Network Working Group                                        N. Brownlee
Request for Comments: 2722                    The University of Auckland
Obsoletes: 2063                                                 C. Mills
Category: Informational                            GTE Laboratories, Inc
                                                                G. Ruth
                                                    GTE Internetworking
                                                           October 1999


                Traffic Flow Measurement: Architecture

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  This document provides a general framework for describing network
  traffic flows, presents an architecture for traffic flow measurement
  and reporting, discusses how this relates to an overall network
  traffic flow architecture and indicates how it can be used within the
  Internet.

Table of Contents

  1  Statement of Purpose and Scope                                   3
     1.1  Introduction . . . . . . . . . . . . . . . . . . . . . . .  3

  2  Traffic Flow Measurement Architecture                            5
     2.1  Meters and Traffic Flows . . . . . . . . . . . . . . . . .  5
     2.2  Interaction Between METER and METER READER . . . . . . . .  7
     2.3  Interaction Between MANAGER and METER  . . . . . . . . . .  7
     2.4  Interaction Between MANAGER and METER READER . . . . . . .  8
     2.5  Multiple METERs or METER READERs . . . . . . . . . . . . .  9
     2.6  Interaction Between MANAGERs (MANAGER - MANAGER) . . . . . 10
     2.7  METER READERs and APPLICATIONs . . . . . . . . . . . . . . 10

  3  Traffic Flows and Reporting Granularity                         10
     3.1  Flows and their Attributes . . . . . . . . . . . . . . . . 10
     3.2  Granularity of Flow Measurements . . . . . . . . . . . . . 13
     3.3  Rolling Counters, Timestamps, Report-in-One-Bucket-Only  . 15




Brownlee, et al.             Informational                      [Page 1]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  4  Meters                                                          17
     4.1  Meter Structure  . . . . . . . . . . . . . . . . . . . . . 17
     4.2  Flow Table . . . . . . . . . . . . . . . . . . . . . . . . 19
     4.3  Packet Handling, Packet Matching . . . . . . . . . . . . . 20
     4.4  Rules and Rule Sets  . . . . . . . . . . . . . . . . . . . 23
     4.5  Maintaining the Flow Table . . . . . . . . . . . . . . . . 28
     4.6  Handling Increasing Traffic Levels . . . . . . . . . . . . 29

  5  Meter Readers                                                   30
     5.1  Identifying Flows in Flow Records  . . . . . . . . . . . . 30
     5.2  Usage Records, Flow Data Files . . . . . . . . . . . . . . 30
     5.3  Meter to Meter Reader:  Usage Record Transmission  . . . . 31

  6  Managers                                                        32
     6.1  Between Manager and Meter:  Control Functions  . . . . . . 32
     6.2  Between Manager and Meter Reader:  Control Functions . . . 33
     6.3  Exception Conditions . . . . . . . . . . . . . . . . . . . 35
     6.4  Standard Rule Sets . . . . . . . . . . . . . . . . . . . . 36

  7  Security Considerations                                         36
     7.1  Threat Analysis  . . . . . . . . . . . . . . . . . . . . . 36
     7.2  Countermeasures  . . . . . . . . . . . . . . . . . . . . . 37

  8  IANA Considerations                                             39
     8.1  PME Opcodes  . . . . . . . . . . . . . . . . . . . . . . . 39
     8.2  RTFM Attributes  . . . . . . . . . . . . . . . . . . . . . 39

  9  APPENDICES                                                      41
     Appendix A: Network Characterisation  . . . . . . . . . . . . . 41
     Appendix B: Recommended Traffic Flow Measurement Capabilities . 42
     Appendix C: List of Defined Flow Attributes . . . . . . . . . . 43
     Appendix D: List of Meter Control Variables . . . . . . . . . . 44
     Appendix E: Changes Introduced Since RFC 2063 . . . . . . . . . 45

  10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 45
  11 References  . . . . . . . . . . . . . . . . . . . . . . . . . . 46
  12 Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . 47
  13 Full Copyright Statement  . . . . . . . . . . . . . . . . . . . 48













Brownlee, et al.             Informational                      [Page 2]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


1  Statement of Purpose and Scope

1.1  Introduction

  This document describes an architecture for traffic flow measurement
  and reporting for data networks which has the following
  characteristics:

    - The traffic flow model can be consistently applied to any
      protocol, using address attributes in any combination at the
      'adjacent' (see below), network and transport layers of the
      networking stack.

    - Traffic flow attributes are defined in such a way that they are
      valid for multiple networking protocol stacks, and that traffic
      flow measurement implementations are useful in multi-protocol
      environments.

    - Users may specify their traffic flow measurement requirements by
      writing 'rule sets', allowing them to collect the flow data they
      need while ignoring other traffic.

    - The data reduction effort to produce requested traffic flow
      information is placed as near as possible to the network
      measurement point.  This minimises the volume of data to be
      obtained (and transmitted across the network for storage), and
      reduces the amount of processing required in traffic flow
      analysis applications.

  'Adjacent' (as used above) is a layer-neutral term for the next layer
  down in a particular instantiation of protocol layering. Although
  'adjacent' will usually imply the link layer (MAC addresses), it does
  not implicitly advocate or dismiss any particular form of tunnelling
  or layering.

  The architecture specifies common metrics for measuring traffic
  flows.  By using the same metrics, traffic flow data can be exchanged
  and compared across multiple platforms.  Such data is useful for:

    - Understanding the behaviour of existing networks,

    - Planning for network development and expansion,

    - Quantification of network performance,

    - Verifying the quality of network service, and

    - Attribution of network usage to users.



Brownlee, et al.             Informational                      [Page 3]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  The traffic flow measurement architecture is deliberately structured
  using address attributes which are defined in a consistent way at the
  Adjacent, Network and Transport layers of the networking stack,
  allowing specific implementations of the architecture to be used
  effectively in multi-protocol environments.  Within this document the
  term 'usage data' is used as a generic term for the data obtained
  using the traffic flow measurement architecture.

  In principle one might define address attributes for higher layers,
  but it would be very difficult to do this in a general way.  However,
  if an RTFM traffic meter were implemented within an application
  server (where it had direct access to application-specific usage
  information), it would be possible to use the rest of the RTFM
  architecture to collect application-specific information.  Use of the
  same model for both network- and application-level measurement in
  this way could simplify the development of generic analysis
  applications which process and/or correlate both traffic and usage
  information.  Experimental work in this area is described in the RTFM
  'New Attributes' document [RTFM-NEW].

  This document is not a protocol specification.  It specifies and
  structures the information that a traffic flow measurement system
  needs to collect, describes requirements that such a system must
  meet, and outlines tradeoffs which may be made by an implementor.

  For performance reasons, it may be desirable to use traffic
  information gathered through traffic flow measurement in lieu of
  network statistics obtained in other ways.  Although the
  quantification of network performance is not the primary purpose of
  this architecture, the measured traffic flow data may be used as an
  indication of network performance.

  A cost recovery structure decides "who pays for what." The major
  issue here is how to construct a tariff (who gets billed, how much,
  for which things, based on what information, etc).  Tariff issues
  include fairness, predictability (how well can subscribers forecast
  their network charges), practicality (of gathering the data and
  administering the tariff), incentives (e.g. encouraging off-peak
  use), and cost recovery goals (100% recovery, subsidisation, profit
  making).  Issues such as these are not covered here.

  Background information explaining why this approach was selected is
  provided by the 'Internet Accounting Background' RFC [ACT-BKG].








Brownlee, et al.             Informational                      [Page 4]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


2  Traffic Flow Measurement Architecture

  A traffic flow measurement system is used by Network Operations
  personnel to aid in managing and developing a network.  It provides a
  tool for measuring and understanding the network's traffic flows.
  This information is useful for many purposes, as mentioned in section
  1 (above).

  The following sections outline a model for traffic flow measurement,
  which draws from working drafts of the OSI accounting model [OSI-
  ACT].

2.1  Meters and Traffic Flows

  At the heart of the traffic measurement model are network entities
  called traffic METERS.  Meters observe packets as they pass by a
  single point on their way through the network and classify them into
  certain groups.  For each such group a meter will accumulate certain
  attributes, for example the numbers of packets and bytes observed for
  the group.  These METERED TRAFFIC GROUPS may correspond to a user, a
  host system, a network, a group of networks, a particular transport
  address (e.g. an IP port number), any combination of the above, etc,
  depending on the meter's configuration.

  We assume that routers or traffic monitors throughout a network are
  instrumented with meters to measure traffic.  Issues surrounding the
  choice of meter placement are discussed in the 'Internet Accounting
  Background' RFC [ACT-BKG]. An important aspect of meters is that they
  provide a way of succinctly aggregating traffic information.

  For the purpose of traffic flow measurement we define the concept of
  a TRAFFIC FLOW, which is like an artificial logical equivalent to a
  call or connection.  A flow is a portion of traffic, delimited by a
  start and stop time, that belongs to one of the metered traffic
  groups mentioned above.  Attribute values (source/destination
  addresses, packet counts, byte counts, etc.)  associated with a flow
  are aggregate quantities reflecting events which take place in the
  DURATION between the start and stop times.  The start time of a flow
  is fixed for a given flow; the stop time may increase with the age of
  the flow.

  For connectionless network protocols such as IP there is by
  definition no way to tell whether a packet with a particular
  source/destination combination is part of a stream of packets or not
  - each packet is completely independent.  A traffic meter has, as
  part of its configuration, a set of 'rules' which specify the flows
  of interest, in terms of the values of their attributes.  It derives
  attribute values from each observed packet, and uses these to decide



Brownlee, et al.             Informational                      [Page 5]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  which flow they belong to.  Classifying packets into 'flows' in this
  way provides an economical and practical way to measure network
  traffic and subdivide it into well-defined groups.

  Usage information which is not derivable from traffic flows may also
  be of interest.  For example, an application may wish to record
  accesses to various different information resources or a host may
  wish to record the username (subscriber id) for a particular network
  session.  Provision is made in the traffic flow architecture to do
  this.  In the future the measurement model may be extended to gather
  such information from applications and hosts so as to provide values
  for higher-layer flow attributes.

  As well as FLOWS and METERS, the traffic flow measurement model
  includes MANAGERS, METER READERS and ANALYSIS APPLICATIONS, which are
  explained in following sections.  The relationships between them are
  shown by the diagram below.  Numbers on the diagram refer to sections
  in this document.

                     MANAGER
                    /       \
               2.3 /         \ 2.4
                  /           \
                 /             \                      ANALYSIS
             METER  <----->  METER READER  <----->   APPLICATION
                      2.2                    2.7


    - MANAGER: A traffic measurement manager is an application which
      configures 'meter' entities and controls 'meter reader' entities.
      It sends configuration commands to the meters, and supervises the
      proper operation of each meter and meter reader.  It may well be
      convenient to combine the functions of meter reader and manager
      within a single network entity.

    - METER: Meters are placed at measurement points determined by
      Network Operations personnel.  Each meter selectively records
      network activity as directed by its configuration settings.  It
      can also aggregate, transform and further process the recorded
      activity before the data is stored.  The processed and stored
      results are called the 'usage data'.

    - METER READER: A meter reader transports usage data from meters so
      that it is available to analysis applications.







Brownlee, et al.             Informational                      [Page 6]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - ANALYSIS APPLICATION: An analysis application processes the
      usage data so as to provide information and reports which are
      useful for network engineering and management purposes.  Examples
      include:

        - TRAFFIC FLOW MATRICES, showing the total flow rates for many
          of the possible paths within an internet.

        - FLOW RATE FREQUENCY DISTRIBUTIONS, summarizing flow rates
          over a period of time.

        - USAGE DATA showing the total traffic volumes sent and
          received by particular hosts.

  The operation of the traffic measurement system as a whole is best
  understood by considering the interactions between its components.
  These are described in the following sections.

2.2  Interaction Between METER and METER READER

  The information which travels along this path is the usage data
  itself.  A meter holds usage data in an array of flow data records
  known as the FLOW TABLE.  A meter reader may collect the data in any
  suitable manner.  For example it might upload a copy of the whole
  flow table using a file transfer protocol, or read the records in the
  current flow set one at a time using a suitable data transfer
  protocol.  Note that the meter reader need not read complete flow
  data records, a subset of their attribute values may well be
  sufficient.

  A meter reader may collect usage data from one or more meters.  Data
  may be collected from the meters at any time.  There is no
  requirement for collections to be synchronized in any way.

2.3  Interaction Between MANAGER and METER

  A manager is responsible for configuring and controlling one or more
  meters.  Each meter's configuration includes information such as:

    - Flow specifications, e.g. which traffic flows are to be measured,
      how they are to be aggregated, and any data the meter is required
      to compute for each flow being measured.

    - Meter control parameters, e.g. the 'inactivity' time for flows
      (if no packets belonging to a flow are seen for this time the
      flow is considered to have ended, i.e. to have become idle).





Brownlee, et al.             Informational                      [Page 7]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - Sampling behaviour.  Normally every packet will be observed.  It
      may sometimes be necessary to use sampling techniques so as to
      observe only some of the packets (see following note).

  A note about sampling: Current experience with the measurement
  architecture shows that a carefully-designed and implemented meter
  compresses the data sufficiently well that in normal LANs and WANs of
  today sampling is seldom, if ever, needed.  For this reason sampling
  algorithms are not prescribed by the architecture.  If sampling is
  needed, e.g. for metering a very-high-speed network with fine-grained
  flows, the sampling technique should be carefully chosen so as not to
  bias the results.  For a good introduction to this topic see the IPPM
  Working Group's RFC "Framework for IP Performance Metrics" [IPPM-
  FRM].

  A meter may run several rule sets concurrently on behalf of one or
  more managers, and any manager may download a set of flow
  specifications (i.e. a 'rule set') to a meter.  Control parameters
  which apply to an individual rule set should be set by the manager
  after it downloads that rule set.

  One manager should be designated as the 'master' for a meter.
  Parameters such as sampling behaviour, which affect the overall
  operation of the meter, should only be set by the master manager.

2.4  Interaction Between MANAGER and METER READER

  A manager is responsible for configuring and controlling one or more
  meter readers.  A meter reader may only be controlled by a single
  manager.  A meter reader needs to know at least the following for
  every meter it is collecting usage data from:

    - The meter's unique identity, i.e. its network name or address.

    - How often usage data is to be collected from the meter.

    - Which flow records are to be collected (e.g. all flows, flows for
      a particular rule set, flows which have been active since a given
      time, etc.).

    - Which attribute values are to be collected for the required flow
      records (e.g. all attributes, or a small subset of them)

  Since redundant reporting may be used in order to increase the
  reliability of usage data, exchanges among multiple entities must be
  considered as well.  These are discussed below.





Brownlee, et al.             Informational                      [Page 8]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


2.5  Multiple METERs or METER READERs

                   -- METER READER A --
                  /         |          \
                 /          |           \
         =====METER 1     METER 2=====METER 3    METER 4=====
                             \          |           /
                              \         |          /
                               -- METER READER B --

  Several uniquely identified meters may report to one or more meter
  readers.  The diagram above gives an example of how multiple meters
  and meter readers could be used.

  In the diagram above meter 1 is read by meter reader A, and meter 4
  is read by meter reader B. Meters 1 and 4 have no redundancy; if
  either meter fails, usage data for their network segments will be
  lost.

  Meters 2 and 3, however, measure traffic on the same network segment.
  One of them may fail leaving the other collecting the segment's usage
  data.  Meters 2 and 3 are read by meter reader A and by meter reader
  B.  If one meter reader fails, the other will continue collecting
  usage data from both meters.

  The architecture does not require multiple meter readers to be
  synchronized.  In the situation above meter readers A and B could
  both collect usage data at the same intervals, but not necesarily at
  the same times.  Note that because collections are asynchronous it is
  unlikely that usage records from two different meter readers will
  agree exactly.

  If identical usage records were required from a single meter, a
  manager could achieve this using two identical copies of a ruleset in
  that meter.  Let's call them RS1 and RS2, and assume that RS1 is
  running.  When a collection is to be made the manager switches the
  meter from RS1 to RS2, and directs the meter reader(s) to read flow
  data for RS1 from the meter.  For the next collection the manager
  switches back to RS1, and so on.  Note, however, that it is not
  possible to get identical usage records from more than one meter,
  since there is no way for a manager to switch rulesets in more than
  one meter at the same time.

  If there is only one meter reader and it fails, the meters continue
  to run.  When the meter reader is restarted it can collect all of the
  accumulated flow data.  Should this happen, time resolution will be
  lost (because of the missed collections) but overall traffic flow
  information will not.  The only exception to this would occur if the



Brownlee, et al.             Informational                      [Page 9]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  traffic volume was sufficient to 'roll over' counters for some flows
  during the failure; this is addressed in the section on 'Rolling
  Counters'.

2.6  Interaction Between MANAGERs (MANAGER - MANAGER)

  Synchronization between multiple management systems is the province
  of network management protocols.  This traffic flow measurement
  architecture specifies only the network management controls necessary
  to perform the traffic flow measurement function and does not address
  the more global issues of simultaneous or interleaved (possibly
  conflicting) commands from multiple network management stations or
  the process of transferring control from one network management
  station to another.

2.7  METER READERs and APPLICATIONs

  Once a collection of usage data has been assembled by a meter reader
  it can be processed by an analysis application.  Details of analysis
  applications - such as the reports they produce and the data they
  require - are outside the scope of this architecture.

  It should be noted, however, that analysis applications will often
  require considerable amounts of input data.  An important part of
  running a traffic flow measurement system is the storage and regular
  reduction of flow data so as to produce daily, weekly or monthly
  summary files for further analysis.  Again, details of such data
  handling are outside the scope of this architecture.

3  Traffic Flows and Reporting Granularity

  A flow was defined in section 2.1 above in abstract terms as follows:

      "A TRAFFIC FLOW is an artifical logical equivalent to a call or
      connection, belonging to a (user-specieied) METERED TRAFFIC
      GROUP."

  In practical terms, a flow is a stream of packets observed by the
  meter as they pass across a network between two end points (or from a
  single end point), which have been summarized by a traffic meter for
  analysis purposes.

3.1  Flows and their Attributes

  Every traffic meter maintains a table of 'flow records' for flows
  seen by the meter.  A flow record holds the values of the ATTRIBUTES
  of interest for its flow.  These attributes might include:




Brownlee, et al.             Informational                     [Page 10]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - ADDRESSES for the flow's source and destination.  These comprise
      the protocol type, the source and destination addresses at
      various network layers (extracted from the packet header), and
      the number of the interface on which the packet was observed.

    - First and last TIMES when packets were seen for this flow, i.e.
      the 'creation' and 'last activity' times for the flow.

    - COUNTS for 'forward' (source to destination) and 'backward'
      (destination to source) components (e.g. packets and bytes) of
      the flow's traffic.  The specifying of 'source' and 'destination'
      for flows is discussed in the section on packet matching below.

    - OTHER attributes, e.g. the index of the flow's record in the flow
      table and the rule set number for the rules which the meter was
      running while the flow was observed.  The values of these
      attributes provide a way of distinguishing flows observed by a
      meter at different times.

  The attributes listed in this document (Appendix C) provide a basic
  (i.e. useful minimum) set; IANA considerations for allocating new
  attributes are set out in section 8 below.

  A flow's METERED TRAFFIC GROUP is specified by the values of its
  ADDRESS attributes.  For example, if a flow's address attributes were
  specified as "source address = IP address 10.1.0.1, destination
  address = IP address 26.1.0.1" then only IP packets from 10.1.0.1 to
  26.1.0.1 and back would be counted in that flow.  If a flow's address
  attributes specified only that "source address = IP address
  10.1.0.1," then all IP packets from and to 10.1.0.1 would be counted
  in that flow.

  The addresses specifying a flow's address attributes may include one
  or more of the following types:

    - The INTERFACE NUMBER for the flow, i.e. the interface on which
      the meter measured the traffic.  Together with a unique address
      for the meter this uniquely identifies a particular physical-
      level port.

    - The ADJACENT ADDRESS, i.e. the address in the the next layer down
      from the peer address in a particular instantiation of protocol
      layering.  Although 'adjacent' will usually imply the link layer,
      it does not implicitly advocate or dismiss any particular form of
      tunnelling or layering.






Brownlee, et al.             Informational                     [Page 11]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


      For example, if flow measurement is being performed using IP as
      the network layer on an Ethernet LAN [802-3], an adjacent address
      will normally be a six-octet Media Access Control (MAC) address.
      For a host connected to the same LAN segment as the meter the
      adjacent address will be the MAC address of that host.  For hosts
      on other LAN segments it will be the MAC address of the adjacent
      (upstream or downstream) router carrying the traffic flow.

    - The PEER ADDRESS, which identifies the source or destination of
      the packet for the network layer (n) at which traffic measurement
      is being performed.  The form of a peer address will depend on
      the network-layer protocol in use, and the measurement network
      layer (n).

    - The TRANSPORT ADDRESS, which identifies the source or destination
      port for the packet, i.e. its (n+1) layer address.  For example,
      if flow measurement is being performed at the IP layer a
      transport address is a two-octet UDP or TCP port number.

  The four definitions above specify addresses for each of the four
  lowest layers of the OSI reference model, i.e. Physical layer, Link
  layer, Network layer and Transport layer.  A FLOW RECORD stores both
  the VALUE for each of its addresses (as described above) and a MASK
  specifying which bits of the address value are being used and which
  are ignored.  Note that if address bits are being ignored the meter
  will set them to zero, however their actual values are undefined.

  One of the key features of the traffic measurement architecture is
  that attributes have essentially the same meaning for different
  protocols, so that analysis applications can use the same reporting
  formats for all protocols.  This is straightforward for peer
  addresses; although the form of addresses differs for the various
  protocols, the meaning of a 'peer address' remains the same.  It
  becomes harder to maintain this correspondence at higher layers - for
  example, at the Network layer IP, Novell IPX and AppleTalk all use
  port numbers as a 'transport address', but CLNP and DECnet have no
  notion of ports.

  Reporting by adjacent intermediate sources and destinations or simply
  by meter interface (most useful when the meter is embedded in a
  router) supports hierarchical Internet reporting schemes as described
  in the 'Internet Accounting Background' RFC [ACT-BKG]. That is, it
  allows backbone and regional networks to measure usage to just the
  next lower level of granularity (i.e. to the regional and
  stub/enterprise levels, respectively), with the final breakdown
  according to end user (e.g. to source IP address) performed by the
  stub/enterprise networks.




Brownlee, et al.             Informational                     [Page 12]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  In cases where network addresses are dynamically allocated (e.g.
  dial-in subscribers), further subscriber identification will be
  necessary if flows are to ascribed to individual users.  Provision is
  made to further specify the metered traffic group through the use of
  an optional SUBSCRIBER ID as part of the flow id.  A subscriber ID
  may be associated with a particular flow either through the current
  rule set or by unspecified means within a meter.  At this time a
  subscriber ID is an arbitrary text string; later versions of the
  architecture may specify details of its contents.

3.2  Granularity of Flow Measurements

  GRANULARITY is the 'control knob' by which an application and/or the
  meter can trade off the overhead associated with performing usage
  reporting against its level of detail.  A coarser granularity means a
  greater level of aggregation; finer granularity means a greater level
  of detail.  Thus, the number of flows measured (and stored) at a
  meter can be regulated by changing the granularity of their
  attributes.  Flows are like an adjustable pipe - many fine-
  granularity streams can carry the data with each stream measured
  individually, or data can be bundled in one coarse-granularity pipe.
  Time granularity may be controlled by varying the reporting interval,
  i.e. the time between meter readings.

  Flow granularity is controlled by adjusting the level of detail for
  the following:

    - The metered traffic group (address attributes, discussed above).

    - The categorisation of packets (other attributes, discussed
      below).

    - The lifetime/duration of flows (the reporting interval needs to
      be short enough to measure them with sufficient precision).

  The set of rules controlling the determination of each packet's
  metered traffic group is known as the meter's CURRENT RULE SET.  As
  will be shown, the meter's current rule set forms an integral part of
  the reported information, i.e. the recorded usage information cannot
  be properly interpreted without a definition of the rules used to
  collect that information.

  Settings for these granularity factors may vary from meter to meter.
  They are determined by the meter's current rule set, so they will
  change if network Operations personnel reconfigure the meter to use a
  new rule set.  It is expected that the collection rules will change
  rather infrequently; nonetheless, the rule set in effect at any time




Brownlee, et al.             Informational                     [Page 13]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  must be identifiable via a RULE SET NUMBER. Granularity of metered
  traffic groups is further specified by additional ATTRIBUTES. These
  attributes include:

    - Attributes which record information derived from other attribute
      values.  Six of these are defined (SourceClass, DestClass,
      FlowClass, SourceKind, DestKind, FlowKind), and their meaning is
      determined by the meter's rule set.  For example, one could have
      a subroutine in the rule set which determined whether a source or
      destination peer address was a member of an arbitrary list of
      networks, and set SourceClass/DestClass to one if the source/dest
      peer address was in the list or to zero otherwise.

    - Administratively specified attributes such as Quality of Service
      and Priority, etc.  These are not defined at this time.

  Settings for these granularity factors may vary from meter to meter.
  They are determined by the meter's current rule set, so they will
  change if Network Operations personnel reconfigure the meter to use a
  new rule set.

  A rule set can aggregate groups of addresses in two ways.  The
  simplest is to use a mask in a single rule to test for an address
  within a masked group.  The other way is to use a sequence of rules
  to test for an arbitrary group of (masked) address values, then use a
  PushRuleTo rule to set a derived attribute (e.g. FlowKind) to
  indicate the flow's group.

  The LIFETIME of a flow is the time interval which began when the
  meter observed the first packet belonging to the flow and ended when
  it saw the last packet.  Flow lifetimes are very variable, but many -
  if not most - are rather short.  A meter cannot measure lifetimes
  directly; instead a meter reader collects usage data for flows which
  have been active since the last collection, and an analysis
  application may compare the data from each collection so as to
  determine when each flow actually stopped.

  The meter does, however, need to reclaim memory (i.e. records in the
  flow table) being held by idle flows.  The meter configuration
  includes a variable called InactivityTimeout, which specifies the
  minimum time a meter must wait before recovering the flow's record.
  In addition, before recovering a flow record the meter should be sure
  that the flow's data has been collected by all meter readers which
  registered to collect it.  These two wait conditions are desired
  goals for the meter; they are not difficult to achieve in normal
  usage, however the meter cannot guarantee to fulfil them absolutely.





Brownlee, et al.             Informational                     [Page 14]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  These 'lifetime' issues are considered further in the section on
  meter readers (below).  A complete list of the attributes currently
  defined is given in Appendix C later in this document.

3.3  Rolling Counters, Timestamps, Report-in-One-Bucket-Only

  Once a usage record is sent, the decision needs to be made whether to
  clear any existing flow records or to maintain them and add to their
  counts when recording subsequent traffic on the same flow.  The
  second method, called rolling counters, is recommended and has
  several advantages.  Its primary advantage is that it provides
  greater reliability - the system can now often survive the loss of
  some usage records, such as might occur if a meter reader failed and
  later restarted.  The next usage record will very often contain yet
  another reading of many of the same flow buckets which were in the
  lost usage record.  The 'continuity' of data provided by rolling
  counters can also supply information used for "sanity" checks on the
  data itself, to guard against errors in calculations.

  The use of rolling counters does introduce a new problem: how to
  distinguish a follow-on flow record from a new flow record.  Consider
  the following example.

                        CONTINUING FLOW        OLD FLOW, then NEW FLOW

                        start time = 1            start time = 1
  Usage record N:       flow count = 2000      flow count = 2000 (done)

                        start time = 1            start time = 5
  Usage record N+1:     flow count = 3000      new flow count = 1000

  Total count:                 3000                    3000

  In the continuing flow case, the same flow was reported when its
  count was 2000, and again at 3000: the total count to date is 3000.
  In the OLD/NEW case, the old flow had a count of 2000.  Its record
  was then stopped (perhaps because of temporary idleness), but then
  more traffic with the same characteristics arrived so a new flow
  record was started and it quickly reached a count of 1000.  The total
  flow count from both the old and new records is 3000.

  The flow START TIMESTAMP attribute is sufficient to resolve this. In
  the example above, the CONTINUING FLOW flow record in the second
  usage record has an old FLOW START timestamp, while the NEW FLOW
  contains a recent FLOW START timestamp.  A flow which has sporadic
  bursts of activity interspersed with long periods of inactivity will
  produce a sequence of flow activity records, each with the same set
  of address attributes, but with increasing FLOW START times.



Brownlee, et al.             Informational                     [Page 15]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  Each packet is counted in at most one flow for each running ruleset,
  so as to avoid multiple counting of a single packet.  The record of a
  single flow is informally called a "bucket."  If multiple, sometimes
  overlapping, records of usage information are required (aggregate,
  individual, etc), the network manager should collect the counts in
  sufficiently detailed granularity so that aggregate and combination
  counts can be reconstructed in post-processing of the raw usage data.
  Alternatively, multiple rulesets could be used to collect data at
  different granularities.

  For example, consider a meter from which it is required to record
  both 'total packets coming in interface #1' and 'total packets
  arriving from any interface sourced by IP address = a.b.c.d', using a
  single rule set.  Although a bucket can be declared for each case, it
  is not clear how to handle a packet which satisfies both criteria.
  It must only be counted once.  By default it will be counted in the
  first bucket for which it qualifies, and not in the other bucket.
  Further, it is not possible to reconstruct this information by post-
  processing.  The solution in this case is to define not two, but
  THREE buckets, each one collecting a unique combination of the two
  criteria:

          Bucket 1:  Packets which came in interface 1,
                     AND were sourced by IP address a.b.c.d

          Bucket 2:  Packets which came in interface 1,
                     AND were NOT sourced by IP address a.b.c.d

          Bucket 3:  Packets which did NOT come in interface 1,
                     AND were sourced by IP address a.b.c.d

         (Bucket 4:  Packets which did NOT come in interface 1,
                     AND were NOT sourced by IP address a.b.c.d)

  The desired information can now be reconstructed by post-processing.
  "Total packets coming in interface 1" can be found by adding buckets
  1 & 2, and "Total packets sourced by IP address a.b.c.d" can be found
  by adding buckets 1 & 3.  Note that in this case bucket 4 is not
  explicitly required since its information is not of interest, but it
  is supplied here in parentheses for completeness.

  Alternatively, the above could be achieved by running two rule sets
  (A and B), as follows:

          Bucket 1:  Packets which came in interface 1;
                     counted by rule set A.





Brownlee, et al.             Informational                     [Page 16]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


          Bucket 2:  Packets which were sourced by IP address a.b.c.d;
                     counted by rule set B.

4  Meters

  A traffic flow meter is a device for collecting data about traffic
  flows at a given point within a network; we will call this the
  METERING POINT.  The header of every packet passing the network
  metering point is offered to the traffic meter program.

  A meter could be implemented in various ways, including:

    - A dedicated small host, connected to a broadcast LAN (so that it
      can see all packets as they pass by) and running a traffic meter
      program.  The metering point is the LAN segment to which the
      meter is attached.

    - A multiprocessing system with one or more network interfaces,
      with drivers enabling a traffic meter program to see packets.  In
      this case the system provides multiple metering points - traffic
      flows on any subset of its network interfaces can be measured.

    - A packet-forwarding device such as a router or switch.  This is
      similar to (b) except that every received packet should also be
      forwarded, usually on a different interface.

4.1  Meter Structure

  An outline of the meter's structure is given in the following
  diagram:

  Briefly, the meter works as follows:

    - Incoming packet headers arrive at the top left of the diagram and
      are passed to the PACKET PROCESSOR.

    - The packet processor passes them to the Packet Matching Engine
      (PME) where they are classified.

    - The PME is a Virtual Machine running a pattern matching program
      contained in the CURRENT RULE SET.  It is invoked by the Packet
      Processor, executes the rules in the current rule set as
      described in section 4.3 below, and returns instructions on what
      to do with the packet.

    - Some packets are classified as 'to be ignored'.  They are
      discarded by the Packet Processor.




Brownlee, et al.             Informational                     [Page 17]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - Other packets are matched by the PME, which returns a FLOW KEY
      describing the flow to which the packet belongs.

    - The flow key is used to locate the flow's entry in the FLOW
      TABLE; a new entry is created when a flow is first seen.  The
      entry's data fields (e.g. packet and byte counters) are updated.

    - A meter reader may collect data from the flow table at any time.
      It may use the 'collect' index to locate the flows to be
      collected within the flow table.


                  packet                     +------------------+
                  header                     | Current Rule Set |
                    |                        +--------+---------+
                    |                                 |
                    |                                 |
            +-------*--------+    'match key'  +------*-------+
            |    Packet      |---------------->|    Packet    |
            |   Processor    |                 |   Matching   |
            |                |<----------------|    Engine    |
            +--+----------+--+  'flow key'     +--------------+
               |          |
               |          |
        Ignore *          | Count (via 'flow key')
                          |
                       +--*--------------+
                       | 'Search' index  |
                       +--------+--------+
                                |
                       +--------*--------+
                       |                 |
                       |   Flow Table    |
                       |                 |
                       +--------+--------+
                                |
                       +--------*--------+
                       | 'Collect' index |
                       +--------+--------+
                                |
                                *
                           Meter Reader

  The discussion above assumes that a meter will only be running a
  single rule set.  A meter may, however, run several rule sets
  concurrently.  To do this the meter maintains a table of current
  rulesets.  The packet processor matches each packet against every




Brownlee, et al.             Informational                     [Page 18]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  current ruleset, producing a single flow table containing flows from
  all the rule sets.  One way to implement this is to use the Rule Set
  Number attribute in each flow as part of the flow key.

  A packet may only be counted once in a rule set (as explained in
  section 3.3 above), but it may be counted in any of the current
  rulesets.  The overall effect of doing this is somewhat similar to
  running several independent meters, one for each rule set.

4.2  Flow Table

  Every traffic meter maintains 'flow table', i.e. a table of TRAFFIC
  FLOW RECORDS for flows seen by the meter.  Details of how the flow
  table is maintained are given in section 4.5 below.  A flow record
  contains attribute values for its flow, including:

    - Addresses for the flow's source and destination.  These include
      addresses and masks for various network layers (extracted from
      the packet header), and the identity of the interface on which
      the packet was observed.

    - First and last times when packets were seen for this flow.

    - Counts for 'forward' (source to destination) and 'backward'
      (destination to source) components of the flow's traffic.

    - Other attributes, e.g. state of the flow record (discussed
      below).

  The state of a flow record may be:

    - INACTIVE: The flow record is not being used by the meter.

    - CURRENT: The record is in use and describes a flow which belongs
      to the 'current flow set', i.e. the set of flows recently seen by
      the meter.

    - IDLE: The record is in use and the flow which it describes is
      part of the current flow set.  In addition, no packets belonging
      to this flow have been seen for a period specified by the meter's
      InactivityTime variable.










Brownlee, et al.             Informational                     [Page 19]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


4.3  Packet Handling, Packet Matching

  Each packet header received by the traffic meter program is processed
  as follows:

    - Extract attribute values from the packet header and use them to
      create a MATCH KEY for the packet.

    - Match the packet's key against the current rule set, as explained
      in detail below.

  The rule set specifies whether the packet is to be counted or
  ignored.  If it is to be counted the matching process produces a FLOW
  KEY for the flow to which the packet belongs.  This flow key is used
  to find the flow's record in the flow table; if a record does not yet
  exist for this flow, a new flow record may be created.  The data for
  the matching flow record can then be updated.

  For example, the rule set could specify that packets to or from any
  host in IP network 130.216 are to be counted.  It could also specify
  that flow records are to be created for every pair of 24-bit (Class
  C) subnets within network 130.216.

  Each packet's match key is passed to the meter's PATTERN MATCHING
  ENGINE (PME) for matching.  The PME is a Virtual Machine which uses a
  set of instructions called RULES, i.e. a RULE SET is a program for
  the PME. A packet's match key contains source (S) and destination (D)
  interface identities, address values and masks.

  If measured flows were unidirectional, i.e. only counted packets
  travelling in one direction, the matching process would be simple.
  The PME would be called once to match the packet.  Any flow key
  produced by a successful match would be used to find the flow's
  record in the flow table, and that flow's counters would be updated.

  Flows are, however, bidirectional, reflecting the forward and reverse
  packets of a protocol interchange or 'session'.  Maintaining two sets
  of counters in the meter's flow record makes the resulting flow data
  much simpler to handle, since analysis programs do not have to gather
  together the 'forward' and 'reverse' components of sessions.
  Implementing bi-directional flows is, of course, more difficult for
  the meter, since it must decide whether a packet is a 'forward'
  packet or a 'reverse' one.  To make this decision the meter will
  often need to invoke the PME twice, once for each possible packet
  direction.






Brownlee, et al.             Informational                     [Page 20]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  The diagram below describes the algorithm used by the traffic meter
  to process each packet.  Flow through the diagram is from left to
  right and top to bottom, i.e. from the top left corner to the bottom
  right corner.  S indicates the flow's source address (i.e. its set of
  source address attribute values) from the packet header, and D
  indicates its destination address.

  There are several cases to consider.  These are:

    - The packet is recognised as one which is TO BE IGNORED.

    - The packet would MATCH IN EITHER DIRECTION.  One situation in
      which this could happen would be a rule set which matches flows
      within network X (Source = X, Dest = X) but specifies that flows
      are to be created for each subnet within network X, say subnets y
      and z.  If, for example a packet is seen for y->z, the meter must
      check that flow z->y is not already current before creating y->z.

    - The packet MATCHES IN ONE DIRECTION ONLY.  If its flow is already
      current, its forward or reverse counters are incremented.
      Otherwise it is added to the flow table and then counted.

                  Ignore
  --- match(S->D) -------------------------------------------------+
       | Suc   | NoMatch                                           |
       |       |          Ignore                                   |
       |      match(D->S) -----------------------------------------+
       |       | Suc   | NoMatch                                   |
       |       |       |                                           |
       |       |       +-------------------------------------------+
       |       |                                                   |
       |       |             Suc                                   |
       |      current(D->S) ---------- count(D->S,r) --------------+
       |       | Fail                                              |
       |       |                                                   |
       |      create(D->S) ----------- count(D->S,r) --------------+
       |                                                           |
       |             Suc                                           |
      current(S->D) ------------------ count(S->D,f) --------------+
       | Fail                                                      |
       |             Suc                                           |
      current(D->S) ------------------ count(D->S,r) --------------+
       | Fail                                                      |
       |                                                           |
      create(S->D) ------------------- count(S->D,f) --------------+
                                                                   |
                                                                   *




Brownlee, et al.             Informational                     [Page 21]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  The algorithm uses four functions, as follows:

  match(A->B) implements the PME.  It uses the meter's current rule set
     to match the attribute values in the packet's match key.  A->B
     means that the assumed source address is A and destination address
     B, i.e. that the packet was travelling from A to B.  match()
     returns one of three results:

  'Ignore' means that the packet was matched but this flow is not to be
          counted.

  'NoMatch' means that the packet did not match.  It might, however
          match with its direction reversed, i.e. from B to A.

  'Suc' means that the packet did match, i.e. it belongs to a flow
          which is to be counted.

  current(A->B) succeeds if the flow A-to-B is current - i.e. has a
     record in the flow table whose state is Current - and fails
     otherwise.

  create(A->B) adds the flow A-to-B to the flow table, setting the
     value for attributes - such as addresses - which remain constant,
     and zeroing the flow's counters.

  count(A->B,f) increments the 'forward' counters for flow A-to-B.
  count(A->B,r) increments the 'reverse' counters for flow A-to-B.
     'Forward' here means the counters for packets travelling from A to
     B.  Note that count(A->B,f) is identical to count(B->A,r).

  When writing rule sets one must remember that the meter will normally
  try to match each packet in the reverse direction if the forward
  match does not succeed.  It is particularly important that the rule
  set does not contain inconsistencies which will upset this process.

  Consider, for example, a rule set which counts packets from source
  network A to destination network B, but which ignores packets from
  source network B.  This is an obvious example of an inconsistent rule
  set, since packets from network B should be counted as reverse
  packets for the A-to-B flow.

  This problem could be avoided by devising a language for specifying
  rule files and writing a compiler for it, thus making it much easier
  to produce correct rule sets.  An example of such a language is
  described in the 'SRL' document [RTFM-SRL]. Another approach would be
  to write a 'rule set consistency checker' program, which could detect
  problems in hand-written rule sets.




Brownlee, et al.             Informational                     [Page 22]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  Normally, the best way to avoid these problems is to write rule sets
  which only classify flows in the forward direction, and rely on the
  meter to handle reverse-travelling packets.

  Occasionally there can be situations when a rule set needs to know
  the direction in which a packet is being matched.  Consider, for
  example, a rule set which wants to save some attribute values (source
  and destination addresses perhaps) for any 'unusual' packets.  The
  rule set will contain a sequence of tests for all the 'usual' source
  addresses, follwed by a rule which will execute a 'NoMatch' action.
  If the match fails in the S->D direction, the NoMatch action will
  cause it to be retried.  If it fails in the D->S direction, the
  packet can be counted as an 'unusual' packet.

  To count such an 'unusual' packet we need to know the matching
  direction: the MatchingStoD attribute provides this.  To use it, one
  follows the source address tests with a rule which tests whether the
  matching direction is S->D (MatchingStoD value is 1).  If so, a
  'NoMatch' action is executed.  Otherwise, the packet has failed to
  match in both directions; we can save whatever attribute values are
  of interest and count the 'unusual' packet.

4.4  Rules and Rule Sets

  A rule set is an array of rules.  Rule sets are held within a meter
  as entries in an array of rule sets.

  Rule set 1 (the first entry in the rule set table) is built-in to the
  meter and cannot be changed.  It is run when the meter is started up,
  and provides a very coarse reporting granularity; it is mainly useful
  for verifying that the meter is running, before a 'useful' rule set
  is downloaded to it.

  A meter also maintains an array of 'tasks', which specify what rule
  sets the meter is running.  Each task has a 'current' rule set (the
  one which it normally uses), and a 'standby' rule set (which will be
  used when the overall traffic level is unusually high).  If a task is
  instructed to use rule set 0, it will cease measuring; all packets
  will be ignored until another (non-zero) rule set is made current.

  Each rule in a rule set is an instruction for the Packet Matching
  Engine, i.e. it is an instruction for a Virtual Machine.  PME
  instructions have five component fields, forming two logical groups
  as follows:

     +-------- test ---------+    +---- action -----+
     attribute & mask = value:    opcode,  parameter;




Brownlee, et al.             Informational                     [Page 23]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  The test group allows PME to test the value of an attribute.  This is
  done by ANDing the attribute value with the mask and comparing the
  result with the value field.  Note that there is no explicit
  provision to test a range, although this can be done where the range
  can be covered by a mask, e.g. attribute value less than 2048.

  The PME maintains a Boolean indicator called the 'test indicator',
  which determines whether or not a rule's test is performed.  The test
  indicator is initially set (true).

  The action group specifies what action may be performed when the rule
  is executed.  Opcodes contain two flags: 'goto' and 'test', as
  detailed in the table below.  Execution begins with rule 1, the first
  in the rule set.  It proceeds as follows:

     If the test indicator is true:
        Perform the test, i.e. AND the attribute value with the
           mask and compare it with the value.
        If these are equal the test has succeeded; perform the
           rule's action (below).
        If the test fails execute the next rule in the rule set.
        If there are no more rules in the rule set, return from the
           match() function indicating NoMatch.

     If the test indicator is false, or the test (above) succeeded:
        Set the test indicator to this opcode's test flag value.
        Determine the next rule to execute.
           If the opcode has its goto flag set, its parameter value
              specifies the number of the next rule.
           Opcodes which don't have their goto flags set either
              determine the next rule in special ways (Return),
              or they terminate execution (Ignore, NoMatch, Count,
              CountPkt).
        Perform the action.

  The PME maintains two 'history' data structures.  The first, the
  'return' stack, simply records the index (i.e. 1-origin rule number)
  of each Gosub rule as it is executed; Return rules pop their Gosub
  rule index.  Note that when the Ignore, NoMatch, Count and CountPkt
  actions are performed, PME execution is terminated regardless of
  whether the PME is executing a subroutine ('return' stack is non-
  empty) or not.

  The second data structure, the 'pattern' queue, is used to save
  information for later use in building a flow key.  A flow key is
  built by zeroing all its attribute values, then copying attribute
  number, mask and value information from the pattern queue in the
  order it was enqueued.



Brownlee, et al.             Informational                     [Page 24]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  An attribute number identifies the attribute actually used in a test.
  It will usually be the rule's attribute field, unless the attribute
  is a 'meter variable'.  Details of meter variables are given after
  the table of opcode actions below.

  The opcodes are:

           opcode         goto    test

        1  Ignore           0       -
        2  NoMatch          0       -
        3  Count            0       -
        4  CountPkt         0       -
        5  Return           0       0
        6  Gosub            1       1
        7  GosubAct         1       0
        8  Assign           1       1
        9  AssignAct        1       0
       10  Goto             1       1
       11  GotoAct          1       0
       12  PushRuleTo       1       1
       13  PushRuleToAct    1       0
       14  PushPktTo        1       1
       15  PushPktToAct     1       0
       16  PopTo            1       1
       17  PopToAct         1       0

  The actions they perform are:

  Ignore:         Stop matching, return from the match() function
                  indicating that the packet is to be ignored.

  NoMatch:        Stop matching, return from the match() function
                  indicating failure.

  Count:          Stop matching.  Save this rule's attribute number,
                  mask and value in the PME's pattern queue, then
                  construct a flow key for the flow to which this
                  packet belongs.  Return from the match() function
                  indicating success.  The meter will use the flow
                  key to search for the flow record for this
                  packet's flow.

  CountPkt:       As for Count, except that the masked value from
                  the packet header (as it would have been used in
                  the rule's test) is saved in the PME's pattern
                  queue instead of the rule's value.




Brownlee, et al.             Informational                     [Page 25]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  Gosub:          Call a rule-matching subroutine.  Push the current
                  rule number on the PME's return stack, set the
                  test indicator then goto the specified rule.

  GosubAct:       Same as Gosub, except that the test indicator is
                  cleared before going to the specified rule.

  Return:         Return from a rule-matching subroutine.  Pop the
                  number of the calling gosub rule from the PME's
                  'return' stack and add this rule's parameter value
                  to it to determine the 'target' rule.  Clear the
                  test indicator then goto the target rule.

                  A subroutine call appears in a rule set as a Gosub
                  rule followed by a small group of following rules.
                  Since a Return action clears the test flag, the
                  action of one of these 'following' rules will be
                  executed; this allows the subroutine to return a
                  result (in addition to any information it may save
                  in the PME's pattern queue).

  Assign:         Set the attribute specified in this rule to the
                  parameter value specified for this rule.  Set the
                  test indicator then goto the specified rule.

  AssignAct:      Same as Assign, except that the test indicator
                  is cleared before going to the specified rule.

  Goto:           Set the test indicator then goto the
                  specified rule.

  GotoAct:        Clear the test indicator then goto the specified
                  rule.

  PushRuleTo:     Save this rule's attribute number, mask and value
                  in the PME's pattern queue. Set the test
                  indicator then goto the specified rule.

  PushRuleToAct:  Same as PushRuleTo, except that the test indicator
                  is cleared before going to the specified rule.

                  PushRuleTo actions may be used to save the value
                  and mask used in a test, or (if the test is not
                  performed) to save an arbitrary value and mask.







Brownlee, et al.             Informational                     [Page 26]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  PushPktTo:      Save this rule's attribute number, mask, and the
                  masked value from the packet header (as it would
                  have been used in the rule's test), in the PME's
                  pattern queue.  Set the test indicator then goto
                  the specified rule.

  PushPktToAct:   Same as PushPktTo, except that the test indicator
                  is cleared before going to the specified rule.

                  PushPktTo actions may be used to save a value from
                  the packet header using a specified mask.  The
                  simplest way to program this is to use a zero value
                  for the PushPktTo rule's value field, and to
                  GoToAct to the PushPktTo rule (so that it's test is
                  not executed).

  PopTo:          Delete the most recent item from the pattern
                  queue, so as to remove the information saved by
                  an earlier 'push' action.  Set the test indicator
                  then goto the specified rule.

  PopToAct:       Same as PopTo, except that the test indicator
                  is cleared before going to the specified rule.

  As well as the attributes applying directly to packets (such as
  SourcePeerAddress, DestTransAddress, etc.)  the PME implements
  several further attribtes.  These are:

     Null:           Tests performed on the Null attribute always
                     succeed.

     MatchingStoD:   Indicates whether the PME is matching the packet
                     with its addresses in 'wire order' or with its
                     addresses reversed.  MatchingStoD's value is 1 if
                     the addresses are in wire order (StoD), and zero
                     otherwise.

     v1 .. v5:       v1, v2, v3, v4 and v5 are 'meter variables'.  They
                     provide a way to pass parameters into rule-
                     matching subroutines.  Each may hold the number of
                     a normal attribute; its value is set by an Assign
                     action.  When a meter variable appears as the
                     attribute of a rule, its value specifies the
                     actual attribute to be tested. For example, if v1
                     had been assigned SourcePeerAddress as its value,
                     a rule with v1 as its attribute would actually
                     test SourcePeerAddress.




Brownlee, et al.             Informational                     [Page 27]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


     SourceClass, DestClass, FlowClass,
     SourceKind, DestKind, FlowKind:
                     These six attributes may be set by executing
                     PushRuleTo actions.  They allow the PME to save
                     (in flow records) information which has been built
                     up during matching.  Their values may be tested in
                     rules; this allows one to set them early in a rule
                     set, and test them later.

  The opcodes detailed above (with their above 'goto' and 'test'
  values) form a minimum set, but one which has proved very effective
  in current meter implementations.  From time to time it may be useful
  to add further opcodes; IANA considerations for allocating these are
  set out in section 8 below.

4.5  Maintaining the Flow Table

  The flow table may be thought of as a 1-origin array of flow records.
  (A particular implementation may, of course, use whatever data
  structure is most suitable).  When the meter starts up there are no
  known flows; all the flow records are in the 'inactive' state.

  Each time a packet is matched for a flow which is not in a current
  flow set a flow record is created for it; the state of such a record
  is
  'current'.  When selecting a record for the new flow the meter
  searches the flow table for an 'inactive' record.  If no inactive
  records are available it will search for an 'idle' one instead.  Note
  that there is no particular significance in the ordering of records
  within the flow table.

  A meter's memory management routines should aim to minimise the time
  spent finding flow records for new flows, so as to minimise the setup
  overhead associated with each new flow.

  Flow data may be collected by a 'meter reader' at any time.  There is
  no requirement for collections to be synchronized.  The reader may
  collect the data in any suitable manner, for example it could upload
  a copy of the whole flow table using a file transfer protocol, or it
  could read the records in the current flow set row by row using a
  suitable data transfer protocol.

  The meter keeps information about collections, in particular it
  maintains ReaderLastTime variables which remember the time the last
  collection was made by each reader.  A second variable,
  InactivityTime, specifies the minimum time the meter will wait before
  considering that a flow is idle.




Brownlee, et al.             Informational                     [Page 28]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  The meter must recover records used for idle flows, if only to
  prevent it running out of flow records.  Recovered flow records are
  returned to the 'inactive' state.  A variety of recovery strategies
  are possible, including the following:

  One possible recovery strategy is to recover idle flow records as
  soon as possible after their data has been collected by all readers
  which have registered to do so.  To implement this the meter could
  run a background process which scans the flow table looking for '
  current' flows whose 'last packet' time is earlier than the meter's
  LastCollectTime.

  Another recovery strategy is to leave idle flows alone as long as
  possible, which would be acceptable if one was only interested in
  measuring total traffic volumes.  It could be implemented by having
  the meter search for collected idle flows only when it ran low on '
  inactive' flow records.

  One further factor a meter should consider before recovering a flow
  is the number of meter readers which have collected the flow's data.
  If there are multiple meter readers operating, each reader should
  collect a flow's data before its memory is recovered.

  Of course a meter reader may fail, so the meter cannot wait forever
  for it.  Instead the meter must keep a table of active meter readers,
  with a timeout specified for each.  If a meter reader fails to
  collect flow data within its timeout interval, the meter should
  delete that reader from the meter's active meter reader table.

4.6  Handling Increasing Traffic Levels

  Under normal conditions the meter reader specifies which set of usage
  records it wants to collect, and the meter provides them.  If,
  however, memory usage rises above the high-water mark the meter
  should switch to a STANDBY RULE SET so as to decrease the rate at
  which new flows are created.

  When the manager, usually as part of a regular poll, becomes aware
  that the meter is using its standby rule set, it could decrease the
  interval between collections.  This would shorten the time that flows
  sit in memory waiting to be collected, allowing the meter to free
  flow memory faster.

  The meter could also increase its efforts to recover flow memory so
  as to reduce the number of idle flows in memory.  When the situation
  returns to normal, the manager may request the meter to switch back
  to its normal rule set.




Brownlee, et al.             Informational                     [Page 29]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


5  Meter Readers

  Usage data is accumulated by a meter (e.g. in a router) as memory
  permits.  It is collected at regular reporting intervals by meter
  readers, as specified by a manager.  The collected data is recorded
  in stable storage as a FLOW DATA FILE, as a sequence of USAGE
  RECORDS.

  The following sections describe the contents of usage records and
  flow data files.  Note, however, that at this stage the details of
  such records and files is not specified in the architecture.
  Specifying a common format for them would be a worthwhile future
  development.

5.1  Identifying Flows in Flow Records

  Once a packet has been classified and is ready to be counted, an
  appropriate flow data record must already exist in the flow table;
  otherwise one must be created.  The flow record has a flexible format
  where unnecessary identification attributes may be omitted.  The
  determination of which attributes of the flow record to use, and of
  what values to put in them, is specified by the current rule set.

  Note that the combination of start time, rule set number and flow
  subscript (row number in the flow table) provide a unique flow
  identifier, regardless of the values of its other attributes.

  The current rule set may specify additional information, e.g. a
  computed attribute value such as FlowKind, which is to be placed in
  the attribute section of the usage record.  That is, if a particular
  flow is matched by the rule set, then the corresponding flow record
  should be marked not only with the qualifying identification
  attributes, but also with the additional information.  Using this
  feature, several flows may each carry the same FlowKind value, so
  that the resulting usage records can be used in post-processing or
  between meter reader and meter as a criterion for collection.

5.2  Usage Records, Flow Data Files

  The collected usage data will be stored in flow data files on the
  meter reader, one file for each meter.  As well as containing the
  measured usage data, flow data files must contain information
  uniquely identifiying the meter from which it was collected.








Brownlee, et al.             Informational                     [Page 30]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  A USAGE RECORD contains the descriptions of and values for one or
  more flows.  Quantities are counted in terms of number of packets and
  number of bytes per flow.  Other quantities, e.g. short-term flow
  rates, may be added later; work on such extensions is described in
  the RTFM 'New Attributes' document [RTFM-NEW].

  Each usage record contains the metered traffic group identifier of
  the meter (a set of network addresses), a time stamp and a list of
  reported flows (FLOW DATA RECORDS). A meter reader will build up a
  file of usage records by regularly collecting flow data from a meter,
  using this data to build usage records and concatenating them to the
  tail of a file.  Such a file is called a FLOW DATA FILE.

  A usage record contains the following information in some form:

  +-------------------------------------------------------------------+
  |    RECORD IDENTIFIERS:                                            |
  |      Meter Id (& digital signature if required)                   |
  |      Timestamp                                                    |
  |      Collection Rules ID                                          |
  +-------------------------------------------------------------------+
  |    FLOW IDENTIFIERS:            |    COUNTERS                     |
  |      Address List               |       Packet Count              |
  |      Subscriber ID (Optional)   |       Byte Count                |
  |      Attributes (Optional)      |    Flow Start/Stop Time         |
  +-------------------------------------------------------------------+

5.3  Meter to Meter Reader:  Usage Record Transmission

  The usage record contents are the raison d'etre of the system.  The
  accuracy, reliability, and security of transmission are the primary
  concerns of the meter/meter reader exchange.  Since errors may occur
  on networks, and Internet packets may be dropped, some mechanism for
  ensuring that the usage information is transmitted intact is needed.

  Flow data is moved from meter to meter reader via a series of
  protocol exchanges between them.  This may be carried out in various
  ways, moving individual attribute values, complete flows, or the
  entire flow table (i.e. all the active and idle flows).  One possible
  method of achieving this transfer is to use SNMP; the 'Traffic Flow
  Measurement:  Meter MIB' RFC [RTFM-MIB] gives details.  Note that
  this is simply one example; the transfer of flow data from meter to
  meter reader is not specified in this document.

  The reliability of the data transfer method under light, normal, and
  extreme network loads should be understood before selecting among
  collection methods.




Brownlee, et al.             Informational                     [Page 31]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  In normal operation the meter will be running a rule file which
  provides the required degree of flow reporting granularity, and the
  meter reader(s) will collect the flow data often enough to allow the
  meter's garbage collection mechanism to maintain a stable level of
  memory usage.

  In the worst case traffic may increase to the point where the meter
  is in danger of running completely out of flow memory.  The meter
  implementor must decide how to handle this, for example by switching
  to a default (extremely coarse granularity) rule set, by sending a
  trap message to the manager, or by attempting to dump flow data to
  the meter reader.

  Users of the Traffic Flow Measurement system should analyse their
  requirements carefully and assess for themselves whether it is more
  important to attempt to collect flow data at normal granularity
  (increasing the collection frequency as needed to keep up with
  traffic volumes), or to accept flow data with a coarser granularity.
  Similarly, it may be acceptable to lose flow data for a short time in
  return for being sure that the meter keeps running properly, i.e. is
  not overwhelmed by rising traffic levels.

6   Managers

  A manager configures meters and controls meter readers.  It does this
  via the interactions described below.

6.1  Between Manager and Meter:  Control Functions

    - DOWNLOAD RULE SET: A meter may hold an array of rule sets.  One
      of these, the 'default' rule set, is built in to the meter and
      cannot be changed; this is a diagnostic feature, ensuring that
      when a meter starts up it will be running a known ruleset.

      All other rule sets must be downloaded by the manager.  A manager
      may use any suitable protocol exchange to achieve this, for
      example an FTP file transfer or a series of SNMP SETs, one for
      each row of the rule set.

    - SPECIFY METER TASK: Once the rule sets have been downloaded, the
      manager must instruct the meter which rule sets will be the
      'current' and 'standby' ones for each task the meter is to
      perform.

    - SET HIGH WATER MARK: A percentage of the flow table capacity,
      used by the meter to determine when to switch to its standby rule
      set (so as to increase the granularity of the flows and conserve
      the meter's flow memory).  Once this has happened, the manager



Brownlee, et al.             Informational                     [Page 32]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


      may also change the polling frequency or the meter's control
      parameters (so as to increase the rate at which the meter can
      recover memory from idle flows).  The meter has a separate high
      water mark value for each task it is currently running.

      If the high traffic levels persist, the meter's normal rule set
      may have to be rewritten to permanently reduce the reporting
      granularity.

    - SET FLOW TERMINATION PARAMETERS: The meter should have the good
      sense in situations where lack of resources may cause data loss
      to purge flow records from its tables.  Such records may include:

       - Flows that have already been reported to all registered meter
         readers, and show no activity since the last report,
       - Oldest flows, or
       - Flows with the smallest number of observed packets.

    - SET INACTIVITY TIMEOUT: This is a time in seconds since the last
      packet was seen for a flow.  Flow records may be reclaimed if
      they have been idle for at least this amount of time, and have
      been collected in accordance with the current collection
      criteria.

  It might be useful if a manager could set the FLOW TERMINATION
  PARAMETERS to different values for different tasks.  Current meter
  implementations have only single ('whole meter') values for these
  parameters, and experience to date suggests that this provides an
  adequate degree of control for the tasks.

6.2  Between Manager and Meter Reader:  Control Functions

  Because there are a number of parameters that must be set for traffic
  flow measurement to function properly, and viable settings may change
  as a result of network traffic characteristics, it is desirable to
  have dynamic network management as opposed to static meter
  configurations.  Many of these operations have to do with space
  tradeoffs - if memory at the meter is exhausted, either the
  collection interval must be decreased or a coarser granularity of
  aggregation must be used to reduce the number of active flows.

  Increasing the collection interval effectively stores data in the
  meter; usage data in transit is limited by the effective bandwidth of
  the virtual link between the meter and the meter reader, and since
  these limited network resources are usually also used to carry user
  data (the purpose of the network), the level of traffic flow
  measurement traffic should be kept to an affordable fraction of the
  bandwidth.  ("Affordable" is a policy decision made by the Network



Brownlee, et al.             Informational                     [Page 33]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  Operations personnel).  At any rate, it must be understood that the
  operations below do not represent the setting of independent
  variables; on the contrary, each of the values set has a direct and
  measurable effect on the behaviour of the other variables.

  Network management operations follow:

    - MANAGER and METER READER IDENTIFICATION: The manager should
      ensure that meters are read by the correct set of meter readers,
      and take steps to prevent unauthorised access to usage
      information.  The meter readers so identified should be prepared
      to poll if necessary and accept data from the appropriate meters.
      Alternate meter readers may be identified in case both the
      primary manager and the primary meter reader are unavailable.
      Similarly, alternate managers may be identified.

    - REPORTING INTERVAL CONTROL: The usual reporting interval should
      be selected to cope with normal traffic patterns.  However, it
      may be possible for a meter to exhaust its memory during traffic
      spikes even with a correctly set reporting interval.  Some
      mechanism should be available for the meter to tell the manager
      that it is in danger of exhausting its memory (by declaring a '
      high water' condition), and for the manager to arbitrate (by
      decreasing the polling interval, letting nature take its course,
      or by telling the meter to ask for help sooner next time).

    - GRANULARITY CONTROL: Granularity control is a catch-all for all
      the parameters that can be tuned and traded to optimise the
      system's ability to reliably measure and store information on all
      the traffic (or as close to all the traffic as an administration
      requires).  Granularity:

         - Controls the amount of address information identifying each
           flow, and
         - Determines the number of buckets into which user traffic
           will be lumped together.

      Since granularity is controlled by the meter's current rule set,
      the manager can only change it by requesting the meter to switch
      to a different rule set.  The new rule set could be downloaded
      when required, or it could have been downloaded as part of the
      meter's initial configuration.









Brownlee, et al.             Informational                     [Page 34]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - FLOW LIFETIME CONTROL: Flow termination parameters include
      timeout parameters for obsoleting inactive flows and removing
      them from tables, and maximum flow lifetimes.  This is
      intertwined with reporting interval and granularity, and must be
      set in accordance with the other parameters.

6.3  Exception Conditions

  Exception conditions must be handled, particularly occasions when the
  meter runs out of space for flow data.  Since - to prevent an active
  task from counting any packet twice - packets can only be counted in
  a single flow, discarding records will result in the loss of
  information.  The mechanisms to deal with this are as follows:

    - METER OUTAGES: In case of impending meter outages (controlled
      restarts, etc.) the meter could send a trap to the manager.  The
      manager could then request one or more meter readers to pick up
      the data from the meter.

      Following an uncontrolled meter outage such as a power failure,
      the meter could send a trap to the manager indicating that it has
      restarted.  The manager could then download the meter's correct
      rule set and advise the meter reader(s) that the meter is running
      again.  Alternatively, the meter reader may discover from its
      regular poll that a meter has failed and restarted.  It could
      then advise the manager of this, instead of relying on a trap
      from the meter.

    - METER READER OUTAGES: If the collection system is down or
      isolated, the meter should try to inform the manager of its
      failure to communicate with the collection system.  Usage data is
      maintained in the flows' rolling counters, and can be recovered
      when the meter reader is restarted.

    - MANAGER OUTAGES: If the manager fails for any reason, the meter
      should continue measuring and the meter reader(s) should keep
      gathering usage records.

    - BUFFER PROBLEMS: The network manager may realise that there is a
      'low memory' condition in the meter.  This can usually be
      attributed to the interaction between the following controls:

       - The reporting interval is too infrequent, or
       - The reporting granularity is too fine.







Brownlee, et al.             Informational                     [Page 35]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


      Either of these may be exacerbated by low throughput or bandwidth
      of circuits carrying the usage data.  The manager may change any
      of these parameters in response to the meter (or meter reader's)
      plea for help.

6.4  Standard Rule Sets

  Although the rule table is a flexible tool, it can also become very
  complex.  It may be helpful to develop some rule sets for common
  applications:

    - PROTOCOL TYPE: The meter records packets by protocol type.  This
      will be the default rule table for Traffic Flow Meters.

    - ADJACENT SYSTEMS: The meter records packets by the MAC address of
      the Adjacent Systems (neighbouring originator or next-hop).
      (Variants on this table are "report source" or "report sink"
      only.)  This strategy might be used by a regional or backbone
      network which wants to know how much aggregate traffic flows to
      or from its subscriber networks.

    - END SYSTEMS: The meter records packets by the IP address pair
      contained in the packet.  (Variants on this table are "report
      source" or "report sink" only.)  This strategy might be used by
      an End System network to get detailed host traffic matrix usage
      data.

    - TRANSPORT TYPE: The meter records packets by transport address;
      for IP packets this provides usage information for the various IP
      services.

    - HYBRID SYSTEMS: Combinations of the above, e.g. for one interface
      report End Systems, for another interface report Adjacent
      Systems.  This strategy might be used by an enterprise network to
      learn detail about local usage and use an aggregate count for the
      shared regional network.

7  Security Considerations

7.1  Threat Analysis

  A traffic flow measurement system may be subject to the following
      kinds of attacks:

    - ATTEMPTS TO DISABLE A TRAFFIC METER: An attacker may attempt to
      disrupt traffic measurement so as to prevent users being charged
      for network usage.  For example, a network probe sending packets




Brownlee, et al.             Informational                     [Page 36]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


      to a large number of destination and transport addresses could
      produce a sudden rise in the number of flows in a meter's flow
      table, thus forcing it to use its coarser standby rule set.

    - UNAUTHORIZED USE OF SYSTEM RESOURCES: An attacker may wish to
      gain advantage or cause mischief (e.g. denial of service) by
      subverting any of the system elements - meters, meter readers or
      managers.

    - UNAUTHORIZED DISCLOSURE OF DATA: Any data that is sensitive to
      disclosure can be read through active or passive attacks unless
      it is suitably protected.  Usage data may or may not be of this
      type.  Control messages, traps, etc. are not likely to be
      considered sensitive to disclosure.

    - UNAUTHORIZED ALTERATION, REPLACEMENT OR DESTRUCTION OF DATA:
      Similarly, any data whose integrity is sensitive can be altered,
      replaced/injected or deleted through active or passive attacks
      unless it is suitably protected.  Attackers may modify message
      streams to falsify usage data or interfere with the proper
      operation of the traffic flow measurement system.  Therefore, all
      messages, both those containing usage data and those containing
      control data, should be considered vulnerable to such attacks.

7.2  Countermeasures

  The following countermeasures are recommended to address the possible
  threats enumerated above:

    - ATTEMPTS TO DISABLE A TRAFFIC METER can't be completely
      countered.  In practice, flow data records from network security
      attacks have proved very useful in determining what happened.
      The most effective approach is first to configure the meter so
      that it has three or more times as much flow memory as it needs
      in normal operation, and second to collect the flow data fairly
      frequently so as to minimise the time needed to recover flow
      memory after such an attack.

    - UNAUTHORIZED USE OF SYSTEM RESOURCES is countered through the use
      of authentication and access control services.

    - UNAUTHORIZED DISCLOSURE OF DATA is countered through the use of a
      confidentiality (encryption) service.

    - UNAUTHORIZED ALTERATION, REPLACEMENT OR DESTRUCTION OF DATA is
      countered through the use of an integrity service.





Brownlee, et al.             Informational                     [Page 37]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  A Traffic Measurement system must address all of these concerns.
  Since a high degree of protection is required, the use of strong
  cryptographic methodologies is recommended.  The security
  requirements for communication between pairs of traffic measurmement
  system elements are summarized in the table below.  It is assumed
  that meters do not communicate with other meters, and that meter
  readers do not communicate directly with other meter readers (if
  synchronization is required, it is handled by the manager, see
  Section 2.5).  Each entry in the table indicates which kinds of
  security services are required.  Basically, the requirements are as
  follows:

          Security Service Requirements for RTFM elements

 +------------------------------------------------------------------+
 | from\to |    meter     | meter reader | application |  manager   |
 |---------+--------------+--------------+-------------+------------|
 | meter   |     N/A      |  authent     |     N/A     |  authent   |
 |         |              |  acc ctrl    |             |  acc ctrl  |
 |         |              |  integrity   |             |            |
 |         |              |  confid **   |             |            |
 |---------+--------------+--------------+-------------+------------|
 | meter   |   authent    |     N/A      |  authent    |  authent   |
 | reader  |   acc ctrl   |              |  acc ctrl   |  acc ctrl  |
 |         |              |              |  integrity  |            |
 |         |              |              |  confid **  |            |
 |---------+--------------+--------------+-------------+------------|
 | appl    |     N/A      |  authent     |             |            |
 |         |              |  acc ctrl    |     ##      |    ##      |
 |---------+--------------+--------------+-------------+------------|
 | manager |  authent     |  authent     |     ##      |  authent   |
 |         |  acc ctrl    |  acc ctrl    |             |  acc ctrl  |
 |         |  integrity   |  integrity   |             |  integrity |
 +------------------------------------------------------------------+

    N/A = Not Applicable    ** = optional    ## = outside RTFM scope

    - When any two elements intercommunicate they should mutually
      authenticate themselves to one another.  This is indicated by '
      authent' in the table.  Once authentication is complete, an
      element should check that the requested type of access is
      allowed; this is indicated on the table by 'acc ctrl'.

    - Whenever there is a transfer of information its integrity should
      be protected.






Brownlee, et al.             Informational                     [Page 38]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


    - Whenever there is a transfer of usage data it should be possible
      to ensure its confidentiality if it is deemed sensitive to
      disclosure.  This is indicated by 'confid' in the table.

  Security protocols are not specified in this document.  The system
  elements' management and collection protocols are responsible for
  providing sufficient data integrity, confidentiality, authentication
  and access control services.

8  IANA Considerations

  The RTFM Architecture, as set out in this document, has two sets of
  assigned numbers.  Considerations for assigning them are discussed in
  this section, using the example policies as set out in the
  "Guidelines for IANA Considerations" document [IANA-RFC].

8.1  PME Opcodes

  The Pattern Matching Engine (PME) is a virtual machine, executing
  RTFM rules as its instructions.  The PME opcodes appear in the
  'action' field of an RTFM rule.  The current list of opcodes, and
  their values for the PME's 'goto' and 'test' flags, are set out in
  section 4.4 above ("Rules and Rulesets).

  The PME opcodes are pivotal to the RTFM architecture, since they must
  be implemented in every RTFM meter.  Any new opcodes must therefore
  be allocated through an IETF Consensus action [IANA-RFC].

  Opcodes are simply non-negative integers, but new opcodes should be
  allocated sequentially so as to keep the total opcode range as small
  as possible.

8.2  RTFM Attributes

  Attribute numbers in the range of 0-511 are globally unique and are
  allocated according to an IETF Consensus action [IANA-RFC]. Appendix
  C of this document allocates a basic (i.e. useful minimum) set of
  attribtes; they are assigned numbers in the range 0 to 63.  The RTFM
  working group is working on an extended set of attributes, which will
  have numbers in the range 64 to 127.

  Vendor-specific attribute numbers are in the range 512-1023, and will
  be allocated using the First Come FIrst Served policy [IANA-RFC].
  Vendors requiring attribute numbers should submit a request to IANA
  giving the attribute names: IANA will allocate them the next
  available numbers.





Brownlee, et al.             Informational                     [Page 39]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  Attribute numbers 1024 and higher are Reserved for Private Use
  [IANA-RFC]. Implementors wishing to experiment with further new
  attributes should use attribute numbers in this range.

  Attribute numbers are simply non-negative integers.  When writing
  specifications for attributes, implementors must give sufficient
  detail for the new attributes to be easily added to the RTFM Meter
  MIB [RTFM-MIB]. In particular, they must indicate whether the new
  attributes may be:

   - tested in an IF statement
   - saved by a SAVE statement or set by a STORE statement
   - read from an RTFM meter

  (IF, SAVE and STORE are statements in the SRL Ruleset Language
  [RTFM-SRL]).



































Brownlee, et al.             Informational                     [Page 40]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


9  APPENDICES

9.1  Appendix A: Network Characterisation

  Internet users have extraordinarily diverse requirements.  Networks
  differ in size, speed, throughput, and processing power, among other
  factors.  There is a range of traffic flow measurement capabilities
  and requirements.  For traffic flow measurement purposes, the
  Internet may be viewed as a continuum which changes in character as
  traffic passes through the following representative levels:

          International                    |
          Backbones/National        ---------------
                                   /               \
          Regional/MidLevel     ----------   ----------
                               /     \    \ /    /     \
          Stub/Enterprise     ---   ---   ---   ----   ----
                              |||   |||   |||   ||||   ||||
          End-Systems/Hosts   xxx   xxx   xxx   xxxx   xxxx

  Note that mesh architectures can also be built out of these
  components, and that these are merely descriptive terms.  The nature
  of a single network may encompass any or all of the descriptions
  below, although some networks can be clearly identified as a single
  type.

  BACKBONE networks are typically bulk carriers that connect other
  networks.  Individual hosts (with the exception of network management
  devices and backbone service hosts) typically are not directly
  connected to backbones.

  REGIONAL networks are closely related to backbones, and differ only
  in size, the number of networks connected via each port, and
  geographical coverage.  Regionals may have directly connected hosts,
  acting as hybrid backbone/stub networks.  A regional network is a
  SUBSCRIBER to the backbone.

  STUB/ENTERPRISE networks connect hosts and local area networks.
  STUB/ENTERPRISE networks are SUBSCRIBERS to regional and backbone
  networks.

  END SYSTEMS, colloquially HOSTS, are SUBSCRIBERS to any of the above
  networks.

  Providing a uniform identification of the SUBSCRIBER in finer
  granularity than that of end-system, (e.g. user/account), is beyond
  the scope of the current architecture, although an optional attribute
  in the traffic flow measurement record may carry system-specific



Brownlee, et al.             Informational                     [Page 41]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  'user identification' labels so that meters can implement proprietary
  or non-standard schemes for the attribution of network traffic to
  responsible parties.

9.2  Appendix B: Recommended Traffic Flow Measurement Capabilities

  Initial recommended traffic flow measurement conventions are outlined
  here according to the following Internet building blocks.  It is
  important to understand what complexity reporting introduces at each
  network level.  Whereas the hierarchy is described top-down in the
  previous section, reporting requirements are more easily addressed
  bottom-up.

           End-Systems
           Stub Networks
           Enterprise Networks
           Regional Networks
           Backbone Networks

  END-SYSTEMS are currently responsible for allocating network usage to
  end-users, if this capability is desired.  From the Internet Protocol
  perspective, end-systems are the finest granularity that can be
  identified without protocol modifications.  Even if a meter violated
  protocol boundaries and tracked higher-level protocols, not all
  packets could be correctly allocated by user, and the definition of
  user itself varies widely from operating system to operating system
  (e.g. how to trace network usage back to users from shared
  processes).

  STUB and ENTERPRISE networks will usually collect traffic data either
  by end-system network address or network address pair if detailed
  reporting is required in the local area network.  If no local
  reporting is required, they may record usage information in the exit
  router to track external traffic only.  (These are the only networks
  which routinely use attributes to perform reporting at granularities
  finer than end-system or intermediate-system network address.)

  REGIONAL networks are intermediate networks.  In some cases,
  subscribers will be enterprise networks, in which case the
  intermediate system network address is sufficient to identify the
  regional's immediate subscriber.  In other cases, individual hosts or
  a disjoint group of hosts may constitute a subscriber.  Then end-
  system network address pairs need to be tracked for those
  subscribers.  When the source may be an aggregate entity (such as a
  network, or adjacent router representing traffic from a world of
  hosts beyond) and the destination is a singular entity (or vice
  versa), the meter is said to be operating as a HYBRID system.




Brownlee, et al.             Informational                     [Page 42]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


  At the regional level, if the overhead is tolerable it may be
  advantageous to report usage both by intermediate system network
  address (e.g. adjacent router address) and by end-system network
  address or end-system network address pair.

  BACKBONE networks are the highest level networks operating at higher
  link speeds and traffic levels.  The high volume of traffic will in
  most cases preclude detailed traffic flow measurement.  Backbone
  networks will usually account for traffic by adjacent routers'
  network addresses.

9.3  Appendix C: List of Defined Flow Attributes

  This Appendix provides a checklist of the attributes defined to date;
  others will be added later as the Traffic Measurement Architecture is
  further developed.

  Note that this table gives only a very brief summary.  The Meter MIB
  [RTFM-MIB] provides the definitive specification of attributes and
  their allowed values.  The MIB variables which represent flow
  attributes have 'flowData' prepended to their names to indicate that
  they belong to the MIB's flowData table.

      0  Null

      4  SourceInterface        Integer     Source Address
      5  SourceAdjacentType     Integer
      6  SourceAdjacentAddress  String
      7  SourceAdjacentMask     String
      8  SourcePeerType         Integer
      9  SourcePeerAddress      String
     10  SourcePeerMask         String
     11  SourceTransType        Integer
     12  SourceTransAddress     String
     13  SourceTransMask        String

     14  DestInterface          Integer     Destination Address
     15  DestAdjacentType       Integer
     16  DestAdjacentAddress    String
     17  DestAdjacentMask       String
     18  DestPeerType           Integer
     19  DestPeerAddress        String
     20  DestPeerMask           String
     21  DestTransType          Integer
     22  DestTransAddress       String
     23  DestTransMask          String





Brownlee, et al.             Informational                     [Page 43]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


     26  RuleSet                Integer     Meter attribute

     27  ToOctets               Integer     Source-to-Dest counters
     28  ToPDUs                 Integer
     29  FromOctets             Integer     Dest-to-Source counters
     30  FromPDUs               Integer
     31  FirstTime              Timestamp   Activity times
     32  LastActiveTime         Timestamp
     33  SourceSubscriberID     String      Session attributes
     34  DestSubscriberID       String
     35  SessionID              String

     36  SourceClass            Integer     'Computed' attributes
     37  DestClass              Integer
     38  FlowClass              Integer
     39  SourceKind             Integer
     40  DestKind               Integer
     41  FlowKind               Integer

     50  MatchingStoD           Integer     PME variable

     51  v1                     Integer     Meter Variables
     52  v2                     Integer
     53  v3                     Integer
     54  v4                     Integer
     55  v5                     Integer

     65
     ..  'Extended' attributes (to be defined by the RTFM working group)
    127

9.4  Appendix D: List of Meter Control Variables

     Meter variables:
        Flood Mark                    Percentage
        Inactivity Timeout (seconds)  Integer

     'per task' variables:
        Current Rule Set Number       Integer
        Standby Rule Set Number       Integer
        High Water Mark               Percentage

     'per reader' variables:
        Reader Last Time              Timestamp







Brownlee, et al.             Informational                     [Page 44]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


9.5  Appendix E: Changes Introduced Since RFC 2063

  The first version of the Traffic Flow Measurement Architecture was
  published as RFC 2063 in January 1997.  The most significant changes
  made since then are summarised below.

    - A Traffic Meter can now run multiple rule sets concurrently.
      This makes a meter much more useful, and required only minimal
      changes to the architecture.

    - 'NoMatch' replaces 'Fail' as an action.  This name was agreed to
      at the Working Group 1996 meeting in Montreal; it better
      indicates that although a particular match has failed, it may be
      tried again with the packet's addresses reversed.

    - The 'MatchingStoD' attribute has been added.  This is a Packet
      Matching Engine (PME) attribute indicating that addresses are
      being matched in StoD (i.e. 'wire') order.  It can be used to
      perform different actions when the match is retried, thereby
      simplifying some kinds of rule sets.  It was discussed and agreed
      to at the San Jose meeting in 1996.

    - Computed attributes (Class and Kind) may now be tested within a
      rule set.  This lifts an unneccessary earlier restriction.

    - The list of attribute numbers has been extended to define ranges
      for 'basic' attributes (in this document) and 'extended'
      attributes (currently being developed by the RTFM Working Group).

    - The 'Security Considerations' section has been completely
      rewritten.  It provides an evaluation of traffic measurement
      security risks and their countermeasures.

10  Acknowledgments

      An initial draft of this document was produced under the auspices
      of the IETF's Internet Accounting Working Group with assistance
      from SNMP, RMON and SAAG working groups.  Particular thanks are
      due to Stephen Stibler (IBM Research) for his patient and careful
      comments during the preparation of this memo.











Brownlee, et al.             Informational                     [Page 45]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


11  References

  [802-3]    IEEE 802.3/ISO 8802-3 Information Processing Systems -
             Local Area Networks - Part 3: Carrier sense multiple
             access with collision detection (CSMA/CD) access method
             and physical layer specifications, 2nd edition, September
             21, 1990.

  [ACT-BKG]  Mills, C., Hirsch, G. and G. Ruth, "Internet Accounting
             Background", RFC 1272, November 1991.

  [IANA-RFC] Alvestrand, H. and T. Narten, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 2434,
             October 1998.

  [IPPM-FRM] Paxson, V., Almes, G., Mahdavi, J. and M. Mathis,
             "Framework for IP Performance Metrics", RFC 2330, May
             1998.

  [OSI-ACT]  International Standards Organisation (ISO), "Management
             Framework", Part 4 of Information Processing Systems Open
             Systems Interconnection Basic Reference Model, ISO 7498-4,
             1994.

  [RTFM-MIB] Brownlee, N., "Traffic Flow Measurement: Meter MIB", RFC
             2720, October 1999.

  [RTFM-NEW] Handelman, S., Stibler, S., Brownlee, N. and G. Ruth,
             "RTFM: New Attributes for Traffic Flow Measurment", RFC
             2724, October 1999.

  [RTFM-SRL] Brownlee, N., "SRL: A Language for Describing Traffic
             Flows and Specifying Actions for Flow Groups", RFC 2723,
             October 1999.

















Brownlee, et al.             Informational                     [Page 46]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


12  Authors' Addresses

  Nevil Brownlee
  Information Technology Systems & Services
  The University of Auckland
  Private Bag 92-019
  Auckland, New Zealand

  Phone: +64 9 373 7599 x8941
  EMail: [email protected]


  Cyndi Mills
  GTE Laboratories, Inc
  40 Sylvan Rd.
  Waltham, MA 02451, U.S.A.

  Phone: +1 781 466 4278
  EMail: [email protected]


  Greg Ruth
  GTE Internetworking
  3 Van de Graaff Drive
  P.O. Box 3073
  Burlington, MA 01803, U.S.A.

  Phone: +1 781 262 4831
  EMail: [email protected]






















Brownlee, et al.             Informational                     [Page 47]

RFC 2722         Traffic Flow Measurement: Architecture     October 1999


13  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Brownlee, et al.             Informational                     [Page 48]