Network Working Group                                       M. Rajagopal
Request for Comments: 2625                                    R. Bhagwat
Category: Standards Track                                     W. Rickard
                                                       Gadzoox Networks
                                                              June 1999


                    IP and ARP over Fibre Channel

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  Fibre Channel (FC) is a high speed serial interface technology that
  supports several higher layer protocols including Small Computer
  System Interface (SCSI) and Internet Protocol(IP). Until now, SCSI
  has been the only widely used protocol over FC. Existing FC standards
  [3] do not adequately specify how IP packets may be transported over
  FC and how IP addresses are resolved to FC addresses. The purpose of
  this document is to specify a way of encapsulating IP and Address
  Resolution Protocol(ARP) over Fibre Channel and also to describe a
  mechanism(s) for IP address resolution.

Table of Contents

  1. Introduction ...............................................  3
  2. Problem Statement ..........................................  5
  3. IP and ARP Encapsulation ...................................  5
     3.1 FC Frame Format ........................................  5
     3.2 MTU ....................................................  7
         3.2.1 IP MTU ...........................................  7
         3.2.2 Maximally Minimum IPv4 packet ....................  8
         3.2.3 ARP MTU ..........................................  8
         3.2.4 FC Data Field containing FARP Packet .............  9
     3.3 FC Port and Node Network Addresses .....................  9
     3.4 FC Sequence Payload Format ............................. 10
     3.5 Bit and Byte Ordering .................................. 12
  4. ARP ........................................................ 12



Rajagopal, et al.           Standards Track                     [Page 1]

RFC 2625             IP and ARP over Fibre Channel             June 1999


     4.1 Address Resolution  .................................... 12
     4.2 ARP Packet Format ...................................... 13
     4.3 ARP Layer Mapping and Operation ........................ 15
     4.4 ARP Broadcast in a Point-to-Point Topology ............. 16
     4.5 ARP Broadcast in a Private Loop Topology ............... 16
     4.6 ARP Broadcast in a Public Loop Topology ................ 16
     4.7 ARP Operation in a Fabric Topology ..................... 17
  5. FARP ....................................................... 18
     5.1 Scope .................................................. 18
     5.2 FARP Overview .......................................... 18
     5.3 FARP Command Format .................................... 20
     5.4 Match Address Code Points .............................. 22
     5.5 Responder Flags ........................................ 23
     5.6 FARP Support Requirements .............................. 24
  6. Exchange Management ........................................ 25
     6.1 Exchange Origination ................................... 25
     6.2 Exchange Termination ................................... 25
  7. Summary of Supported Features .............................. 25
     7.1 FC-4 Header ............................................ 25
     7.2 R_CTL .................................................. 26
     7.3 F_CTL .................................................. 27
     7.4 Sequences .............................................. 28
     7.5 Exchanges .............................................. 29
     7.6 ARP  and InARP ......................................... 30
     7.7 Extended Link Services (ELS) ........................... 31
     7.8 Login Parameters ....................................... 31
         7.8.1 Common Service Parameters  - FLOGI ............... 32
         7.8.2 Common Services Parameters - PLOGI ............... 32
         7.8.3 Class Service Parameters - PLOGI ................. 32
  8. Security Considerations .................................... 32
     8.1 IP and ARP Related ..................................... 32
     8.2 FC Related ............................................. 32
  9. Acknowledgements ........................................... 33
  10. References ................................................ 33
  11. Authors' Addresses ........................................ 35
  Appendix A: Additional Matching Mechanisms in FARP ............ 36
  Appendix B: InARP ............................................. 40
     B.1 General Discussion ..................................... 40
     B.2 InARP Protocol Operation ............................... 40
     B.3 InARP Packet Format .................................... 40
     B.4 InARP Support Requirements ............................. 41
  Appendix C: Some Informal Mechanisms for FC Layer Mappings .... 42
     C.1 Login on cached Mapping Information .................... 42
     C.2 Login on ARP parsing ................................... 42
     C.3 Login to Everyone ...................................... 43
     C.4 Static Table ........................................... 43
  Appendix D: FC Layer Address Validation........................ 44
     D.1 General Discussion ..................................... 44



Rajagopal, et al.           Standards Track                     [Page 2]

RFC 2625             IP and ARP over Fibre Channel             June 1999


     D.2 FC Layer Address Validation in a Point-to-Point Topology 45
     D.3 FC Layer Address Validation in a Private Loop Topology . 45
     D.4 FC Layer Address Validation in a Public Loop Topology .. 45
     D.5 FC layer Address Validation in a Fabric Topology ....... 46
  Appendix E: Fibre channel Overview ............................ 47
     E.1 Brief Tutorial ......................................... 47
     E.2 Exchange, Information Unit, Sequence, and Frame ........ 48
     E.3 Fibre Channel Header Fields ............................ 49
     E.4 Code Points for FC Frame ............................... 52
          E.4.1 Code Points with IP and ARP Packet .............. 52
          E.4.2 Code Points with FARP Command ................... 54
  Appendix F: Fibre Channel Protocol Considerations.............. 58
     F.1 Reliability in Class 3 ................................. 58
     F.2 Continuously Increasing SEQ_CNT ........................ 58
  Appendix G: Acronyms and Glossary of FC Terms ................. 60
  Full Copyright Statement ...................................... 63

1. Introduction

  Fibre Channel (FC) is a gigabit speed networking technology primarily
  used for Storage Area Networking (SAN). FC is standardized under
  American National Standard for Information Systems of the National
  Committee for Information Technology Standards (NCITS) and has
  specified a number of documents describing its protocols, operations,
  and services.

  Need:

  Currently, Fibre Channel is predominantly used for communication
  between storage devices and servers using the SCSI protocol, with
  most  of the servers still communicating with each other over LANs.
  Although, there exists a Fibre Channel Standard [3] that has
  architecturally defined support for IP encapsulation and address
  resolution, it is inadequately specified. ([3] prohibits broadcasts,
  thus loops are not covered; [10] has no support for Class 3).

  This has lead to a nonstandard way of using IP over FC in the past.
  Once such a standard method is completely specified, servers can
  directly communicate with each other using IP over FC, possibly
  boosting performance in Server host-to-host communications.  This
  technique will be especially useful in a Clustering Application.

  Objective and Scope:

  The major objective of this specification is to promote interoperable
  implementations of IPv4 over FC. This specification describes a
  method for encapsulating IPv4 and Address Resolution Protocol (ARP)
  packets over FC. This specification accommodates any FC topology



Rajagopal, et al.           Standards Track                     [Page 3]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  (loop, fabric, or point-to-point) and any FC class of service (1, 2
  or 3).  This specification also describes a FC Address Resolution
  Protocol(FARP) for associating World Wide Port Names (MAC addresses)
  and FC Port identifiers.

  A secondary objective of this specification is to describe other
  optional address resolution mechanisms:

     - Other FARP mechanisms that directly build IPv4 address and FC
       Port Identifier (Port_ID) associations.
     - Inverse ARP (InARP) that allows learning the IP address of a
       remote node given its World Wide Port Name (WW_PN) and Port_ID.

  "Multicasting" in Fibre Channel is defined as an optional service
  [11] for FC Classes 3 and 6 only, with no definition for Classes 1
  and 2. Currently, there are no vendor implementations of this service
  for either Class of service. Broadcast service available within Fibre
  Channel can be used to do multicasting, although less efficiently.
  Presently, there appears to be no IP applications over Fibre Channel
  that require support for IP multicasting. This specification
  therefore does not support IP Multicasting.

  Organization:

  Section 2 states the problem that is solved in this  specification.
  Section 3 describes the techniques used for encapsulating  IP and ARP
  packets in a FC sequence. Section 4 discusses the ARP protocol(IP
  address to WW_PN). Section 5 discusses the FARP protocol used in FC
  Layer mappings (WW_PN to Port_ID).  Section 6 describes the
  "Exchange" Management in FC. Section 7 is a summary section and
  provides a quick reference to FC header settings, FC Link Service
  Commands, supported features in ARP, FARP, InARP, FC Sequences, FC
  Exchanges, and FC Login Parameters.  Section 8 discusses security.
  Section 9 acknowledges the technical contributors of this document.
  Section 10 provides a list of references, and Section 11 provides the
  authors' addresses.

  Appendix A discusses other optional FARP mechanisms. Appendix B
  discusses the Inverse ARP protocol(WW_PN to IP address) as an
  alternate and optional way of building MAC and IP address
  associations. Appendix C lists some informal mechanisms for FC Layer
  Mappings.  Appendix D provides a discussion on validation of the FC-
  layer mappings for the different FC topologies.  Appendix E provides
  a brief overview of the FC Protocols and Networks.  Appendix F
  addresses reliability in Class 3 and Sequence Count FC Protocol
  issues.  Appendix G provides a list of acronyms and a glossary of FC
  Terms used in this specification.




Rajagopal, et al.           Standards Track                     [Page 4]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [19].

2. Problem Statement

  This specification addresses two problems:

       - A format definition and encapsulation mechanism for IPv4
         and ARP packets over FC
       - Mechanisms for Address Resolution

  As noted earlier, the existing FC Standard [3] ([10]) is inadequate
  to solve the above problems. A solution to both problems was first
  proposed by the Fibre Channel Association (FCA)[1]. FCA is an
  industry consortium of FC vendor companies and not a Standards Body.
  This specification is based on the proposed solution in [1] and
  builds on it.

  Address Resolution is concerned with resolving IP addresses to WW_PN
  (MAC address) and WW_PN to FC Port Identifiers (Port_ID). ARP
  provides a solution to the first resolution problem and FARP the
  second.

  An optional FARP mechanism resolves IP address directly to FC
  Port_IDs. This is useful in some upper layer applications.

  InARP is another optional mechanism that resolves WW_PN and Port_ID
  to an IP address.  InARP is useful when a node after performing a
  PLOGI with another node, knows its WW_PN and Port_ID, but not its IP
  address.

3. IP and ARP Encapsulation

3.1 FC Frame Format

  All FC frames have a standard format much like LAN 802.x protocols.
  (See Appendix E and F).  However, the exact size of each frame varies
  depending on the size of the variable fields.  The size of the
  variable field ranges from 0 to 2112-bytes as shown in the FC Frame
  Format in Fig. 1.










Rajagopal, et al.           Standards Track                     [Page 5]

RFC 2625             IP and ARP over Fibre Channel             June 1999


        +------+--------+-----------+----//-------+------+------+
        | SOF  |Frame   |Optional   |  Frame      | CRC  |  EOF |
        | (4B) |Header  |Header     | Payload     | (4B) | (4B) |
        |      |(24B)   |<----------------------->|      |      |
        |      |        | Data Field = (0-2112B)  |      |      |
        +------+--------+-----------+----//-------+------+------+
                         Fig. 1 FC Frame Format

  The Start of Frame (SOF) and End of Frame (EOF) are both 4-bytes long
  and act as frame delimiters.

  The CRC is 4-bytes long and uses the same 32-bit polynomial used in
  FDDI and is specified in ANSI X3.139 Fiber Distributed Data
  Interface.

  The Frame Header is 24-bytes long and has several fields that are
  associated with the identification and control of the payload. Some
  of the values and options for this field that are relevant to the IP
  and ARP payloads are discussed in Section 7.

  Current FC Standards allow up to 3 Optional Header fields [11]:

    - Network_Header (16-bytes)
    - Association_Header (32-bytes)
    - Device_Header (up to 64-bytes).

  The IP and ARP FC Sequences SHALL carry only the Network_Header field
  which is 16-bytes long. Other types of optional headers SHALL NOT be
  used.  The Network_Header is REQUIRED in all ARP packets and in the
  first frame of a logical sequence carrying an IP payload as described
  below.

  An application level payload such as IP is called an Information Unit
  at the FC-4 Level. Lower FC levels map this to a FC Sequence.  (See
  Appendix E.2 for a description of Sequences and Information Units.)
  Typically, a Sequence consists of more than one frame. Larger user
  data is segmented and reassembled using two methods: Sequence Count
  and Relative Offset [18]. With the use of Sequence Count, data blocks
  are sent using frames with increasing sequence counts (modulo 65536)
  and it is quite straightforward to detect the first frame that
  contains the Network_Header.  When Relative Offset is used, as frames
  arrive, some computation is required to detect the first frame that
  contains the Network_Header. Sequence Count and Relative Offset field
  control information, is carried in the FC Header.

  In FC, the physical temporal ordering of the frames as it arrives at
  a destination can be different from that of the order sent because of
  traversing through a FC Network.



Rajagopal, et al.           Standards Track                     [Page 6]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  When IP forms the FC Payload then only the first frame of the logical
  Sequence SHALL include the FC Network_Header. Fig. 2 shows the
  logical First Frame and logical subsequent frames. Since frames may
  arrive out of order, detection of the first frame of the logical FC
  Sequence is necessary.

  ARP packets map to a single frame FC Sequence and SHALL always carry
  the FC Network_Header.

  Note the definition of FC Data Field and FC Frame Payload in Fig. 1.
  FC Data Field includes the FC Frame Payload and the FC Optional
  Header, that is, Frame Payload definition does not include the FC
  Optional Header. One or more Frame Payloads together make the FC
  Sequence Payload as shown in Fig 2 and discussed further in Sections
  3.2 and 3.4. FC Sequence Payload includes the mapped IP or ARP packet
  along with the LLC/SNAP headers.

                First Frame of a Logical FC Sequence
---+------------+---------------------------+----------//----------+---
   |  FC Header |     FC Network_Header     | FC Sequence Payload  |
---+------------+---------------------------+---------//-----------+---

             Subsequent Frames of a Logical FC Sequence
         --+-----------+--------------//----------------+--
           | FC Header | Additional FC Sequence Payload |
         --+-----------+-------------//-----------------+--

            Fig. 2 FC Network_Header in a Frame Sequence

  The SOF, CRC, EOF control fields of the FC frame and other optional
  headers have been omitted in the figure for clarity.

3.2 MTU

3.2.1 IP MTU

  An FC Information Unit specific to each protocol such as IP is
  defined in FC-4. This defines the upper bound on the size of the
  information that can be transported.

  Each IP or ARP Packet is mapped to a single FC Information Unit,
  which in turn is mapped to a single FC Sequence. There is a one-to-
  one mapping between an IP or ARP packet and a FC Sequence.

  Fibre Channel limits the size of a single Information Unit to 2^32-1,
  which is very large [2].  However, since the Maximum Transmission
  Unit (MTU) size of an IPv4 packet does not exceed 65,536-bytes, the
  mapped IPv4 size is far below the 2^32-1 limit.



Rajagopal, et al.           Standards Track                     [Page 7]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  IPv4 Packet definition includes the IP Payload and IP Headers - both
  fixed and optional.  The corresponding FC Sequence Payload includes
  the LLC/SNAP Header and the IPv4 packet.

  As noted above, the greatest length allowed for an IPv4 Packet
  including any optional headers and independent of this standard is
  65,536-bytes. However, limiting the IP MTU size to 65,280-bytes helps
  in buffer resource allocation at N_Ports and also allows for up to
  256-bytes of overhead. Since the FC Network_Header requires 16-bytes
  and the IEEE 802.2 LLC/SNAP header requires 8 bytes, it leaves 232
  bytes for future use.

  All implementations SHALL restrict the IP MTU size to 65,280 bytes
  and the corresponding FC Sequence Payload size to 65536-bytes.

3.2.2 Maximally Minimum IPv4 Packet

  In order for IP fragmentation and reassembly to work properly it is
  necessary that every implementation of IP be capable of transporting
  a maximally minimum size IP packet without fragmentation. A maximally
  minimum size IP Packet is defined as an IP Packet with an 8-byte
  payload (the smallest possible non-zero payload size for a fragment)
  and a 60-byte header (the largest possible header consisting of a
  20-byte fixed part and a maximum size option field of 40-bytes) [17].

  All implementations SHALL support a FC Data Field of 92-bytes, which
  is required to support 68-bytes of the maximally minimum sized IP
  Packet, 16-bytes of the FC Network_Header, and 8-bytes of the
  LLC/SNAP Header.

3.2.3 ARP MTU

  The ARP packet has a fixed size of 28-bytes. All implementations
  SHALL support a FC Data Field size of 52-bytes, which is required to
  support 28-bytes of an ARP Packet, 16-bytes of the FC Network_Header,
  and 8-bytes of the LLC/SNAP Header. Note that the minimum MTU
  requirement for ARP is already covered by the minimum MTU requirement
  for IP but it is mentioned here for completeness.

  The InARP packet is identical in size to the ARP and the same MTU
  requirements apply.










Rajagopal, et al.           Standards Track                     [Page 8]

RFC 2625             IP and ARP over Fibre Channel             June 1999


3.2.4 FC Data Field containing FARP Packet

  The FARP Command is a FC Extended Link Service (ELS) command and maps
  directly to the FC Data Field without the LLC/SNAP or the FC
  Network_Header. The FARP Command has a fixed size of 76-bytes.
  Because FARP operates purely in the FC space, it places no special
  MTU requirements in this specification.

3.3 FC Port and Node Network Addresses

  FC devices are identified by Nodes and their Ports. A Node is a
  collection of one or more Ports identified by a unique nonvolatile
  64-bit World Wide Node name (WW_NN). Each Port in a node, is
  identified with a unique nonvolatile 64-bit World Wide Port name
  (WW_PN), and a volatile Port Identifier (Port_ID).

  Port_IDs are 24-bits long. A FC frame header carries a Source Port_ID
  (S_ID) and a Destination Port_ID (D_ID). The Port_ID of a given port
  is volatile. (The mechanism(s) by which a Port_ID may change in a FC
  topology is outside the scope of this document. See Appendix D).

  The FC Network_Header is normally optional in FC Standards, but
  REQUIRED in this specification.  A FC Network_Header carries source
  and destination WW_PNs. A WW_PN consists of a 60-bit Network Address
  and a upper 4-bit Network Address Authority (NAA) field as shown in
  Fig. 3.  The 4-bit NAA field is used to distinguish between the
  various name registration authorities used to define the Network
  Address [2].

  In this specification, both the Source and Destination 4-bit NAA
  identifiers SHALL be set to binary '0001' indicating that an IEEE
  48-bit MAC address is contained in the lower 48 bits of the network
  address fields. The high order 12 bits in the network address fields
  SHALL be set to 0x0000. The NAA field value equal to binary '0001'
  allows FC networks to be bridged with other FC networks or
  traditional LANs.















Rajagopal, et al.           Standards Track                     [Page 9]

RFC 2625             IP and ARP over Fibre Channel             June 1999


        +--------+---------------------------------------+
        | D_NAA  |Network_Dest_Address (High-order bits) |
        |(4 bits)|              (28 bits)                |
        +--------+---------------------------------------+
        |      Network_Dest_Address (Low-order bits)     |
        |                       (32 bits)                |
        +--------+---------------------------------------+
        | S_NAA  |Network_Source_Address(High-order bits)|
        |(4 bits)|              (28 bits)                |
        +--------+---------------------------------------+
        |      Network_Source_Address (Low-order bit)    |
        |                       (32 bits)                |
        +--------+---------------------------------------+

             Fig. 3 Format of the Network_Header Field

3.4 FC Sequence Payload Format

  FC Payload with IP:

  An FC Sequence Payload carrying an IP and ARP packet SHALL use the
  formats shown in Figs. 4 and 5 respectively. Both formats use the
  8-byte LLC/SNAP header.

+-----------------+-----------+------------+-------------//----------+
| LLC/SNAP Header | IP Header | Opt.IP Hdr.|         IP Data         |
|   (8 bytes)     | (20 bytes)| (40 bytes  | (65280 -IP Header       |
|                 |           |   Max)     |   - Opt. IP Hdr.) bytes |
+-----------------+-----------+------------+-------------//----------+

          Fig. 4 Format of FC Sequence Payload carrying IP

  FC Sequence Payload with ARP:

  As noted earlier, FC frames belonging to the same Sequence may be
  delivered out of order over a Fabric. If the Relative Offset method
  is used to identify FC Sequence Payload fragments, then the IP Header
  MUST appear in the frame that has a relative offset of 0.

              +-----------------+-------------------+
              | LLC/SNAP Header |   ARP Packet      |
              |   (8 bytes)     |   (28 bytes)      |
              +-----------------+-------------------+

         Fig. 5 Format of FC Sequence Payload carrying ARP






Rajagopal, et al.           Standards Track                    [Page 10]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  FC Sequence Payload with FARP:

  FARP Protocol commands are directly mapped to the Frame Sequence
  Payload and are 76-bytes long. No LLC/SNAP Header or FC
  Network_Header is used and therefore the FC Data Field size simply
  consists of the FC Sequence Payload.

  LLC:

  A Logical Link Control (LLC) field along with a Sub Network Access
  Protocol (SNAP) field is a method used to identify routed and bridged
  non-OSI protocol PDUs and is defined by IEEE 802.2 and applied to IP
  in [8]. In LLC Type 1 operation (i.e., unacknowledged connectionless
  mode), the LLC header is 3-bytes long and consists of a 1-byte
  Destination Service Access Point (DSAP)field, a 1-byte Source Service
  Access Point (SSAP)field, and a 1-byte Control field as shown in Fig.
  6.

                 +----------+----------+----------+
                 |   DSAP   |   SSAP   |   CTRL   |
                 | (1 byte) | (1 byte) | (1 byte) |
                 +----------+----------+----------+
                            Fig. 6 LLC Format

  The LLC's DSAP and SSAP values of 0xAA indicate that an IEEE 802.2
  SNAP header follows. The LLC's CTRL value equal to 0x03 specifies an
  Unnumbered Information Command PDU. In this specification the LLC
  Header value SHALL be set to 0xAA-AA-03. Other values of DSAP/SSAP
  indicate support for other protocols and SHALL NOT be used in this
  specification.

  SNAP:

  The SNAP Header is 5-bytes long and consists of a 3-byte
  Organizationally Unique Identifier (OUI) field and a 2-byte Protocol
  Identifier (PID) as shown in Fig. 7

                  +------+------+-------+------+------+
                  |         OUI         |     PID     |
                  |      ( 3 bytes)     |  (2 bytes)  |
                  +------+------+-------+------+------+
                        Fig. 7 SNAP Format

  SNAP was invented to "encapsulate" LAN frames within the payload.
  The SNAP OUI value equal to 0x00-00-00 specifies that the PID is an
  EtherType (i.e., routed non-OSI protocol).

  The SNAP OUI value equal to 0x00-80-C2 indicates Bridged Protocols.



Rajagopal, et al.           Standards Track                    [Page 11]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  With the OUI value set to 0x00-00-00, the SNAP PID value equal to
  0x08-00 indicates IP and a PID value equal to 0x08-06 indicates ARP
  (or InARP).

  The complete LLC/SNAP Header is shown in Fig. 8.

+-----------+----------+----------+-------+-------+-------+-------+------+
|    DSAP   |   SSAP   |   CTRL   |          OUI          |      PID     |
|  (1 byte) | (1 byte) | (1 byte) |      ( 3 bytes)       |  (2 bytes    |
+-----------+----------+----------+-------+-------+-------+-------+------+

                         Fig. 8 LLC/SNAP Header

3.5 Bit and Byte Ordering

  IP or ARP Packets are mapped to FC-4 Level using the big endian byte
  ordering, which corresponds to the standard network byte order or
  canonical form [20]. FC-4 Payload maps with no change in order to the
  FC-2 Level.

  FC-1 Level defines the method used to encode data prior to
  transmission and subsequently decode the data upon reception. The
  method encodes 8-bit bytes into 10-bit transmission characters to
  improve the transmission characteristics of the serial data stream.
  In Fibre Channel, data fields are aligned on word boundaries. See
  Appendix E.  A word in FC is defined as 4 bytes or 32 bits. The
  resulting transmission word after the 8-bit to 10-bit encoding
  consists of 40 bits.

  Data words or Ordered Sets (special FC-2 Level control words) from
  the FC-2 Level map to the FC-1 Level with no change in order and the
  bytes in the word are transmitted in the Most Significant Byte first
  to Least Significant Byte order. The transmission order of bits
  within each byte is the Least Significant Bit to the Most Significant
  Bit.

4. ARP

4.1 Address Resolution

  Address Resolution in this specification is primarily concerned with
  associating IP addresses with FC Port addresses. As described
  earlier, FC device ports have two types of addresses:

     - a non-volatile unique 64-bit address called World Wide Port_Name
       (WW_PN)
     - a volatile 24-bit address called a Port_ID




Rajagopal, et al.           Standards Track                    [Page 12]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  The Address Resolution mechanism therefore will need two levels of
  mapping:

     1. A mapping from the IP address to the WW_PN (i.e., IEEE
        48-bit MAC address)

     2. A mapping from the WW_PN to the Port_ID (see Appendix G for a
        definition of Port_ID)

  The address resolution problem is compounded by the fact that the
  Port_ID is volatile and the second mapping MUST be valid before use.
  Moreover, this validation process can be different depending on the
  network topology used. Appendix D provides a discussion on validation
  for the different FC topologies.

  Architecturally, the first level of mapping and control operation is
  handled by the Address Resolution Protocol (ARP), and the second
  level by the FC Address Resolution Protocol (FARP). FARP is described
  in Section 5.

  Other optional mechanisms in FARP that directly map an IP address to
  a Port_ID, or WW_NN to a Port_ID are described in Appendix A.

  The Inverse Address Resolution Protocol (InARP) is yet another
  optional mechanism that resolves WW_PN and Port_IDs to IP addresses.
  InARP is described in Appendix B.

4.2 ARP Packet Format

  The Address Resolution Protocol (ARP) given in [9] was designed to be
  a general purpose protocol, and to work with many network
  technologies, and with many upper layer protocols. Fig 9 shows the
  ARP packet format based on [9], where the upper layer protocol uses a
  4 octet protocol (IP) address and the network technology uses six-
  octet hardware (MAC) address.

  The ARP uses two packet types - Request and Reply - and each type of
  packet is 28 -bytes long in this specification. The ARP Packet fields
  are common to both ARP Requests and ARP Replys.

  The LLC/SNAP encapsulated ARP Request Packet is mapped to a FC
  Broadcast Sequence and the exact mechanism used to broadcast a FC
  Sequence depends on the FC topology. This is discussed later in this
  section. Compliant ARP Request Broadcasts SHALL include
  Network_Headers.






Rajagopal, et al.           Standards Track                    [Page 13]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  The LLC/SNAP encapsulated ARP Reply Packet is mapped to a FC
  Sequence. Compliant ARP Replys SHALL include Network_Headers.

  Note that in all discussions to follow, the WW_PN and the 48-bit MAC
  address conceptually mean the same thing.

  The 'HW Type' field SHALL be set to 0x00-01.

  Technically, the correct HW Type value should be set to 0x00-06
  according to RFC 1700 indicating IEEE 802 networks. However, as a
  practical matter a HW Type value of 0x00-06 is known to cause
  rejections from some Ethernet end stations when FC is bridged to
  Ethernet. Translational bridges are normally expected to change this
  field from Type 6 to 1 and vice versa under these configurations, but
  many do not. It is because of this reason that the Type Code is set
  to 1 rather than 6. However, both HW Type values of 0x00-01 and
  0x00-06 SHALL be accepted.

  The 'Protocol' field SHALL be set to 0x08-00 indicating IP protocol.

  The 'HW Addr Length' field SHALL be set to 0x06 indicating 6-bytes of
  HW address.

  The 'Protocol Addr Length' field SHALL be set to 0x04 indicating 4-
  bytes of IPv4 address.

  The 'Operation' Code field SHALL be set as follows:

           0x00-01 for ARP Request
           0x00-02 for ARP Reply

  The 'HW Addr of Sender' field SHALL be the 6-byte IEEE MAC address of
  the sender. It is either the Requester (ARP Request) or the Responder
  (ARP Reply) address.

  The 'Protocol Addr of Sender' field SHALL be the 4-byte IP address of
  the Requester (ARP Request) or that of the Responder (ARP Reply).

  The 'HW Addr of Target' field SHALL be set to zero during an ARP
  Request and to the 6-byte MAC address of the Requester (ARP Request)
  in an ARP Reply.

  The 'Protocol Addr of Target' field SHALL be set to the 4-byte IP
  address of the Responder (ARP Reply) in a ARP Request, and to the
  4-byte IP address of the Requester (ARP Request) in an ARP Reply.






Rajagopal, et al.           Standards Track                    [Page 14]

RFC 2625             IP and ARP over Fibre Channel             June 1999


                    +-------------------------+
                    | HW Type                 | 2 bytes
                    +-------------------------+
                    | Protocol                | 2 bytes
                    +-------------------------+
                    | HW Addr Length          | 1 byte
                    +-------------------------+
                    | Protocol Addr Length    | 1 byte
                    +-------------------------+
                    | Op Code                 | 2 bytes
                    +-------------------------+
                    | HW Addr of Sender       | 6 bytes
                    +-------------------------+
                    | Protocol Addr of Sender | 4 bytes
                    +-------------------------+
                    | HW Addr of Target       | 6 bytes
                    +-------------------------+
                    | Protocol Addr of Target | 4 bytes
                    +-------------------------+
                                         Total 28 bytes
                     Fig. 9 ARP Packet Format

4.3 ARP Layer Mapping and Operation

  Whenever a FC port wishes to send IP data to another FC port, then
  the following steps are taken:

     1. The source port should first consult its local mapping tables to
        determine the <destination IP address, destination WW_PN>.

     2. If such a mapping is found, then the source sends the IP
        data to the port whose WW_PN address was found in the table.

     3. If such a mapping is not found, then the source sends an
        ARP Request broadcast to its connected FC network in
        anticipation of getting a reply from the correct destination
        along with its WW_PN.

     4. When an ARP Request Broadcast frame is received by a node with
        the matching IP address, it generates an ARP Reply.  Since the
        ARP Reply must be addressed to a specific destination Port_ID,
        the FC layer mapping between the WW_PN and Port_ID (of the ARP
        Request orginator) MUST be valid before the reply is sent.

     5. If no node has the matching IP address, the result is a silent
        behavior.





Rajagopal, et al.           Standards Track                    [Page 15]

RFC 2625             IP and ARP over Fibre Channel             June 1999


4.4 ARP Broadcast in a Point-to-Point Topology

  The ARP Request (Broadcast) and Reply mechanism described above still
  apply, although there is only one node that receives the ARP Request.

4.5 ARP Broadcast in a Private Loop Topology

  In a private loop, the ARP Request Broadcast frame is sent using the
  broadcast method specified in the FC-AL [7]standard.

     1. The source port first sends an Open Broadcast Replicate
        primitive (OPN(fr))Signal forcing all the ports in the loop
        (except itself), to replicate the frames that they receive
        while examining the frame header's Destination_ID field.

     2. The source port then removes this OPN(fr) signal when it
        returns to it.

     3. The loop is now ready to receive the ARP broadcast.  The source
        now sends the ARP Request as a single-frame Broadcast Sequence
        in a Class 3 frame with the following FC Header D_ID field and
        F_CTL bits setting:

   Destination ID <Word 0, bit 0:23>: D_ID = 0xFF-FF-FF

   Sequence Initiative <Word 2, bit23>: SI=0

   Last Sequence <Word 2, bit 20>: LS=1

   End Sequence <Word 2, bit 19>: ES=1.

     4. A compliant ARP Broadcast Sequence frame SHALL include the
        Network_Header with destination MAC address set to 0xFF-FF-FF-
        FF-FF-FF and with NAA = b'0001'

     5. The destination port recognizing its IP address in the ARP
        Request packet SHALL respond with an ARP Reply.

4.6 ARP Broadcast in a Public Loop Topology

  The following steps will be followed when a port is configured in a
  public loop:

     1. A public loop device attached to a fabric through a FL_Port
        MUST NOT use the OPN(fr) signal primitive. Rather, it sends the
        broadcast sequence to the FL_Port at AL_PA = 0x00.





Rajagopal, et al.           Standards Track                    [Page 16]

RFC 2625             IP and ARP over Fibre Channel             June 1999


     2. A FC Fabric propagates the broadcast to all other ports
        including the FL_Port which the broadcast arrived on. This
        includes all F_Ports, and other FL_Ports.

     3. On each FL_Port, the fabric propagates the broadcast by first
        using the primitive signal OPNfr, in order to prepare the loop
        to receive the broadcast sequence.

     4. A Broadcast Sequence is now sent on all ports (all FL_ports,
        F_Ports) in Class 3 frame with:

   Destination ID <Word 0, bit 23:0>: D_ID = 0xFF-FF-FF

   Sequence Initiative <Word 2, bit23>: SI=0

   Last Sequence <Word 2, bit 20>: LS=1

   End Sequence <Word 2, bit 19>: ES=1.

     5. A compliant ARP Broadcast Sequence frame SHALL include the
        Network_Header with destination MAC address set to 0xFF-FF-FF-
        FF-FF-FF and with NAA = b'0001'

     6. The destination port recognizing its IP address in the ARP
        Request packet SHALL respond with an ARP Reply.

4.7 ARP Operation in a Fabric Topology

     1. Nodes directly attached to fabric do not require the OPN(fr)
        primitive signal.

     2. A Broadcast Sequence is now sent on all ports (all FL_ports,
        F_Ports) in Class 3 frame with:

            Destination ID <Word 0, bit 23:0>: D_ID = 0xFF-FF-FF

            Sequence Initiative <Word 2, bit23>: SI=0

            Last Sequence <Word 2, bit 20>: LS=1

            End Sequence <Word 2, bit 19>: ES=1.

     3. A compliant ARP Broadcast Sequence frame SHALL include the
        Network_Header with destination MAC address set to
        0xFF-FF-FF-FF-FF-FF and with NAA = b'0001'

     4. The destination port recognizing its IP address in
        the ARP packet SHALL respond with an ARP Reply.



Rajagopal, et al.           Standards Track                    [Page 17]

RFC 2625             IP and ARP over Fibre Channel             June 1999


5.  FARP

5.1 Scope

  FC Layer Mapping between the WW_PN and the Port_ID is independent of
  the ARP mechanism and is more closely associated with the details of
  the FC protocols. Name Server and FC Address Resolution Protocol
  (FARP) are two formal mechanisms that can be used to create and
  maintain WW_PN to Port_ID tables.

  FARP is a method using Extended Link Service (ELS) commands that
  resolves <WW_PN, Port_ID> mappings. The WW_PN to Port_ID address
  resolution using FARP is especially useful in instances where the
  Login table entries at a node expire and a Name Server is not
  available.  It is outside the scope of this document to describe Name
  Server. (See [14].)

  Additional address matching mechanisms that resolve <WW_NN, Port_ID>
  and <IP addr., Port_ID> mapping have been added to FARP. These
  additional mechanisms are optional and described in Appendix A.
  Direct IP address to Port_ID mapping is useful in applications where
  there is no visibility of the MAC address.

  Other less formal FC Layer Mapping mechanisms are described in
  Appendix C.

  Since Port_IDs are volatile, all mapped Port_IDs  at all times MUST
  be valid before use. There are many events that can invalidate this
  mapping. Appendix D discusses conditions when such a validation is
  required.

5.2 FARP Overview

  The FARP protocol uses two ELS commands - FARP-REQ and FARP-REPLY.

  Note: In the following discussion 'Requester' means the node
     issuing the FARP-REQ ELS message; 'Responder' means the
     node replying to the request by sending the FARP-REPLY
     command.

  The FARP-REQ ELS Broadcast Request command is used to retrieve a
  specific node's current Port_ID given its unique WW_PN. This Port_ID
  is sent in a FARP-REPLY unicast command.

  The FARP-REQ may indicate that the Responder:






Rajagopal, et al.           Standards Track                    [Page 18]

RFC 2625             IP and ARP over Fibre Channel             June 1999


         - Perform only a Login with it (Requester) or,
         - Send only a FARP-REPLY or,
         - Perform a Login and send a FARP-REPLY.

  No sequence initiative is transferred with the FARP-REQ and therefore
  no Reply (ACCEPT or REJECT) follows this command.

  Since a Sequence Initiative is transferred with the FARP-REPLY,
  either a ACCEPT or REJECT follows this command as a response.

  Reception of a FARP-REQ requires a higher level entity at the
  responding node to send a FARP-REPLY or perform a Port Login.

  You do not have to be logged in to issue a FARP Request. Also, you do
  not have to be logged in to the FARP Requester to issue a FARP-REPLY.

  The FARP Protocol Steps:

       FARP-REQ (ELS broadcast) Request Sequence

            (No Reply Sequence)

       FARP-REPLY (ELS command) Sequence

            Accept/Reject Reply Sequence

  The FARP Protocol Format [2] and Size:

         FT_1, 76-bytes fixed size

  The FARP Protocol Addressing:

     - In a FARP-REQ, the S_ID in the FC Header designates the
     Requester's Port ID. The D_ID in the FC Header is the broadcast
     identifier 0xFF-FF-FF.

     - In a FARP-REPLY, the S_ID in the FC Header designates the
     Responder's Port_ID. The D_ID in the FC Header is the Requester's
     Port_ID.












Rajagopal, et al.           Standards Track                    [Page 19]

RFC 2625             IP and ARP over Fibre Channel             June 1999


5.3 FARP Command Format

  FARP-REQ and FARP-REPLY commands have identical formats (76-bytes
  fixed size) and fields but use different command codes. See tables
  below.

+---------------------------------------------------------------------+
|                         FARP-REQ Command                            |
+-------------------------------------+---------+---------------------+
|               Field                 | Size    |   Remarks           |
|                                     | (Bytes) |                     |
+-------------------------------------+---------+---------------------+
| 0x54-00-00-00                       |   4     | Request Command Code|
+-------------------------------------+---------+---------------------+
| Match Address Code Points           |   1     | Indicates Address   |
|                                     |         | Matching  Mechanism |
+-------------------------------------+---------+---------------------+
| Port_ID of Requester                |   3     | Supplied by         |
|                                     |         | Requester =         |
|                                     |         | S_ID in FC Header   |
+-------------------------------------+---------+---------------------+
| Responder Flags                     |   1     | Response Action to  |
|                                     |         | be taken            |
+-------------------------------------+---------+---------------------+
| Port_ID of Responder                |   3     | Set to 0x00-00-00   |
+-------------------------------------+---------+---------------------+
| WW_PN of Requester                  |   8     |Supplied by Requester|
+-------------------------------------+---------+---------------------+
+ WW_NN of Requester                  |   8     |OPTIONAL;            |
|                                     |         |See Appendix A       |
+-------------------------------------+---------+---------------------+
| WW_PN of Responder                  |   8     |Supplied by Requester|
+-------------------------------------+---------+---------------------+
| WW_NN of Responder                  |   8     |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+
| IP Address of Requester             |   16    |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+
| IP Address of Responder             |   16    |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+












Rajagopal, et al.           Standards Track                    [Page 20]

RFC 2625             IP and ARP over Fibre Channel             June 1999


+---------------------------------------------------------------------+
|                         FARP-REPLY Command                          |
+-------------------------------------+---------+---------------------+
|               Field                 | Size    |   Remarks           |
|                                     | (Bytes) |                     |
+-------------------------------------+---------+---------------------+
| 0x55-00-00-00                       |   4     | Reply Command Code  |
+-------------------------------------+---------+---------------------+
| Match Address Code Points           |   1     | Not Used and        |
|                                     |         | Unchanged from the  |
|                                     |         | FARP-REQ            |
+-------------------------------------+---------+---------------------+
| Port_ID of Requester                |   3     | Extracted from      |
|                                     |         | FARP-REQ            |
+-------------------------------------+---------+---------------------+
| Responder Flags                     |   1     | Not Used  and       |
|                                     |         | Unchanged from the  |
|                                     |         | FARP-REQ            |
+-------------------------------------+---------+---------------------+
| Port_ID of Responder                |   3     | Supplied by         |
|                                     |         | Responder =         |
|                                     |         | S_ID in FC Header   |
+-------------------------------------+---------+---------------------+
|WW_PN of Requester                   |   8     |Supplied by Requester|
+-------------------------------------+---------+---------------------+
|WW_NN of Requester                   |   8     |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+
|WW_PN of Responder                   |   8     |Supplied by Requester|
+-------------------------------------+---------+---------------------+
|WW_NN of Responder                   |   8     |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+
|IP Add. of Requester                 |   16    |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+
|IP Address of Responder              |   16    |OPTIONAL; see App. A |
+-------------------------------------+---------+---------------------+

  Following is a description of the address fields in the FARP
  Commands.

  Port_ID of Requester:

  It is the 24-bit Port_ID used in the S_ID field of the FC Header of a
  FARP-REQ.  It is supplied by the Requester in a FARP-REQ and retained
  in a FARP-REPLY.







Rajagopal, et al.           Standards Track                    [Page 21]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Port_ID of Responder:

  It is the 24-bit Port_ID used in the S_ID field of the FC Header of a
  FARP-REPLY.  It SHALL be set to 0x00-00-00 in a FARP-REQ. It is
  supplied by the Responder in a FARP-REPLY.

  WW_PN:

  This address field is used with the b'001', b'011', b'101, b'111',
  Match Address Code Points. See Match Address Code Point Table below.
  The Requester supplies the unique 8-byte WW_PN of the Requester and
  the Responder. It is retained in a FARP-REPLY.

  WW_NN:

  The WW_NN address field is used with Match Address Code Points
  b'010', b'011', b'110', and b'111', which are all optional. Its usage
  is fully described in Appendix A. When the WW_NN field is not used it
  SHALL be either set to '0' or a valid non-zero address.

  IPv4:

  The IPv4 address field is used with the Match Address Code Points
  b'100', b'101', b'110', and b'111', which are all optional. Its usage
  is fully described in Appendix A. When the IP Address field is not
  used it SHALL be either set to '0' or a valid IP address. A valid IP
  address consists of the 32-bit IPv4 Address with the upper 96 bits
  set to '0'.

5.4 Match Address Code Points

  For each receipt of the FARP-REQ Broadcast ELS, the recipients match
  one or more addresses based on the encoded bits of the "FARP Match
  Address Code Points" field shown in the table below. FARP operation
  with the Match Address Code Point equal to b'001' is described in
  this section. Other code points are OPTIONAL and are discussed in
  Appendix A. The upper 5 bits of the Match Address Code Point byte are
  unused and their use is not currently defined.













Rajagopal, et al.           Standards Track                    [Page 22]

RFC 2625             IP and ARP over Fibre Channel             June 1999


+------------------------------------------------------------------+
|                     Match Address Code Points                    |
+------------------------------------------------------------------+
|   LSBits  |     Bit name       |           Action                |
+-----------+--------------------+---------------------------------+
|    000    | Reserved           |                                 |
+-----------+--------------------+---------------------------------+
|    001    | MATCH_WW_PN        | If 'WW_PN of Responder' =       |
|           |                    | Node's WW_PN then respond       |
+-----------+--------------------+---------------------------------+
|    010    | MATCH_WW_NN        | OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+
|    011    | MATCH_WW_PN_NN     | OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+
|    100    | MATCH_IPv4         | OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+
|    101    | MATCH_WW_PN_IPv4   | OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+
|    110    | MATCH_WW_NN_IPv4   | OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+
|    111    | MATCH_WW_PN_NN_IPv4| OPTIONAL; see Appendix A        |
+-----------+--------------------+---------------------------------+

  When a node receives a FARP-REQ with Code Point b'001', it checks its
  WW_PN against the one set in 'WW_PN of Responder' field of the FARP-
  REQ command.  If there is a match, then the node issues a response
  according to the action indicated by the FARP Responder Flag.  See
  table below.

  WW_NN and IPv4 address fields are not used with the b'001' Code Point
  operation.  They SHALL be set to '0' or a valid address either by the
  Requester or the Requester and the Responder.

  Note that there can be utmost one FARP-REPLY per FARP-REQ.

5.5 Responder Flags

  The Responder Flags define what Responder action to take if the
  result of the Match Address Code Points is successful. 'Responder
  Flags' is an 8-bit field (bits 0-7) and is defined in the table
  below. This field is used only in a FARP-REQ.  This field is retained
  unchanged in a FARP-REPLY. If no bits are set, the Responder will
  take no action.








Rajagopal, et al.           Standards Track                    [Page 23]

RFC 2625             IP and ARP over Fibre Channel             June 1999


+----------+-------------------------------------------------------+
|          |                 FARP Responder Flag                   |
+----------+----------------+--------------------------------------+
| Bit      | Bit Name       |            Action                    |
| Position |                |                                      |
+----------+----------------+--------------------------------------+
|    0     | INIT_P_LOGI    | Initiate a P_LOGI to the Requester   |
+----------+----------------+--------------------------------------+
|    1     | INIT_REPLY     | Send FARP_REPLY to Requester         |
+----------+----------------+--------------------------------------+
| 2 to 7   | Reserved       |                                      |
+----------+----------------+--------------------------------------+

  If INIT_P_LOGI bit is set then, a Login is performed with the port
  identified by "Port_ID of Requester" field.

  If INIT_REPLY is set then, a FARP-REPLY is sent to the Port
  Identified by "Port_ID of Requester" field.

  If both bits are set at the same time, then both Actions are
  performed.

  All other bit patterns are undefined at this time and are reserved
  for possible future use.

5.6 FARP Support Requirements

  Responder action - FARP-REPLY and/or Port Login - for a successful
  MATCH_WW_PN is always REQUIRED. If there is no address match then a
  silent behavior is specified.

  Support for all other Match Address Code Points is OPTIONAL and a
  silent behavior from the Responder is valid when it is not supported.
  Recipients of the FARP-REQ ELS SHALL NOT issue a Service Reject
  (LS_RJT) if FARP OPTIONAL mechanisms are not supported.

  In all cases, if there are no matches, then a silent behavior is
  specified.

  If an implementation issues a FARP-REQ with a Match Address Code
  Point that is OPTIONAL, and fails to receive a response, and the
  implementation has not obtained the Port_ID of the Responder's port
  by other means (e.g., prior FARP-REQ with other Code Points), then
  the implementation SHALL reattempt the FARP-REQ with the MATCH_WW_PN
  Code Point.






Rajagopal, et al.           Standards Track                    [Page 24]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Getting multiple FARP Replies corresponding to a single FARP-REQ
  should normally never occur.  It is beyond the scope of this document
  to specify conditions under which this error may occur or what the
  corrective action ought to be.

6. Exchange Management

6.1 Exchange Origination

  FC Exchanges shall be established to transfer data between ports.
  Frames on IP exchanges shall not transfer Sequence Initiative. See
  Appendix E for a discussion on FC Exchanges.

6.2 Exchange Termination

  With the exception of the recommendations in Appendix F, Section F.1,
  "Reliability in Class 3", the mechanism for aging or expiring
  exchanges based on activity, timeout, or other method is outside the
  scope of this document.

  Exchanges may be terminated by either port. The Exchange Originator
  may terminate Exchanges by setting the LS bit, following normal FC
  standard FC-PH [2] rules. This specification prohibits the use of the
  NOP ELS with LS set for Exchange termination.

  Exchanges may be torn down by the Exchange Originator or Exchange
  Responder by using the ABTS_LS protocol. The use of ABTS_LS for
  terminating aged Exchanges or error recovery is outside the scope of
  this document.

  The termination of IP Exchanges by Logout is discouraged, since this
  may terminate active Exchanges on other FC-4s.

7. Summary of Supported Features

  Note: 'Settable' means support is as specified in the relevant
  standard; all other key words are as defined earlier in this
  document.

7.1  FC-4 Header

+--------------------------------------------------------------------+
|                   Feature                     |   Support  | Notes |
+--------------------------------------------------------------------+
| Type Code ( = 5) ISO8802-2 LLC/SNAP           | REQUIRED   |   2   |
| Network_Headers                               | REQUIRED   |   3   |
| Other Optional Headers                        | MUST NOT   |       |
+--------------------------------------------------------------------+



Rajagopal, et al.           Standards Track                    [Page 25]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Notes:

     1. This table applies only to FC-4 related data, such as IP and
        ARP packets. This table does not apply to link services and
        other non-FC-4 sequences (PLOGI, for example) that must occur
        for normal operation.

     2. The TYPE field in the FC Header (Word 2 bits 31-24) MUST
        indicate ISO 8802-2 LLC/SNAP Encapsulation (Type 5). This
        revision of the document focuses solely on the issues related
        to running IP and ARP over FC. All other issues are outside
        the scope of this document, including full support for IEEE
        802.2 LLC.

     3. DF_CTL field (Word 3, bits 23-16 of FC-Header) MUST indicate
        the presence of a Network_Header (0010 0000) on the First
        logical Frame of FC-4 Sequences.  It should not indicate the
        presence of a Network_Header on any subsequent frames of the
        Sequence.

7.2 R_CTL

  R_CTL in FC-Header: Word 0, bits 31-24
+--------------------------------------------------------------------+
|                      Feature                  |   Support  | Notes |
+--------------------------------------------------------------------+
| Information Category (R_CTL Routing):         |            |       |
|                                               |            |       |
|      FC-4 Device Data                         | REQUIRED   |   1   |
|      Extended Link Data                       | REQUIRED   |       |
|      FC-4 Link Data                           | MUST NOT   |       |
|      Video Data                               | MUST NOT   |       |
|      Basic Link Data                          | REQUIRED   |       |
|      Link Control                             | REQUIRED   |       |
|                                               |            |       |
| R_CTL information :                           |            |       |
|                                               |            |       |
|      Uncategorized                            | MUST NOT   |       |
|      Solicited Data                           | MUST NOT   |       |
|      Unsolicited Control                      | REQUIRED   |       |
|      Solicited Control                        | REQUIRED   |       |
|      Unsolicited Data                         | REQUIRED   |   1   |
|      Data Descriptor                          | MUST NOT   |       |
|      Unsolicited Command                      | MUST NOT   |       |
|      Command Status                           | MUST NOT   |       |
+--------------------------------------------------------------------+





Rajagopal, et al.           Standards Track                    [Page 26]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Notes:

     1. This is REQUIRED for FC-4 (IP and ARP) packets

        - Routing bits of R_CTL field MUST indicate Device Data
          frames (0000)
        - Information Category of R_CTL field MUST indicate
          Unsolicited Data (0100)

7.3 F_CTL

  F_CTL in FC-Header: Word 2, bits 23-0
+--------------------------------------------------------------------+
|                      Feature                  |   Support  | Notes |
+--------------------------------------------------------------------+
| Exchange Context                              | Settable   |       |
| Sequence Context                              | Settable   |       |
| First / Last / End Sequence (FS/LS/ES)        | Settable   |       |
| Chained Sequence                              | MUST NOT   |       |
| Sequence Initiative (SI)                      | Settable   |   1   |
| X_ID Reassigned / Invalidate                  | MUST NOT   |       |
| Unidirectional Transmit                       | Settable   |       |
| Continue Sequence Condition                   | REQUIRED   |   2   |
| Abort Seq. Condition -continue and single Seq.| REQUIRED   |   3   |
| Relative Offset - Unsolicited Data            | Settable   |   4   |
| Fill Bytes                                    | Settable   |       |
+--------------------------------------------------------------------+

  Notes

     1. For FC-4 frames, each N_Port shall have a dedicated OX_ID for
        sending data to each N_Port in the network and a dedicated
        RX_ID for receiving data from each N_Port as well. Exchanges
        are used in a unidirectional mode, thus setting Sequence
        Initiative is not valid for FC-4 frames. Sequence Initiative is
        valid when using Extended Link Services.

     2. This field is required to be 00, no information.

     3. Sequence error policy is requested by an exchange originator in
        the F_CTL Abort Sequence Condition bits in the first data frame
        of the exchange. For Classes 1 and 2, ACK frame is required to
        be "continuous sequence".

     4. Relative offset prohibited on all other types (Information
        Category) of frames.





Rajagopal, et al.           Standards Track                    [Page 27]

RFC 2625             IP and ARP over Fibre Channel             June 1999


7.4 Sequences

+---------------------------------------------------------------------+
|                      Feature                    |   Support  |Notes |
+---------------------------------------------------------------------+
| Class 2 open Sequences / Exchange               |     1      |   1  |
| Length of Seq. not limited by end-to-end credit | REQUIRED   |   2  |
| IP and ARP Packet and FC Data Field sizes       | REQUIRED   |   3  |
| Capability to receive Sequence of maximum size  | OPTIONAL   |   4  |
| Sequence Streaming                              | MUST NOT   |   5  |
| Stop Sequence Protocol                          | MUST NOT   |      |
| ACK_0 support                                   | OPTIONAL   |   6  |
| ACK_1 support                                   | REQUIRED   |   6  |
| ACK_N support                                   | MUST NOT   |      |
| Class of Service for transmitted Sequences      |  Class     |   7  |
|                                                 | 1, 2, or 3 |      |
| Continuously Increasing Sequence Count          | OPTIONAL   | 8, 9 |
+---------------------------------------------------------------------+

  Notes:

     1. Only one active sequence per exchange is optional.

     2. A Sequence Initiator shall be capable of transmitting Sequences
        containing more frames than the available credit indicated by a
        Sequence recipient at Login. FC-PH [2] end-to-end flow control
        rules will be followed when transmitting such Sequences.

     3.  a) IP MTU size is 65280-bytes and resulting FC Sequence
            Payload size is 65536-bytes.
         b) Maximally Minimum IP Packet size is 68-bytes and resulting
            FC Data Field size is 92-bytes.
         c) ARP (and InARP) Packet size is 28-bytes and resulting FC
            Data Field size is 52-bytes.

     4. Some OS environments may not handle the max Sequence Payload
        size of 65536. It is up to the administrator to configure the
        Max size for all systems.

     5. All class 3 sequences are assumed to be non-streamed.

     6. Only applies for Class 1 and 2. Use of ACK_1 is default, ACK_0
        used if indicated by Sequence recipient at Login.

     7. The administrator configured class of service is used, except
        where otherwise specified (e.g. Broadcasts are always sent in
        Class 3).




Rajagopal, et al.           Standards Track                    [Page 28]

RFC 2625             IP and ARP over Fibre Channel             June 1999


     8. Review Appendix F, "Reliability in Class 3".

     9. The first frame of the first sequence of a new Exchange must
        have SEQ_CNT = 0 [2].

7.5 Exchanges

+--------------------------------------------------------------------+
|                      Feature                  |   Support  | Notes |
+--------------------------------------------------------------------+
| X_ID interlock support                        | OPTIONAL   |   1   |
| OX_ID=FFFF                                    | MUST NOT   |       |
| RX_ID=FFFF                                    | OPTIONAL   |   2   |
| Action if no exchange resources available     | P_RJT      |   3   |
| Long Lived Exchanges                          | OPTIONAL   |   4   |
| Reallocation of Idle Exchanges                | OPTIONAL   |       |
+--------------------------------------------------------------------+

  Notes:

     1. Only applies to Classes 1 and 2, supported by the Exchange
        Originator. A Port SHALL be capable of interoperating with
        another Port that requires X_ID interlock. The Exchange
        Originator facility within the Port shall use the X_ID
        Interlock protocol in such cases.

     2. An Exchange Responder is not required to assign RX_IDs. If a
        RX_ID of FFFF is assigned, it is identifying Exchanges based on
        S_ID / D_ID / OX_ID only.

     3. In Classes 1 and 2, a Port shall reject a frame that would
        create a new Exchange with a P_RJT containing reason code
        "Unable to establish Exchange". In Class 3, the frame would be
        dropped.

     4. When an Exchange is created between 2 Ports for IP/ARP data, it
        remains active while the ports are logged in with each other.
        An Exchange SHALL NOT transfer Sequence Initiative (SI).
        Broadcasts and ELS commands may use short lived Exchanges.












Rajagopal, et al.           Standards Track                    [Page 29]

RFC 2625             IP and ARP over Fibre Channel             June 1999


7.6 ARP and InARP

+--------------------------------------------------------------------+
|                      Feature                  |   Support  | Notes |
+--------------------------------------------------------------------+
| ARP Server Support                            | MUST  NOT  |   1   |
| Response to ARP requests                      | REQUIRED   |   2   |
| Class of Service for ARP requests             | Class 3    |   3   |
| Class of Service for ARP replies              |  Class     |   4   |
|                                               | 1, 2, or 3 |       |
| Response to InARP requests                    | OPTIONAL   |       |
| Class of Service for InARP requests/replies   | Class      |       |
|                                               | 1, 2 or 3  |   5   |
+--------------------------------------------------------------------+

Notes:

     1. Well-known Address FFFFFC is not used for ARP requests. Frames
        from Well-known address FFFFFC are not considered to be ARP
        frames. Broadcast support is REQUIRED for ARP.

     2. The IP Address is mapped to a specific MAC address with ARP.

     3. An ARP request is a Broadcast Sequence, therefore Class 3
        is always used.

     4. An ARP reply is a normal Sequence, thus the administrator
        configured class of service is used.

     5. An InARP Request or Reply is a normal Sequence, thus an
        administrator configured class of service is used.




















Rajagopal, et al.           Standards Track                    [Page 30]

RFC 2625             IP and ARP over Fibre Channel             June 1999


7.7 Extended Link Services (ELS)

+--------------------------------------------------------------------+
|                      Feature                  |   Support  | Notes |
+--------------------------------------------------------------------+
| Class of service for ELS commands / responses | Class      |       |
|                                               | 1,2 or 3   |   1   |
| Explicit N-Port Login                         | REQUIRED   |       |
| Explicit F-Port Login                         | REQUIRED   |       |
| FLOGI ELS command                             | REQUIRED   |       |
| PLOGI ELS command                             | REQUIRED   |       |
| ADISC ELS command                             | REQUIRED   |       |
| PDISC ELS command                             | OPTIONAL   |   2   |
| FAN ELS command                               | REQUIRED   |   5   |
| LOGO ELS command                              | REQUIRED   |       |
| FARP-REQ/FARP-REPLY ELS commands              | REQUIRED   |   3   |
| Other ELS command support                     | OPTIONAL   |   4   |
+-----------------------------------------------+------------+-------+

  Notes:

     1. The administrator configured class of service is used.

     2. PDISC shall not be used as a Requester; ADISC shall be used
        instead. As a Responder, an implementation may need to respond
        to both ADISC and PDISC for compatibility with other
        specifications.

     3. Responder Action - FARP-REPLY and/or Port Login - for a
        successful MATCH_WW_PN is always REQUIRED.
        Support for all other match Address Codes Points is a silent
        behavior from the Responder is valid when it is not supported.
        Recipients of the FARP-REQ ELS shall not issue a Service Reject
        (LS_RJT) if FARP is not supported.

     4. If other ELS commands are received an LS_RJT may be sent. NOP
        is not required by this specification, and shall not be used as
        a mechanism to terminate exchanges.

     5. Required for FL_Ports

7.8 Login Parameters

  Unless explicitly noted here, a compliant implementation shall use
  the login parameters as described in [4].






Rajagopal, et al.           Standards Track                    [Page 31]

RFC 2625             IP and ARP over Fibre Channel             June 1999


7.8.1 Common Service Parameters - FLOGI

  - FC-PH Version, lowest version may be 0x09 to indicate
    'minimum 4.3'.
  - Can't use BB_Credit=0 for N_Port on a switched Fabric
    (F_Port).

7.8.2 Common Service Parameters - PLOGI

  - FC-PH Version, lowest version may be 0x09 to indicate
    'minimum 4.3'.
  - Can't use BB_Credit=0 for N_Port in a Point-to-Point
    configuration

  - Random Relative Offset is optional.

  - Note that the 'Receive Data Field Size' fields specified in
    the PLOGI represent both optional headers and payload.

  - The MAC Address can therefore be extracted from the 6 lower
    bytes of the WW_PN field (when the IEEE 48-bit Identifier
    format is chosen as the NAA) during PLOGI or ACC payload
    exchanged during Fibre Channel Login [2].

  - The MAC Address can also be extracted from the WW_PN field in
    the Network_Header during ADISC (and ADISC ACC), or PDISC
    (and PDISC ACC).

7.8.3 Class Service Parameters - PLOGI

  - Discard error policy only.

8. Security Considerations

8.1 IP and ARP Related

  IP and ARP do not introduce any new security concerns beyond what
  already exists within the Fibre Channel Protocols and Technology.
  Therefore IP and ARP related Security does not require special
  consideration in this document.

8.2 FC Related

  FC Standards [11] specify a Security Key Server (independent of IP
  and ARP) as an optional service. However, there are no known
  implementations of this server yet. Also, the previously defined [2]
  use of a Security Header has been discontinued [11].




Rajagopal, et al.           Standards Track                    [Page 32]

RFC 2625             IP and ARP over Fibre Channel             June 1999


9. Acknowledgement

  This specification is based on FCA IP Profile, Version 3.3.  The FCA
  IP Profile was a joint work of the Fibre Channel Association (FCA)
  vendor community.  The following organizations or individuals have
  contributed to the creation of the FCA IP Profile: Adaptec, Ancor,
  Brocade, Clariion, Crossroads, emf Associates, Emulex, Finisar,
  Gadzoox, Hewlett Packard, Interphase, Jaycor, McData, Migration
  Associates, Orca Systems, Prisa, Q-Logic, Symbios, Systran,
  Tektronix, Univ. of Minnesota, Univ. of New Hamshire. Jon Infante
  from Emulex deserves special mention for his contributions to the
  FARP Protocol. The authors extend their thanks to all who provided
  comments and especially to Lansing Sloan from LLNL for his detailed
  comments.

10. References

  [1] FCA IP Profile, Revision 3.3, May 15, 1997

  [2] Fibre Channel Physical and Signaling Interface (FC-PH) , ANSI
      X3.230-1994

  [3] Fibre Channel Link Encapsulation (FC-LE), Revision 1.1, June 26,
      1996

  [4] Fibre Channel Fabric Loop Attachment (FC-FLA), Rev. 2.7, August
      12, 1997

  [5] Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA),
      Rev. 2.1, September 22, 1997

  [6] Fibre Channel Physical and Signaling Interface-2 (FC-PH-2),
      Rev. 7.4, ANSI X3.297-1996

  [7] Fibre Channel Arbitrated Loop (FC-AL), ANSI X3.272-1996

  [8] Postel, J. and J. Reynolds, "A standard for the Transmission of
      IP Datagrams over IEEE 802 Networks", STD 43, RFC 1042, February
      1988.

  [9] Plummer, D. "An Ethernet Address Resolution Protocol -or-
      Converting Network Addresses to 48-bit Ethernet Address for
      Transmission on Ethernet Hardware", STD 37, RFC 826, November
      1982.

  [10] FCSI IP Profile, FCSI-202, Revision 2.1, September 8, 1995





Rajagopal, et al.           Standards Track                    [Page 33]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  [11] Fibre Channel Physical and Signaling Interface -3 (FC-PH-3),
       Rev. 9.3, ANSI X3.303-199x

  [12] Fibre Channel-The Basics, "Gary R. Stephens and Jan V. Dedek",
       Ancot Corporation

  [13] Fibre Channel -Gigabit Communications and I/O for Computers
       Networks "Alan Benner", McGraw-Hill, 1996, ISBN 0-07-005669-2

  [14] Fibre Channel Generic Services -2 (FC-GS-2), Rev. 5.2
       X3.288-199x

  [15] Bradley, T. and C. Brown, "Inverse Address Resolution Protocol",
       RFC 1293, January 1992.

  [16] Bradley, T., Brown, C. and A. Malis, "Inverse Address Resolution
       Protocol", RFC 2390, August 1992.

  [17] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

  [18] The Fibre Channel Consultant: A Comprehensive Introduction,
       "Robert W. Kembel", Northwest Learning Associates, 1998

  [19] Bradner, S., "Key Words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [20] Narten, T. and C. Burton, "A Caution on The Canonical Ordering
       of Link-Layer Addresses",  RFC 2469, December 1998.























Rajagopal, et al.           Standards Track                    [Page 34]

RFC 2625             IP and ARP over Fibre Channel             June 1999


11. Authors' Addresses

  Murali Rajagopal
  Gadzoox Networks, Inc.
  711 Kimberly Avenue, Suite 100
  Placentia, CA 92870

  Phone: +1 714 577 6805
  Fax: +1 714 524 8508
  EMail: [email protected]


  Raj Bhagwat
  Gadzoox Networks, Inc.
  711 Kimberly Avenue, Suite 100
  Placentia, CA 92870

  Phone: +1 714 577 6806
  Fax: +1 714 524 8508
  EMail: [email protected]


  Wayne Rickard
  Gadzoox Networks, Inc.
  711 Kimberly Avenue, Suite 100
  Placentia, CA 92870

  Phone: +1 714 577 6803
  Fax: +1 714 524 8508
  EMail: [email protected]





















Rajagopal, et al.           Standards Track                    [Page 35]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Appendix A: Additional Matching Mechanisms in FARP

  Section 5 described the FC Layer mapping between the WW_PN and the
  Port_ID using the FARP Protocol. This appendix describes other
  optional criteria for address matching and includes:

     - WW_NN

     - WW_PN & WW_NN at the same time

     - IPv4

     - IPv4 & WW_PN at the same time

     - IPv4 & WW_NN at the same time

     - IPv4 & WW_PN & WW_NN at the same time

  Depending on the Match Address Code Points, the FARP protocol
  fundamentally resolves three main types of addresses to Port_IDs and
  is described in table below.

     - For Match Address Code Point b'001':  WW_PN Names fields are
       used to resolve the WW_PN names to Port_IDs.  WW_NN and IP
       address fields are not used with these Code Points and SHALL be
       set to either '0' or valid addresses by Requester or Requester
       and Responder.

     - For Match Address Code Point b'010':  WW_NN Names fields are
       used to resolve the WW_NN names to Port_IDs.  WW_PN and IP
       address fields are not used with these Code Points and SHALL be
       set to either '0' or valid addresses by Requester or Requester
       and Responder.

     - For Match Address Code Point b'100':  IPv4 fields are used to
       resolve the IPv4 addresses to Port_IDs.  WW_PN and WW_NN fields
       are not used with these Code Points and SHALL be set to either '
       0' or valid addresses by Requester or Requester and Responder.

     - For all other Match Address Code Points b'011', b'101',b'110',
       b'111', depending on set bits one or more addresses are jointly
       resolved to a Port_ID. See table below. If fields are not used,
       then they are set either to '0' or valid addresses.

  The Responder Flags remain the same as before. Note that there can be
  utmost one FARP-REPLY per FARP-REQ.





Rajagopal, et al.           Standards Track                    [Page 36]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Tables showing FARP-REQ and FARP-REPLY and address fields setting are
  given below:

+--------------------------------------------------------------------+
|                       Match Address Code Points                    |
+--------------------------------------------------------------------+
| LSBits|      Bit name      |             Action                    |
+-------+--------------------+---------------------------------------+
| 000   |   Reserved         |                                       |
+-------+--------------------+---------------------------------------+
| 001   | MATCH_WW_PN        | If 'WW_PN of Responder' =             |
|       |                    | Node's WW_PN then respond             |
+-------+--------------------+---------------------------------------+
| 010   | MATCH_WW_NN        | If 'WW_NN of Responder' =             |
|       |                    | Node's WW_NN then respond             |
+-------+--------------------+---------------------------------------+
| 011   | MATCH_WW_PN_NN     | If both 'WW_PN of Responder' &        |
|       |                    | 'WW_NN of Responder' =                |
|       |                    | Node's WW_PN & WW_NN then respond     |
+-------+--------------------+---------------------------------------+
| 100   | MATCH_IPv4         | If 'IPv4 Address of Responder' =      |
|       |                    | Node's IPv4 Address then respond      |
+-------+--------------------+---------------------------------------+
| 101   | MATCH_WW_PN_IPv4   | If 'WW_PN & IPv4 of Responder' =      |
|       |                    | Node's WW_PN and IPv4 then respond    |
+-------+--------------------+---------------------------------------+
| 110   | MATCH_WW_NN_IPv4   | If both 'WW_NN of Responder' &        |
|       |                    | 'IPv4 Address of Responder' =         |
|       |                    | Node's WW_NN & IPv4 then respond      |
+-------+--------------------+---------------------------------------+
| 111   |MATCH_WW_PN_NN_IPv4 | If 'WW_PN of Responder' &             |
|       |                    | 'WW_NN of Responder' &                |
|       |                    | 'IPv4 Address of Responder' =         |
|       |                    | Nodes' WW_PN & WW_NN & IPv4           |
|       |                    | then respond                          |
+-------+--------------------+---------------------------------------+















Rajagopal, et al.           Standards Track                    [Page 37]

RFC 2625             IP and ARP over Fibre Channel             June 1999


+---------------------------------------------------------------------+
|                         FARP-REQ Command                            |
+-------------------------------+---------+---------------------------+
|               Field           | Size    |         Remarks           |
|                               | (Bytes) |                           |
+-------------------------------+---------+---------------------------+
| 0x54-00-00-00                 |   4     | Request Command Code      |
+-------------------------------+---------+---------------------------+
| Match Address Code Points     |   1     | Indicates Address         |
|                               |         | Matching Mechanism        |
+-------------------------------+---------+---------------------------+
| Port_ID of Requester          |   3     |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
| Responder Flags               |   1     |Response Action to be taken|
+-------------------------------+---------+---------------------------+
| Port_ID of Responder          |   3     | Set to 0x00-00-00         |
+-------------------------------+---------+---------------------------+
|WW_PN of Requester             |   8     | Supplied by Requester     |
+-------------------------------+---------+---------------------------+
|WW_NN of Requester             |   8     |OPTIONAL;                  |
|                               |         |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
|WW_PN of Responder             |   8     |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
|WW_NN of Responder             |   8     |OPTIONAL ;Supplied by      |
|                               |         |Requester or Responder     |
+-------------------------------+---------+---------------------------+
|IP Add. of Requester           |   16    |OPTIONAL; Supplied by      |
|                               |         |Requester                  |
|                               |         |IPv4 Add.=low 32 bits      |
+-------------------------------+---------+---------------------------+
|IP Address of Responder        |   16    |OPTIONAL; Supplied by      |
|                               |         |Requester or Responder     |
|                               |         |IPv4 Add.=low 32 bits      |
+-------------------------------+---------+---------------------------+
















Rajagopal, et al.           Standards Track                    [Page 38]

RFC 2625             IP and ARP over Fibre Channel             June 1999


+---------------------------------------------------------------------+
|                         FARP-REPLY Command                          |
+-------------------------------+---------+---------------------------+
|               Field           | Size    |        Remarks            |
|                               | (Bytes) |                           |
+-------------------------------+---------+---------------------------+
| 0x55-00-00-00                 |   4     |Reply Command Code         |
+-------------------------------+---------+---------------------------+
| Match Address Code Points     |   1     | Not Used and unchanged    |
|                               |         |from the FARP-REQ          |
+-------------------------------+---------+---------------------------+
| Port_ID of Requester          |   3     |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
| Responder Flags               |   1     | Not Used and unchanged    |
|                               |         |from the FARP-REQ          |
+-------------------------------+---------+---------------------------+
| Port_ID of Responder          |   3     |Supplied by Responder      |
+-------------------------------+---------+---------------------------+
|WW_PN of Requester             |   8     |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
|WW_NN of Requester             |   8     |OPTIONAL; Supplied by      |
|                               |         |Requester                  |
+-------------------------------+---------+---------------------------+
|WW_PN of Responder             |   8     |Supplied by Requester      |
+-------------------------------+---------+---------------------------+
|WW_NN of Responder             |   8     |OPTIONAL; Supplied by      |
|                               |         |Requester or Responder     |
+-------------------------------+---------+---------------------------+
|IP Add. of Requester           |   16    |OPTIONAL; Supplied by      |
|                               |         |Requester                  |
|                               |         |IPv4 Add.=low 32 bits      |
+-------------------------------+---------+---------------------------+
|IP Address of Responder        |   16    |OPTIONAL; Supplied by      |
|                               |         |Requester or Responder     |
|                               |         |IPv4 Add.=low 32 bits      |
+-------------------------------+---------+---------------------------+















Rajagopal, et al.           Standards Track                    [Page 39]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Appendix B: InARP

B.1 General Discussion

  Inverse ARP (InARP) is a mechanism described in RFC 1293/2390 [15,
  16], which is useful when a node desires to know the protocol address
  of a target node whose hardware address is known. Situations where
  this could occur are described in [15, 16]. The motivation for using
  InARP in FC is to allow a node to learn the IP address of another
  node with which it has performed a Port Login (PLOGI).  PLOGI is a
  normal FC process that happens between nodes, independent of this
  standard. PLOGI makes it possible for a node to discover the WW_PN
  and the Port_ID of the other node but not its IP address. A node in
  this way may potentially obtain the IP address of all nodes with
  which it can PLOGI.

  Note that the use of the InARP mechanism can result in resolving all
  WW_PN to IP addresses and ARP may no longer be required. This can be
  beneficially applied in cases where a particular FC topology makes it
  inefficient to send out an ARP broadcast.

B.2 InARP Protocol Operation

  InARP uses the same ARP Packet format but with different 'Op Codes',
  one for InARP Request and another for InARP Reply.

  The InARP protocol operation is very simple. The requesting node
  fills the hardware address (WW_PN) of the target device and sets the
  protocol address to 0x00-00-00-00. Because, the request is sent to a
  node whose WW_PN and Port_ID are known, there is no need for a
  broadcast. The target node fills in its Protocol address (IP address
  in this case) and sends an InARP Reply back to the sender.  A node
  may collect, all such WW_PN and IP addresses pairs in a similar way.

B.3 InARP Packet Format

  Since the InARP protocol uses the same packet format as the ARP
  protocol, much of the discussion on ARP formats given in Section 4
  applies here.

  The InARP is 28-bytes long in this application and uses two packet
  types:  Request and Reply. Like ARP, the InARP Packet fields are
  common to both InARP Requests and InARP Replies.

  InARP Request and Reply Packets are encapsulated in a single frame FC
  Sequence much like ARP. Compliant InARP Request and Reply FC
  Sequences SHALL include Network_Headers.




Rajagopal, et al.           Standards Track                    [Page 40]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  The 'HW Type' field SHALL be set to 0x00-01.

  The 'Protocol' field SHALL be set to 0x08-00 indicating IP protocol.

  The 'HW Addr Length' field SHALL be set to 0x06 indicating 6-bytes of
  HW address.

  The 'Protocol Addr Length' field SHALL be set to 0x04 indicating
  4-bytes of IP address.

  The 'Operation' Code field SHALL be set as follows:

          0x00-08 for InARP Request
          0x00-09 for InARP Reply

  The 'HW Addr of Sender' field SHALL be the 6-byte IEEE MAC address of
  the Requester (InARP Request) or Responder (InARP Reply).

  The 'Protocol Addr of Sender' field SHALL be the 4-byte IP address of
  the Requester (InARP Request) or Responder (InARP Reply).

  The 'HW Addr of Target' field SHALL be set to the 6-byte MAC address
  of the Responder in an InARP Request and to the 6-byte MAC address of
  the Requester in an InARP Reply.

  The 'Protocol Addr of Target' field SHALL be set to 0x00-00-00-00 in
  an InARP Request and to the 4-byte IP address of the Requester in an
  InARP Reply.

B.4 InARP Support Requirements

  Support for InARP is OPTIONAL. If a node does not support InARP and
  it receives an InARP Request message then a silent behavior is
  specified.

















Rajagopal, et al.           Standards Track                    [Page 41]

RFC 2625             IP and ARP over Fibre Channel             June 1999


APPENDIX C: Some Informal Mechanisms for FC Layer Mappings

  Each method SHALL have some check to ensure PLOGI has completed
  successfully before data is sent. A related concern in large networks
  is limiting concurrent logins to only those ports with active IP
  traffic.

C.1 Login on Cached Mapping Information

  This method insulates the level performing Login from the level
  interpreting ARP. It is more accommodating of non-ARP mechanisms for
  building the FC-layer mapping table.

     1. Broadcast messages that carry a Network_Header contain the S_ID
        on the FC-header and WW_PN in the Network-Header.  Caching this
        information provides a correlation of Port_ID to WW_PN. If the
        received Broadcast message is compliant with this
        specification, the WW_PN will contain the MAC Address.

     2. The WW_PN is "available" if Login has been performed to the
        Port_ID and flagged. If Login has not been performed, the WW_PN
        is "unavailable".

     3. If an outbound packet is destined for a port that is
        "unavailable", the cached information (from broadcast) is used
        to look up the Port_ID.

     4. After sending an ELS PLOGI command (Port Login) to the Port
        (from a higher level entity at the host), waiting for an
        outbound packet before sending this Port Login conserves
        resources for only those ports which wish to establish
        communication.

     5. After Port Login completes (ACC received), the outbound packet
        can be forwarded. At this point in time, both ends have the
        necessary information to complete their <IP address, MAC
        Address, Port_ID> association.

C.2 Login on ARP Parsing

  This method performs Login sooner by parsing ARP before passing it up
  to higher levels for IP/MAC Address correlation. It requires a low-
  level awareness of the IP address, and is therefore protocol-
  specific.

     1. When an ARP Broadcast Message is received, the S_ID is
        extracted from the FC-header and the corresponding
        Network_Source_Address from the Network_Header.



Rajagopal, et al.           Standards Track                    [Page 42]

RFC 2625             IP and ARP over Fibre Channel             June 1999



     2. The ARP payload is parsed to determine if
        (a) this host is the target of the ARP request (Target IP
            Address match), and
        (b) if this host is currently logged in with the port
            (Port_ID = S_ID) originating the ARP broadcast.

     3. The ARP is passed to a higher level for ARP Response
        generation.

     4. If a Port Login is required, an ELS PLOGI command (Port Login)
        is sent immediately to the Port originating the ARP Broadcast.

     5. After Port Login completes, an ARP response can be forwarded.
        Note that there are two possible scenarios:

        - The ACC to PLOGI returns before the ARP reply is processed
          and the ARP Reply is immediately forwarded.
        - The ARP reply is delayed, waiting for ACC (successful
          Login).

     6. At this point in time, both ends have the necessary
        information to complete their
        <IP address, MAC Address, Port_ID> association.

C.3 Login to Everyone

  In Fibre Channel topologies with a limited number of ports, it may be
  efficient to unconditionally Login to each port. This method is
  discouraged in fabric and public loop environments.

  After Port Login completes, the MAC Address to Port_ID Address tables
  can be constructed.

C.4 Static Table

  In some loop environments with a limited number of ports, a static
  mapping from a MAC Address to Port_ID (D_ID or AL_PA) may be
  maintained.  The FC layer will always know the destination Port_ID
  based on the table. The table is typically downloaded into the driver
  at configuration time. This method scales poorly, and is therefore
  not recommended.









Rajagopal, et al.           Standards Track                    [Page 43]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Appendix D:  FC Layer Address Validation

D.1 General Discussion

  At all times, the <WW_PN, Port_ID> mapping MUST be valid before use.
  There are many events that can invalidate this mapping.  The
  following discussion addresses conditions when such a validation is
  required.

  After a FC link interruption occurs, the Port_ID of a port may
  change.  After the interruption, the Port_IDs of all other ports that
  have previously performed PLOGI (N_Port Login) with this port may
  have changed, and its own Port_ID may have changed.

  Because of this, address validation is required after a LIP in a loop
  topology [7] or after NOS/OLS in a point-to-point topology [6].

  Port_IDs will not change as a result of Link Reset (LR),thus address
  validation is not required.

  In addition to actively validating devices after a link interruption,
  if a port receives any FC-4 data frames (other than broadcast
  frames), from a port that is not currently logged in, then it shall
  send an explicit Extended Link Service (ELS) Request logout (LOGO)
  command to that port.

  ELS commands (Requests and Replies) are used by an N_Port to solicit
  a destination port (F_Port or N_Port) to perform some link-level
  function or service.) The LOGO Request is used to request
  invalidation of the service parameters and Port_ID of the recipient
  N_Port.

  The level of initialization and subsequent validation and recovery
  reported to the upper (FC-4) layers is implementation-specific.

  In general, an explicit Logout (LOGO) SHALL be sent whenever the FC-
  Layer mapping between the Port_ID and WW_PN of a remote port is
  removed.

  The effect of power-up or re-boot on the mapping tables is outside
  the scope of this specification.










Rajagopal, et al.           Standards Track                    [Page 44]

RFC 2625             IP and ARP over Fibre Channel             June 1999


D.2 FC Layer Address Validation in a Point-to-Point Topology

  No validation is required after LR. In a point-to-point topology,
  NOS/OLS causes implicit Logout of each port and after a NOS/OLS, each
  port must perform a PLOGI [2].

D.3 FC Layer Address Validation in a Private Loop Topology

  After a LIP, a port SHALL not transmit any link data to another port
  until the address of the other port has been validated. The
  validation consists of completing either ADISC or PDISC. (See
  Appendix G.)

  ADISC (Address Discovery) is an ELS command for discovering the hard
  addresses - the 24-bit identifier- of NL_Ports [5], [6].

  PDISC (Discover Port) is an ELS command for exchanging service
  parameters without affecting Login state [5], [6].

  As a requester, this specification prohibits PDISC and requires
  ADISC.

  As a responder, an implementation may need to respond to both ADISC
  and PDISC for compatibility with other FC specifications.

  If the three addresses, Port_ID, WW_PN, WW_NN, exactly match the
  values prior to the LIP, then any active exchanges may continue.

  If any of the three addresses have changed, then the node must be
  explicitly Logged out [4], [5].

  If a port's N_Port ID changes after a LIP, then all active Port-ID to
  WW_PN mappings at this port must be explicitly Logged out.

D.4 FC Layer Address Validation in a Public Loop Topology

  A FAN (Fabric Address Notification) ELS command is sent by the fabric
  to all known previously logged in  ports following an initialization
  event. Therefore, after a LIP, hosts may wait for this notification
  to arrive or they may perform a FLOGI.

  If the WW_PN and WW_NN of the fabric FL_Port contained in the FAN ELS
  or FLOGI response exactly match the values before the LIP, and if the
  AL_PA obtained by the port is the same as the one before the LIP,
  then the port may resume all exchanges. If not, then FLOGI (Fabric
  Login) must be performed with the fabric and all nodes must be
  explicitly Logged out.




Rajagopal, et al.           Standards Track                    [Page 45]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  A public loop device will have to perform the private loop
  authentication to any nodes on the local loop which have an Area +
  Domain Address == 0x00-00-XX

D.5 FC Layer Address Validation in a Fabric Topology

  No validation is required after LR (link reset).

  After NOS/OLS, a port must perform FLOGI. If, after FLOGI, the S_ID
  of the port, the WW_PN of the fabric, and the WW_NN of the fabric are
  the same as before the NOS/OLS, then the port may resume all
  exchanges. If not, all nodes must be explicitly, Logged out [2].







































Rajagopal, et al.           Standards Track                    [Page 46]

RFC 2625             IP and ARP over Fibre Channel             June 1999


APPENDIX E: Fibre Channel Overview

E.1 Brief Tutorial

  The FC Standard [2] defines 5 "levels" (not layers) for its protocol
  description: FC-0, FC-1, FC-2, FC-3, and FC-4. The first three levels
  (FC-0, FC-1, FC-2) are largely concerned with the physical formatting
  and control aspects of the protocol. FC-3 has been architected to
  provide a place holder for functions that might need to be performed
  after the upper layer protocol has requested the transmission of an
  information unit, but before FC-2 is asked to deliver that piece of
  information by using a sequence of frames [18]. At this time, no FC-3
  functions have been defined.  FC-4 is meant for supporting profiles
  of Upper Layer Protocols (ULP) such as IP and Small Computer System
  Interface (SCSI), and supports a relatively small set compared to LAN
  protocols such as IEEE 802.3.

  FC devices are called "Nodes", each of which has at least one "Port"
  to connect to other ports. A Node may be a workstation, a disk drive
  or disk array, a camera, a display unit, etc.  A "Link" is two
  unidirectional paths flowing in opposite directions and connecting
  two Ports within adjacent Nodes.

  FC Nodes communicate using higher layer protocols such as SCSI and IP
  and are configured to operate using Point-to-Point, Private Loop,
  Public Loop (attachment to a Fabric), or Fabric network topologies.

  The point-to-point is the simplest of the four topologies, where only
  two nodes communicate with each other. The private loop may connect a
  number of devices (max 126) in a logical ring much like Token Ring,
  and is distinguished from a public loop by the absence of a Fabric
  Node participating in the loop. The Fabric topology is a switched
  network where any attached node can communicate with any other. For a
  detail description of FC topologies refer to [18].

  Table below summarizes the usage of port types depending on its
  location [12]. Note that E-Port is not relevant to any discussion in
  this specification but is included below for completeness.













Rajagopal, et al.           Standards Track                    [Page 47]

RFC 2625             IP and ARP over Fibre Channel             June 1999


 +-----------+-------------+-----------------------------------------+
 | Port Type |  Location   |      Topology Associated with           |
 +-----------+-------------+-----------------------------------------+
 | N_Port    |   Node      |      Point-to-Point or Fabric           |
 +-----------+-------------+-----------------------------------------+
 | NL_Port   |   Node      |In N_Port mode -Point-to-Point or Fabric |
 |           |             |In NL_Port mode - Arbitrated Loop        |
 +-----------+-------------+-----------------------------------------+
 | F_Port    |   Fabric    |                   Fabric                |
 +-----------+-------------+-----------------------------------------+
 | FL_Port   |   Fabric    | In F_Port mode - Fabric                 |
 |           |             | In FL_Port mode - Arbitrated Loop       |
 +-----------+-------------+-----------------------------------------+
 | E_Port    |   Fabric    |     Internal Fabric Expansion           |
 +-----------+-------------+-----------------------------------------+

E.2 Exchange, Information Unit, Sequence, and Frame

  The FC 'Exchange' is a mechanism used by two FC ports to identify and
  manage an operation between them [18]. An Exchange is opened whenever
  an operation is started between two ports. The Exchange is closed
  when this operation ends.

  The FC-4 Level specifies data units for each type of application
  level payload called 'Information Unit' (IU). Each protocol carried
  by FC has a defined size for the IU. Every operation must have at
  least one IU.  Lower FC levels map this to a FC Sequence.

  Typically, a Sequence consists of more than one frame. Larger user
  data is segmented and reassembled using two methods: Sequence Count
  and Relative Offset [18]. With the use of Sequence Count, data blocks
  are sent using frames with increasing sequence counts (modulo 65536)
  and it is quite straightforward to detect the first frame that
  contains the Network_Header.  When Relative Offset is used, as frames
  arrive, some computation is required to detect the first frame that
  contains the Network_Header. Sequence Count and Relative Offset field
  control information, is carried in the FC Header.

  The FC-4 Level makes a request to FC-3 Level when it wishes it to be
  delivered.  Currently, there are no FC-3 level defined functions, and
  this level simply converts the Information Unit delivery request into
  a 'Sequence' delivery request and passes it on to the FC-2 Level.
  Therefore, each FC-4 Information Unit corresponds to a FC-2 Level
  Sequence.

  The maximum data carried by a FC frame cannot exceed 2112-bytes [2].
  Whenever, the Information Unit exceeds this value, the FC-2 breaks it
  into multiple frames and sends it in a sequence.



Rajagopal, et al.           Standards Track                    [Page 48]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  There can be multiple Sequences within an Exchange. Sequences within
  an Exchange are processed sequentially. Only one Sequence is active
  at a time. Within an Exchange information may flow in one direction
  only or both. If bi-directional then one of the ports has the
  initiative to send the next Sequence for that Exchange. Sequence
  Initiative can be passed between the ports on the last frame of
  Sequence when control is transferred. This amounts to half-duplex
  behavior.

  Ports may have more than one Exchange open at a time. Ports can
  multiplex between Exchanges. Exchanges are uniquely identified by
  Exchange IDs (X_ID). An Originator OX_ID and a Responder RX_ID
  uniquely identify an Exchange.

E.3 Fibre Channel Header Fields

  The FC header as shown in the diagrams below contains routing and
  other control information to manage Frames, Sequences, and Exchanges.
  The Frame-header is sent as 6 transmission words immediately
  following an SOF delimiter and before the Data Field.

  D_ID and S_ID:

     FC uses destination address routing [12], [13]. Frame routing in a
     point-to-point topology is trivial.

     For the Arbitrated Loop topology, with the destination NL_Port on
     the same AL, the source port must pick the destination port,
     determine its AL Physical Address, and "Open" the destination
     port. The frames must pass through other NL_Ports or the FL_Port
     on the loop between the source and destination, but these ports do
     not capture the frames. They simply repeat and transmit the frame.
     Either communicating port may "Close" the circuit.

     When the destination port is not on the same AL, the source
     NL_Port must open the FL_Port attached to a Fabric. Once in the
     Fabric, the Fabric routes the frames again to the destination.

     In a Fabric topology, the Fabric looks into the Frame-header,
     extracts the destination address (D_ID), searches its own routing
     tables, and sends the frame to the destination port along the path
     chosen. The process of choosing a path may be performed at each
     fabric element or switch until the F_Port attached to the
     destination N_Port is reached.







Rajagopal, et al.           Standards Track                    [Page 49]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Fibre Channel Frame Header, Network_Header, and Payload carrying IP
Packet

+---+----------------+----------------+----------------+--------------+
|Wrd|    <31:24>     |    <23:16>     |    <15:08>     |    <07:00>   |
+---+----------------+----------------+----------------+--------------+
|0  |    R_CTL       |                     D_ID                       |
+---+----------------+----------------+----------------+--------------+
|1  |    CS_CTL      |                     S_ID                       |
+---+----------------+----------------+----------------+--------------+
|2  |    TYPE        |                     F_CTL                      |
+---+----------------+----------------+----------------+--------------+
|3  |   SEQ_ID       |  DF_CTL        |          SEQ_CNT              |
+---+----------------+----------------+----------------+--------------+
|4  |             OX_ID               |              RX_ID            |
+---+--------+-------+----------------+----------------+--------------+
|5  |        Parameter (Control or Relative Offset for Data )         |
+---+-----------------------------------------------------------------+
|6  |  NAA   |        Network_Dest_Address (Hi order bits)            |
+---+--------+-------+----------------+----------------+--------------+
|7 |                  Network_Dest_Address (Lo order bits)            |
+---+--------+-------+----------------+----------------+--------------+
|8  |  NAA   |        Network_Src_Address (Hi order bits)             |
+---+--------+-------+----------------+----------------+--------------+
|9  |                 Network_Src_Address (Lo order bits)             |
+---+----------------+----------------+----------------+--------------+
|10 |     DSAP       |     SSAP       |      CTRL      |     OUI      |
+---+----------------+----------------+----------------+--------------+
|11 |               OUI               |               PID             |
+---+----------------+----------------+----------------+--------------+
|12 |                   IP Packet Data ...                            |
+---+----------------+----------------+----------------+--------------+

  R_CTL (Routing Control) and TYPE(data structure):

     Frames for each FC-4 can be easily distinguished from the others
     at the receiving port using the R_CTL (Routing Control) and TYPE
     (data structure) fields in the Frame-header.

     The R_CTL has two sub-fields: Routing bits and Information
     category. The Routing bits sub-field has specific values that mean
     FC-4 data follows and the Information Category tells the receiver
     the "Type" of data contained in the frame. The R_CTL and TYPE code
     points are shown in the diagrams.







Rajagopal, et al.           Standards Track                    [Page 50]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Other Header fields:

     F_CTL (Frame Control) and SEQ_ID (Sequence Identification),
     SEQ_CNT (Sequence Count), OX_ID (Originator exchange Identifier),
     RX_ID (Responder exchange Identifier), and Parameter fields are
     used to manage the contents of a frame, and mark information
     exchange boundaries for the destination port.

  F_CTL(Frame Control):

     The FC_CTL field is a 3-byte field that contains information
     relating to the frame content. Most of the other Frame-header
     fields are used for frame identification. Among other things, bits
     in this field indicate the First Sequence, Last Sequence, or End
     Sequence. Sequence Initiative bit is used to pass control of the
     next Sequence in the Exchange to the recipient.

  SEQ_ID (Sequence Identifier) and SEQ_CNT (Sequence Count):

     This is used to uniquely identify sequences within an Exchange.
     The <S_ID, D_ID, SEQ_ID> uniquely identifies any active Sequence.
     SEQ_CNT is used to uniquely identify frames within a Sequence to
     assure sequentiality of frame reception, and to allow unique
     correlation of link control frames with their related data frames.

  Originator Exchange Identifier (OX_ID) and Responder Exchange
  Identifier (RX_ID):

     The OX_ID value provides association of frames with specific
     Exchanges originating at a particular N_Port. The RX_ID field
     provides the same function that the OX_ID provides for the
     Exchange Originator. The OX_ID is meaningful on the Exchange
     Originator, and the RX_ID is meaningful on the Responder.

  DF_CTL (Data Field Control):

     The DF_CTL field specifies the presence or absence of optional
     headers between the Frame-header and Frame Payload

  PARAMETER:

     The Parameter field has two meanings, depending on Frame type.
     For Link Control Frames, the Parameter field indicates the
     specific type of Link Control frame. For Data frames, this field
     contains the Relative Offset value. This specifies an offset from
     an Upper Layer Protocol buffer from a base address.





Rajagopal, et al.           Standards Track                    [Page 51]

RFC 2625             IP and ARP over Fibre Channel             June 1999


E.4 Code Points for FC Frame

E.4.1 Code Points with IP and ARP Packets

  The Code Points for FC Frames with IP and ARP Packets are very
  similar with the exception of PID value in Word 11 which is set to
  0x08-00 for IP and 0x08-06 for ARP. Also, the Network_Header appears
  only in the first logical frame of a FC Sequence carrying IP. In the
  case, where FC frames carry ARP packets it is always present because
  these are single frame Sequences.

              Code Points for FC Frame with IP packet Data
+---+----------------+----------------+----------------+------------+
|Wrd|    <31:24>     |    <23:16>     |    <15:08>     |    <07:00> |
+---+----------------+----------------+----------------+------------+
| 0 |    0x04        |                     D_ID                     |
+---+----------------+----------------+----------------+------------+
| 1 |    0x00        |                     S_ID                     |
+---+----------------+----------------+----------------+------------+
| 2 |    0x05        |                     F_CTL                    |
+---+----------------+----------------+----------------+------------+
| 3 |   SEQ_ID       |     0x20       |          SEQ_CNT            |
+---+----------------+----------------+----------------+------------+
| 4 |             OX_ID               |              RX_ID          |
+---+----------------+----------------+----------------+------------+
| 5 |           0xXX-XX-XX-XX Parameter Relative Offset             |
+---+------+--------------------------------------------------------+
| 6 | 0001 |        0x000             | Dest. MAC (Hi order bits)   |
+---+------+---------+----------------+----------------+------------+
| 7 |                      Dest. MAC (Lo order bits)                |
+---+------+----------+----------------+----------------------------+
| 8 | 0001 |        0x000             | Src. MAC  (Hi order bits)   |
+---+------+---------+----------------+----------------+------------+
| 9 |                 Src. MAC (Lo order bits)                      |
+---+----------------+----------------+----------------+------------+
|10 |     0xAA       |     0xAA       |      0x03      |     0x00   |
+---+----------------+----------------+----------------+------------+
|11 |           0x00-00               |             0x08-00         |
+---+----------------+----------------+----------------+------------+
|12 |                   IP Packet Data                              |
+---+----------------+----------------+----------------+------------+
|13 |                        ...                                    |
+---+----------------+----------------+----------------+------------+








Rajagopal, et al.           Standards Track                    [Page 52]

RFC 2625             IP and ARP over Fibre Channel             June 1999


             Code Points for FC Frame with ARP packet Data
+---+----------------+----------------+----------------+------------+
|Wrd|    <31:24>     |    <23:16>     |    <15:08>     |    <07:00> |
+---+----------------+----------------+----------------+------------+
| 0 |    0x04        |                     D_ID                     |
+---+----------------+----------------+----------------+------------+
| 1 |    0x00        |                     S_ID                     |
+---+----------------+----------------+----------------+------------+
| 2 |    0x05        |                     F_CTL                    |
+---+----------------+----------------+----------------+------------+
| 3 |   SEQ_ID       |     0x20       |          SEQ_CNT            |
+---+----------------+----------------+----------------+------------+
| 4 |             OX_ID               |              RX_ID          |
+---+----------------+----------------+----------------+------------+
| 5 |           0xXX-XX-XX-XX Parameter Relative Offset             |
+---+------+--------------------------------------------------------+
| 6 | 0001 |        0x000             | Dest. MAC (Hi order bits)   |
+---+------+---------+----------------+----------------+------------+
| 7 |                      Dest. MAC (Lo order bits)                |
+---+------+----------+----------------+----------------------------+
| 8 | 0001 |        0x000             | Src. MAC  (Hi order bits)   |
+---+------+---------+----------------+----------------+------------+
| 9 |                 Src. MAC (Lo order bits)                      |
+---+----------------+----------------+----------------+------------+
|10 |     0xAA       |     0xAA       |      0x03      |     0x00   |
+---+----------------+----------------+----------------+------------+
|11 |           0x00-00               |             0x08-06         |
+---+----------------+----------------+----------------+------------+
|12 |                   ARP Packet Data                             |
+---+----------------+----------------+----------------+------------+
|13|                        ...                                     |
+---+----------------+----------------+----------------+------------+

  The Code Points for a FARP-REQ for a specific Match Address Code
  Point MATCH_WW_PN_NN ( b'011') is shown below. In particular, note
  the IP addresses field of the Requester set to a valid address and
  that of the responder set to '0'. Note also the setting of the D_ID
  address and the Port_ID of the Responder.

  The corresponding code point for a FARP-REPLY is also shown below.
  In particular, note the setting of the Port_ID of Responder and the
  IP address setting of the Responder.









Rajagopal, et al.           Standards Track                    [Page 53]

RFC 2625             IP and ARP over Fibre Channel             June 1999


E.4.2 Code Points with FARP Command

    Code Points for FC Frame with FARP-REQ Command for MATCH_WW_PN_NN
+---+----------------+----------------+----------------+------------+
|Wrd|    <31:24>     |    <23:16>     |    <15:08>     |    <07:00> |
+---+----------------+----------------+----------------+------------+
| 0 |    0x04        |                     D_ID =                   |
|   |                |    0xFF             0xFF              0xFF   |
+---+----------------+----------------+----------------+------------+
| 1 |    0x00        |                     S_ID                     |
+---+----------------+----------------+----------------+------------+
| 2 |    0x05        |                     F_CTL                    |
+---+----------------+----------------+----------------+------------+
| 3 |   SEQ_ID       |     0x20       |          SEQ_CNT            |
+---+----------------+----------------+----------------+------------+
| 4 |             OX_ID               |              RX_ID          |
+---+----------------+----------------+----------------+------------+
| 5 |           0xXX-XX-XX-XX Parameter Relative Offset             |
+---+----------------+----------------+----------------+------------+
| 6 |     0x54       |     0x00       |     0x00       |    0x00    |
+---+----------------+----------------+----------------+------------+
| 7 |           Port_ID  of Requester = S_ID           |Match Addr. |
|   |                                                  |Code Points |
|   |                                                  | xxxxx011   |
+---+----------------+----------------+----------------+------------+
| 8 |           Port_ID  of Responder   =              |Responder   |
|   |     0x00              0x00            0x00       |Flags       |
+---+----------------+----------------+----------------+------------+
| 9 | 0001 |        0x000             |WW_PN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|10 |         WW_PN Src. MAC (Lo order bits)                        |
+---+------+----------+---------------+-----------------------------+
|11 | 0001 |        0x000             |WW_NN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|12 |         WW_NN Src. MAC (Lo order bits)                        |
+---+----------------+----------------+----------------+------------+
|13 | 0001 |        0x000             |WW_PN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|14 |         WW_PN Dest. MAC (Lo order bits)                       |
+---+------+----------+---------------+-----------------------------+
|15 | 0001 |        0x000             |WW_NN Dest.MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|16 |         WW_NN Dest. MAC (Lo order bits)                       |
+---+----------------+----------------+----------------+------------+
|17 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|18 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+



Rajagopal, et al.           Standards Track                    [Page 54]

RFC 2625             IP and ARP over Fibre Channel             June 1999


|19 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|20 |     set to a valid IPv4 Address by Requester if Available     |
+--------------------+----------------+---------+-------------------+
|21 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|22 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|23 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|   |                           0x00-00-00-00                       |
|24 |       set to a valid IPv4 Address of Responder if available   |
+--------------------+----------------+---------+-------------------+






































Rajagopal, et al.           Standards Track                    [Page 55]

RFC 2625             IP and ARP over Fibre Channel             June 1999


           Code Points for FC Frame with FARP-REPLY Command
+---+----------------+----------------+----------------+------------+
|Wrd|    <31:24>     |    <23:16>     |    <15:08>     |    <07:00> |
+---+----------------+----------------+----------------+------------+
| 0 |    0x04        |                     D_ID                     |
+---+----------------+----------------+----------------+------------+
| 1 |    0x00        |                     S_ID                     |
+---+----------------+----------------+----------------+------------+
| 2 |    0x05        |                     F_CTL                    |
+---+----------------+----------------+----------------+------------+
| 3 |   SEQ_ID       |     0x20       |          SEQ_CNT            |
+---+----------------+----------------+----------------+------------+
| 4 |             OX_ID               |              RX_ID          |
+---+----------------+----------------+----------------+------------+
| 5 |           0xXX-XX-XX-XX Parameter Relative Offset             |
+---+----------------+----------------+----------------+------------+
| 6 |     0x55       |     0x00       |     0x00       |    0x00    |
+---+----------------+----------------+----------------+------------+
| 7 |           Port_ID  of Requester = D_ID           | xxxxx011   |
+---+----------------+----------------+----------------+------------+
| 8 |           Port_ID  of Responder = S_ID           |Resp. Flag  |
+---+----------------+----------------+----------------+------------+
| 9 | 0001 |        0x000             |WW_PN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|10 |         WW_PN Src. MAC (Lo order bits)                        |
+---+------+----------+---------------+-----------------------------+
|11 | 0001 |        0x000             |WW_NN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|12 |         WW_NN Src. MAC (Lo order bits)                        |
+---+----------------+----------------+----------------+------------+
|13 | 0001 |        0x000             |WW_PN Src. MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|14 |         WW_PN Dest. MAC (Lo order bits)                       |
+---+------+----------+---------------+-----------------------------+
|15 | 0001 |        0x000             |WW_NN Dest.MAC(Hi order bits)|
+---+------+---------+----------------+----------------+------------+
|16 |         WW_NN Dest. MAC (Lo order bits)                       |
+---+----------------+----------------+----------------+------------+
|17 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|18 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|19 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|20 |       set to a valid IPv4 Address by Requester                |
+--------------------+----------------+---------+-------------------+
|21 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+



Rajagopal, et al.           Standards Track                    [Page 56]

RFC 2625             IP and ARP over Fibre Channel             June 1999


|22 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|23 |                           0x00-00-00-00                       |
+--------------------+----------------+---------+-------------------+
|24 |        set to a valid IPv4 Address by Responder               |
+--------------------+----------------+---------+-------------------+













































Rajagopal, et al.           Standards Track                    [Page 57]

RFC 2625             IP and ARP over Fibre Channel             June 1999


APPENDIX F: Fibre Channel Protocol Considerations

F.1 Reliability In Class 3

  Problem: Sequence ID reuse in Class 3 can conceivably result in
  missing frame aliasing, which could result in delivery of corrupted
  (incorrectly-assembled) data, with no corresponding detection at the
  FC level.

  Prevention: This specification requires one of the following methods
  if Class 3 is used.

       - Continuously increasing Sequence Count (new Login Bit) - both
         sides must set When an N_Port sets the PLOGI login bit for
         continuously increasing SEQ_CNT, it is guaranteeing that it
         will transmit all frames within an Exchange using a
         continuously increasing SEQ_CNT (see description in Section
         B.1 below).
       - After using all SEQ_IDs (0-255) once, must start a new
         Exchange. It is recommended that a minimum of 4 Exchanges be
         used before an OX_ID can be reused.
       - Note: If an implementation is not checking the OX_ID when
         reassembling Sequences, the problem can still occur. Cycling
         through some number of SEQ_IDs, then jumping to a new Exchange
         does not solve the problem. SEQ_IDs must still be unique
         between two N_Ports, even across Exchanges.
       - Use only single-frame Sequences.

F.2 Continuously Increasing SEQ_CNT

  This method allows the recipient to check incoming frames, knowing
  exactly what SEQ_CNT value to expect next. Since the SEQ_CNT will not
  repeat for 65,536 frames, the aliasing problem is significantly
  reduced.

  A Login bit (PLOGI) is used to indicate that a device always uses a
  continuously increasing SEQ_CNT, even across transfers of Sequence
  Initiative. This bit is necessary for interoperability with some
  devices, and it provides other benefits as well.

  In the FC-PH-3 [11], the following is supported:

        Word 1, bit 17 - SEQ_CNT (S)
        0 = Normal FC-PH rules apply
        1 = Continuously increasing SEQ_CNT






Rajagopal, et al.           Standards Track                    [Page 58]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Any N_Port that sets Word 1, Bit 17 = 1, is guaranteeing that it will
  transmit all frames within an Exchange using a continuously
  increasing SEQ_CNT. Each Exchange SHALL start with SEQ_CNT = 0 in the
  first frame, and every frame transmitted after that SHALL increment
  the previous SEQ_CNT by one, even across transfers of Sequence
  Initiative. Any frames received from the other N_Port in the Exchange
  shall have no effect on the transmitted SEQ_CNT.












































Rajagopal, et al.           Standards Track                    [Page 59]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Appendix G: Acronyms and Glossary of FC Terms

  It is assumed that the reader is familiar with the terms and acronyms
  used in the FC protocol specification [2]. The following is provided
  for easy reference.

  First Frame: The frame that contains the SOFi field. This means a
  logical first and may not necessarily be the first frame temporally
  received in a sequence.

  Code Point: The coded bit pattern associated with control fields in
  frames or packets.

  PDU: Protocol Data Unit

  ABTS_LS: Abort Sequence Protocol - Last Sequence. A protocol for
  aborting an exchange based on the ABTS recipient setting the
  Last_Sequence bit in the BA_ACC ELS to the ABTS

  ADISC: Discover Address. An ELS for discovering the Hard Addresses
  (the 24 bit NL_Port Identifier) of N_Ports

  D_ID: Destination ID

  ES: End sequence. This FCTL bit in the FC header indicates this frame
  is the last frame of the sequence.

  FAN: Fabric Address Notification. An ELS sent by the fabric to all
  known previously Logged in ports following an initialization event.

  FLOGI: Fabric Login.

  LIP: Loop Initialization. A primitive Sequence used by a port to
  detect if it is part of a loop or to recover from certain loop
  errors.

  Link: Two unidirectional paths flowing in opposite directions and
  connecting two Ports within adjacent Nodes.

  LOGO: Logout.

  LR: Link reset. A primitive sequence transmitted by a port to
  initiate the link reset protocol or to recover from a link timeout.

  LS: Last Sequence of Exchange. This FCTL bit in the FC header
  indicates the Sequence is the Last Sequence of the Exchange.





Rajagopal, et al.           Standards Track                    [Page 60]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  Network Address Authority: A 4-bit field specified in Network_Headers
  that distinguishes between various name registration authorities that
  may be used to identify the WW_PN and the WW_NN. NAA=b'0001'
  indicates IEEE-48-bit MAC addresses

  Node: A collection of one or more Ports identified by a unique World
  Wide Node Name (WW_NN).

  NOS: Not Operational. A primitive Sequence transmitted to indicate
  that the port transmitting this Sequence has detected a link failure
  or is offline, waiting for OLS to be received.

  OLS: Off line. A primitive Sequence transmitted to indicate that the
  port transmitting this Sequence is either initiating the link
  initialization protocol, receiving and recognizing NOS, or entering
  the offline state.

  PDISC: Discover Port. An ELS for exchanging Service Parameters
  without affecting Login state.

  Primitive Sequence: A primitive Sequence is an Ordered Set that is
  transmitted repeatedly and continuously.

  Private Loop Device: A device that does not attempt Fabric Login
  (FLOGI) and usually adheres to PLDA.  The Area and Domain components
  of the NL_Port ID must be 0x0000. These devices cannot communicate
  with any port not in the local loop.

  Public Loop Device: A device whose Area and Domain components of the
  NL_Port ID cannot be 0x0000. Additionally, to be FLA compliant, the
  device must attempt to open AL_PA 0x00 and attempt FLOGI. These
  devices communicate with devices on the local loop as well as devices
  on the other side of a Fabric.

  Port: The transmitter, receiver and associated logic at either end of
  a link within a Node. There may be multiple Ports per Node. Each Port
  is identified by a unique Port_ID, which is volatile, and a unique
  World Wide Port Name (WW_PN), which is unchangeable. In this
  document, the term "port" may be used interchangeably with NL_Port or
  N_Port.

  Port_ID: Fibre Channel ports are addressed by unique 24-bit Port_IDs.
  In a Fibre Channel frame header, the Port_ID is referred to as S_ID
  (Source ID) to identify the port originating a frame, and D_ID to
  identify the destination port. The Port_ID of a given port is
  volatile (changeable).

  PLOGI: Port Login.



Rajagopal, et al.           Standards Track                    [Page 61]

RFC 2625             IP and ARP over Fibre Channel             June 1999


  SI: Sequence Initiative

  World Wide Port_Name (WW_PN): Fibre Channel requires each Port to
  have an unchangeable WW_PN. Fibre Channel specifies a Network Address
  Authority (NAA) to distinguish between the various name registration
  authorities that may be used to identify the WW_PN. A 4-bit NAA
  identifier, 12-bit field set to 0x0 and an IEEE 48-bit MAC address
  together make this a 64-bit field.

  World Wide Node_Name (WW_NN): Fibre Channel identifies each Node with
  a unchangeable WW_NN. In a single port Node, the WW_NN and the WW_PN
  may be identical.







































Rajagopal, et al.           Standards Track                    [Page 62]

RFC 2625             IP and ARP over Fibre Channel             June 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Rajagopal, et al.           Standards Track                    [Page 63]