Network Working Group                                 E. Crawley, Editor
Request for Comments: 2382                                Argon Networks
Category: Informational                                        L. Berger
                                                           Fore Systems
                                                              S. Berson
                                                                   ISI
                                                               F. Baker
                                                          Cisco Systems
                                                              M. Borden
                                                           Bay Networks
                                                            J. Krawczyk
                                              ArrowPoint Communications
                                                            August 1998


        A Framework for Integrated Services and RSVP over ATM

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  This document outlines the issues and framework related to providing
  IP Integrated Services with RSVP over ATM. It provides an overall
  approach to the problem(s) and related issues.  These issues and
  problems are to be addressed in further documents from the ISATM
  subgroup of the ISSLL working group.

1. Introduction

  The Internet currently has one class of service normally referred to
  as "best effort."  This service is typified by first-come, first-
  serve scheduling at each hop in the network.  Best effort service has
  worked well for electronic mail, World Wide Web (WWW) access, file
  transfer (e.g. ftp), etc.  For real-time traffic such as voice and
  video, the current Internet has performed well only across unloaded
  portions of the network.  In order to provide quality real-time
  traffic, new classes of service and a QoS signalling protocol are






Crawley, et. al.             Informational                      [Page 1]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  being introduced in the Internet [1,6,7], while retaining the
  existing best effort service.  The QoS signalling protocol is RSVP
  [1], the Resource ReSerVation Protocol and the service models

  One of the important features of ATM technology is the ability to
  request a point-to-point Virtual Circuit (VC) with a specified
  Quality of Service (QoS).  An additional feature of ATM technology is
  the ability to request point-to-multipoint VCs with a specified QoS.
  Point-to-multipoint VCs allows leaf nodes to be added and removed
  from the VC dynamically and so provides a mechanism for supporting IP
  multicast. It is only natural that RSVP and the Internet Integrated
  Services (IIS) model would like to utilize the QoS properties of any
  underlying link layer including ATM, and this memo concentrates on
  ATM.

  Classical IP over ATM [10] has solved part of this problem,
  supporting IP unicast best effort traffic over ATM.  Classical IP
  over ATM is based on a Logical IP Subnetwork (LIS), which is a
  separately administered IP subnetwork.  Hosts within an LIS
  communicate using the ATM network, while hosts from different subnets
  communicate only by going through an IP router (even though it may be
  possible to open a direct VC between the two hosts over the ATM
  network).  Classical IP over ATM provides an Address Resolution
  Protocol (ATMARP) for ATM edge devices to resolve IP addresses to
  native ATM addresses.  For any pair of IP/ATM edge devices (i.e.
  hosts or routers), a single VC is created on demand and shared for
  all traffic between the two devices.  A second part of the RSVP and
  IIS over ATM problem, IP multicast, is being solved with MARS [5],
  the Multicast Address Resolution Server.

  MARS compliments ATMARP by allowing an IP address to resolve into a
  list of native ATM addresses, rather than just a single address.

  The ATM Forum's LAN Emulation (LANE) [17, 20] and Multiprotocol Over
  ATM (MPOA) [18] also address the support of IP best effort traffic
  over ATM through similar means.

  A key remaining issue for IP in an ATM environment is the integration
  of RSVP signalling and ATM signalling in support of the Internet
  Integrated Services (IIS) model.  There are two main areas involved
  in supporting the IIS model, QoS translation and VC management. QoS
  translation concerns mapping a QoS from the IIS model to a proper ATM
  QoS, while VC management concentrates on how many VCs are needed and
  which traffic flows are routed over which VCs.







Crawley, et. al.             Informational                      [Page 2]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


1.1 Structure and Related Documents

  This document provides a guide to the issues for IIS over ATM.  It is
  intended to frame the problems that are to be addressed in further
  documents. In this document, the modes and models for RSVP operation
  over ATM will be discussed followed by a discussion of management of
  ATM VCs for RSVP data and control. Lastly, the topic of
  encapsulations will be discussed in relation to the models presented.

  This document is part of a group of documents from the ISATM subgroup
  of the ISSLL working group related to the operation of IntServ and
  RSVP over ATM.  [14] discusses the mapping of the IntServ models for
  Controlled Load and Guaranteed Service to ATM.  [15 and 16] discuss
  detailed implementation requirements and guidelines for RSVP over
  ATM, respectively.  While these documents may not address all the
  issues raised in this document, they should provide enough
  information for development of solutions for IntServ and RSVP over
  ATM.

1.2 Terms

  Several term used in this document are used in many contexts, often
  with different meaning.  These terms are used in this document with
  the following meaning:

  - Sender is used in this document to mean the ingress point to the
    ATM network or "cloud".
  - Receiver is used in this document to refer to the egress point from
    the ATM network or "cloud".
  - Reservation is used in this document to refer to an RSVP initiated
    request for resources. RSVP initiates requests for resources based
    on RESV message processing. RESV messages that simply refresh state
    do not trigger resource requests.  Resource requests may be made
    based on RSVP sessions and RSVP reservation styles.  RSVP styles
    dictate whether the reserved resources are used by one sender or
    shared by multiple senders. See [1] for details of each. Each new
    request is referred to in this document as an RSVP reservation, or
    simply reservation.
  - Flow is used to refer to the data traffic associated with a
    particular reservation.  The specific meaning of flow is RSVP style
    dependent. For shared style reservations, there is one flow per
    session. For distinct style reservations, there is one flow per
    sender (per session).

2. Issues Regarding the Operation of RSVP and IntServ over ATM

  The issues related to RSVP and IntServ over ATM fall into several
  general classes:



Crawley, et. al.             Informational                      [Page 3]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  - How to make RSVP run over ATM now and in the future
  - When to set up a virtual circuit (VC) for a specific Quality of
    Service (QoS) related to RSVP
  - How to map the IntServ models to ATM QoS models
  - How to know that an ATM network is providing the QoS necessary for
    a flow
  - How to handle the many-to-many connectionless features of IP
    multicast and RSVP in the one-to-many connection-oriented world of
    ATM

2.1 Modes/Models for RSVP and IntServ over ATM

  [3] Discusses several different models for running IP over ATM
  networks.  [17, 18, and 20] also provide models for IP in ATM
  environments.  Any one of these models would work as long as the RSVP
  control packets (IP protocol 46) and data packets can follow the same
  IP path through the network.  It is important that the RSVP PATH
  messages follow the same IP path as the data such that appropriate
  PATH state may be installed in the routers along the path.  For an
  ATM subnetwork, this means the ingress and egress points must be the
  same in both directions for the RSVP control and data messages.  Note
  that the RSVP protocol does not require symmetric routing.  The PATH
  state installed by RSVP allows the RESV messages to "retrace" the
  hops that the PATH message crossed.  Within each of the models for IP
  over ATM, there are decisions about using different types of data
  distribution in ATM as well as different connection initiation.  The
  following sections look at some of the different ways QoS connections
  can be set up for RSVP.

2.1.1 UNI 3.x and 4.0

  In the User Network Interface (UNI) 3.0 and 3.1 specifications [8,9]
  and 4.0 specification, both permanent and switched virtual circuits
  (PVC and SVC) may be established with a specified service category
  (CBR, VBR, and UBR for UNI 3.x and VBR-rt and ABR for 4.0) and
  specific traffic descriptors in point-to-point and point-to-
  multipoint configurations.  Additional QoS parameters are not
  available in UNI 3.x and those that are available are vendor-
  specific.  Consequently, the level of QoS control available in
  standard UNI 3.x networks is somewhat limited.  However, using these
  building blocks, it is possible to use RSVP and the IntServ models.
  ATM 4.0 with the Traffic Management (TM) 4.0 specification [21]
  allows much greater control of QoS.  [14] provides the details of
  mapping the IntServ models to UNI 3.x and 4.0 service categories and
  traffic parameters.






Crawley, et. al.             Informational                      [Page 4]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


2.1.1.1 Permanent Virtual Circuits (PVCs)

  PVCs emulate dedicated point-to-point lines in a network, so the
  operation of RSVP can be identical to the operation over any point-
  to-point network.  The QoS of the PVC must be consistent and
  equivalent to the type of traffic and service model used.  The
  devices on either end of the PVC have to provide traffic control
  services in order to multiplex multiple flows over the same PVC.
  With PVCs, there is no issue of when or how long it takes to set up
  VCs, since they are made in advance but the resources of the PVC are
  limited to what has been pre-allocated.  PVCs that are not fully
  utilized can tie up ATM network resources that could be used for
  SVCs.

  An additional issue for using PVCs is one of network engineering.
  Frequently, multiple PVCs are set up such that if all the PVCs were
  running at full capacity, the link would be over-subscribed.  This
  frequently used "statistical multiplexing gain" makes providing IIS
  over PVCs very difficult and unreliable.  Any application of IIS over
  PVCs has to be assured that the PVCs are able to receive all the
  requested QoS.

2.1.1.2 Switched Virtual Circuits (SVCs)

  SVCs allow paths in the ATM network to be set up "on demand".  This
  allows flexibility in the use of RSVP over ATM along with some
  complexity.  Parallel VCs can be set up to allow best-effort and
  better service class paths through the network, as shown in Figure 1.
  The cost and time to set up SVCs can impact their use.  For example,
  it may be better to initially route QoS traffic over existing VCs
  until a SVC with the desired QoS can be set up for the flow.  Scaling
  issues can come into play if a single RSVP flow is used per VC, as
  will be discussed in Section 4.3.1.1. The number of VCs in any ATM
  device may also be limited so the number of RSVP flows that can be
  supported by a device can be strictly limited to the number of VCs
  available, if we assume one flow per VC.  Section 4 discusses the
  topic of VC management for RSVP in greater detail.














Crawley, et. al.             Informational                      [Page 5]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


                            Data Flow ==========>

                    +-----+
                    |     |      -------------->  +----+
                    | Src |    -------------->    | R1 |
                    |    *|  -------------->      +----+
                    +-----+       QoS VCs
                         /\
                         ||
                     VC  ||
                     Initiator

                   Figure 1: Data Flow VC Initiation

  While RSVP is receiver oriented, ATM is sender oriented.  This might
  seem like a problem but the sender or ingress point receives RSVP
  RESV messages and can determine whether a new VC has to be set up to
  the destination or egress point.

2.1.1.3 Point to MultiPoint

  In order to provide QoS for IP multicast, an important feature of
  RSVP, data flows must be distributed to multiple destinations from a
  given source.  Point-to-multipoint VCs provide such a mechanism.  It
  is important to map the actions of IP multicasting and RSVP (e.g.
  IGMP JOIN/LEAVE and RSVP RESV/RESV TEAR) to add party and drop party
  functions for ATM.  Point-to-multipoint VCs as defined in UNI 3.x and
  UNI 4.0 have a single service class for all destinations.  This is
  contrary to the RSVP "heterogeneous receiver" concept.  It is
  possible to set up a different VC to each receiver requesting a
  different QoS, as shown in Figure 2. This again can run into scaling
  and resource problems when managing multiple VCs on the same
  interface to different destinations.


















Crawley, et. al.             Informational                      [Page 6]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


                                   +----+
                          +------> | R1 |
                          |        +----+
                          |
                          |        +----+
             +-----+ -----+   +--> | R2 |
             |     | ---------+    +----+  Receiver Request Types:
             | Src |                       ---->  QoS 1 and QoS 2
             |     | .........+    +----+  ....>  Best-Effort
             +-----+ .....+   +..> | R3 |
                          :        +----+
                      /\  :
                      ||  :        +----+
                      ||  +......> | R4 |
                      ||           +----+
                    Single
                 IP Multicast
                    Group

                   Figure 2: Types of Multicast Receivers

  RSVP sends messages both up and down the multicast distribution tree.
  In the case of a large ATM cloud, this could result in a RSVP message
  implosion at an ATM ingress point with many receivers.

  ATM 4.0 expands on the point-to-multipoint VCs by adding a Leaf
  Initiated Join (LIJ) capability. LIJ allows an ATM end point to join
  into an existing point-to-multipoint VC without necessarily
  contacting the source of the VC.  This can reduce the burden on the
  ATM source point for setting up new branches and more closely matches
  the receiver-based model of RSVP and IP multicast.  However, many of
  the same scaling issues exist and the new branches added to a point-
  to-multipoint VC must use the same QoS as existing branches.

2.1.1.4 Multicast Servers

  IP-over-ATM has the concept of a multicast server or reflector that
  can accept cells from multiple senders and send them via a point-to-
  multipoint VC to a set of receivers.  This moves the VC scaling
  issues noted previously for point-to-multipoint VCs to the multicast
  server.  Additionally, the multicast server will need to know how to
  interpret RSVP packets or receive instruction from another node so it
  will be able to provide VCs of the appropriate QoS for the RSVP
  flows.







Crawley, et. al.             Informational                      [Page 7]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


2.1.2 Hop-by-Hop vs. Short Cut

  If the ATM "cloud" is made up a number of logical IP subnets (LISs),
  then it is possible to use "short cuts" from a node on one LIS
  directly to a node on another LIS, avoiding router hops between the
  LISs. NHRP [4], is one mechanism for determining the ATM address of
  the egress point on the ATM network given a destination IP address.
  It is a topic for further study to determine if significant benefit
  is achieved from short cut routes vs. the extra state required.

2.1.3 Future Models

  ATM is constantly evolving.  If we assume that RSVP and IntServ
  applications are going to be wide-spread, it makes sense to consider
  changes to ATM that would improve the operation of RSVP and IntServ
  over ATM.  Similarly, the RSVP protocol and IntServ models will
  continue to evolve and changes that affect them should also be
  considered.  The following are a few ideas that have been discussed
  that would make the integration of the IntServ models and RSVP easier
  or more complete.  They are presented here to encourage continued
  development and discussion of ideas that can help aid in the
  integration of RSVP, IntServ, and ATM.

2.1.3.1 Heterogeneous Point-to-MultiPoint

  The IntServ models and RSVP support the idea of "heterogeneous
  receivers"; e.g., not all receivers of a particular multicast flow
  are required to ask for the same QoS from the network, as shown in
  Figure 2.

  The most important scenario that can utilize this feature occurs when
  some receivers in an RSVP session ask for a specific QoS while others
  receive the flow with a best-effort service.  In some cases where
  there are multiple senders on a shared-reservation flow (e.g., an
  audio conference), an individual receiver only needs to reserve
  enough resources to receive one sender at a time.  However, other
  receivers may elect to reserve more resources, perhaps to allow for
  some amount of "over-speaking" or in order to record the conference
  (post processing during playback can separate the senders by their
  source addresses).

  In order to prevent denial-of-service attacks via reservations, the
  service models do not allow the service elements to simply drop non-
  conforming packets.  For example, Controlled Load service model [7]
  assigns non-conformant packets to best-effort status (which may
  result in packet drops if there is congestion).





Crawley, et. al.             Informational                      [Page 8]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  Emulating these behaviors over an ATM network is problematic and
  needs to be studied.  If a single maximum QoS is used over a point-
  to-multipoint VC, resources could be wasted if cells are sent over
  certain links where the reassembled packets will eventually be
  dropped.  In addition, the "maximum QoS" may actually cause a
  degradation in service to the best-effort branches.

  The term "variegated VC" has been coined to describe a point-to-
  multipoint VC that allows a different QoS on each branch.  This
  approach seems to match the spirit of the Integrated Service and RSVP
  models, but some thought has to be put into the cell drop strategy
  when traversing from a "bigger" branch to a "smaller" one.  The
  "best-effort for non-conforming packets" behavior must also be
  retained.  Early Packet Discard (EPD) schemes must be used so that
  all the cells for a given packet can be discarded at the same time
  rather than discarding only a few cells from several packets making
  all the packets useless to the receivers.

2.1.3.2 Lightweight Signalling

  Q.2931 signalling is very complete and carries with it a significant
  burden for signalling in all possible public and private connections.
  It might be worth investigating a lighter weight signalling mechanism
  for faster connection setup in private networks.

2.1.3.3 QoS Renegotiation

  Another change that would help RSVP over ATM is the ability to
  request a different QoS for an active VC.  This would eliminate the
  need to setup and tear down VCs as the QoS changed.  RSVP allows
  receivers to change their reservations and senders to change their
  traffic descriptors dynamically.  This, along with the merging of
  reservations, can create a situation where the QoS needs of a VC can
  change.  Allowing changes to the QoS of an existing VC would allow
  these features to work without creating a new VC.  In the ITU-T ATM
  specifications [24,25], some cell rates can be renegotiated or
  changed.  Specifically, the Peak Cell Rate (PCR) of an existing VC
  can be changed and, in some cases, QoS parameters may be renegotiated
  during the call setup phase. It is unclear if this is sufficient for
  the QoS renegotiation needs of the IntServ models.

2.1.3.4 Group Addressing

  The model of one-to-many communications provided by point-to-
  multipoint VCs does not really match the many-to-many communications
  provided by IP multicasting.  A scaleable mapping from IP multicast
  addresses to an ATM "group address" can address this problem.




Crawley, et. al.             Informational                      [Page 9]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


2.1.3.5 Label Switching

  The MultiProtocol Label Switching (MPLS) working group is discussing
  methods for optimizing the use of ATM and other switched networks for
  IP by encapsulating the data with a header that is used by the
  interior switches to achieve faster forwarding lookups.  [22]
  discusses a framework for this work.  It is unclear how this work
  will affect IntServ and RSVP over label switched networks but there
  may be some interactions.

2.1.4 QoS Routing

  RSVP is explicitly not a routing protocol.  However, since it conveys
  QoS information, it may prove to be a valuable input to a routing
  protocol that can make path determinations based on QoS and network
  load information.  In other words, instead of asking for just the IP
  next hop for a given destination address, it might be worthwhile for
  RSVP to provide information on the QoS needs of the flow if routing
  has the ability to use this information in order to determine a
  route.  Other forms of QoS routing have existed in the past such as
  using the IP TOS and Precedence bits to select a path through the
  network.  Some have discussed using these same bits to select one of
  a set of parallel ATM VCs as a form of QoS routing.  ATM routing has
  also considered the problem of QoS routing through the Private
  Network-to-Network Interface (PNNI) [26] routing protocol for routing
  ATM VCs on a path that can support their needs.  The work in this
  area is just starting and there are numerous issues to consider.
  [23], as part of the work of the QoSR working group frame the issues
  for QoS Routing in the Internet.

2.2 Reliance on Unicast and Multicast Routing

  RSVP was designed to support both unicast and IP multicast
  applications.  This means that RSVP needs to work closely with
  multicast and unicast routing.  Unicast routing over ATM has been
  addressed [10] and [11].  MARS [5] provides multicast address
  resolution for IP over ATM networks, an important part of the
  solution for multicast but still relies on multicast routing
  protocols to connect multicast senders and receivers on different
  subnets.

2.3 Aggregation of Flows

  Some of the scaling issues noted in previous sections can be
  addressed by aggregating several RSVP flows over a single VC if the
  destinations of the VC match for all the flows being aggregated.
  However, this causes considerable complexity in the management of VCs
  and in the scheduling of packets within each VC at the root point of



Crawley, et. al.             Informational                     [Page 10]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  the VC.  Note that the rescheduling of flows within a VC is not
  possible in the switches in the core of the ATM network. Virtual
  Paths (VPs) can be used for aggregating multiple VCs. This topic is
  discussed in greater detail as it applies to multicast data
  distribution in section 4.2.3.4

2.4 Mapping QoS Parameters

  The mapping of QoS parameters from the IntServ models to the ATM
  service classes is an important issue in making RSVP and IntServ work
  over ATM.  [14] addresses these issues very completely for the
  Controlled Load and Guaranteed Service models.  An additional issue
  is that while some guidelines can be developed for mapping the
  parameters of a given service model to the traffic descriptors of an
  ATM traffic class, implementation variables, policy, and cost factors
  can make strict mapping problematic.  So, a set of workable mappings
  that can be applied to different network requirements and scenarios
  is needed as long as the mappings can satisfy the needs of the
  service model(s).

2.5 Directly Connected ATM Hosts

  It is obvious that the needs of hosts that are directly connected to
  ATM networks must be considered for RSVP and IntServ over ATM.
  Functionality for RSVP over ATM must not assume that an ATM host has
  all the functionality of a router, but such things as MARS and NHRP
  clients would be worthwhile features.  A host must manage VCs just
  like any other ATM sender or receiver as described later in section
  4.

2.6 Accounting and Policy Issues

  Since RSVP and IntServ create classes of preferential service, some
  form of administrative control and/or cost allocation is needed to
  control access.  There are certain types of policies specific to ATM
  and IP over ATM that need to be studied to determine how they
  interoperate with the IP and IntServ policies being developed.
  Typical IP policies would be that only certain users are allowed to
  make reservations.  This policy would translate well to IP over ATM
  due to the similarity to the mechanisms used for Call Admission
  Control (CAC).

  There may be a need for policies specific to IP over ATM.  For
  example, since signalling costs in ATM are high relative to IP, an IP
  over ATM specific policy might restrict the ability to change the
  prevailing QoS in a VC.  If VCs are relatively scarce, there also
  might be specific accounting costs in creating a new VC.  The work so
  far has been preliminary, and much work remains to be done.  The



Crawley, et. al.             Informational                     [Page 11]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  policy mechanisms outlined in [12] and [13] provide the basic
  mechanisms for implementing policies for RSVP and IntServ over any
  media, not just ATM.

3. Framework for IntServ and RSVP over ATM

  Now that we have defined some of the issues for IntServ and RSVP over
  ATM, we can formulate a framework for solutions.  The problem breaks
  down to two very distinct areas; the mapping of IntServ models to ATM
  service categories and QoS parameters and the operation of RSVP over
  ATM.

  Mapping IntServ models to ATM service categories and QoS parameters
  is a matter of determining which categories can support the goals of
  the service models and matching up the parameters and variables
  between the IntServ description and the ATM description(s).  Since
  ATM has such a wide variety of service categories and parameters,
  more than one ATM service category should be able to support each of
  the two IntServ models.  This will provide a good bit of flexibility
  in configuration and deployment.  [14] examines this topic
  completely.

  The operation of RSVP over ATM requires careful management of VCs in
  order to match the dynamics of the RSVP protocol.  VCs need to be
  managed for both the RSVP QoS data and the RSVP signalling messages.
  The remainder of this document will discuss several approaches to
  managing VCs for RSVP and [15] and [16] discuss their application for
  implementations in term of interoperability requirement and
  implementation guidelines.

4. RSVP VC Management

  This section provides more detail on the issues related to the
  management of SVCs for RSVP and IntServ.

4.1 VC Initiation

  As discussed in section 2.1.1.2, there is an apparent mismatch
  between RSVP and ATM. Specifically, RSVP control is receiver oriented
  and ATM control is sender oriented.  This initially may seem like a
  major issue, but really is not.  While RSVP reservation (RESV)
  requests are generated at the receiver, actual allocation of
  resources takes place at the subnet sender. For data flows, this
  means that subnet senders will establish all QoS VCs and the subnet
  receiver must be able to accept incoming QoS VCs, as illustrated in
  Figure 1.  These restrictions are consistent with RSVP version 1
  processing rules and allow senders to use different flow to VC
  mappings and even different QoS renegotiation techniques without



Crawley, et. al.             Informational                     [Page 12]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  interoperability problems.

  The use of the reverse path provided by point-to-point VCs by
  receivers is for further study. There are two related issues. The
  first is that use of the reverse path requires the VC initiator to
  set appropriate reverse path QoS parameters. The second issue is that
  reverse paths are not available with point-to-multipoint VCs, so
  reverse paths could only be used to support unicast RSVP
  reservations.

4.2 Data VC Management

  Any RSVP over ATM implementation must map RSVP and RSVP associated
  data flows to ATM Virtual Circuits (VCs). LAN Emulation [17],
  Classical IP [10] and, more recently, NHRP [4] discuss mapping IP
  traffic onto ATM SVCs, but they only cover a single QoS class, i.e.,
  best effort traffic. When QoS is introduced, VC mapping must be
  revisited. For RSVP controlled QoS flows, one issue is VCs to use for
  QoS data flows.

  In the Classic IP over ATM and current NHRP models, a single point-
  to-point VC is used for all traffic between two ATM attached hosts
  (routers and end-stations).  It is likely that such a single VC will
  not be adequate or optimal when supporting data flows with multiple
  .bp QoS types. RSVP's basic purpose is to install support for flows
  with multiple QoS types, so it is essential for any RSVP over ATM
  solution to address VC usage for QoS data flows, as shown in Figure
  1.

  RSVP reservation styles must also be taken into account in any VC
  usage strategy.

  This section describes issues and methods for management of VCs
  associated with QoS data flows. When establishing and maintaining
  VCs, the subnet sender will need to deal with several complicating
  factors including multiple QoS reservations, requests for QoS
  changes, ATM short-cuts, and several multicast specific issues. The
  multicast specific issues result from the nature of ATM connections.
  The key multicast related issues are heterogeneity, data
  distribution, receiver transitions, and end-point identification.

4.2.1 Reservation to VC Mapping

  There are various approaches available for mapping reservations on to
  VCs.  A distinguishing attribute of all approaches is how
  reservations are combined on to individual VCs.  When mapping
  reservations on to VCs, individual VCs can be used to support a
  single reservation, or reservation can be combined with others on to



Crawley, et. al.             Informational                     [Page 13]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  "aggregate" VCs.  In the first case, each reservation will be
  supported by one or more VCs.  Multicast reservation requests may
  translate into the setup of multiple VCs as is described in more
  detail in section 4.2.2.  Unicast reservation requests will always
  translate into the setup of a single QoS VC.  In both cases, each VC
  will only carry data associated with a single reservation.  The
  greatest benefit if this approach is ease of implementation, but it
  comes at the cost of increased (VC) setup time and the consumption of
  greater number of VC and associated resources.

  When multiple reservations are combined onto a single VC, it is
  referred to as the "aggregation" model. With this model, large VCs
  could be set up between IP routers and hosts in an ATM network. These
  VCs could be managed much like IP Integrated Service (IIS) point-to-
  point links (e.g. T-1, DS-3) are managed now.  Traffic from multiple
  sources over multiple RSVP sessions might be multiplexed on the same
  VC.  This approach has a number of advantages. First, there is
  typically no signalling latency as VCs would be in existence when the
  traffic started flowing, so no time is wasted in setting up VCs.
  Second, the heterogeneity problem (section 4.2.2) in full over ATM
  has been reduced to a solved problem. Finally, the dynamic QoS
  problem (section 4.2.7) for ATM has also been reduced to a solved
  problem.

  The aggregation model can be used with point-to-point and point-to-
  multipoint VCs.  The problem with the aggregation model is that the
  choice of what QoS to use for the VCs may be difficult, without
  knowledge of the likely reservation types and sizes but is made
  easier since the VCs can be changed as needed.

4.2.2 Unicast Data VC Management

  Unicast data VC management is much simpler than multicast data VC
  management but there are still some similar issues.  If one considers
  unicast to be a devolved case of multicast, then implementing the
  multicast solutions will cover unicast.  However, some may want to
  consider unicast-only implementations.  In these situations, the
  choice of using a single flow per VC or aggregation of flows onto a
  single VC remains but the problem of heterogeneity discussed in the
  following section is removed.

4.2.3 Multicast Heterogeneity

  As mentioned in section 2.1.3.1 and shown in figure 2, multicast
  heterogeneity occurs when receivers request different qualities of
  service within a single session.  This means that the amount of
  requested resources differs on a per next hop basis. A related type
  of heterogeneity occurs due to best-effort receivers.  In any IP



Crawley, et. al.             Informational                     [Page 14]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  multicast group, it is possible that some receivers will request QoS
  (via RSVP) and some receivers will not. In shared media networks,
  like Ethernet, receivers that have not requested resources can
  typically be given identical service to those that have without
  complications.  This is not the case with ATM. In ATM networks, any
  additional end-points of a VC must be explicitly added. There may be
  costs associated with adding the best-effort receiver, and there
  might not be adequate resources.  An RSVP over ATM solution will need
  to support heterogeneous receivers even though ATM does not currently
  provide such support directly.

  RSVP heterogeneity is supported over ATM in the way RSVP reservations
  are mapped into ATM VCs.  There are four alternative approaches this
  mapping. There are multiple models for supporting RSVP heterogeneity
  over ATM.  Section 4.2.3.1 examines the multiple VCs per RSVP
  reservation (or full heterogeneity) model where a single reservation
  can be forwarded onto several VCs each with a different QoS. Section
  4.2.3.2 presents a limited heterogeneity model where exactly one QoS
  VC is used along with a best effort VC.  Section 4.2.3.3 examines the
  VC per RSVP reservation (or homogeneous) model, where each RSVP
  reservation is mapped to a single ATM VC.  Section 4.2.3.4 describes
  the aggregation model allowing aggregation of multiple RSVP
  reservations into a single VC.

4.2.3.1 Full Heterogeneity Model

  RSVP supports heterogeneous QoS, meaning that different receivers of
  the same multicast group can request a different QoS.  But
  importantly, some receivers might have no reservation at all and want
  to receive the traffic on a best effort service basis.  The IP model
  allows receivers to join a multicast group at any time on a best
  effort basis, and it is important that ATM as part of the Internet
  continue to provide this service. We define the "full heterogeneity"
  model as providing a separate VC for each distinct QoS for a
  multicast session including best effort and one or more qualities of
  service.

  Note that while full heterogeneity gives users exactly what they
  request, it requires more resources of the network than other
  possible approaches. The exact amount of bandwidth used for duplicate
  traffic depends on the network topology and group membership.

4.2.3.2 Limited Heterogeneity Model

  We define the "limited heterogeneity" model as the case where the
  receivers of a multicast session are limited to use either best
  effort service or a single alternate quality of service.  The
  alternate QoS can be chosen either by higher level protocols or by



Crawley, et. al.             Informational                     [Page 15]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  dynamic renegotiation of QoS as described below.

  In order to support limited heterogeneity, each ATM edge device
  participating in a session would need at most two VCs.  One VC would
  be a point-to-multipoint best effort service VC and would serve all
  best effort service IP destinations for this RSVP session.

  The other VC would be a point to multipoint VC with QoS and would
  serve all IP destinations for this RSVP session that have an RSVP
  reservation established.

  As with full heterogeneity, a disadvantage of the limited
  heterogeneity scheme is that each packet will need to be duplicated
  at the network layer and one copy sent into each of the 2 VCs.
  Again, the exact amount of excess traffic will depend on the network
  topology and group membership. If any of the existing QoS VC end-
  points cannot upgrade to the new QoS, then the new reservation fails
  though the resources exist for the new receiver.

4.2.3.3 Homogeneous and Modified Homogeneous Models

  We define the "homogeneous" model as the case where all receivers of
  a multicast session use a single quality of service VC. Best-effort
  receivers also use the single RSVP triggered QoS VC.  The single VC
  can be a point-to-point or point-to-multipoint as appropriate. The
  QoS VC is sized to provide the maximum resources requested by all
  RSVP next- hops.

  This model matches the way the current RSVP specification addresses
  heterogeneous requests. The current processing rules and traffic
  control interface describe a model where the largest requested
  reservation for a specific outgoing interface is used in resource
  allocation, and traffic is transmitted at the higher rate to all
  next-hops. This approach would be the simplest method for RSVP over
  ATM implementations.

  While this approach is simple to implement, providing better than
  best-effort service may actually be the opposite of what the user
  desires.  There may be charges incurred or resources that are
  wrongfully allocated.  There are two specific problems. The first
  problem is that a user making a small or no reservation would share a
  QoS VC resources without making (and perhaps paying for) an RSVP
  reservation. The second problem is that a receiver may not receive
  any data.  This may occur when there is insufficient resources to add
  a receiver.  The rejected user would not be added to the single VC
  and it would not even receive traffic on a best effort basis.





Crawley, et. al.             Informational                     [Page 16]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  Not sending data traffic to best-effort receivers because of another
  receiver's RSVP request is clearly unacceptable.  The previously
  described limited heterogeneous model ensures that data is always
  sent to both QoS and best-effort receivers, but it does so by
  requiring replication of data at the sender in all cases.  It is
  possible to extend the homogeneous model to both ensure that data is
  always sent to best-effort receivers and also to avoid replication in
  the normal case.  This extension is to add special handling for the
  case where a best- effort receiver cannot be added to the QoS VC.  In
  this case, a best effort VC can be established to any receivers that
  could not be added to the QoS VC. Only in this special error case
  would senders be required to replicate data.  We define this approach
  as the "modified homogeneous" model.

4.2.3.4 Aggregation

  The last scheme is the multiple RSVP reservations per VC (or
  aggregation) model. With this model, large VCs could be set up
  between IP routers and hosts in an ATM network. These VCs could be
  managed much like IP Integrated Service (IIS) point-to-point links
  (e.g. T-1, DS-3) are managed now. Traffic from multiple sources over
  multiple RSVP sessions might be multiplexed on the same VC. This
  approach has a number of advantages. First, there is typically no
  signalling latency as VCs would be in existence when the traffic
  started flowing, so no time is wasted in setting up VCs.   Second,
  the heterogeneity problem in full over ATM has been reduced to a
  solved problem. Finally, the dynamic QoS problem for ATM has also
  been reduced to a solved problem.  This approach can be used with
  point-to-point and point-to-multipoint VCs. The problem with the
  aggregation approach is that the choice of what QoS to use for which
  of the VCs is difficult, but is made easier if the VCs can be changed
  as needed.

4.2.4 Multicast End-Point Identification

  Implementations must be able to identify ATM end-points participating
  in an IP multicast group.  The ATM end-points will be IP multicast
  receivers and/or next-hops.  Both QoS and best-effort end-points must
  be identified.  RSVP next-hop information will provide QoS end-
  points, but not best-effort end-points. Another issue is identifying
  end-points of multicast traffic handled by non-RSVP capable next-
  hops. In this case a PATH message travels through a non-RSVP egress
  router on the way to the next hop RSVP node.  When the next hop RSVP
  node sends a RESV message it may arrive at the source over a
  different route than what the data is using. The source will get the
  RESV message, but will not know which egress router needs the QoS.
  For unicast sessions, there is no problem since the ATM end-point
  will be the IP next-hop router.  Unfortunately, multicast routing may



Crawley, et. al.             Informational                     [Page 17]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  not be able to uniquely identify the IP next-hop router.  So it is
  possible that a multicast end-point can not be identified.

  In the most common case, MARS will be used to identify all end-points
  of a multicast group.  In the router to router case, a multicast
  routing protocol may provide all next-hops for a particular multicast
  group.  In either case, RSVP over ATM implementations must obtain a
  full list of end-points, both QoS and non-QoS, using the appropriate
  mechanisms.  The full list can be compared against the RSVP
  identified end-points to determine the list of best-effort receivers.
  There is no straightforward solution to uniquely identifying end-
  points of multicast traffic handled by non-RSVP next hops.  The
  preferred solution is to use multicast routing protocols that support
  unique end-point identification.  In cases where such routing
  protocols are unavailable, all IP routers that will be used to
  support RSVP over ATM should support RSVP.  To ensure proper
  behavior, implementations should, by default, only establish RSVP-
  initiated VCs to RSVP capable end-points.

4.2.5 Multicast Data Distribution

  Two models are planned for IP multicast data distribution over ATM.
  In one model, senders establish point-to-multipoint VCs to all ATM
  attached destinations, and data is then sent over these VCs.  This
  model is often called "multicast mesh" or "VC mesh" mode
  distribution.  In the second model, senders send data over point-to-
  point VCs to a central point and the central point relays the data
  onto point-to-multipoint VCs that have been established to all
  receivers of the IP multicast group.  This model is often referred to
  as "multicast server" mode distribution. RSVP over ATM solutions must
  ensure that IP multicast data is distributed with appropriate QoS.

  In the Classical IP context, multicast server support is provided via
  MARS [5].  MARS does not currently provide a way to communicate QoS
  requirements to a MARS multicast server.  Therefore, RSVP over ATM
  implementations must, by default, support "mesh-mode" distribution
  for RSVP controlled multicast flows.  When using multicast servers
  that do not support QoS requests, a sender must set the service, not
  global, break bit(s).

4.2.6 Receiver Transitions

  When setting up a point-to-multipoint VCs for multicast RSVP
  sessions, there will be a time when some receivers have been added to
  a QoS VC and some have not.  During such transition times it is
  possible to start sending data on the newly established VC.  The
  issue is when to start send data on the new VC.  If data is sent both
  on the new VC and the old VC, then data will be delivered with proper



Crawley, et. al.             Informational                     [Page 18]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  QoS to some receivers and with the old QoS to all receivers.  This
  means the QoS receivers can get duplicate data.  If data is sent just
  on the new QoS VC, the receivers that have not yet been added will
  lose information.  So, the issue comes down to whether to send to
  both the old and new VCs, or to send to just one of the VCs.  In one
  case duplicate information will be received, in the other some
  information may not be received.

  This issue needs to be considered for three cases:

  - When establishing the first QoS VC
  - When establishing a VC to support a QoS change
  - When adding a new end-point to an already established QoS VC

  The first two cases are very similar.  It both, it is possible to
  send data on the partially completed new VC, and the issue of
  duplicate versus lost information is the same. The last case is when
  an end-point must be added to an existing QoS VC.  In this case the
  end-point must be both added to the QoS VC and dropped from a best-
  effort VC.  The issue is which to do first.  If the add is first
  requested, then the end-point may get duplicate information.  If the
  drop is requested first, then the end-point may loose information.

  In order to ensure predictable behavior and delivery of data to all
  receivers, data can only be sent on a new VCs once all parties have
  been added.  This will ensure that all data is only delivered once to
  all receivers.  This approach does not quite apply for the last case.
  In the last case, the add operation should be completed first, then
  the drop operation.  This means that receivers must be prepared to
  receive some duplicate packets at times of QoS setup.

4.2.7 Dynamic QoS

  RSVP provides dynamic quality of service (QoS) in that the resources
  that are requested may change at any time. There are several common
  reasons for a change of reservation QoS.

  1. An existing receiver can request a new larger (or smaller) QoS.
  2. A sender may change its traffic specification (TSpec), which can
     trigger a change in the reservation requests of the receivers.
  3. A new sender can start sending to a multicast group with a larger
     traffic specification than existing senders, triggering larger
     reservations.
  4. A new receiver can make a reservation that is larger than existing
     reservations.






Crawley, et. al.             Informational                     [Page 19]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  If the limited heterogeneity model is being used and the merge node
  for the larger reservation is an ATM edge device, a new larger
  reservation must be set up across the ATM network. Since ATM service,
  as currently defined in UNI 3.x and UNI 4.0, does not allow
  renegotiating the QoS of a VC, dynamically changing the reservation
  means creating a new VC with the new QoS, and tearing down an
  established VC. Tearing down a VC and setting up a new VC in ATM are
  complex operations that involve a non-trivial amount of processing
  time, and may have a substantial latency.  There are several options
  for dealing with this mismatch in service.  A specific approach will
  need to be a part of any RSVP over ATM solution.

  The default method for supporting changes in RSVP reservations is to
  attempt to replace an existing VC with a new appropriately sized VC.
  During setup of the replacement VC, the old VC must be left in place
  unmodified. The old VC is left unmodified to minimize interruption of
  QoS data delivery.  Once the replacement VC is established, data
  transmission is shifted to the new VC, and the old VC is then closed.
  If setup of the replacement VC fails, then the old QoS VC should
  continue to be used. When the new reservation is greater than the old
  reservation, the reservation request should be answered with an
  error.  When the new reservation is less than the old reservation,
  the request should be treated as if the modification was successful.
  While leaving the larger allocation in place is suboptimal, it
  maximizes delivery of service to the user. Implementations should
  retry replacing the too large VC after some appropriate elapsed time.

  One additional issue is that only one QoS change can be processed at
  one time per reservation. If the (RSVP) requested QoS is changed
  while the first replacement VC is still being setup, then the
  replacement VC is released and the whole VC replacement process is
  restarted. To limit the number of changes and to avoid excessive
  signalling load, implementations may limit the number of changes that
  will be processed in a given period.  One implementation approach
  would have each ATM edge device configured with a time parameter T
  (which can change over time) that gives the minimum amount of time
  the edge device will wait between successive changes of the QoS of a
  particular VC.  Thus if the QoS of a VC is changed at time t, all
  messages that would change the QoS of that VC that arrive before time
  t+T would be queued. If several messages changing the QoS of a VC
  arrive during the interval, redundant messages can be discarded. At
  time t+T, the remaining change(s) of QoS, if any, can be executed.
  This timer approach would apply more generally to any network
  structure, and might be worthwhile to incorporate into RSVP.







Crawley, et. al.             Informational                     [Page 20]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  The sequence of events for a single VC would be

  - Wait if timer is active
  - Establish VC with new QoS
  - Remap data traffic to new VC
  - Tear down old VC
  - Activate timer

  There is an interesting interaction between heterogeneous
  reservations and dynamic QoS. In the case where a RESV message is
  received from a new next-hop and the requested resources are larger
  than any existing reservation, both dynamic QoS and heterogeneity
  need to be addressed. A key issue is whether to first add the new
  next-hop or to change to the new QoS. This is a fairly straight
  forward special case. Since the older, smaller reservation does not
  support the new next-hop, the dynamic QoS process should be initiated
  first. Since the new QoS is only needed by the new next-hop, it
  should be the first end-point of the new VC.  This way signalling is
  minimized when the setup to the new next-hop fails.

4.2.8 Short-Cuts

  Short-cuts [4] allow ATM attached routers and hosts to directly
  establish point-to-point VCs across LIS boundaries, i.e., the VC
  end-points are on different IP subnets.  The ability for short-cuts
  and RSVP to interoperate has been raised as a general question.  An
  area of concern is the ability to handle asymmetric short-cuts.
  Specifically how RSVP can handle the case where a downstream short-
  cut may not have a matching upstream short-cut.  In this case, PATH
  and RESV messages following different paths.

  Examination of RSVP shows that the protocol already includes
  mechanisms that will support short-cuts.  The mechanism is the same
  one used to support RESV messages arriving at the wrong router and
  the wrong interface.  The key aspect of this mechanism is RSVP only
  processing messages that arrive at the proper interface and RSVP
  forwarding of messages that arrive on the wrong interface.  The
  proper interface is indicated in the NHOP object of the message.  So,
  existing RSVP mechanisms will support asymmetric short-cuts. The
  short-cut model of VC establishment still poses several issues when
  running with RSVP. The major issues are dealing with established
  best-effort short-cuts, when to establish short-cuts, and QoS only
  short-cuts. These issues will need to be addressed by RSVP
  implementations.

  The key issue to be addressed by any RSVP over ATM solution is when
  to establish a short-cut for a QoS data flow. The default behavior is
  to simply follow best-effort traffic. When a short-cut has been



Crawley, et. al.             Informational                     [Page 21]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  established for best-effort traffic to a destination or next-hop,
  that same end-point should be used when setting up RSVP triggered VCs
  for QoS traffic to the same destination or next-hop. This will happen
  naturally when PATH messages are forwarded over the best-effort
  short-cut.  Note that in this approach when best-effort short-cuts
  are never established, RSVP triggered QoS short-cuts will also never
  be established.  More study is expected in this area.

4.2.9 VC Teardown

  RSVP can identify from either explicit messages or timeouts when a
  data VC is no longer needed.  Therefore, data VCs set up to support
  RSVP controlled flows should only be released at the direction of
  RSVP. VCs must not be timed out due to inactivity by either the VC
  initiator or the VC receiver.   This conflicts with VCs timing out as
  described in RFC 1755 [11], section 3.4 on VC Teardown.  RFC 1755
  recommends tearing down a VC that is inactive for a certain length of
  time. Twenty minutes is recommended. This timeout is typically
  implemented at both the VC initiator and the VC receiver.   Although,
  section 3.1 of the update to RFC 1755 [11] states that inactivity
  timers must not be used at the VC receiver.

  When this timeout occurs for an RSVP initiated VC, a valid VC with
  QoS will be torn down unexpectedly.  While this behavior is
  acceptable for best-effort traffic, it is important that RSVP
  controlled VCs not be torn down.  If there is no choice about the VC
  being torn down, the RSVP daemon must be notified, so a reservation
  failure message can be sent.

  For VCs initiated at the request of RSVP, the configurable inactivity
  timer mentioned in [11] must be set to "infinite".  Setting the
  inactivity timer value at the VC initiator should not be problematic
  since the proper value can be relayed internally at the originator.
  Setting the inactivity timer at the VC receiver is more difficult,
  and would require some mechanism to signal that an incoming VC was
  RSVP initiated.  To avoid this complexity and to conform to [11]
  implementations must not use an inactivity timer to clear received
  connections.

4.3 RSVP Control Management

  One last important issue is providing a data path for the RSVP
  messages themselves.  There are two main types of messages in RSVP,
  PATH and RESV. PATH messages are sent to unicast or multicast
  addresses, while RESV messages are sent only to unicast addresses.
  Other RSVP messages are handled similar to either PATH or RESV,
  although this might be more complicated for RERR messages.  So ATM
  VCs used for RSVP signalling messages need to provide both unicast



Crawley, et. al.             Informational                     [Page 22]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  and multicast functionality.  There are several different approaches
  for how to assign VCs to use for RSVP signalling messages.

  The main approaches are:

     - use same VC as data
     - single VC per session
     - single point-to-multipoint VC multiplexed among sessions
     - multiple point-to-point VCs multiplexed among sessions

  There are several different issues that affect the choice of how to
  assign VCs for RSVP signalling. One issue is the number of additional
  VCs needed for RSVP signalling. Related to this issue is the degree
  of multiplexing on the RSVP VCs. In general more multiplexing means
  fewer VCs. An additional issue is the latency in dynamically setting
  up new RSVP signalling VCs. A final issue is complexity of
  implementation. The remainder of this section discusses the issues
  and tradeoffs among these different approaches and suggests
  guidelines for when to use which alternative.

4.3.1 Mixed data and control traffic

  In this scheme RSVP signalling messages are sent on the same VCs as
  is the data traffic. The main advantage of this scheme is that no
  additional VCs are needed beyond what is needed for the data traffic.
  An additional advantage is that there is no ATM signalling latency
  for PATH messages (which follow the same routing as the data
  messages).  However there can be a major problem when data traffic on
  a VC is nonconforming. With nonconforming traffic, RSVP signalling
  messages may be dropped. While RSVP is resilient to a moderate level
  of dropped messages, excessive drops would lead to repeated tearing
  down and re-establishing of QoS VCs, a very undesirable behavior for
  ATM. Due to these problems, this may not be a good choice for
  providing RSVP signalling messages, even though the number of VCs
  needed for this scheme is minimized. One variation of this scheme is
  to use the best effort data path for signalling traffic. In this
  scheme, there is no issue with nonconforming traffic, but there is an
  issue with congestion in the ATM network. RSVP provides some
  resiliency to message loss due to congestion, but RSVP control
  messages should be offered a preferred class of service. A related
  variation of this scheme that is hopeful but requires further study
  is to have a packet scheduling algorithm (before entering the ATM
  network) that gives priority to the RSVP signalling traffic. This can
  be difficult to do at the IP layer.







Crawley, et. al.             Informational                     [Page 23]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


4.3.1.1 Single RSVP VC per RSVP Reservation

  In this scheme, there is a parallel RSVP signalling VC for each RSVP
  reservation. This scheme results in twice the number of VCs, but
  means that RSVP signalling messages have the advantage of a separate
  VC.  This separate VC means that RSVP signalling messages have their
  own traffic contract and compliant signalling messages are not
  subject to dropping due to other noncompliant traffic (such as can
  happen with the scheme in section 4.3.1). The advantage of this
  scheme is its simplicity - whenever a data VC is created, a separate
  RSVP signalling VC is created.  The disadvantage of the extra VC is
  that extra ATM signalling needs to be done. Additionally, this scheme
  requires twice the minimum number of VCs and also additional latency,
  but is quite simple.

4.3.1.2 Multiplexed point-to-multipoint RSVP VCs

  In this scheme, there is a single point-to-multipoint RSVP signalling
  VC for each unique ingress router and unique set of egress routers.
  This scheme allows multiplexing of RSVP signalling traffic that
  shares the same ingress router and the same egress routers.  This can
  save on the number of VCs, by multiplexing, but there are problems
  when the destinations of the multiplexed point-to-multipoint VCs are
  changing.  Several alternatives exist in these cases, that have
  applicability in different situations. First, when the egress routers
  change, the ingress router can check if it already has a point-to-
  multipoint RSVP signalling VC for the new list of egress routers. If
  the RSVP signalling VC already exists, then the RSVP signalling
  traffic can be switched to this existing VC. If no such VC exists,
  one approach would be to create a new VC with the new list of egress
  routers. Other approaches include modifying the existing VC to add an
  egress router or using a separate new VC for the new egress routers.
  When a destination drops out of a group, an alternative would be to
  keep sending to the existing VC even though some traffic is wasted.
  The number of VCs used in this scheme is a function of traffic
  patterns across the ATM network, but is always less than the number
  used with the Single RSVP VC per data VC. In addition, existing best
  effort data VCs could be used for RSVP signalling. Reusing best
  effort VCs saves on the number of VCs at the cost of higher
  probability of RSVP signalling packet loss.  One possible place where
  this scheme will work well is in the core of the network where there
  is the most opportunity to take advantage of the savings due to
  multiplexing.  The exact savings depend on the patterns of traffic
  and the topology of the ATM network.







Crawley, et. al.             Informational                     [Page 24]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


4.3.1.3 Multiplexed point-to-point RSVP VCs

  In this scheme, multiple point-to-point RSVP signalling VCs are used
  for a single point-to-multipoint data VC.  This scheme allows
  multiplexing of RSVP signalling traffic but requires the same traffic
  to be sent on each of several VCs. This scheme is quite flexible and
  allows a large amount of multiplexing.

  Since point-to-point VCs can set up a reverse channel at the same
  time as setting up the forward channel, this scheme could save
  substantially on signalling cost.  In addition, signalling traffic
  could share existing best effort VCs.  Sharing existing best effort
  VCs reduces the total number of VCs needed, but might cause
  signalling traffic drops if there is congestion in the ATM network.
  This point-to-point scheme would work well in the core of the network
  where there is much opportunity for multiplexing. Also in the core of
  the network, RSVP VCs can stay permanently established either as
  Permanent Virtual Circuits (PVCs) or  as long lived Switched Virtual
  Circuits (SVCs). The number of VCs in this scheme will depend on
  traffic patterns, but in the core of a network would be approximately
  n(n-1)/2 where n is the number of IP nodes in the network.  In the
  core of the network, this will typically be small compared to the
  total number of VCs.

4.3.2 QoS for RSVP VCs

  There is an issue of what QoS, if any, to assign to the RSVP
  signalling VCs. For other RSVP VC schemes, a QoS (possibly best
  effort) will be needed.  What QoS to use partially depends on the
  expected level of multiplexing that is being done on the VCs, and the
  expected reliability of best effort VCs. Since RSVP signalling is
  infrequent (typically every 30 seconds), only a relatively small QoS
  should be needed. This is important since using a larger QoS risks
  the VC setup being rejected for lack of resources. Falling back to
  best effort when a QoS call is rejected is possible, but if the ATM
  net is congested, there will likely be problems with RSVP packet loss
  on the best effort VC also. Additional experimentation is needed in
  this area.

5. Encapsulation

  Since RSVP is a signalling protocol used to control flows of IP data
  packets, encapsulation for both RSVP packets and associated IP data
  packets must be defined. The methods for transmitting IP packets over
  ATM (Classical IP over ATM[10], LANE[17], and MPOA[18]) are all based
  on the encapsulations defined in RFC1483 [19].  RFC1483 specifies two
  encapsulations, LLC Encapsulation and VC-based multiplexing.  The
  former allows multiple protocols to be encapsulated over the same VC



Crawley, et. al.             Informational                     [Page 25]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  and the latter requires different VCs for different protocols.

  For the purposes of RSVP over ATM, any encapsulation can be used as
  long as the VCs are managed in accordance to the methods outlined in
  Section 4.  Obviously, running multiple protocol data streams over
  the same VC with LLC encapsulation can cause the same problems as
  running multiple flows over the same VC.

  While none of the transmission methods directly address the issue of
  QoS, RFC1755 [11] does suggest some common values for VC setup for
  best-effort traffic.  [14] discusses the relationship of the RFC1755
  setup parameters and those needed to support IntServ flows in greater
  detail.

6. Security Considerations

  The same considerations stated in [1] and [11] apply to this
  document.  There are no additional security issues raised in this
  document.

7. References

  [1] Braden, R., Zhang, L., Berson, S., Herzog, S., and S. Jamin,
      "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
      Specification", RFC 2209, September 1997.

  [2] Borden, M., Crawley, E., Davie, B., and S. Batsell, "Integration
      of Realtime Services in an IP-ATM Network Architecture", RFC
      1821, August 1995.

  [3] Cole, R., Shur, D., and C. Villamizar, "IP over ATM: A Framework
      Document", RFC 1932, April 1996.

  [4] Luciani, J., Katz, D., Piscitello, D., Cole, B., and N.
      Doraswamy, "NBMA Next Hop Resolution Protocol (NHRP)", RFC 2332,
      April 1998.

  [5] Armitage, G., "Support for Multicast over UNI 3.0/3.1 based ATM
      Networks", RFC 2022, November 1996.

  [6] Shenker, S., and C. Partridge, "Specification of Guaranteed
      Quality of Service", RFC 2212, September 1997.

  [7] Wroclawski, J., "Specification of the Controlled-Load Network
      Element Service", RFC 2211, September 1997.

  [8] ATM Forum. ATM User-Network Interface Specification Version 3.0.
      Prentice Hall, September 1993.



Crawley, et. al.             Informational                     [Page 26]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  [9] ATM Forum. ATM User Network Interface (UNI) Specification Version
      3.1. Prentice Hall, June 1995.

  [10] Laubach, M., "Classical IP and ARP over ATM", RFC 2225, April
       1998.

  [11] Perez, M., Mankin, A., Hoffman, E., Grossman, G., and A. Malis,
       "ATM Signalling Support for IP over ATM", RFC 1755, February
       1995.

  [12] Herzog, S., "RSVP Extensions for Policy Control", Work in
       Progress.

  [13] Herzog, S., "Local Policy Modules (LPM): Policy Control for
       RSVP", Work in Progress.

  [14] Borden, M., and M. Garrett, "Interoperation of Controlled-Load
       and Guaranteed Service with ATM", RFC 2381, August 1998.

  [15] Berger, L., "RSVP over ATM Implementation Requirements", RFC
       2380, August 1998.

  [16] Berger, L., "RSVP over ATM Implementation Guidelines", RFC 2379,
       August 1998.

  [17] ATM Forum Technical Committee. LAN Emulation over ATM, Version
       1.0 Specification, af-lane-0021.000, January 1995.

  [18] ATM Forum Technical Committee. Baseline Text for MPOA, af-95-
       0824r9, September 1996.

  [19] Heinanen, J., "Multiprotocol Encapsulation over ATM Adaptation
       Layer 5", RFC 1483, July 1993.

  [20] ATM Forum Technical Committee. LAN Emulation over ATM Version 2
       - LUNI Specification, December 1996.

  [21] ATM Forum Technical Committee. Traffic Management Specification
       v4.0, af-tm-0056.000, April 1996.

  [22] Callon, R., et al., "A Framework for Multiprotocol Label
       Switching, Work in Progress.

  [23] Rajagopalan, B., Nair, R., Sandick, H., and E. Crawley, "A
       Framework for QoS-based Routing in the Internet", RFC 2386,
       August 1998.





Crawley, et. al.             Informational                     [Page 27]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  [24] ITU-T. Digital Subscriber Signaling System No. 2-Connection
       modification: Peak cell rate modification by the connection
       owner, ITU-T Recommendation Q.2963.1, July 1996.

  [25] ITU-T. Digital Subscriber Signaling System No. 2-Connection
       characteristics negotiation during call/connection establishment
       phase, ITU-T Recommendation Q.2962, July 1996.

  [26] ATM Forum Technical Committee. Private Network-Network Interface
       Specification v1.0 (PNNI), March 1996.

8. Authors' Addresses

  Eric S. Crawley
  Argon Networks
  25 Porter Road
  Littleton, Ma 01460

  Phone: +1 978 486-0665
  EMail: [email protected]


  Lou Berger
  FORE Systems
  6905 Rockledge Drive
  Suite 800
  Bethesda, MD 20817

  Phone: +1 301 571-2534
  EMail: [email protected]


  Steven Berson
  USC Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292

  Phone: +1 310 822-1511
  EMail: [email protected]


  Fred Baker
  Cisco Systems
  519 Lado Drive
  Santa Barbara, California 93111

  Phone: +1 805 681-0115
  EMail: [email protected]



Crawley, et. al.             Informational                     [Page 28]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


  Marty Borden
  Bay Networks
  125 Nagog Park
  Acton, MA 01720

  Phone: +1 978 266-1011
  EMail: [email protected]


  John J. Krawczyk
  ArrowPoint Communications
  235 Littleton Road
  Westford, Massachusetts 01886

  Phone: +1 978 692-5875
  EMail: [email protected]



































Crawley, et. al.             Informational                     [Page 29]

RFC 2382         Integrated Services and RSVP over ATM       August 1998


9.  Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Crawley, et. al.             Informational                     [Page 30]