Network Working Group                                     C. Alaettinoglu
Request for Comments: 2280             USC/Information Sciences Institute
Category: Standards Track                                        T. Bates
                                                           Cisco Systems
                                                               E. Gerich
                                                         At Home Network
                                                           D. Karrenberg
                                                                    RIPE
                                                                D. Meyer
                                                    University of Oregon
                                                             M. Terpstra
                                                            Bay Networks
                                                           C. Villamizar
                                                                     ANS
                                                            January 1998

             Routing Policy Specification Language (RPSL)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  Table of Contents

  1 Introduction                                                     2
  2 RPSL Names, Reserved Words, and Representation                   3
  3 Contact Information                                              6
    3.1 mntner Class  . . . . . . . . . . . . . . . . . . . . . . .  6
    3.2 person Class  . . . . . . . . . . . . . . . . . . . . . . .  8
    3.3 role Class  . . . . . . . . . . . . . . . . . . . . . . . .  9
  4 route Class                                                     10
  5 Set Classes                                                     12
    5.1 route-set Class . . . . . . . . . . . . . . . . . . . . . . 12
    5.2 as-set Class  . . . . . . . . . . . . . . . . . . . . . . . 14
    5.3 Predefined Set Objects  . . . . . . . . . . . . . . . . . . 15
    5.4 Hierarchical Set Names  . . . . . . . . . . . . . . . . . . 15
  6 aut-num Class                                                   16
    6.1 import Attribute:  Import Policy Specification  . . . . . . 16
      6.1.1 Peering Specification . . . . . . . . . . . . . . . . . 17
      6.1.2 Action Specification  . . . . . . . . . . . . . . . . . 19



Alaettinoglu, et. al.       Standards Track                     [Page 1]

RFC 2280                          RPSL                      January 1998


      6.1.3 Filter Specification  . . . . . . . . . . . . . . . . . 20
      6.1.4 Example Policy Expressions  . . . . . . . . . . . . . . 24
    6.2 export Attribute:  Export Policy Specification  . . . . . . 24
     6.3 Other Routing  Protocols, Multi-Protocol Routing
      Protocols, and Injecting Routes Between Protocols   . . . . . 25
    6.4 Ambiguity Resolution  . . . . . . . . . . . . . . . . . . . 26
    6.5 default Attribute:  Default Policy Specification  . . . . . 28
    6.6 Structured Policy Specification . . . . . . . . . . . . . . 29
  7 dictionary Class                                                33
    7.1 Initial RPSL Dictionary and Example Policy Actions
     and Filters  . . . . . . . . . . . . . . . . . . . . . . . . . 36
  8 Advanced route Class                                            41
    8.1 Specifying Aggregate Routes . . . . . . . . . . . . . . . . 41
      8.1.1 Interaction with policies in aut-num class  . . . . . . 45
      8.1.2 Ambiguity resolution with overlapping aggregates  . . . 46
    8.2 Specifying Static Routes  . . . . . . . . . . . . . . . . . 47
  9 inet-rtr Class                                                  48
  10 Security Considerations                                        49
  11 Acknowledgements                                               50
  A Routing Registry Sites                                          51
  B Authors' Addresses                                              52
  C Full Copyright Statement                                        53

1 Introduction

  This memo is the reference document for the Routing Policy
  Specification Language (RPSL). RPSL allows a network operator to be
  able to specify routing policies at various levels in the Internet
  hierarchy; for example at the Autonomous System (AS) level.  At the
  same time, policies can be specified with sufficient detail in RPSL
  so that low level router configurations can be generated from them.
  RPSL is extensible; new routing protocols and new protocol features
  can be introduced at any time.

  RPSL is a replacement for the current Internet policy specification
  language known as RIPE-181 [4] or RFC-1786 [5].  RIPE-81 [6] was the
  first language deployed in the Internet for specifying routing
  policies.  It was later replaced by RIPE-181 [4].  Through
  operational use of RIPE-181 it has become apparent that certain
  policies cannot be specified and a need for an enhanced and more
  generalized language is needed.  RPSL addresses RIPE-181's
  limitations.









Alaettinoglu, et. al.       Standards Track                     [Page 2]

RFC 2280                          RPSL                      January 1998


  RPSL was designed so that a view of the global routing policy can be
  contained in a single cooperatively maintained distributed database
  to improve the integrity of Internet's routing.  RPSL is not designed
  to be a router configuration language.  RPSL is designed so that
  router configurations can be generated from the description of the
  policy for one autonomous system (aut-num class) combined with the
  description of a router (inet-rtr class), mainly providing router ID,
  autonomous system number of the router, interfaces and peers of the
  router, and combined with a global database mappings from AS sets to
  ASes (as-set class), and from origin ASes and route sets to route
  prefixes (route and route-set classes).  The accurate population of
  the RPSL database can help contribute toward such goals as router
  configurations that protect against accidental (or malicious)
  distribution of inaccurate routing information, verification of
  Internet's routing, and aggregation boundaries beyond a single AS.

  RPSL is object oriented; that is, objects contain pieces of policy
  and administrative information.  These objects are registered in the
  Internet Routing Registry (IRR) by the authorized organizations.  The
  registration process is beyond the scope of this document.  Please
  refer to [1, 15, 2] for more details on the IRR.

  In the following sections, we present the classes that are used to
  define various policy and administrative objects.  The "mntner" class
  defines entities authorized to add, delete and modify a set of
  objects.  The "person" and "role" classes describes technical and
  administrative contact personnel.  Autonomous systems (ASes) are
  specified using the "aut-num" class.  Routes are specified using the
  "route" class.  Sets of ASes and routes can be defined using the
  "as-set" and "route-set" classes.  The "dictionary" class provides
  the extensibility to the language.  The "inet-rtr" class is used to
  specify routers.  Many of these classes were originally defined in
  earlier documents [4, 11, 14, 10, 3] and have all been enhanced.

  This document is self-contained.  However, the reader is encouraged
  to read RIPE-181 [5] and the associated documents [11, 14, 10, 3] as
  they provide significant background as to the motivation and
  underlying principles behind RIPE-181 and consequently, RPSL. For a
  tutorial on RPSL, the reader should read the RPSL applications
  document [2].

2 RPSL Names, Reserved Words, and Representation

  Each class has a set of attributes which store a piece of information
  about the objects of the class.  Attributes can be mandatory or
  optional: A mandatory attribute has to be defined for all objects of





Alaettinoglu, et. al.       Standards Track                     [Page 3]

RFC 2280                          RPSL                      January 1998


  the class; optional attributes can be skipped.  Attributes can also
  be single or multiple valued.  Each object is uniquely identified by
  a set of attributes, referred to as the class "key".

  The value of an attribute has a type.  The following types are most
  widely used.  Note that RPSL is case insensitive and only the
  characters from the ASCII character set can be used.

  <object-name>Many objects in RPSL have a name.  An <object-name>
      is made up of letters, digits, the character underscore "_", and
      the character hyphen "-"; the first character of a name must be a
      letter, and the last character of a name must be a letter or a
      digit.  The following words are reserved by RPSL, and they can
      not be used as names:

            any as-any rs-any peeras
            and or not
            atomic from to at action accept announce except refine
            networks into inbound outbound

      Names starting with certain prefixes are reserved for certain
      object types.  Names starting with "as-" are reserved for as set
      names.  Names starting with "rs-" are reserved for route set
      names.

  <as-number>An AS number x is represented as the string "ASx".  That
      is, the AS 226 is represented as AS226.

  <ipv4-address>An IPv4 address is represented as a sequence of four
      integers in the range from 0 to 255 separated by the character
      dot ".".  For example, 128.9.128.5 represents a valid IPv4
      address.  In the rest of this document, we may refer to IPv4
      addresses as IP addresses.

  <address-prefix>An address prefix is represented as an IPv4
      address followed by the character slash "/" followed by an
      integer in the range from 0 to 32.  The following are valid
      address prefixes: 128.9.128.5/32, 128.9.0.0/16, 0.0.0.0/0; and
      the following address prefixes are invalid: 0/0, 128.9/16 since 0
      or 128.9 are not strings containing four integers.

  <address-prefix-range>An address prefix range is an address
      prefix followed by one of the following range operators:








Alaettinoglu, et. al.       Standards Track                     [Page 4]

RFC 2280                          RPSL                      January 1998


      ^- is the exclusive more specifics operator; it stands
          for the more specifics of the address prefix excluding the
          address prefix itself.  For example, 128.9.0.0/16^- contains
          all the more specifics of 128.9.0.0/16 excluding
          128.9.0.0/16.

      ^+ is the inclusive more specifics operator; it stands
          for the more specifics of the address prefix including the
          address prefix itself.  For example, 5.0.0.0/8^+ contains all
          the more specifics of 5.0.0.0/8 including 5.0.0.0/8.

      ^n where n is an integer, stands for all the length n specifics
          of the address prefix.  For example, 30.0.0.0/8^16 contains
          all the more specifics of 30.0.0.0/8 which are of length 16
          such as 30.9.0.0/16.

      ^n-m where n and m are integers, stands for all the length n to
          length m specifics of the address prefix.  For example,
          30.0.0.0/8^24-32 contains all the more specifics of
          30.0.0.0/8 which are of length 24 to 32 such as 30.9.9.96/28.

      Range operators can also be applied to address prefix sets.  In
      this case, they distribute over the members of the set.  For
      example, for a route-set (defined later) rs-foo, rs-foo^+
      contains all the inclusive more specifics of all the prefixes in
      rs-foo.

  <date>A date is represented as an eight digit integer of the
      form YYYYMMDD where YYYY represents the year, MM represents the
      month of the year (01 through 12), and DD represents the day of
      the month (01 through 31).  For example, June 24, 1996 is
      represented as 19960624.

  <email-address>is as described in RFC-822[8].

  <dns-name>is as described in RFC-1034[16].

  <nic-handle>is a uniquely assigned identifier[13] used by routing,
      address allocation, and other registries to unambiguously refer
      to contact information.  person and role classes map NIC handles
      to actual person names, and contact information.

  <free-form>is a sequence of ASCII characters.

  <X-name>is a name of an object of type X. That is <mntner-name>
      is a name of a mntner object.





Alaettinoglu, et. al.       Standards Track                     [Page 5]

RFC 2280                          RPSL                      January 1998


  <registry-name>is a name of an IRR registry.  The routing
      registries are listed in Appendix A.

  A value of an attribute may also be a list of one of these types.  A
  list is represented by separating the list members by commas ",".
  For example, "AS1, AS2, AS3, AS4" is a list of AS numbers.  Note that
  being list valued and being multiple valued are orthogonal.  A
  multiple valued attribute has more than one value, each of which may
  or may not be a list.  On the other hand a single valued attribute
  may have a list value.

  An RPSL object is textually represented as a list of attribute-value
  pairs.  Each attribute-value pair is written on a separate line.  The
  attribute name starts at column 0, followed by character ":" and
  followed by the value of the attribute.  The object's representation
  ends when a blank line is encountered.  An attribute's value can be
  split over multiple lines, by starting the continuation lines with a
  white-space (" " or tab) character.  The order of attribute-value
  pairs is significant.

  An object's description may contain comments.  A comment can be
  anywhere in an object's definition, it starts at the first "#"
  character on a line and ends at the first end-of-line character.
  White space characters can be used to improve readability.

3 Contact Information

  The mntner, person and role classes, admin-c, tech-c, mnt-by,
  changed, and source attributes of all classes describe contact
  information.  The mntner class also specifies what entities can
  create, delete and update other objects.  These classes do not
  specify routing policies and each registry may have different or
  additional requirements on them.  Here we present the common
  denominator for completeness which is the RIPE database
  implementation[15].  Please consult your routing registry for the
  latest specification of these classes and attributes.

3.1 mntner Class

  The mntner class defines entities that can create, delete and update
  RPSL objects.  A provider, before he/she can create RPSL objects,
  first needs to create a mntner object.  The attributes of the mntner
  class are shown in Figure 1.  The mntner class was first described in
  [11].

  The mntner attribute is mandatory and is the class key attribute.
  Its value is an RPSL name.  The auth attribute specifies the scheme
  that will be used



Alaettinoglu, et. al.       Standards Track                     [Page 6]

RFC 2280                          RPSL                      January 1998


Attribute Value                    Type
mntner    <object-name>            mandatory, single-valued, class key
descr     <free-form>              mandatory, single-valued
auth      see description in text  mandatory, multi-valued
upd-to    <email-address>          mandatory, multi-valued
mnt-nfy   <email-address>          optional, multi-valued
tech-c    <nic-handle>             mandatory, multi-valued
admin-c   <nic-handle>             mandatory, multi-valued
remarks   <free-form>              optional, multi-valued
notify    <email-address>          optional, multi-valued
mnt-by    list of <mntner-name>    mandatory, multi-valued
changed   <email-address> <date>   mandatory, multi-valued
source    <registry-name>          mandatory, single-valued

  to identify and authenticate update requests from this maintainer.
  It has the following syntax:

     auth: <scheme-id> <auth-info>

     E.g.
            auth: NONE
            auth: CRYPT-PW dhjsdfhruewf
            auth: MAIL-FROM .*@ripe\.net

  The <scheme-id>'s currently defined are: NONE, MAIL-FROM, PGP and
  CRYPT-PW.  The <auth-info> is additional information required by a
  particular scheme: in the case of MAIL-FROM, it is a regular
  expression matching valid email addresses; in the case of CRYPT-PW,
  it is a password in UNIX crypt format; and in the case of PGP, it is
  a PGP public key.  If multiple auth attributes are specified, an
  update request satisfying any one of them is authenticated to be from
  the maintainer.

  The upd-to attribute is an email address.  On an unauthorized update
  attempt of an object maintained by this maintainer, an email message
  will be sent to this address.  The mnt-nfy attribute is an email
  address.  A notification message will be forwarded to this email
  address whenever an object maintained by this maintainer is added,
  changed or deleted.

  The descr attribute is a short, free-form textual description of the
  object.  The tech-c attribute is a technical contact NIC handle.
  This is someone to be contacted for technical problems such as
  misconfiguration.  The admin-c attribute is an administrative contact
  NIC handle.  The remarks attribute is a free text explanation or
  clarification.  The notify attribute is an email address to which
  notifications of changes to this object should be sent.  The mnt-by
  attribute is a list of mntner object names.  The authorization for



Alaettinoglu, et. al.       Standards Track                     [Page 7]

RFC 2280                          RPSL                      January 1998


  changes to this object is governed by any of the maintainer objects
  referenced.  The changed attribute documents who last changed this
  object, and when this change was made.  Its syntax has the following
  form:

     changed: <email-address> <YYYYMMDD>

     E.g.
     changed: [email protected] 19900401

  The <email-address> identifies the person who made the last change.
  <YYYYMMDD> is the date of the change.  The source attribute specifies
  the registry where the object is registered.  Figure 2 shows an
  example mntner object.  In the example, UNIX crypt format password
  authentication is used.

     mntner:      RIPE-NCC-MNT
     descr:       RIPE-NCC Maintainer
     admin-c:     DK58
     tech-c:      OPS4-RIPE
     upd-to:      [email protected]
     mnt-nfy:     [email protected]
     auth:        CRYPT-PW lz1A7/JnfkTtI
     mnt-by:      RIPE-NCC-MNT
     changed:     [email protected] 19970820
     source:      RIPE

                      Figure 2:  An example mntner object.

  The descr, tech-c, admin-c, remarks, notify, mnt-by, changed and
  source attributes are attributes of all RPSL classes.  Their syntax,
  semantics, and mandatory, optional, multi-valued, or single-valued
  status are the same for for all RPSL classes.  We do not further
  discuss them in other sections.

3.2 person Class

  A person class is used to describe information about people.  Even
  though it does not describe routing policy, we still describe it here
  briefly since many policy objects make reference to person objects.
  The person class was first described in [14].

  The attributes of the person class are shown in Figure 3.  The person
  attribute is the full name of the person.  The phone and the fax-no
  attributes have the following syntax:






Alaettinoglu, et. al.       Standards Track                     [Page 8]

RFC 2280                          RPSL                      January 1998


Attribute  Value                    Type
person     <free-form>              mandatory, single-valued
nic-hdl    <nic-handle>             mandatory, single-valued, class key
address    <free-form>              mandatory, multi-valued
phone      see description in text  mandatory, multi-valued
fax-no     same as phone            optional, multi-valued
e-mail     <email-address>          mandatory, multi-valued


                    Figure 3:  person Class Attributes

        phone: +<country-code> <city> <subscriber> [ext. <extension>]

     E.g.:
        phone: +31 20 12334676
        phone: +44 123 987654 ext. 4711


  Figure 4 shows an example person object.


     person:      Daniel Karrenberg
     address:     RIPE Network Coordination Centre (NCC)
     address:     Singel 258
     address:     NL-1016 AB  Amsterdam
     address:     Netherlands
     phone:       +31 20 535 4444
     fax-no:      +31 20 535 4445
     e-mail:      [email protected]
     nic-hdl:     DK58
     changed:     [email protected] 19970616
     source:      RIPE


                      Figure 4:  An example person object.

3.3 role Class

  The role class is similar to the person object.  However, instead of
  describing a human being, it describes a role performed by one or
  more human beings.  Examples include help desks, network monitoring
  centers, system administrators, etc.  Role object is particularly
  useful since often a person performing a role may change, however the
  role itself remains.

  The attributes of the role class are shown in Figure 5.  The nic-hdl
  attributes of the person and role classes share the same name space.
  The



Alaettinoglu, et. al.       Standards Track                     [Page 9]

RFC 2280                          RPSL                      January 1998


Attribute  Value                    Type
role       <free-form>              mandatory, single-valued
nic-hdl    <nic-handle>             mandatory, single-valued, class key
trouble    <free-form>              optional, multi-valued
address    <free-form>              mandatory, multi-valued
phone      see description in text  mandatory, multi-valued
fax-no     same as phone            optional, multi-valued
e-mail     <email-address>          mandatory, multi-valued


                     Figure 5:  role Class Attributes

  NIC handle of a role object cannot be used in an admin-c field.  The
  trouble attribute of role object may contain additional contact
  information to be used when a problem arises in any object that
  references this role object.  Figure 6 shows an example role object.

     role:        RIPE NCC Operations
     address:     Singel 258
     address:     1016 AB Amsterdam
     address:     The Netherlands
     phone:       +31 20 535 4444
     fax-no:      +31 20 545 4445
     e-mail:      [email protected]
     admin-c:     CO19-RIPE
     tech-c:      RW488-RIPE
     tech-c:      JLSD1-RIPE
     nic-hdl:     OPS4-RIPE
     notify:      [email protected]
     changed:     [email protected] 19970926
     source:      RIPE


                       Figure 6:  An example role object.

4 route Class

  Each interAS route (also referred to as an interdomain route)
  originated by an AS is specified using a route object.  The
  attributes of the route class are shown in Figure 7.  The route
  attribute is the address prefix of the route and the origin attribute
  is the AS number of the AS that originates the route into the interAS
  routing system.  The route and origin attribute pair is the class
  key.

  Figure 8 shows examples of four route objects (we do not include
  contact.




Alaettinoglu, et. al.       Standards Track                    [Page 10]

RFC 2280                          RPSL                      January 1998


Attribute     Value                      Type
route         <address-prefix>           mandatory, single-valued,
                                        class key
origin        <as-number>                mandatory, single-valued,
                                        class key
withdrawn     <date>                     optional, single-valued
member-of     list of <route-set-names>  optional, single-valued
             see Section 5
inject        see Section 8              optional, multi-valued
components    see Section 8              optional, single-valued
aggr-bndry    see Section 8              optional, single-valued
aggr-mtd      see Section 8              optional, single-valued
export-comps  see Section 8              optional, single-valued
holes         see Section 8              optional, single-valued


                    Figure 7:  route Class Attributes

  attributes such as admin-c, tech-c for brevity).  Note that the last
  two route objects have the same address prefix, namely 128.8.0.0/16.
  However, they are different route objects since they are originated
  by different ASes (i.e. they have different keys).

     route: 128.9.0.0/16
     origin: AS226

     route: 128.99.0.0/16
     origin: AS226

     route: 128.8.0.0/16
     origin: AS1

     route: 128.8.0.0/16
     origin: AS2
     withdrawn: 19960624


                        Figure 8:  Route Objects

  The withdrawn attribute, if present, signifies that the originator AS
  no longer originates this address prefix in the Internet.  Its value
  is a date indicating the date of withdrawal.  In Figure 8, the last
  route object is withdrawn (i.e. no longer originated by AS2) on June
  24, 1996.







Alaettinoglu, et. al.       Standards Track                    [Page 11]

RFC 2280                          RPSL                      January 1998


5 Set Classes

  To specify policies, it is often useful to define sets of objects.
  For this purpose we define two classes: route-set and as-set.  These
  classes define a named set.  The members of these sets can be
  specified by either explicitly listing them in the set object's
  definition, or implicitly by having route and aut-num objects refer
  to the set names, or a combination of both methods.

5.1 route-set Class

  The attributes of the route-set class are shown in Figure 9.  The
  route-set attribute defines the name of the set.  It is an RPSL name
  that starts with "rs-".  The members attribute lists the members of
  the set.  The members attribute is a list of address prefixes or
  other route-set names.  Note that, the route-set class is a set of
  route prefixes, not of RPSL route objects.

  Attribute    Value                          Type
  route-set    <object-name>                  mandatory, single-valued,
                                              class key
  members      list of <address-prefixes> or  optional, single-valued
               <route-set-names>
  mbrs-by-ref  list of <mntner-names>         optional, single-valued


                  Figure 9:  route-set Class Attributes

  Figure 10 presents some example route-set objects.  The set rs-foo
  contains two address prefixes, namely 128.9.0.0/16 and 128.9.0.0/16.
  The set rs-bar contains the members of the set rs-foo and the address
  prefix 128.7.0.0/16.  The set rs-empty contains no members.

     route-set: rs-foo
     members: 128.9.0.0/16, 128.9.0.0/24

     route-set: rs-bar
     members: 128.7.0.0/16, rs-foo

     route-set: rs-empty


                      Figure 10:  route-set Objects

  An address prefix or a route-set name in a members attribute can be
  optionally followed by a range operator.  For example, the following
  set




Alaettinoglu, et. al.       Standards Track                    [Page 12]

RFC 2280                          RPSL                      January 1998


     route-set: rs-bar
     members: 5.0.0.0/8^+, 30.0.0.0/8^24-32, rs-foo^+

  contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all
  the more specifics of 30.0.0.0/8 which are of length 24 to 32 such as
  30.9.9.96/28, and all the more specifics of address prefixes in route
  set rs-foo.

  The mbrs-by-ref attribute is a list of maintainer names or the
  keyword ANY.  If this attribute is used, the route set also includes
  address prefixes whose route objects are registered by one of these
  maintainers and whose member-of attribute refers to the name of this
  route set.  If the value of a mbrs-by-ref attribute is ANY, any route
  object referring to the route set name is a member.  If the mbrs-by-
  ref attribute is missing, only the address prefixes listed in the
  members attribute are members of the set.

     route-set: rs-foo
     mbrs-by-ref: MNTR-ME, MNTR-YOU

     route-set: rs-bar
     members: 128.7.0.0/16
     mbrs-by-ref: MNTR-YOU

     route: 128.9.0.0/16
     origin: AS1
     member-of: rs-foo
     mnt-by: MNTR-ME

     route: 128.8.0.0/16
     origin: AS2
     member-of: rs-foo, rs-bar
     mnt-by: MNTR-YOU


                     Figure 11:  route-set objects.

  Figure 11 presents example route-set objects that use the mbrs-by-ref
  attribute.  The set rs-foo contains two address prefixes, namely
  128.8.0.0/16 and 128.9.0.0/16 since the route objects for
  128.8.0.0/16 and 128.9.0.0/16 refer to the set name rs-foo in their
  member-of attribute.  The set rs-bar contains the address prefixes
  128.7.0.0/16 and 128.8.0.0/16.  The route 128.7.0.0/16 is explicitly
  listed in the members attribute of rs-bar, and the route object for
  128.8.0.0/16 refer to the set name rs-bar in its member-of attribute.

  Note that, if an address prefix is listed in a members attribute of a
  route set, it is a member of that route set.  The route object



Alaettinoglu, et. al.       Standards Track                    [Page 13]

RFC 2280                          RPSL                      January 1998


  corresponding to this address prefix does not need to contain a
  member-of attribute referring to this set name.  The member-of
  attribute of the route class is an additional mechanism for
  specifying the members indirectly.

5.2 as-set Class

  The attributes of the as-set class are shown in Figure 12.  The as-
  set attribute defines the name of the set.  It is an RPSL name that
  starts with "as-".  The members attribute lists the members of the
  set.  The members attribute is a list of AS numbers, or other as-set
  names.

     Attribute    Value                    Type
     as-set       <object-name>            mandatory, single-valued,
                                           class key
     members      list of <as-numbers> or  optional, single-valued
                  <as-set-names>
     mbrs-by-ref  list of <mntner-names>   optional, single-valued


                   Figure 12:  as-set Class Attributes

  Figure 13 presents two as-set objects.  The set as-foo contains two
  ASes, namely AS1 and AS2.  The set as-bar contains the members of the
  set as-foo and AS3, that is it contains AS1, AS2, AS3.

   as-set: as-foo                      as-set: as-bar
   members: AS1, AS2                   members: AS3, as-foo


                   Figure 13:  as-set objects.


  The mbrs-by-ref attribute is a list of maintainer names or the
  keyword ANY.  If this attribute is used, the AS set also includes
  ASes whose aut-num objects are registered by one of these maintainers
  and whose member-of attribute refers to the name of this AS set.  If
  the value of a mbrs-by-ref attribute is ANY, any AS object referring
  to the AS set is a member of the set.  If the mbrs-by-ref attribute
  is missing, only the ASes listed in the members attribute are members
  of the set.

  Figure 14 presents an example as-set object that uses the mbrs-by-ref
  attribute.  The set as-foo contains AS1, AS2 and AS3.  AS4 is not a
  member of the set as-foo even though the aut-num object references
  as-foo.  This is because MNTR-OTHER is not listed in the as-foo's
  mbrs-by-ref attribute.



Alaettinoglu, et. al.       Standards Track                    [Page 14]

RFC 2280                          RPSL                      January 1998


   as-set: as-foo
   members: AS1, AS2
   mbrs-by-ref: MNTR-ME

   aut-num: AS3                          aut-num: AS4
   member-of: as-foo                     member-of: as-foo
   mnt-by: MNTR-ME                       mnt-by: MNTR-OTHER


                       Figure 14:  as-set objects.

5.3 Predefined Set Objects


  In a context that expects a route set (e.g.  members attribute of the
  route-set class), an AS number ASx defines the set of routes that are
  originated by ASx; and an as-set AS-X defines the set of routes that
  are originated by the ASes in AS-X. A route p is said to be
  originated by ASx if there is a route object for p with ASx as the
  value of the origin attribute.  For example, in Figure 15, the route
  set rs-special contains 128.9.0.0/16, routes of AS1 and AS2, and
  routes of the ASes in AS set AS-FOO.

     route-set: rs-special
     members: 128.9.0.0/16, AS1, AS2, AS-FOO


        Figure 15:  Use of AS numbers and AS sets in route sets.

  The set rs-any contains all routes registered in IRR.  The set as-any
  contains all ASes registered in IRR.

5.4 Hierarchical Set Names

  Set names can be hierarchical.  A hierarchical set name is a sequence
  of set names and AS numbers separated by colons ":".  For example,
  the following names are valid: AS1:AS-CUSTOMERS, AS1:RS-EXCEPTIONS,
  AS1:RS-EXPORT:AS2, RS-EXCEPTIONS:RS-BOGUS. All components of an
  hierarchical set name which are not AS numbers should start with
  "as-" or "rs-" for as sets and route sets respectively.

  A set object with name X1:...:Xn-1:Xn can only be created by the
  maintainer of the object with name X1:...:Xn-1.  That is, only the
  maintainer of AS1 can create a set with name AS1:AS-FOO; and only the
  maintainer of AS1:AS-FOO can create a set with name AS1:AS-FOO:AS-
  BAR.





Alaettinoglu, et. al.       Standards Track                    [Page 15]

RFC 2280                          RPSL                      January 1998


  The purpose of an hierarchical set name is to partition the set name
  space so that the controllers of the set name X1 controls the whole
  set name space under X1, i.e.  X1:...:Xn-1.  This is important since
  anyone can create a set named AS-MCI-CUSTOMERS but only the people
  created AS3561 can create AS3561:AS-CUSTOMERS. In the former, it is
  not clear if the set AS-MCI-CUSTOMERS has any relationship with MCI.
  In the latter, we can guarantee that AS3561:AS-CUSTOMERS and AS3561
  are created by the same entity.

6 aut-num Class

  ASes are specified using the aut-num class.  The attributes of the
  aut-num class are shown in Figure 16.  The value of the aut-num
  attribute is the AS number of the AS described by this object.  The
  as-name attribute is a symbolic name (in RPSL name syntax) of the AS.
  The import, export and default routing policies of the AS are
  specified using import, export and default attributes respectively.

  Attribute  Value                  Type
  aut-num    <as-number>            mandatory, single-valued, class key
  as-name    <object-name>          mandatory, single-valued
  member-of  list of <as-set-names> optional, single-valued
  import     see Section 6.1        optional, multi valued
  export     see Section 6.2        optional, multi valued
  default    see Section 6.5        optional, multi valued

                   Figure 16:  aut-num Class Attributes

6.1 import Attribute:  Import Policy Specification

  Figure 17 shows a typical interconnection of ASes that we will be
  using in our examples throughout this section.  In this example
  topology, there are three ASes, AS1, AS2, and AS3; two exchange
  points, EX1 and EX2; and six routers.  Routers connected to the same
  exchange point peer with each other, i.e. open a connection for
  exchanging routing information.  Each router would export a subset of
  the routes it has to its peer routers.  Peer routers would import a
  subset of these routes.  A router while importing routes would set
  some route attributes.  For example, AS1 can assign higher preference
  values to the routes it imports from AS2 so that it prefers AS2 over
  AS3.  While exporting routes, a router may also set some route
  attributes in order to affect route selection by its peers.  For
  example, AS2 may set the MULTI-EXIT-DISCRIMINATOR BGP attribute so
  that AS1 prefers to use the router 9.9.9.2.  Most interAS policies
  are specified by specifying what route subsets can be imported or
  exported, and how the various BGP route attributes are set and used.





Alaettinoglu, et. al.       Standards Track                    [Page 16]

RFC 2280                          RPSL                      January 1998


    ----------------------                   ----------------------
    |            7.7.7.1 |-------|   |-------| 7.7.7.2            |
    |                    |     ========      |                    |
    |   AS1              |      EX1  |-------| 7.7.7.3     AS2    |
    |                    |                   |                    |
    |            9.9.9.1 |------       ------| 9.9.9.2            |
    ----------------------     |       |     ----------------------
                              ===========
                                  |    EX2
    ----------------------        |
    |            9.9.9.3 |---------
    |                    |
    |   AS3              |
    ----------------------

  Figure 17: Example topology consisting of three ASes, AS1, AS2, and
  AS3; two exchange points, EX1 and EX2; and six routers.

  In RPSL, an import policy is divided into import policy expressions.
  Each import policy expression is specified using an import attribute.
  The import attribute has the following syntax (we will extend this
  syntax later in Sections 6.3 and 6.6):

      import: from <peering-1> [action <action-1>]
              . . .
              from <peering-N> [action <action-N>]
              accept <filter>

  The action specification is optional.  The semantics of an import
  attribute is as follows: the set of routes that are matched by
  <filter> are imported from all the peers in <peerings>; while
  importing routes at <peering-M>, <action-M> is executed.


    E.g.
      aut-num: AS1
      import: from AS2 action pref = 1; accept { 128.9.0.0/16 }

  This example states that the route 128.9.0.0/16 is accepted from AS2
  with preference 1.  In the next few subsections, we will describe how
  peerings, actions and filters are specified.

6.1.1 Peering Specification

  Our example above used an AS number to specify peerings.  The
  peerings can be specified at different granularities.  The syntax of
  a peering specification has two forms.  The first one is as follows:




Alaettinoglu, et. al.       Standards Track                    [Page 17]

RFC 2280                          RPSL                      January 1998


              <peer-as> [<peer-router>] [at <local-router>]

  where <local-router> and <peer-router> are IP addresses of routers,
  <peer-as> is an AS number.  <peer-as> must be the AS number of
  <peer-router>.  Both <local-router> and <peer-router> are optional.
  If both <local-router> and <peer-router> are specified, this peering
  specification identifies only the peering between these two routers.
  If only <local-router> is specified, this peering specification
  identifies all the peerings between <local-router> and any of its
  peer routers in <peer-as>.  If only <peer-router> is specified, this
  peering specification identifies all the peerings between any router
  in the local AS and <peer-router>.  If neither <local-router> nor
  <peer-router> is specified, this peering specification identifies all
  the peerings between any router in the local AS and any router in
  <peer-as>.

  We next give examples.  Consider the topology of Figure 17 where
  7.7.7.1, 7.7.7.2 and 7.7.7.3 peer with each other; 9.9.9.1, 9.9.9.2
  and 9.9.9.3 peer with each other.  In the following example 7.7.7.1
  imports 128.9.0.0/16 from 7.7.7.2.

   (1) aut-num: AS1
       import: from AS2 7.7.7.2 at 7.7.7.1 accept { 128.9.0.0/16 }

  In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2
  and 7.7.7.3.

   (2) aut-num: AS1
       import: from AS2 at 7.7.7.1 accept { 128.9.0.0/16 }

  In the following example 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2
  and 7.7.7.3, and 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2.

   (3) aut-num: AS1
       import: from AS2 accept { 128.9.0.0/16 }

  The second form of <peering> specification has the following syntax:

       <as-expression> [at <router-expression>]

  where <as-expression> is an expression over AS numbers and sets using
  operators AND, OR, and NOT, and <router-expression> is an expression
  over router IP addresses and DNS names using operators AND, OR, and
  NOT. The DNS name can only be used if there is an inet-rtr object for
  that name that binds the name to IP addresses.  This form identifies
  all the peerings between any local router in <router-expression> to





Alaettinoglu, et. al.       Standards Track                    [Page 18]

RFC 2280                          RPSL                      January 1998


  any of their peer routers in the ASes in <as-expression>.  If
  <router-expression> is not specified, it defaults to all routers of
  the local AS.

  In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2
  and 9.9.9.3.

   (4) as-set: AS-FOO
       members: AS2, AS3
       aut-num: AS1
       import: from AS-FOO at 9.9.9.1 accept { 128.9.0.0/16 }

  In the following example 9.9.9.1 imports 128.9.0.0/16 from 9.9.9.2
  and 9.9.9.3, and 7.7.7.1 imports 128.9.0.0/16 from 7.7.7.2 and
  7.7.7.3.

   (5) aut-num: AS1
       import: from AS-FOO accept { 128.9.0.0/16 }

  In the following example AS1 imports 128.9.0.0/16 from AS3 at router
  9.9.9.1

   (6) aut-num: AS1
       import: from AS-FOO and not AS2
               at not 7.7.7.1
               accept { 128.9.0.0/16 }

  This is because  "AS-FOO and not  AS2" equals AS3  and "not 7.7.7.1"
  equals 9.9.9.1.

6.1.2 Action Specification

  Policy actions in RPSL either set or modify route attributes, such as
  assigning a preference to a route, adding a BGP community to the BGP
  community path attribute, or setting the MULTI-EXIT-DISCRIMINATOR
  attribute.  Policy actions can also instruct routers to perform
  special operations, such as route flap damping.

  The routing policy attributes whose values can be modified in policy
  actions are specified in the RPSL dictionary.  Please refer to
  Section 7 for a list of these attributes.  Each action in RPSL is
  terminated by the character ';'.  It is possible to form composite
  policy actions by listing them one after the other.  In a composite
  policy action, the actions are executed left to right.  For example,







Alaettinoglu, et. al.       Standards Track                    [Page 19]

RFC 2280                          RPSL                      January 1998


aut-num: AS1
import: from AS2
       action pref = 10; med = 0; community.append(10250, {3561,10});
       accept { 128.9.0.0/16 }

  sets pref to 10, med to 0, and then appends 10250 and {3561,10} to
  the community path attribute.

6.1.3 Filter Specification

  A policy filter is a logical expression which when applied to a set
  of routes returns a subset of these routes.  We say that the policy
  filter matches the subset returned.  The policy filter can match
  routes using any path attribute, such as the destination address
  prefix (or NLRI), AS-path, or community attributes.

  The policy filters can be composite by using the operators AND, OR,
  and NOT.  The following policy filters can be used to select a subset
  of routes:

  ANY The filter-keyword ANY matches all routes.

  Address-Prefix Set This is an explicit list of address prefixes
  enclosed in braces '{' and '}'.  The policy filter matches the set of
  routes whose destination address-prefix is in the set.  For example:

       { 0.0.0.0/0 }
       { 128.9.0.0/16, 128.8.0.0/16, 128.7.128.0/17, 5.0.0.0/8 }
       { }

  An address prefix can be optionally followed by a range operator
  (i.e. '^-', '^+', '^n', or '^n-m').  For example, the set

    { 5.0.0.0/8^+, 128.9.0.0/16^-, 30.0.0.0/8^16, 30.0.0.0/8^24-32 }

  contains all the more specifics of 5.0.0.0/8 including 5.0.0.0/8, all
  the more specifics of 128.9.0.0/16 excluding 128.9.0.0/16, all the
  more specifics of 30.0.0.0/8 which are of length 16 such as
  30.9.0.0/16, and all the more specifics of 30.0.0.0/8 which are of
  length 24 to 32 such as 30.9.9.96/28.

  Route Set Name A route set name matches the set of routes that are
  members of the set.  A route set name may be a name of a route-set
  object, an AS number, or a name of an as-set object (AS numbers and
  as-set names implicitly define route sets; please see Section 5.3).
  For example:





Alaettinoglu, et. al.       Standards Track                    [Page 20]

RFC 2280                          RPSL                      January 1998


        aut-num: AS1
        import: from AS2 action pref = 1; accept AS2
        import: from AS2 action pref = 1; accept AS-FOO
        import: from AS2 action pref = 1; accept RS-FOO

  The keyword PeerAS can be used instead of the AS number of the peer
  AS.  PeerAS is particularly useful when the peering is specified
  using an AS expression.  For example:

        as-set: AS-FOO
        members: AS2, AS3

        aut-num: AS1
        import: from AS-FOO action pref = 1; accept PeerAS

  is same as:

        aut-num: AS1
        import: from AS2 action pref = 1; accept AS2
        import: from AS3 action pref = 1; accept AS3

  A route set name can also be followed by one of the operators '^-',
  '^+', '^n' or '^n-m'.  These operators are distributive over the
  route sets.  For example, { 5.0.0.0/8, 6.0.0.0/8 }^+ equals {
  5.0.0.0/8^+, 6.0.0.0/8^+ }, and AS1^- equals all the exclusive more
  specifics of routes originated by AS1.

  AS Path Regular Expressions An AS-path regular expression can be used
  as a policy filter by enclosing the expression in `<' and `>'.  An
  AS-path policy filter matches the set of routes which traverses a
  sequence of ASes matched by the AS-path regular expression.  A router
  can check this using the AS_PATH attribute in the Border Gateway
  Protocol [18], or the RD_PATH attribute in the Inter-Domain Routing
  Protocol[17].

  AS-path Regular Expressions are POSIX compliant regular expressions
  over the alphabet of AS numbers.  The regular expression constructs
  are as follows:

   ASN where ASN is an AS number.  ASN matches the AS-path
               that is of length 1 and contains the corresponding AS
               number (e.g.  AS-path regular expression AS1 matches the
               AS-path "1").

               The keyword PeerAS can be used instead of the AS number
               of the peer AS.





Alaettinoglu, et. al.       Standards Track                    [Page 21]

RFC 2280                          RPSL                      January 1998


   AS-set where AS-set is an AS set name.  AS-set matches the AS-paths
               that is matched by one of the ASes in the AS-set.

   .        matches the AS-paths matched by any AS number.

   [...]    is an AS number set.   It matches the AS-paths  matched by
               the AS numbers listed between the brackets.  The AS
               numbers in the set are separated by white space
               characters.  If a `-' is used between two AS numbers in
               this set, all AS numbers between the two AS numbers are
               included in the set.  If an as-set name is listed, all
               AS numbers in the as-set are included.

   [^...]   is a complemented AS number set.  It matches any AS-path
               which is not matched by the AS numbers in the set.

   ^        Matches the empty string at the beginning of an AS-path.

   $        Matches the empty string at the end of an AS-path.

  We next list the regular expression operators in the decreasing order
  of evaluation.  These operators are left associative, i.e. performed
  left to right.

  Unary postfix operators * + ?  {m} {m,n} {m,}
               For a regular expression A, A* matches zero or more
               occurrences of A; A+ matches one or more occurrences of
               A; A?  matches zero or one occurrence of A; A{m} matches
               m occurrence of A; A{m,n} matches m to n occurrence of
               A; A{m,} matches m or more occurrence of A. For example,
               [AS1 AS2]{2} matches AS1 AS1, AS1 AS2, AS2 AS1, and AS2
               AS2.

  Unary postfix operators ~* ~+ ~{m} ~{m,n} ~{m,}
               These operators have similar functionality as the
               corresponding operators listed above, but all
               occurrences of the regular expression has to match the
               same pattern.  For example, [AS1 AS2]~{2} matches AS1
               AS1 and AS2 AS2, but it does not match AS1 AS2 and AS2
               AS1.

  Binary catenation operator
               This is an implicit operator and exists between two
               regular expressions A and B when no other explicit
               operator is specified.  The resulting expression A B
               matches an AS-path if A matches some prefix of the AS-
               path and B matches the rest of the AS-path.




Alaettinoglu, et. al.       Standards Track                    [Page 22]

RFC 2280                          RPSL                      January 1998


  Binary alternative (or) operator |
               For a regular expressions A and B, A | B matches any
               AS-path that is matched by A or B.

  Parenthesis can be used to override the default order of evaluation.
  White spaces can be used to increase readability.

  The following are examples of AS-path filters:

     <AS3>
     <^AS1>
     <AS2$>
     <^AS1 AS2 AS3$>
     <^AS1 .* AS2$>.

  The first example matches any route whose AS-path contains AS3, the
  second matches routes whose AS-path starts with AS1, the third
  matches routes whose AS-path ends with AS2, the fourth matches routes
  whose AS-path is exactly "1 2 3", and the fifth matches routes whose
  AS-path starts with AS1 and ends in AS2 with any number of AS numbers
  in between.

  Composite Policy Filters The following operators (in decreasing order
  of evaluation) can be used to form composite policy filters:

  NOT Given a policy filter x, NOT x matches the set of routes that are
      not matched by x.  That is it is the negation of policy filter x.

  AND Given two policy filters x and y, x AND y matches the
      intersection of the routes that are matched by x and that are
      matched by y.

  OR Given two policy filters x and y, x OR y matches the union of
      the routes that are matched by x and that are matched by y.

  Note that an OR operator can be implicit, that is `x y' is equivalent
  to `x OR y'.

    E.g.

      NOT {128.9.0.0/16, 128.8.0.0/16}
      AS226 AS227 OR AS228
      AS226 AND NOT {128.9.0.0/16}
      AS226 AND {0.0.0.0/0^0-18}







Alaettinoglu, et. al.       Standards Track                    [Page 23]

RFC 2280                          RPSL                      January 1998


  The first example matches any route except 128.9.0.0/16 and
  128.8.0.0/16.  The second example matches the routes of AS226, AS227
  and AS228.  The third example matches the routes of AS226 except
  128.9.0.0/16.  The fourth example matches the routes of AS226 whose
  length are not longer than 18.

  Routing Policy Attributes Policy filters can also use the values of
  other attributes for comparison.  The attributes whose values can be
  used in policy filters are specified in the RPSL dictionary.  Please
  refer to Section 7 for details.  An example using the the BGP
  community attribute is shown below:

      aut-num: AS1
      export: to AS2 announce AS1 AND NOT community.contains(NO_EXPORT)

  Filters using the routing policy attributes defined in the dictionary
  are evaluated before evaluating the operators AND, OR and NOT.

6.1.4 Example Policy Expressions

   aut-num: AS1
   import: from AS2 action pref = 1;
           from AS3 action pref = 2;
           accept AS4

  The above example states that AS4's routes are accepted from AS2 with
  preference 1, and from AS3 with preference 2 (routes with lower
  integer preference values are preferred over routes with higher
  integer preference values).

   aut-num: AS1
   import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
           from AS2                    action pref = 2;
           accept AS4

  The above example states that AS4's routes are accepted from AS2 on
  peering 7.7.7.1-7.7.7.2 with preference 1, and on any other peering
  with AS2 with preference 2.

6.2 export Attribute: Export Policy Specification

  Similarly, an export policy expression is specified using an export
  attribute.  The export attribute has the following syntax:

      export: to <peering-1> [action <action-1>]
              . . .
              to <peering-N> [action <action-N>]
              announce <filter>



Alaettinoglu, et. al.       Standards Track                    [Page 24]

RFC 2280                          RPSL                      January 1998


  The action specification is optional.  The semantics of an export
  attribute is as follows: the set of routes that are matched by
  <filter> are exported to all the peers specified in <peerings>; while
  exporting routes at <peering-M>, <action-M> is executed.

    E.g.
      aut-num: AS1
      export: to AS2 action med = 5; community .= 70;
              announce AS4

  In this example, AS4's routes are announced to AS2 with the med
  attribute's value set to 5 and community 70 added to the community
  list.

  Example:

      aut-num: AS1
      export: to AS-FOO announce ANY

  In this example, AS1 announces all of its routes to the ASes in the
  set AS-FOO.

6.3 Other Routing Protocols, Multi-Protocol Routing Protocols, and
      Injecting Routes Between Protocols

  The more complete syntax of the import and export attributes are as
  follows:

      import: [protocol <protocol-1>] [into <protocol-2>]
              from <peering-1> [action <action-1>]
              . . .
              from <peering-N> [action <action-N>]
              accept <filter>
      export: [protocol <protocol-1>] [into <protocol-2>]
              to <peering-1> [action <action-1>]
              . . .
              to <peering-N> [action <action-N>]
              announce <filter>

  Where the optional protocol specifications can be used for specifying
  policies for other routing protocols, or for injecting routes of one
  protocol into another protocol, or for multi-protocol routing
  policies.  The valid protocol names are defined in the dictionary.
  The <protocol-1> is the name of the protocol whose routes are being
  exchanged.  The <protocol-2> is the name of the protocol which is
  receiving these routes.  Both <protocol-1> and <protocol-2> default
  to the Internet Exterior Gateway Protocol, currently BGP.




Alaettinoglu, et. al.       Standards Track                    [Page 25]

RFC 2280                          RPSL                      January 1998


  In the following example, all interAS routes are injected into RIP.

   aut-num: AS1
   import: from AS2 accept AS2
   export: protocol BGP4 into RIP
           to AS1 announce ANY

  In the following example, AS1 accepts AS2's routes including any more
  specifics of AS2's routes, but does not inject these extra more
  specific routes into OSPF.

   aut-num: AS1
   import: from AS2 accept AS2^+
   export: protocol BGP4 into OSPF
           to AS1 announce AS2

  In the following example, AS1 injects its static routes (routes which
  are members of the set AS1:RS-STATIC-ROUTES) to the interAS routing
  protocol and appends AS1 twice to their AS paths.

   aut-num: AS1
   import: protocol STATIC into BGP4
           from AS1 action aspath.prepend(AS1, AS1);
           accept AS1:RS-STATIC-ROUTES

  In the following example, AS1 imports different set of unicast routes
  for multicast reverse path forwarding from AS2:

   aut-num: AS1
   import: from AS2 accept AS2
   import: protocol IDMR
           from AS2 accept AS2:RS-RPF-ROUTES

6.4 Ambiguity Resolution

  It is possible that the same peering can be covered by more that one
  peering specification in a policy expression.  For example:

   aut-num: AS1
   import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 2;
           from AS2 7.7.7.2 at 7.7.7.1 action pref = 1;
           accept AS4

  This is not an error, though definitely not desirable.  To break the
  ambiguity, the action corresponding to the first peering
  specification is used.  That is the routes are accepted with
  preference 2.  We call this rule as the specification-order rule.




Alaettinoglu, et. al.       Standards Track                    [Page 26]

RFC 2280                          RPSL                      January 1998


  Consider the example:

   aut-num: AS1
   import: from AS2                    action pref = 2;
           from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
           accept AS4

  where both peering specifications cover the peering 7.7.7.1-7.7.7.2,
  though the second one covers it more specifically.  The specification
  order rule still applies, and only the action "pref = 2" is executed.
  In fact, the second peering-action pair has no use since the first
  peering-action pair always covers it.  If the intended policy was to
  accept these routes with preference 1 on this particular peering and
  with preference 2 in all other peerings, the user should have
  specified:

   aut-num: AS1
   import: from AS2 7.7.7.2 at 7.7.7.1 action pref = 1; dpa = 5;
           from AS2                    action pref = 2;
           accept AS4

  It is also possible that more than one policy expression can cover
  the same set of routes for the same peering.  For example:

   aut-num: AS1
   import: from AS2 action pref = 2; accept AS4
   import: from AS2 action pref = 1; accept AS4

  In this case, the specification-order rule is still used.  That is,
  AS4's routes are accepted from AS2 with preference 2.  If the filters
  were overlapping but not exactly the same:

   aut-num: AS1
   import: from AS2 action pref = 2; accept AS4
   import: from AS2 action pref = 1; accept AS4 OR AS5

  the AS4's routes are accepted from AS2 with preference 2 and however
  AS5's routes are also accepted, but with preference 1.

  We next give the general specification order rule for the benefit of
  the RPSL implementors.  Consider two policy expressions:

   aut-num: AS1
   import: from peerings-1 action action-1 accept filter-1
   import: from peerings-2 action action-2 accept filter-2

  The above policy expressions are equivalent to the following three
  expressions where there is no ambiguity:



Alaettinoglu, et. al.       Standards Track                    [Page 27]

RFC 2280                          RPSL                      January 1998


aut-num: AS1
import: from peerings-1 action action-1 accept filter-1
import: from peerings-3 action action-2 accept filter-2 AND NOT filter-1
import: from peerings-4 action action-2 accept filter-2

  where peerings-3 are those that are covered by both peerings-1 and
  peerings-2, and peerings-4 are those that are covered by peerings-2
  but not by peerings-1 ("filter-2 AND NOT filter-1" matches the routes
  that are matched by filter-2 but not by filter-1).

  Example:

   aut-num: AS1
   import: from AS2 7.7.7.2 at 7.7.7.1
           action pref = 2;
           accept {128.9.0.0/16}
   import: from AS2
           action pref = 1;
           accept {128.9.0.0/16, 75.0.0.0/8}

  Lets consider two peerings with AS2, 7.7.7.1-7.7.7.2 and 9.9.9.1-
  9.9.9.2.  Both policy expressions cover 7.7.7.1-7.7.7.2.  On this
  peering, the route 128.9.0.0/16 is accepted with preference 2, and
  the route 75.0.0.0/8 is accepted with preference 1.  The peering
  9.9.9.1-9.9.9.2 is only covered by the second policy expressions.
  Hence, both the route 128.9.0.0/16 and the route 75.0.0.0/8 are
  accepted with preference 1 on peering 9.9.9.1-9.9.9.2.

  Note that the same ambiguity resolution rules also apply to export
  and default policy expressions.

6.5 default Attribute:  Default Policy Specification

  Default routing policies are specified using the default attribute.
  The default attribute has the following syntax:

      default: to <peering> [action <action>] [networks <filter>]

  The <action> and <filter> specifications are optional.  The semantics
  are as follows: The <peering> specification indicates the AS (and the
  router if present) is being defaulted to; the <action> specification,
  if present, indicates various attributes of defaulting, for example a
  relative preference if multiple defaults are specified; and the
  <filter> specifications, if present, is a policy filter.  A router
  chooses a default router from the routes in its routing table that
  matches this <filter>.

  In the following example, AS1 defaults to AS2 for routing.



Alaettinoglu, et. al.       Standards Track                    [Page 28]

RFC 2280                          RPSL                      January 1998


   aut-num: AS1
   default: to AS2

  In the following example, router 7.7.7.1 in AS1 defaults to router
  7.7.7.2 in AS2.

   aut-num: AS1
   default: to AS2 7.7.7.2 at 7.7.7.1

  In the following example, AS1 defaults to AS2 and AS3, but prefers
  AS2 over AS3.

   aut-num: AS1
   default: to AS2 action pref = 1;
   default: to AS3 action pref = 2;

  In the following example, AS1 defaults to AS2 and uses 128.9.0.0/16
  as the default network.

   aut-num: AS1
   default: to AS2 networks { 128.9.0.0/16 }

6.6 Structured Policy Specification

  The import and export policies can be structured.  We only reccomend
  structured policies to advanced RPSL users.  Please feel free to skip
  this section.

  The syntax for a structured policy specification is the following:

     <import-factor> ::= from <peering-1> [action <action-1>]
                         . . .
                         from <peering-N> [action <action-N>]
                         accept <filter>;

     <import-term> ::=  <import-factor> |
                        LEFT-BRACE
                        <import-factor>
                        . . .
                        <import-factor>
                        RIGHT-BRACE

     <import-expression> ::= <import-term>                            |
                             <import-term> EXCEPT <import-expression> |
                             <import-term> REFINE <import-expression>

     import: [protocol <protocol1>] [into <protocol2>]
             <import-expression>



Alaettinoglu, et. al.       Standards Track                    [Page 29]

RFC 2280                          RPSL                      January 1998


  Please note the semicolon at the end of an <import-factor>.  If the
  policy specification is not structured (as in all the examples in
  other sections), this semicolon is optional.  The syntax and
  semantics for an <import-factor> is already defined in Section 6.1.

  An <import-term> is either a sequence of <import-factor>'s enclosed
  within matching braces (i.e. `{' and `}') or just a single <import-
  factor>.  The semantics of an <import-term> is the union of <import-
  factor>'s using the specification order rule.  An <import-expression>
  is either a single <import-term> or an <import-term> followed by one
  of the keywords "except" and "refine", followed by another <import-
  expression>.  Note that our definition allows nested expressions.
  Hence there can be exceptions to exceptions, refinements to
  refinements, or even refinements to exceptions, and so on.

  The semantics for the except operator is as follows: The result of an
  except operation is another <import-term>.  The resulting policy set
  contains the policies of the right hand side but their filters are
  modified to only include the routes also matched by the left hand
  side.  The policies of the left hand side are included afterwards and
  their filters are modified to exclude the routes matched by the right
  hand side.  Please note that the filters are modified during this
  process but the actions are copied verbatim.  When there are multiple
  levels of nesting, the operations (both except and refine) are
  performed right to left.

  Consider the following example:

   import: from AS1 action pref = 1; accept as-foo;
           except {
              from AS2 action pref = 2; accept AS226;
              except {
                 from AS3 action pref = 3; accept {128.9.0.0/16};
              }
           }

  where the route 128.9.0.0/16 is originated by AS226, and AS226 is a
  member of the as set as-foo.  In this example, the route 128.9.0.0/16
  is accepted from AS3, any other route (not 128.9.0.0/16) originated
  by AS226 is accepted from AS2, and any other ASes' routes in as-foo
  is accepted from AS1.

  We can come to the same conclusion using the algebra defined above.
  Consider the inner exception specification:







Alaettinoglu, et. al.       Standards Track                    [Page 30]

RFC 2280                          RPSL                      January 1998


     from AS2 action pref = 2; accept AS226;
     except {
        from AS3 action pref = 3; accept {128.9.0.0/16};
     }

  is equivalent to

    {
     from AS3 action pref = 3; accept AS226 AND {128.9.0.0/16};
     from AS2 action pref = 2; accept AS226 AND NOT {128.9.0.0/16};
    }

  Hence, the original expression is equivalent to:

   import: from AS1 action pref = 1; accept as-foo;
           except {
              from AS3 action pref = 3;
                  accept AS226 AND {128.9.0.0/16};
              from AS2 action pref = 2;
                  accept AS226 AND NOT {128.9.0.0/16};
           }

  which is equivalent to

   import: {
      from AS3 action pref = 3;
               accept as-foo AND AS226 AND {128.9.0.0/16};
      from AS2 action pref = 2;
               accept as-foo AND AS226 AND NOT {128.9.0.0/16};
      from AS1 action pref = 1;
               accept as-foo AND NOT
                 (AS226 AND NOT {128.9.0.0/16} OR
                  AS226 AND {128.9.0.0/16});
      }

  Since AS226 is in as-foo and 128.9.0.0/16 is in AS226, it simplifies to:

   import: {
             from AS3 action pref = 3; accept {128.9.0.0/16};
             from AS2 action pref = 2;
                  accept AS226 AND NOT {128.9.0.0/16};
             from AS1 action pref = 1; accept as-foo AND NOT AS226;
           }

  In the case of the refine operator, the resulting set is constructed
  by taking the cartasian product of the two sides as follows: for each
  policy l in the left hand side and for each policy r in the right
  hand side, the peerings of the resulting policy are the peerings



Alaettinoglu, et. al.       Standards Track                    [Page 31]

RFC 2280                          RPSL                      January 1998


  common to both r and l; the filter of the resulting policy is the
  intersection of l's filter and r's filter; and action of the
  resulting policy is l's action followed by r's action.  If there are
  no common peerings, or if the intersection of filters is empty, a
  resulting policy is not generated.

  Consider the following example:

   import: { from AS-ANY action pref = 1;
                  accept community.contains({3560,10});
             from AS-ANY action pref = 2;
                  accept community.contains({3560,20});
           } refine {
              from AS1 accept AS1;
              from AS2 accept AS2;
              from AS3 accept AS3;
           }

  Here, any route with community {3560,10} is assigned a preference of
  1 and any route with community {3560,20} is assigned a preference of
  2 regardless of whom they are imported from.  However, only AS1's
  routes are imported from AS1, and only AS2's routes are imported from
  AS2, and only AS3's routes are imported form AS3, and no routes are
  imported from any other AS. We can reach the same conclusion using
  the above algebra.  That is, our example is equivalent to:

   import: {
     from AS1 action pref = 1;
          accept community.contains({3560,10}) AND AS1;
     from AS1 action pref = 2;
          accept community.contains({3560,20}) AND AS1;
     from AS2 action pref = 1;
          accept community.contains({3560,10}) AND AS2;
     from AS2 action pref = 2;
          accept community.contains({3560,20}) AND AS2;
     from AS3 action pref = 1;
          accept community.contains({3560,10}) AND AS3;
     from AS3 action pref = 2;
          accept community.contains({3560,20}) AND AS3;
   }

  Note that the common peerings between "from AS1" and "from AS-ANY"
  are those peerings in "from AS1".  Even though we do not formally
  define "common peerings", it is straight forward to deduce the
  definition from the definitions of peerings (please see Section
  6.1.1).

  Consider the following example:



Alaettinoglu, et. al.       Standards Track                    [Page 32]

RFC 2280                          RPSL                      January 1998


   import: {
     from AS-ANY action med = 0; accept {0.0.0.0/0^0-18};
     } refine {
          from AS1 at 7.7.7.1 action pref = 1; accept AS1;
          from AS1            action pref = 2; accept AS1;
       }

  where only routes of length 0 to 18 are accepted and med's value is
  set to 0 to disable med's effect for all peerings; In addition, from
  AS1 only AS1's routes are imported, and AS1's routes imported at
  7.7.7.1 are preferred over other peerings.  This is equivalent to:

   import: {
     from AS1 at 7.7.7.1 action med=0; pref=1;
          accept {0.0.0.0/0^0-18} AND AS1;
     from AS1 action med=0; pref=2; accept {0.0.0.0/0^0-18} AND AS1;

  The above syntax and semantics also apply equally to structured
  export policies with "from" replaced with "to" and "accept" is
  replaced with "announce".

7 dictionary Class

  The dictionary class provides extensibility to RPSL.  Dictionary
  objects define routing policy attributes, types, and routing
  protocols.  Routing policy attributes, henceforth called rp-
  attributes, may correspond to actual protocol attributes, such as the
  BGP path attributes (e.g. community, dpa, and AS-path), or they may
  correspond to router features (e.g. BGP route flap damping).  As new
  protocols, new protocol attributes, or new router features are
  introduced, the dictionary object is updated to include appropriate
  rp-attribute and protocol definitions.

  An rp-attribute is an abstract class; that is a data representation
  is not available.  Instead, they are accessed through access methods.
  For example, the rp-attribute for the BGP AS-path attribute is called
  aspath; and it has an access method called prepend which stuffs extra
  AS numbers to the AS-path attributes.  Access methods can take
  arguments.  Arguments are strongly typed.  For example, the method
  prepend above takes AS numbers as argument.

  Once an rp-attribute is defined in the dictionary, it can be used to
  describe policy filters and actions.  Policy analysis tools are
  required to fetch the dictionary object and recognize newly defined
  rp-attributes, types, and protocols.  The analysis tools may
  approximate policy analyses on rp-attributes that they do not





Alaettinoglu, et. al.       Standards Track                    [Page 33]

RFC 2280                          RPSL                      January 1998


  understand: a filter method may always match, and an action method
  may always perform no-operation.  Analysis tools may even download
  code to perform appropriate operations using mechanisms outside the
  scope of RPSL.

  We next describe the syntax and semantics of the dictionary class.
  This description is not essential for understanding dictionary
  objects (but it is essential for creating one).  Please feel free to
  skip to the RPSL Initial Dictionary subsection (Section 7.1).

  The attributes of the dictionary class are shown in Figure 18.  The
  dictionary attribute is the name of the dictionary object, obeying
  the RPSL naming rules.  There can be many dictionary objects, however
  there is always one well-known dictionary object "RPSL". All tools
  use this dictionary by default.

  The rp-attribute attribute has the following syntax:

   Attribute     Value                   Type
   dictionary    <object-name>           mandatory, single-valued,
                                          class key
   rp-attribute  see description in text optional, multi valued
   typedef       see description in text optional, multi valued
   protocol      see description in text optional, multi valued


                    Figure 18:  dictionary Class Attributes


     rp-attribute: <name>
        <method-1>(<type-1-1>, ..., <type-1-N1> [, "..."])
        ...
        <method-M>(<type-M-1>, ..., <type-M-NM> [, "..."])

  where <name> is the name of the rp-attribute; and <method-i> is the
  name of an access method for the rp-attribute, taking Ni arguments
  where the j-th argument is of type <type-i-j>.  A method name is
  either an RPSL name or one of the operators defined in Figure 19.
  The operator methods with the exception of operator() and operator[]
  can take only one argument.











Alaettinoglu, et. al.       Standards Track                    [Page 34]

RFC 2280                          RPSL                      January 1998


     operator=           operator==
     operator<<=         operator<
     operator>>=         operator>
     operator+=          operator>=
     operator-=          operator<=
     operator*=          operator!=
     operator/=          operator()
     operator.=          operator[]


                      Figure 19:  Operators

  An rp-attribute can have many methods defined for it.  Some of the
  methods may even have the same name, in which case their arguments
  are of different types.  If the argument list is followed by "...",
  the method takes a variable number of arguments.  In this case, the
  actual arguments after the Nth argument are of type <type-N>.

  Arguments are strongly typed.  A type of an argument can be one of
  the predefined types or one of the dictionary defined types.  The
  predefined type names are listed in Figure 20.  The integer and the
  real types can be followed by a lower and an upper bound to specify
  the set of valid values of the argument.  The range specification is
  optional.  We use the ANSI C language conventions for representing
  integer, real and string values.  The enum type is followed by a list
  of RPSL names which are the valid values of the type.  The boolean
  type can take the values true or false.  as_number, ipv4_address,
  address_prefix and dns_name types are as in Section 2.  filter type
  is a policy filter as in Section 6.

     integer[lower, upper]              as_number
     real[lower, upper]                 ipv4_address
     enum[name, name, ...]              address_prefix
     string                             address_prefix_range
     boolean                            dns_name
     rpsl_word                          filter
     free_text                          as_set_name
     email                              route_set_name


                    Figure 20:  Predefined Types

  The typedef attribute specifies a dictionary defined type.  Its
  syntax is as follows:

     typedef: <name> union <type-1>, ... , <type-N>
            | <name> list [<min_elems>:<max_elems>] of <type>




Alaettinoglu, et. al.       Standards Track                    [Page 35]

RFC 2280                          RPSL                      January 1998


  where <name> is the name of the type being defined and <type-M> is
  another type name, either predefined or dictionary defined.  In the
  first form, the type defined is either of the types <type-1> through
  <type-N> (analogous to unions in C[12]).  In the second form, the
  type defined is a list type where the list elements are of <type> and
  the list contains at least <min_elems> and at most <max_elems>
  elements.  The size specification is optional.  In this case, there
  is no restriction in the number of list elements.  A value of a list
  type is represented as a sequence of elements separated by the
  character "," and enclosed by the characters "{" and "}".

  A protocol attribute of the dictionary class defines a protocol and a
  set of peering options for that protocol (which are used in inet-rtr
  class in Section 9).  Its syntax is as follows:

     protocol: <name>
        MANDATORY | OPTIONAL <option-1>(<type-1-1>, ...,
                                        <type-1-N1> [, "..."])
        ...
        MANDATORY | OPTIONAL <option-M>(<type-M-1>, ...,
                                        <type-M-NM> [, "..."])

  where <name> is the name of the protocol; MANDATORY and OPTIONAL are
  keywords; and <option-i> is a peering option for this protocol,
  taking Ni many arguments.  The syntax and semantics of the arguments
  are as in the rp-attribute.  If the keyword MANDATORY is used the
  option is mandatory and needs to be specified for each peering of
  this protocol.  If the keyword OPTIONAL is used the option can be
  skipped.

7.1 Initial RPSL Dictionary and Example Policy Actions and Filters

dictionary:   RPSL
rp-attribute: # preference, smaller values represent higher preferences
             pref
             operator=(integer[0, 65535])
rp-attribute: # BGP multi_exit_discriminator attribute
             med
             operator=(integer[0, 65535])
             # to set med to the IGP metric: med = igp_cost;
             operator=(enum[igp_cost])
rp-attribute: # BGP destination preference attribute (dpa)
             dpa
             operator=(integer[0, 65535])
rp-attribute: # BGP aspath attribute
             aspath
             # prepends AS numbers from last to first order
             prepend(as_number, ...)



Alaettinoglu, et. al.       Standards Track                    [Page 36]

RFC 2280                          RPSL                      January 1998


typedef:      # a community value in RPSL is either
             #  - a 4 byte integer
             #  - internet, no_export, no_advertise (see RFC-1997)
             #  - two 2-byte integers to be concatanated eg. {3561,70}
             community_elm union
             integer[1, 4294967200],
             enum[internet, no_export, no_advertise],
             list[2:2] of integer[0, 65535]
typedef:      # list of community values { 40, no_export, {3561,70}}
             community_list
             list of community_elm
rp-attribute: # BGP community attribute
             community
             # set to a list of communities
             operator=(community_list)
             # order independent equality comparison
             operator==(community_list)
             # append community values
             operator.=(community_elm)
             append(community_elm, ...)
             # delete community values
             delete(community_elm, ...)
             # a filter: true if one of community values is contained
             contains(community_elm, ...)
             # shortcut to contains: community(no_export, {3561,70})
             operator()(community_elm, ...)
rp-attribute: # next hop router in a static route
             next-hop
             operator=(ipv4_address)       # a router address
             operator=(enum[self])         # router's own address
rp-attribute: # cost of a static route
             cost
             operator=(integer[0, 65535])
protocol: BGP4
         # as number of the peer router
         MANDATORY asno(as_number)
         # enable flap damping
         OPTIONAL flap_damp()
         OPTIONAL flap_damp(integer[0,65535],# penalty per flap
                            integer[0,65535],
                               # penalty value for supression
                            integer[0,65535],# penalty value for reuse
                            integer[0,65535],# halflife in secs when up
                            integer[0,65535],
                               # halflife in secs when down
                            integer[0,65535])# maximum penalty





Alaettinoglu, et. al.       Standards Track                    [Page 37]

RFC 2280                          RPSL                      January 1998


protocol: OSPF
protocol: RIP
protocol: IGRP
protocol: IS-IS
protocol: STATIC
protocol: RIPng
protocol: DVMRP
protocol: PIM-DM
protocol: PIM-SM
protocol: CBT
protocol: MOSPF


                    Figure 21:  RPSL Dictionary

  Figure 21 shows the initial RPSL dictionary.  It has seven rp-
  attributes: pref to assign local preference to the routes accepted;
  med to assign a value to the MULTI_EXIT_DISCRIMINATOR BGP attribute;
  dpa to assign a value to the DPA BGP attribute; aspath to prepend a
  value to the AS_PATH BGP attribute; community to assign a value to or
  to check the value of the community BGP attribute; next-hop to assign
  next hop routers to static routes; and cost to assign a cost to
  static routes.  The dictionary defines two types: community_elm and
  community_list.  community_elm type is either a 4-byte unsigned
  integer, or one of the keywords no_export or no_advertise (defined in
  [7]), or a list of two 2-byte unsigned integers in which case the two
  integers are concatenated to form a 4-byte integer.  (The last form
  is often used in the Internet to partition the community number
  space.  A provider uses its AS number as the first two bytes, and
  assigns a semantics of its choice to the last two bytes.)

  The initial dictionary (Figure 21) defines only options for the
  Border Gateway Protocol: asno and flap_damp.  The mandatory asno
  option is the AS number of the peer router.  The optional flap_damp
  option instructs the router to damp route flaps[19] when importing
  routes from the peer router.

  It can be specified with or without parameters.  If parameters are
  missing, they default to:

     flap_damp(1000, 2000, 750, 900, 900, 20000)

  That is, a penalty of 1000 is assigned at each route flap, the route
  is suppressed when penalty reaches 2000.  The penalty is reduced in
  half after 15 minutes (900 seconds) of stability regardless of
  whether the route is up or down.  A supressed route is reused when
  the penalty falls below 750.  The maximum penalty a route can be




Alaettinoglu, et. al.       Standards Track                    [Page 38]

RFC 2280                          RPSL                      January 1998


  assigned is 20,000 (i.e. the maximum suppress time after a route
  becomes stable is about 75 minutes).  These parameters are consistent
  with the default flap damping parameters in several routers.

  Policy Actions and Filters Using RP-Attributes

  The syntax of a policy action or a filter using an rp-attribute x is
  as follows:

      x.method(arguments)
      x "op" argument

  where method is a method and "op" is an operator method of the rp-
  attribute x.  If an operator method is used in specifying a composite
  policy filter, it evaluates earlier than the composite policy filter
  operators (i.e. AND, OR, NOT, and implicit or operator).

  The pref rp-attribute can be assigned a positive integer as follows:

     pref = 10;

  The med rp-attribute can be assigned either a positive integer or the
  word "igp_cost" as follows:

     med = 0;
     med = igp_cost;

  The dpa rp-attribute can be assigned a positive integer as follows:

     dpa = 100;

  The BGP community attribute is list-valued, that is it is a list of
  4-byte integers each representing a "community".  The following
  examples demonstrate how to add communities to this rp-attribute:

     community .= 100;
     community .= NO_EXPORT;
     community .= {3561,10};

  In the last case, a 4-byte integer is constructed where the more
  significant two bytes equal 3561 and the less significant two bytes
  equal 10.  The following examples demonstrate how to delete
  communities from the community rp-attribute:

     community.delete(100, NO_EXPORT, {3561,10});

  Filters that use the community rp-attribute can be defined as
  demonstrated by the following examples:



Alaettinoglu, et. al.       Standards Track                    [Page 39]

RFC 2280                          RPSL                      January 1998


     community.contains(100, NO_EXPORT, {3561,10});
     community(100, NO_EXPORT, {3561,10});             # shortcut

  The community rp-attribute can be set to a list of communities as
  follows:

     community = {100, NO_EXPORT, {3561,10}, 200};
     community = {};

  In this first case, the community rp-attribute contains the
  communities 100, NO_EXPORT, {3561,10}, and 200.  In the latter case,
  the community rp-attribute is cleared.  The community rp-attribute
  can be compared against a list of communities as follows:

     community == {100, NO_EXPORT, {3561,10}, 200};   # exact match

  To influence the route selection, the BGP as_path rp-attribute can be
  made longer by prepending AS numbers to it as follows:

     aspath.prepend(AS1);
     aspath.prepend(AS1, AS1, AS1);

  The following examples are invalid:

     med = -50;                     # -50 is not in the range
     med = igp;                     # igp is not one of the enum values
     med.assign(10);                # method assign is not defined
     community.append({AS3561,20}); # the first argument should be 3561

  Figure 22 shows a more advanced example using the rp-attribute
  community.  In this example, AS3561 bases its route selection
  preference on the community attribute.  Other ASes may indirectly
  affect AS3561's route selection by including the appropriate
  communities in their route announcements.

   aut-num: AS1
   export: to AS2 action community.={3561,90};
           to AS3 action community.={3561,80};
           announce AS1

   as-set: AS3561:AS-PEERS
   members: AS2, AS3

   aut-num: AS3561
   import: from AS3561:AS-PEERS
           action pref = 10;
           accept community.contains({3561,90})




Alaettinoglu, et. al.       Standards Track                    [Page 40]

RFC 2280                          RPSL                      January 1998


   import: from AS3561:AS-PEERS
           action pref = 20;
           accept community.contains({3561,80})
   import: from AS3561:AS-PEERS
           action pref = 20;
           accept community.contains({3561,70})
   import: from AS3561:AS-PEERS
           action pref = 0;
           accept ANY


          Figure 22:  Policy example using the community rp-attribute.

8 Advanced route Class

8.1 Specifying Aggregate Routes

  The components, aggr-bndry, aggr-mtd, export-comps, inject, and holes
  attributes are used for specifying aggregate routes [9].  A route
  object specifies an aggregate route if any of these attributes, with
  the exception of inject, is specified.  The origin attribute for an
  aggregate route is the AS performing the aggregation, i.e. the
  aggregator AS. In this section, we used the term "aggregate" to refer
  to the route generated, the term "component" to refer to the routes
  used to generate the path attributes of the aggregate, and the term
  "more specifics" to refer to any route which is a more specific of
  the aggregate regardless of whether it was used to form the path
  attributes.

  The components attribute defines what component routes are used to
  form the aggregate.  Its syntax is as follows:

     components: [ATOMIC] [[protocol <protocol>] <filter>
                           [protocol <protocol> <filter> ...]]

  where <protocol> is a routing protocol name such as BGP, OSPF or RIP
  (valid names are defined in the dictionary) and <filter> is a policy
  expression.  The routes that match one of these filters and are
  learned from the corresponding protocol are used to form the
  aggregate.  If <protocol> is omitted, it defaults to any protocol.
  <filter> implicitly contains an "AND" term with the more specifics of
  the aggregate so that only the component routes are selected.  If the
  keyword ATOMIC is used, the aggregation is done atomically [9].  If a
  <filter> is not specified it defaults to more specifics.  If the
  components attribute is missing, all more specifics without the
  ATOMIC keyword is used.





Alaettinoglu, et. al.       Standards Track                    [Page 41]

RFC 2280                          RPSL                      January 1998


     route: 128.8.0.0/15
     origin: AS1
     components: <^AS2>

     route: 128.8.0.0/15
     origin: AS1
     components: protocol BGP  {128.8.0.0/16^+}
                 protocol OSPF {128.9.0.0/16^+}


                    Figure 23:  Two aggregate route objects.


  Figure 23 shows two route objects.  In the first example, more
  specifics of 128.8.0.0/15 with AS paths starting with AS2 are
  aggregated.  In the second example, some routes learned from BGP and
  some routes learned form OSPF are aggregated.

  The aggr-bndry attribute is an expression over AS numbers and sets
  using operators AND, OR, and NOT.  The result defines the set of ASes
  which form the aggregation boundary.  If the aggr-bndry attribute is
  missing, the origin AS is the sole aggregation boundary.  Outside the
  aggregation boundary, only the aggregate is exported and more
  specifics are suppressed.  However, within the boundary, the more
  specifics are also exchanged.

  The aggr-mtd attribute specifies how the aggregate is generated.  Its
  syntax is as follow:

    aggr-mtd: inbound
            | outbound [<as-expression>]

  where <as-expression> is an expression over AS numbers and sets using
  operators AND, OR, and NOT. If <as-expression> is missing, it
  defaults to AS-ANY. If outbound aggregation is specified, the more
  specifics of the aggregate will be present within the AS and the
  aggregate will be formed at all inter-AS boundaries with ASes in
  <as-expression> before export, except for ASes that are within the
  aggregating boundary (i.e.  aggr-bndry is enforced regardless of
  <as-expression>).  If inbound aggregation is specified, the aggregate
  is formed at all inter-AS boundaries prior to importing routes into
  the aggregator AS. Note that <as-expression> can not be specified
  with inbound aggregation.  If aggr-mtd attribute is missing, it
  defaults to "outbound AS-ANY".







Alaettinoglu, et. al.       Standards Track                    [Page 42]

RFC 2280                          RPSL                      January 1998


     route:      128.8.0.0/15            route:      128.8.0.0/15
     origin:     AS1                     origin:     AS2
     components: {128.8.0.0/15^-}        components: {128.8.0.0/15^-}
     aggr-bndry: AS1 OR AS2              aggr-bndry: AS1 OR AS2
     aggr-mtd:   outbound AS-ANY         aggr-mtd:   outbound AS-ANY


               Figure 24:  Outbound multi-AS aggregation example.

  Figure 24 shows an example of an outbound aggregation.  In this
  example, AS1 and AS2 are coordinating aggregation and announcing only
  the less specific 128.8.0.0/15 to outside world, but exchanging more
  specifics between each other.  This form of aggregation is useful
  when some of the components are within AS1 and some are within AS2.

  When a set of routes are aggregated, the intent is to export only the
  aggregate route and suppress exporting of the more specifics outside
  the aggregation boundary.  However, to satisfy certain policy and
  topology constraints (e.g. a multi-homed component), it is often
  required to export some of the components.  The export-comps
  attribute equals an RPSL filter that matches the more specifics that
  need to be exported outside the aggregation boundary.  If this
  attribute is missing, more specifics are not exported outside the
  aggregation boundary.  Note that, the export-comps filter contains an
  implicit "AND" term with the more specifics of the aggregate.

  Figure 25 shows an example of an outbound aggregation.  In this
  example, the more specific 128.8.8.0/24 is exported outside AS1 in
  addition to the aggregate.  This is useful, when 128.8.8.0/24 is
  multi-homed site to AS1 with some other AS.

     route:      128.8.0.0/15
     origin:     AS1
     components: {128.8.0.0/15^-}
     aggr-mtd:   outbound AS-ANY
     export-comps: {128.8.8.0/24}


            Figure 25:  Outbound aggregation with export exception.

  The inject attribute specifies which routers perform the aggregation
  and when they perform it.  Its syntax is as follow:

    inject: [at <router-expression>] ...
            [action <action>]
            [upon <condition>]





Alaettinoglu, et. al.       Standards Track                    [Page 43]

RFC 2280                          RPSL                      January 1998


  where <action> is an action specification (see Section 6.1.2),
  <condition> is a boolean expression described below, and<router-
  expression> is an expression over router IP addresses and DNS names
  using operators AND, OR, and NOT. The DNS name can only be used if
  there is an inet-rtr object for that name that binds the name to IP
  addresses.

  All routers in <router-expression> and in the aggregator AS perform
  the aggregation.  If a <router-expression> is not specified, all
  routers inside the aggregator AS perform the aggregation.  The
  <action> specification may set path attributes of the aggregate, such
  as assign a preferences to the aggregate.

  The upon clause is a boolean condition.  The aggregate is generated
  if and only if this condition is true.  <condition> is a boolean
  expression using the logical operators AND and OR (i.e. operator NOT
  is not allowed) over:

     HAVE-COMPONENTS { list of prefixes }
     EXCLUDE { list of prefixes }
     STATIC

  The list of prefixes in HAVE-COMPONENTS can only be more specifics of
  the aggregate.  It evaluates to true when all the prefixes listed are
  present in the routing table of the aggregating router.  The list can
  also include prefix ranges (i.e. using operators ^-, ^+, ^n, and ^n-
  m).  In this case, at least one prefix from each prefix range needs
  to be present in the routing table for the condition to be true.  The
  list of prefixes in EXCLUDE can be arbitrary.  It evaluates to true
  when none of the prefixes listed is present in the routing table.
  The list can also include prefix ranges, and no prefix in that range
  should be present in the routing table.  The keyword static always
  evaluates to true.  If no upon clause is specified the aggregate is
  generated if an only if there is a component in the routing table
  (i.e.  a more specific that matches the filter in the components
  attribute).

     route:      128.8.0.0/15
     origin:     AS1
     components: {128.8.0.0/15^-}
     aggr-mtd:   outbound AS-ANY
     inject:     at 1.1.1.1 action dpa = 100;
     inject:     at 1.1.1.2 action dpa = 110;

     route:      128.8.0.0/15
     origin:     AS1
     components: {128.8.0.0/15^-}
     aggr-mtd:   outbound AS-ANY



Alaettinoglu, et. al.       Standards Track                    [Page 44]

RFC 2280                          RPSL                      January 1998


     inject:     upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}
     holes:      128.8.8.0/24


                        Figure 26:  Examples of inject.

  Figure 26 shows two examples.  In the first case, the aggregate is
  injected at two routers each one setting the dpa path attribute
  differently.  In the second case, the aggregate is generated only if
  both 128.8.0.0/16 and 128.9.0.0/16 are present in the routing table,
  as opposed to the first case where the presence of just one of them
  is sufficient for injection.

  The holes attribute lists the component address prefixes which are
  not reachable through the aggregate route (perhaps that part of the
  address space is unallocated).  The holes attribute is useful for
  diagnosis purposes.  In Figure 26, the second example has a hole,
  namely 128.8.8.0/24.  This may be due to a customer changing
  providers and taking this part of the address space with it.

8.1.1 Interaction with policies in aut-num class

  An aggregate formed is announced to other ASes only if the export
  policies of the AS allows exporting the aggregate.  When the
  aggregate is formed, the more specifics are suppressed from being
  exported except to the ASes in aggr-bndry and except the components
  in export-comps.  For such exceptions to happen, the export policies
  of the AS should explicitly allow exporting of these exceptions.

  If an aggregate is not formed (due to the upon clause), then the more
  specifics of the aggregate can be exported to other ASes, but only if
  the export policies of the AS allows it.  In other words, before a
  route (aggregate or more specific) is exported it is filtered twice,
  once based on the route objects, and once based on the export
  policies of the AS.

     route:        128.8.0.0/16
     origin:       AS1

     route:        128.9.0.0/16
     origin:       AS1

     route:        128.8.0.0/15
     origin:       AS1
     aggr-bndry:   AS1 or AS2 or AS3
     aggr-mtd:     outbound AS3 or AS4 or AS5
     components:   {128.8.0.0/16, 128.9.0.0/16}
     inject:       upon HAVE-COMPONENTS {128.9.0.0/16, 128.8.0.0/16}



Alaettinoglu, et. al.       Standards Track                    [Page 45]

RFC 2280                          RPSL                      January 1998


     aut-num: AS1
     export:  to AS2 announce AS1
     export:  to AS3 announce AS1 and not {128.9.0.0/16}
     export:  to AS4 announce AS1
     export:  to AS5 announce AS1
     export:  to AS6 announce AS1


            Figure 27:  Interaction with policies in aut-num class.

  In Figure 27 shows an interaction example.  By examining the route
  objects, the more specifics 128.8.0.0/16 and 128.9.0.0/16 should be
  exchanged between AS1, AS2 and AS3 (i.e.  the aggregation boundary).
  Outbound aggregation is done to AS4 and AS5 and not to AS3, since AS3
  is in the aggregation boundary.  The aut-num object allows exporting
  both components to AS2, but only the component 128.8.0.0/16 to AS3.
  The aggregate can only be formed if both components are available.
  In this case, only the aggregate is announced to AS4 and AS5.
  However, if one of the components is not available the aggregate will
  not be formed, and any available component or more specific will be
  exported to AS4 and AS5.  Regardless of aggregation is performed or
  not, only the more specifics will be exported to AS6 (it is not
  listed in the aggr-mtd attribute).

  When doing an inbound aggregation, configuration generators may
  eliminating the aggregation statements on routers where import policy
  of the AS prohibits importing of any more specifics.

8.1.2 Ambiguity resolution with overlapping aggregates

  When several aggregate routes are specified and they overlap, i.e.
  one is less specific of the other, they must be evaluated more
  specific to less specific order.  When an aggregation is performed,
  the aggregate and the components listed in the export-comps attribute
  are available for generating the next less specific aggregate.  The
  components that are not specified in the export-comps attribute are
  not available.  A route is exportable to an AS if it is the least
  specific aggregate exportable to that AS or it is listed in the
  export-comps attribute of an exportable route.  Note that this is a
  recursive definition.

     route:        128.8.0.0/15
     origin:       AS1
     aggr-bndry:   AS1 or AS2
     aggr-mtd:     outbound
     inject:       upon HAVE-COMPONENTS {128.8.0.0/16, 128.9.0.0/16}





Alaettinoglu, et. al.       Standards Track                    [Page 46]

RFC 2280                          RPSL                      January 1998


     route:        128.10.0.0/15
     origin:       AS1
     aggr-bndry:   AS1 or AS3
     aggr-mtd:     outbound
     inject:       upon HAVE-COMPONENTS {128.10.0.0/16, 128.11.0.0/16}
     export-comps: {128.11.0.0/16}

     route:        128.8.0.0/14
     origin:       AS1
     aggr-bndry:   AS1 or AS2 or AS3
     aggr-mtd:     outbound
     inject:       upon HAVE-COMPONENTS {128.8.0.0/15, 128.10.0.0/15}
     export-comps: {128.10.0.0/15}


                 Figure 28:  Overlapping aggregations.

  In Figure 28, AS1 together with AS2 aggregates 128.8.0.0/16 and
  128.9.0.0/16 into 128.8.0.0/15.  Together with AS3, AS1 aggregates
  128.10.0.0/16 and 128.11.0.0/16 into 128.10.0.0/15.  But altogether
  they aggregate these four routes into 128.8.0.0/14.  Assuming all
  four components are available, a router in AS1 for an outside AS, say
  AS4, will first generate 128.8.0.0/15 and 128.10.0.0/15.  This will
  make 128.8.0.0/15, 128.10.0.0/15 and its exception 128.11.0.0/16
  available for generating 128.8.0.0/14.  The router will then generate
  128.8.0.0/14 from these three routes.  Hence for AS4, 128.8.0.0/14
  and its exception 128.10.0.0/15 and its exception 128.11.0.0/16 will
  be exportable.

  For AS2, a router in AS1 will only generate 128.10.0.0/15.  Hence,
  128.10.0.0/15 and its exception 128.11.0.0/16 will be exportable.
  Note that 128.8.0.0/16 and 128.9.0.0/16 are also exportable since
  they did not participate in an aggregate exportable to AS2.

  Similarly, for AS3, a router in AS1 will only generate 128.8.0.0/15.
  In this case 128.8.0.0/15, 128.10.0.0/16, 128.11.0.0/16 are
  exportable.

8.2 Specifying Static Routes

  The inject attribute can be used to specify static routes by using
  "upon static" as the condition:

    inject: [at <router>] ...
            [action <action>]
            upon static





Alaettinoglu, et. al.       Standards Track                    [Page 47]

RFC 2280                          RPSL                      January 1998


  In this case, the <router> executes the <action> and injects the
  route to the interAS routing system statically.  <action> may set
  certain route attributes such as a next-hop router or a cost.

  In the following example, the router 7.7.7.1 injects the route
  128.7.0.0/16.  The next-hop routers (in this example, there are two
  next-hop routers) for this route are 7.7.7.2 and 7.7.7.3 and the
  route has a cost of 10 over 7.7.7.2 and 20 over 7.7.7.3.

     route:  128.7.0.0/16
     origin: AS1
     inject: at 7.7.7.1 action next-hop = 7.7.7.2; cost = 10; upon static
     inject: at 7.7.7.1 action next-hop = 7.7.7.3; cost = 20; upon static

9 inet-rtr Class

  Routers are specified using the inet-rtr class.  The attributes of
  the inet-rtr class are shown in Figure 29.  The inet-rtr attribute is
  a valid DNS name of the router described.  Each alias attribute, if
  present, is a canonical DNS name for the router.  The local-as
  attribute specifies the AS number of the AS which owns/operates this
  router.

    Attribute  Value                    Type
    inet-rtr   <dns-name>               mandatory, single-valued,
                                          class key
    alias      <dns-name>               optional, multi-valued
    local-as   <as-number>              mandatory, single-valued
    ifaddr     see description in text  mandatory, multi-valued
    peer       see description in text  optional, multi-valued


                     Figure 29:  inet-rtr Class Attributes

  The value of an ifaddr attribute has the following syntax:

     <ipv4-address> masklen <integer> [action <action>]

  The IP address and the mask length are mandatory for each interface.
  Optionally an action can be specified to set other parameters of this
  interface.

  Figure 30 presents an example inet-rtr object.  The name of the
  router is "amsterdam.ripe.net".  "amsterdam1.ripe.net" is a canonical
  name for the router.  The router is connected to 4 networks.  Its IP
  addresses and mask lengths in those networks are specified in the
  ifaddr attributes.




Alaettinoglu, et. al.       Standards Track                    [Page 48]

RFC 2280                          RPSL                      January 1998


   inet-rtr: Amsterdam.ripe.net
   alias:    amsterdam1.ripe.net
   local-as: AS3333
   ifaddr:   192.87.45.190 masklen 24
   ifaddr:   192.87.4.28   masklen 24
   ifaddr:   193.0.0.222   masklen 27
   ifaddr:   193.0.0.158   masklen 27
   peer:     BGP4 192.87.45.195 asno(AS3334), flap_damp()


                          Figure 30:  inet-rtr Objects

  Each peer attribute, if present, specifies a protocol peering with
  another router.  The value of a peer attribute has the following
  syntax:

     <protocol> <ipv4-address> <options>

  where <protocol> is a protocol name, <ipv4-address> is the IP address
  of the peer router, and <options> is a comma separated list of
  peering options for <protocol>.  Possible protocol names and
  attributes are defined in the dictionary (please see Section 7).  In
  the above example, the router has a BGP peering with the router
  192.87.45.195 in AS3334 and turns the flap damping on when importing
  routes from this router.

10 Security Considerations

  This document describes RPSL, a language for expressing routing
  policies.  The language defines a maintainer (mntner class) object
  which is the entity which controls or "maintains" the objects stored
  in a database expressed by RPSL. Requests from maintainers can be
  authenticated with various techniques as defined by the "auth"
  attribute of the maintainer object.

  The exact protocols used by IRR's to communicate RPSL objects is
  beyond the scope of this document, but it is envisioned that several
  techniques may be used, ranging from interactive query/update
  protocols to store and forward protocols similar to or based on
  electronic mail (or even voice telephone calls).  Regardless of which
  protocols are used in a given situation, it is expected that
  appropriate security techniques such as IPSEC, TLS or PGP/MIME will
  be utilized.








Alaettinoglu, et. al.       Standards Track                    [Page 49]

RFC 2280                          RPSL                      January 1998


11 Acknowledgements

  We would like to thank Jessica Yu, Randy Bush, Alan Barrett, David
  Kessens, Bill Manning, Sue Hares, Ramesh Govindan, Kannan Varadhan,
  Satish Kumar, Craig Labovitz, Rusty Eddy, David J. LeRoy, David
  Whipple, Jon Postel, Deborah Estrin, Elliot Schwartz, Joachim
  Schmitz, Mark Prior, Tony Przygienda, David Woodgate, and the
  participants of the IETF RPS Working Group for various comments and
  suggestions.

References

   [1] Internet Routing Registry. Procedures.
       http://www.ra.net/RADB.tools.docs/,
       http://www.ripe.net/db/doc.html.

   [2] Alaettinouglu, C., Meyer, D., and J.  Schmitz, "Application of
       Routing Policy Specification Language (RPSL) on the Internet",
       Work in Progress.

   [3] T.  Bates. Specifying an `Internet Router' in the Routing
       Registry.  Technical Report RIPE-122, RIPE, RIPE NCC, Amsterdam,
       Netherlands, October 1994.

   [4] T.  Bates, E.  Gerich, L. Joncheray, J-M. Jouanigot, D.
       Karrenberg, M.  Terpstra, and J.  Yu.  Representation of IP
       Routing Policies in a Routing Registry.  Technical Report ripe-
       181, RIPE, RIPE NCC, Amsterdam, Netherlands, October 1994.

   [5] Bates, T., Gerich, E., Joncheray, L., Jouanigot, J.M.,
       Karrenberg, D., Terpstra, M., and J.  Yu, "Representation of IP
       Routing Policies in a Routing Registry," RFC 1786, March 1995.

   [6] T. Bates, J-M. Jouanigot, D. Karrenberg, P. Lothberg, and
       M. Terpstra.  Representation of IP Routing Policies in the RIPE
       Database.  Technical Report ripe-81, RIPE, RIPE NCC, Amsterdam,
       Netherlands, February 1993.

   [7] Chandra, R., Traina, P., and T. Li, "BGP Communities Attribute,"
       RFC 1997, August 1996.

   [8] Crocker, D., "Standard for the format of ARPA Internet text
       messages, STD 11, RFC 822, August 1982.

   [9] V.  Fuller, T.  Li, J. Yu, and K. Varadhan.  Classless Inter-
       Domain Routing (CIDR): an Address Assignment and Aggregation
       Strategy, 1993.




Alaettinoglu, et. al.       Standards Track                    [Page 50]

RFC 2280                          RPSL                      January 1998


   [10] D. Karrenberg and T. Bates.  Description of Inter-AS Networks
        in the RIPE Routing Registry.  Technical Report RIPE-104, RIPE,
        RIPE NCC, Amsterdam, Netherlands, December 1993.

   [11] D.  Karrenberg and M.  Terpstra.  Authorisation and
        Notification of Changes in the RIPE Database. Technical Report
        ripe-120, RIPE, RIPE NCC, Amsterdam, Netherlands, October 1994.

   [12] B.  W.  Kernighan and D.  M.  Ritchie.  The C Programming
        Language. Prentice-Hall, 1978.

   [13] Kessens, D., Woeber, W., and D. Conrad, "RIDE referencing",
        Work in Progress.

   [14] A.  Lord and M.  Terpstra.  RIPE Database Template for
        Networks and Persons. Technical Report ripe-119, RIPE, RIPE
        NCC, Amsterdam, Netherlands, October 1994.

   [15] A.  M. R.  Magee.  RIPE NCC Database Documentation.  Technical
        Report RIPE-157, RIPE, RIPE NCC, Amsterdam, Netherlands, May
        1997.

   [16] Mockapetris, P., "Domain names - concepts and facilities,"
        STD 13, RFC 1034, November 1987.

   [17] Y.  Rekhter.  Inter-Domain Routing Protocol (IDRP).  Journal
        of Internetworking Research and Experience, 4:61--80, 1993.

   [18] Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4),"
        RFC 1771, March 1995.

   [19] Villamizar, C., Chandra, R., and R. Govindan, "BGP Route
        Flap Damping", Work in Progress.

A Routing Registry Sites

  The set of routing registries as of November 1996 are RIPE, RADB,
  CANet, MCI and ANS. You may contact one of these registries to find
  out the current list of registries.












Alaettinoglu, et. al.       Standards Track                    [Page 51]

RFC 2280                          RPSL                      January 1998


B Authors' Addresses

  Cengiz Alaettinoglu
  USC Information Sciences Institute
  4676 Admiralty Way, Suite 1001
  Marina del Rey, CA  90292
  EMail: [email protected]


  Tony Bates
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134
  EMail: [email protected]


  Elise Gerich
  At Home Network
  385 Ravendale Drive
  Mountain View, CA 94043
  EMail: [email protected]


  Daniel Karrenberg
  RIPE Network Coordination Centre (NCC)
  Kruislaan 409
  NL-1098 SJ Amsterdam
  Netherlands
  EMail: [email protected]


  David Meyer
  University of Oregon
  Eugene, OR 97403
  EMail: [email protected]


  Marten Terpstra
  c/o Bay Networks, Inc.
  2 Federal St
  Billerica MA 01821
  EMail: [email protected]


  Curtis Villamizar
  ANS
  EMail: [email protected]




Alaettinoglu, et. al.       Standards Track                    [Page 52]

RFC 2280                          RPSL                      January 1998


C  Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Alaettinoglu, et. al.       Standards Track                    [Page 53]