Network Working Group                                       K. Tsuchiya
Requests for Comments: 2767                                  H. Higuchi
Category: Informational                                     Y. Atarashi
                                                               Hitachi
                                                         February 2000


    Dual Stack Hosts using the "Bump-In-the-Stack" Technique (BIS)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  In the especially initial stage of the transition from IPv4 to IPv6,
  it is hard to provide a complete set of IPv6 applications.  This memo
  proposes a mechanism of dual stack hosts using the technique called
  "Bump-in-the-Stack" in the IP security area. The mechanism allows the
  hosts to communicate with other IPv6 hosts using existing IPv4
  applications.

1. Introduction

  RFC1933 [TRANS-MECH] specifies transition mechanisms, including dual
  stack and tunneling, for the initial stage. Hosts and routers with
  the transition mechanisms are also developed. But there are few
  applications for IPv6 [IPV6] as compared with IPv4 [IPV4] in which a
  great number of applications are available. In order to advance the
  transition smoothly, it is highly desirable to make the availability
  of IPv6 applications increase to the same level as IPv4.
  Unfortunately, however, this is expected to take a very long time.

  This memo proposes a mechanism of dual stack hosts using the
  technique called "Bump-in-the-Stack" [BUMP] in the IP security area.
  The technique inserts modules, which snoop data flowing between a
  TCP/IPv4 module and network card driver modules and translate IPv4
  into IPv6 and vice versa, into the hosts, and makes them self-
  translators. When they communicate with the other IPv6 hosts, pooled
  IPv4 addresses are assigned to the IPv6 hosts internally, but the
  IPv4 addresses never flow out from them. Moreover, since the
  assignment is automatically carried out using DNS protocol, users do



Tsuchiya, et al.             Informational                      [Page 1]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  not need to know whether target hosts are IPv6 ones. That is, this
  allows them to communicate with other IPv6 hosts using existing IPv4
  applications; thus it seems as if they were dual stack hosts with
  applications for both IPv4 and IPv6. So they can expand the territory
  of dual stack hosts.  Furthermore they can co-exist with other
  translators because their roles are different.

  This memo uses the words defined in [IPV4], [IPV6], and [TRANS-MECH].

2. Components

  Dual stack hosts defined in RFC1933 [TRANS-MECH] need applications,
  TCP/IP modules and addresses for both IPv4 and IPv6. The proposed
  hosts in this memo have 3 modules instead of IPv6 applications, and
  communicate with other IPv6 hosts using IPv4 applications. They are a
  translator, an extension name resolver and an address mapper.

  Figure 1 illustrates the structure of the host in which they are
  installed.

        +----------------------------------------------------------+
        |  +----------------------------------------------------+  |
        |  | IPv4 applications                                  |  |
        |  +----------------------------------------------------+  |
        |  +----------------------------------------------------+  |
        |  | TCP/IPv4                                           |  |
        |  |        +-------------------------------------------+  |
        |  |        |  +-----------+  +---------+  +------------+  |
        |  |        |  | extension |  | address |  | translator |  |
        |  |        |  | name      |  | mapper  |  +------------+  |
        |  |        |  | resolver  |  |         |  +------------+  |
        |  |        |  |           |  |         |  | IPv6       |  |
        |  +--------+  +-----------+  +---------+  +------------+  |
        |  +----------------------------------------------------+  |
        |  | Network card drivers                               |  |
        |  +----------------------------------------------------+  |
        +----------------------------------------------------------+
        +----------------------------------------------------------+
        |    Network cards                                         |
        +----------------------------------------------------------+

              Figure. 1 Structure of the proposed dual stack host









Tsuchiya, et al.             Informational                      [Page 2]

RFC 2767               Dual Stack Hosts using BIS          February 2000


2.1 Translator

  It translates IPv4 into IPv6 and vice versa using the IP conversion
  mechanism defined in [SIIT].

  When receiving IPv4 packets from IPv4 applications, it converts IPv4
  packet headers into IPv6 packet headers, then fragments the IPv6
  packets (because header length of IPv6 is typically 20 bytes larger
  than that of IPv4), and sends them to IPv6 networks. When receiving
  IPv6 packets from the IPv6 networks, it works symmetrically to the
  previous case, except that there is no need to fragment the packets.

2.2 Extension Name Resolver

  It returns a "proper" answer in response to the IPv4 application's
  request.

  The application typically sends a query to a name server to resolve
  'A' records for the target host name. It snoops the query, then
  creates another query to resolve both 'A' and 'AAAA' records for the
  host name, and sends the query to the server. If the 'A' record is
  resolved, it returns the 'A' record to the application as is. In the
  case, there is no need for the IP conversion by the translator.  If
  only the 'AAAA' record is available, it requests the mapper to assign
  an IPv4 address corresponding to the IPv6 address, then creates the
  'A' record for the assigned IPv4 address, and returns the 'A' record
  to the application.

  NOTE: This action is similar to that of the DNS ALG (Application
  Layer Gateway) used in [NAT-PT]. See also [NAT-PT].

2.3 Address mapper

  It maintains an IPv4 address spool. The spool, for example, consists
  of private addresses [PRIVATE]. Also, it maintains a table which
  consists of pairs of an IPv4 address and an IPv6 address.

  When the resolver or the translator requests it to assign an IPv4
  address corresponding to an IPv6 address, it selects and returns an
  IPv4 address out of the spool, and registers a new entry into the
  table dynamically. The registration occurs in the following 2 cases:

  (1) When the resolver gets only an 'AAAA' record for the target host
      name and there is not a mapping entry for the IPv6 address.
  (2) When the translator receives an IPv6 packet and there is not a
      mapping entry for the IPv6 source address.





Tsuchiya, et al.             Informational                      [Page 3]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  NOTE: There is only one exception. When initializing the table, it
  registers a pair of its own IPv4 address and IPv6 address into the
  table statically.

3. Action Examples

  This section describes action of the proposed dual stack host called
  "dual stack," which communicates with an IPv6 host called "host6"
  using an IPv4 application.

3.1 Originator behavior

  This subsection describes the originator behavior of "dual stack."
  The communication is triggered by "dual stack."

  The application sends a query to its name server to resolve 'A'
  records for "host6."

  The resolver snoops the query, then creates another query to resolve
  both 'A' and 'AAAA' records for the host name, and sends it to the
  server. In this case, only the 'AAAA' record is resolved, so the
  resolver requests the mapper to assign an IPv4 address corresponding
  to the IPv6 address.

  NOTE: In the case of communication with an IPv4 host, the 'A' record
  is resolved and then the resolver returns it to the application as
  is. There is no need for the IP conversion as shown later.

  The mapper selects an IPv4 address out of the spool and returns it to
  the resolver.

  The resolver creates the 'A' record for the assigned IPv4 address and
  returns it to the application.

  NOTE: See subsection 4.3 about the influence on other hosts caused by
  an IPv4 address assigned here.

  The application sends an IPv4 packet to "host6."

  The IPv4 packet reaches the translator. The translator tries to
  translate the IPv4 packet into an IPv6 packet but does not know how
  to translate the IPv4 destination address and the IPv4 source
  address. So the translator requests the mapper to provide mapping
  entries for them.







Tsuchiya, et al.             Informational                      [Page 4]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  The mapper checks its mapping table and finds entries for each of
  them, and then returns the IPv6 destination address and the IPv6
  source address to the translator.

  NOTE: The mapper will register its own IPv4 address and IPv6 address
  into the table beforehand. See subsection 2.3.

  The translator translates the IPv4 packet into an IPv6 packet then
  fragments the IPv6 packet if necessary and sends it to an IPv6
  network.

  The IPv6 packet reaches "host6." Then "host6" sends a new IPv6 packet
  to "dual stack."

  The IPv6 packet reaches the translator in "dual stack."

  The translator gets mapping entries for the IPv6 destination address
  and the IPv6 source address from the mapper in the same way as
  before.

  Then the translator translates the IPv6 packet into an IPv4 packet
  and tosses it up to the application.





























Tsuchiya, et al.             Informational                      [Page 5]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  The following diagram illustrates the action described above:

  "dual stack"                                            "host6"
  IPv4    TCP/  extension  address  translator  IPv6
  appli-  IPv4  name       mapper
  cation        resolver
    |      |       |         |       |           |         |
  <<Resolve an IPv4 address for "host6".>>       |         |
    |      |       |         |       |           |         |
    |------|------>|  Query of 'A' records for "host6".    | Name
    |      |       |         |       |           |         | Server
    |      |       |---------|-------|-----------|---------|--->|
    |      |       |  Query of 'A' records and 'AAAA' for "host6"
    |      |       |         |       |           |         |    |
    |      |       |<--------|-------|-----------|---------|----|
    |      |       |  Reply only with 'AAAA' record.       |
    |      |       |         |       |           |         |
    |      |       |<<Only 'AAAA' record is resolved.>>    |
    |      |       |         |       |           |         |
    |      |       |-------->|  Request one IPv4 address   |
    |      |       |         |  corresponding to the IPv6 address.
    |      |       |         |       |           |         |
    |      |       |         |<<Assign one IPv4 address.>> |
    |      |       |         |       |           |         |
    |      |       |<--------|  Reply with the IPv4 address.
    |      |       |         |       |           |         |
    |      |       |<<Create 'A' record for the IPv4 address.>>
    |      |       |         |       |           |         |
    |<-----|-------|  Reply with the 'A' record. |         |
    |      |       |         |       |           |         |

                 Figure 2 Action of the originator (1/2)



















Tsuchiya, et al.             Informational                      [Page 6]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  "dual stack"                                           "host6"
  IPv4    TCP/  extension  address  translator  IPv6
  appli-  IPv4  name       mapper
  cation        resolver
    |      |       |         |       |           |         |
  <<Send an IPv4 packet to "host6".>>|           |         |
    |      |       |         |       |           |         |
    |======|=======|=========|======>|  An IPv4 packet.    |
    |      |       |         |       |           |         |
    |      |       |         |<------|  Request IPv6 addresses
    |      |       |         |       |  corresponding to the IPv4
    |      |       |         |       |  addresses.         |
    |      |       |         |       |           |         |
    |      |       |         |------>|  Reply with the IPv6|
    |      |       |         |       |  addresses.         |
    |      |       |         |       |           |         |
    |      |       |         |       |<<Translate IPv4 into IPv6.>>
    |      |       |         |       |           |         |
    |      |       |An IPv6 packet.  |===========|========>|
    |      |       |         |       |           |         |
    |      |       |         |     <<Reply an IPv6 packet to
    |      |       |         |       "dual stack".>>       |
    |      |       |         |       |           |         |
    |      |       |An IPv6 packet.  |<==========|=========|
    |      |       |         |       |           |         |
    |      |       |         |       |<<Translate IPv6 into IPv4.>>
    |      |       |         |       |           |         |
    |<=====|=======|=========|=======|  An IPv4 packet.    |
    |      |       |         |       |           |         |

                 Figure 2 Action of the originator (2/2)

3.2 Recipient behavior

  This subsection describes the recipient behavior of "dual stack."
  The communication is triggered by "host6."

  "host6" resolves the 'AAAA' record for "dual stack" through its name
  server, and then sends an IPv6 packet to the IPv6 address.

  The IPv6 packet reaches the translator in "dual stack."

  The translator tries to translate the IPv6 packet into an IPv4 packet
  but does not know how to translate the IPv6 destination address and
  the IPv6 source address. So the translator requests the mapper to
  provide mapping entries for them.





Tsuchiya, et al.             Informational                      [Page 7]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  The mapper checks its mapping table with each of them and finds a
  mapping entry for the IPv6 destination address.

  NOTE: The mapper will register its own IPv4 address and IPv6 address
  into the table beforehand. See subsection 2.3.

  But there is not a mapping entry for the IPv6 source address, so the
  mapper selects an IPv4 address out of the spool for it, and then
  returns the IPv4 destination address and the IPv4 source address to
  the translator.

  NOTE: See subsection 4.3 about the influence on other hosts caused by
  an IPv4 address assigned here.

  The translator translates the IPv6 packet into an IPv4 packet and
  tosses it up to the application.

  The application sends a new IPv4 packet to "host6."

  The following behavior is the same as that described in subsection
  3.1.






























Tsuchiya, et al.             Informational                      [Page 8]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  The following diagram illustrates the action described above:

  "dual stack"                                           "host6"
  IPv4    TCP/  extension  address  translator  IPv6
  appli-  IPv4  name       mapper
  cation        resolver
    |      |       |         |       |           |         |
  <<Receive data from "host6".>>     |           |         |
    |      |       |         |       |           |         |
    |      |       |An IPv6 packet.  |<==========|=========|
    |      |       |         |       |           |         |
    |      |       |         |<------|  Request IPv4 addresses
    |      |       |         |       |  corresponding to the IPv6
    |      |       |         |       |  addresses.         |
    |      |       |         |       |           |         |
    |      |       |         |------>|  Reply with the IPv4|
    |      |       |         |       |  addresses.         |
    |      |       |         |       |           |         |
    |      |       |         |       |<<Translate IPv6 into IPv4.>>
    |      |       |         |       |           |         |
    |<=====|=======|=========|=======|  An IPv4 packet.    |
    |      |       |         |       |           |         |
  <<Reply an IPv4 packet to "host6".>>           |         |
    |      |       |         |       |           |         |
    |======|=======|=========|======>|  An IPv4 packet.    |
    |      |       |         |       |           |         |
    |      |       |         |       |<<Translate IPv4 into IPv6.>>
    |      |       |         |       |           |         |
    |      |       |An IPv6 packet.  |===========|========>|
    |      |       |         |       |           |         |

                    Figure 3 Action of the recipient

4. Considerations

  This section considers some issues of the proposed dual stack hosts.

4.1 IP conversion

  In common with NAT [NAT], IP conversion needs to translate IP
  addresses embedded in application layer protocols, which are
  typically found in FTP [FTP]. So it is hard to translate all such
  applications completely.

4.2 IPv4 address spool and mapping table

  The spool, for example, consists of private addresses [PRIVATE]. So a
  large address space can be used for the spool. Nonetheless, IPv4



Tsuchiya, et al.             Informational                      [Page 9]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  addresses in the spool will be exhausted and cannot be assigned to
  IPv6 target hosts, if the host communicates with a great number of
  other IPv6 hosts and the mapper never frees entries registered into
  the mapping table once. To solve the problem, for example, it is
  desirable for the mapper to free the oldest entry in the mapping
  table and re-use the IPv4 address for creating a new entry.

4.3 Internally assigned IPv4 addresses

  IPv4 addresses, which are internally assigned to IPv6 target hosts
  out of the spool, never flow out from the host, and so do not
  negatively affect other hosts.

5. Applicability and Limitations

  This section considers applicability and limitations of the proposed
  dual stack hosts.

5.1 Applicability

  The mechanism can be useful for users in the especially initial stage
  where some applications not modified into IPv6 remain. And it can
  also help users who cannot upgrade their certain applications for
  some reason after all applications have been modified. The reason is
  that it allows hosts to communicate with IPv6 hosts using existing
  IPv4 applications, and that they can get connectivity for both IPv4
  and IPv6 even if they do not have IPv6 applications as a result.

  Note that it can also work in conjunction with a complete IPv6 stack.
  They can communicate with both IPv4 hosts and IPv6 hosts using IPv4
  applications via the mechanism, and can also communicate with IPv6
  hosts using IPv6 applications via the complete IPv6 stack.

5.2 Limitations

  The mechanism is valid only for unicast communication, but invalid
  for multicast communication. Multicast communication needs another
  mechanism.

  It allows hosts to communicate with IPv6 hosts using existing IPv4
  applications, but this can not be applied to IPv4 applications which
  use any IPv4 option since it is impossible to translate IPv4 options
  into IPv6. Similarly it is impossible to translate any IPv6 option
  headers into IPv4, except for fragment headers and routing headers.
  So IPv6 inbound communication having the option headers may be
  rejected.





Tsuchiya, et al.             Informational                     [Page 10]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  In common with NAT [NAT], IP conversion needs to translate IP
  addresses embedded in application layer protocols, which are
  typically found in FTP [FTP]. So it is hard to translate all such
  applications completely.

  It may be impossible that the hosts using the mechanism utilize the
  security above network layer since the data may carry IP addresses.

  Finally it can not combine with secure DNS since the extension name
  resolver can not handle the protocol.

6. Security Considerations

  This section considers security of the proposed dual stack hosts.

  The hosts can utilize the security of all layers like ordinary IPv4
  communication when they communicate with IPv4 hosts using IPv4
  applications via the mechanism. Likewise they can utilize the
  security of all layers like ordinary IPv6 communication when they
  communicate with IPv6 hosts using IPv6 applications via the complete
  IPv6 stack. However, unfortunately, they can not utilize the security
  above network layer when they communicate with IPv6 hosts using IPv4
  applications via the mechanism. The reason is that when the protocol
  data with which IP addresses are embedded is encrypted, or when the
  protocol data is encrypted using IP addresses as keys, it is
  impossible for the mechanism to translate the IPv4 data into IPv6 and
  vice versa. Therefore it is highly desirable to upgrade to the
  applications modified into IPv6 for utilizing the security at
  communication with IPv6 hosts.

7. References

  [SIIT]       Nordmark, E., "Stateless IP/ICMP Translator (SIIT)", RFC
               2765, February 2000.

  [IPV4]       Postel, J., "Internet Protocol", STD 5, RFC 791,
               September 1981.

  [FTP]        Postel, J. and J. Reynolds, "File Transfer Protocol",
               STD 9, RFC 959, October 1985.

  [NAT]        Kjeld B. and P. Francis, "The IP Network Address
               Translator (NAT)", RFC 1631, May 1994.

  [IPV6]       Deering, S. and R. Hinden, "Internet Protocol, Version 6
               (IPv6) Specification", RFC 2460, December 1998.





Tsuchiya, et al.             Informational                     [Page 11]

RFC 2767               Dual Stack Hosts using BIS          February 2000


  [PRIVATE]    Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.
               J. and E. Lear, "Address Allocation for Private
               Internets", BCP 5, RFC 1918, February 1996.

  [TRANS-MECH] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
               IPv6 Hosts and Routers", RFC 1933, April 1996.

  [BUMP]       D.A. Wagner and S.M. Bellovin, "A Bump in the Stack
               Encryptor for MS-DOS Systems", The 1996 Symposium on
               Network and Distributed Systems Security (SNDSS'96)
               Proceedings.

  [NAT-PT]     Tsirtsis, G. and P. Srisuresh, "Network Address
               Translation - Protocol Translation (NAT-PT)", RFC 2766,
               February 2000.

8. Acknowledgements

  The authors gratefully acknowledge the many helpful suggestions of
  the members of the WIDE Project, Kazuhiko YAMAMOTO, Jun MURAI,
  Munechika SUMIKAWA, Ken WATANABE, and Takahisa MIYAMOTO, at large.

9. Authors' Addresses

  Kazuaki TSUCHIYA
  Enterprise Server Division, Hitachi, Ltd.
  810 Shimoimaizumi, Ebina-shi, Kanagawa-ken, 243-0435 JAPAN

  Phone: +81-462-32-2121
  Fax:   +81-462-35-8324
  EMail: [email protected]

  Hidemitsu HIGUCHI
  Enterprise Server Division, Hitachi, Ltd.
  810 Shimoimaizumi, Ebina-shi, Kanagawa-ken, 243-0435 JAPAN

  Phone: +81-462-32-2121
  Fax:   +81-462-35-8324
  EMail: [email protected]

  Yoshifumi ATARASHI
  Enterprise Server Division, Hitachi, Ltd.
  810 Shimoimaizumi, Ebina-shi, Kanagawa-ken, 243-0435 JAPAN

  Phone: +81-462-32-2121
  Fax:   +81-462-35-8324
  EMail: [email protected]




Tsuchiya, et al.             Informational                     [Page 12]

RFC 2767               Dual Stack Hosts using BIS          February 2000


10.  Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Tsuchiya, et al.             Informational                     [Page 13]