Network Working Group                                        D. Eastlake
Request for Comments: 2539                                           IBM
Category: Standards Track                                     March 1999


    Storage of Diffie-Hellman Keys in the Domain Name System (DNS)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

  A standard method for storing Diffie-Hellman keys in the Domain Name
  System is described which utilizes DNS KEY resource records.

Acknowledgements

  Part of the format for Diffie-Hellman keys and the description
  thereof was taken from a work in progress by:

     Ashar Aziz <[email protected]>
     Tom Markson <[email protected]>
     Hemma Prafullchandra <[email protected]>

  In addition, the following person provided useful comments that have
  been incorporated:

     Ran Atkinson <[email protected]>
     Thomas Narten <[email protected]>













Eastlake                    Standards Track                     [Page 1]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


Table of Contents

  Abstract...................................................1
  Acknowledgements...........................................1
  1. Introduction............................................2
  1.1 About This Document....................................2
  1.2 About Diffie-Hellman...................................2
  2. Diffie-Hellman KEY Resource Records.....................3
  3. Performance Considerations..............................4
  4. IANA Considerations.....................................4
  5. Security Considerations.................................4
  References.................................................5
  Author's Address...........................................5
  Appendix A: Well known prime/generator pairs...............6
  A.1. Well-Known Group 1:  A 768 bit prime..................6
  A.2. Well-Known Group 2:  A 1024 bit prime.................6
  Full Copyright Notice......................................7

1. Introduction

  The Domain Name System (DNS) is the current global hierarchical
  replicated distributed database system for Internet addressing, mail
  proxy, and similar information. The DNS has been extended to include
  digital signatures and cryptographic keys as described in [RFC 2535].
  Thus the DNS can now be used for secure key distribution.

1.1 About This Document

  This document describes how to store Diffie-Hellman keys in the DNS.
  Familiarity with the Diffie-Hellman key exchange algorithm is assumed
  [Schneier].

1.2 About Diffie-Hellman

  Diffie-Hellman requires two parties to interact to derive keying
  information which can then be used for authentication.  Since DNS SIG
  RRs are primarily used as stored authenticators of zone information
  for many different resolvers, no Diffie-Hellman algorithm SIG RR is
  defined. For example, assume that two parties have local secrets "i"
  and "j".  Assume they each respectively calculate X and Y as follows:

               X = g**i ( mod p ) Y = g**j ( mod p )

  They exchange these quantities and then each calculates a Z as
  follows:

               Zi = Y**i ( mod p ) Zj = X**j ( mod p )




Eastlake                    Standards Track                     [Page 2]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


  shared secret between the two parties that an adversary who does not
  know i or j will not be able to learn from the exchanged messages
  (unless the adversary can derive i or j by performing a discrete
  logarithm mod p which is hard for strong p and g).

  The private key for each party is their secret i (or j).  The public
  key is the pair p and g, which must be the same for the parties, and
  their individual X (or Y).

2. Diffie-Hellman KEY Resource Records

  Diffie-Hellman keys are stored in the DNS as KEY RRs using algorithm
  number 2.  The structure of the RDATA portion of this RR is as shown
  below.  The first 4 octets, including the flags, protocol, and
  algorithm fields are common to all KEY RRs as described in [RFC
  2535].  The remainder, from prime length through public value is the
  "public key" part of the KEY RR. The period of key validity is not in
  the KEY RR but is indicated by the SIG RR(s) which signs and
  authenticates the KEY RR(s) at that domain name.

                        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           KEY flags           |    protocol   |  algorithm=2  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     prime length (or flag)    |  prime (p) (or special)       /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /  prime (p)  (variable length) |       generator length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | generator (g) (variable length)                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     public value length       | public value (variable length)/
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /  public value (g^i mod p)    (variable length)                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Prime length is length of the Diffie-Hellman prime (p) in bytes if it
  is 16 or greater.  Prime contains the binary representation of the
  Diffie-Hellman prime with most significant byte first (i.e., in
  network order). If "prime length" field is 1 or 2, then the "prime"
  field is actually an unsigned index into a table of 65,536
  prime/generator pairs and the generator length SHOULD be zero.  See
  Appedix A for defined table entries and Section 4 for information on
  allocating additional table entries.  The meaning of a zero or 3
  through 15 value for "prime length" is reserved.






Eastlake                    Standards Track                     [Page 3]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


  Generator length is the length of the generator (g) in bytes.
  Generator is the binary representation of generator with most
  significant byte first.  PublicValueLen is the Length of the Public
  Value (g**i (mod p)) in bytes.  PublicValue is the binary
  representation of the DH public value with most significant byte
  first.

  The corresponding algorithm=2 SIG resource record is not used so no
  format for it is defined.

3. Performance Considerations

  Current DNS implementations are optimized for small transfers,
  typically less than 512 bytes including overhead.  While larger
  transfers will perform correctly and work is underway to make larger
  transfers more efficient, it is still advisable to make reasonable
  efforts to minimize the size of KEY RR sets stored within the DNS
  consistent with adequate security.  Keep in mind that in a secure
  zone, an authenticating SIG RR will also be returned.

4. IANA Considerations

  Assignment of meaning to Prime Lengths of 0 and 3 through 15 requires
  an IETF consensus.

  Well known prime/generator pairs number 0x0000 through 0x07FF can
  only be assigned by an IETF standards action and this Proposed
  Standard assigns 0x0001 through 0x0002. Pairs number 0s0800 through
  0xBFFF can be assigned based on RFC documentation.  Pairs number
  0xC000 through 0xFFFF are available for private use and are not
  centrally coordinated. Use of such private pairs outside of a closed
  environment may result in conflicts.

5. Security Considerations

  Many of the general security consideration in [RFC 2535] apply.  Keys
  retrieved from the DNS should not be trusted unless (1) they have
  been securely obtained from a secure resolver or independently
  verified by the user and (2) this secure resolver and secure
  obtainment or independent verification conform to security policies
  acceptable to the user.  As with all cryptographic algorithms,
  evaluating the necessary strength of the key is important and
  dependent on local policy.

  In addition, the usual Diffie-Hellman key strength considerations
  apply. (p-1)/2 should also be prime, g should be primitive mod p, p
  should be "large", etc.  [Schneier]




Eastlake                    Standards Track                     [Page 4]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


References

  [RFC 1034]   Mockapetris, P., "Domain Names - Concepts and
               Facilities", STD 13, RFC 1034, November 1987.

  [RFC 1035]   Mockapetris, P., "Domain Names - Implementation and
               Specification", STD 13, RFC 1035, November 1987.

  [RFC 2535]   Eastlake, D., "Domain Name System Security Extensions",
               RFC 2535, March 1999.

  [Schneier]   Bruce Schneier, "Applied Cryptography: Protocols,
               Algorithms, and Source Code in C", 1996, John Wiley and
               Sons

Author's Address

  Donald E. Eastlake 3rd
  IBM
  65 Shindegan Hill Road, RR #1
  Carmel, NY 10512

  Phone:   +1-914-276-2668(h)
           +1-914-784-7913(w)
  Fax:     +1-914-784-3833(w)
  EMail:   [email protected]

























Eastlake                    Standards Track                     [Page 5]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


Appendix A: Well known prime/generator pairs

  These numbers are copied from the IPSEC effort where the derivation
  of these values is more fully explained and additional information is
  available.  Richard Schroeppel performed all the mathematical and
  computational work for this appendix.

A.1. Well-Known Group 1:  A 768 bit prime

  The prime is 2^768 - 2^704 - 1 + 2^64 * { [2^638 pi] + 149686 }.  Its
  decimal value is
         155251809230070893513091813125848175563133404943451431320235
         119490296623994910210725866945387659164244291000768028886422
         915080371891804634263272761303128298374438082089019628850917
         0691316593175367469551763119843371637221007210577919

  Prime modulus: Length (32 bit words): 24, Data (hex):
           FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
           29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
           EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
           E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF

  Generator: Length (32 bit words): 1, Data (hex): 2

A.2. Well-Known Group 2:  A 1024 bit prime

  The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
  Its decimal value is
        179769313486231590770839156793787453197860296048756011706444
        423684197180216158519368947833795864925541502180565485980503
        646440548199239100050792877003355816639229553136239076508735
        759914822574862575007425302077447712589550957937778424442426
        617334727629299387668709205606050270810842907692932019128194
        467627007

  Prime modulus:  Length (32 bit words): 32, Data (hex):
           FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
           29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
           EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
           E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
           EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
           FFFFFFFF FFFFFFFF

  Generator: Length (32 bit words):  1, Data (hex): 2







Eastlake                    Standards Track                     [Page 6]

RFC 2539             Diffie-Hellman Keys in the DNS           March 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Eastlake                    Standards Track                     [Page 7]