megaco Protocol                  August 2000


  propertyParm         = pkgdName parmValue
  parmValue            = (EQUAL alternativeValue/ INEQUAL VALUE)
  alternativeValue     = ( VALUE / LSBRKT VALUE *(COMMA VALUE) RSBRKT
  /
                         LSBRKT VALUE DOT DOT VALUE RSBRKT )

  INEQUAL              = LWSP (">" / "<" / "#" ) LWSP
  LSBRKT               = LWSP "[" LWSP
  RSBRKT               = LWSP "]" LWSP

  localDescriptor      = LocalToken LBRKT octetString RBRKT

  remoteDescriptor     = RemoteToken LBRKT octetString RBRKT

  eventBufferDescriptor= EventBufferToken LBRKT observedEvent
                         *( COMMA observedEvent ) RBRKT

  eventBufferControl     = BufferToken EQUAL ( "OFF" / LockStepToken )

  terminationStateDescriptor = TerminationStateToken LBRKT
              terminationStateParm *( COMMA terminationStateParm )
  RBRKT

  ; at-most-once per item
  terminationStateParm =(propertyParm / serviceStates /
  eventBufferControl )

  serviceStates        = ServiceStatesToken EQUAL ( TestToken /
                         OutOfSvcToken / InSvcToken )

  muxDescriptor        = MuxToken EQUAL MuxType  terminationIDList

  MuxType              = ( H221Token / H223Token / H226Token /
                      V76Token / extensionParameter )

  StreamID             = UINT16
  pkgdName             = (PackageName SLASH ItemID) ;specific item
                   / (PackageName SLASH "*") ;all events in package
                   / ("*" SLASH "*") ; all events supported by the MG
  PackageName          = NAME
  ItemID               = NAME

  eventsDescriptor     = EventsToken EQUAL RequestID LBRKT
                        requestedEvent *( COMMA requestedEvent ) RBRKT

  requestedEvent       = pkgdName [ LBRKT eventParameter
                         *( COMMA eventParameter ) RBRKT ]




Cuervo, et al.              Standards Track                   [Page 100]

RFC 2885                    Megaco Protocol                  August 2000


  ; at-most-once each of KeepActiveToken , eventDM and eventStream
  ;at most one of either embedWithSig or embedNoSig but not both
  ;KeepActiveToken and embedWithSig must not both be present
  eventParameter       = ( embedWithSig / embedNoSig / KeepActiveToken
                          /eventDM / eventStream / eventOther )

  embedWithSig         = EmbedToken LBRKT signalsDescriptor
                            [COMMA embedFirst ] RBRKT
  embedNoSig           = EmbedToken LBRKT embedFirst RBRKT

  ; at-most-once of each
  embedFirst      = EventsToken EQUAL RequestID LBRKT
              secondRequestedEvent *(COMMA secondRequestedEvent) RBRKT

  secondRequestedEvent = pkgdName [ LBRKT secondEventParameter
                         *( COMMA secondEventParameter ) RBRKT ]

  ; at-most-once each of embedSig , KeepActiveToken, eventDM or
  ; eventStream
  ; KeepActiveToken and embedSig must not both be present
  secondEventParameter = ( EmbedSig / KeepActiveToken / eventDM /
                           eventStream / eventOther )

  embedSig  = EmbedToken LBRKT signalsDescriptor RBRKT

  eventStream          = StreamToken EQUAL StreamID

  eventOther           = eventParameterName parmValue

  eventParameterName   = NAME

  eventDM              = DigitMapToken ((EQUAL digitMapName ) /
                         (LBRKT digitMapValue RBRKT ))

  signalsDescriptor    = SignalsToken LBRKT [ signalParm
                         *(COMMA signalParm)] RBRKT

  signalParm           = signalList / signalRequest

  signalRequest        = signalName [ LBRKT sigParameter
                         *(COMMA sigParameter) RBRKT ]

  signalList           = SignalListToken EQUAL signalListId LBRKT
                         signalListParm *(COMMA signalListParm) RBRKT

  signalListId         = UINT16





Cuervo, et al.              Standards Track                   [Page 101]

RFC 2885                    Megaco Protocol                  August 2000


  ;exactly once signalType, at most once duration and every signal
  ;parameter
  signalListParm       = signalRequest

  signalName           = pkgdName
  ;at-most-once sigStream, at-most-once sigSignalType,
  ;at-most-once sigDuration, every signalParameterName at most once
  sigParameter    = sigStream / sigSignalType / sigDuration / sigOther
                  / notifyCompletion / KeepActiveToken
  sigStream            = StreamToken EQUAL StreamID
  sigOther             = sigParameterName parmValue
  sigParameterName     = NAME
  sigSignalType        = SignalTypeToken EQUAL signalType
  signalType           = (OnOffToken / TimeOutToken / BriefToken)
  sigDuration          = DurationToken EQUAL UINT16
  notifyCompletion     = NotifyCompletionToken EQUAL ("ON" / "OFF")

  observedEventsDescriptor = ObservedEventsToken EQUAL RequestID
                     LBRKT observedEvent *(COMMA observedEvent) RBRKT

  ;time per event, because it might be buffered
  observedEvent        = [ TimeStamp LWSP COLON] LWSP
                         pkgdName [ LBRKT observedEventParameter
                         *(COMMA observedEventParameter) RBRKT ]

  ;at-most-once eventStream, every eventParameterName at most once
  observedEventParameter = eventStream / eventOther

  RequestID            = UINT32

  modemDescriptor      = ModemToken (( EQUAL modemType) /
                         (LSBRKT modemType *(COMMA modemType) RSBRKT))
                         [ LBRKT NAME parmValue
                        *(COMMA NAME parmValue) RBRKT ]

  ; at-most-once
  modemType            = (V32bisToken / V22bisToken / V18Token /
                          V22Token / V32Token / V34Token / V90Token /
                       V91Token / SynchISDNToken / extensionParameter)

  digitMapDescriptor   = DigitMapToken EQUAL digitMapName
                         ( LBRKT digitMapValue RBRKT )
  digitMapName       = NAME
  digitMapValue      = ["T" COLON Timer COMMA] ["S" COLON Timer COMMA]
                         ["L" COLON Timer COMMA] digitMap
  Timer              = 1*2DIGIT
  digitMap =
       digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)



Cuervo, et al.              Standards Track                   [Page 102]

RFC 2885                    Megaco Protocol                  August 2000


  digitStringList      = digitString *( LWSP "|" LWSP digitString )
  digitString          = 1*(digitStringElement)
  digitStringElement   = digitPosition [DOT]
  digitPosition        = digitMapLetter / digitMapRange
  digitMapRange      = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP)
  digitLetter          = *((DIGIT "-" DIGIT ) / digitMapLetter)
  digitMapLetter       = DIGIT   ;Basic event symbols
                  / %x41-4B / %x61-6B ; a-k, A-K
                  / "L" / "S"   ;Inter-event timers (long, short)
                  / Z"         ;Long duration modifier

  ;at-most-once
  auditItem            = ( MuxToken / ModemToken / MediaToken /
                          SignalsToken / EventBufferToken /
                          DigitMapToken / StatsToken / EventsToken /
                          ObservedEventsToken / PackagesToken )

  serviceChangeDescriptor = ServicesToken LBRKT serviceChangeParm
                           *(COMMA serviceChangeParm) RBRKT

  serviceChangeParm    = (serviceChangeMethod / serviceChangeReason /
                         serviceChangeDelay / serviceChangeAddress /
                        serviceChangeProfile / extension / TimeStamp /
                         serviceChangeMgcId / serviceChangeVersion )

  serviceChangeReplyDescriptor = ServicesToken LBRKT
                      servChgReplyParm *(COMMA servChgReplyParm) RBRKT

  ;at-most-once. Version is REQUIRED on first ServiceChange response
  servChgReplyParm     = (serviceChangeAddress / serviceChangeMgcId /
                         serviceChangeProfile / serviceChangeVersion )
  serviceChangeMethod  = MethodToken EQUAL (FailoverToken /
                         ForcedToken / GracefulToken / RestartToken /
                         DisconnectedToken / HandOffToken /
                         extensionParameter)

  serviceChangeReason  = ReasonToken  EQUAL VALUE
  serviceChangeDelay   = DelayToken   EQUAL UINT32
  serviceChangeAddress = ServiceChangeAddressToken EQUAL VALUE
  serviceChangeMgcId   = MgcIdToken   EQUAL mId
  serviceChangeProfile = ProfileToken EQUAL NAME SLASH Version
  serviceChangeVersion = VersionToken EQUAL Version
  extension            = extensionParameter parmValue

  packagesDescriptor   = PackagesToken LBRKT packagesItem
                         *(COMMA packagesItem) RBRKT

  Version              = 1*2(DIGIT)



Cuervo, et al.              Standards Track                   [Page 103]

RFC 2885                    Megaco Protocol                  August 2000


  packagesItem         = NAME "-" UINT16

  TimeStamp            = Date "T" Time ; per ISO 8601:1988
  ; Date = yyyymmdd
  Date                 = 8(DIGIT)
  ; Time = hhmmssss
  Time                 = 8(DIGIT)
  statisticsDescriptor = StatsToken LBRKT statisticsParameter
                        *(COMMA statisticsParameter ) RBRKT

  ;at-most-once per item
  statisticsParameter  = pkgdName EQUAL VALUE

  topologyDescriptor   = TopologyToken LBRKT terminationA COMMA
                         terminationB COMMA topologyDirection RBRKT
  terminationA         = TerminationID
  terminationB         = TerminationID
  topologyDirection    = BothwayToken / IsolateToken / OnewayToken

  priority             = PriorityToken EQUAL UINT16

  extensionParameter   = "X"  ("-" / "+") 1*6(ALPHA / DIGIT)

  ; octetString is used to describe SDP defined in RFC2327.
  ; Caution should be taken if CRLF in RFC2327 is used.
  ; To be safe, use EOL in this ABNF.
  ; Whenever "}" appears in SDP, it is escaped by "\", e.g., "\}"
  octetString          = *(nonEscapeChar)
  nonEscapeChar        = ( "\}" / %x01-7C / %x7E-FF )
  quotedString         = DQUOTE 1*(SafeChar / RestChar/ WSP) DQUOTE

  UINT16               = 1*5(DIGIT)  ; %x0-FFFF
  UINT32               = 1*10(DIGIT) ; %x0-FFFFFFFF

  NAME                 = ALPHA *63(ALPHA / DIGIT / "_" )
  VALUE                = quotedString / 1*(SafeChar)
  SafeChar             = DIGIT / ALPHA / "+" / "-" / "&" /
                         "!" / "_" / "/" / "'" / "?" / "@" /
                         "^" / "`" / "~" / "*" / "$" / "\" /
                         "(" / ")" / "%" / "|" / "."

  EQUAL                = LWSP %x3D LWSP ; "="
  COLON                = %x3A           ; ":"
  LBRKT                = LWSP %x7B LWSP ; "{"
  RBRKT                = LWSP %x7D LWSP ; "}"
  COMMA                = LWSP %x2C LWSP ; ","
  DOT                  = %x2E           ; "."
  SLASH                = %x2F           ; "/"



Cuervo, et al.              Standards Track                   [Page 104]

RFC 2885                    Megaco Protocol                  August 2000


  ALPHA                = %x41-5A / %x61-7A ; A-Z / a-z
  DIGIT                = %x30-39         ; 0-9
  DQUOTE               = %x22            ; " (Double Quote)
  HEXDIG               = ( DIGIT / "A" / "B" / "C" / "D" / "E" / "F" )
  SP                   = %x20        ; space
  HTAB                 = %x09        ; horizontal tab
  CR                   = %x0D        ; Carriage return
  LF                   = %x0A        ; linefeed
  LWSP                 = *( WSP / COMMENT / EOL )
  EOL                  = (CR [LF] / LF )
  WSP                  = SP / HTAB ; white space
  SEP                  = ( WSP / EOL / COMMENT) LWSP
  COMMENT              = ";" *(SafeChar/ RestChar / WSP / %x22) EOL
  RestChar             = ";" / "[" / "]" / "{" / "}" / ":" / "," / "#"
  /
                         "<" / ">" / "="


  AddToken                   = ("Add"                   / "A")
  AuditToken                 = ("Audit"                 / "AT")
  AuditCapToken              = ("AuditCapability"       / "AC")
  AuditValueToken            = ("AuditValue"            / "AV")
  AuthToken                  = ("Authentication"        / "AU")
  BothwayToken               = ("Bothway"               / "BW")
  BriefToken                 = ("Brief"                 / "BR")
  BufferToken                = ("Buffer"                / "BF")
  CtxToken                   = ("Context"               / "C")
  ContextAuditToken          = ("ContextAudit"          / "CA")
  DigitMapToken              = ("DigitMap"              / "DM")
  DiscardToken               = ("Discard"               / "DS")
  DisconnectedToken          = ("Disconnected"          / "DC")
  DelayToken                 = ("Delay"                 / "DL")
  DurationToken              = ("Duration"              / "DR")
  EmbedToken                 = ("Embed"                 / "EB")
  EmergencyToken             = ("Emergency"             / "EM")
  ErrorToken                 = ("Error"                 / "ER")
  EventBufferToken           = ("EventBuffer"           / "EB")
  EventsToken                = ("Events"                / "E")
  FailoverToken              = ("Failover"              / "FL")
  ForcedToken                = ("Forced"                / "FO")
  GracefulToken              = ("Graceful"              / "GR")
  H221Token                  = ("H221" )
  H223Token                  = ("H223" )
  H226Token                  = ("H226" )
  HandOffToken               = ("HandOff"               / "HO")
  InactiveToken              = ("Inactive"              / "IN")
  IsolateToken               = ("Isolate"               / "IS")
  InSvcToken                 = ("InService"             / "IV")



Cuervo, et al.              Standards Track                   [Page 105]

RFC 2885                    Megaco Protocol                  August 2000


  KeepActiveToken            = ("KeepActive"            / "KA")
  LocalToken                 = ("Local"                 / "L")
  LocalControlToken          = ("LocalControl"          / "O")
  LockStepToken              = ("LockStep"              / "SP")
  LoopbackToken              = ("Loopback"              / "LB")
  MediaToken                 = ("Media"                 / "M")
  MegacopToken               = ("MEGACO"                / "!")
  MethodToken                = ("Method"                / "MT")
  MgcIdToken                 = ("MgcIdToTry"            / "MG")
  ModeToken                  = ("Mode"                  / "MO")
  ModifyToken                = ("Modify"                / "MF")
  ModemToken                 = ("Modem"                 / "MD")
  MoveToken                  = ("Move"                  / "MV")
  MTPToken                   = ("MTP")
  MuxToken                   = ("Mux"                   / "MX")
  NotifyToken                = ("Notify"                / "N")
  NotifyCompletionToken      = ("NotifyCompletion"      / "NC")
  ObservedEventsToken        = ("ObservedEvents"        / "OE")
  OnewayToken                = ("Oneway"                / "OW")
  OnOffToken                 = ("OnOff"                 / "OO")
  OutOfSvcToken              = ("OutOfService"          / "OS")
  PackagesToken              = ("Packages"              / "PG")
  PendingToken               = ("Pending"               / "PN")
  PriorityToken              = ("Priority"              / "PR")
  ProfileToken               = ("Profile"               / "PF")
  ReasonToken                = ("Reason"                / "RE")
  RecvonlyToken              = ("ReceiveOnly"           / "RC")
  ReplyToken                 = ("Reply"                 / "P")
  RestartToken               = ("Restart"               / "RS")
  RemoteToken                = ("Remote"                / "R")
  ReservedGroupToken         = ("ReservedGroup"         / "RG")
  ReservedValueToken         = ("ReservedValue"         / "RV")
  SendonlyToken              = ("SendOnly"              / "SO")
  SendrecvToken              = ("SendReceive"           / "SR")
  ServicesToken              = ("Services"              / "SV")
  ServiceStatesToken         = ("ServiceStates"         / "SI")
  ServiceChangeToken         = ("ServiceChange"         / "SC")
  ServiceChangeAddressToken  = ("ServiceChangeAddress"  / "AD")
  SignalListToken            = ("SignalList"            / "SL")
  SignalsToken               = ("Signals"               / "SG")
  SignalTypeToken            = ("SignalType"            / "SY")
  StatsToken                 = ("Statistics"            / "SA")
  StreamToken                = ("Stream"                / "ST")
  SubtractToken              = ("Subtract"              / "S")
  SynchISDNToken             = ("SynchISDN"             / "SN")
  TerminationStateToken      = ("TerminationState"      / "TS")
  TestToken                  = ("Test"                  / "TE")
  TimeOutToken               = ("TimeOut"               / "TO")



Cuervo, et al.              Standards Track                   [Page 106]

RFC 2885                    Megaco Protocol                  August 2000


  TopologyToken              = ("Topology"              / "TP")
  TransToken                 = ("Transaction"           / "T")
  ResponseAckToken           = ("TransactionResponseAck"/ "K")
  V18Token                   = ("V18")
  V22Token                   = ("V22")
  V22bisToken                = ("V22b")
  V32Token                   = ("V32")
  V32bisToken                = ("V32b")
  V34Token                   = ("V34")
  V76Token                   = ("V76")
  V90Token                   = ("V90")
  V91Token                   = ("V91")

ANNEX C TAGS FOR MEDIA STREAM PROPERTIES (NORMATIVE)

  Parameters for Local descriptors and Remote descriptors are specified
  as tag-value pairs if binary encoding is used for the protocol.  This
  annex contains the property names (PropertyID), the tags (Property
  Tag), type of the property (Type) and the values (Value).Values
  presented in the Value field when the field contains references shall
  be regarded as "information". The reference contains the normative
  values.  If a value field does not contain a reference then the
  values in that field can be considered as "normative".

  Tags are given as hexadecimal numbers in this annex. When setting the
  value of a property, a MGC may underspecify the value according to
  one of the mechanisms specified in section 7.1.1.

  For type "enumeration" the value is represented by the value in
  brackets, e.g., Send(0), Receive(1).

C.1 General Media Attributes

  PropertyID      Property        Type               Value
                      Tag

  Media               1001      Enumeration      Audio(0), Video(1),
                                                 Data(2),

  Transmission mode   1002      Enumeration      Send(0), Receive(1),
                                                 Send&Receive(2)

  Number of Channels  1003      Unsigned         0-255
                                Integer
  Sampling rate       1004      Unsigned         0-2^32
                                Integer
  Bitrate             1005      Integer          (0..4294967295)
     Note - units of 100 bit/s



Cuervo, et al.              Standards Track                   [Page 107]

RFC 2885                    Megaco Protocol                  August 2000


  ACodec              1006      Octet String     Audio Codec Type:
     Reference: ITU-T Rec. Q.765 - Application transport mechanism.
     Non-ITU codecs are defined with the appropriate standards
     organisation under a defined Organizational Identifier.

  Samplepp            1007      Unsigned         Maximum samples or
                                Integer          frames per packet: 0-
                                                 65535

  Silencesupp         1008      BOOLEAN          Silence Suppression:
                                                 True/false


  Encrypttype         1009      Octet string     Ref.: rec. H.245

  Encryptkey          100A      Octet string     Encryption key
                                SIZE(0..65535)
     Ref.: rec. H.235

  Echocanc           100B       Enumeration      Echo Canceller:
                                                 Off(0), G.165(1),
                                                 G168(2)

  Gain               100C       Unsigned         Gain in db: 0-65535
                                Integer
  Jitterbuff         100D       Unsigned         Jitter buffer size in
                                Integer          ms: 0-65535

  PropDelay          100E       Unsigned         Propagation Delay:
                                Integer          0..65535
     Maximum propagation delay in milliseconds for the bearer
     connection between two  media gateways. The maximum delay will be
     dependent on the bearer technology.

  RTPpayload         100F       integer          Payload type in RTP
                                                 Profile for Audio and
                                                 Video Conferences
                                                 with Minimal Control
     Ref.: RFC 1890

C.2 Mux Properties

  PropertyID     Property    Type                Value
                    Tag

  H.221              2001      Octet     Ref.: rec. H.245,
                               string    H222LogicalChannelParameters




Cuervo, et al.              Standards Track                   [Page 108]

RFC 2885                    Megaco Protocol                  August 2000


  H223               2002      Octet     Ref.: rec. H.245,
                               string    H223LogicalChannelParameters

  V76                2003      Octet     Ref.: rec. H.245,
                               String    V76LogicalChannelParameters


  H2250              2004      Octet     Ref.: rec. H.245,
                               String    H2250LogicalChannelParameters

C.3 General bearer properties

  PropertyID     Property       Type                Value
                   Tag
  Mediatx            3001      Enumeration    Media Transport Type:
                                              TDM Circuit(0), ATM(1),
                                              FR(2), Ipv4(3), Ipv6(4),
                                              _

  BIR                3002      4 OCTET        Value depends on
                                              transport technology

  NSAP               3003      1-20 OCTETS    See NSAP
     Reference: ITU X.213 Annex A

C.4 General ATM properties

  PropertyID         Property  Type           Value
                     Tag

  AESA               4001      20 OCTETS      ATM End System Address

  VPVC               4002      2 x 16 bit     VPC/VCI
                               integer

  SC                 4003      4 bits         Service Category
     Reference: ITU Recommendation Q.2931 (1995)

  BCOB               4004      5 bit integer  Broadband Bearer Class

     Reference: ITU Recommendation Q.2961.2 (06/97)

  BBTC               4005      octet          Broadband Transfer
                                              Capability
     Reference: ITU Recommendation Q.2961 (10/95)

  ATC                4006      Enumeration    I.371 ATM Traffic
                                              Capability



Cuervo, et al.              Standards Track                   [Page 109]

RFC 2885                    Megaco Protocol                  August 2000


     Reference: ITU Recommendation I.371:
     DBR(0), SBR1(1), SBR2(2), SBR(3), ABT/IT(4), ABT/DT(5), ABR(6)

  STC                4007      2 bits         Susceptibility to
                                              clipping
     Reference: ITU Recommendation Q.2931 (1995)
     00 Susceptible
     01 Not-susceptible

  UPCC               4008      2 bits         User Plane Connection
                                              configuration:
     Reference: ITU Recommendation Q.2931 (1995)
     00 Pt-to-pt,
     01 Pt-to-mpt


  PCR0               4009      24 bit         Peak Cell Rate (For
                               integer        CLP=0)
     Reference: ITU Recommendation I.371

  SCR0               400A      24 bit         Sustainable Cell Rate
                               integer        (For CLP=0)
     Reference: ITU Recommendation I.371

  MBS0               400B      24 bit         Maximum Burst Size (For
                               integer        CLP=0)
     Reference: ITU Recommendation I.371

  PCR1               400C      24 bit         Peak Cell Rate (For
                               integer        CLP=0+1)
     Reference: ITU Recommendation I.371

  SCR2               400D      24 bit         Sustainable Cell Rate
                               integer        (For CLP=0+1)
     Reference: ITU Recommendation I.371

  MBS3               400E      24 bit         Maximum Burst Size (For
                               integer        CLP=0+1)

     Reference: ITU Recommendation I.371

  BEI                400F      Boolean        Best Effort Indicator

  TI                 4010      Boolean        Tagging

  FD                 4011      Boolean        Frame Discard





Cuervo, et al.              Standards Track                   [Page 110]

RFC 2885                    Megaco Protocol                  August 2000


  FCDV               4012      24 bit         Forward P-P CDV
                               integer

  BCDV               4013      24 bit         Backward P-P CDV
                               integer

  FCLR0              4014      8 bit integer  Forward Cell Loss Ratio
                                              (For CLP=0)

  BCLR0              4015      8 bit integer  Backward P-P Cell Loss
                                              Ratio (For CLP=0)

  FCLR1              4016      8 bit integer  Forward Cell Loss Ratio

  BCLR1              4017      8 bit integer  Backward P-P Cell Loss
                                              Ratio (For CLP=0+1)

  FCDV               4018      24 bit         Forward Cell Delay
                               integer        Variation

  BCDV               4019      24 bit         Backward Cell Delay
                               integer        Variation

  FACDV              401A      24 bit         Forward Acceptable P-P-P
                               integer        CDV

  BACDV              401B      24 bit         Backward Acceptable P-P
                               integer        CDV

  FCCDV              401C      24 bit         Forward Cumulative P-P
                               integer        CDV

  BCCDV              401D      24 bit         Backward Cumulative P-P
                               integer        CDV

  FCLR               401E      8 bit integer  Acceptable Forward Cell
                                              Loss Ratio

  BCLR               401F      8 bit integer  Acceptable Backward Cell
                                              Loss Ratio

  EETD               4020      16 bit         End-to-end transit delay
                               integer

  Mediatx (See       4021                     AAL Type
  General
  Properties)
     Reference: ITU Recommendation Q.2931 (1995)



Cuervo, et al.              Standards Track                   [Page 111]

RFC 2885                    Megaco Protocol                  August 2000


  QosClass           4022      Integer 0-4    Qos Class
     Reference: ITU Recommendation Q.2931 (1995)
     QoS Parameter Application:
   Qos Class0  QoS                       ApplicationBest Effort
               Parameter Unspecified

       0       Unspecified               Best EffortConstant Bit rate
               Specified                 circuit emulation
       1       Specified                 Constant Bit rate circuit
               Specified                 emulationVariable bit rate
                                         video and audio
       2       Specified                 Variable bit rate video and
               Specified                 audioConnection-oriented data
       3       Specified                 Connection-oriented
               Specified                 dataConnectionless data
       4       Specified                 Connectionless data

  AALtype            4023      1 OCTET        AAL Type
     Reference: ITU Recommendation Q.2931 (1995)
     00000000        AAL for voice
     00000001        AAL type 1
     00000010        AAL type 2
     00000011        AAL type 3/4
     00000101        AAL type 5
     00010000        user defined AAL

C.5 Frame Relay

  PropertyID       Property  Type               Value
                   Tag

  DLCI             5001      Unsigned Integer   Data link connection
                                                id

  CID              5002      Unsigned Integer   sub-channel id.

  SID/Noiselevel   5003      Unsigned Integer   silence insertion
                                                descriptor

  Primary Payload  5004      Unsigned Integer   Primary Payload Type
  type
     Covers FAX and codecs









Cuervo, et al.              Standards Track                   [Page 112]

RFC 2885                    Megaco Protocol                  August 2000


C.6 IP

  PropertyID       Property  Type               Value
                   Tag


  IPv4             6001      32 BITS            Ipv4Address:
                             Ipv4Address
     Reference: IETF RFC791

  IPv6             6002      128 BITS           IPv6 Address:
     Reference: IETF RFC2460

  Port             6003      unsigned integer   0-65535

  Porttype         6004      enumerated         TCP(0), UDP(1),
                                                SCTP(2)

C.7 ATM AAL2

  PropertyID       Property  Type               Value
                   Tag

  AESA             7001      20 OCTETS          AAL2 service endpoint
                                                address
     as defined in Reference: ITU Recommendation Q.2630.1
     ESEA
     NSEA

  BIR              See C.3   4 OCTETS           Served user generated
                                                reference
     as defined in Reference: ITU Recommendation Q.2630.1
     SUGR

  ALC              7002      12 OCTETS          AAL2 link
                                                characteristics
     as defined in Reference: ITU Recommendation Q.2630.1
     max/average CPS-SDU bitrate,
     max/average CPS-SDU size

  SSCS             7003      I.366.2:                   Service
                             audio (8 OCTETS)           specific
                             multirate (3 OCTETS)       convergence
                             or I.366.1:                sublayer
                             SAR-assured (14 OCTETS)/   information
                             unassured (7 OCTETS)
     as defined in Reference: Q.2630.1 and used in I.366.1 and I.366.2
     I.366.2: audio/multirate



Cuervo, et al.              Standards Track                   [Page 113]

RFC 2885                    Megaco Protocol                  August 2000


     I.366.1: SAR-assured/unassured

  SUT              7004      1..254 octets      Served user transport
                                                parameter
     as defined in Reference: ITU Recommendation Q.2630.1

  TCI              7005      BOOLEAN            Test connection
                                                indicator

     as defined in Reference: ITU Recommendation  Q.2630.1

  Timer_CU         7006      32 bit integer     Timer-CU: Milliseconds
                                                to hold partially
                                                filled cell before
                                                sending.

  MaxCPSSDU        7007      8 bit integer      Maximum Common Part
                                                Sublayer Service Data
                                                Unit
     Ref.: rec. Q.2630.1

  SCLP             7008      Boolean            Set Cell Local
                                                PriorityLP bit:
                                                True if CLP bit is to
                                                be set

  EETR             7009      Boolean            Timing Requirements
     Reference: ITU Recommendation Q.2931 (1995)
     End to End Timing Required:
     In broadband bearer capability

  CID              700A      8 bits             subchannel id, 0-255
     Ref.: rec. I.363.2 (09/97)

C.8 ATM AAL1

  PropertyID       Property  Type               Value
                   Tag

  BIR              See                          GIT (Generic
                   Table                        Identifier Transport)                              4 OCTETS
                   C.3
     Ref.: Recommendation Q.2941.1 (09/97)

  AAL1ST           8001      1 OCTET            AAL1 Subtype:

     Reference: ITU Recommendation Q.2931 (1995)
     00000000       Null



Cuervo, et al.              Standards Track                   [Page 114]

RFC 2885                    Megaco Protocol                  August 2000


     00000001       voiceband signal transport on 64kbit/s
     00000010       circuit transport
     00000100       high-quality audio signal transport
     00000101       video signal transport

  CBRR             8002      1 OCTET            CBR Rate
     Reference: ITU Recommendation Q.2931 (1995)
     00000001           64 kbit/s
     00000100       1544 kbit/s
     00000101       6312 kbit/s
     00000110      32064 kbit/s
     00000111      44736 kbit/s
     00001000      97728 kbit/s
     00010000        2048 kbit/s
     00010001        8448 kbit/s
     00010010      34368 kbit/s
     00010011    139264 kbit/s
     01000000      n x 64 kbit/s
     01000001        n * 8 kbit/s

  MULT             See                          Multiplier, or n x
                   Table                        64k/8k/300
                   C.9

     Reference: ITU Recommendation Q.2931 (1995)

  SCRI             8003      1 OCTECT           Source Clock Frequency
                                                Recovery Method
     Reference: ITU Recommendation Q.2931 (1995)
     00000000    NULL
     00000001    SRTS
     00000010    ACM

  ECM              8004      1 OCTECT           Error Correction
                                                Method
     Reference: ITU Recommendation Q.2931 (1995)
     00000000    Null
     00000001    FEC-LOSS
     00000010    FEC-DELAY

  SDTB             8005      16 bit integer     Structured Data
                                                Transfer Blocksize
     Reference: ITU Recommendation I.363.1
     Block size of SDT CBR service

  PFCI             8006      8 bit integer      Partially filled cells
                                                indentifier
     Reference: ITU Recommendation I.363.1



Cuervo, et al.              Standards Track                   [Page 115]

RFC 2885                    Megaco Protocol                  August 2000


     1-47

  EETR             See       See Table C.7      See Table C.7
                   Table
                   C.7

C.9 Bearer Capabilities

  PropertyID       Property  Type               Value
                   Tag

  TMR              9001      1 OCTET            Transmission Medium
                                                Requirement (Q.763)

     Reference: ITU Recommendation Q.763(09/97)
     Bit 8 7 6 5 4 3 2 1
     00000000 - speech
     00000001 - spare
     00000010 - 64 kbit/s unrestricted
     00000011 - 3.1 kHz audio
     00000100 - reserved for alternate speech (service 2)/64 kbit/s
     unrestricted (service 1)
     00000101 - reserved for alternate 64 kbit/s unrestricted (service
     1)/speech (service 2)
     00000110 - 64 kbit/s preferred
     00000111 - 2 x 64 kbit/s unrestricted
     00001000 - 384 kbit/s unrestricted
     00001001 - 1536 kbit/s unrestricted
     00001010 - 1920 kbit/s unrestricted
     00001011 through 00001111- spare
     00010000 - 3 x 64 kbit/s unrestricted
     00010001 - 4 x 64 kbit/s unrestricted
     00010010 -  5 x 64 kbit/s unrestricted
     00010011 spare
     00010100 - 7 x 64 kbit/s unrestricted
     00010101 - 8 x 64 kbit/s unrestricted
     00010110 - 9 x 64 kbit/s unrestricted
     00010111 - 10 x 64 kbit/s unrestricted
     00011000 - 11 x 64 kbit/s unrestricted
     00011001 - 12 x 64 kbit/s unrestricted
     00011010 - 13 x 64 kbit/s unrestricted
     00011011 - 14 x 64 kbit/s unrestricted
     00011100 - 15 x 64 kbit/s unrestricted
     00011101 - 16 x 64 kbit/s unrestricted
     00011110 - 17 x 64 kbit/s unrestricted
     00011111 - 18 x 64 kbit/s unrestricted
     00100000 - 19 x 64 kbit/s unrestricted
     00100001 - 20 x 64 kbit/s unrestricted



Cuervo, et al.              Standards Track                   [Page 116]

RFC 2885                    Megaco Protocol                  August 2000


     00100010 - 21 x 64 kbit/s unrestricted
     00100011 - 22 x 64 kbit/s unrestricted
     00100100 - 23x 64 kbit/s unrestricted
     00100101 - spare
     00100110 - 25 x 64 kbit/s unrestricted
     00100111 - 26 x 64 kbit/s unrestricted
     00101000 - 27 x 64 kbit/s unrestricted
     00101001 - 28 x 64 kbit/s unrestricted
     00101010 - 29 x 64 kbit/s unrestricted
     00101011 through 11111111 Spare

  TMRSR            9002      1 OCTET            Transmission Medium
                                                Requirement Subrate

     0 - unspecified
     1 - 8kbit/s
     2 - 16kbit/s
     3 - 32kbit/s

  Contcheck        9003      BOOLEAN            Continuity Check
     Reference: ITU Recommendation Q.763(09/97)
     0 - Not required on this circuit
     1 - Required on this circuit

  ITC              9004      5 BITS             Information Transfer
                                                Capability
     Reference: ITU Recommendation Q.763(09/97)
     Bits 5 4 3 2 1
     00000 - Speech
     01000 -Unrestricted digital information
     01001- Restricted digital information
     10000 3.1 kHz audio
     10001 - Unrestricted digital information with tones/announcements
     (Note 2)
     11000 -Video
     All other values are reserved.

  TransMode        9005      2 BITS             Transfer Mode
     Reference: ITU Recommendation Q.931 (1998)
     Bit 2 1
     00 - Circuit mode
     10 - Packet mode

  TransRate        9006      5 BITS             Transfer Rate
     Reference: ITU Recommendation Q.931 (1998)
     Bit 5 4 3 2 1
     00000 - This code shall be used for packet mode calls
     10000 - 64 kbit/s



Cuervo, et al.              Standards Track                   [Page 117]

RFC 2885                    Megaco Protocol                  August 2000


     10001 - 2 x 64 kbit/s
     10011 -384 kbit/s
     10101 -1536 kbit/s
     10111 -1920 kbit/s
     11000 - Multirate (64 kbit/s base rate)

  MULT             9007      7 BITS             Rate Multiplier
     Reference: ITU Recommendation Q.931 (1998)
     Any value from 2 to n (maximum number of B-channels)

  USI              9008      5 BITS             User Information Layer
                                                1 Protocol
     Reference: ITU Recommendation Q.931 (1998)
     Bits 5 4 3 2 1
     00001 - CCITT standardized rate adaption V.110 and X.30.
     00010 - Recommendation G.711  u-law
     00011 - Recommendation G.711 A-law
     00100 - Recommendation G.721 32 kbit/s ADPCM and Recommendation
     I.460.
     00101 - Recommendations H.221 and H.242
     00110 - Recommendations H.223 and H.245
     00111 - Non-ITU-T standardized rate adaption.
     01000 - ITU-T standardized rate adaption V.120.
     01001 - CCITT standardized rate adaption X.31 HDLC flag stuffing.
     All other values are reserved.

  syncasync        9009      BOOLEAN            Synchronous/
                                                Asynchronous
     Reference: ITU Recommendation Q.931 (1998)
     0 - Synchronous data
     1 - Asynchronous data

  negotiation      900A      BOOLEAN            Negotiation
     Reference: ITU Recommendation Q.931 (1998)
     0 - In-band negotiation possible
     1 - In-band negotiation not possible

  Userrate         900B      5 BITS             User Rate
     Reference: ITU Recommendation Q.931 (1998)
     Bits 5 4 3 2 1
     00000 - Rate is indicated by E-bits specified in Recommendation
     I.460  or may be negotiated in-band
     00001 - 0.6 kbit/s Recommendations V.6  and X.1
     00010 - 1.2 kbit/s Recommendation V.6
     00011 - 2.4 kbit/s Recommendations V.6 and X.1
     00100 - 3.6 kbit/s Recommendation V.6
     00101 - 4.8 kbit/s Recommendations V.6 and X.1
     00110 - 7.2 kbit/s RecommendationV.6



Cuervo, et al.              Standards Track                   [Page 118]

RFC 2885                    Megaco Protocol                  August 2000


     00111 - 8 kbit/s Recommendation I.460
     01000 - 9.6 kbit/s Recommendations V.6 and X.1
     01001 - 14.4 kbit/s Recommendation V.6
     01010 - 16 kbit/s Recommendation I.460
     01011 - 19.2 kbit/s Recommendation V.6
     01100 - 32 kbit/s Recommendation I.460
     01101 - 38.4 kbit/s Recommendation V.110
     01110 - 48 kbit/s Recommendations V.6 and X.1
     01111 - 56 kbit/s Recommendation V.6
     10010 - 57.6 kbit/s Recommendation V.14 extended
     10011 - 28.8 kbit/s Recommendation V.110
     10100 - 24 kbit/s Recommendation V.110
     10101 - 0.1345 kbit/s Recommendation X.1
     10110 - 0.100 kbit/s Recommendation X.1
     10111 - 0.075/1.2 kbit/s Recommendations V.6 and X.1
     11000 - 1.2/0.075 kbit/s Recommendations V.6 and X.1
     11001 - 0.050 kbit/s Recommendations V.6 and X.1
     11010 - 0.075 kbit/s Recommendations V.6 and X.1
     11011 - 0.110 kbit/s Recommendations V.6 and X.1
     11100 - 0.150 kbit/s Recommendations V.6 and X.1
     11101 - 0.200 kbit/s Recommendations V.6 and X.1
     11110 - 0.300 kbit/s Recommendations V.6 and X.1
     11111 - 12 kbit/s Recommendation V.6
     All other values are reserved.

  INTRATE          900C      2 BITS             Intermediate Rate
     Reference: ITU Recommendation Q.931 (1998)
     Bit 2 1
     00 - Not used
     01 - 8 kbit/s
     10 - 16 kbit/s
     11 - 32 kbit/s

  nictx            900D      BOOLEAN            Network Independent
                                                Clock (NIC) on
                                                transmission
     Reference: ITU Recommendation Q.931 (1998)
     0 - Not required to send data with network independent clock
     1 - Required to send data with network independent clock
  nicrx            900E      BOOLEAN            Network independent
                                                clock (NIC) on
                                                reception
     Reference: ITU Recommendation Q.931 (1998)
     0 - Cannot accept data with network independent clock (i.e.
     sender does not support this optional procedure)
     1 - Can accept data with network independent clock (i.e. sender
     does support this optional procedure)




Cuervo, et al.              Standards Track                   [Page 119]

RFC 2885                    Megaco Protocol                  August 2000


  flowconttx       900F      BOOLEAN            Flow Control on
                                                transmission (Tx)
     Reference: ITU Recommendation Q.931 (1998)
     0 - Not required to send data with flow control mechanism
     1 - Required to send data with flow control mechanism

  flowcontrx       9010      BOOLEAN            Flow control on
                                                reception (Rx)
     Reference: ITU Recommendation Q.931 (1998)
     0 - Cannot accept data with flow control mechanism (i.e. sender
     does not support this optional procedure)
     1 - Can accept data with flow control mechanism (i.e. sender does
     support this optional procedure)

  rateadapthdr     9011      BOOLEAN            Rate adaption
                                                header/no header
     Reference: ITU Recommendation Q.931 (1998)
     0 - Rate adaption header not included
     1 - Rate adaption header included

  multiframe       9012      BOOLEAN            Multiple frame
                                                establishment support
                                                in data link
     Reference: ITU Recommendation Q.931 (1998)
     0 - Multiple frame establishment not supported. Only UI frames
     allowed.
     1 - Multiple frame establishment supported

  OPMODE           9013      BOOLEAN            Mode of operation
     Reference: ITU Recommendation Q.931 (1998)
     0 Bit transparent mode of operation
     1 Protocol sensitive mode of operation


  llidnegot        9014      BOOLEAN            Logical link
                                                identifier negotiation
     Reference: ITU Recommendation Q.931 (1998)
     0 Default, LLI = 256 only
     1 Full protocol negotiation

  assign           9015      BOOLEAN            Assignor/assignee
     Reference: ITU Recommendation Q.931 (1998)
     0 Message originator is "Default assignee"
     1 Message originator is "Assignor only"

  inbandneg        9016      BOOLEAN            In-band/out-band
                                                negotiation
     Reference: ITU Recommendation Q.931 (1998)



Cuervo, et al.              Standards Track                   [Page 120]

RFC 2885                    Megaco Protocol                  August 2000


     0- Negotiation is done with USER INFORMATION messages on a
     temporary signalling connection
     1- Negotiation is done in-band using logical link zero

  stopbits         9017      2 BITS             Number of stop bits
     Reference: ITU Recommendation Q.931 (1998)
     Bits 2 1
     00 - Not used
     01 - 1 bit
     10 - 1.5 bits
     11 - 2 bits

  databits         9018      2 BIT              Number of data bits
                                                excluding parity Bit
                                                if present
     Reference: ITU Recommendation Q.931 (1998)
     Bit 2 1
     00 - Not used
     01 - 5 bits
     10 - 7 bits
     11 - 8 bits

  parity           9019      3 BIT              Parity information
     Reference: ITU Recommendation Q.931 (1998)
     Bit 3 2 1
     000 - Odd
     010 - Even
     011 -None
     100 - Forced to 0
     101 - Forced to 1
     All other values are reserved.

  duplexmode       901A      BOOLEAN            Mode duplex
     Reference: ITU Recommendation Q.931 (1998)
     0 - Half duplex
     1 - Full duplex

  modem            901B      6 BIT              Modem Type
     Reference: ITU Recommendation Q.931 (1998)
     Bits 6 5 4 3 2 1
     00000 through 000101 National Use
     010001 - Recommendation V.21
     010010 - Recommendation V.22
     010011 - Recommendation V.22 bis
     010100 - Recommendation V.23
     010101 - Recommendation V.26
     011001 - Recommendation V.26 bis
     010111 -Recommendation V.26 ter



Cuervo, et al.              Standards Track                   [Page 121]

RFC 2885                    Megaco Protocol                  August 2000


     011000 - RecommendationV.27
     011001 - Recommendation V.27 bis
     011010 - Recommendation V.27 ter
     011011 - Recommendation V.29
     011101 - Recommendation V.32
     011110 - Recommendation V.34
     100000 through 101111 National Use
     110000 through 111111 User Specified

  layer2prot       901C      5 BIT              User information layer
                                                2 protocol
     Reference: ITU Recommendation Q.931 (1998)
     Bit 5 4 3 2 1
     00010 - Recommendation Q.921/I.441 [3]
     00110 - Recommendation X.25 [5], link layer
     01100 - LAN logical link control (ISO/IEC 8802-2)
     All other values are reserved.

  layer3prot       901D      5 BIT              User information layer
                                                3 protocol
     Reference: ITU Recommendation Q.931 (1998)
     Bit 5 4 3 2 1
     00010 - Recommendation Q.931/I.451
     00110 - Recommendation X.25, packet layer
     01011 - ISO/IEC TR 9577 (Protocol identification in the network
     layer)
     All other values are reserved.

  addlayer3prot    901E      OCTET              Additional User
                                                Information layer 3
                                                protocol
     Reference: ITU Recommendation Q.931 (1998)

     Bits 4321 4321
     1100 1100 - Internet Protocol (RFC 791) (ISO/IEC TR 9577)
     1100 1111 - Point-to-point Protocol (RFC 1548)

  DialledN         901F      30 OCTETS          Dialled Number
  DiallingN        9020      30 OCTETS          Dialling Number

  ECHOCI           9021      Enumeration        Echo Control
                                                Information
     echo canceler off (0), incoming echo canceler on (1), outgoing
     echo canceler on (2), incoming and outgoing echo canceler on (3)

  NCI              9022      1 OCTET            Nature of Connection
                                                Indicators
     Reference: ITU Recommendation Q.763



Cuervo, et al.              Standards Track                   [Page 122]

RFC 2885                    Megaco Protocol                  August 2000


     Bits 8 7 6 5 4 3 2 1
     Bits 2 1 Satellite Indicator
     0 0           no satellite circuit in the connection
     0 1  one satellite circuit in the connection
     1 0  two satellite circuits in the connection
     1 1  spare

     Bits 4 3 Continuity check indicator
     0 0  continuity check not required
     0 1  continuity check required on this circuit
     1 0  continuity check performed on a previous circuit
     1 1          spare

     Bits 5 Echo control device indicator
     0  outgoing echo control device not included
     1   outgoing echo control device included

     Bits 8 7 6 Spare

C.10 AAL5 Properties

  PropertyID       Property  Type               Value
                   Tag

  FMSDU            A001      32 bit integer     Forward Maximum CPCS-
                                                SDU Size:
     Reference: ITU Recommendation Q.2931 (1995)
     Maximum CPCS-SDU size sent in the direction from the calling user
     to the called user.

  BMSDU            A002      32 bit integer     Backwards Maximum
                                                CPCS-SDU Size
     Reference: ITU Recommendation Q.2931 (1995)
     Maximum CPCS-SDU size sent in the direction from the called user
     to the calling user.

  SSCS             See       See table C.7      See table C.7
                   table
                   C.7
     Additional values:
     VPI/VCI

  SC               See       See Table C.4      See table C.4
                   Table
                   C.4






Cuervo, et al.              Standards Track                   [Page 123]

RFC 2885                    Megaco Protocol                  August 2000


C.11 SDP Equivalents

  PropertyID       Property  Type               Value
                   Tag

  SDP_V            B001      STRING             Protocol Version

  SDP_O            B002      STRING             Owner/creator and
                                                session ID

  SDP_S            B003      STRING             Sesson name

  SDP_I            B004      STRING             Session identifier

  SDP_U            B005      STRING             URI of descriptor

  SDC_E            B006      STRING             email address

  SDP_P            B007      STRING             phone number


  SDP_C            B008      STRING             Connection information

  SDP_B            B009      STRING             Bandwidth Information

  SDP_Z            B00A      STRING             time zone adjustment

  SDP_K            B00B      STRING             Encryption Key

  SDP_A            B00C      STRING             Zero or more session
                                                attributes

  SDP_T            B00D      STRING             Active Session Time

  SDP_R            B00E      STRING             Zero or more repeat
                                                times

     Reference in all cases: IETF RFC2327, "Session Description
     Protocol"

C.12 H.245

  PropertyID       Property  Type           Value
                   Tag
  OLC              C001      octet string   The value of H.245
                                            OpenLogicalChannel
                                            structure.




Cuervo, et al.              Standards Track                   [Page 124]

RFC 2885                    Megaco Protocol                  August 2000


  OLCack           C002      octet string   The value of H.245
                                            OpenLogicalChannelAck
                                            structure.
  OLCcnf           C003      octet string   The value of H.245
                                            OpenLogicalChannelConfirm
                                            structure.
  OLCrej           C004      octet string   The value of H.245
                                            OpenLogicalChannelReject
                                            structure.
  CLC              C005      octet string   The value of H.245
                                            CloseLogicalChannel
                                            structure.
  CLCack           C006      octet string   The value of H.245
                                            CloseLogicalChannelAck
                                            structure.
     Reference in all cases: ITU-T Recommendation H.245

ANNEX D TRANSPORT OVER IP (NORMATIVE)

D.1 Transport over IP/UDP using Application Level Framing

  Protocol messages defined in this document may be transmitted over
  UDP.  When no port is provided by the peer (see section 7.2.8),
  commands should be sent to the default port number, 2944 for text-
  encoded operation or 2945 for binary-encoded operation.  Responses
  must be sent to the address and port from which the corresponding
  commands were sent except if the response is to a handoff or
  failover, in which case the procedures of 11.5 apply.

  Implementors using IP/UDP with ALF should be aware of the
  restrictions of the MTU on the maximum message size.

D.1.1 Providing At-Most-Once Functionality

  Messages, being carried over UDP, may be subject to losses. In the
  absence of a timely response, commands are repeated. Most commands
  are not idempotent.  The state of the MG would become unpredictable
  if, for example, Add commands were executed several times.  The
  transmission procedures shall thus provide an "At-Most-Once"
  functionality.

  Peer protocol entities are expected to keep in memory a list of the
  responses that they sent to recent transactions and a list of the
  transactions that are currently outstanding. The transaction
  identifier of each incoming message is compared to the transaction
  identifiers of the recent responses sent to the same MId. If a match
  is found, the entity does not execute the transaction, but simply
  repeats the response. If no match is found, the message will be



Cuervo, et al.              Standards Track                   [Page 125]

RFC 2885                    Megaco Protocol                  August 2000


  compared to the list of currently outstanding transactions. If a
  match is found in that list, indicating a duplicate transaction, the
  entity does not execute the transaction (see section 8.2.3 for
  procedures on sending TransactionPending).

  The procedure uses a long timer value, noted LONG-TIMER in the
  following.  The timer should be set larger than the maximum duration
  of a transaction, which should take into account the maximum number
  of repetitions, the maximum value of the repetition timer and the
  maximum propagation delay of a packet in the network.  A suggested
  value is 30 seconds.

  The copy of the responses may be destroyed either LONG-TIMER seconds
  after the response is issued, or when the entity receives a
  confirmation that the response has been received, through the
  "Response Acknowledgement parameter". For transactions that are
  acknowledged through this parameter, the entity shall keep a copy of
  the transaction-id for LONG-TIMER seconds after the response is
  issued, in order to detect and ignore duplicate copies of the
  transaction request that could be produced by the network.

D.1.2 Transaction identifiers and three-way handshake

D.1.2.1 Transaction identifiers

  Transaction identifiers are 32 bit integer numbers.  A Media Gateway
  Controller may decide to use a specific number space for each of the
  MGs that they manage, or to use the same number space for all MGs
  that belong to some arbitrary group.  MGCs may decide to share the
  load of managing a large MG between several independent processes.
  These processes will share the same transaction number space.  There
  are multiple possible implementations of this sharing, such as having
  a centralized allocation of transaction identifiers, or pre-
  allocating non-overlapping ranges of identifiers to different
  processes.  The implementations shall guarantee that unique
  transaction identifiers are allocated to all transactions that
  originate from a logical MGC (identical mId). MGs can simply detect
  duplicate transactions by looking at the transaction identifier and
  mId only.

D.1.2.2 Three-way handshake

  The TransactionResponse Acknowledgement parameter can be found in any
  message. It carries a set of "confirmed transaction-id ranges".
  Entities may choose to delete the copies of the responses to
  transactions whose id is included in "confirmed transaction-id





Cuervo, et al.              Standards Track                   [Page 126]

RFC 2885                    Megaco Protocol                  August 2000


  ranges" received in the transaction response messages. They should
  silently discard further commands when the transaction-id falls
  within these ranges.

  The "confirmed transaction-id ranges" values shall not be used if
  more than LONG-TIMER seconds have elapsed since the MG issued its
  last response to that MGC, or when a MG resumes operation.  In this
  situation, transactions should be accepted and processed, without any
  test on the transaction-id.

  Messages that carry the "Transaction Response Acknowledgement"
  parameter may be transmitted in any order.  The entity shall retain
  the "confirmed transaction-id ranges" receivedfor LONG-TIMER seconds.

  In the binary encoding, if only the firstAck is present in a response
  acknowledgement (see Annex A.2), only one transaction is
  acknowledged.  If both firstAck and lastAck are present, then the
  range of transactions from firstAck to lastAck is acknowledged.  In
  the text encoding, a horizontal dash is used to indicate a range of
  transactions being acknowledged (see Annex B.2).

D.1.3 Computing retransmission timers

  It is the responsibility of the requesting entity to provide suitable
  time outs for all outstanding transactions, and to retry transactions
  when time outs have been exceeded. Furthermore, when repeated
  transactions fail to be acknowledged, it is the responsibility of the
  requesting entity to seek redundant services and/or clear existing or
  pending connections.

  The specification purposely avoids specifying any value for the
  retransmission timers. These values are typically network dependent.
  The retransmission timers should normally estimate the timer value by
  measuring the time spent between the sending of a command and the
  return of a response.

  Note -  One possibility is to use the algorithm implemented in TCP-
  IP, which uses two variables:

   .  The average acknowledgement delay, AAD, estimated through an
      exponentially smoothed average of the observed delays.

   .  The average deviation, ADEV, estimated through an exponentially
      smoothed average of the absolute value of the difference between
      the observed delay and the current average.  The retransmission
      timer, in TCP, is set to the sum of the average delay plus N
      times the average deviation. The maximum value of the timer
      should however be bounded for the protocol defined in this



Cuervo, et al.              Standards Track                   [Page 127]

RFC 2885                    Megaco Protocol                  August 2000


      document, in order to guarantee that no repeated packet would be
      received by the gateways after LONG-TIMER seconds.  A suggested
      maximum value is 4 seconds.

  After any retransmission, the entity should do the following:

   .  It should double the estimated value of the average delay, AAD

   .  It should compute a random value, uniformly distributed between
      0.5 AAD and AAD

   .  It should set the retransmission timer to the sum of that random
      value and N times the average deviation.

  This procedure has two effects. Because it includes an exponentially
  increasing component, it will automatically slow down the stream of
  messages in case of congestion. Because it includes a random
  component, it will break the potential synchronization between
  notifications triggered by the same external event.

D.1.4 Provisional responses

  Executing some transactions may require a long time. Long execution
  times may interact with the timer based retransmission procedure.
  This may result either in an inordinate number of retransmissions, or
  in timer values that become too long to be efficient. Entities that
  can predict that a transaction will require a long execution time may
  send a provisional response, "Transaction Pending".

  Entities that receive a Transaction Pending shall switch to a
  different repetition timer for repeating requests.  The root
  termination has a property (ProvisionalResponseTimerValue), which can
  be set to the requested maximum number of milliseconds between
  receipt of a command and transmission of the TransactionPending
  response.  Upon receipt of a final response, an immediate
  confirmation shall be sent, and normal repetition timers shall be
  used thereafter.  Receipt of a Transaction Pending after receipt of a
  reply shall be ignored.

D.1.5 Repeating Requests, Responses and Acknowledgements

  The protocol is organized as a set of transactions, each of which is
  composed request and a response, commonly referred to as an
  acknowledgement.  The protocol messages, being carried over UDP, may
  be subject to losses. In the absence of a timely response,
  transactions are repeated. Entities are expected to keep in memory a





Cuervo, et al.              Standards Track                   [Page 128]

RFC 2885                    Megaco Protocol                  August 2000


  list of the responses that they sent to recent transactions, i.e. a
  list of all the responses they sent over the last LONG-TIMER seconds,
  and a list of the transactions that are currently being executed.

  The repetition mechanism is used to guard against three types of
  possible errors:

   .  transmission errors, when for example a packet is lost due to
      noise on a line or congestion in a queue;
   .  component failure, when for example an interface to a entity
      becomes unavailable;
   .  entity failure, when for example an entire entity become
      unavailable.

  The entities should be able to derive from the past history an
  estimate of the packet loss rate due to transmission errors.  In a
  properly configured system, this loss rate should be kept very low,
  typically less than 1%.  If a Media Gateway Controller or a Media
  Gateway has to repeat a message more than a few times, it is very
  legitimate to assume that something else than a transmission error is
  occurring.  For example, given a loss rate of 1%, the probability
  that five consecutive transmission attempts fail is 1 in 100 billion,
  an event that should occur less than once every 10 days for a Media
  Gateway Controller that processes 1 000 transactions per second.
  (Indeed, the number of repetition that is considered excessive should
  be a function of the prevailing packet loss rate.)  We should note
  that the "suspicion threshold", which we will call "Max1", is
  normally lower than the "disconnection threshold", which should be
  set to a larger value.

  A classic retransmission algorithm would simply count the number of
  successive repetitions, and conclude that the association is broken
  after retransmitting the packet an excessive number of times
  (typically between 7 and 11 times.) In order to account for the
  possibility of an undetected or in-progress "failover", we modify the
  classic algorithm so that if the Media Gateway receives a valid
  ServiceChange message announcing a failover, it will start
  transmitting outstanding commands to that new MGC.  Responses to
  commands are still transmitted to the source address of the command.

  In order to automatically adapt to network load, this document
  specifies exponentially increasing timers.  If the initial timer is
  set to 200 milliseconds, the loss of a fifth retransmission will be
  detected after about 6 seconds.  This is probably an acceptable
  waiting delay to detect a failover.   The repetitions should continue
  after that delay not only in order to perhaps overcome a transient





Cuervo, et al.              Standards Track                   [Page 129]

RFC 2885                    Megaco Protocol                  August 2000


  connectivity problem, but also in order to allow some more time for
  the execution of a failover - waiting a total delay of 30 seconds is
  probably acceptable.

  It is, however, important that the maximum delay of retransmissions
  be bounded.  Prior to any retransmission, it is checked that the time
  elapsed since the sending of the initial datagram is no greater than
  T-MAX. If more than T-MAX time has elapsed, the MG concludes that the
  MGC has failed, and it begins its recovery process. When the MG
  establishes a new control association, it can retransmit to the new
  MGC.  Alternatively, a MG may use a ServiceChange with
  ServiceChangeMethod equal to disconnected to inform the new MGC that
  the MG lost one or more transactions.  The value T-MAX is related to
  the LONG-TIMER value: the LONG-TIMER value is obtained by adding to
  T-MAX the maximum propagation delay in the network.

D.2  using TCP

  Protocol messages as defined in this document may be transmitted over
  TCP.  When no port is specified by the other side (see section
  7.2.8), the commands should be sent to the default port. The defined
  protocol has messages as the unit of transfer, while TCP is a
  stream-oriented protocol.  TPKT, according to RFC1006 SHALL be used
  to delineate messages within the TCP stream.

  In a transaction-oriented protocol, there are still ways for
  transaction requests or responses to be lost.  As such, it is
  recommended that entities using TCP transport implement application
  level timers for each request and each response, similar to those
  specified for application level framing over UDP.

D.2.1 Providing the At-Most-Once functionality

  Messages, being carried over TCP, are not subject to transport
  losses, but loss of a transaction request or its reply may
  nonetheless be noted in real implementations. In the absence of a
  timely response, commands are repeated. Most commands are not
  idempotent.  The state of the MG would become unpredictable if, for
  example, Add commands were executed several times.

  To guard against such losses, it is recommended that entities follow
  the procedures in section D.1.1

D.2.2 Transaction identifiers and three way handshake

  For the same reasons, it is possible that transaction replies may be
  lost even with a reliable delivery protocol such as TCP.  It is
  recommended that entities follow the procedures in section D.1.2.2.



Cuervo, et al.              Standards Track                   [Page 130]

RFC 2885                    Megaco Protocol                  August 2000


D.2.3 Computing retransmission timers

  With reliable delivery, the incidence of loss of a transaction
  request or reply is expected to be very low.  Therefore, only simple
  timer mechanisms are required. Exponential back-off algorithms should
  not be necessary, although they could be employed where, as in an
  MGC, the code to do so is already required, since MGCs must implement
  ALF/UDP as well as TCP.

D.2.4 Provisional responses

  As with UDP, executing some transactions may require a long time.
  Entities that can predict that a transaction will require a long
  execution time may send a provisional response, "Transaction
  Pending". They should send this response if they receive a repetition
  of a transaction that is still being executed.

  Entities that receive a Transaction Pending shall switch to a longer
  repetition timer for that transaction.

  Entities shall retain Transactions and replies until they are
  confirmed.  The basic procedure of section D.1.4 should be followed,
  but simple timer values should be sufficient. There is no need to
  send an immediate confirmation upon receipt of a final response.

D.2.5 Ordering of commands

  TCP provides ordered delivery of transactions.  No special procedures
  are required.  It should be noted that ALF/UDP allows sending entity
  to modify its behavior under congestion, and in particular, could
  reorder transactions when congestion is encountered.  TCP could not
  achieve the same results.

ANNEX E BASIC PACKAGES

  This Annex contains definitions of some packages for use with the
  Megaco protocol.

E.1 Generic

  PackageID: g (0x000e)
  Version: 1
  Extends: None

  Description: Generic package for commonly encountered items.






Cuervo, et al.              Standards Track                   [Page 131]

RFC 2885                    Megaco Protocol                  August 2000


E.1.1 Properties

  None

E.1.2 Events

  Cause
  -----
  EventID:     cause (0x0001)

  Generic error event

  ObservedEvents Descriptor Parameters:

       General Cause
       -------------
       ParameterID: Generalcause (0x0001)

       Description: This parameter groups the failures into six
       groups, which the MGC may act upon.

       Possible values:        Enumerated,
               "NR" Normal Release (0x0001)
               "UR" Unavailable Resources (0x0002)
               "FT" Failure, Temporary (0x0003)
               "FP" Failure, Permanent (0x0004)
               "IW" Interworking Error (0x0005)
               "UN" Unsupported (0x0006)

       Failure Cause
       -------------
       ParameterID: Failurecause (0x0002)

       Description: The Release Cause is the value generated by the
       Released equipment, i.e. a released network connection.
       The concerned value is defined in the appropriate bearer
       control protocol.

       Possible Values: OCTET STRING

  Signal Completion
  -----------------
  EventID: sc (0x0002)

  Indicates termination of one or more signals for which the
  notifyCompletion parameter was set to "ON".  For further procedural
  description, see sections 7.1.11, 7.1.17, and 7.2.7.




Cuervo, et al.              Standards Track                   [Page 132]

RFC 2885                    Megaco Protocol                  August 2000


  ObservedEvents Descriptor parameters:

       Signal Identity
       ---------------
       ParameterID:  SigID (0x0001)

       This parameter identifies the signals which have terminated.

       Type: list

       Possible values: a list of signals and/or sequential signal
       lists which have terminated.  A signal outside of a sequential
       signal list shall be identified using the pkgdName syntax
       without wildcarding.  An individual signal inside of a
       sequential signal list shall be identified using the sequential
       signal list syntax with the correct signal list identifier,
       enclosing the name of the specific signal which terminated in
       pkgdName syntax.

       Termination Method
       ------------------
       ParameterID:  Meth (0x0002)

       Indicates the means by which the signal terminated.

       Type: enumeration

       Possible values:
               "TO" (0x0001) Duration expired
               "EV" (0x0002) Interrupted by event
               "SD" (0x0003) Halted by new Signals Descriptor
               "NC" (0x0004) Not completed, other cause

E.1.3 Signals

  None

E.1.4 Statistics

  None

E.2 Base Root Package

  Base Root Package
  PackageID: root (0x000f)
  Version: 1
  Extends: None




Cuervo, et al.              Standards Track                   [Page 133]

RFC 2885                    Megaco Protocol                  August 2000


  Description: This package defines Gateway wide properties.

E.2.1 Properties

  MaxNrOfContexts
  ---------------
  PropertyID: maxNumberOfContexts (0x0001)

  The value of this property gives the maximum number of contexts that
  can exist at any time.  The NULL context is not included in this
  number.

  Type: Double

  Possible values: 1 and up

  MaxTerminationsPerContext
  -------------------------
  PropertyID: maxTerminationsPerContext (0x0002)

  The maximum number of allowed terminations in a context, see section
  6.1

  Type: Integer

  Possible Values: any integer

  Defined In: TerminationState

  normalMGExecutionTime
  ---------------------
  PropertyId: normalMGExecutionTime (0x0003)

  Settable by the MGC to indicate the interval within which the MGC
  expects a response to any transaction from the MG (exclusive of
  network delay)

  Type: Integer

  Possible Values: any integer, represents milliseconds

  normalMGCExecutionTime
  ----------------------
  PropertyId: normalMGCExecutionTime (0x0004)

  Settable by the MGC to indicate the interval within which the MG
  should expects a response to any transaction from the MGC (exclusive
  of network delay)



Cuervo, et al.              Standards Track                   [Page 134]

RFC 2885                    Megaco Protocol                  August 2000


  Type: Integer

  Possible Values: any integer, represents milliseconds

  ProvisionalResponseTimerValue
  -----------------------------
  PropertyId: ProvisionalResponseTimerValue (0x0005)

  Indicates the time within which to expect a Pending Response if a
  Transaction cannot be completed.  Initially set to
  normalMGExecutionTime or normalMGCExecutionTime as appropriate, plus
  network delay, but may be lowered.

E.2.2 Events

  None

E.2.3 Signals

  None

E.2.4 Statistics

  None

E.2.5 Procedures

  None

E.3 Tone Generator Package

  PackageID: tonegen (0x0001)
  Version: 1
  Extends: None

  Description:
  This package defines signals to generate audio tones. This package
  does not specify parameter values. It is intended to be extendable.
  Generally, tones are defined as an individual signal with a
  parameter, ind, representing "interdigit" time delay, and a tone id
  to be used with playtones.  A tone id should be kept consistent with
  any tone generation for the same tone. MGs are expected to be
  provisioned with the characteristics of appropriate tones for the
  country in which the MG is located.

E.3.1 Properties

  None



Cuervo, et al.              Standards Track                   [Page 135]

RFC 2885                    Megaco Protocol                  August 2000


E.3.2 Events

  None

E.3.3 Signals

  Play tone
  ---------
  SignalID: pt (0x0001)

  Plays audio tone over an audio channel

  Signal Type: Brief

  Duration: Provisioned

  Additional Parameters:

       Tone id list
       ------------
       ParameterID: tl (0x0001)

       Type: list of tone ids.

       List of tones to be played in sequence. The list  SHALL contain
       one or more tone ids.

       Inter signal duration
       ---------------------
       ParameterID: ind (0x0002)

       Type: integer.

       Timeout between two consecutive tones in milliseconds

  No tone ids are specified in this package. Packages that extend this
  package can add possible values for tone id as well as adding
  individual tone signals.

E.3.4 Statistics

  None

E.3.5 Procedures

  None





Cuervo, et al.              Standards Track                   [Page 136]

RFC 2885                    Megaco Protocol                  August 2000


E.4 Tone Detection Package

  PackageID: tonedet (0x0002)
  Version: 1
  Extends: None

  This Package defines events for audio tone detection. Tones are
  selected by name (tone id). MGs are expected to be provisioned with
  the characteristics of appropriate tones for the country in which the
  MG is located.

  This package does not specify parameter values. It is intended to be
  extendable.

E.4.1 Properties

  None

E.4.2 Events

  Start tone detected
  -------------------
  EventID: std, 0x0001

  Detects the start of a tone. The characteristics of positive tone
  detection is implementation dependent.

  EventsDescriptor parameters:

       Tone id list
       ------------
       ParameterID: tl (0x0001)

       Type:  list of tone ids

       Possible values: The only tone id defined in this package is
       "wild card" which is "*" in text encoding and 0x0000 in binary.
       Extensions to this package would add possible values for tone
       id. If tl is "wild card", any tone id is detected.

  ObservedEventsDescriptor parameters:

       Tone id
       --------
       ParameterID: tid (0x0003)

       Type: Enumeration




Cuervo, et al.              Standards Track                   [Page 137]

RFC 2885                    Megaco Protocol                  August 2000


       Possible values: "wildcard" as defined above is the only value
       defined in this package. Extensions to this package would add
       additional possible values for tone id.

  End tone detected
  -----------------
  EventID: etd, 0x0002

  Detects the end of a tone.

  EventDescriptor parameters:

       Tone id list
       ------------
       ParameterID: tl (0x0001)

       Type: enumeration or list of enumerated types

       Possible values: No possible values are specified in this
       package. Extensions to this package would add possible values
       for tone id.

  ObservedEventsDescriptor parameters:

       Tone id
       -------
       ParameterID: tid (0x0003)

       Type: Enumeration

       Possible values: "wildcard" as defined above is the only value
       defined in this package. Extensions to this package would add
       possible values for tone id

       Duration
       --------
       ParameterId: dur (0x0002)

       Type: integer, in milliseconds

       This parameter contains the duration of the tone from first
       detection until it stopped.

  Long tone detected
  ------------------
  EventID: ltd, 0x0003





Cuervo, et al.              Standards Track                   [Page 138]

RFC 2885                    Megaco Protocol                  August 2000


  Detects that a tone has been playing for at least a certain amount of
  time

  EventDescriptor parameters:

       Tone id list
       ------------
       ParameterID: tl (0x0001)

       Type: enumeration or list

       Possible values: "wildcard" as defined above is the only value
       defined in this package. Extensions to this package would add
       possible values for tone id

       Duration:
       ---------
       ParameterID: dur (0x0002)

       Type: integer, duration to test against

       Possible values: any legal integer, expressed in milliseconds.

  ObservedEventsDescriptor parameters:

       Tone id
       -------
       ParameterID: tid (0x0003)

       Possible values: No possible values are specified in this
       package. Extensions to this package would add possible values
       for tone id.

E.4.3 Signals

  None

E.4.4 Statistics

  None

E.4.5 Procedures

  None







Cuervo, et al.              Standards Track                   [Page 139]

RFC 2885                    Megaco Protocol                  August 2000


E.5 Basic DTMF Generator Package

  PackageID: dg (0x0003) Version: 1 Extends: tonegen version 1

  This package defines the basic DTMF tones as signals and extends the
  allowed values of parameter tl of playtone in tonegen.

E.5.1 Properties

  None

E.5.2 Events

  None

E.5.3 Signals

  dtmf character 0
  ----------------
  SignalID: d0 (0x0010)

  Generate DTMF 0 tone. The physical characteristic of DTMF 0 is
  defined in the gateway.

  Signal Type: Brief

  Duration: Provisioned

  Additional Parameters:

  None

  Additional Values:
  -----------------

  d0 (0x0010) is defined as a toneid for playtone.

  The other dtmf characters are specified in exactly the same way. A
  table with all signal names and signal IDs is included.  Note that
  each dtmf character is defined as both a signal and a toneid, thus
  extending the basic tone generation package.  Also note that dtmf
  SignalIds are different from the names used in a digit map.









Cuervo, et al.              Standards Track                   [Page 140]

RFC 2885                    Megaco Protocol                  August 2000


               Signal Name         Signal ID/tone id

               dtmf character 0    d0 (0x0010)
               dtmf character 1    d1 (0x0011)
               dtmf character 2    d2 (0x0012)
               dtmf character 3    d3 (0x0013)
               dtmf character 4    d4 (0x0014)
               dtmf character 5    d5 (0x0015)
               dtmf character 6    d6 (0x0016)
               dtmf character 7    d7 (0x0017)
               dtmf character 8    d8 (0x0018)
               dtmf character 9    d9 (0x0019)
               dtmf character *    ds (0x0020)

               dtmf character #    do (0x0021)
               dtmf character A    da (0x001a)
               dtmf character B    db (0x001b)
               dtmf character C    dc (0x001c)
               dtmf character D    dd (0x001d)

E.5.4 Statistics

  None

E.5.5 Procedures

  None

E.6 DTMF detection Package

  PackageID: dd (0x0004)
  Version: 1
  Extends: tonedet version 1

  This package defines the basic DTMF tones detection. This Package
  extends the possible values of tone id in the "start tone detected"
  "end tone detected" and "long tone detected" events.

  Additional tone id values are all tone ids described in package dg
  (basic DTMF generator package).

  The following table maps DTMF events to digit map symbols as
  described in section 7.1.14.








Cuervo, et al.              Standards Track                   [Page 141]

RFC 2885                    Megaco Protocol                  August 2000


               DTMF                Event  Symbol

               d0                  "0"
               d1                  "1"
               d2                  "2"
               d3                  "3"
               d4                  "4"
               d5                  "5"
               d6                  "6"
               d7                  "7"
               d8                  "8"
               d9                  "9"
               da                  "A" or "a"

               db                  "B" or "b"
               dc                  "C" or "c"
               dd                  "D" or "d"
               ds                  "E" or "e"
               do                  "F" or "f"

E.6.1 Properties

  None

E.6.2 Events

  DTMF digits
  -----------

  EventIds are defined with the same names as the SignalIds defined in
  the table found in section E.5.3.

  DigitMap Completion Event
  -------------------------
  EventID: ce, 0x0001

  Generated when a digit map completes as described in section 7.1.14.

  EventsDescriptor parameters: digit map processing is activated only
  if a digit map parameter is present, specifying a digit map by name
  or by value.  Other parameters such as a KeepActive flag or embedded
  Events or Signals Descriptors may be present.

  ObservedEventsDescriptor parameters:

       DigitString
       -----------
       ParameterID: ds (0x0001)



Cuervo, et al.              Standards Track                   [Page 142]

RFC 2885                    Megaco Protocol                  August 2000


       Type: string of digit map symbols (possibly empty) returned as
       a quotedString.

       Possible values: a sequence of the characters "0" through "9",
       "A" through "F", and the long duration modifier "L".

       Description: the portion of the current dial string as
       described in section 7.1.14 which matched part or all of an
       alternative event sequence specified in the digit map.

       Termination Method
       ------------------
       ParameterID:    Meth (0x0003)

       Type: enumeration

       Possible values:
               "UM" (0x0001) Unambiguous match
               "PM"  (0x0002) Partial match, completion by timer
               expiry or unmatched event
               "FM"  (0x0003) Full match, completion by timer expiry
               or unmatched event

       Description: indicates the reason for generation of the event.
       See the procedures in section 7.1.14.

E.6.3 Signals

  None

E.6.4 Statistics

  None

E.6.5 Procedures

  None

E.7 Call Progress Tones Generator Package

  PackageID: cg, 0x0005
  Version: 1
  Extends: tonegen version 1

  This package defines the basic call progress tones as signals and
  extends the allowed values of the tl parameter of playtone in
  tonegen.




Cuervo, et al.              Standards Track                   [Page 143]

RFC 2885                    Megaco Protocol                  August 2000


E.7.1 Properties

  None

E.7.2 Events

  None

E.7.3 Signals

  Dial Tone
  ---------
  SignaID: dt (0x0030)

  Generate dial tone. The physical characteristic of dial tone is
  available in the gateway.

  Signal Type: Timeout

  Duration: Provisioned

  Additional Parameters:
  None

  Additional Values
  -----------------
  dt (0x0030) is defined as a tone id for playtone The other tones of
  this package are defined in exactly the same way.  A table with all
  signal names and  signal IDs is included.  Note that each tone is
  defined as both a signal and a toneid, thus extending the basic tone
  generation package.

           Signal Name                 Signal ID/tone id

           Dial Tone                   dt (0x0030)
           Ringing Tone                rt (0x0031)
           Busy Tone                   bt (0x0032)
           Congestion Tone             ct (0x0033)
           Special Information Tone    sit(0x0034)
           Warning Tone                wt (0x0035)
           Payphone Recognition Tone   pt (0x0036)
           Call Waiting Tone           cw (0x0037)
           Caller Waiting Tone         cr (0x0038)








Cuervo, et al.              Standards Track                   [Page 144]

RFC 2885                    Megaco Protocol                  August 2000


E.7.4 Statistics

  None

E.7.5 Procedures

  NOTE -  The required set of tone ids corresponds to those defined in
  Recommendation E.180/Q.35 [ITU-T Recommendation E.180/Q.35 (1998)].
  See E.180 for definition of the meanings of these tones.

E.8 Call Progress Tones Detection Package

  PackageID: cd (0x0006)
  Version: 1
  Extends: tonedet version 1

  This package defines the basic call progress detection tones. This
  Package extends the possible values of tone id in the "start tone
  detected", "end tone detected" and "long tone detected" events.

  Additional values
  -----------------

  tone id values are defined for start tone detected, end tone detected
  and long tone detected with the same values as those in package cg
  (call progress tones generation package).

  The required set of tone ids corresponds to Recommendation E.180/Q.35
  [ITU-T Recommendation E.180/Q.35 (1998)].  See Recommendation
  E.180/Q.35 for definition of the meanings of these tones.

E.8.1 Properties

  none

E.8.2 Events

  Events are defined as in the call progress tones generator package
  (cg) for the tones listed in the table of section E.7.3

E.8.3 Signals

  none

E.8.4 Statistics

  none




Cuervo, et al.              Standards Track                   [Page 145]

RFC 2885                    Megaco Protocol                  August 2000


E.8.5 Procedures

  none

E.9 Analog Line Supervision Package

  PackageID: al, 0x0009
  Version: 1
  Extends: None

  This package defines events and signals for an analog line.

E.9.1 Properties

  None

E.9.2 Events

  onhook
  ------
  EventID: on (0x0004)

  Detects handset going on hook. Whenever an events descriptor is
  activated that requests monitoring for an on-hook event and the line
  is already on-hook, then the MG shall immediately generate an on-hook
  event.

  EventDescriptor parameters

  None

  ObservedEventsDescriptor parameters

  None

  offhook
  -------
  EventID: of (0x0005)

  Detects handset going off hook. Whenever an events descriptor is
  activated that requests monitoring for an off-hook event and the line
  is already off-hook, then the MG shall immediately generate an off-
  hook event.

  EventDescriptor parameters

  None




Cuervo, et al.              Standards Track                   [Page 146]

RFC 2885                    Megaco Protocol                  August 2000


  ObservedEventsDescriptor parameters

  None

  flashhook
  ---------
  EventID: fl, 0x0006

  Detects handset flash. A flash occurs when an onhook is followed by
  an offhook between a minimum and maximum duration.

  EventDescriptor parameters

       Minimum duration
       ----------------
       ParameterID: mindur (0x0004)

       Type: integer in milliseconds

       Default value is provisioned

       Maximum duration
       ----------------
       ParameterID: maxdur (0x0005)

       Type: integer in milliseconds

       Default value is provisioned

  ObservedEventsDescriptor parameters

  None

E.9.3 Signals

  ring
  ----
  SignalID: ri, 0x0002

  Applies ringing on the line

  Signal Type: TimeOut

  Duration: Provisioned

  Additional Parameters:

       Cadence



Cuervo, et al.              Standards Track                   [Page 147]

RFC 2885                    Megaco Protocol                  August 2000


       -------
       ParameterID: cad (0x0006)

       Type: list of integers representing durations of alternating on
       and off segments, constituting a complete ringing cycle
       starting with an on. Units in milliseconds.

       Default is fixed or provisioned.  Restricted function MGs may
       ignore cadence  values they are incapable of generating.

       Frequency
       ---------
       ParameterID: freq (0x0007)

       Type: integer in Hz

       Default is fixed or provisioned.  Restricted function MGs may
       ignore frequency  values they are incapable of generating.

E.9.4 Statistics

  None

E.9.5 Procedures

  None

E.10 Basic Continuity Package

  PackageID: ct (0x000a)
  Version: 1
  Extends: None

  This package defines events and signals for continuity test. The
  continuity test includes provision of either a loopback or
  transceiver functionality.

E.10.1 Properties

  None

E.10.2 Events

  Completion
  ----------
  EventID: cmp, 0x0005

  This event detects test completion of continuity test.



Cuervo, et al.              Standards Track                   [Page 148]

RFC 2885                    Megaco Protocol                  August 2000


  EventDescriptor parameters

  None

  ObservedEventsDescriptor parameters

       Result
       ------
       ParameterID: res (0x0008)

       Type: Enumeration

       Possible values: success (0x0001), failure (0x0000)

E.10.3 Signals

  Continuity test
  ---------------
  SignalID: ct (0x0003)

  Initiates sending of continuity test tone on the termination to which
  it is applied.

  Signal Type: TimeOut

  Default value is provisioned

  Additional Parameters:

  None

  Respond
  -------
  SignalID: rsp (0x0004)

  The signal is used to respond to a continuity test .  See section
  E.10.5 for further explanation.

  Signal Type: TimeOut

  Default duration is provisioned

  Additional Parameters:

  None.






Cuervo, et al.              Standards Track                   [Page 149]

RFC 2885                    Megaco Protocol                  August 2000


E.10.4 Statistics

  None

E.10.5 Procedures

  When a MGC wants to initiate a continuity test, it sends a command to
  the MG containing
   .  a signals descriptor with the ct signal, and
   .  an events descriptor containing the cmp event.

  Upon reception of a command containing the ct signal and cmp event,
  the MG initiates the continuity test tone for the specified
  termination.  If the return tone is detected before the signal times
  out, the cmp event shall be generated with the value of the result
  parameter equal to success.  In all other cases, the cmp event shall
  be generated with the value of the result parameter equal to failure.

  When a MGC wants the MG to respond to a continuity test, it sends a
  command to the MG containing a signals descriptor with the rsp
  signal.  Upon reception of a command with the rsp signal, the MG
  awaits reception of the continuity test tone.  When the tone is
  received before the rsp signal times out, the MG returns the
  applicable return tone.  If the rsp signal times out, the MG removes
  the detection and the return tone (if that was playing).

  When a continuity test is performed on a termination, no echo devices
  or codecs shall be active on that termination.

  Performing voice path assurance as part of continuity testing is
  provisioned by bilateral agreement between network operators.

E.11 Network Package

  PackageID: nt (0x000b)
  Version: 1
  Extends: None

  This package defines properties of network terminations independent
  of network type.

E.11.1 Properties

  Maximum Jitter Buffer
  ---------------------
  PropertyID: jit (0x0007)

  This property puts a maximum size on the jitter buffer.



Cuervo, et al.              Standards Track                   [Page 150]

RFC 2885                    Megaco Protocol                  August 2000


  Type: integer in milliseconds

  Possible Values: This property is specified in milliseconds.

  Defined In: LocalControlDescriptor

  Characteristics: read/write

E.11.2 Events

  network failure
  ---------------
  EventID: netfail, 0x0005

  The termination generates this event upon detection of a failure due
  to external or internal network reasons.

  EventDescriptor parameters

  None

  ObservedEventsDescriptor parameters

  cause
  -----
  ParameterID: cs (0x0001)

  Type: String

  Possible values: any text string

  This parameter may be included with the failure event to provide
  diagnostic information on the reason of failure.

  quality alert
  -------------
  EventID: qualert, 0x0006

  This property allows the MG to indicate a loss of quality of the
  network connection. The MG may do this by measuring packet loss,
  interarrival jitter, propogation delay and then indicating this using
  a percentage of quality loss.

  EventDescriptor parameters

       Threshold
       ---------
       ParameterId: th (0x0001)



Cuervo, et al.              Standards Track                   [Page 151]

RFC 2885                    Megaco Protocol                  August 2000


       Type: integer

       Possible Values: threshold for percent of quality loss
       measured, calculated based on a provisioned method, that could
       take into consideration packet loss, jitter, and delay for
       example.  Event is triggered when calculation exceeds the
       threshold.

  ObservedEventsDescriptor parameters

       Threshold
       ---------
       ParameterId: th (0x0001)

       Type: integer

       Possible Values: percent of quality loss measured, calculated
       based on a provisioned method, that could take into
       consideration packet loss, jitter, and delay for example.

E.11.3 Signals

  none

E.11.4 Statistics

  Duration
  --------
  StatisticsID: dur (0x0001)

  Description: Provides duration of time the termination has been in
  the context.

  Type: Double, in milliseconds

  Octets Sent
  -----------
  StatisticID: os (0x0002)

  Type: double

  Possible Values: any 64 bit integer

  Octets Received
  ---------------
  StatisticID: or (0x0003)

  Type: double



Cuervo, et al.              Standards Track                   [Page 152]

RFC 2885                    Megaco Protocol                  August 2000


  Possible Values: any 64 bit integer

E.11.5 Procedures

  none

E.12 RTP  Package

  PackageID: rtp (0x000c)
  Version: 1
  Extends: Network Package version 1

  This package is used to support packet based multimedia data transfer
  by means of the Real-time Transport Protocol (RTP) [RFC 1889].

E.12.1 Properties

  None

E.12.2 Events

  Payload Transition EventID: pltrans, 0x0001 This event detects and
  notifies when there is a transition of the RTP payload format from
  one format to another.

  EventDescriptor parameters

  None

  ObservedEventsDescriptor parameters

       rtppayload
       ----------
       ParameterID: rtppltype, 0x01

       Type: list of enumerated types.

       Possible values: The encoding method shall be specified by
       using one or several valid encoding names, as defined in the
       RTP AV Profile or registered with IANA.

E.12.3 Signals

  None

E.12.4 Statistics

  Packets Sent ------------ StatisticID: ps (0x0004)



Cuervo, et al.              Standards Track                   [Page 153]

RFC 2885                    Megaco Protocol                  August 2000


  Type: double

  Possible Values: any 64 bit integer

  Packets Received ---------------- StatisticID: pr (0x0005)

  Type: double

  Possible Values: any 64 bit integer

  Packet Loss ----------- StatisticID: pl (0x0006)

  Describes the current rate of packet loss on an RTP stream, as
  defined in IETF RFC 1889. Packet loss is expressed as percentage
  value: number of packets lost in the interval between two reception
  reports, divided by the number of packets expected during that
  interval.

  Type: double

  Possible Values: a 32 bit whole number and a 32 bit fraction.

  Jitter
  ------
  StatisticID: jit (0x0007)

  Requests the current value of the interarrival jitter on an RTP
  stream as defined in IETF RFC 1889. Jitter measures the variation in
  interarrival time for RTP data packets.

  Delay
  -----
  StatisticID:delay (0x0008)

  Requests the current value of packet propagation delay expressed in
  timestamp units. Same as average latency.

E.12.5 Procedures

  none

E.13 TDM Circuit Package

  PackageID: tdmc (0x000d)
  Version: 1
  Extends: Network Package version 1

  This package is used to support TDM circuit terminations.



Cuervo, et al.              Standards Track                   [Page 154]

RFC 2885                    Megaco Protocol                  August 2000


E.13.1 Properties

  Echo Cancellation
  -----------------
  PropertyID: ec (0x0008)

  By default, the telephony gateways always perform echo cancellation.
  However, it is necessary, for some calls, to turn off these
  operations.

  Type: boolean

  Possible Values:
       "on" (when the echo cancellation is requested) and
       "off" (when it is turned off.)
  The default is "on".

  Defined In: LocalControlDescriptor

  Characteristics: read/write

  Gain Control
  ------------
  PropertyID: gain (0x000a)

  Gain control, or usage of of signal level adaptation and noise level
  reduction is used to adapt the level of the signal. However, it is
  necessary, for example for modem calls, to turn off this function.

  Type: enumeration (integer)

  Possible Values:
  The gain control parameter may either be specified as "automatic"
  (0xffffffff), or as an explicit number of decibels of gain (any other
  integer value).  The default is provisioned in the MG.

  Defined In: LocalControlDescriptor

  Characteristics: read/write

E.13.2 Events

  none

E.13.3 Signals

  none




Cuervo, et al.              Standards Track                   [Page 155]

RFC 2885                    Megaco Protocol                  August 2000


E.13.4 Statistics

  None

E.13.5 Procedures

  None












































Cuervo, et al.              Standards Track                   [Page 156]

RFC 2885                    Megaco Protocol                  August 2000


APPENDIX A EXAMPLE CALL FLOWS (INFORMATIVE)

  All Megaco implementors must read the normative part of this document
  carefully before implementing from it. No one should use the examples
  in this section as stand-alone explanations of how to create protocol
  messages.

  The examples in this section use SDP for encoding of the Local and
  Remote stream descriptors. SDP is defined in RFC 2327. If there is
  any discrepancy between the SDP in the examples, and RFC 2327, the
  RFC should be consulted for correctness. Audio profiles used are
  those defined in RFC 1890, and others registered with IANA. For
  example, G.711 A-law is called PCMA in the SDP, and is assigned
  profile 0. G.723 is profile 4, and H263 is profile 34. See also

       http://www.iana.org/numbers.htm#R

A.1 Residential Gateway to Residential Gateway Call

  This example scenario illustrates the use of the elements of the
  protocol to set up a Residential Gateway to Residential Gateway call
  over an IP-based network.  For simplicity, this example assumes that
  both Residential Gateways involved in the call are controlled by the
  same Media Gateway Controller.

A.1.1 Programming Residential GW Analog Line Terminations for Idle
     Behavior

  The following illustrates the API invocations from the Media Gateway
  Controller and Media Gateways to get the Terminations in this
  scenario programmed for idle behavior.  Both the originating and
  terminating Media Gateways have idle AnalogLine Terminations
  programmed to look for call initiation events (i.e.-offhook) by using
  the Modify Command with the appropriate parameters.  The null Context
  is used to indicate that the Terminations are not yet involved in a
  Context. The ROOT termination is used to indicate the entire MG
  instead of a termination within the MG.














Cuervo, et al.              Standards Track                   [Page 157]

RFC 2885                    Megaco Protocol                  August 2000


  In this example, MG1 has the IP address 124.124.124.222, MG2 is
  125.125.125.111, and the MGC is 123.123.123.4. The default Megaco
  port is 55555 for all three.

  1. An MG registers with an MGC using the ServiceChange command:

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]
  Transaction = 9998 {
      Context = - {
          ServiceChange = ROOT {Services {
              Method=Restart,
              ServiceChangeAddress=55555, Profile=ResGW/1}
          }

      }
  }

  2. The MGC sends a reply:

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Reply = 9998 {
     Context = - {ServiceChange = ROOT {
       Services {ServiceChangeAddress=55555, Profile=ResGW/1} } }
  }

  3. The MGC programs a Termination in the NULL context. The
  terminationId is A4444, the streamId is 1, the requestId in the
  Events descriptor is 2222. The   mId is the identifier of the sender
  of this message, in this case, it is the IP address and port
  [123.123.123.4]:55555. Mode for this stream is set to SendReceive.
  "al" is the analog line supervision package.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Transaction = 9999 {
      Context = - {
          Modify = A4444 {
              Media { Stream = 1 {
                       LocalControl {
                           Mode = SendReceive,
                           ds0/gain=2,  ; in dB,
                           ds0/ec=G165
                       },
                       Local {
  v=0
  c=IN IP4 $



Cuervo, et al.              Standards Track                   [Page 158]

RFC 2885                    Megaco Protocol                  August 2000


  m=audio $ RTP/AVP 0
  a=fmtp:PCMU VAD=X-NNVAD ; special voice activity
                          ; detection algorithm
                       }
                   }
              },
              Events = 2222 {al/of}
          }
      }
  }

  The dialplan script could have been loaded into the MG previously.
  Its function would be to wait for the OffHook, turn on dialtone and
  start collecting DTMF digits. However in this example, we use the
  digit map, which is put into place after the offhook is detected
  (step 5 below).

  Note that the embedded EventsDescriptor could have been used to
  combine steps 3 and 4 with steps 8 and 9, eliminating steps 6 and 7.

  4. The MG1 accepts the Modify with this reply:

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Reply = 9999 {
     Context = - {Modify = A4444}
  }

  5. A similar exchange happens between MG2 and the MGC, resulting in
  an idle Termination called A5555.

A.1.2 Collecting Originator Digits and Initiating Termination

  The following builds upon the previously shown conditions.  It
  illustrates the transactions from the Media Gateway Controller and
  originating Media Gateway (MG1) to get the originating Termination
  (A4444) through the stages of digit collection required to initiate a
  connection to the terminating Media Gateway (MG2).

  6. MG1 detects an offhook event from User 1 and reports it to the
  Media Gateway Controller via the Notify Command.

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Transaction = 10000 {
     Context = - {
         Notify = A4444 {ObservedEvents =2222 {
           19990729T22000000:al/of}}



Cuervo, et al.              Standards Track                   [Page 159]

RFC 2885                    Megaco Protocol                  August 2000


     }
  }

  7. And the Notify is acknowledged.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Reply = 10000 {
      Context = - {Notify = A4444}
  }

  8. The MGC Modifies the termination to play dial tone, to look for
  digits according to Dialplan0 and to look for the on-hook event now.
  MGC to MG1:

  MEGACO/1 [123.123.123.4]:55555
  Transaction = 10001 {
      Context = - {
          Modify = A4444 {
              Events = 2223 {
                  al/on, dd/ce {DigitMap=Dialplan0}
              },
              Signals {cg/dt},
              DigitMap= Dialplan0{
  (0| 00|[1-7]xxx|8xxxxxxx|Fxxxxxxx|Exx|91xxxxxxxxxx|9011x.)}
          }
      }
  }

  9. And the Modify is acknowledged.

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Reply = 10001 {
      Context = - {Modify = A4444}
  }

  10. Next, digits are accumulated by MG1 as they are dialed by User
  1.  Dialtone is stopped upon detection of the first digit. When an
  appropriate match is made of collected digits against the currently
  programmed Dialplan for A4444, another Notify is sent to the Media
  Gateway Controller.

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Transaction = 10002 {
     Context = - {
         Notify = A4444 {ObservedEvents =2223 {



Cuervo, et al.              Standards Track                   [Page 160]

RFC 2885                    Megaco Protocol                  August 2000


           19990729T22010001:dd/ce{ds="916135551212",Meth=FM}}}
     }
  }

  11. And the Notify is acknowledged.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Reply = 10002 {
      Context = - {Notify = A4444}
  }

  12. The controller then analyses the digits and determines that a
  connection needs to be made from MG1 to MG2. Both the TDM
  termination A4444, and an RTP termination are added to a new context
  in MG1. Mode is ReceiveOnly since Remote descriptor values are not
  yet specified. Preferred codecs are in the MGC's preferred order of
  choice.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Transaction = 10003 {
      Context = $ {
         Add = A4444,
         Add = $ {
             Media {
               Stream = 1 {
                    LocalControl {
                        Mode = ReceiveOnly,

                        nt/jit=40, ; in ms
                    },
                    Local {
  v=0
  c=IN IP4 $
  m=audio $ RTP/AVP 4
  a=ptime:30
  v=0
  c=IN IP4 $
  m=audio $ RTP/AVP 0
                    }
               }
            }
         }
      }
  }





Cuervo, et al.              Standards Track                   [Page 161]

RFC 2885                    Megaco Protocol                  August 2000


  NOTE -  The MGC states its preferred parameter values as a series of
  sdp blocks in  Local. The MG fills in the Local Descriptor in the
  Reply.

  13. MG1 acknowledges the new Termination and fills in the Local IP
  address and UDP port. It also makes a choice for the codec based on
  the MGC preferences in Local. MG1 sets the RTP port to 2222.
  MEGACO/1 [124.124.124.222]:55555
  Reply = 10003 {
     Context = 2000 {
        Add = A4444,
        Add=A4445{
           Media {
               Stream = 1 {
                   Local {
  v=0
  c=IN IP4 124.124.124.222
  m=audio 2222 RTP/AVP 4
  a=ptime:30
  a=recvonly
                   } ; RTP profile for G.723 is 4
               }
           }
        }
     }
  }

  14. The MGC will now associate A5555 with a new Context on MG2, and
  establish an RTP Stream (i.e, A5556 will be assigned), SendReceive
  connection through to the originating user, User 1. The MGC also
  sets ring on A5555.

  MGC to MG2:
  MEGACO/1 [123.123.123.4]:55555
  Transaction = 50003 {
      Context = $ {
         Add = A5555  { Media {
              Stream = 1 {
                   LocalControl {Mode = SendReceive} }},
               Events=1234{al/of}
              Signals {al/ri}
              },
         Add  = $ {Media {
              Stream = 1 {
                   LocalControl {
                      Mode = SendReceive,
                      nt/jit=40 ; in ms
                   },



Cuervo, et al.              Standards Track                   [Page 162]

RFC 2885                    Megaco Protocol                  August 2000


                   Local {
  v=0
  c=IN IP4 $
  m=audio $ RTP/AVP 4
  a=ptime:30
                   },
                   Remote {
  v=0
  c=IN IP4 124.124.124.222
  m=audio 2222 RTP/AVP 4
  a=ptime:30
                   } ; RTP profile for G.723 is 4
               }
            }
        }
     }
  }

  15. This is acknowledged. The stream port number is different from
  the control port number. In this case it is 1111 (in the SDP).

  MG2 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Reply = 50003 {
     Context = 5000 {
       Add = A5555{}
        Add = A5556{
           Media {
              Stream = 1 {
                  Local {
  v=0
  c=IN IP4 125.125.125.111
  m=audio 1111 RTP/AVP 4
  }
              } ; RTP profile for G723 is 4
           }

         }
     }
  }

  16. The above IPAddr and UDPport need to be given to MG1 now.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Transaction = 10005 {
    Context = 2000 {
      Modify = A4444 {



Cuervo, et al.              Standards Track                   [Page 163]

RFC 2885                    Megaco Protocol                  August 2000


        Signals {cg/rt}
      },
      Modify = A4445 {
         Media {
              Stream = 1 {
                  Remote {
  v=0
  c=IN IP4 125.125.125.111
  m=audio 1111 RTP/AVP 4
                  }
              } ; RTP profile for G723 is 4
          }
      }
    }
  }

  MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Reply = 10005 {
     Context = 2000 {Modify = A4444, Modify = A4445}
  }

  17. The two gateways are now connected and User 1 hears the
  RingBack. The MG2 now waits until User2 picks up the receiver and
  then the two-way call is established.

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555
  Transaction = 50005 {
     Context = 5000 {
         Notify = A5555 {ObservedEvents =1234 {
           19990729T22020002:al/of}}
     }
  }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555
  Reply = 50005 {
      Context = - {Notify = A5555}

  }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555
  Transaction = 50006 {



Cuervo, et al.              Standards Track                   [Page 164]

RFC 2885                    Megaco Protocol                  August 2000


     Context = 5000 {
        Modify = A5555 {
           Events = 1235 {al/on},
           Signals { } ; to turn off ringing
        }
     }
  }

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555
  Reply = 50006 {
   Context = 5000 {Modify = A4445}
  }

  18. Change mode on MG1 to SendReceive, and stop the ringback.

  MGC to MG1:
  MEGACO/1 [123.123.123.4]:55555
  Transaction = 10006 {
     Context = 2000 {
        Modify = A4445 {
           Media {
              Stream = 1 {
                 LocalControl {
                    Mode=SendReceive
                 }
              }
           }
        },
        Modify = A4444 {
           Signals { }
        }
     }
  }

  from MG1 to MGC:
  MEGACO/1 [124.124.124.222]:55555
  Reply = 10006 {
     Context = 2000 {Modify = A4445, Modify = A4444}}

  19. The MGC decides to Audit the RTP termination on MG2.

  MEGACO/1 [123.123.123.4]:55555
  Transaction = 50007 {
     Context = - {AuditValue = A5556{
        Audit{Media, DigitMap, Events, Signals, Packages, Statistics
  }}



Cuervo, et al.              Standards Track                   [Page 165]

RFC 2885                    Megaco Protocol                  August 2000


     }
  }

  20. The MG2 replies. An RTP termination has no events nor signals,
  so these are left out in the reply .

  MEGACO/1 [125.125.125.111]:55555
  Reply = 50007 {
     Context = - {
  AuditValue = A5556 {
            Media {
               Stream = 1 {
                   LocalControl { Mode = SendReceive,
                      nt/jit=40 },
                   Local {
  v=0
  c=IN IP4 125.125.125.111
  m=audio 1111 RTP/AVP  4
  a=ptime:30
                  },
                   Remote {
  v=0
  c=IN IP4 124.124.124.222
  m=audio 2222 RTP/AVP  4
  a=ptime:30
                   } } },
            Packages {nt-1, rtp-1},
            Statistics { rtp/ps=1200,  ; packets sent
                         nt/os=62300, ; octets sent
                         rtp/pr=700, ; packets received
                         nt/or=45100, ; octets received
                         rtp/pl=0.2,  ; % packet loss
                         rtp/jit=20,
                         rtp/delay=40 } ; avg latency
         }
      }
  }

  21. When the MGC receives an onhook signal from one of the MGs, it
  brings down the call. In this example, the user at MG2 hangs up
  first.

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555
  Transaction = 50008 {
     Context = 5000 {
         Notify = A5555 {ObservedEvents =1235 {



Cuervo, et al.              Standards Track                   [Page 166]

RFC 2885                    Megaco Protocol                  August 2000


            19990729T24020002:al/on}
         }

     }
  }

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555
  Reply = 50008 {
      Context = - {Notify = A5555}
  }

  22. The MGC now sends both MGs a Subtract to take down the call.
  Only the subtracts to MG2 are shown here. Each termination has its
  own set of statistics that it gathers. An MGC may not need to
  request both to be returned. A5555 is a physical termination, and
  A5556 is an RTP termination.

  From MGC to MG2:

  MEGACO/1 [123.123.123.4]:55555
  Transaction = 50009 {
     Context = 5000 {
        Subtract = A5555 {Audit{Statistics}},
        Subtract = A5556 {Audit{Statistics}}
     }
  }

  From MG2 to MGC:

  MEGACO/1 [125.125.125.111]:55555
  Reply = 50009 {
     Context = 5000 {
       Subtract = A5555 {
            Statistics {
               nt/os=45123, ; Octets Sent
               nt/dur=40 ; in seconds
               }
         },
         Subtract = A5556 {
            Statistics {
               rtp/ps=1245, ; packets sent
               nt/os=62345, ; octets sent
               rtp/pr=780, ; packets received
               nt/or=45123, ; octets received
               rtp/pl=10, ;  % packets lost
               rtp/jit=27,



Cuervo, et al.              Standards Track                   [Page 167]

RFC 2885                    Megaco Protocol                  August 2000


               rtp/delay=48 ; average latency
            }
         }
     }
  }

  23. The MGC now sets up both MG1 and MG2 to be ready to detect the
  next off-hook event. See step 1. Note that this could be the default
  state of a termination in the null context, and if this were the
  case, no message need be sent from the MGC to the MG. Once a
  termination returns to the null context, it goes back to the default
  termination values for that termination.

Authors' Addresses

  Fernando Cuervo
  Nortel Networks
  P.O. Box 3511, Station C
  Ottawa, ON K1Y 4H7
  Canada
  E-mail: [email protected]

  Nancy Greene
  Nortel Networks
  P.O. Box 3511, Station C
  Ottawa, ON K1Y 4H7
  Canada
  E-mail: [email protected]

  Christian Huitema
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052-6399
  USA
  E-mail: [email protected]

  Abdallah Rayhan
  Nortel Networks
  P.O. Box 3511, Station C
  Ottawa, ON K1Y 4H7
  Canada
  E-mail: [email protected]









Cuervo, et al.              Standards Track                   [Page 168]

RFC 2885                    Megaco Protocol                  August 2000


  Brian Rosen
  Marconi
  1000 FORE Drive
  Warrendale, PA 15086
  USA
  E-mail: [email protected]

  John Segers
  Lucent Technologies, Room HE 303
  Dept. Forward Looking Work
  P.O. Box 18, 1270 AA  Huizen
  The Netherlands
  E-mail: [email protected]






































Cuervo, et al.              Standards Track                   [Page 169]

RFC 2885                    Megaco Protocol                  August 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Cuervo, et al.              Standards Track                   [Page 170]