Network Working Group                                            P. Karn
Request for Comments: 2522                                      Qualcomm
Category: Experimental                                        W. Simpson
                                                             DayDreamer
                                                             March 1999


              Photuris: Session-Key Management Protocol


Status of this Memo

  This document defines an Experimental Protocol for the Internet
  community.  It does not specify an Internet standard of any kind.
  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  Copyright (C) Philip Karn
  and William Allen Simpson (1994-1999).  All Rights Reserved.

Abstract

  Photuris is a session-key management protocol intended for use with
  the IP Security Protocols (AH and ESP).  This document defines the
  basic protocol mechanisms.
























Karn & Simpson                Experimental                      [Page i]

RFC 2522                   Photuris Protocol                  March 1999


Table of Contents


    1.     Introduction ..........................................    1
       1.1       Terminology .....................................    1
       1.2       Protocol Overview ...............................    3
       1.3       Security Parameters .............................    5
       1.4       LifeTimes .......................................    6
          1.4.1  Exchange LifeTimes ..............................    6
          1.4.2  SPI LifeTimes ...................................    7
       1.5       Random Number Generation ........................    8

    2.     Protocol Details ......................................    9
       2.1       UDP .............................................    9
       2.2       Header Format ...................................   10
       2.3       Variable Precision Integers .....................   11
       2.4       Exchange-Schemes ................................   13
       2.5       Attributes ......................................   13

    3.     Cookie Exchange .......................................   14
          3.0.1  Send Cookie_Request .............................   14
          3.0.2  Receive Cookie_Request ..........................   15
          3.0.3  Send Cookie_Response ............................   15
          3.0.4  Receive Cookie_Response .........................   16
       3.1       Cookie_Request ..................................   17
       3.2       Cookie_Response .................................   18
       3.3       Cookie Generation ...............................   19
          3.3.1  Initiator Cookie ................................   19
          3.3.2  Responder Cookie ................................   20

    4.     Value Exchange ........................................   21
          4.0.1  Send Value_Request ..............................   21
          4.0.2  Receive Value_Request ...........................   22
          4.0.3  Send Value_Response .............................   22
          4.0.4  Receive Value_Response ..........................   23
       4.1       Value_Request ...................................   24
       4.2       Value_Response ..................................   25
       4.3       Offered Attribute List ..........................   26

    5.     Identification Exchange ...............................   28
          5.0.1  Send Identity_Request ...........................   29
          5.0.2  Receive Identity_Request ........................   29
          5.0.3  Send Identity_Response ..........................   30
          5.0.4  Receive Identity_Response .......................   30
       5.1       Identity_Messages ...............................   31
       5.2       Attribute Choices List ..........................   33
       5.3       Shared-Secret ...................................   34
       5.4       Identity Verification ...........................   34



Karn & Simpson                Experimental                     [Page ii]

RFC 2522                   Photuris Protocol                  March 1999


       5.5       Privacy-Key Computation .........................   36
       5.6       Session-Key Computation .........................   37

    6.     SPI Messages ..........................................   38
          6.0.1  Send SPI_Needed .................................   38
          6.0.2  Receive SPI_Needed ..............................   39
          6.0.3  Send SPI_Update .................................   39
          6.0.4  Receive SPI_Update ..............................   39
          6.0.5  Automated SPI_Updates ...........................   40
       6.1       SPI_Needed ......................................   41
       6.2       SPI_Update ......................................   43
          6.2.1  Creation ........................................   44
          6.2.2  Deletion ........................................   45
          6.2.3  Modification ....................................   45
       6.3       Validity Verification ...........................   45

    7.     Error Messages ........................................   46
       7.1       Bad_Cookie ......................................   47
       7.2       Resource_Limit ..................................   47
       7.3       Verification_Failure ............................   48
       7.4       Message_Reject ..................................   49

    8.     Public Value Exchanges ................................   50
       8.1       Modular Exponentiation Groups ...................   50
       8.2       Moduli Selection ................................   50
          8.2.1  Bootstrap Moduli ................................   51
          8.2.2  Learning Moduli .................................   51
       8.3       Generator Selection .............................   51
       8.4       Exponent Selection ..............................   52
       8.5       Defective Exchange Values .......................   53

    9.     Basic Exchange-Schemes ................................   54

    10.    Basic Key-Generation-Function .........................   55
       10.1      MD5 Hash ........................................   55

    11.    Basic Privacy-Method ..................................   55
       11.1      Simple Masking ..................................   55

    12.    Basic Validity-Method .................................   55
       12.1      MD5-IPMAC Check .................................   55

    13.    Basic Attributes ......................................   56
       13.1      Padding .........................................   56
       13.2      AH-Attributes ...................................   57
       13.3      ESP-Attributes ..................................   57
       13.4      MD5-IPMAC .......................................   58
          13.4.1 Symmetric Identification ........................   58



Karn & Simpson                Experimental                    [Page iii]

RFC 2522                   Photuris Protocol                  March 1999


          13.4.2 Authentication ..................................   59
       13.5      Organizational ..................................   60

    APPENDICES ...................................................   61

    A.     Automaton .............................................   61
       A.1       State Transition Table ..........................   62
       A.2       States ..........................................   65
          A.2.1  Initial .........................................   65
          A.2.2  Cookie ..........................................   66
          A.2.3  Value ...........................................   66
          A.2.4  Identity ........................................   66
          A.2.5  Ready ...........................................   66
          A.2.6  Update ..........................................   66

    B.     Use of Identification and Secrets .....................   67
       B.1       Identification ..................................   67
       B.2       Group Identity With Group Secret ................   67
       B.3       Multiple Identities With Group Secrets ..........   68
       B.4       Multiple Identities With Multiple Secrets .......   69

    OPERATIONAL CONSIDERATIONS ...................................   70

    SECURITY CONSIDERATIONS ......................................   70

    HISTORY ......................................................   71

    ACKNOWLEDGEMENTS .............................................   72

    REFERENCES ...................................................   73

    CONTACTS .....................................................   75

    COPYRIGHT ....................................................   76





















Karn & Simpson                Experimental                     [Page iv]

RFC 2522                   Photuris Protocol                  March 1999


1.  Introduction

  Photuris [Firefly] establishes short-lived session-keys between two
  parties, without passing the session-keys across the Internet.  These
  session-keys directly replace the long-lived secret-keys (such as
  passwords and passphrases) that have been historically configured for
  security purposes.

  The basic Photuris protocol utilizes these existing previously
  configured secret-keys for identification of the parties.  This is
  intended to speed deployment and reduce administrative configuration
  changes.

  This document is primarily intended for implementing the Photuris
  protocol.  It does not detail service and application interface
  definitions, although it does mention some basic policy areas
  required for the proper implementation and operation of the protocol
  mechanisms.

  Since the basic Photuris protocol is extensible, new data types and
  protocol behaviour should be expected.  The implementor is especially
  cautioned not to depend on values that appear in examples to be
  current or complete, since their purpose is primarily pedagogical.


1.1.  Terminology

  In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
  "recommended", "SHOULD", and "SHOULD NOT", are to be interpreted as
  described in [RFC-2119].

  byte             An 8-bit quantity; also known as "octet" in
                   standardese.

  exchange-value   The publically distributable value used to calculate
                   a shared-secret.  As used in this document, refers
                   to a Diffie-Hellman exchange, not the public part of
                   a public/private key-pair.

  private-key      A value that is kept secret, and is part of an
                   asymmetric public/private key-pair.

  public-key       A publically distributable value that is part of an
                   asymmetric public/private key-pair.

  secret-key       A symmetric key that is not publically
                   distributable.  As used in this document, this is
                   distinguished from an asymmetric public/private



Karn & Simpson                Experimental                      [Page 1]

RFC 2522                   Photuris Protocol                  March 1999


                   key-pair.  An example is a user password.

  Security Association (SA)
                   A collection of parameters describing the security
                   relationship between two nodes.  These parameters
                   include the identities of the parties, the transform
                   (including algorithm and algorithm mode), the key(s)
                   (such as a session-key, secret-key, or appropriate
                   public/private key-pair), and possibly other
                   information such as sensitivity labelling.

  Security Parameters Index (SPI)
                   A number that indicates a particular set of uni-
                   directional attributes used under a Security
                   Association, such as transform(s) and session-
                   key(s).  The number is relative to the IP
                   Destination, which is the SPI Owner, and is unique
                   per IP (Next Header) Protocol.  That is, the same
                   value MAY be used by multiple protocols to
                   concurrently indicate different Security Association
                   parameters.

  session-key      A key that is independently derived from a shared-
                   secret by the parties, and used for keying one
                   direction of traffic.  This key is changed
                   frequently.

  shared-secret    As used in this document, the calculated result of
                   the Photuris exchange.

  SPI Owner        The party that corresponds to the IP Destination;
                   the intended recipient of a protected datagram.

  SPI User         The party that corresponds to the IP Source; the
                   sender of a protected datagram.

  transform        A cryptographic manipulation of a particular set of
                   data.  As used in this document, refers to certain
                   well-specified methods (defined elsewhere).  For
                   example, AH-MD5 [RFC-1828] transforms an IP datagram
                   into a cryptographic hash, and ESP-DES-CBC [RFC-
                   1829] transforms plaintext to ciphertext and back
                   again.








Karn & Simpson                Experimental                      [Page 2]

RFC 2522                   Photuris Protocol                  March 1999


  Many of these terms are hierarchically related:

     Security Association (bi-directional)
      - one or more lists of Security Parameters (uni-directional)
       -- one or more Attributes
        --- may have a key
        --- may indicate a transform

  Implementors will find details of cryptographic hashing (such as
  MD5), encryption algorithms and modes (such as DES), digital
  signatures (such as DSS), and other algorithms in [Schneier95].


1.2.  Protocol Overview

  The Photuris protocol consists of several simple phases:

  1. A "Cookie" Exchange guards against simple flooding attacks sent
     with bogus IP Sources or UDP Ports.  Each party passes a "cookie"
     to the other.

     In return, a list of supported Exchange-Schemes are offered by the
     Responder for calculating a shared-secret.

  2. A Value Exchange establishes a shared-secret between the parties.
     Each party passes an Exchange-Value to the other.  These values
     are used to calculate a shared-secret.  The Responder remains
     stateless until a shared-secret has been created.

     In addition, supported attributes are offered by each party for
     use in establishing new Security Parameters.

  3. An Identification Exchange identifies the parties to each other,
     and verifies the integrity of values sent in phases 1 and 2.

     In addition, the shared-secret provides a basis to generate
     separate session-keys in each direction, which are in turn used
     for conventional authentication or encryption.  Additional
     security attributes are also exchanged as needed.

     This exchange is masked for party privacy protection using a
     message privacy-key based on the shared-secret.  This protects the
     identities of the parties, hides the Security Parameter attribute
     values, and improves security for the exchange protocol and
     security transforms.

  4. Additional messages may be exchanged to periodically change the
     session-keys, and to establish new or revised Security Parameters.



Karn & Simpson                Experimental                      [Page 3]

RFC 2522                   Photuris Protocol                  March 1999


     These exchanges are also masked for party privacy protection in
     the same fashion as above.

  The sequence of message types and their purposes are summarized in
  the diagram below.  The first three phases (cookie, exchange, and
  identification) must be carried out in their entirety before any
  Security Association can be used.

  Initiator                            Responder
  =========                            =========
  Cookie_Request                 ->
                                  <-   Cookie_Response
                                          offer schemes
  Value_Request                  ->
     pick scheme
     offer value
     offer attributes
                                  <-   Value_Response
                                          offer value
                                          offer attributes

            [generate shared-secret from exchanged values]


  Identity_Request               ->
     make SPI
     pick SPI attribute(s)
     identify self
     authenticate
     make privacy key(s)
     mask/encrypt message
                                  <-   Identity_Response
                                          make SPI
                                          pick SPI attribute(s)
                                          identify self
                                          authenticate
                                          make privacy key(s)
                                          mask/encrypt message

              [make SPI session-keys in each direction]











Karn & Simpson                Experimental                      [Page 4]

RFC 2522                   Photuris Protocol                  March 1999



  SPI User                             SPI Owner
  ========                             =========
  SPI_Needed                     ->
     list SPI attribute(s)
     make validity key
     authenticate
     make privacy key(s)
     mask/encrypt message
                                  <-   SPI_Update
                                          make SPI
                                          pick SPI attribute(s)
                                          make SPI session-key(s)
                                          make validity key
                                          authenticate
                                          make privacy key(s)
                                          mask/encrypt message

  Either party may initiate an exchange at any time.  For example, the
  Initiator need not be a "caller" in a telephony link.

  The Initiator is responsible for recovering from all message losses
  by retransmission.


1.3.  Security Parameters

  A Photuris exchange between two parties results in a pair of SPI
  values (one in each direction).  Each SPI is used in creating
  separate session-key(s) in each direction.

  The SPI is assigned by the entity controlling the IP Destination: the
  SPI Owner (receiver).  The parties use the combination of IP
  Destination, IP (Next Header) Protocol, and SPI to distinguish the
  correct Security Association.

  When both parties initiate Photuris exchanges concurrently, or one
  party initiates more than one Photuris exchange, the Initiator
  Cookies (and UDP Ports) keep the exchanges separate.  This results in
  more than one initial SPI for each Destination.

  To create multiple SPIs with different parameters, the parties may
  also send SPI_Updates.

  There is no requirement that all such outstanding SPIs be used.  The
  SPI User (sender) selects an appropriate SPI for each datagram
  transmission.




Karn & Simpson                Experimental                      [Page 5]

RFC 2522                   Photuris Protocol                  March 1999


  Implementation Notes:

     The method used for SPI assignment is implementation dependent.
     The only requirement is that the SPI be unique for the IP
     Destination and IP (Next Header) Protocol.

     However, selection of a cryptographically random SPI value can
     help prevent attacks that depend on a predicatable sequence of
     values.  The implementor MUST NOT expect SPI values to have a
     particular order or range.


1.4.  LifeTimes

  The Photuris exchange results in two kinds of state, each with
  separate LifeTimes.

  1) The Exchange LifeTime of the small amount of state associated with
     the Photuris exchange itself.  This state may be viewed as between
     Internet nodes.

  2) The SPI LifeTimes of the individual SPIs that are established.
     This state may be viewed as between users and nodes.

  The SPI LifeTimes may be shorter or longer than the Exchange
  LifeTime.  These LifeTimes are not required to be related to each
  other.

  When an Exchange-Value expires (or is replaced by a newer value), any
  unexpired derived SPIs are not affected.  This is important to allow
  traffic to continue without interruption during new Photuris
  exchanges.


1.4.1.  Exchange LifeTimes

  All retained exchange state of both parties has an associated
  Exchange LifeTime (ELT), and is subject to periodic expiration.  This
  depends on the physical and logistical security of the machine, and
  is typically in the range of 10 minutes to one day (default 30
  minutes).

  In addition, during a Photuris exchange, an Exchange TimeOut (ETO)
  limits the wait for the exchange to complete.  This timeout includes
  the packet round trips, and the time for completing the
  Identification Exchange calculations.  The time is bounded by both
  the maximum amount of calculation delay expected for the processing
  power of an unknown peer, and the minimum user expectation for



Karn & Simpson                Experimental                      [Page 6]

RFC 2522                   Photuris Protocol                  March 1999


  results (default 30 seconds).

  These Exchange LifeTimes and TimeOuts are implementation dependent
  and are not disclosed in any Photuris message.  The paranoid operator
  will have a fairly short Exchange LifeTime, but it MUST NOT be less
  than twice the ETO.

  To prevent synchronization between Photuris exchanges, the
  implementation SHOULD randomly vary each Exchange LifeTime within
  twice the range of seconds that are required to calculate a new
  Exchange-Value.  For example, when the Responder uses a base ELT of
  30 minutes, and takes 10 seconds to calculate the new Exchange-Value,
  the equation might be (in milliseconds):

     1790000 + urandom(20000)

  The Exchange-Scheme, Exchange-Values, and resulting shared-secret MAY
  be cached in short-term storage for the Exchange LifeTime.  When
  repetitive Photuris exchanges occur between the same parties, and the
  Exchange-Values are discovered to be unchanged, the previously
  calculated shared-secret can be used to rapidly generate new
  session-keys.


1.4.2.  SPI LifeTimes

  Each SPI has an associated LifeTime, specified by the SPI owner
  (receiver).  This SPI LifeTime (SPILT) is usually related to the
  speed of the link (typically 2 to 30 minutes), but it MUST NOT be
  less than thrice the ETO.

  The SPI can also be deleted by the SPI Owner using the SPI_Update.
  Once the SPI has expired or been deleted, the parties cease using the
  SPI.

  To prevent synchronization between multiple Photuris exchanges, the
  implementation SHOULD randomly vary each SPI LifeTime.  For example,
  when the Responder uses a base SPILT of 5 minutes, and 30 seconds for
  the ETO, the equation might be (in milliseconds):

     285000 + urandom(30000)

  There is no requirement that a long LifeTime be accepted by the SPI
  User.  The SPI User might never use an established SPI, or cease
  using the SPI at any time.

  When more than one unexpired SPI is available to the SPI User for the
  same function, a common implementation technique is to select the SPI



Karn & Simpson                Experimental                      [Page 7]

RFC 2522                   Photuris Protocol                  March 1999


  with the greatest remaining LifeTime.  However, selecting randomly
  among a large number of SPIs might provide some defense against
  traffic analysis.

  To prevent resurrection of deleted or expired SPIs, SPI Owners SHOULD
  remember those SPIs, but mark them as unusable until the Photuris
  exchange shared-secret used to create them also expires and purges
  the associated state.

  When the SPI Owner detects an incoming SPI that has recently expired,
  but the associated exchange state has not yet been purged, the
  implementation MAY accept the SPI.  The length of time allowed is
  highly dependent on clock drift and variable packet round trip time,
  and is therefore implementation dependent.


1.5.  Random Number Generation

  The security of Photuris critically depends on the quality of the
  secret random numbers generated by each party.  A poor random number
  generator at either party will compromise the shared-secret produced
  by the algorithm.

  Generating cryptographic quality random numbers on a general purpose
  computer without hardware assistance is a very tricky problem.  In
  general, this requires using a cryptographic hashing function to
  "distill" the entropy from a large number of semi-random external
  events, such as the timing of key strokes.  An excellent discussion
  can be found in [RFC-1750].






















Karn & Simpson                Experimental                      [Page 8]

RFC 2522                   Photuris Protocol                  March 1999


2.  Protocol Details

  The Initiator begins a Photuris exchange under several circumstances:

  -  The Initiator has a datagram that it wishes to send with
     confidentiality, and has no current Photuris exchange state with
     the IP Destination.  This datagram is discarded, and a
     Cookie_Request is sent instead.

  -  The Initiator has received the ICMP message [RFC-1812] Destination
     Unreachable: Communication Administratively Prohibited (Type 3,
     Code 13), and has no current Photuris exchange state with the ICMP
     Source.

  -  The Initiator has received the ICMP message [RFC-2521] Security
     Failures: Bad SPI (Type 40, Code 0), that matches current Photuris
     exchange state with the ICMP Source.

  -  The Initiator has received the ICMP message [RFC-2521] Security
     Failures: Need Authentication (Type 40, Code 4), and has no
     current Photuris exchange state with the ICMP Source.

  -  The Initiator has received the ICMP message [RFC-2521] Security
     Failures: Need Authorization (Type 40, Code 5), that matches
     current Photuris exchange state with the ICMP Source.

  When the event is an ICMP message, special care MUST be taken that
  the ICMP message actually includes information that matches a
  previously sent IP datagram.  Otherwise, this could provide an
  opportunity for a clogging attack, by stimulating a new Photuris
  Exchange.


2.1.  UDP

  All Photuris messages use the User Datagram Protocol header [RFC-
  768].  The Initiator sends to UDP Destination Port 468.

  When replying to the Initiator, the Responder swaps the IP Source and
  Destination, and the UDP Source and Destination Ports.

  The UDP checksum MUST be correctly calculated when sent.  When a
  message is received with an incorrect UDP checksum, it is silently
  discarded.







Karn & Simpson                Experimental                      [Page 9]

RFC 2522                   Photuris Protocol                  March 1999


  Implementation Notes:

     It is expected that installation of Photuris will ensure that UDP
     checksum calculations are enabled for the computer operating
     system and later disabling by operators is prevented.

     Internet Protocol version 4 [RFC-791] restricts the maximum
     reassembled datagram to 576 bytes.

     When processing datagrams containing variable size values, the
     length must be checked against the overall datagram length.  An
     invalid size (too long or short) that causes a poorly coded
     receiver to abort could be used as a denial of service attack.


2.2.  Header Format

  All of the messages have a format similar to the following, as
  transmitted left to right in network order (most significant to least
  significant):

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |
  +-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.

  Responder-Cookie  16 bytes.

  Message          1 byte.  Each message type has a unique value.
                   Initial values are assigned as follows:











Karn & Simpson                Experimental                     [Page 10]

RFC 2522                   Photuris Protocol                  March 1999



                       0  Cookie_Request
                       1  Cookie_Response
                       2  Value_Request
                       3  Value_Response
                       4  Identity_Request
                       5  Secret_Response (optional)
                       6  Secret_Request (optional)
                       7  Identity_Response
                       8  SPI_Needed
                       9  SPI_Update
                      10  Bad_Cookie
                      11  Resource_Limit
                      12  Verification_Failure
                      13  Message_Reject


  Further details and differences are elaborated in the individual
  messages.


2.3.  Variable Precision Integers

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Size              |             Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Size             2, 4, or 8 bytes.  The number of significant bits
                   used in the Value field.  Always transmitted most
                   significant byte first.

                   When the Size is zero, no Value field is present;
                   there are no significant bits.  This means "missing"
                   or "null".  It should not be confused with the value
                   zero, which includes an indication of the number of
                   significant bits.

                   When the most significant byte is in the range 0
                   through 254 (0xfe), the field is 2 bytes.  Both
                   bytes are used to indicate the size of the Value
                   field, which ranges from 1 to 65,279 significant
                   bits (in 1 to 8,160 bytes).

                   When the most significant byte is 255 (0xff), the
                   field is 4 bytes.  The remaining 3 bytes are added
                   to 65,280 to indicate the size of the Value field,
                   which is limited to 16,776,959 significant bits (in



Karn & Simpson                Experimental                     [Page 11]

RFC 2522                   Photuris Protocol                  March 1999


                   2,097,120 bytes).

                   When the most significant 2 bytes are 65,535
                   (0xffff), the field is 8 bytes.  The remaining 6
                   bytes are added to 16,776,960 to indicate the size
                   of the Value field.

  Value            0 or more bytes.  Always transmitted most
                   significant byte first.

                   The bits used are right justified within byte
                   boundaries; that is, any unused bits are in the most
                   significant byte.  When there are no unused bits, or
                   unused bits are zero filled, the value is assumed to
                   be an unsigned positive integer.

                   When the leading unused bits are ones filled, the
                   number is assumed to be a two's-complement negative
                   integer.  A negative integer will always have at
                   least one unused leading sign bit in the most
                   significant byte.

  Shortened forms SHOULD NOT be used when the Value includes a number
  of leading zero significant bits.  The Size SHOULD indicate the
  correct number of significant bits.

  Implementation Notes:

     Negative integers are not required to be supported, but are
     included for completeness.

     No more than 65,279 significant bits are required to be supported.
     Other ranges are vastly too long for these UDP messages, but are
     included for completeness.

















Karn & Simpson                Experimental                     [Page 12]

RFC 2522                   Photuris Protocol                  March 1999


2.4.  Exchange-Schemes

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Scheme             |             Size              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Scheme           2 bytes.  A unique value indicating the Exchange-
                   Scheme.  See the "Basic Exchange-Schemes" for
                   details.

  Size             2 bytes, ranging from 0 to 65,279.  See "Variable
                   Precision Integer".

  Value            0 or more bytes.  See "Variable Precision Integer".

  The Size MUST NOT be assumed to be constant for a particular Scheme.
  Multiple kinds of the same Scheme with varying Sizes MAY be present
  in any list of schemes.

  However, only one of each Scheme and Size combination will be present
  in any list of schemes.


2.5.  Attributes

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Attribute   |    Length     |  Value(s) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute        1 byte.  A unique value indicating the kind of
                   attribute.  See the "Basic Attributes" for details.

                   When the value is zero (padding), no Length field is
                   present (always zero).

  Length           1 byte.  The size of the Value(s) field in bytes.

                   When the Length is zero, no Value(s) field is
                   present.

  Value(s)         0 or more bytes.  See the "Basic Attributes" for
                   details.

  The Length MUST NOT be assumed to be constant for a particular



Karn & Simpson                Experimental                     [Page 13]

RFC 2522                   Photuris Protocol                  March 1999


  Attribute.  Multiple kinds of the same Attribute with varying Lengths
  MAY be present in any list of attributes.


3.  Cookie Exchange

  Initiator                            Responder
  =========                            =========
  Cookie_Request                 ->
                                  <-   Cookie_Response
                                          offer schemes



3.0.1.  Send Cookie_Request

  The Initiator initializes local state, and generates a unique
  "cookie".  The Initiator-Cookie MUST be different in each new
  Cookie_Request between the same parties.  See "Cookie Generation" for
  details.

  -  If any previous exchange between the peer IP nodes has not expired
     in which this party was the Initiator, this Responder-Cookie is
     set to the most recent Responder-Cookie, and this Counter is set
     to the corresponding Counter.

     For example, a new Virtual Private Network (VPN) tunnel is about
     to be established to an existing partner.  The Counter is the same
     value received in the prior Cookie_Response, the Responder-Cookie
     remains the same, and a new Initiator-Cookie is generated.

  -  If the new Cookie_Request is in response to a message of a
     previous exchange in which this party was the Responder, this
     Responder-Cookie is set to the previous Initiator-Cookie, and this
     Counter is set to zero.

     For example, a Bad_Cookie message was received from the previous
     Initiator in response to SPI_Needed.  The Responder-Cookie is
     replaced with the Initiator-Cookie, and a new Initiator-Cookie is
     generated.  This provides bookkeeping to detect bogus Bad_Cookie
     messages.

     Also, can be used for bi-directional User, Transport, and Process
     oriented keying.  Such mechanisms are outside the scope of this
     document.

  -  Otherwise, this Responder-Cookie and Counter are both set to zero.




Karn & Simpson                Experimental                     [Page 14]

RFC 2522                   Photuris Protocol                  March 1999


     By default, the Initiator operates in the same manner as when all
     of its previous exchange state has expired.  The Responder will
     send a Resource_Limit when its own exchange state has not expired.

  The Initiator also starts a retransmission timer.  If no valid
  Cookie_Response arrives within the time limit, the same
  Cookie_Request is retransmitted for the remaining number of
  Retransmissions.  The Initiator-Cookie value MUST be the same in each
  such retransmission to the same IP Destination and UDP Port.

  When Retransmissions have been exceeded, if a Resource_Limit message
  has been received during the exchange, the Initiator SHOULD begin the
  Photuris exchange again by sending a new Cookie_Request with updated
  values.


3.0.2.  Receive Cookie_Request

  On receipt of a Cookie_Request, the Responder determines whether
  there are sufficient resources to begin another Photuris exchange.

  -  When too many SPI values are already in use for this particular
     peer, or too many concurrent exchanges are in progress, or some
     other resource limit is reached, a Resource_Limit message is sent.

  -  When any previous exchange initiated by this particular peer has
     not exceeded the Exchange TimeOut, and the Responder-Cookie does
     not specify one of these previous exchanges, a Resource_Limit
     message is sent.

  Otherwise, the Responder returns a Cookie_Response.

  Note that the Responder creates no additional state at this time.


3.0.3.  Send Cookie_Response

  The IP Source for the Initiator is examined.  If any previous
  exchange between the peer IP nodes has not expired, the response
  Counter is set to the most recent exchange Counter plus one (allowing
  for out of order retransmissions).  Otherwise, the response Counter
  is set to the request Counter plus one.

  If (through rollover of the Counter) the new Counter value is zero
  (modulo 256), the value is set to one.

  If this new Counter value matches some previous exchange initiated by
  this particular peer that has not yet exceeded the Exchange TimeOut,



Karn & Simpson                Experimental                     [Page 15]

RFC 2522                   Photuris Protocol                  March 1999


  the Counter is incremented again, until a unique Counter value is
  reached.

  Nota Bene:
     No more than 254 concurrent exchanges between the same two peers
     are supported.

  The Responder generates a unique cookie.  The Responder-Cookie value
  in each successive response SHOULD be different.  See "Cookie
  Generation" for details.

  The Exchange-Schemes available between the peers are listed in the
  Offered-Schemes.


3.0.4.  Receive Cookie_Response

  The Initiator validates the Initiator-Cookie, and the Offered-
  Schemes.

  -  When an invalid/expired Initiator-Cookie is detected, the message
     is silently discarded.

  -  When the variable length Offered-Schemes do not match the UDP
     Length, or all Offered-Schemes are obviously defective and/or
     insufficient for the purposes intended, the message is silently
     discarded; the implementation SHOULD log the occurance, and notify
     an operator as appropriate.

  -  Once a valid message has been received, later Cookie_Responses
     with matching Initiator-Cookies are also silently discarded, until
     a new Cookie_Request is sent.

  When the message is valid, an Exchange-Scheme is chosen from the list
  of Offered-Schemes.

  This Scheme-Choice may affect the next Photuris message sent.  By
  default, the next Photuris message is a Value_Request.

  Implementation Notes:

     Only the Initiator-Cookie is used to identify the exchange.  The
     Counter and Responder-Cookie will both be different from the
     Cookie_Request.

     Various proposals for extensions utilize the Scheme-Choice to
     indicate a different message sequence.  Such mechanisms are
     outside the scope of this document.



Karn & Simpson                Experimental                     [Page 16]

RFC 2522                   Photuris Protocol                  March 1999


3.1.  Cookie_Request

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |    Counter    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  A randomized value that identifies the
                   exchange.  The value MUST NOT be zero.  See "Cookie
                   Generation" for details.

  Responder-Cookie  16 bytes.  Identifies a specific previous exchange.
                   Copied from a previous Cookie_Response.

                   When zero, no previous exchange is specified.

                   When non-zero, and the Counter is zero, contains the
                   Initiator-Cookie of a previous exchange.  The
                   specified party is requested to be the Responder in
                   this exchange, to retain previous party pairings.

                   When non-zero, and the Counter is also non-zero,
                   contains the Responder-Cookie of a previous
                   exchange.  The specified party is requested to be
                   the Responder in this exchange, to retain previous
                   party pairings.

  Message          0

  Counter          1 byte.  Indicates the number of previous exchanges.

                   When zero, the Responder-Cookie indicates the
                   Initiator of a previous exchange, or no previous
                   exchange is specified.

                   When non-zero, the Responder-Cookie indicates the
                   Responder to a previous exchange.  This value is set
                   to the Counter from the corresponding
                   Cookie_Response or from a Resource_Limit.




Karn & Simpson                Experimental                     [Page 17]

RFC 2522                   Photuris Protocol                  March 1999


3.2.  Cookie_Response

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |    Counter    |  Offered-Schemes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  Copied from the Cookie_Request.

  Responder-Cookie  16 bytes.  A randomized value that identifies the
                   exchange.  The value MUST NOT be zero.  See "Cookie
                   Generation" for details.

  Message          1

  Counter          1 byte.  Indicates the number of the current
                   exchange.  Must be greater than zero.

  Offered-Schemes  4 or more bytes.  A list of one or more Exchange-
                   Schemes supported by the Responder, ordered from
                   most to least preferable.  See the "Basic Exchange-
                   Schemes" for details.

                   Only one Scheme (#2) is required to be supported,
                   and SHOULD be present in every Offered-Schemes list.

                   More than one of each kind of Scheme may be offered,
                   but each is distinguished by its Size.  The end of
                   the list is indicated by the UDP Length.














Karn & Simpson                Experimental                     [Page 18]

RFC 2522                   Photuris Protocol                  March 1999


3.3.  Cookie Generation

  The exact technique by which a Photuris party generates a cookie is
  implementation dependent.  The method chosen must satisfy some basic
  requirements:

  1. The cookie MUST depend on the specific parties.  This prevents an
     attacker from obtaining a cookie using a real IP address and UDP
     port, and then using it to swamp the victim with requests from
     randomly chosen IP addresses or ports.

  2. It MUST NOT be possible for anyone other than the issuing entity
     to generate cookies that will be accepted by that entity.  This
     implies that the issuing entity will use local secret information
     in the generation and subsequent verification of a cookie.  It
     must not be possible to deduce this secret information from any
     particular cookie.

  3. The cookie generation and verification methods MUST be fast to
     thwart attacks intended to sabotage CPU resources.

  A recommended technique is to use a cryptographic hashing function
  (such as MD5).

  An incoming cookie can be verified at any time by regenerating it
  locally from values contained in the incoming datagram and the local
  secret random value.


3.3.1.  Initiator Cookie

  The Initiator secret value that affects its cookie SHOULD change for
  each new Photuris exchange, and is thereafter internally cached on a
  per Responder basis.  This provides improved synchronization and
  protection against replay attacks.

  An alternative is to cache the cookie instead of the secret value.
  Incoming cookies can be compared directly without the computational
  cost of regeneration.

  It is recommended that the cookie be calculated over the secret
  value, the IP Source and Destination addresses, and the UDP Source
  and Destination ports.








Karn & Simpson                Experimental                     [Page 19]

RFC 2522                   Photuris Protocol                  March 1999


  Implementation Notes:

     Although the recommendation includes the UDP Source port, this is
     very implementation specific.  For example, it might not be
     included when the value is constant.

     However, it is important that the implementation protect mutually
     suspicious users of the same machine from generating the same
     cookie.


3.3.2.  Responder Cookie

  The Responder secret value that affects its cookies MAY remain the
  same for many different Initiators.  However, this secret SHOULD be
  changed periodically to limit the time for use of its cookies
  (typically each 60 seconds).

  The Responder-Cookie SHOULD include the Initiator-Cookie.  The
  Responder-Cookie MUST include the Counter (that is returned in the
  Cookie_Response).  This provides improved synchronization and
  protection against replay attacks.

  It is recommended that the cookie be calculated over the secret
  value, the IP Source and Destination addresses, its own UDP
  Destination port, the Counter, the Initiator-Cookie, and the
  currently Offered-Schemes.

  The cookie is not cached per Initiator to avoid saving state during
  the initial Cookie Exchange.  On receipt of a Value_Request
  (described later), the Responder regenerates its cookie for
  validation.

  Once the Value_Response is sent (also described later), both
  Initiator and Responder cookies are cached to identify the exchange.

  Implementation Notes:

     Although the recommendation does not include the UDP Source port,
     this is very implementation specific.  It might be successfully
     included in some variants.

     However, it is important that the UDP Source port not be included
     when matching existing Photuris exchanges for determining the
     appropriate Counter.

     The recommendation includes the Offered-Schemes to detect a
     dynamic change of scheme value between the Cookie_Response and



Karn & Simpson                Experimental                     [Page 20]

RFC 2522                   Photuris Protocol                  March 1999


     Value_Response.

     Some mechanism MAY be needed to detect a dynamic change of pre-
     calculated Responder Exchange-Value between the Value_Response and
     Identity_Response.  For example, change the secret value to render
     the cookie invalid, or explicitly mark the Photuris exchange state
     as expired.


4.  Value Exchange

  Initiator                            Responder
  =========                            =========
  Value_Request                  ->
     pick scheme
     offer value
     offer attributes
                                  <-   Value_Response
                                          offer value
                                          offer attributes

            [generate shared-secret from exchanged values]



4.0.1.  Send Value_Request

  The Initiator generates an appropriate Exchange-Value for the
  Scheme-Choice.  This Exchange-Value may be pre-calculated and used
  for multiple Responders.

  The IP Destination for the Responder is examined, and the attributes
  available between the parties are listed in the Offered-Attributes.

  The Initiator also starts a retransmission timer.  If no valid
  Value_Response arrives within the time limit, the same Value_Request
  is retransmitted for the remaining number of Retransmissions.

  When Retransmissions have been exceeded, if a Bad_Cookie or
  Resource_Limit message has been received during the exchange, the
  Initiator SHOULD begin the Photuris exchange again by sending a new
  Cookie_Request.









Karn & Simpson                Experimental                     [Page 21]

RFC 2522                   Photuris Protocol                  March 1999


4.0.2.  Receive Value_Request

  The Responder validates the Responder-Cookie, the Counter, the
  Scheme-Choice, the Exchange-Value, and the Offered-Attributes.

  -  When an invalid/expired Responder-Cookie is detected, a Bad_Cookie
     message is sent.

  -  When too many SPI values are already in use for this particular
     peer, or too many concurrent exchanges are in progress, or some
     other resource limit is reached, a Resource_Limit message is sent.

  -  When an invalid Scheme-Choice is detected, or the Exchange-Value
     is obviously defective, or the variable length Offered-Attributes
     do not match the UDP Length, the message is silently discarded;
     the implementation SHOULD log the occurance, and notify an
     operator as appropriate.

  When the message is valid, the Responder sets its Exchange timer to
  the Exchange TimeOut, and returns a Value_Response.

  The Responder keeps a copy of the incoming Value_Request cookie pair,
  and its Value_Response.  If a duplicate Value_Request is received, it
  merely resends its previous Value_Response, and takes no further
  action.


4.0.3.  Send Value_Response

  The Responder generates an appropriate Exchange-Value for the
  Scheme-Choice.  This Exchange-Value may be pre-calculated and used
  for multiple Initiators.

  The IP Source for the Initiator is examined, and the attributes
  available between the parties are listed in the Offered-Attributes.

  Implementation Notes:

     At this time, the Responder begins calculation of the shared-
     secret.  Calculation of the shared-secret is executed in parallel
     to minimize delay.

     This may take a substantial amount of time.  The implementor
     should ensure that retransmission is not blocked by this
     calculation.  This is not usually a problem, as retransmission
     timeouts typically exceed calculation time.





Karn & Simpson                Experimental                     [Page 22]

RFC 2522                   Photuris Protocol                  March 1999


4.0.4.  Receive Value_Response

  The Initiator validates the pair of Cookies, the Exchange-Value, and
  the Offered-Attributes.

  -  When an invalid/expired cookie is detected, the message is
     silently discarded.

  -  When the Exchange-Value is obviously defective, or the variable
     length Offered-Attributes do not match the UDP Length, the message
     is silently discarded; the implementation SHOULD log the
     occurance, and notify an operator as appropriate.

  -  Once a valid message has been received, later Value_Responses with
     both matching cookies are also silently discarded, until a new
     Cookie_Request is sent.

  When the message is valid, the Initiator begins its parallel
  computation of the shared-secret.

  When the Initiator completes computation, it sends an
  Identity_Request to the Responder.





























Karn & Simpson                Experimental                     [Page 23]

RFC 2522                   Photuris Protocol                  March 1999


4.1.  Value_Request

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |    Counter    |         Scheme-Choice         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Initiator-Exchange-Value                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Initiator-Offered-Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Initiator-Cookie  16 bytes.  Copied from the Cookie_Response.

  Responder-Cookie  16 bytes.  Copied from the Cookie_Response.

  Message          2

  Counter          1 byte.  Copied from the Cookie_Response.

  Scheme-Choice    2 bytes.  A value selected by the Initiator from the
                   list of Offered-Schemes in the Cookie_Response.

                   Only the Scheme is specified; the Size will match
                   the Initiator-Exchange-Value, and the Value(s) are
                   implicit.

  Initiator-Exchange-Value
                   Variable Precision Integer.  Provided by the
                   Initiator for calculating a shared-secret between
                   the parties.  The Value format is indicated by the
                   Scheme-Choice.

                   The field may be any integral number of bytes in
                   length, as indicated by its Size field.  It does not
                   require any particular alignment.  The 32-bit
                   alignment shown is for convenience in the
                   illustration.




Karn & Simpson                Experimental                     [Page 24]

RFC 2522                   Photuris Protocol                  March 1999


  Initiator-Offered-Attributes
                   4 or more bytes.  A list of Security Parameter
                   attributes supported by the Initiator.

                   The contents and usage of this list are further
                   described in "Offered Attributes List".  The end of
                   the list is indicated by the UDP Length.



4.2.  Value_Response

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |                    Reserved                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Responder-Exchange-Value                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Responder-Offered-Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Initiator-Cookie  16 bytes.  Copied from the Value_Request.

  Responder-Cookie  16 bytes.  Copied from the Value_Request.

  Message          3

  Reserved         3 bytes.  For future use; MUST be set to zero when
                   transmitted, and MUST be ignored when received.

  Responder-Exchange-Value
                   Variable Precision Integer.  Provided by the
                   Responder for calculating a shared-secret between
                   the parties.  The Value format is indicated by the
                   current Scheme-Choice specified in the
                   Value_Request.

                   The field may be any integral number of bytes in



Karn & Simpson                Experimental                     [Page 25]

RFC 2522                   Photuris Protocol                  March 1999


                   length, as indicated by its Size field.  It does not
                   require any particular alignment.  The 32-bit
                   alignment shown is for convenience in the
                   illustration.

  Responder-Offered-Attributes
                   4 or more bytes.  A list of Security Parameter
                   attributes supported by the Responder.

                   The contents and usage of this list are further
                   described in "Offered Attributes List".  The end of
                   the list is indicated by the UDP Length.



4.3.  Offered Attribute List

  This list includes those attributes supported by the party that are
  available to the other party.  The attribute formats are specified in
  the "Basic Attributes".

  The list is composed of two or three sections: Identification-
  Attributes, Authentication-Attributes, and (optional) Encapsulation-
  Attributes.  Within each section, the attributes are ordered from
  most to least preferable.

  The first section of the list includes methods of identification.  An
  Identity-Choice is selected from this list.

  The second section of the list begins with "AH-Attributes" (#1).  It
  includes methods of authentication, and other operational types.

  The third section of the list begins with "ESP-Attributes" (#2).  It
  includes methods of authentication, compression, encryption, and
  other operational types.  When no Encapsulation-Attributes are
  offered, the "ESP-Attributes" attribute itself is omitted from the
  list.

  Attribute-Choices are selected from the latter two sections of the
  list.

  Support is required for the "MD5-IPMAC" (#5) attribute for both
  "Symmetric Identification" and "Authentication" and they SHOULD be
  present in every Offered-Attributes list.







Karn & Simpson                Experimental                     [Page 26]

RFC 2522                   Photuris Protocol                  March 1999


  Implementation Notes:

     For example,

        "MD5-IPMAC" (Symmetric Identification),
        "AH-Attributes",
        "MD5-IPMAC" (Authentication).

     Since the offer is made by the prospective SPI User (sender),
     order of preference likely reflects the capabilities and
     engineering tradeoffs of a particular implementation.

     However, the critical processing bottlenecks are frequently in the
     receiver.  The SPI Owner (receiver) may express its needs by
     choosing a less preferable attribute.

     The order may also be affected by operational policy and requested
     services for an application.  Such considerations are outside the
     scope of this document.

     The list may be divided into additional sections.  These sections
     will always follow the ESP-Attributes section, and are
     indistinguishable from unrecognized attributes.

     The authentication, compression, encryption and identification
     mechanisms chosen, as well as the encapsulation modes (if any),
     need not be the same in both directions.
























Karn & Simpson                Experimental                     [Page 27]

RFC 2522                   Photuris Protocol                  March 1999


5.  Identification Exchange

  Initiator                            Responder
  =========                            =========
  Identity_Request               ->
     make SPI
     pick SPI attribute(s)
     identify self
     authenticate
     make privacy key(s)
     mask/encrypt message
                                  <-   Identity_Response
                                          make SPI
                                          pick SPI attribute(s)
                                          identify self
                                          authenticate
                                          make privacy key(s)
                                          mask/encrypt message

              [make SPI session-keys in each direction]

  The exchange of messages is ordered, although the formats and
  meanings of the messages are identical in each direction.  The
  messages are easily distinguished by the parties themselves, by
  examining the Message and Identification fields.

  Implementation Notes:

     The amount of time for the calculation may be dependent on the
     value of particular bits in secret values used in generating the
     shared-secret or identity verification.  To prevent analysis of
     these secret bits by recording the time for calculation, sending
     of the Identity_Messages SHOULD be delayed until the time expected
     for the longest calculation.  This will be different for different
     processor speeds, different algorithms, and different length
     variables.  Therefore, the method for estimating time is
     implementation dependent.

     Any authenticated and/or encrypted user datagrams received before
     the completion of identity verification can be placed on a queue
     pending completion of this step.  If verification succeeds, the
     queue is processed as though the datagrams had arrived subsequent
     to the verification.  If verification fails, the queue is
     discarded.







Karn & Simpson                Experimental                     [Page 28]

RFC 2522                   Photuris Protocol                  March 1999


5.0.1.  Send Identity_Request

  The Initiator chooses an appropriate Identification, the SPI and
  SPILT, a set of Attributes for the SPI, calculates the Verification,
  and masks the message using the Privacy-Method indicated by the
  current Scheme-Choice.

  The Initiator also starts a retransmission timer.  If no valid
  Identity_Response arrives within the time limit, its previous
  Identity_Request is retransmitted for the remaining number of
  Retransmissions.

  When Retransmissions have been exceeded, if a Bad_Cookie message has
  been received during the exchange, the Initiator SHOULD begin the
  Photuris exchange again by sending a new Cookie_Request.


5.0.2.  Receive Identity_Request

  The Responder validates the pair of Cookies, the Padding, the
  Identification, the Verification, and the Attribute-Choices.

  -  When an invalid/expired cookie is detected, a Bad_Cookie message
     is sent.

  -  After unmasking, when invalid Padding is detected, the variable
     length Attribute-Choices do not match the UDP Length, or an
     attribute was not in the Offered-Attributes, the message is
     silently discarded.

  -  When an invalid Identification is detected, or the message
     verification fails, a Verification_Failure message is sent.

  -  Whenever such a problem is detected, the Security Association is
     not established; the implementation SHOULD log the occurance, and
     notify an operator as appropriate.

  When the message is valid, the Responder sets its Exchange timer to
  the Exchange LifeTime (if this has not already been done for a
  previous exchange).  When its parallel computation of the shared-
  secret is complete, the Responder returns an Identity_Response.

  The Responder keeps a copy of the incoming Identity_Request values,
  and its Identity_Response.  If a duplicate Identity_Request is
  received, it merely resends its previous Identity_Response, and takes
  no further action.





Karn & Simpson                Experimental                     [Page 29]

RFC 2522                   Photuris Protocol                  March 1999


5.0.3.  Send Identity_Response

  The Responder chooses an appropriate Identification, the SPI and
  SPILT, a set of Attributes for the SPI, calculates the Verification,
  and masks the message using the Privacy-Method indicated by the
  current Scheme-Choice.

  The Responder calculates the SPI session-keys in both directions.

  At this time, the Responder begins the authentication and/or
  encryption of user datagrams.


5.0.4.  Receive Identity_Response

  The Initiator validates the pair of Cookies, the Padding, the
  Identification, the Verification, and the Attribute-Choices.

  -  When an invalid/expired cookie is detected, the message is
     silently discarded.

  -  After unmasking, when invalid Padding is detected, the variable
     length Attribute-Choices do not match the UDP Length, or an
     attribute was not in the Offered-Attributes, the message is
     silently discarded.

  -  When an invalid Identification is detected, or the message
     verification fails, a Verification_Failure message is sent.

  -  Whenever such a problem is detected, the Security Association is
     not established; the implementation SHOULD log the occurance, and
     notify an operator as appropriate.

  -  Once a valid message has been received, later Identity_Responses
     with both matching cookies are also silently discarded, until a
     new Cookie_Request is sent.

  When the message is valid, the Initiator sets its Exchange timer to
  the Exchange LifeTime (if this has not already been done for a
  previous exchange).

  The Initiator calculates the SPI session-keys in both directions.

  At this time, the Initiator begins the authentication and/or
  encryption of user datagrams.






Karn & Simpson                Experimental                     [Page 30]

RFC 2522                   Photuris Protocol                  March 1999


5.1.  Identity_Messages

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |                    LifeTime                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Security-Parameters-Index                   |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |        Identity-Choice        |                               |
  + + + + + + + + + + + + + + + + +                               +
  |                                                               |
  ~                        Identification                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Verification                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attribute-Choices ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                     ... Padding  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  Copied from the Value_Request.

  Responder-Cookie  16 bytes.  Copied from the Value_Request.

  Message          4 (Request) or 7 (Response)

  LifeTime         3 bytes.  The number of seconds remaining before the
                   indicated SPI expires.

                   When the SPI is zero, this field MUST be filled with
                   a random non-zero value.

  Security-Parameters-Index (SPI)
                   4 bytes.  The SPI to be used for incoming
                   communications.

                   When zero, indicates that no SPI is created in this



Karn & Simpson                Experimental                     [Page 31]

RFC 2522                   Photuris Protocol                  March 1999


                   direction.

  Identity-Choice  2 or more bytes.  An identity attribute is selected
                   from the list of Offered-Attributes sent by the
                   peer, and is used to calculate the Verification.

                   The field may be any integral number of bytes in
                   length, as indicated by its Length field.  It does
                   not require any particular alignment.  The 16-bit
                   alignment shown is for convenience in the
                   illustration.

  Identification   Variable Precision Integer, or alternative format
                   indicated by the Identity-Choice.  See the "Basic
                   Attributes" for details.

                   The field may be any integral number of bytes in
                   length.  It does not require any particular
                   alignment.  The 32-bit alignment shown is for
                   convenience in the illustration.

  Verification     Variable Precision Integer, or alternative format
                   indicated by the Identity-Choice.  The calculation
                   of the value is described in "Identity
                   Verification".

                   The field may be any integral number of bytes in
                   length.  It does not require any particular
                   alignment.  The 32-bit alignment shown is for
                   convenience in the illustration.

  Attribute-Choices
                   0 or more bytes.  When the SPI is non-zero, a list
                   of attributes selected from the list of Offered-
                   Attributes supported by the peer.

                   The contents and usage of this list are further
                   described in "Attribute Choices List".  The end of
                   the list is indicated by the UDP Length after
                   removing the Padding (UDP Length - last Padding
                   value).

  Padding          8 to 255 bytes.  This field is filled up to at least
                   a 128 byte boundary, measured from the beginning of
                   the message.  The number of pad bytes are chosen
                   randomly.

                   In addition, when a Privacy-Method indicated by the



Karn & Simpson                Experimental                     [Page 32]

RFC 2522                   Photuris Protocol                  March 1999


                   current Scheme-Choice requires the plaintext to be a
                   multiple of some number of bytes (the block size of
                   a block cipher), this field is adjusted as necessary
                   to the size required by the algorithm.

                   Self-Describing-Padding begins with the value 1.
                   Each byte contains the index of that byte.  Thus,
                   the final pad byte indicates the number of pad bytes
                   to remove.  For example, when the unpadded message
                   length is 120 bytes, the padding values might be 1,
                   2, 3, 4, 5, 6, 7, and 8.

  The portion of the message after the SPI field is masked using the
  Privacy-Method indicated by the current Scheme-Choice.

  The fields following the SPI are opaque.  That is, the values are set
  prior to masking (and optional encryption), and examined only after
  unmasking (and optional decryption).


5.2.  Attribute Choices List

  This list specifies the attributes of the SPI.  The attribute formats
  are specified in the "Basic Attributes".

  The list is composed of one or two sections: Authentication-
  Attributes, and/or Encapsulation-Attributes.

  When sending from the SPI User to the SPI Owner, the attributes are
  processed in the order listed.  For example,

     "ESP-Attributes",
     "Deflate" (Compression),
     "XOR" (Encryption),
     "DES-CBC" (Encryption),
     "XOR" (Encryption),
     "AH-Attributes",
     "AH-Sequence",
     "MD5-IPMAC" (Authentication),

  would result in ESP with compression and triple encryption (inside),
  and then AH authentication with sequence numbers (outside) of the ESP
  payload.

  The SPI Owner will naturally process the datagram in the reverse
  order.

  This ordering also affects the order of key generation.  Both SPI



Karn & Simpson                Experimental                     [Page 33]

RFC 2522                   Photuris Protocol                  March 1999


  Owner and SPI User generate the keys in the order listed.

  Implementation Notes:

     When choices are made from the list of Offered-Attributes, it is
     not required that any Security Association include every kind of
     offered attribute in any single SPI, or that a separate SPI be
     created for every offered attribute.

     Some kinds of attributes may be included more than once in a
     single SPI.  The set of allowable combinations of attributes are
     dependent on implementation and operational policy.  Such
     considerations are outside the scope of this document.

     The list may be divided into additional sections.  This can occur
     only when both parties recognize the affected attributes.

     The authentication, compression, encryption and identification
     mechanisms chosen, as well as the encapsulation modes (if any),
     need not be the same in both directions.


5.3.  Shared-Secret

  A shared-secret is used in a number of calculations.  Regardless of
  the internal representation of the shared-secret, when used in
  calculations it is in the same form as the Value part of a Variable
  Precision Integer:

   - most significant byte first.
   - bits used are right justified within byte boundaries.
   - any unused bits are in the most significant byte.
   - unused bits are zero filled.

  The shared-secret does not include a Size field.


5.4.  Identity Verification

  These messages are authenticated using the Identity-Choice.  The
  Verification value is calculated prior to masking (and optional
  encryption), and verified after unmasking (and optional decryption).

  The Identity-Choice authentication function is supplied with two
  input values:

   - the sender (SPI Owner) verification-key,
   - the data to be verified (as a concatenated sequence of bytes).



Karn & Simpson                Experimental                     [Page 34]

RFC 2522                   Photuris Protocol                  March 1999


  The resulting output value is stored in the Verification field.

  The Identity-Choice verification data consists of the following
  concatenated values:

   + the Initiator Cookie,
   + the Responder Cookie,
   + the Message, LifeTime and SPI fields,
   + the Identity-Choice and Identification,
   + the SPI User Identity Verification (response only),
   + the Attribute-Choices following the Verification field,
   + the Padding,
   + the SPI Owner TBV,
   + the SPI Owner Exchange-Value,
   + the SPI Owner Offered-Attributes,
   + the SPI User TBV,
   + the SPI User Exchange-Value,
   + the SPI User Offered-Attributes,
   + the Responder Offered-Schemes.

  The TBV (Three Byte Value) consists of the Counter and Scheme-Choice
  fields from the Value_Request, or the Reserved field from the
  Value_Response, immediately preceding the associated Exchange-Value.

  Note that the order of the Exchange-Value and Offered-Attributes
  fields is different in each direction, and the Identification and SPI
  fields are also likely to be different in each direction.  Note also
  that the SPI User Identity Verification (from the Identity_Request)
  is present only in the Identity_Response.

  If the verification fails, the users are notified, and a
  Verification_Failure message is sent, without adding any SPI.  On
  success, normal operation begins with the authentication and/or
  encryption of user datagrams.

  Implementation Notes:

     This is distinct from any authentication method specified for the
     SPI.

     The exact details of the Identification and verification-key
     included in the Verification calculation are dependent on the
     Identity-Choice, as described in the "Basic Attributes".

     Each party may wish to keep their own trusted databases, such as
     the Pretty Good Privacy (PGP) web of trust, and accept only those
     identities found there.  Failure to find the Identification in
     either an internal or external database results in the same



Karn & Simpson                Experimental                     [Page 35]

RFC 2522                   Photuris Protocol                  March 1999


     Verification_Failure message as failure of the verification
     computation.

     The Exchange-Value data includes both the Size and Value fields.
     The Offered-Attributes and Attribute-Choices data includes the
     Attribute, Length and Value fields.


5.5.  Privacy-Key Computation

  Identification Exchange messages are masked using the Privacy-Method
  indicated by the current Scheme-Choice.  Masking begins with the next
  field after the SPI, and continues to the end of the data indicated
  by the UDP Length, including the Padding.

  The Scheme-Choice specified Key-Generation-Function is used to create
  a special privacy-key for each message.  This function is calculated
  over the following concatenated values:

   + the SPI Owner Exchange-Value,
   + the SPI User Exchange-Value,
   + the Initiator Cookie,
   + the Responder Cookie,
   + the Message, LifeTime and SPI (or Reserved) fields,
   + the computed shared-secret.

  Since the order of the Exchange-Value fields is different in each
  direction, and the Message, LifeTime and SPI fields are also
  different in each direction, the resulting privacy-key will usually
  be different in each direction.

  When a larger number of keying-bits are needed than are available
  from one iteration of the specified Key-Generation-Function, more
  keying-bits are generated by duplicating the trailing shared-secret,
  and recalculating the function.  That is, the first iteration will
  have one trailing copy of the shared-secret, the second iteration
  will have two trailing copies of the shared-secret, and so forth.

  Implementation Notes:

     This is distinct from any encryption method specified for the SPI.

     The length of the Padding, and other details, are dependent on the
     Privacy-Method.  See the "Basic Privacy-Method" list for details.

     To avoid keeping the Exchange-Values in memory after the initial
     verification, it is often possible to pre-compute the function
     over the initial bytes of the concatenated data values for each



Karn & Simpson                Experimental                     [Page 36]

RFC 2522                   Photuris Protocol                  March 1999


     direction, and append the trailing copies of the shared-secret.

     The Exchange-Value data includes both the Size and Value fields.


5.6.  Session-Key Computation

  Each SPI has one or more session-keys.  These keys are generated
  based on the attributes of the SPI.  See the "Basic Attributes" for
  details.

  The Scheme-Choice specified Key-Generation-Function is used to create
  the SPI session-key for that particular attribute.  This function is
  calculated over the following concatenated values:

   + the Initiator Cookie,
   + the Responder Cookie,
   + the SPI Owner generation-key,
   + the SPI User generation-key,
   + the message Verification field,
   + the computed shared-secret.

  Since the order of the generation-keys is different in each
  direction, and the Verification field is also likely to be different
  in each direction, the resulting session-key will usually be
  different in each direction.

  When a larger number of keying-bits are needed than are available
  from one iteration of the specified Key-Generation-Function, more
  keying-bits are generated by duplicating the trailing shared-secret,
  and recalculating the function.  That is, the first iteration will
  have one trailing copy of the shared-secret, the second iteration
  will have two trailing copies of the shared-secret, and so forth.

  Implementation Notes:

     This is distinct from any privacy-key generated for the Photuris
     exchange.  Different initialization data is used, and iterations
     are maintained separately.

     The exact details of the Verification field and generation-keys
     that are included in the session-key calculation are dependent on
     the Identity-Choices, as described in the "Basic Attributes".

     To avoid keeping the generation-keys in memory after the initial
     verification, it is often possible to pre-compute the function
     over the initial bytes of the concatenated data values for each
     direction, and append the trailing copies of the shared-secret.



Karn & Simpson                Experimental                     [Page 37]

RFC 2522                   Photuris Protocol                  March 1999


     When both authentication and encryption attributes are used for
     the same SPI, there may be multiple session-keys associated with
     the same SPI.  These session-keys are generated in the order of
     the Attribute-Choices list.


6.  SPI Messages

  SPI User                             SPI Owner
  ========                             =========
  SPI_Needed                     ->
     list SPI attribute(s)
     make validity key
     authenticate
     make privacy key(s)
     mask/encrypt message
                                  <-   SPI_Update
                                          make SPI
                                          pick SPI attribute(s)
                                          make SPI session-key(s)
                                          make validity key
                                          authenticate
                                          make privacy key(s)
                                          mask/encrypt message

  The exchange of messages is not related to the Initiator and
  Responder.  Instead, either party may send one of these messages at
  any time.  The messages are easily distinguished by the parties.


6.0.1.  Send SPI_Needed

  At any time after completion of the Identification Exchange, either
  party can send SPI_Needed.  This message is sent when a prospective
  SPI User needs particular attributes for a datagram (such as
  confidentiality), and no current SPI has those attributes.

  The prospective SPI User selects from the intersection of attributes
  that both parties have previously offered, calculates the
  Verification, and masks the message using the Privacy-Method
  indicated by the current Scheme-Choice.










Karn & Simpson                Experimental                     [Page 38]

RFC 2522                   Photuris Protocol                  March 1999


6.0.2.  Receive SPI_Needed

  The potential SPI Owner validates the pair of Cookies, the Padding,
  the Verification, and the Attributes-Needed.

  -  When an invalid/expired cookie is detected, a Bad_Cookie message
     is sent.

  -  When too many SPI values are already in use for this particular
     peer, or some other resource limit is reached, a Resource_Limit
     message is sent.

  -  After unmasking, when invalid Padding is detected, the variable
     length Attributes-Needed do not match the UDP Length, or an
     attribute was not in the Offered-Attributes, the message is
     silently discarded.

  -  When the message verification fails, a Verification_Failure
     message is sent.

  -  Whenever such a problem is detected, the SPI is not established;
     the implementation SHOULD log the occurance, and notify an
     operator as appropriate.

  When the message is valid, the party SHOULD send SPI_Update with the
  necessary attributes.

  If an existing SPI has those attributes, that SPI is returned in the
  SPI_Update with the remaining SPILT.


6.0.3.  Send SPI_Update

  At any time after completion of the Identification Exchange, either
  party can send SPI_Update.  This message has effect in only one
  direction, from the SPI Owner to the SPI User.

  The SPI Owner chooses the SPI and SPILT, a set of Attributes for the
  SPI, calculates the Verification, and masks the message using the
  Privacy-Method indicated by the current Scheme-Choice.


6.0.4.  Receive SPI_Update

  The prospective SPI User validates the pair of Cookies, the Padding,
  the Verification, and the Attributes-Needed.

  -  When an invalid/expired cookie is detected, a Bad_Cookie message



Karn & Simpson                Experimental                     [Page 39]

RFC 2522                   Photuris Protocol                  March 1999


     is sent.

  -  After unmasking, when invalid Padding is detected, the variable
     length Attribute-Choices do not match the UDP Length, an attribute
     was not in the Offered-Attributes, or the message modifies an
     existing SPI, the message is silently discarded.

  -  When the message verification fails, a Verification_Failure
     message is sent.

  -  Whenever such a problem is detected, the SPI is not established;
     the implementation SHOULD log the occurance, and notify an
     operator as appropriate.

  When the message is valid, further actions are dependent on the value
  of the LifeTime field, as described later.


6.0.5.  Automated SPI_Updates

  Each SPI requires replacement under several circumstances:

  -  the volume of data processed (inhibiting probability
     cryptanalysis),

  -  exhaustion of available anti-replay Sequence Numbers,

  -  and expiration of the LifeTime.

  In general, a determination is made upon receipt of a datagram.  If
  the transform specific processing finds that refreshment is needed,
  an automated SPI_Update is triggered.

  In addition, automated SPI_Updates allow rapid SPI refreshment for
  high bandwidth applications in a high delay environment.  The update
  messages flow in the opposite direction from the primary traffic,
  conserving bandwidth and avoiding service interruption.

  When creating each SPI, the implementation MAY optionally set an
  Update TimeOut (UTO); by default, to half the value of the LifeTime
  (SPILT/2).  This time is highly dynamic, and adjustable to provide an
  automated SPI_Update long before transform specific processing.  If
  no new Photuris exchange occurs within the time limit, and the
  current exchange state has not expired, an automated SPI_Update is
  sent.






Karn & Simpson                Experimental                     [Page 40]

RFC 2522                   Photuris Protocol                  March 1999


6.1.  SPI_Needed

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |                  Reserved-LT                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Reserved-SPI                          |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                                                               |
  ~                         Verification                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes-Needed ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                     ... Padding  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  Copied from the Value_Request.

  Responder-Cookie  16 bytes.  Copied from the Value_Request.

  Message          8

  Reserved-LT      3 bytes.  For future use; MUST be filled with a
                   random non-zero value when transmitted, and MUST be
                   ignored when received.

  Reserved-SPI     4 bytes.  For future use; MUST be set to zero when
                   transmitted, and MUST be ignored when received.

  Verification     Variable Precision Integer, or other format
                   indicated by the current Scheme-Choice.  The
                   calculation of the value is described in "Validity
                   Verification".

                   The field may be any integral number of bytes in
                   length.  It does not require any particular
                   alignment.  The 32-bit alignment shown is for
                   convenience in the illustration.




Karn & Simpson                Experimental                     [Page 41]

RFC 2522                   Photuris Protocol                  March 1999


  Attributes-Needed
                   4 or more bytes.  A list of two or more attributes,
                   selected from the list of Offered-Attributes
                   supported by the peer.

                   The contents and usage of this list are as
                   previously described in "Attribute Choices List".
                   The end of the list is indicated by the UDP Length
                   after removing the Padding (UDP Length - last
                   Padding value).

  Padding          8 or more bytes.  The message is padded in the same
                   fashion specified for Identification Exchange
                   messages.

  The portion of the message after the SPI field is masked using the
  Privacy-Method indicated by the current Scheme-Choice.

  The fields following the SPI are opaque.  That is, the values are set
  prior to masking (and optional encryption), and examined only after
  unmasking (and optional decryption).






























Karn & Simpson                Experimental                     [Page 42]

RFC 2522                   Photuris Protocol                  March 1999


6.2.  SPI_Update

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |                    LifeTime                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Security-Parameters-Index                   |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                                                               |
  ~                         Verification                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attribute-Choices ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                                     ... Padding  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  Copied from the Value_Request.

  Responder-Cookie  16 bytes.  Copied from the Value_Request.

  Message          9

  LifeTime         3 bytes.  The number of seconds remaining before the
                   indicated SPI expires.  The value zero indicates
                   deletion of the indicated SPI.

  Security-Parameters-Index (SPI)
                   4 bytes.  The SPI to be used for incoming
                   communications.

                   This may be a new SPI value (for creation), or an
                   existing SPI value (for deletion).  The value zero
                   indicates special processing.

  Verification     Variable Precision Integer, or other format
                   indicated by the current Scheme-Choice.  The
                   calculation of the value is described in "Validity
                   Verification".




Karn & Simpson                Experimental                     [Page 43]

RFC 2522                   Photuris Protocol                  March 1999


                   The field may be any integral number of bytes in
                   length.  It does not require any particular
                   alignment.  The 32-bit alignment shown is for
                   convenience in the illustration.

  Attribute-Choices
                   0 or more bytes.  When the SPI and SPILT are non-
                   zero, a list of attributes selected from the list of
                   Offered-Attributes supported by the peer.

                   The contents and usage of this list are as
                   previously described in "Attribute Choices List".
                   The end of the list is indicated by the UDP Length
                   after removing the Padding (UDP Length - last
                   Padding value).

  Padding          8 or more bytes.  The message is padded in the same
                   fashion specified for Identification Exchange
                   messages.

  The portion of the message after the SPI field is masked using the
  Privacy-Method indicated by the current Scheme-Choice.

  The fields following the SPI are opaque.  That is, the values are set
  prior to masking (and optional encryption), and examined only after
  unmasking (and optional decryption).


6.2.1.  Creation

  When the LifeTime is non-zero, and the SPI is also non-zero, the
  SPI_Update can be used to create a new SPI.  When the SPI is zero,
  the SPI_Update is silently discarded.

  The new session-keys are calculated in the same fashion as the
  Identity_Messages.  Since the SPI value is always different than any
  previous SPI during the Exchange LifeTime of the shared-secret, the
  resulting session-keys will necessarily be different from all others
  used in the same direction.

  No retransmission timer is necessary.  Success is indicated by the
  peer use of the new SPI.

  Should all creation attempts fail, eventually the peer will find that
  all existing SPIs have expired, and will begin the Photuris exchange
  again by sending a new Cookie_Request.  When appropriate, this
  Cookie_Request MAY include a Responder-Cookie to retain previous
  party pairings.



Karn & Simpson                Experimental                     [Page 44]

RFC 2522                   Photuris Protocol                  March 1999


6.2.2.  Deletion

  When the LifeTime is zero, the SPI_Update can be used to delete a
  single existing SPI.  When the SPI is also zero, the SPI_Update will
  delete all existing SPIs related to this Security Association, and
  mark the Photuris exchange state as expired.  This is especially
  useful when the application that needed them terminates.

  No retransmission timer is necessary.  This message is advisory, to
  reduce the number of ICMP Security Failures messages.

  Should any deletion attempts fail, the peer will learn that the
  deleted SPIs are invalid through the normal ICMP Security Failures
  messages, and will initiate a Photuris exchange by sending a new
  Cookie_Request.


6.2.3.  Modification

  The SPI_Update cannot be used to modify existing SPIs, such as
  lengthen an existing SPI LifeTime, resurrect an expired SPI, or
  add/remove an Attribute-Choice.

  On receipt, such an otherwise valid message is silently discarded.


6.3.  Validity Verification

  These messages are authenticated using the Validity-Method indicated
  by the current Scheme-Choice.  The Verification value is calculated
  prior to masking (and optional encryption), and verified after
  unmasking (and optional decryption).

  The Validity-Method authentication function is supplied with two
  input values:

   - the sender (SPI Owner) verification-key,
   - the data to be verified (as a concatenated sequence of bytes).

  The resulting output value is stored in the Verification field.

  The Validity-Method verification data consists of the following
  concatenated values:








Karn & Simpson                Experimental                     [Page 45]

RFC 2522                   Photuris Protocol                  March 1999



   + the Initiator Cookie,
   + the Responder Cookie,
   + the Message, LifeTime and SPI (or Reserved) fields,
   + the SPI Owner Identity Verification,
   + the SPI User Identity Verification,
   + the Attribute-Choices following the Verification field,
   + the Padding.

  Note that the order of the Identity Verification fields (from the
  Identity_Messages) is different in each direction, and the Message,
  LifeTime and SPI fields are also likely to be different in each
  direction.

  If the verification fails, the users are notified, and a
  Verification_Failure message is sent, without adding or deleting any
  SPIs.  On success, normal operation begins with the authentication
  and/or encryption of user datagrams.

  Implementation Notes:

     This is distinct from any authentication method specified for the
     SPI.

     The Identity Verification data includes both the Size and Value
     fields.  The Attribute-Choices data includes the Attribute, Length
     and Value fields.


7.  Error Messages

  These messages are issued in response to Photuris state loss or other
  problems.  A message has effect in only one direction.  No
  retransmission timer is necessary.

  These messages are not masked.

  The receiver checks the Cookies for validity.  Special care MUST be
  taken that the Cookie pair in the Error Message actually match a pair
  currently in use, and that the protocol is currently in a state where
  such an Error Message might be expected.  Otherwise, these messages
  could provide an opportunity for a denial of service attack.  Invalid
  messages are silently discarded.








Karn & Simpson                Experimental                     [Page 46]

RFC 2522                   Photuris Protocol                  March 1999


7.1.  Bad_Cookie

  For the format of the 33 byte message, see "Header Format".  There
  are no additional fields.

  Initiator-Cookie  16 bytes.  Copied from the offending message.

  Responder-Cookie  16 bytes.  Copied from the offending message.

  Message          10

  This error message is sent when a Value_Request, Identity_Request,
  SPI_Needed, or SPI_Update is received, and the receiver specific
  Cookie is invalid or the associated exchange state has expired.

  During the Photuris exchange, when this error message is received, it
  has no immediate effect on the operation of the protocol phases.
  Later, when Retransmissions have been exceeded, and this error
  message has been received, the Initiator SHOULD begin the Photuris
  exchange again by sending a new Cookie_Request with the Responder-
  Cookie and Counter updated appropriately.

  When this error message is received in response to SPI_Needed, the
  exchange state SHOULD NOT be marked as expired, but the party SHOULD
  initiate a Photuris exchange by sending a new Cookie_Request.

  When this error message is received in response to SPI_Update, the
  exchange state SHOULD NOT be marked as expired, and no further action
  is taken.  A new exchange will be initiated later when needed by the
  peer to send authenticated and/or encrypted data.

  Existing SPIs are not deleted.  They expire normally, and are purged
  sometime later.


7.2.  Resource_Limit

  For the format of the 34 byte message, see "Cookie_Request".  There
  are no additional fields.

  Initiator-Cookie  16 bytes.  Copied from the offending message.

  Responder-Cookie  16 bytes.  Copied from the offending message.

                   Special processing is applied to a Cookie_Request.
                   When the offending message Responder-Cookie and
                   Counter were both zero, and an existing exchange has
                   not yet been purged, this field is replaced with the



Karn & Simpson                Experimental                     [Page 47]

RFC 2522                   Photuris Protocol                  March 1999


                   Responder-Cookie from the existing exchange.

  Message          11

  Counter          1 byte.  Copied from the offending message.

                   When zero, the Responder-Cookie indicates the
                   Initiator of a previous exchange, or no previous
                   exchange is specified.

                   When non-zero, the Responder-Cookie indicates the
                   Responder to a previous exchange.  This value is set
                   to the Counter from the corresponding
                   Cookie_Response.

  This error message is sent when a Cookie_Request, Value_Request or
  SPI_Needed is received, and too many SPI values are already in use
  for that peer, or some other Photuris resource is unavailable.

  During the Photuris exchange, when this error message is received in
  response to a Cookie_Request or Value_Request, the implementation
  SHOULD double the retransmission timeout (as usual) for sending
  another Cookie_Request or Value_Request.  Otherwise, it has no
  immediate effect on the operation of the protocol phases.  Later,
  when Retransmissions have been exceeded, and this error message has
  been received, the Initiator SHOULD begin the Photuris exchange again
  by sending a new Cookie_Request with the Responder-Cookie and Counter
  updated appropriately.

  When this error message is received in response to SPI_Needed, the
  implementation SHOULD NOT send another SPI_Needed until one of the
  existing SPIs associated with this exchange is deleted or has
  expired.


7.3.  Verification_Failure

  For the format of the 33 byte message, see "Header Format".  There
  are no additional fields.

  Initiator-Cookie  16 bytes.  Copied from the offending message.

  Responder-Cookie  16 bytes.  Copied from the offending message.

  Message          12

  This error message is sent when an Identity_Message, SPI_Needed or
  SPI_Update is received, and verification fails.



Karn & Simpson                Experimental                     [Page 48]

RFC 2522                   Photuris Protocol                  March 1999


  When this error message is received, the implementation SHOULD log
  the occurance, and notify an operator as appropriate.  However,
  receipt has no effect on the operation of the protocol.


7.4.  Message_Reject

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Initiator-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Responder-Cookie                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Message    |  Bad-Message  |             Offset            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Initiator-Cookie  16 bytes.  Copied from the offending message.

  Responder-Cookie  16 bytes.  Copied from the offending message.

  Message          13

  Bad-Message      1 byte.  Indicates the Message number of the
                   offending message.

  Offset           2 bytes.  The number of bytes from the beginning of
                   the offending message where the unrecognized field
                   starts.  The minimum value is 32.

  This error message is sent when an optional Message type is received
  that is not supported, or an optional format of a supported Message
  is not recognized.

  When this error message is received, the implementation SHOULD log
  the occurance, and notify an operator as appropriate.  However,
  receipt has no effect on the operation of the protocol.











Karn & Simpson                Experimental                     [Page 49]

RFC 2522                   Photuris Protocol                  March 1999


8.  Public Value Exchanges

  Photuris is based in principle on public-key cryptography,
  specifically Diffie-Hellman key exchange.  Exchange of public D-H
  Exchange-Values based on private-secret values results in a mutual
  shared-secret between the parties.  This shared-secret can be used on
  its own, or to generate a series of session-keys for authentication
  and encryption of subsequent traffic.

  This document assumes familiarity with the Diffie-Hellman public-key
  algorithm.  A good description can be found in [Schneier95].


8.1.  Modular Exponentiation Groups

  The original Diffie-Hellman technique [DH76] specified modular
  exponentiation.  A public-value is generated using a generator (g),
  raised to a private-secret exponent (x), modulo a prime (p):

     (g**x) mod p.

  When these public-values are exchanged between parties, the parties
  can calculate a shared-secret value between themselves:

     (g**xy) mod p.

  The generator (g) and modulus (p) are established by the Scheme-
  Choice (see the "Basic Exchange-Schemes" for details).  They are
  offered in the Cookie_Response, and one pair is chosen in the
  Value_Request.

  The private exponents (x) and (y) are kept secret by the parties.
  Only the public-value result of the modular exponentiation with (x)
  or (y) is sent as the Initiator and Responder Exchange-Value.

  These public-values are represented in single Variable Precision
  Integers.  The Size of these Exchange-Values will match the Size of
  the modulus (p).


8.2.  Moduli Selection

  Each implementation proposes one or more moduli in its Offered-
  Schemes.  Every implementation MUST support up to 1024-bit moduli.

  For any particular Photuris node, these moduli need not change for
  significant periods of time; likely days or weeks.  A background
  process can periodically generate new moduli.



Karn & Simpson                Experimental                     [Page 50]

RFC 2522                   Photuris Protocol                  March 1999


     For 512-bit moduli, current estimates would provide 64
     (pessimistic) bit-equivalents of cryptographic strength.

     For 1024-bit moduli, current estimates would range from 80
     (pessimistic) through 98 (optimistic) bit-equivalents of
     cryptographic strength.

  These estimates are used when choosing moduli that are appropriate
  for the desired Security Parameter attributes.


8.2.1.  Bootstrap Moduli

  Each implementation is likely to use a fixed modulus during its
  bootstrap, until it can generate another modulus in the background.
  As the bootstrap modulus will be widely distributed, and reused
  whenever the machine reinitializes, it SHOULD be a "safe" prime (p =
  2q+1) to provide the greatest long-term protection.

  Implementors are encouraged to generate their own bootstrap moduli,
  and to change bootstrap moduli in successive implementation releases.


8.2.2.  Learning Moduli

  As Photuris exchanges are initiated, new moduli will be learned from
  the Responder Offered-Schemes.  The Initiator MAY cache these moduli
  for its own use.

  Before offering any learned modulus, the implementation MUST perform
  at least one iteration of probable primality verification.  In this
  fashion, many processors will perform verification in parallel as
  moduli are passed around.

  When primality verification failures are found, the failed moduli
  SHOULD be retained for some (implementation dependent) period of
  time, to avoid re-learning and re-testing after subsequent exchanges.


8.3.  Generator Selection

  The generator (g) should be chosen such that the private-secret
  exponents will generate all possible public-values, evenly
  distributed throughout the range of the modulus (p), without cycling
  through a smaller subset.  Such a generator is called a "primitive
  root" (which is trivial to find when p is "safe").

  Only one generator (2) is required to be supported.



Karn & Simpson                Experimental                     [Page 51]

RFC 2522                   Photuris Protocol                  March 1999


  Implementation Notes:

     One useful technique is to select the generator, and then limit
     the modulus selection sieve to primes with that generator:

        2   when p (mod 24) = 11.
        3   when p (mod 12) = 5.
        5   when p (mod 10) = 3 or 7.

     The required generator (2) improves efficiency in multiplication
     performance.  It is usable even when it is not a primitive root,
     as it still covers half of the space of possible residues.


8.4.  Exponent Selection

  Each implementation generates a separate random private-secret
  exponent for each different modulus.  Then, a D-H Exchange-Value is
  calculated for the given modulus, generator, and exponent.

  This specification recommends that the exponent length be at least
  twice the desired cryptographic strength of the longest session-key
  needed by the strongest offered-attribute.

  Based on the estimates in "Moduli Selection" (above):

     For 512-bit moduli, exponent lengths of 128 bits (or more) are
     recommended.

     For 1024-bit moduli, exponent lengths of 160 to 256 bits (or more)
     are recommended.

  Although the same exponent and Exchange-Value may be used with
  several parties whenever the same modulus and generator are used, the
  exponent SHOULD be changed at random intervals.  A background process
  can periodically destroy the old values, generate a new random
  private-secret exponent, and recalculate the Exchange-Value.

  Implementation Notes:

     The size of the exponent is entirely implementation dependent, is
     unknown to the other party, and can be easily changed.

     Since these operations involve several time-consuming modular
     exponentiations, moving them to the "background" substantially
     improves the apparent execution speed of the Photuris protocol.
     It also reduces CPU loading sufficiently to allow a single
     public/private key-pair to be used in several closely spaced



Karn & Simpson                Experimental                     [Page 52]

RFC 2522                   Photuris Protocol                  March 1999


     Photuris executions, when creating Security Associations with
     several different nodes over a short period of time.

     Other pre-computation suggestions are described in [BGMW93, LL94,
     Rooij94].


8.5.  Defective Exchange Values

  Some exponents do not qualify as secret.  The exponent 0 will
  generate the Exchange-Value 1, and the exponent 1 will generate the
  Exchange-Value g.  Small exponents will be easily visible and SHOULD
  be avoided where:

     g**x < p.

  Depending on the structure of the moduli, certain exponents can be
  used for sub-group confinement attacks.  For "safe" primes (p =
  2q+1), these exponents are p-1 and (p-1)/2, which will generate the
  Exchange-Values 1 and p-1 respectively.

  When an implementation chooses a random exponent, the resulting
  Exchange-Value is examined.  If the Exchange-Value is represented in
  less than half the number of significant bits in the modulus, then a
  new random exponent MUST be chosen.

     For 512-bit moduli, Exchange-Values of 2**256 or greater are
     required.

     For 1024-bit moduli, Exchange-Values of 2**512 or greater are
     required.

  In addition, if the resulting Exchange-Value is p-1, then a new
  random exponent MUST be chosen.

  Upon receipt of an Exchange-Value that fails to meet the
  requirements, the Value Exchange message is silently discarded.

  Implementation Notes:

     Avoidance of small exponents can be assured by setting at least
     one bit in the most significant half of the exponent.









Karn & Simpson                Experimental                     [Page 53]

RFC 2522                   Photuris Protocol                  March 1999


9.  Basic Exchange-Schemes

  Initial values are assigned as follows:

  (0)   Reserved.

  (1)   Reserved.

  (2)   Implementation Required.  Any modulus (p) with a recommended
        generator (g) of 2.  When the Exchange-Scheme Size is non-zero,
        the modulus is contained in the Exchange-Scheme Value field in
        the list of Offered-Schemes.

        An Exchange-Scheme Size of zero is invalid.

        Key-Generation-Function     "MD5 Hash"
        Privacy-Method              "Simple Masking"
        Validity-Method             "MD5-IPMAC Check"

        This combination of features requires a modulus with at least
        64-bits of cryptographic strength.

  (3)   Exchange-Schemes 3 to 255 are intended for future well-known
        published schemes.

  (256)  Exchange-Schemes 256 to 32767 are intended for vendor-specific
        unpublished schemes.  Implementors wishing a number MUST
        request the number from the authors.

  (32768)
        Exchange-Schemes 32768 to 65535 are available for cooperating
        parties to indicate private schemes, regardless of vendor
        implementation.  These numbers are not reserved, and are
        subject to duplication.  Other criteria, such as the IP Source
        and Destination of the Cookie_Request, are used to
        differentiate the particular Exchange-Schemes available.















Karn & Simpson                Experimental                     [Page 54]

RFC 2522                   Photuris Protocol                  March 1999


10.  Basic Key-Generation-Function
10.1.  MD5 Hash

  MD5 [RFC-1321] is used as a pseudo-random-function for generating the
  key(s).  The key(s) begin with the most significant bits of the hash.
  MD5 is iterated as needed to generate the requisite length of key
  material.

  When an individual key does not use all 128-bits of the last hash,
  any remaining unused (least significant) bits of the last hash are
  discarded.  When combined with other uses of key generation for the
  same purpose, the next key will begin with a new hash iteration.


11.  Basic Privacy-Method
11.1.  Simple Masking

  As described in "Privacy-Key Computation", sufficient privacy-key
  material is generated to match the message length, beginning with the
  next field after the SPI, and including the Padding.  The message is
  masked by XOR with the privacy-key.


12.  Basic Validity-Method
12.1.  MD5-IPMAC Check

  As described in "Validity Verification", the Verification field value
  is the MD5 [RFC-1321] hash over the concatenation of

     MD5( key, keyfill, data, datafill, key, md5fill )

  where the key is the computed verification-key.

  The keyfill and datafill use the same pad-with-length technique
  defined for md5fill.  This padding and length is implicit, and does
  not appear in the datagram.

  The resulting Verification field is a 128-bit Variable Precision
  Integer (18 bytes including Size).  When used in calculations, the
  Verification data includes both the Size and Value fields.











Karn & Simpson                Experimental                     [Page 55]

RFC 2522                   Photuris Protocol                  March 1999


13.  Basic Attributes

  Implementors wishing a number MUST request the number from the
  authors.  Initial values are assigned as follows:

    Use    Type
     -       0* padding
     -       1* AH-Attributes
     -       2+ ESP-Attributes
    AEI      5* MD5-IPMAC
    AEIX   255+ Organizational

    A      AH Attribute-Choice
     E     ESP Attribute-Choice
      I    Identity-Choice
       X   dependent on list location
        +  feature must be recognized even when not supported
        *  feature must be supported (mandatory)

  Other attributes are specified in companion documents.


13.1.  Padding

  +-+-+-+-+-+-+-+-+
  |   Attribute   |
  +-+-+-+-+-+-+-+-+


  Attribute        0

  Each attribute may have value fields that are multiple bytes.  To
  facilitate processing efficiency, these fields are aligned on
  integral modulo 8 byte (64-bit) boundaries.

  Padding is accomplished by insertion of 1 to 7 Attribute 0 padding
  bytes before the attribute that needs alignment.

  No padding is used after the final attribute in a list.












Karn & Simpson                Experimental                     [Page 56]

RFC 2522                   Photuris Protocol                  March 1999


13.2.  AH-Attributes

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Attribute   |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute        1

  Length           0

  When a list of Attributes is specified, this Attribute begins the
  section of the list which applies to the Authentication Header (AH).


13.3.  ESP-Attributes

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Attribute   |    Length     |  PayloadType  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute        2

  Length           1

  PayloadType      1 byte.  Indicates the contents of the ESP Transform
                   Data field, using the IP Next Header (Protocol)
                   value.  Up-to-date values of the IP Next Header
                   (Protocol) are specified in the most recent
                   "Assigned Numbers" [RFC-1700].

                   For example, when encrypting an entire IP datagram,
                   this field will contain the value 4, indicating IP-
                   in-IP encapsulation.

  When a list of Attributes is specified, this Attribute begins the
  section of the list which applies to the Encapsulating Security
  Payload (ESP).

  When listed as an Offered-Attribute, the PayloadType is set to 255.

  When selected as an Attribute-Choice, the PayloadType is set to the
  actual value to be used.







Karn & Simpson                Experimental                     [Page 57]

RFC 2522                   Photuris Protocol                  March 1999


13.4.  MD5-IPMAC

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Attribute   |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute        5

  Length           0



13.4.1.  Symmetric Identification

  When selected as an Identity-Choice, the immediately following
  Identification field contains an unstructured Variable Precision
  Integer.  Valid Identifications and symmetric secret-keys are
  preconfigured by the parties.

  There is no required format or content for the Identification value.
  The value may be a number or string of any kind.  See "Use of
  Identification and Secrets" for details.

  The symmetric secret-key (as specified) is selected based on the
  contents of the Identification field.  All implementations MUST
  support at least 62 bytes.  The selected symmetric secret-key SHOULD
  provide at least 64-bits of cryptographic strength.

  As described in "Identity Verification", the Verification field value
  is the MD5 [RFC-1321] hash over the concatenation of:

     MD5( key, keyfill, data, datafill, key, md5fill )

  where the key is the computed verification-key.

  The keyfill and datafill use the same pad-with-length technique
  defined for md5fill.  This padding and length is implicit, and does
  not appear in the datagram.

  The resulting Verification field is a 128-bit Variable Precision
  Integer (18 bytes including Size).  When used in calculations, the
  Verification data includes both the Size and Value fields.

  For both "Identity Verification" and "Validity Verification", the
  verification-key is the MD5 [RFC-1321] hash of the following
  concatenated values:




Karn & Simpson                Experimental                     [Page 58]

RFC 2522                   Photuris Protocol                  March 1999



   + the symmetric secret-key,
   + the computed shared-secret.

  For "Session-Key Computation", the symmetric secret-key is used
  directly as the generation-key.

  Regardless of the internal representation of the symmetric secret-
  key, when used in calculations it is in the same form as the Value
  part of a Variable Precision Integer:

   - most significant byte first.
   - bits used are right justified within byte boundaries.
   - any unused bits are in the most significant byte.
   - unused bits are zero filled.

  The symmetric secret-key does not include a Size field.


13.4.2.  Authentication

  May be selected as an AH or ESP Attribute-Choice, pursuant to [RFC-
  1828] et sequitur.  The selected Exchange-Scheme SHOULD provide at
  least 64-bits of cryptographic strength.

  As described in "Session-Key Computation", the most significant 384-
  bits (48 bytes) of the Key-Generation-Function iterations are used
  for the key.

  Profile:

     When negotiated with Photuris, the transform differs slightly from
     [RFC-1828].

     The form of the authenticated message is:

        MD5( key, keyfill, datagram, datafill, key, md5fill )

     where the key is the SPI session-key.

     The additional datafill protects against the (impractical) attack
     described in [PO96].  The keyfill and datafill use the same pad-
     with-length technique defined for md5fill.  This padding and
     length is implicit, and does not appear in the datagram.







Karn & Simpson                Experimental                     [Page 59]

RFC 2522                   Photuris Protocol                  March 1999


13.5.  Organizational

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Attribute   |    Length     |              OUI
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         ...      |     Kind      |  Value(s) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Attribute        255

  Length           >= 4

                   When the Length is four, no Value(s) field is
                   present.

  OUI              3 bytes.  The vendor's Organizationally Unique
                   Identifier, assigned by IEEE 802 or IANA (see [RFC-
                   1700] for contact details).  The bits within the
                   byte are in canonical order, and the most
                   significant byte is transmitted first.

  Kind             1 byte.  Indicates a sub-type for the OUI.  There is
                   no standardization for this field.  Each OUI
                   implements its own values.

  Value(s)         0 or more bytes.  The details are implementation
                   specific.

  Some implementors might not need nor want to publish their
  proprietary algorithms and attributes.  This OUI mechanism is
  available to specify these without encumbering the authors with
  proprietary number requests.


















Karn & Simpson                Experimental                     [Page 60]

RFC 2522                   Photuris Protocol                  March 1999


A.  Automaton

  An example automaton is provided to illustrate the operation of the
  protocol.  It is incomplete and non-deterministic; many of the
  Good/Bad semantic decisions are policy-based or too difficult to
  represent in tabular form.  Where conflicts appear between this
  example and the text, the text takes precedence.

  The finite-state automaton is defined by events, actions and state
  transitions.  Events include reception of external commands such as
  expiration of a timer, and reception of datagrams from a peer.
  Actions include the starting of timers and transmission of datagrams
  to the peer.

  Events

  DU13 = Communication Administratively Prohibited
  SF0  = Bad SPI
  SF4  = Need Authentication
  SF5  = Need Authorization
  WC   = Want Confidentiality

  RCQ+ = Receive Cookie_Request (Good)
  RCQ- = Receive Cookie_Request (Bad)
  RCR+ = Receive Cookie_Response (Good)
  RCR- = Receive Cookie_Response (Bad)

  RVQ+ = Receive Value_Request (Good)
  RVQ- = Receive Value_Request (Bad)
  RVR+ = Receive Value_Response (Good)
  RVR- = Receive Value_Response (Bad)

  RIQ+ = Receive Identity_Request (Good)
  RIQ- = Receive Identity_Request (Bad)
  RIR+ = Receive Identity_Response (Good)
  RIR- = Receive Identity_Response (Bad)

  RUN+ = Receive SPI_Needed (Good)
  RUN- = Receive SPI_Needed (Bad)
  RUM+ = Receive SPI_Update (Good)
  RUM- = Receive SPI_Update (Bad)

  RBC  = Receive Bad Cookie
  RRL  = Receive Resource Limit
  RVF  = Receive Verification Failure
  RMR  = Receive Message Reject

  TO+  = Timeout with counter > 0



Karn & Simpson                Experimental                     [Page 61]

RFC 2522                   Photuris Protocol                  March 1999


  TO-  = Timeout with counter expired
  UTO  = Update TimeOut
  XTO  = Exchange TimeOut


  Actions

  scq  = Send Cookie_Request
  scr  = Send Cookie_Response

  svq  = Send Value_Request
  svr  = Send Value_Response

  siq  = Send Identity_Request
  sir  = Send Identity_Response

  sum  = Send SPI_Update

  se*  = Send error message (see text)
  sbc  = Send Bad Cookie
  srl  = Send Resource Limit
  svf  = Send Verification Failure

  brto = Backoff Retransmission TimeOut
  buto = Backoff Update TimeOut
  rto  = Set Retransmission TimeOut
  uto  = Set Update TimeOut
  xto  = Set Exchange TimeOut

  log  = log operator message


A.1.  State Transition Table

  States are indicated horizontally, and events are read vertically.
  State transitions and actions are represented in the form
  action/new-state.  Multiple actions are separated by commas, and may
  continue on succeeding lines as space requires; multiple actions may
  be implemented in any convenient order.  The state may be followed by
  a letter, which indicates an explanatory footnote.  The dash ('-')
  indicates an illegal transition.










Karn & Simpson                Experimental                     [Page 62]

RFC 2522                   Photuris Protocol                  March 1999



  Initiator

        |    0         1         2         3         4
        | Initial    Cookie  CookieBad   Value    ValueBad
  ------+--------------------------------------------------
   DU13 |rto,scq/1 rto,scq/1 rto,scq/1     3         4
   SF0  |rto,scq/1     1         2         3         4
   SF4  |rto,scq/1     1         2         3         4
   SF5  |rto,scq/1     1         2         3         4
   WC   |rto,scq/1     1         2         3         4
        |
   RCR+ |    -     rto,svq/3 rto,svq/3     3         4
   RCR- |    0         1         2         3         4
   RVR+ |    -         -         -     rto,siq/5 rto,siq/5
   RVR- |    0         1         2         3         4
   RIR+ |    -         -         -         -         -
   RIR- |    0         1         2         3         4
        |
   RUN+ |    -         -         -         -         -
   RUN- |  sbc/0     sbc/1     sbc/2     sbc/3     sbc/4
   RUM+ |    -         -         -         -         -
   RUM- |  sbc/0     sbc/1     sbc/2     sbc/3     sbc/4
        |
   RBC  |    -         -         -         4         4
   RRL  |    -       brto/2    brto/2    brto/4    brto/4
   RVF  |    -         -         -         -         -
   RMR  |    -         -         -         -         -
        |
    TO+ |    -       scq/1     scq/2     svq/3     svq/4
    TO- |    -         0       scq/1       0       scq/1
   UTO  |    -         -         -         -         -
   XTO  |    -         0         0         0         0


















Karn & Simpson                Experimental                     [Page 63]

RFC 2522                   Photuris Protocol                  March 1999



  Initiator

        |    5         6         8
        |Identity IdentityBad  Update
  ------+-----------------------------
   DU13 |    5         6         8
   SF0  |    5         6     rto,scq/1
   SF4  |    5         6     rto,scq/1
   SF5  |    5         6     rto,scq/1
   WC   |    5         6       sun/8
        |
   RCR+ |    5         6         8
   RCR- |    5         6         8
   RVR+ |    5         6         8
   RVR- |    5         6         8
   RIR+ |  uto/8     uto/8       8
   RIR- |  svf/5     svf/6       8
        |
   RUN+ |    -         -       sum/8
   RUN- |  sbc/5     sbc/6     se*/8
   RUM+ |    -         -         8
   RUM- |  sbc/5     sbc/6     se*/8
        |
   RBC  |    6         6     rto,scq/1
   RRL  |    5         6       buto/8
   RVF  |  log/5     log/6     log/8
   RMR  |  log/5     log/6     log/8
        |
    TO+ |  sim/5     sim/6       -
    TO- |    0       scq/1       -
   UTO  |    -         -       sum/8
   XTO  |    0         0         0


















Karn & Simpson                Experimental                     [Page 64]

RFC 2522                   Photuris Protocol                  March 1999



  Responder

        |    0         7         8
        | Initial    Ready     Update
  ------+-----------------------------
   WC   |    -         7       sun/8
        |
   RCQ+ |  scr/0     scr/7     scr/8
   RCQ- |  srl/0     srl/7     srl/8
   RVQ+ |xto,svr/7   svr/7     svr/8
   RVQ- |  sbc/0     sbc/7     sbc/8
   RIQ+ |    -     uto,sir/8   sir/8
   RIQ- |  sbc/0     se*/7     se*/8
        |
   RUN+ |    -         -       sum/8
   RUN- |  sbc/0     sbc/7     se*/8
   RUM+ |    -         -         8
   RUM- |  sbc/0     sbc/7     se*/8
        |
   RBC  |    -         7     rto,scq/1
   RRL  |    -         -       buto/8
   RVF  |    -         -       log/8
   RMR  |    -         -       log/8
        |
   UTO  |    -         -       sum/8
   XTO  |    -         0         0



A.2.  States

  Following is a more detailed description of each automaton state.

  The "Bad" version of a state is to indicate that the Bad_Cookie or
  Resource_Limit message has been received.


A.2.1.  Initial

  The Initial state is fictional, in that there is no state between the
  parties.









Karn & Simpson                Experimental                     [Page 65]

RFC 2522                   Photuris Protocol                  March 1999


A.2.2.  Cookie

  In the Cookie state, the Initiator has sent a Cookie_Request, and is
  waiting for a Cookie_Response.  Both the Restart and Exchange timers
  are running.

  Note that the Responder has no Cookie state.


A.2.3.  Value

  In the Value state, the Initiator has sent its Exchange-Value, and is
  waiting for an Identity_Message.  Both the Restart and Exchange
  timers are running.


A.2.4.  Identity

  In the Identity state, the Initiator has sent an Identity_Request,
  and is waiting for an Identity_Response in reply.  Both the Restart
  and Exchange timers are running.


A.2.5.  Ready

  In the Ready state, the Responder has sent its Exchange-Value, and is
  waiting for an Identity_Message.  The Exchange timer is running.


A.2.6.  Update

  In the Update state, each party has concluded the Photuris exchange,
  and is unilaterally updating expiring SPIs until the Exchange
  LifeTime expires.  Both the Update and Exchange timers are running.

















Karn & Simpson                Experimental                     [Page 66]

RFC 2522                   Photuris Protocol                  March 1999


B.  Use of Identification and Secrets

  Implementation of the base protocol requires support for operator
  configuration of participant identities and associated symmetric
  secret-keys.

  The form of the Identification and Secret fields is not constrained
  to be a readable string.  In addition to a simpler quoted string
  configuration, an implementation MUST allow configuration of an
  arbitrary stream of bytes.


B.1.  Identification

  Typically, the Identification is a user name, a site name, a Fully
  Qualified Domain Name, or an email address which contains a user name
  and a domain name.  Examples include:

     user
     node.site.
     [email protected].
     [email protected].
     "Mundane Name" <[email protected]>

  There is no requirement that the domain name match any of the
  particular IP addresses in use by the parties.


B.2.  Group Identity With Group Secret

  A simple configuration approach could use a single Identity and
  Secret, distributed to all the participants in the trusted group.
  This might be appropriate between routers under a single
  administration comprising a Virtual Private Network over the
  Internet.

  Nota Bene:
     The passwords used in these examples do not meet the "MD5-IPMAC
     Symmetric Identification" recommendation for at least 64-bits of
     cryptographic strength.

  The administrator configures each router with the same username and
  password:

     identity local "Tiny VPN 1995 November" "abracadabra"
     identity remote "Tiny VPN 1995 November" "abracadabra"

  When the Initiator sends its Identity_Request, the SPI Owner



Karn & Simpson                Experimental                     [Page 67]

RFC 2522                   Photuris Protocol                  March 1999


  Identification field is "Tiny VPN 1995 November" and the SPI Owner
  secret-key is "abracadabra".

  When the Responder sends its Identity_Response, the SPI Owner
  Identification field is "Tiny VPN 1995 November" and the SPI Owner
  secret-key is "abracadabra".  The SPI User Identification is "Tiny
  VPN 1995 November" (taken from the request), and the SPI User
  secret-key is "abracadabra".

  Note that even in the face of implementations with very poor random
  number generation yielding the same random numbers for both parties
  at every step, and with this completely identical configuration, the
  addition of the SPI User Verification field in the response
  calculation is highly likely to produce a different Verification
  value (see "Identity Verification").  In turn, the different
  Verification values affect the calculation of SPI session-keys that
  are highly likely to be different in each direction (see "Session-Key
  Computation").


B.3.  Multiple Identities With Group Secrets

  A more robust configuration approach could use a separate Identity
  and Secret for each party, distributed to the participants in the
  trusted group.  This might be appropriate for authenticated firewall
  traversal.

  An administrator has one or more networks, and a number of mobile
  users.  It is desirable to restrict access to authorized external
  users.  The example boundary router is 10.0.0.1.

  The administrator gives each user a different username and password,
  together with a group username and password for the router.

  The administrator configures (in part):

     identity local "[email protected]" "FalDaRah"
     identity remote "[email protected]" "FalDaRee"

  Each mobile user adds commands to tunnel and authenticate.

     route addprivate 10.0.0.0/8 tunnel 10.0.0.1
     secure 10.0.0.1 authenticate-only
     identity local "[email protected]" "FalDaRee"
     identity remote "[email protected]" "FalDaRah"
     identity remote "[email protected]" "FalDaHaHaHaHaHaHa"

  When the mobile Initiator sends its Identity_Request, the SPI Owner



Karn & Simpson                Experimental                     [Page 68]

RFC 2522                   Photuris Protocol                  March 1999


  Identification field is "[email protected]" and the SPI
  Owner secret-key is "FalDaRee".

  When the firewall Responder sends its Identity_Response, the SPI
  Owner Identification field is "[email protected]" and the SPI Owner
  secret-key is "FalDaRah".  The SPI User Identification field is
  "[email protected]" (taken from the request), and the SPI
  User secret-key is "FalDaRee".

  In this example, the mobile user is already prepared for a monthly
  password changeover, where the router might identify itself as
  "[email protected]".


B.4.  Multiple Identities With Multiple Secrets

  Greater security might be achieved through configuration of a pair of
  secrets between each party.  As before, one secret is used for
  initial contact to any member of the group, but another secret is
  used between specific parties.  Compromise of one secret or pair of
  secrets does not affect any other member of the group.  This might be
  appropriate between the routers forming a boundary between
  cooperating Virtual Private Networks that establish local policy for
  each VPN member access.

  One administrator configures:

     identity local "Apple" "all for one"
     identity local "Apple-Baker" "Apple to Baker" "Baker"
     identity remote "Baker" "one for all"
     identity remote "Baker-Apple" "Baker to Apple"

  Another configures:

     identity local "Baker" "one for all"
     identity local "Baker-Apple" "Baker to Apple" "Apple"
     identity remote "Apple" "all for one"
     identity remote "Apple-Baker" "Apple to Baker"

  When the Initiator sends its Identity_Request, the SPI Owner
  Identification field is "Apple" and the SPI Owner secret-key is "all
  for one".

  When the Responder sends its Identity_Response, finding that the
  special pairing exists for "Apple" (in this example, indicated by a
  third field), the SPI Owner Identification field is "Baker-Apple" and
  the SPI Owner secret-key is "Baker to Apple".  The SPI User
  Identification is "Apple" (taken from the request), and the SPI User



Karn & Simpson                Experimental                     [Page 69]

RFC 2522                   Photuris Protocol                  March 1999


  secret-key is "all for one".


Operational Considerations

  The specification provides only a few configurable parameters, with
  defaults that should satisfy most situations.

  Retransmissions
     Default: 3.

  Initial Retransmission TimeOut (IRTO)
     Default: 5 seconds.

  Exchange TimeOut (ETO)
     Default: 30 seconds.  Minimum: Retransmissions * IRTO.

  Exchange LifeTime (ELT)
     Default: 30 minutes.  Minimum: 2 * ETO.

  SPI LifeTime (SPILT)
     Default: 5 minutes.  Minimum: 3 * ETO.

  Each party configures a list of known identities and symmetric
  secret-keys.

  In addition, each party configures local policy that determines what
  access (if any) is granted to the holder of a particular identity.
  For example, the party might allow anonymous FTP, but prohibit
  Telnet.  Such considerations are outside the scope of this document.


Security Considerations

  Photuris was based on currently available tools, by experienced
  network protocol designers with an interest in cryptography, rather
  than by cryptographers with an interest in network protocols.  This
  specification is intended to be readily implementable without
  requiring an extensive background in cryptology.

  Therefore, only minimal background cryptologic discussion and
  rationale is included in this document.  Although some review has
  been provided by the general cryptologic community, it is anticipated
  that design decisions and tradeoffs will be thoroughly analysed in
  subsequent dissertations and debated for many years to come.

  Cryptologic details are reserved for separate documents that may be
  more readily and timely updated with new analysis.



Karn & Simpson                Experimental                     [Page 70]

RFC 2522                   Photuris Protocol                  March 1999


History

  The initial specification of Photuris, now called version 1 (December
  1994 to March 1995), was based on a short list of design
  requirements, and simple experimental code by Phil Karn.  Only one
  modular exponentiation form was used, with a single byte index of
  pre-specified group parameters.  The transform attributes were
  selected during the public value exchange.  Party privacy was
  protected in the identification signature exchange with standard ESP
  transforms.

  Upon submission for review by the IP Security Working Group, a large
  number of features were demanded.  A mere 254 future group choices
  were not deemed enough; it was expanded to two bytes (and renamed
  schemes), and was expanded again to carry variable parameters.  The
  transform attributes were made variable length to accomodate optional
  parameters.  Every other possible parameter was made negotiable.
  Some participants were unable to switch modes on the UDP sockets to
  use standard ESP transforms for only some messages, and party privacy
  was integrated into the protocol.  The message headers were
  reorganized, and selection of transform attributes was delayed until
  the identification exchange.  An additional update message phase was
  added.

  Version 2 (July 1995 to December 1995) specification stability was
  achieved in November 1995 by moving most parameters into separate
  documents for later discussion, and leaving only a few mandatory
  features in the base specification.  Within a month, multiple
  interoperable implementations were produced.

  Unfortunately, in a fit of demagoguery, the IP Security Working Group
  decided in a straw poll to remove party privacy protection, and the
  Working Group chair terminated the meeting without allowing further
  discussion.  Because the identification exchange messages required
  privacy to function correctly, the messages were reorganized again.
  Party privacy and other optional schemes were split into a separate
  document.

  The implementors established a separate discussion group.  Version 3
  (April 1996 to June 1997) enjoyed a long period of specification
  stability and multiple implementations on half a dozen platforms.

  Meanwhile, the IP Security Working Group has developed a competing
  specification with large numbers of negotiable parameters.  Also, the
  PPP Extensions Working Group has deployed link security transforms.

  Version 4 (July 1997 onward) attempts to maintain a semblance of
  interface compatibility with these other efforts.  Minor changes are



Karn & Simpson                Experimental                     [Page 71]

RFC 2522                   Photuris Protocol                  March 1999


  specified in transform padding format and key generation.  More than
  one value is permitted per scheme, giving greater latitude in choice
  for future extensions.  The opportunity is taken to return party
  privacy to the base document, and make small semantic changes in
  automated updates and error recovery.  All ESP transform attributes
  are moved to separate documents, to (hopefully) avoid future
  incompatible changes to the base document.


Acknowledgements

     Thou shalt make no law restricting the size of integers that may
     be multiplied together, nor the number of times that an integer
     may be multiplied by itself, nor the modulus by which an integer
     may be reduced.  [Prime Commandment]

  Phil Karn was principally responsible for the design of the protocol
  phases, particularly the "cookie" anti-clogging defense, developed
  the initial testing implementation, and provided much of the design
  rationale text (now removed to a separate document).

  William Simpson was responsible for the packet formats and
  attributes, additional message types, editing and formatting.  All
  such mistakes are his responsibility.

  This protocol was later discovered to have many elements in common
  with the Station-To-Station authentication protocol [DOW92].

  Angelos Keromytis developed the first completely independent
  implementation (circa October 1995).  Also, he suggested the cookie
  exchange rate limitation counter.

  Paul C van Oorschot suggested signing both the public exponents and
  the shared-secret, to provide an authentication-only version of
  identity verification.  Also, he provided text regarding moduli,
  generator, and exponent selection (now removed to a separate
  document).

  Hilarie Orman suggested adding secret "nonces" to session-key
  generation for asymmetric public/private-key identity methods (now
  removed to a separate document), and provided extensive review of the
  protocol details.

  Bart Preneel and Paul C van Oorschot in [PO96] recommended padding
  between the data and trailing key when hashing for authentication.

  Niels Provos developed another independent implementation (circa May
  1997), ported to AIX, Linux, OpenBSD, and Solaris.  Also, he made



Karn & Simpson                Experimental                     [Page 72]

RFC 2522                   Photuris Protocol                  March 1999


  suggestions regarding automated update, and listing multiple moduli
  per scheme.

  Bill Sommerfeld suggested including the authentication symmetric
  secret-keys in the session-key generation, and using the Cookie
  values on successive exchanges to provide bi-directional user-
  oriented keying (now removed to a separate document).

  Oliver Spatscheck developed the second independent implementation
  (circa December 1995) for the Xkernel.

  International interoperability testing between early implementors
  provided the impetus for many of the implementation notes herein, and
  numerous refinements in the semantics of the protocol messages.

  Randall Atkinson, Steven Bellovin, Wataru Hamada, James Hughes, Brian
  LaMacchia, Cheryl Madson, Lewis McCarthy, Perry Metzger, Bob Quinn,
  Ron Rivest, Rich Schroeppel, and Norman Shulman provided useful
  critiques of earlier versions of this document.

  Special thanks to the Center for Information Technology Integration
  (CITI) for providing computing resources.


References

  [BGMW93]    E. Brickell, D. Gordon, K. McCurley, and D. Wilson, "Fast
              Exponentiation with Precomputation (Extended Abstract)",
              Advances in Cryptology -- Eurocrypt '92, Lecture Notes in
              Computer Science 658 (1993), Springer-Verlag, 200-207.

              Also U.S. Patent #5,299,262, E.F. Brickell, D.M. Gordon,
              K.S. McCurley, "Method for exponentiating in
              cryptographic systems", 29 Mar 1994.

  [DH76]      Diffie, W., and Hellman, H.E., "New Directions in
              Cryptography", IEEE Transactions on Information Theory, v
              IT-22 n 6 pp 644-654, November 1976.

  [DOW92]     Whitfield Diffie, Paul C van Oorshot, and Michael J
              Wiener, "Authentication and Authenticated Key Exchanges",
              Designs, Codes and Cryptography, v 2 pp 107-125, Kluwer
              Academic Publishers, 1992.

  [Firefly]   "Photuris" is the latin name for the firefly.  "Firefly"
              is in turn the name for the USA National Security
              Administration's (classified) key exchange protocol for
              the STU-III secure telephone.  Informed speculation has



Karn & Simpson                Experimental                     [Page 73]

RFC 2522                   Photuris Protocol                  March 1999


              it that Firefly is based on very similar design
              principles.

  [LL94]      Lim, C.H., Lee, P.J., "More flexible exponentiation with
              precomputation", Advances in Cryptology -- Crypto '94,
              Lecture Notes in Computer Science 839 (1994), Springer-
              Verlag, pages 95-107.

  [Prime Commandment]
              A derivation of an apocryphal quote from the usenet list
              sci.crypt.

  [PO96]      Bart Preneel, and Paul C van Oorshot, "On the security of
              two MAC algorithms", Advances in Cryptology -- Eurocrypt
              '96, Lecture Notes in Computer Science 1070 (May 1996),
              Springer-Verlag, pages 19-32.

  [RFC-768]   Postel, J., "User Datagram Protocol", STD 6,
              USC/Information Sciences Institute, August 1980.

  [RFC-791]   Postel, J., "Internet Protocol", STD 5, USC/Information
              Sciences Institute, September 1981.

  [RFC-1321]  Rivest, R., "The MD5 Message-Digest Algorithm", MIT
              Laboratory for Computer Science, April 1992.

  [RFC-1700]  Reynolds, J., and Postel, J., "Assigned Numbers", STD 2,
              USC/Information Sciences Institute, October 1994.

  [RFC-1812]  Baker, F., Editor, "Requirements for IP Version 4
              Routers", Cisco Systems, June 1995.

  [RFC-1828]  Metzger, P., Simpson, W., "IP Authentication using Keyed
              MD5", July 1995.

  [RFC-1829]  Karn, P., Metzger, P., Simpson, W., "The ESP DES-CBC
              Transform", July 1995.

  [RFC-2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, Harvard University, March
              1997.

  [RFC-2521]  Karn, P., and Simpson, W., "ICMP Security Failures
              Messages", March 1999.

  [Rooij94]   P. de Rooij, "Efficient exponentiation using
              precomputation and vector addition chains", Advances in
              Cryptology -- Eurocrypt '94, Lecture Notes in Computer



Karn & Simpson                Experimental                     [Page 74]

RFC 2522                   Photuris Protocol                  March 1999


              Science, Springer-Verlag, pages 403-415.

  [Schneier95]
              Schneier, B., "Applied Cryptography Second Edition", John
              Wiley & Sons, New York, NY, 1995.  ISBN 0-471-12845-7.



Contacts

  Comments about this document should be discussed on the
  [email protected] mailing list.

  Questions about this document can also be directed to:

     Phil Karn
     Qualcomm, Inc.
     6455 Lusk Blvd.
     San Diego, California  92121-2779

         [email protected]
         [email protected] (preferred)


     William Allen Simpson
     DayDreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

         [email protected]
         [email protected] (preferred)



















Karn & Simpson                Experimental                     [Page 75]

RFC 2522                   Photuris Protocol                  March 1999


Full Copyright Statement

  Copyright (C) The Internet Society (1999).  Copyright (C) Philip Karn
  and William Allen Simpson (1994-1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards (in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed), or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  (BUT NOT LIMITED TO) ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.























Karn & Simpson                Experimental                     [Page 76]