Network Working Group                                            B. Aboba
Requests for Commments: 2716                                     D. Simon
Category: Experimental                                          Microsoft
                                                            October 1999


                 PPP EAP TLS Authentication Protocol

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

1.  Abstract

  The Point-to-Point Protocol (PPP) provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.  PPP
  also defines an extensible Link Control Protocol (LCP), which can be
  used to negotiate authentication methods, as well as an Encryption
  Control Protocol (ECP), used to negotiate data encryption over PPP
  links, and a Compression Control Protocol (CCP), used to negotiate
  compression methods.  The Extensible Authentication Protocol (EAP) is
  a PPP extension that provides support for additional authentication
  methods within PPP.

  Transport Level Security (TLS) provides for mutual authentication,
  integrity-protected ciphersuite negotiation and key exchange between
  two endpoints.  This document describes how EAP-TLS, which includes
  support for fragmentation and reassembly, provides for these TLS
  mechanisms within EAP.

2.  Introduction

  The Extensible Authentication Protocol (EAP), described in [5],
  provides a standard mechanism for support of additional
  authentication methods within PPP.  Through the use of EAP, support
  for a number of authentication schemes may be added, including smart
  cards, Kerberos, Public Key, One Time Passwords, and others. To date
  however, EAP methods such as [6] have focussed on authenticating a
  client to a server.





Aboba & Simon                 Experimental                      [Page 1]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  However, it may be desirable to support mutual authentication, and
  since PPP encryption protocols such as [9] and [10] assume existence
  of a session key, it is useful to have a mechanism for session key
  establishment. Since design of secure key management protocols is
  non-trivial, it is desirable to avoid creating new mechanisms for
  this. The EAP protocol described in this document allows a PPP peer
  to take advantage of the protected ciphersuite negotiation, mutual
  authentication and key management capabilities of the TLS protocol,
  described in [12].

2.1.  Requirements language

  In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
  "recommended", "SHOULD", and "SHOULD NOT", are to be interpreted as
  described in [11].

3.  Protocol overview

3.1.  Overview of the EAP-TLS conversation

  As described in [5], the EAP-TLS conversation will typically begin
  with the authenticator and the peer negotiating EAP.  The
  authenticator will then typically send an EAP-Request/Identity packet
  to the peer, and the peer will respond with an EAP-Response/Identity
  packet to the authenticator, containing the peer's userId.

  From this point forward, while nominally the EAP conversation occurs
  between the PPP authenticator and the peer, the authenticator MAY act
  as a passthrough device, with the EAP packets received from the peer
  being encapsulated for transmission to a RADIUS server or backend
  security server. In the discussion that follows, we will use the term
  "EAP server" to denote the ultimate endpoint conversing with the
  peer.

  Once having received the peer's Identity, the EAP server MUST respond
  with an EAP-TLS/Start packet, which is an EAP-Request packet with
  EAP-Type=EAP-TLS, the Start (S) bit set, and no data.  The EAP-TLS
  conversation will then begin, with the peer sending an EAP-Response
  packet with EAP-Type=EAP-TLS.  The data field of that packet will
  encapsulate one or more TLS records in TLS record layer format,
  containing a TLS client_hello handshake message.  The current cipher
  spec for the TLS records will be TLS_NULL_WITH_NULL_NULL and null
  compression.  This current cipher spec remains the same until the
  change_cipher_spec message signals that subsequent records will have
  the negotiated attributes for the remainder of the handshake.






Aboba & Simon                 Experimental                      [Page 2]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  The client_hello message contains the client's TLS version number, a
  sessionId, a random number, and a set of ciphersuites supported by
  the client. The version offered by the client MUST correspond to TLS
  v1.0 or later.

  The EAP server will then respond with an EAP-Request packet with
  EAP-Type=EAP-TLS. The data field of this packet will encapsulate one
  or more TLS records. These will contain a TLS server_hello handshake
  message, possibly followed by TLS certificate, server_key_exchange,
  certificate_request, server_hello_done and/or finished handshake
  messages, and/or a TLS change_cipher_spec message.  The server_hello
  handshake message contains a TLS version number, another random
  number, a sessionId, and a ciphersuite.  The version offered by the
  server MUST correspond to TLS v1.0 or later.

  If the client's sessionId is null or unrecognized by the server, the
  server MUST choose the sessionId to establish a new session;
  otherwise, the sessionId  will  match  that  offered by the client,
  indicating a resumption of the previously established session with
  that sessionID.  The server will also choose a ciphersuite from those
  offered by  the client; if the session matches the client's, then the
  ciphersuite MUST match the one negotiated during the handshake
  protocol execution that established the session.

  The purpose of the sessionId within the TLS protocol is to allow for
  improved efficiency in the case where a client repeatedly attempts to
  authenticate to an EAP server within a short period of time. While
  this model was developed for use with HTTP authentication, it may
  also have application to PPP authentication (e.g. multilink).

  As a result, it is left up to the peer whether to attempt to continue
  a previous session, thus shortening the TLS conversation. Typically
  the peer's decision will be made based on the time elapsed since the
  previous authentication attempt to that EAP server. Based on the
  sessionId chosen by the peer, and the time elapsed since the previous
  authentication, the EAP server will decide whether to allow the
  continuation, or whether to choose a new session.

  In the case where the EAP server and authenticator reside on the same
  device, then client will only be able to continue sessions when
  connecting to the same NAS or tunnel server. Should these devices be
  set up in a rotary or round-robin then it may not be possible for the
  peer to know in advance the authenticator it will be connecting to,
  and therefore which sessionId to attempt to reuse. As a result, it is
  likely that the continuation attempt will fail. In the case where the
  EAP authentication is remoted then continuation is much more likely
  to be successful, since multiple NAS devices and tunnel servers will
  remote their EAP authentications to the same RADIUS server.



Aboba & Simon                 Experimental                      [Page 3]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  If the EAP server is resuming a previously established session, then
  it MUST include only a TLS change_cipher_spec message and a TLS
  finished handshake message after the server_hello message.  The
  finished message contains the EAP server's authentication response to
  the peer.  If the EAP server is not resuming a previously established
  session, then it MUST include a TLS server_certificate handshake
  message, and a server_hello_done handshake message MUST be the last
  handshake message encapsulated in this EAP-Request packet.

  The certificate message contains a public key certificate chain for
  either a key exchange public key (such as an RSA or Diffie-Hellman
  key exchange public key) or a signature public key (such as an RSA or
  DSS signature public key).  In the latter case, a TLS
  server_key_exchange handshake message MUST also be included to allow
  the key exchange to take place.

  The certificate_request message is included when the server desires
  the client to authenticate itself via public key. While the EAP
  server SHOULD require client authentication, this is not a
  requirement, since it may be possible that the server will require
  that the peer authenticate via some other means.

  The peer MUST respond to the EAP-Request with an EAP-Response packet
  of EAP-Type=EAP-TLS.  The data field of this packet will encapsulate
  one or more TLS records containing a TLS change_cipher_spec message
  and finished handshake message, and possibly certificate,
  certificate_verify and/or client_key_exchange handshake messages.  If
  the preceding server_hello message sent by the EAP server in the
  preceding EAP-Request packet indicated the resumption of a previous
  session, then the peer MUST send only the change_cipher_spec and
  finished handshake messages.  The finished message contains the
  peer's authentication response to the EAP server.

  If the preceding server_hello message sent by the EAP server in the
  preceeding EAP-Request packet did not indicate the resumption of a
  previous session, then the peer MUST send, in addition to the
  change_cipher_spec and finished messages, a client_key_exchange
  message, which completes the exchange of a shared master secret
  between the peer and the EAP server.  If the EAP server sent a
  certificate_request message in the preceding EAP-Request packet, then
  the peer MUST send, in addition, certificate and certificate_verify
  handshake messages.  The former contains a certificate for the peer's
  signature public key, while the latter contains the peer's signed
  authentication response to the EAP server. After receiving this
  packet, the EAP server will verify the peer's certificate and digital
  signature, if requested.





Aboba & Simon                 Experimental                      [Page 4]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  If the peer's authentication is unsuccessful, the EAP server SHOULD
  send an EAP-Request packet with EAP-Type=EAP-TLS, encapsulating a TLS
  record containing the appropriate TLS alert message.  The EAP server
  SHOULD send a TLS alert message rather immediately terminating the
  conversation so as to allow the peer to inform the user of the cause
  of the failure and possibly allow for a restart of the conversation.

  To ensure that the peer receives the TLS alert message, the EAP
  server MUST wait for the peer to reply with an EAP-Response packet.
  The EAP-Response packet sent by the peer MAY encapsulate a TLS
  client_hello handshake message, in which case the EAP server MAY
  allow the EAP-TLS conversation to be restarted, or it MAY contain an
  EAP-Response packet with EAP-Type=EAP-TLS and no data, in which case
  the EAP-Server MUST send an EAP-Failure packet, and terminate the
  conversation. It is up to the EAP server whether to allow restarts,
  and if so, how many times the conversation can be restarted. An EAP
  Server implementing restart capability SHOULD impose a limit on the
  number of restarts, so as to protect against denial of service
  attacks.

  If the peers authenticates successfully, the EAP server MUST respond
  with an EAP-Request packet with EAP-Type=EAP-TLS, which includes, in
  the case of a new TLS session, one or more TLS records containing TLS
  change_cipher_spec and finished handshke messages.  The latter
  contains the EAP server's authentication response to the peer.  The
  peer will then verify the hash in order to authenticate the EAP
  server.

  If the EAP server authenticates unsuccessfully, the peer MAY send an
  EAP-Response packet of EAP-Type=EAP-TLS containing a TLS Alert
  message identifying the reason for the failed authentication. The
  peer MAY send a TLS alert message rather than immediately terminating
  the conversation so as to allow the EAP server to log the cause of
  the error for examination by the system administrator.

  To ensure that the EAP Server receives the TLS alert message, the
  peer MUST wait for the EAP-Server to reply before terminating the
  conversation.  The EAP Server MUST reply with an EAP-Failure packet
  since server authentication failure is a terminal condition.

  If the EAP server authenticates successfully, the peer MUST send an
  EAP-Response packet of EAP-Type=EAP-TLS, and no data.  The EAP-Server
  then MUST respond with an EAP-Success message.








Aboba & Simon                 Experimental                      [Page 5]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


3.2.  Retry behavior

  As with other EAP protocols, the EAP server is responsible for retry
  behavior. This means that if the EAP server does not receive a reply
  from the peer, it MUST resend the EAP-Request for which it has not
  yet received an EAP-Response. However, the peer MUST NOT resend EAP-
  Response packets without first being prompted by the EAP server.

  For example, if the initial EAP-TLS start packet sent by the EAP
  server were to be lost, then the peer would not receive this packet,
  and would not respond to it. As a result, the EAP-TLS start packet
  would be resent by the EAP server. Once the peer received the EAP-TLS
  start packet, it would send an EAP-Response encapsulating the
  client_hello message.  If the EAP-Response were to be lost, then the
  EAP server would resend the initial EAP-TLS start, and the peer would
  resend the EAP-Response.

  As a result, it is possible that a peer will receive duplicate EAP-
  Request messages, and may send duplicate EAP-Responses.  Both the
  peer and the EAP-Server should be engineered to handle this
  possibility.

3.3.  Fragmentation

  A single TLS record may be up to 16384 octets in length, but a TLS
  message may span multiple TLS records, and a TLS certificate message
  may in principle be as long as 16MB. The group of EAP-TLS messages
  sent in a single round may thus be larger than the PPP MTU size, the
  maximum RADIUS packet size of 4096 octets, or even the Multilink
  Maximum Received Reconstructed Unit (MRRU).  As described in [2], the
  multilink MRRU is negotiated via the Multilink MRRU LCP option, which
  includes an MRRU length field of two octets, and thus can support
  MRRUs as large as 64 KB.

  However, note that in order to protect against reassembly lockup and
  denial of service attacks, it may be desirable for an implementation
  to set a maximum size for one such group of TLS messages. Since a
  typical certificate chain is rarely longer than a few thousand
  octets, and no other field is likely to be anwhere near as long, a
  reasonable choice of maximum acceptable message length might be 64
  KB.

  If this value is chosen, then fragmentation can be handled via the
  multilink PPP fragmentation mechanisms described in [2]. While this
  is desirable, there may be cases in which multilink or the MRRU LCP
  option cannot be negotiated. As a result, an EAP-TLS implementation
  MUST provide its own support for fragmentation and reassembly.




Aboba & Simon                 Experimental                      [Page 6]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  Since EAP is a simple ACK-NAK protocol, fragmentation support can be
  added in a simple manner. In EAP, fragments that are lost or damaged
  in transit will be retransmitted, and since sequencing information is
  provided by the Identifier field in EAP, there is no need for a
  fragment offset field as is provided in IPv4.

  EAP-TLS fragmentation support is provided through addition of a flags
  octet within the EAP-Response and EAP-Request packets, as well as a
  TLS Message Length field of four octets. Flags include the Length
  included (L), More fragments (M), and EAP-TLS Start (S) bits. The L
  flag is set to indicate the presence of the four octet TLS Message
  Length field, and MUST be set for the first fragment of a fragmented
  TLS message or set of messages. The M flag is set on all but the last
  fragment. The S flag is set only within the EAP-TLS start message
  sent from the EAP server to the peer. The TLS Message Length field is
  four octets, and provides the total length of the TLS message or set
  of messages that is being fragmented; this simplifies buffer
  allocation.

  When an EAP-TLS peer receives an EAP-Request packet with the M bit
  set, it MUST respond with an EAP-Response with EAP-Type=EAP-TLS and
  no data.  This serves as a fragment ACK. The EAP server MUST wait
  until it receives the EAP-Response before sending another fragment.
  In order to prevent errors in processing of fragments, the EAP server
  MUST increment the Identifier field for each fragment contained
  within an EAP-Request, and the peer MUST include this Identifier
  value in the fragment ACK contained within the EAP-Reponse.
  Retransmitted fragments will contain the same Identifier value.

  Similarly, when the EAP server receives an EAP-Response with the M
  bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-TLS
  and no data. This serves as a fragment ACK. The EAP peer MUST wait
  until it receives the EAP-Request before sending another fragment.
  In order to prevent errors in the processing of fragments, the EAP
  server MUST use increment the Identifier value for each fragment ACK
  contained within an EAP-Request, and the peer MUST include this
  Identifier value in the subsequent fragment contained within an EAP-
  Reponse.

3.4.  Identity verification

  As part of the TLS negotiation, the server presents a certificate to
  the peer, and if mutual authentication is requested, the peer
  presents a certificate to the server.

  Note that since the peer has made a claim of identity in the EAP-
  Response/Identity (MyID) packet, the EAP server SHOULD verify that
  the claimed identity corresponds to the certificate presented by the



Aboba & Simon                 Experimental                      [Page 7]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  peer.  Typically this will be accomplished either by placing the
  userId within the peer certificate, or by providing a mapping between
  the peer certificate and the userId using a directory service.

  Similarly, the peer MUST verify the validity of the EAP server
  certificate, and SHOULD also examine the EAP server name presented in
  the certificate, in order to determine whether the EAP server can be
  trusted. Please note that in the case where the EAP authentication is
  remoted that the EAP server will not reside on the same machine as
  the authenticator, and therefore the name in the EAP server's
  certificate cannot be expected to match that of the intended
  destination. In this case, a more appropriate test might be whether
  the EAP server's certificate is signed by a CA controlling the
  intended destination and whether the EAP server exists within a
  target sub-domain.

3.5.  Key derivation

  Since the normal TLS keys are used in the handshake, and therefore
  should not be used in a different context, new encryption keys must
  be derived from the TLS master secret for use with PPP encryption.
  For both peer and EAP server, the derivation proceeds as follows:
  given the master secret negotiated by the TLS handshake, the
  pseudorandom function (PRF) defined in the specification for the
  version of TLS in use, and the value random defined as the
  concatenation of the handshake message fields client_hello.random and
  server_hello.random (in that order), the value PRF(master secret,
  "client EAP encryption", random) is computed up to 128 bytes, and the
  value PRF("", "client EAP encryption", random) is computed up to 64
  bytes (where "" is an empty string).  The peer encryption key (the
  one used for encrypting data from peer to EAP server) is obtained by
  truncating to the correct length the first 32 bytes of the first PRF
  of these two output strings.  TheEAP server encryption key (the one
  used for encrypting data from EAP server to peer), if different from
  the client encryption key, is obtained by truncating to the correct
  length the second 32 bytes of this same PRF output string.  The
  client authentication key (the one used for computing MACs for
  messages from peer to EAP server), if used, is obtained by truncating
  to the correct length the third 32 bytes of this same PRF output
  string.  The EAP server authentication key (the one used for
  computing MACs for messages from EAP server to peer), if used, and if
  different from the peer authentication key, is obtained by truncating
  to the correct length the fourth 32 bytes of this same PRF output
  string.  The peer initialization vector (IV), used for messages from
  peer to EAP server if a block cipher has been specified, is obtained
  by truncating to the cipher's block size the first 32 bytes of the
  second PRF output string mentioned above.  Finally, the server
  initialization vector (IV), used for messages from peer to EAP server



Aboba & Simon                 Experimental                      [Page 8]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  if a block cipher has been specified, is obtained by truncating to
  the cipher's block size the second 32 bytes of this second PRF
  output.

  The use of these encryption and authentication keys is specific to
  the PPP encryption mechanism used, such as those defined in [9] and
  [10].  Additional keys or other non-secret values (such as IVs) can
  be obtained as needed for future PPP encryption methods by extending
  the outputs of the PRF beyond 128 bytes and 64 bytes, respectively.

3.6.  ECP negotiation

  Since TLS supports ciphersuite negotiation, peers completing the TLS
  negotiation will also have selected a ciphersuite, which includes key
  strength, encryption and hashing methods. As a result, a subsequent
  Encryption Control Protocol (ECP) conversation, if it occurs, has a
  predetermined result.

  In order to ensure agreement between the EAP-TLS ciphersuite
  negotiation and the subsequent ECP negotiation (described in [6]),
  during ECP negotiation the PPP peer MUST offer only the ciphersuite
  negotiated inEAP-TLS.  This ensures that the PPP authenticator MUST
  accept the EAP-TLS negotiated ciphersuite in order for the
  onversation to proceed.  Should the authenticator not accept the
  EAP-TLS negotiated ciphersuite, then the peer MUST send an LCP
  terminate and disconnect.

  Please note that it cannot be assumed that the PPP authenticator and
  EAP server are located on the same machine or that the authenticator
  understands the EAP-TLS conversation that has passed through it. Thus
  if the peer offers a ciphersuite other than the one negotiated in
  EAP-TLS there is no way for the authenticator to know how to respond
  correctly.

3.7.  CCP negotiation

  TLS as described in [12] supports compression as well as ciphersuite
  negotiation. However, TLS only provides support for a limited number
  of compression types which do not overlap with the compression types
  used in PPP. As a result, during the EAP-TLS conversation the EAP
  endpoints MUST NOT request or negotiate compression. Instead, the PPP
  Compression Control Protocol (CCP), described in [13] should be used
  to negotiate the desired compression scheme.








Aboba & Simon                 Experimental                      [Page 9]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


3.8.  Examples

  In the case where the EAP-TLS mutual authentication is successful,
  the conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS certificate,
                   [TLS server_key_exchange,]
                   [TLS certificate_request,]
                       TLS server_hello_done)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
  [TLS certificate_verify,]
   TLS change_cipher_spec,
   TLS finished) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Success
  PPP Authentication
  Phase complete,
  NCP Phase starts

  ECP negotiation
  CCP negotiation



Aboba & Simon                 Experimental                     [Page 10]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  In the case where the EAP-TLS mutual authentication is successful,
  and fragmentation is required, the conversation will appear as
  follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start, S bit set)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- PPP EAP-Request/
                             EAP-Type=EAP-TLS
                            (TLS server_hello,
                              TLS certificate,
                    [TLS server_key_exchange,]
                    [TLS certificate_request,]
                        TLS server_hello_done)
                   (Fragment 1: L, M bits set)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Request/
                             EAP-Type=EAP-TLS
                          (Fragment 2: M bit set)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (Fragment 3)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,
  [TLS certificate_verify,]
   TLS change_cipher_spec,
   TLS inished)(Fragment 1:
   L, M bits set)->
                           <- PPP EAP-Request/
                          EAP-Type=EAP-TLS



Aboba & Simon                 Experimental                     [Page 11]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (Fragment 2)->
                         <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Success
  PPP Authentication
  Phase complete,
  NCP Phase starts

  ECP negotiation
  CCP negotiation

  In the case where the server authenticates to the client
  successfully, but the client fails to authenticate to the server, the
  conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS certificate,
                   [TLS server_key_exchange,]
                          TLS certificate_request,
                          TLS server_hello_done)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS certificate,
   TLS client_key_exchange,



Aboba & Simon                 Experimental                     [Page 12]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


   TLS certificate_verify,
   TLS change_cipher_spec,
   TLS finished) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                          TLS finished)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Request
                          EAP-Type=EAP-TLS
                          (TLS Alert message)
  PPP EAP-Response/
  EAP-Type=EAP-TLS ->
                          <- PPP EAP-Failure
                          (User Disconnected)

  In the case where server authentication is unsuccessful, the
  conversation will appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
   (TLS client_hello)->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS certificate,
                      [TLS server_key_exchange,]
                      [TLS certificate_request,]
                       TLS server_hello_done)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
   (TLS certificate,
   TLS client_key_exchange,
  [TLS certificate_verify,]



Aboba & Simon                 Experimental                     [Page 13]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


   TLS change_cipher_spec,
   TLS finished) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS change_cipher_spec,
                           TLS finished)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS change_cipher_spec,
  TLS finished)
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS Alert message) ->
                          <- PPP EAP-Failure
                          (User Disconnected)

  In the case where a previously established session is being resumed,
  and both sides authenticate successfully, the conversation will
  appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                          TLS change_cipher_spec
                          TLS finished)







Aboba & Simon                 Experimental                     [Page 14]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS change_cipher_spec,
   TLS finished) ->
                          <- PPP EAP-Success
  PPP Authentication
  Phase complete,
  NCP Phase starts

  ECP negotiation

  CCP negotiation

  In the case where a previously established session is being resumed,
  and the server authenticates to the client successfully but the
  client fails to authenticate to the server, the conversation will
  appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello) ->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS change_cipher_spec,
                           TLS finished)
  PPP EA-Response/
  EAP-Type=EAP-TLS
  (TLS change_cipher_spec,
   TLS finished) ->
                          <- PPP EAP-Request
                          EAP-Type=EAP-TLS
                          (TLS Alert message)




Aboba & Simon                 Experimental                     [Page 15]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  PPP EAP-Response
  EAP-Type=EAP-TLS ->
                           <- PPP EAP-Failure
                           (User Disconnected)

  In the case where a previously established session is being resumed,
  and the server authentication is unsuccessful, the conversation will
  appear as follows:

  Authenticating Peer     Authenticator
  -------------------     -------------
                          <- PPP LCP Request-EAP
                          auth
  PPP LCP ACK-EAP
  auth ->
                          <- PPP EAP-Request/
                          Identity
  PPP EAP-Response/
  Identity (MyID) ->
                          <- PPP EAP-Request/
                          EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS Start)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS client_hello)->
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
                          (TLS server_hello,
                           TLS change_cipher_spec,
                           TLS finished)
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS change_cipher_spec,
  TLS finished)
                          <- PPP EAP-Request/
                          EAP-Type=EAP-TLS
  PPP EAP-Response/
  EAP-Type=EAP-TLS
  (TLS Alert message) ->
                          <- PPP EAP-Failure
                          (User Disconnected)









Aboba & Simon                 Experimental                     [Page 16]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


4.  Detailed description of the EAP-TLS protocol

4.1.  PPP EAP TLS Packet Format

  A summary of the PPP EAP TLS Request/Response packet format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |   Identifier  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |        Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     1 - Request
     2 - Response

  Identifier

     The identifier field is one octet and aids in matching responses
     with requests.

  Length

     The Length field is two octets and indicates the length of the EAP
     packet including the Code, Identifier, Length, Type, and Data
     fields.  Octets outside the range of the Length field should be
     treated as Data Link Layer padding and should be ignored on
     reception.

  Type

     13 - EAP TLS

  Data

     The format of the Data field is determined by the Code field.











Aboba & Simon                 Experimental                     [Page 17]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


4.2.  PPP EAP TLS Request Packet

  A summary of the PPP EAP TLS Request packet format is shown below.
  The fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |   Identifier  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Flags     |      TLS Message Length
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     TLS Message Length        |       TLS Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     1

  Identifier

     The Identifier field is one octet and aids in matching responses
     with requests.  The Identifier field MUST be changed on each
     Request packet.

  Length

     The Length field is two octets and indicates the length of the EAP
     packet including the Code, Identifier, Length, Type, and TLS
     Response fields.

  Type

     13 - EAP TLS

  Flags

     0 1 2 3 4 5 6 7 8
     +-+-+-+-+-+-+-+-+
     |L M S R R R R R|
     +-+-+-+-+-+-+-+-+

     L = Length included
     M = More fragments
     S = EAP-TLS start
     R = Reserved





Aboba & Simon                 Experimental                     [Page 18]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


     The L bit (length included) is set to indicate the presence of the
     four octet TLS Message Length field, and MUST be set for the first
     fragment of a fragmented TLS message or set of messages. The M bit
     (more fragments) is set on all but the last fragment. The S bit
     (EAP-TLS start) is set in an EAP-TLS Start message. This
     differentiates the EAP-TLS Start message from a fragment
     acknowledgement.

  TLS Message Length

     The TLS Message Length field is four octets, and is present only
     if the L bit is set.  This field provides the total length of the
     TLS message or set of messages that is being fragmented.

  TLS data

     The TLS data consists of the encapsulated TLS packet in TLS record
     format.

4.3.  PPP EAP TLS Response Packet

  A summary of the PPP EAP TLS Response packet format is shown below.
  The fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |   Identifier  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Flags     |      TLS Message Length
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     TLS Message Length        |       TLS Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     2

  Identifier

     The Identifier field is one octet and MUST match the Identifier
     field from the corresponding request.

  Length

     The Length field is two octets and indicates the length of the EAP
     packet including the Code, Identifir, Length, Type, and TLS data
     fields.



Aboba & Simon                 Experimental                     [Page 19]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  Type

     13 - EAP TLS

  Flags

     0 1 2 3 4 5 6 7 8
     +-+-+-+-+-+-+-+-+
     |L M S R R R R R|
     +-+-+-+-+-+-+-+-+

     L = Length included
     M = More fragments
     S = EAP-TLS start
     R = Reserved

     The L bit (length included) is set to indicate the presence of the
     four octet TLS Message Length field, and MUST be set for the first
     fragment of a fragmented TLS message or set of messages. The M bit
     (more fragments) is set on all but the last fragment. The S bit
     (EAP-TLS start) is set in an EAP-TLS Start message.  This
     differentiates the EAP-TLS Start message from a fragment
     acknowledgement.

  TLS Message Length

     The TLS Message Length field is four octets, and is present only
     if the L bit is set. This field provides the total length of the
     TLS message or set of messages that is being fragmented.

  TLS data

     The TLS data consists of the encapsulated TLS packet in TLS record
     format.

















Aboba & Simon                 Experimental                     [Page 20]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


5.  References

  [1]  Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
       51, RFC 1661, July 1994.

  [2]  Sklower, K., Lloyd, B., McGregor, G., Carr, D. and T. Coradetti,
       "The PPP Multilink Protocol (MP)", RFC 1990, August 1996.

  [3]  Simpson, W., Editor, "PPP LCP Extensions", RFC 1570, January
       1994.

  [4]  Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm", RFC
       1321, April 1992.

  [5]  Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication
       Protocol (EAP)", RFC 2284, March 1998.

  [6]  Meyer, G., "The PPP Encryption Protocol (ECP)", RFC 1968, June
       1996.

  [7]  National Bureau of Standards, "Data Encryption Standard", FIPS
       PUB 46 (January 1977).

  [8]  National Bureau of Standards, "DES Modes of Operation", FIPS PUB
       81 (December 1980).

  [9]  Sklower, K. amd G. Meyer, "The PPP DES Encryption Protocol,
       Version 2 (DESE-bis)", RFC 2419, September 1998.

  [10] Hummert, K., "The PPP Triple-DES Encryption Protocol (3DESE)",
       RFC 2420, September 1998.

  [11] Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [12] Dierks, T. and  C. Allen, "The TLS Protocol Version 1.0", RFC
       2246, November 1998.

  [13] Rand, D., "The PPP Compression Control Protocol", RFC 1962, June
       1996.











Aboba & Simon                 Experimental                     [Page 21]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


6.  Security Considerations

6.1.  Certificate revocation

  Since the EAP server is on the Internet during the EAP conversation,
  the server is capable of following a certificate chain or verifying
  whether the peer's certificate has been revoked. In contrast, the
  peer may or may not have Internet connectivity, and thus while it can
  validate the EAP server's certificate based on a pre-configured set
  of CAs, it may not be able to follow a certificate chain or verify
  whether the EAP server's certificate has been revoked.

  In the case where the peer is initiating a voluntary Layer 2 tunnel
  using PPTP or L2TP, the peer will typically already have a PPP
  interface and Internet connectivity established at the time of tunnel
  initiation.  As a result, during the EAP conversation it is capable
  of checking for certificate revocation.

  However, in the case where the peer is initiating an intial PPP
  conversation, it will not have Internet connectivity and is therefore
  not capable of checking for certificate revocation until after NCP
  negotiation completes and the peer has access to the Internet. In
  this case, the peer SHOULD check for certificate revocation after
  connecting to the Internet.

6.2.  Separation of the EAP server and PPP authenticator

  As a result of the EAP-TLS conversation, the EAP endpoints will
  mutually authenticate, negotiate a ciphersuite, and derive a session
  key for subsequent use in PPP encryption. Since the peer and EAP
  client reside on the same machine, it is necessary for the EAP client
  module to pass the session key to the PPP encryption module.

  The situation may be more complex on the PPP authenticator, which may
  or may not reside on the same machine as the EAP server. In the case
  where the EAP server and PPP authenticator reside on different
  machines, there are several implications for security. Firstly, the
  mutual authentication defined in EAP-TLS will occur between the peer
  and the EAP server, not between the peer and the authenticator. This
  means that as a result of the EAP-TLS conversation, it is not
  possible for the peer to validate the identity of the NAS or tunnel
  server that it is speaking to.

  The second issue is that the session key negotiated between the peer
  and EAP server will need to be transmitted to the authenticator.
  Therefore a mechanism needs to be provided to transmit the session
  key from the EAP server to the authenticator or tunnel server that
  needs to use the key. The specification of this transit mechanism is



Aboba & Simon                 Experimental                     [Page 22]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


  outside the scope of this document.

6.3.  Relationship of PPP encryption to other security mechanisms

  It is envisaged that EAP-TLS will be used primarily with dialup PPP
  connections. However, there are also circumstances in which PPP
  encryption may be used along with Layer 2 tunneling protocols such as
  PPTP and L2TP.

  In compulsory layer 2 tunneling, a PPP peer makes a connection to a
  NAS or router which tunnels the PPP packets to a tunnel server.
  Since with compulsory tunneling a PPP peer cannot tell whether its
  packets are being tunneled, let alone whether the network device is
  securing the tunnel, if security is required then the client must
  make its own arrangements. In the case where all endpoints cannot be
  relied upon to implement IPSEC, TLS, or another suitable security
  protocol, PPP encryption provides a convenient means to ensure the
  privacy of packets transiting between the client and the tunnel
  server.

7.  Acknowledgments

  Thanks to Terence Spies, Glen Zorn and Narendra Gidwani of Microsoft
  for useful discussions of this problem space.

8.  Authors' Addresses

  Bernard Aboba
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052

  Phone: 425-936-6605
  EMail: [email protected]


  Dan Simon
  Microsoft Corporation
  One Microsoft Way
  Redmond, WA 98052

  Phone: 425-936-6711
  EMail: [email protected]








Aboba & Simon                 Experimental                     [Page 23]

RFC 2716          PPP EAP TLS Authentication Protocol       October 1999


9.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Aboba & Simon                 Experimental                     [Page 24]