Network Working Group                                       M. Crawford
Request for Comments: 2470                                     Fermilab
Category: Standards Track                                     T. Narten
                                                                   IBM
                                                             S. Thomas
                                                            TransNexus
                                                         December 1998


        Transmission of IPv6 Packets over Token Ring Networks

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

1.  Introduction

  This memo specifies the MTU and frame format for transmission of IPv6
  packets on Token Ring networks. It also specifies the method of
  forming IPv6 link-local addresses on Token Ring networks and the
  content of the Source/Target Link-layer Address option used the
  Router Solicitation, Router Advertisement, Redirect, Neighbor
  Solicitation and Neighbor Advertisement messages when those messages
  are transmitted on a Token Ring network.

  Implementors should be careful to note that Token Ring adaptors
  assume addresses are in non-canonical rather than canonical format,
  requiring that special care be taken to insure that addresses are
  processed correctly. See [CANON] for more details.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KWORD].

2.  Maximum Transmission Unit

  IEEE 802.5 networks have a maximum frame size based on the maximum
  time a node may hold the token. This time depends on many factors
  including the data signaling rate and the number of nodes on the
  ring. Because the maximum frame size varies, implementations must



Crawford, et. al.           Standards Track                     [Page 1]

RFC 2470                  IPv6 over Token Ring             December 1998


  rely on manual configuration or router advertisements [DISC] to
  determine actual MTU sizes. Common default values include
  approximately 2000, 4000, and 8000 octets.

  In the absence of any other information, an implementation should use
  a default MTU of 1500 octets. This size offers compatibility with all
  common 802.5 defaults, as well as with Ethernet LANs in an
  environment using transparent bridging.

  In an environment using source route bridging, the process of
  discovering the MAC-level path to a neighbor can yield the MTU for
  the path to that neighbor. The information is contained in the
  largest frame (LF) subfield of the routing information field. This
  field limits the size of the information field of frames to that
  destination, and that information field includes both the LLC [LLC]
  header and the IPv6 datagram. Since, for IPv6, the LLC header is
  always 8 octets in length, the IPv6 MTU can be found by subtracting 8
  from the maximum frame size defined by the LF subfield. If an
  implementation uses this information to determine MTU sizes, it must
  maintain separate MTU values for each neighbor.

  A detailed list of the LF values and the resulting maximum frame size
  can be found in [BRIDGE]. To illustrate the calculation of IPv6 MTU,
  the following table lists several common values. Note that some of
  the 802.1D LF values would result in an IP MTU less than 1280 bytes.
  This size is less than the IPv6 minimum, and communication across
  paths with those MTUs is generally not possible using IPv6.

          LF (base)  LF (extension)  MAC MTU  IP MTU
            001           000         1470     1462
            010           000         2052     2044
            011           000         4399     4391
            100           000         8130     8122
            101           000         11407    11399
            110           000         17749    17741
            111           000         41600    41592

  When presented with conflicting MTU values from several sources, an
  implementation should choose from those sources according to the
  following priorities:

     1.  Largest Frame values from source route bridging
          (only for specific, unicast destinations), but only if not
          greater than value from any router advertisements

     2.  Router advertisements, but only if not greater than any manual
          configuration (including DHCP)




Crawford, et. al.           Standards Track                     [Page 2]

RFC 2470                  IPv6 over Token Ring             December 1998


     3.  Manual configuration (including DHCP)

     4.  Default of 1500

3.   Frame Format

  IPv6 packets are transmitted in LLC/SNAP frames.  The data field
  contains the IPv6 header and payload. The following figure shows a
  complete 802.5 frame containing an IPv6 datagram.

     +-------+-------+-------+-------+
     |  SD   |  AC   |  FC   |       |
     +-----------------------+       |
     |      Destination Address      |
     |       +-----------------------+
     |       |     Source            |
     +-------+    Address    +-------+
     |                       | DSAP  |
     +-------+-------+-------+-------+
     | SSAP  |  CTL  |      OUI      |
     +-------+-------+-------+-------+
     |  OUI  |   EtherType   |       |
     +-------+---------------+       |
     |                               |
     ~  IPv6 header and payload...   ~
     |                               |
     +-------------------------------+
     |              FCS              |
     +-------+-------+---------------+
     |  ED   |  FS   |
     +-------+-------+

  Token Ring Header Fields

     SD:  Starting Delimiter

     AC:  Access Control

     FC:  Frame Control

     Destination Address: 48-bit IEEE address of destination
          station

     Source Address: 48-bit IEEE address of source station

     DSAP: Destination Service Access Point (for LLC/SNAP
          format, shall always contain the value 0xAA)




Crawford, et. al.           Standards Track                     [Page 3]

RFC 2470                  IPv6 over Token Ring             December 1998


     SSAP: Source Service Access Point (for LLC/SNAP format,
          shall always contain the value 0xAA)

     CTL: Control Field (for Unnumbered Information, shall
          always contain the value 0x03)

     OUI: Organizationally Unique Identifier (for EtherType
          encoding, shall always contain the value 0x000000)

     EtherType: Protocol type of encapsulated payload (for
          IPv6, shall always contain the value 0x86DD)

     FCS: Frame Check Sequence

     ED:  Ending Delimiter

     FS:  Frame Status

  In the presence of source route bridges, a routing information field
  (RIF) may appear immediately after the source address. A RIF is
  present in frames when the most significant bit of the source address
  is set to one. (This is the bit whose position corresponds to that of
  the Individual/Group bit in the Destination Address.)

  The RIF is a variable-length field that (when present) contains a
  two-octet Routing Control (RC) header, followed by zero or more two-
  octet Route Designator fields:

                            0                   1
                            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Routing Control:     |Bcast| Length  |D|  LF   |rsvd |
                           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Route Designator 1:  |    Segment 1          |Bridge1|
                           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                           ~              ...              ~
                           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Route Designator N:  |    Segment N          |BridgeN|
        (0 <= N <= 7)      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


      Route Designator Fields:

      Bcast:    Broadcast Indicator, Defined values:

                10x: All Routes Explorer
                11x: Spanning Tree Explorer
                0xx: Specifically Routed Frame



Crawford, et. al.           Standards Track                     [Page 4]

RFC 2470                  IPv6 over Token Ring             December 1998



      Length:  Total length of RIF field in octets

      D:   Direction of source route. A value of 0 means that
           the left-to-right sequence of Route Designators
           provides the path from the sender to recipient. A
           value of 0 indicates the sequence goes from
           recipient to sender.

      LF:  Largest Frame

      rsvd: Reserved

  On transmission, the Route Designator fields give the sequence of
  (bridge, LAN segment) numbers the packet is to traverse. It is the
  responsibility of the sender to provide this sequence for
  Specifically Routed Frames, i.e., unicast IP datagrams.

4.  Stateless Autoconfiguration

  The Interface Identifier [AARCH] for a Token Ring interface is based
  on the EUI-64 identifier [EUI64] derived from the interface's built-
  in 48-bit IEEE 802 address. The OUI of the Token Ring address (the
  first three octets) becomes the company_id of the EUI-64 (the first
  three octets). The fourth and fifth octets of the EUI are set to the
  fixed value FFFE hexadecimal. The last three octets of the Token Ring
  address become the last three octets of the EUI-64.

  The Interface Identifier is then formed from the EUI-64 by
  complementing the "Universal/Local" (U/L) bit, which is the next-to-
  lowest order bit of the first octet of the EUI-64.  Complementing
  this bit will generally change a 0 value to a 1, since an interface's
  built-in address is expected to be from a universally administered
  address space and hence have a globally unique value.  A universally
  administered IEEE 802 address or an EUI-64 is signified by a 0 in the
  U/L bit position, while a globally unique IPv6 Interface Identifier
  is signified by a 1 in the corresponding position.  For further
  discussion on this point, see [AARCH].

  For example, the Interface Identifier for a Token Ring interface
  whose built-in address is, in hexadecimal and in canonical bit order,

                            34-56-78-9A-BC-DE

  would be

                        36-56-78-FF-FE-9A-BC-DE.




Crawford, et. al.           Standards Track                     [Page 5]

RFC 2470                  IPv6 over Token Ring             December 1998


  A different MAC address set manually or by software should not be
  used to derive the Interface Identifier. If such a MAC address must
  be used, its global uniqueness property should be reflected in the
  value of the U/L bit.

  An IPv6 address prefix used for stateless autoconfiguration of a
  Token Ring interface must have a length of 64 bits.

5.  Link-Local Address

  The IPv6 link-local address [AARCH] for a Token Ring interface is
  formed by appending the Interface Identifer, as defined above, to the
  prefix FE80::/64.

    10 bits            54 bits                  64 bits
  +----------+-----------------------+----------------------------+
  |1111111010|         (zeros)       |    Interface Identifier    |
  +----------+-----------------------+----------------------------+

6.  Address Mapping -- Unicast

  The procedure for mapping unicast IPv6 addresses into Token Ring
  link-layer addresses is described in [DISC]. The Source/Target Link-
  layer Address option has the following form when the link layer is
  Token Ring.

              0                   1
              0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             |     Type      |    Length     |
             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             |                               |
             +-         Token Ring          -+
             |                               |
             +-           Address           -+
             |                               |
             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Option fields:

        Type:     1 for Source Link-layer address.
                  2 for Target Link-layer address.

        Length:  1 (in units of 8 octets).







Crawford, et. al.           Standards Track                     [Page 6]

RFC 2470                  IPv6 over Token Ring             December 1998


        Token Ring Address: The 48 bit Token Ring IEEE 802
           address, in canonical bit order. This is the address the
           interface currently responds to, and may be different from
           the built-in address used to derive the Interface
           Identifier.

           When source routing bridges are used, the source route for
           the path to a destination can be extracted from the RIF
           field of received Neighbor Advertisement messages. Note that
           the RIF field of received packets can be reversed into a
           source route suitable for transmitting return traffic by
           toggling the value of the 'D' bit and insuring that the
           Bcast field is set to indicate a Specifically Routed Frame.

7.  Address Mapping -- Multicast

  All IPv6 packets with multicast destination addresses are transmitted
  to Token Ring functional addresses. The following table shows the
  specific mapping between the IPv6 addresses and Token Ring functional
  addresses (in canonical form). Note that protocols other than IPv6
  may use these same functional addresses, so all Token Ring frames
  destined to these functional addresses are not guaranteed to be IPv6
  datagrams.

  MAC Addr (canonical)       IPv6 Multicast Addresses

  03-00-80-00-00-00  All-Nodes (FF01::1 and FF02::1) and
                     solicited node (FF02:0:0:0:0:1:FFXX:XXXX)
                     addresses

  03-00-40-00-00-00  All-Routers addresses (FF0X::2)

  03-00-00-80-00-00  any other multicast address with three
                     least significant bits = 000

  03-00-00-40-00-00  any other multicast address with three
                     least significant bits = 001

  03-00-00-20-00-00  any other multicast address with three
                     least significant bits = 010

  03-00-00-10-00-00  any other multicast address with three
                     least significant bits = 011

  03-00-00-08-00-00  any other multicast address with three
                      least significant bits = 100





Crawford, et. al.           Standards Track                     [Page 7]

RFC 2470                  IPv6 over Token Ring             December 1998


  03-00-00-04-00-00  any other multicast address with three
                      least significant bits = 101

  03-00-00-02-00-00  any other multicast address with three
                      least significant bits = 110

  03-00-00-01-00-00  any other multicast address with three
                      least significant bits = 111

  In a bridged token ring network, all multicast packets SHOULD be sent
  with a RIF header specifying the use of the Spanning Tree Explorer.

  Note: it is believed that some (very) old bridge implementations do
  not properly support the Spanning Tree Explorer mechanism.  In such
  environments, multicast traffic sent through bridges must use a RIF
  with the All Routes Explorer. Consequently, an implementation MAY
  wish to allow the sending of IP multicast traffic using an All Routes
  Explorer. However, such an ability must be configurable by a system
  administrator and the default setting of the switch MUST be to use
  the Spanning Tree Explorer.

8.  Security Considerations

  Token Ring, like most broadcast LAN technologies, has inherent
  security vulnerabilities. For example, any sender can claim the
  identity of another and forge traffic. It is the responsibility of
  higher layers to take appropriate steps in those environments where
  such vulnerabilities are unacceptable.

9.  Acknowledgments

  Several members of the IEEE 802.5 Working Group contributed their
  knowledge and experience to the drafting of this specification,
  including Jim, Andrew Draper, George Lin, John Messenger, Kirk
  Preiss, and Trevor Warwick. The author would also like to thank many
  members of the IPng working group for their advice and suggestions,
  including Ran Atkinson, Scott Bradner, Steve Deering, Francis Dupont,
  Robert Elz, and Matt Thomas. A special thanks is due Steve Wise, who
  gave the most relevant advice of all by actually trying to implement
  this specification while it was in progress.











Crawford, et. al.           Standards Track                     [Page 8]

RFC 2470                  IPv6 over Token Ring             December 1998


10.  References

  [802.5]   8802-5 : 1995 (ISO/IEC) [ANSI/IEEE 802.5, 1995
            Edition] Information technology--Telecommunications and
            information exchange between systems--Local and
            metropolitan area networks--Specific requirements-- Part 5:
            Token ring access method and physical layer specification.

  [AARCH]   Hinden, R. and S. Deering, "IP Version 6 Addressing
            Architecture", RFC 2373, July 1998.

  [ACONF]   Thomson, S. and T. Narten, "IPv6 Stateless Address
            Autoconfiguration", RFC 2462, December 1998.

  [BRIDGE]  10038: 1993 (ISO/IEC) [ANSI/IEEE Std 802.1D, 1993 Edition]
            Information technology--Telecommunications and information
            exchange between systems--Local area networks--Media access
            control (MAC) bridges.

  [CANON]   Narten, T. and C. Burton, "A Caution on Canonical Bit Order
            Of Link-Layer Addresses", RFC 2469, December 1998.

  [CONF]    Thomson, S. and T. Narten, "IPv6 Stateless Address
            Autoconfiguration", RFC 1971, August 1996.

  [DISC]    Narten, T., Nordmark, E. and W. Simpson, "Neighbor
            Discovery for IP Version 6 (IPv6)", RFC 2461, December
            1998.

  [EUI64]  "64-Bit Global Identifier Format Tutorial", http:
            //standards.ieee.org/db/oui/tutorials/EUI64.html.

  [IPV6]    Deering, S. and R. Hinden, "Internet Protocol, Version 6
            (IPv6) Specification", RFC 2460, December 1998.

  [KWORD]   Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels," BCP 14, RFC 2119, March 1997.

  [LLC]     8802-2 : 1994 (ISO/IEC) [ANSI/IEEE 802.2, 1994 Edition]
            Information technology--Telecommunications and information
            exchange between systems--Local and Metropolitan area
            networks--Specific requirements-- Part 2: Logical link
            control.








Crawford, et. al.           Standards Track                     [Page 9]

RFC 2470                  IPv6 over Token Ring             December 1998


11.  Authors' Addresses

  Matt Crawford
  Fermilab MS 368
  PO Box 500
  Batavia, IL 60510 USA

  Phone: +1 630 840 3461
  EMail: [email protected]


  Thomas Narten
  IBM Corporation
  P.O. Box 12195
  Research Triangle Park, NC 27709-2195 USA

  Phone: +1 919 254 7798
  EMail: [email protected]


  Stephen Thomas
  TransNexus
  430 Tenth Street NW Suite N204
  Atlanta, GA 30318 USA

  Phone: +1 404 872 4745
  EMail: [email protected]
























Crawford, et. al.           Standards Track                    [Page 10]

RFC 2470                  IPv6 over Token Ring             December 1998


Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Crawford, et. al.           Standards Track                    [Page 11]