Network Working Group                                             A. Chiu
Request for Comments: 2755                                      M. Eisler
Category: Informational                                      B. Callaghan
                                                        Sun Microsystems
                                                            January 2000


                   Security Negotiation for WebNFS

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This document describes a protocol for a WebNFS client [RFC2054] to
  negotiate the desired security mechanism with a WebNFS server
  [RFC2055] before the WebNFS client falls back to the MOUNT v3
  protocol [RFC1813].  This document is provided so that people can
  write compatible implementations.

Table of Contents

  1. Introduction ..............................................  2
  2. Security Negotiation Multi-component LOOKUP ...............  3
  3  Overloaded Filehandle .....................................  4
  3.1  Overloaded NFS Version 2 Filehandle .....................  5
  3.2  Overloaded NFS Version 3 Filehandle .....................  6
  4. WebNFS Security Negotiation ...............................  6
  5. Security Considerations ................................... 10
  6. References ................................................ 10
  7. Acknowledgements .......................................... 10
  8. Authors' Addresses ........................................ 11
  9. Full Copyright Statement .................................. 12











Chiu, et al.                 Informational                      [Page 1]

RFC 2755            Security Negotiation for WebNFS         January 2000


1. Introduction

  The MOUNT protocol is used by an NFS client to obtain the necessary
  filehandle for data access.  MOUNT versions 1 and 2 [RFC1094] return
  NFS version 2 filehandles, whereas MOUNT version 3 [RFC1813] returns
  NFS version 3 filehandles.

  Among the existing versions of the MOUNT protocol, only the MOUNT v3
  provides an RPC procedure (MOUNTPROC3_MNT) which facilitates security
  negotiation between an NFS v3 client and an NSF v3 server.  When this
  RPC procedure succeeds (MNT3_OK) the server returns to the client an
  array of security mechanisms it supports for the specified pathname,
  in addition to an NFS v3 filehandle.

  A security mechanism referred to in this document is a generalized
  security flavor which can be an RPC authentication flavor [RFC1831]
  or a security flavor referred to in the RPCSEC_GSS protocol
  [RFC2203]. A security mechanism is represented as a four-octet
  integer.

  No RPC procedures are available for security negotiation in versions
  1 or 2 of the MOUNT protocol.

  The NFS mount command provides a "sec=" option for an NFS client to
  specify the desired security mechanism to use for NFS transactions.
  If this mount option is not specified, the default action is to use
  the default security mechanism over NFS v2 mounts, or to negotiate a
  security mechanism via the MOUNTPROC3_MNT procedure of MOUNT v3 and
  use it over NFS v3 mounts.  In the latter, the client picks the first
  security mechanism in the array returned from the server that is also
  supported on the client.

  As specified in RFC 2054, a WebNFS client first assumes that the
  server supports WebNFS and uses the publsc filehandle as the initial
  filehandle for data access, eliminating the need for the MOUNT
  protocol.  The WebNFS client falls back to MOUNT if the server does
  not support WebNFS.

  Since a WebNFS client does not use MOUNT initially, the
  MOUNTPROC3_MNT procedure of MOUNT v3 is not available for security
  negotiation until the WebNFS client falls back to MOUNT.  A viable
  protocol needs to be devised for the WebNFS client to negotiate
  security mechanisms with the server in the absence of the
  MOUNTPROC3_MNT procedure.







Chiu, et al.                 Informational                      [Page 2]

RFC 2755            Security Negotiation for WebNFS         January 2000


  The WebNFS security negotiation protocol must meet the following
  requirements:

     - Must work seamlessly with NFS v2 and v3, and the WebNFS
        protocols

     - Must be backward compatible with servers that do not support
        this negotiation

     - Minimum number of network turnarounds (latency)

  This document describes the WebNFS security negotiation protocol
  developed by Sun Microsystems, Inc.  Terminology and definitions from
  RFCs 2054 and 2055 are used in this document.  The reader is expected
  to be familiar with them.

2. Security Negotiation Multi-component LOOKUP

  The goal of the WebNFS security negotiation is to allow a WebNFS
  client to identify a security mechanism which is used by the WebNFS
  server to protect a specified path and is also supported by the
  client.  The WebNFS client initiates the negotiation by sending the
  WebNFS server the path. The WebNFS server responds with the array of
  security mechanisms it uses to secure the specified path.  From the
  array of security mechanisms the WebNFS client selects the first one
  that it also supports.

  Without introducing a new WebNFS request, the WebNFS security
  negotiation is achieved by modifying the request and response of the
  existing multi-component LOOKUP (MCL) operation [RFC2055].  Note that
  the MCL operation is accomplished using the LOOKUP procedure
  (NFSPROC3_LOOKUP for NFS v3 and NFSPROC_LOOKUP for NFS v2).  This and
  the next sections describe how the MCL request and response are
  modified to facilitate WebNFS security negotiation.

  For ease of reference, the modified MCL request is henceforth
  referred to as SNEGO-MCL (security negotiation multi-component
  LOOKUP) request.

  A multi-component LOOKUP request [RFC2055] is composed of a public
  filehandle and a multi-component path:

       For Canonical Path:

               LOOKUP FH=0x0, "/a/b/c"






Chiu, et al.                 Informational                      [Page 3]

RFC 2755            Security Negotiation for WebNFS         January 2000


       For Native Path:

               LOOKUP FH=0x0, 0x80 "a:b:c"

  A multi-component path is either an ASCII string of slash separated
  components or a 0x80 character followed by a native path.  Note that
  a multi-component LOOKUP implies the use of the public filehandle in
  the LOOKUP.

  Similar to the MCL request, a SNEGO-MCL request consists of a public
  filehandle and a pathname.  However, the pathname is uniquely
  composed, as described below, to distinguish it from other pathnames.

  The pathname used in a SNEGO-MCL is the regular WebNFS multi-
  component path prefixed with two octets.  The first prefixed octet is
  the 0x81 non-ascii character, similar to the 0x80 non-ascii character
  for the native paths.  This octet represents client's indication to
  negotiate security mechanisms.  It is followed by the security index
  octet which stores the current value of the index into the array of
  security mechanisms to be returned from the server.  The security
  index always starts with one and gets incremented as negotiation
  continues.  It is then followed by the pathname, either an ASCII
  string of slash separated canonical components or 0x80 and a native
  path.

  A security negotiation multi-component LOOKUP request looks like
  this:

       For Canonical Path:

               LOOKUP FH=0x0, 0x81 <sec-index> "/a/b/c"

       For Native Path:

               LOOKUP FH=0x0, 0x81 <sec-index> 0x80 "a:b:c"

  In the next section we will see how the MCL response is modified for
  WebNFS security negotiation.

3. Overloaded Filehandle

  As described in RFC2054, if a multi-component LOOKUP request
  succeeds, the server responds with a valid filehandle:

       LOOKUP FH=0x0, "a/b/c"
                       ----------->
                       <-----------
                                      FH=0x3



Chiu, et al.                 Informational                      [Page 4]

RFC 2755            Security Negotiation for WebNFS         January 2000


  NFS filehandles are used to uniquely identify a particular file or
  directory on the server and are opaque to the client.  The client
  neither examines a filehandle nor has any knowledge of its contents.
  Thus, filehandles make an ideal repository for the server to return
  the array of security mechanisms to the client in response to a
  SNEGO-MCL request.

  To a successful SNEGO-MCL request the server responds, in place of
  the filehandle, with an array of integers that represents the valid
  security mechanisms the client must use to access the given path. A
  length field is introduced to store the size (in octets) of the array
  of integers.

  As the filehandles are limited in size (32 octets for NFS v2 and up
  to 64 octets for NFS v3), it can happen that there are more security
  mechanisms than the filehandles can accommodate.  To circumvent this
  problem, a one-octet status field is introduced which indicates
  whether there are more security mechanisms (1 means yes, 0 means no)
  that require the client to perform another SNEGO-MCL to get them.

  To summarize, the response to a SNEGO-MCL request contains, in place
  of the filehandle, the length field, the status field, and the array
  of security mechanisms:

       FH: length, status, {sec_1  sec_2 ... sec_n}

  The next two sub-sections describe how NFS v2 and v3 filehandles are
  "overloaded" to carry the length and status fields and the array of
  security mechanisms.

3.1 Overloaded NFS Version 2 Filehandle

  A regular NFS v2 filehandle is defined in RFC1094 as an opaque value
  occupying 32 octets:

    1   2   3   4                                                32
  +---+---+---+---+---+---+---+---+     +---+---+---+---+---+---+---+
  |   |   |   |   |   |   |   |   | ... |   |   |   |   |   |   |   |
  +---+---+---+---+---+---+---+---+     +---+---+---+---+---+---+---+

  An overloaded NFS v2 filehandle looks like this:

    1   2   3   4   5           8                                  32
  +---+---+---+---+---+---+---+---+     +---+---+---+---+     +---+---+
  | l | s |   |   |     sec_1     | ... |     sec_n     | ... |   |   |
  +---+---+---+---+---+---+---+---+     +---+---+---+---+     +---+---+





Chiu, et al.                 Informational                      [Page 5]

RFC 2755            Security Negotiation for WebNFS         January 2000


  Note that the first four octets of an overloaded NFS v2 filehandle
  contain the length octet, the status octet, and two padded octets to
  make them XDR four-octet aligned.  The length octet l = 4 * n, where
  n is the number of security mechanisms sent in the current overloaded
  filehandle.  Apparently, an overloaded NFS v2 filehandle can carry up
  to seven security mechanisms.

3.2 Overloaded NFS Version 3 Filehandle

  A regular NFS v3 filehandle is defined in RFC1813 as a variable
  length opaque value occupying up to 64 octets.  The length of the
  filehandle is indicated by an integer value contained in a four octet
  value which describes the number of valid octets that follow:

 1           4
+---+---+---+---+
|      len      |
+---+---+---+---+

 1           4                                              up to 64
+---+---+---+---+---+---+---+---+---+---+---+---+     +---+---+---+---+
|   |   |   |   |   |   |   |   |   |   |   |   | ... |   |   |   |   |
+---+---+---+---+---+---+---+---+---+---+---+---+     +---+---+---+---+

An overloaded NFS v3 filehandle looks like the following:

 1           4
+---+---+---+---+
|      len      |
+---+---+---+---+

 1           4   5           8
+---+---+---+---+---+---+---+---+     +---+---+---+---+
| s |   |   |   |     sec_1     | ... |     sec_n     |
+---+---+---+---+---+---+---+---+     +---+---+---+---+

  Here, len = 4 * (n+1).  Again, n is the number of security mechanisms
  contained in the current overloaded filehandle.  Three octets are
  padded after the status octet to meet the XDR four-octet alignment
  requirement.  An overloaded NFS v3 filehandle can carry up to fifteen
  security mechanisms.

4. WebNFS Security Negotiation

  With the SNEGO-MCL request and the overloaded NFS v2 and v3
  filehandles defined above, the following diagram depicts the WebNFS
  security negotiation protocol:




Chiu, et al.                 Informational                      [Page 6]

RFC 2755            Security Negotiation for WebNFS         January 2000


   Client                                      Server
   ------                                      ------

       LOOKUP FH=0x0, 0x81 <sec-index> "path"
                       ----------->
                       <-----------
                           FH: length, status, {sec_1  sec_2 ... sec_n}

  where
     0x81 represents client's indication to negotiate security
     mechanisms with the server,

     path is either an ASCII string of slash separated components or
     0x80 and a native path,

     sec-index, one octet, contains the index into the array of
     security mechanisms the server uses to protect the specified path,

     status, one octet, indicates whether there are more security
     mechanisms (1 means yes, 0 means no) that require the client to
     perform another SNEGO-MCL to get them,

     length (one octet for NFS v2 and four octets for NFS v3) describes
     the number of valid octets that follow,

     {sec_1 sec_2 ... sec_n} represents the array of security
     mechanisms.  As noted earlier, each security mechanism is
     represented by a four-octet integer.

  Here is an example showing the WebNFS security negotiation protocol
  with NFS v2.  In the example it is assumed the server shares /export
  with 10 security mechanisms {0x3900 0x3901 0x3902 ... 0x3909} on the
  export, two SNEGO-MCL requests would be needed for the client to get
  the complete security information:

   LOOKUP FH=0x0, 0x81 0x01 "/export"
                       ----------->
                       <-----------
       0x1c, 0x01, {0x3900 0x3901 0x3902 0x3903 0x3904 0x3905 0x3906}

   LOOKUP FH=0x0, 0x81 0x08 "/export"
                       ----------->
                       <-----------
       0x0c, 0x00, {0x3907 0x3908 0x3909}







Chiu, et al.                 Informational                      [Page 7]

RFC 2755            Security Negotiation for WebNFS         January 2000


  The order of the security mechanisms returned in an overloaded
  filehandle implies preferences, i.e., one is more recommended than
  those following it.  The ordering is the same as that returned by the
  MOUNT v3 protocol.

  The following shows a typical scenario which illustrates how the
  WebNFS security negotiation is accomplished in the course of
  accessing publicly shared filesystems.

  Normally, a WebNFS client first makes a regular multi-component
  LOOKUP request using the public filehandle to obtain the filehandle
  for the specified path.  Since the WebNFS client does not have any
  prior knowledge as to how the path is protected by the server the
  default security mechanism is used in this first multi-component
  LOOKUP.  If the default security mechanism does not meet server's
  requirements, the server replies with the AUTH_TOOWEAK RPC
  authentication error, indicating that the default security mechanism
  is not valid and the WebNFS client needs to use a stronger one.

  Upon receiving the AUTH_TOOWEAK error, to find out what security
  mechanisms are required to access the specified path the WebNFS
  client sends a SNEGO-qMCL request, using the default security
  mechanism.

  If the SNEGO-MCL request succeeds the server responds with the
  filehandle overloaded with the array of security mechanisms required
  for the specified path.  If the server does not support WebNFS
  security negotiation, the SNEGO-MCL request fails with NFSERR_IO for
  NFS v2 or NFS3ERR_IO for NFS v3 [RFC2055].

  Depending on the size of the array of security mechanisms, the WebNFS
  client may have to make more SNEGO-MCL requests to get the complete
  array.

  For successful SNEGO-MCL requests, the WebNFS client retrieves the
  array of security mechanisms from the overloaded filehandle, selects
  an appropriate one, and issues a regular multi-component LOOKUP using
  the selected security mechanism to acquire the filehandle.

  All subsequent NFS requests are then made using the selected security
  mechanism and the filehandle.

  The following depicts the scenario outlined above.  It is assumed
  that the server shares /export/home as follows:

       share -o sec=sec_1:sec_2:sec_3,public /export/home





Chiu, et al.                 Informational                      [Page 8]

RFC 2755            Security Negotiation for WebNFS         January 2000


  and AUTH_SYS is the client's default security mechanism and is not
  one of {sec_1, sec_2, sec_3}.

       Client                                          Server
       ------                                          ------

           LOOKUP FH=0x0, "/export/home"
                                    AUTH_SYS
                                   ----------->
                                   <-----------
                                                       AUTH_TOOWEAK

           LOOKUP FH=0x0, 0x81 0x01 "/export/home"
                                    AUTH_SYS
                                   ----------->
                                   <-----------
                    overloaded FH: length, status, {sec_1 sec_2 sec_3}

           LOOKUP FH=0x0, "/export/home"
                                       sec_n
                                   ----------->
                                   <-----------
                                                       FH = 0x01

           NFS request with FH=0x01
                                       sec_n
                                   ----------->
                                   <-----------
                                                       ...

  In the above scenario, the first request is a regular multi-component
  LOOKUP which fails with the AUTH_TOOWEAK error.  The client then
  issues a SNEGO-MCL request to get the security information.

  There are WebNFS implementations that allow the public filehandle to
  work with NFS protocol procedures other than LOOKUP.  For those
  WebNFS implementations, if the first request is not a regular multi-
  component LOOKUP and it fails with AUTH_TOOWEAK, the client should
  issue a SNEGO-MCL with

       0x81 0x01 "."

  as the path to get the security information.








Chiu, et al.                 Informational                      [Page 9]

RFC 2755            Security Negotiation for WebNFS         January 2000


5. Security Considerations

  The reader may note that no mandatory security mechanisms are
  specified in the protocol that the client must use in making SNEGO-
  MCL requests.  Normally, the client uses the default security
  mechanism configured on his system in the first SNEGO-MCL request.
  If the default security mechanism is not valid the server replies
  with the AUTH_TOOWEAK error. In this case the server does not return
  the array of security mechanisms to the client.  The client can then
  make another SNEGO-MCL request using a stronger security mechanism.
  This continues until the client hits a valid one or has exhausted all
  the supported security mechanisms.

6. References

  [RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol
            Specification", RFC 1094, March 1989.
            http://www.ietf.org/rfc/rfc1094.txt

  [RFC1813] Callaghan, B., Pawlowski, B. and P. Staubach, "NFS Version
            3 Protocol Specification", RFC 1813, June 1995.
            http://www.ietf.org/rfc/rfc1813.txt

  [RFC2054] Callaghan, B., "WebNFS Client Specification", RFC 2054,
            October 1996.  http://www.ietf.org/rfc/rfc2054.txt

  [RFC2055] Callaghan, B., "WebNFS Server Specification", RFC 2055,
            October 1996.  http://www.ietf.org/rfc/rfc2055.txt

  [RFC2203] Eisler, M., Chiu, A. and Ling, L., "RPCSEC_GSS Protocol
            Specification", RFC 2203, September 1997.
            http://www.ietf.org/rfc/rfc2203.txt

7. Acknowledgements

  This specification was extensively brainstormed and reviewed by the
  NFS group of Solaris Software Division.














Chiu, et al.                 Informational                     [Page 10]

RFC 2755            Security Negotiation for WebNFS         January 2000


8. Authors' Addresses

  Alex Chiu
  Sun Microsystems, Inc.
  901 San Antonio Road
  Palo Alto, CA 94303

  Phone: +1 (650) 786-6465
  EMail: [email protected]


  Mike Eisler
  Sun Microsystems, Inc.
  901 San Antonio Road
  Palo Alto, CA 94303

  Phone: +1 (719) 599-9026
  EMail: [email protected]


  Brent Callaghan
  Sun Microsystems, Inc.
  901 San Antonio Road
  Palo Alto, CA 94303

  Phone: +1 (650) 786-5067
  EMail: [email protected]
























Chiu, et al.                 Informational                     [Page 11]

RFC 2755            Security Negotiation for WebNFS         January 2000


9. Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Chiu, et al.                 Informational                     [Page 12]