Network Working Group                                   R. Braden, Ed.
Request for Comments: 2205                                         ISI
Category: Standards Track                                     L. Zhang
                                                                 UCLA
                                                            S. Berson
                                                                  ISI
                                                            S. Herzog
                                                         IBM Research
                                                             S. Jamin
                                                    Univ. of Michigan
                                                       September 1997


               Resource ReSerVation Protocol (RSVP) --

                  Version 1 Functional Specification

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo describes version 1 of RSVP, a resource reservation setup
  protocol designed for an integrated services Internet.  RSVP provides
  receiver-initiated setup of resource reservations for multicast or
  unicast data flows, with good scaling and robustness properties.




















Braden, Ed., et. al.        Standards Track                     [Page 1]

RFC 2205                          RSVP                    September 1997


Table of Contents

  1. Introduction ................................................... 4
     1.1 Data Flows ................................................. 7
     1.2 Reservation Model .......................................... 8
     1.3 Reservation Styles .........................................11
     1.4 Examples of Styles .........................................14
  2. RSVP Protocol Mechanisms .......................................19
     2.1 RSVP Messages ..............................................19
     2.2 Merging Flowspecs ..........................................21
     2.3 Soft State .................................................22
     2.4 Teardown ...................................................24
     2.5 Errors .....................................................25
     2.6 Confirmation ...............................................27
     2.7 Policy Control .............................................27
     2.8 Security ...................................................28
     2.9 Non-RSVP Clouds ............................................29
     2.10 Host Model ................................................30
  3. RSVP Functional Specification ..................................32
     3.1 RSVP Message Formats .......................................32
     3.2 Port Usage .................................................47
     3.3 Sending RSVP Messages ......................................48
     3.4 Avoiding RSVP Message Loops ................................50
     3.5 Blockade State .............................................54
     3.6 Local Repair ...............................................56
     3.7 Time Parameters ............................................57
     3.8 Traffic Policing and Non-Integrated Service Hops ...........58
     3.9 Multihomed Hosts ...........................................59
     3.10 Future Compatibility ......................................61
     3.11 RSVP Interfaces ...........................................63
  4. Acknowledgments ................................................76
  APPENDIX A. Object Definitions ....................................77
  APPENDIX B. Error Codes and Values ................................92
  APPENDIX C. UDP Encapsulation .....................................98
  APPENDIX D. Glossary .............................................102
  REFERENCES .......................................................111
  SECURITY CONSIDERATIONS ..........................................111
  AUTHORS' ADDRESSES ...............................................112













Braden, Ed., et. al.        Standards Track                     [Page 2]

RFC 2205                          RSVP                    September 1997


  What's Changed

  This revision contains the following very minor changes from the ID14
  version.


     o    For clarity, each message type is now defined separately in
          Section 3.1.

     o    We added more precise and complete rules for accepting Path
          messages for unicast and multicast destinations (Section
          3.1.3).

     o    We added more precise and complete rules for processing and
          forwarding PathTear messages (Section 3.1.5).

     o    A note was added that a SCOPE object will be ignored if it
          appears in a ResvTear message (Section 3.1.6).

     o    A note was added that a SENDER_TSPEC or ADSPEC object will be
          ignored if it appears in a PathTear message (Section 3.1.5).

     o    The obsolete error code Ambiguous Filter Spec (09) was
          removed, and a new (and more consistent) name was given to
          error code 08 (Appendix B).

     o    In the generic interface to traffic control, the Adspec was
          added as a parameter to the AddFlow and ModFlow calls
          (3.11.2).  This is needed to accommodate a node that updates
          the slack term (S) of Guaranteed service.

     o    An error subtype was added for an Adspec error (Appendix B).

     o    Additional explanation was added for handling a CONFIRM
          object (Section 3.1.4).

     o    The rules for forwarding objects with unknown class type were
          clarified.

     o    Additional discussion was added to the Introduction and to
          Section 3.11.2 about the relationship of RSVP to the link
          layer.  (Section 3.10).

     o    Section 2.7 on Policy and Security was split into two
          sections, and some additional discussion of security was
          included.

     o    There were some minor editorial improvements.



Braden, Ed., et. al.        Standards Track                     [Page 3]

RFC 2205                          RSVP                    September 1997


1. Introduction

  This document defines RSVP, a resource reservation setup protocol
  designed for an integrated services Internet [RSVP93, RFC 1633].  The
  RSVP protocol is used by a host to request specific qualities of
  service from the network for particular application data streams or
  flows.  RSVP is also used by routers to deliver quality-of-service
  (QoS) requests to all nodes along the path(s) of the flows and to
  establish and maintain state to provide the requested service.  RSVP
  requests will generally result in resources being reserved in each
  node along the data path.

  RSVP requests resources for simplex flows, i.e., it requests
  resources in only one direction.  Therefore, RSVP treats a sender as
  logically distinct from a receiver, although the same application
  process may act as both a sender and a receiver at the same time.
  RSVP operates on top of IPv4 or IPv6, occupying the place of a
  transport protocol in the protocol stack.  However, RSVP does not
  transport application data but is rather an Internet control
  protocol, like ICMP, IGMP, or routing protocols.  Like the
  implementations of routing and management protocols, an
  implementation of RSVP will typically execute in the background, not
  in the data forwarding path, as shown in Figure 1.

  RSVP is not itself a routing protocol; RSVP is designed to operate
  with current and future unicast and multicast routing protocols.  An
  RSVP process consults the local routing database(s) to obtain routes.
  In the multicast case, for example, a host sends IGMP messages to
  join a multicast group and then sends RSVP messages to reserve
  resources along the delivery path(s) of that group.  Routing
  protocols determine where packets get forwarded; RSVP is only
  concerned with the QoS of those packets that are forwarded in
  accordance with routing.

  In order to efficiently accommodate large groups, dynamic group
  membership, and heterogeneous receiver requirements, RSVP makes
  receivers responsible for requesting a specific QoS [RSVP93].  A QoS
  request from a receiver host application is passed to the local RSVP
  process.  The RSVP protocol then carries the request to all the nodes
  (routers and hosts) along the reverse data path(s) to the data
  source(s), but only as far as the router where the receiver's data
  path joins the multicast distribution tree.  As a result, RSVP's
  reservation overhead is in general logarithmic rather than linear in
  the number of receivers.







Braden, Ed., et. al.        Standards Track                     [Page 4]

RFC 2205                          RSVP                    September 1997



             HOST                              ROUTER

_____________________________       ____________________________
|  _______                    |     |                            |
| |       |   _______         |     |            _______         |
| |Appli- |  |       |        |RSVP |           |       |        |
| | cation|  | RSVP <---------------------------> RSVP  <---------->
| |       <-->       |        |     | _______   |       |        |
| |       |  |process|  _____ |     ||Routing|  |process|  _____ |
| |_._____|  |       -->Polcy||     ||       <-->       -->Polcy||
|   |        |__.__._| |Cntrl||     ||process|  |__.__._| |Cntrl||
|   |data       |  |   |_____||     ||__.____|     |  |   |_____||
|===|===========|==|==========|     |===|==========|==|==========|
|   |   --------|  |    _____ |     |   |  --------|  |    _____ |
|   |  |        |  ---->Admis||     |   |  |       |  ---->Admis||
|  _V__V_    ___V____  |Cntrl||     |  _V__V_    __V_____ |Cntrl||
| |      |  |        | |_____||     | |      |  |        ||_____||
| |Class-|  | Packet |        |     | |Class-|  | Packet |       |
| | ifier|==>Schedulr|================> ifier|==>Schedulr|===========>
| |______|  |________|        |data | |______|  |________|       |data
|                             |     |                            |
|_____________________________|     |____________________________|


                 Figure 1: RSVP in Hosts and Routers


  Quality of service is implemented for a particular data flow by
  mechanisms collectively called "traffic control".  These mechanisms
  include (1) a packet classifier, (2) admission control, and (3) a
  "packet scheduler" or some other link-layer-dependent mechanism to
  determine when particular packets are forwarded.  The "packet
  classifier" determines the QoS class (and perhaps the route) for each
  packet.  For each outgoing interface, the "packet scheduler" or other
  link-layer-dependent mechanism achieves the promised QoS.  Traffic
  control implements QoS service models defined by the Integrated
  Services Working Group.

  During reservation setup, an RSVP QoS request is passed to two local
  decision modules, "admission control" and "policy control".
  Admission control determines whether the node has sufficient
  available resources to supply the requested QoS.  Policy control








Braden, Ed., et. al.        Standards Track                     [Page 5]

RFC 2205                          RSVP                    September 1997


  determines whether the user has administrative permission to make the
  reservation.  If both checks succeed, parameters are set in the
  packet classifier and in the link layer interface (e.g., in the
  packet scheduler) to obtain the desired QoS.  If either check fails,
  the RSVP program returns an error notification to the application
  process that originated the request.

  RSVP protocol mechanisms provide a general facility for creating and
  maintaining distributed reservation state across a mesh of multicast
  or unicast delivery paths.  RSVP itself transfers and manipulates QoS
  and policy control parameters as opaque data, passing them to the
  appropriate traffic control and policy control modules for
  interpretation.  The structure and contents of the QoS parameters are
  documented in specifications developed by the Integrated Services
  Working Group; see [RFC 2210].  The structure and contents of the
  policy parameters are under development.

  Since the membership of a large multicast group and the resulting
  multicast tree topology are likely to change with time, the RSVP
  design assumes that state for RSVP and traffic control state is to be
  built and destroyed incrementally in routers and hosts.  For this
  purpose, RSVP establishes "soft" state; that is, RSVP sends periodic
  refresh messages to maintain the state along the reserved path(s).
  In the absence of refresh messages, the state automatically times out
  and is deleted.

  In summary, RSVP has the following attributes:

  o    RSVP makes resource reservations for both unicast and many-to-
       many multicast applications, adapting dynamically to changing
       group membership as well as to changing routes.

  o    RSVP is simplex, i.e., it makes reservations for unidirectional
       data flows.

  o    RSVP is receiver-oriented, i.e., the receiver of a data flow
       initiates and maintains the resource reservation used for that
       flow.

  o    RSVP maintains "soft" state in routers and hosts, providing
       graceful support for dynamic membership changes and automatic
       adaptation to routing changes.

  o    RSVP is not a routing protocol but depends upon present and
       future routing protocols.

  o    RSVP transports and maintains traffic control and policy control
       parameters that are opaque to RSVP.



Braden, Ed., et. al.        Standards Track                     [Page 6]

RFC 2205                          RSVP                    September 1997


  o    RSVP provides several reservation models or "styles" (defined
       below) to fit a variety of applications.

  o    RSVP provides transparent operation through routers that do not
       support it.

  o    RSVP supports both IPv4 and IPv6.

  Further discussion on the objectives and general justification for
  RSVP design are presented in [RSVP93] and [RFC 1633].

  The remainder of this section describes the RSVP reservation
  services.  Section 2 presents an overview of the RSVP protocol
  mechanisms.  Section 3 contains the functional specification of RSVP,
  while Section 4 presents explicit message processing rules.  Appendix
  A defines the variable-length typed data objects used in the RSVP
  protocol.  Appendix B defines error codes and values.  Appendix C
  defines a UDP encapsulation of RSVP messages, for hosts whose
  operating systems provide inadequate raw network I/O support.

  1.1 Data Flows

     RSVP defines a "session" to be a data flow with a particular
     destination and transport-layer protocol.  RSVP treats each
     session independently, and this document often omits the implied
     qualification "for the same session".

     An RSVP session is defined by the triple: (DestAddress, ProtocolId
     [, DstPort]).  Here DestAddress, the IP destination address of the
     data packets, may be a unicast or multicast address.  ProtocolId
     is the IP protocol ID.  The optional DstPort parameter is a
     "generalized destination port", i.e., some further demultiplexing
     point in the transport or application protocol layer.  DstPort
     could be defined by a UDP/TCP destination port field, by an
     equivalent field in another transport protocol, or by some
     application-specific information.

     Although the RSVP protocol is designed to be easily extensible for
     greater generality, the basic protocol documented here supports
     only UDP/TCP ports as generalized ports.  Note that it is not
     strictly necessary to include DstPort in the session definition
     when DestAddress is multicast, since different sessions can always
     have different multicast addresses.  However, DstPort is necessary
     to allow more than one unicast session addressed to the same
     receiver host.






Braden, Ed., et. al.        Standards Track                     [Page 7]

RFC 2205                          RSVP                    September 1997


     Figure 2 illustrates the flow of data packets in a single RSVP
     session, assuming multicast data distribution.  The arrows
     indicate data flowing from senders S1 and S2 to receivers R1, R2,
     and R3, and the cloud represents the distribution mesh created by
     multicast routing.  Multicast distribution forwards a copy of each
     data packet from a sender Si to every receiver Rj; a unicast
     distribution session has a single receiver R.  Each sender Si may
     be running in a unique Internet host, or a single host may contain
     multiple senders distinguished by "generalized source ports".


             Senders                              Receivers
                         _____________________
                        (                     ) ===> R1
                S1 ===> (    Multicast        )
                        (                     ) ===> R2
                        (    distribution     )
                S2 ===> (                     )
                        (    by Internet      ) ===> R3
                        (_____________________)

                Figure 2: Multicast Distribution Session


     For unicast transmission, there will be a single destination host
     but there may be multiple senders; RSVP can set up reservations
     for multipoint-to-single-point transmission.

  1.2 Reservation Model

     An elementary RSVP reservation request consists of a "flowspec"
     together with a "filter spec"; this pair is called a "flow
     descriptor".  The flowspec specifies a desired QoS.  The filter
     spec, together with a session specification, defines the set of
     data packets -- the "flow" -- to receive the QoS defined by the
     flowspec.  The flowspec is used to set parameters in the node's
     packet scheduler or other link layer mechanism, while the filter
     spec is used to set parameters in the packet classifier.  Data
     packets that are addressed to a particular session but do not
     match any of the filter specs for that session are handled as
     best-effort traffic.

     The flowspec in a reservation request will generally include a
     service class and two sets of numeric parameters: (1) an "Rspec"
     (R for `reserve') that defines the desired QoS, and (2) a "Tspec"
     (T for `traffic') that describes the data flow.  The formats and
     contents of Tspecs and Rspecs are determined by the integrated
     service models [RFC 2210] and are generally opaque to RSVP.



Braden, Ed., et. al.        Standards Track                     [Page 8]

RFC 2205                          RSVP                    September 1997


     The exact format of a filter spec depends upon whether IPv4 or
     IPv6 is in use; see Appendix A.  In the most general approach
     [RSVP93], filter specs may select arbitrary subsets of the packets
     in a given session.  Such subsets might be defined in terms of
     senders (i.e., sender IP address and generalized source port), in
     terms of a higher-level protocol, or generally in terms of any
     fields in any protocol headers in the packet.  For example, filter
     specs might be used to select different subflows of a
     hierarchically-encoded video stream by selecting on fields in an
     application-layer header.  In the interest of simplicity (and to
     minimize layer violation), the basic filter spec format defined in
     the present RSVP specification has a very restricted form: sender
     IP address and optionally the UDP/TCP port number SrcPort.

     Because the UDP/TCP port numbers are used for packet
     classification, each router must be able to examine these fields.
     This raises three potential problems.

     1.   It is necessary to avoid IP fragmentation of a data flow for
          which a resource reservation is desired.

          Document [RFC 2210] specifies a procedure for applications
          using RSVP facilities to compute the minimum MTU over a
          multicast tree and return the result to the senders.

     2.   IPv6 inserts a variable number of variable-length Internet-
          layer headers before the transport header, increasing the
          difficulty and cost of packet classification for QoS.

          Efficient classification of IPv6 data packets could be
          obtained using the Flow Label field of the IPv6 header.  The
          details will be provided in the future.

     3.   IP-level Security, under either IPv4 or IPv6, may encrypt the
          entire transport header, hiding the port numbers of data
          packets from intermediate routers.

          A small extension to RSVP for IP Security under IPv4 and IPv6
          is described separately in [RFC 2207].

     RSVP messages carrying reservation requests originate at receivers
     and are passed upstream towards the sender(s).  Note: in this
     document, we define the directional terms "upstream" vs.
     "downstream", "previous hop" vs. "next hop", and "incoming
     interface" vs "outgoing interface" with respect to the direction
     of data flow.





Braden, Ed., et. al.        Standards Track                     [Page 9]

RFC 2205                          RSVP                    September 1997


     At each intermediate node, a reservation request triggers two
     general actions, as follows:

     1.   Make a reservation on a link

          The RSVP process passes the request to admission control and
          policy control.  If either test fails, the reservation is
          rejected and the RSVP process returns an error message to the
          appropriate receiver(s).  If both succeed, the node sets the
          packet classifier to select the data packets defined by the
          filter spec, and it interacts with the appropriate link layer
          to obtain the desired QoS defined by the flowspec.

          The detailed rules for satisfying an RSVP QoS request depend
          upon the particular link layer technology in use on each
          interface.  Specifications are under development in the ISSLL
          Working Group for mapping reservation requests into popular
          link layer technologies.  For a simple leased line, the
          desired QoS will be obtained from the packet scheduler in the
          link layer driver, for example.  If the link-layer technology
          implements its own QoS management capability, then RSVP must
          negotiate with the link layer to obtain the requested QoS.
          Note that the action to control QoS occurs at the place where
          the data enters the link-layer medium, i.e., at the upstream
          end of the logical or physical link, although an RSVP
          reservation request originates from receiver(s) downstream.

     2.   Forward the request upstream

          A reservation request is propagated upstream towards the
          appropriate senders.  The set of sender hosts to which a
          given reservation request is propagated is called the "scope"
          of that request.

          The reservation request that a node forwards upstream may
          differ from the request that it received from downstream, for
          two reasons.  The traffic control mechanism may modify the
          flowspec hop-by-hop.  More importantly, reservations from
          different downstream branches of the multicast tree(s) from
          the same sender (or set of senders) must be " merged" as
          reservations travel upstream.


     When a receiver originates a reservation request, it can also
     request a confirmation message to indicate that its request was
     (probably) installed in the network.  A successful reservation
     request propagates upstream along the multicast tree until it
     reaches a point where an existing reservation is equal or greater



Braden, Ed., et. al.        Standards Track                    [Page 10]

RFC 2205                          RSVP                    September 1997


     than that being requested.  At that point, the arriving request is
     merged with the reservation in place and need not be forwarded
     further; the node may then send a reservation confirmation message
     back to the receiver.  Note that the receipt of a confirmation is
     only a high-probability indication, not a guarantee, that the
     requested service is in place all the way to the sender(s), as
     explained in Section 2.6.

     The basic RSVP reservation model is "one pass": a receiver sends a
     reservation request upstream, and each node in the path either
     accepts or rejects the request.  This scheme provides no easy way
     for a receiver to find out the resulting end-to-end service.
     Therefore, RSVP supports an enhancement to one-pass service known
     as "One Pass With Advertising" (OPWA) [OPWA95].  With OPWA, RSVP
     control packets are sent downstream, following the data paths, to
     gather information that may be used to predict the end-to-end QoS.
     The results ("advertisements") are delivered by RSVP to the
     receiver hosts and perhaps to the receiver applications.  The
     advertisements may then be used by the receiver to construct, or
     to dynamically adjust, an appropriate reservation request.

  1.3 Reservation Styles

     A reservation request includes a set of options that are
     collectively called the reservation "style".

     One reservation option concerns the treatment of reservations for
     different senders within the same session: establish a "distinct"
     reservation for each upstream sender, or else make a single
     reservation that is "shared" among all packets of selected
     senders.

     Another reservation option controls the selection of senders; it
     may be an "explicit" list of all selected senders, or a "wildcard"
     that implicitly selects all the senders to the session.  In an
     explicit sender-selection reservation, each filter spec must match
     exactly one sender, while in a wildcard sender-selection no filter
     spec is needed.













Braden, Ed., et. al.        Standards Track                    [Page 11]

RFC 2205                          RSVP                    September 1997



          Sender   ||             Reservations:
        Selection  ||     Distinct     |        Shared
          _________||__________________|____________________
                   ||                  |                    |
         Explicit  ||  Fixed-Filter    |  Shared-Explicit   |
                   ||  (FF) style      |  (SE) Style        |
         __________||__________________|____________________|
                   ||                  |                    |
         Wildcard  ||  (None defined)  |  Wildcard-Filter   |
                   ||                  |  (WF) Style        |
         __________||__________________|____________________|


                Figure 3: Reservation Attributes and Styles



     The following styles are currently defined (see Figure 3):

     o    Wildcard-Filter (WF) Style

          The WF style implies the options: "shared" reservation and
          "wildcard" sender selection.  Thus, a WF-style reservation
          creates a single reservation shared by flows from all
          upstream senders.  This reservation may be thought of as a
          shared "pipe", whose "size" is the largest of the resource
          requests from all receivers, independent of the number of
          senders using it.  A WF-style reservation is propagated
          upstream towards all sender hosts, and it automatically
          extends to new senders as they appear.

          Symbolically, we can represent a WF-style reservation request
          by:

              WF( * {Q})


          where the asterisk represents wildcard sender selection and Q
          represents the flowspec.

     o    Fixed-Filter (FF) Style

          The FF style implies the options: "distinct" reservations and
          "explicit" sender selection.  Thus, an elementary FF-style
          reservation request creates a distinct reservation for data
          packets from a particular sender, not sharing them with other
          senders' packets for the same session.



Braden, Ed., et. al.        Standards Track                    [Page 12]

RFC 2205                          RSVP                    September 1997


          Symbolically, we can represent an elementary FF reservation
          request by:

              FF( S{Q})


          where S is the selected sender and Q is the corresponding
          flowspec; the pair forms a flow descriptor.  RSVP allows
          multiple elementary FF-style reservations to be requested at
          the same time, using a list of flow descriptors:

              FF( S1{Q1}, S2{Q2}, ...)


          The total reservation on a link for a given session is the
          `sum' of Q1, Q2, ... for all requested senders.

     o    Shared Explicit (SE) Style

          The SE style implies the options: "shared" reservation and
          "explicit" sender selection.  Thus, an SE-style reservation
          creates a single reservation shared by selected upstream
          senders.  Unlike the WF style, the SE style allows a receiver
          to explicitly specify the set of senders to be included.

          We can represent an SE reservation request containing a
          flowspec Q and a list of senders S1, S2, ... by:

              SE( (S1,S2,...){Q} )


     Shared reservations, created by WF and SE styles, are appropriate
     for those multicast applications in which multiple data sources
     are unlikely to transmit simultaneously.  Packetized audio is an
     example of an application suitable for shared reservations; since
     a limited number of people talk at once, each receiver might issue
     a WF or SE reservation request for twice the bandwidth required
     for one sender (to allow some over-speaking).  On the other hand,
     the FF style, which creates distinct reservations for the flows
     from different senders, is appropriate for video signals.

     The RSVP rules disallow merging of shared reservations with
     distinct reservations, since these modes are fundamentally
     incompatible.  They also disallow merging explicit sender
     selection with wildcard sender selection, since this might produce
     an unexpected service for a receiver that specified explicit
     selection.  As a result of these prohibitions, WF, SE, and FF
     styles are all mutually incompatible.



Braden, Ed., et. al.        Standards Track                    [Page 13]

RFC 2205                          RSVP                    September 1997


     It would seem possible to simulate the effect of a WF reservation
     using the SE style.  When an application asked for WF, the RSVP
     process on the receiver host could use local state to create an
     equivalent SE reservation that explicitly listed all senders.
     However, an SE reservation forces the packet classifier in each
     node to explicitly select each sender in the list, while a WF
     allows the packet classifier to simply "wild card" the sender
     address and port.  When there is a large list of senders, a WF
     style reservation can therefore result in considerably less
     overhead than an equivalent SE style reservation.  For this
     reason, both SE and WF are included in the protocol.

     Other reservation options and styles may be defined in the future.

  1.4 Examples of Styles

     This section presents examples of each of the reservation styles
     and shows the effects of merging.

     Figure 4 illustrates a router with two incoming interfaces,
     labeled (a) and (b), through which flows will arrive, and two
     outgoing interfaces, labeled (c) and (d), through which data will
     be forwarded.  This topology will be assumed in the examples that
     follow.  There are three upstream senders; packets from sender S1
     (S2 and S3) arrive through previous hop (a) ((b), respectively).
     There are also three downstream receivers; packets bound for R1
     (R2 and R3) are routed via outgoing interface (c) ((d),
     respectively).  We furthermore assume that outgoing interface (d)
     is connected to a broadcast LAN, i.e., that replication occurs in
     the network; R2 and R3 are reached via different next hop routers
     (not shown).

     We must also specify the multicast routes within the node of
     Figure 4.  Assume first that data packets from each Si shown in
     Figure 4 are routed to both outgoing interfaces.  Under this
     assumption, Figures 5, 6, and 7 illustrate Wildcard-Filter,
     Fixed-Filter, and Shared-Explicit reservations, respectively.














Braden, Ed., et. al.        Standards Track                    [Page 14]

RFC 2205                          RSVP                    September 1997


                        ________________
                    (a)|                | (c)
     ( S1 ) ---------->|                |----------> ( R1 )
                       |     Router     |      |
                    (b)|                | (d)  |---> ( R2 )
     ( S2,S3 ) ------->|                |------|
                       |________________|      |---> ( R3 )
                                               |

                       Figure 4: Router Configuration



     For simplicity, these examples show flowspecs as one-dimensional
     multiples of some base resource quantity B.  The "Receives" column
     shows the RSVP reservation requests received over outgoing
     interfaces (c) and (d), and the "Reserves" column shows the
     resulting reservation state for each interface.   The "Sends"
     column shows the reservation requests that are sent upstream to
     previous hops (a) and (b).  In the "Reserves" column, each box
     represents one reserved "pipe" on the outgoing link, with the
     corresponding flow descriptor.

     Figure 5, showing the WF style, illustrates two distinct
     situations in which merging is required.  (1) Each of the two next
     hops on interface (d) results in a separate RSVP reservation
     request, as shown; these two requests must be merged into the
     effective flowspec, 3B, that is used to make the reservation on
     interface (d).  (2) The reservations on the interfaces (c) and (d)
     must be merged in order to forward the reservation requests
     upstream; as a result, the larger flowspec 4B is forwarded
     upstream to each previous hop.



















Braden, Ed., et. al.        Standards Track                    [Page 15]

RFC 2205                          RSVP                    September 1997



                            |
              Sends         |       Reserves             Receives
                            |
                            |       _______
        WF( *{4B} ) <- (a)  |  (c) | * {4B}|    (c) <- WF( *{4B} )
                            |      |_______|
                            |
     -----------------------|----------------------------------------
                            |       _______
        WF( *{4B} ) <- (b)  |  (d) | * {3B}|    (d) <- WF( *{3B} )
                            |      |_______|        <- WF( *{2B} )

             Figure 5: Wildcard-Filter (WF) Reservation Example



     Figure 6 shows Fixed-Filter (FF) style reservations.  For each
     outgoing interface, there is a separate reservation for each
     source that has been requested, but this reservation will be
     shared among all the receivers that made the request.  The flow
     descriptors for senders S2 and S3, received through outgoing
     interfaces (c) and (d), are packed (not merged) into the request
     forwarded to previous hop (b).  On the other hand, the three
     different flow descriptors specifying sender S1 are merged into
     the single request FF( S1{4B} ) that is sent to previous hop (a).


                         |
           Sends         |       Reserves             Receives
                         |
                         |       ________
    FF( S1{4B} ) <- (a)  |  (c) | S1{4B} |  (c) <- FF( S1{4B}, S2{5B} )
                         |      |________|
                         |      | S2{5B} |
                         |      |________|
    ---------------------|---------------------------------------------
                         |       ________
                 <- (b)  |  (d) | S1{3B} |  (d) <- FF( S1{3B}, S3{B} )
    FF( S2{5B}, S3{B} )  |      |________|      <- FF( S1{B} )
                         |      | S3{B}  |
                         |      |________|

             Figure 6: Fixed-Filter (FF) Reservation Example







Braden, Ed., et. al.        Standards Track                    [Page 16]

RFC 2205                          RSVP                    September 1997


     Figure 7 shows an example of Shared-Explicit (SE) style
     reservations.  When SE-style reservations are merged, the
     resulting filter spec is the union of the original filter specs,
     and the resulting flowspec is the largest flowspec.


                         |
           Sends         |       Reserves             Receives
                         |
                         |       ________
    SE( S1{3B} ) <- (a)  |  (c) |(S1,S2) |   (c) <- SE( (S1,S2){B} )
                         |      |   {B}  |
                         |      |________|
    ---------------------|---------------------------------------------
                         |      __________
                 <- (b)  | (d) |(S1,S2,S3)|  (d) <- SE( (S1,S3){3B} )
    SE( (S2,S3){3B} )    |     |   {3B}   |      <- SE( S2{2B} )
                         |     |__________|

           Figure 7: Shared-Explicit (SE) Reservation Example



     The three examples just shown assume that data packets from S1,
     S2, and S3 are routed to both outgoing interfaces.  The top part
     of Figure 8 shows another routing assumption: data packets from S2
     and S3 are not forwarded to interface (c), e.g., because the
     network topology provides a shorter path for these senders towards
     R1, not traversing this node.  The bottom part of Figure 8 shows
     WF style reservations under this assumption.  Since there is no
     route from (b) to (c), the reservation forwarded out interface (b)
     considers only the reservation on interface (d).



















Braden, Ed., et. al.        Standards Track                    [Page 17]

RFC 2205                          RSVP                    September 1997


                        _______________
                    (a)|               | (c)
     ( S1 ) ---------->| >-----------> |----------> ( R1 )
                       |    >          |
                       |      >        |
                    (b)|        >      | (d)
     ( S2,S3 ) ------->| >-------->--> |----------> ( R2, R3 )
                       |_______________|

                      Router Configuration


                            |
              Sends         |       Reserves             Receives
                            |
                            |       _______
        WF( *{4B} ) <- (a)  |  (c) | * {4B}|   (c) <- WF( *{4B} )
                            |      |_______|
                            |
     -----------------------|----------------------------------------
                            |       _______
        WF( *{3B} ) <- (b)  |  (d) | * {3B}|   (d) <- WF( * {3B} )
                            |      |_______|       <- WF( * {2B} )

            Figure 8: WF Reservation Example -- Partial Routing


























Braden, Ed., et. al.        Standards Track                    [Page 18]

RFC 2205                          RSVP                    September 1997


2. RSVP Protocol Mechanisms

  2.1 RSVP Messages


      Previous       Incoming           Outgoing             Next
      Hops           Interfaces         Interfaces           Hops

      _____             _____________________                _____
     |     | data -->  |                     |  data -->    |     |
     |  A  |-----------| a                 c |--------------|  C  |
     |_____| Path -->  |                     |  Path -->    |_____|
             <-- Resv  |                     |  <-- Resv     _____
      _____            |       ROUTER        |           |  |     |
     |     |  |        |                     |           |--|  D  |
     |  B  |--| data-->|                     |  data --> |  |_____|
     |_____|  |--------| b                 d |-----------|
              | Path-->|                     |  Path --> |   _____
      _____   | <--Resv|_____________________|  <-- Resv |  |     |
     |     |  |                                          |--|  D' |
     |  B' |--|                                          |  |_____|
     |_____|  |                                          |

                        Figure 9: Router Using RSVP



     Figure 9 illustrates RSVP's model of a router node.  Each data
     flow arrives from a "previous hop" through a corresponding
     "incoming interface" and departs through one or more "outgoing
     interface"(s).  The same interface may act in both the incoming
     and outgoing roles for different data flows in the same session.
     Multiple previous hops and/or next hops may be reached through a
     given physical interface; for example, the figure implies that D
     and D' are connected to (d) with a broadcast LAN.

     There are two fundamental RSVP message types: Resv and Path.

     Each receiver host sends RSVP reservation request (Resv) messages
     upstream towards the senders.  These messages must follow exactly
     the reverse of the path(s) the data packets will use, upstream to
     all the sender hosts included in the sender selection.  They
     create and maintain "reservation state" in each node along the
     path(s).  Resv messages must finally be delivered to the sender
     hosts themselves, so that the hosts can set up appropriate traffic
     control parameters for the first hop.  The processing of Resv
     messages was discussed previously in Section 1.2.




Braden, Ed., et. al.        Standards Track                    [Page 19]

RFC 2205                          RSVP                    September 1997


     Each RSVP sender host transmits RSVP "Path" messages downstream
     along the uni-/multicast routes provided by the routing
     protocol(s), following the paths of the data.  These Path messages
     store "path state" in each node along the way.  This path state
     includes at least the unicast IP address of the previous hop node,
     which is used to route the Resv messages hop-by-hop in the reverse
     direction.  (In the future, some routing protocols may supply
     reverse path forwarding information directly, replacing the
     reverse-routing function of path state).

     A Path message contains the following information in addition to
     the previous hop address:

     o    Sender Template

          A Path message is required to carry a Sender Template, which
          describes the format of data packets that the sender will
          originate.  This template is in the form of a filter spec
          that could be used to select this sender's packets from
          others in the same session on the same link.

          Sender Templates have exactly the same expressive power and
          format as filter specs that appear in Resv messages.
          Therefore a Sender Template may specify only the sender IP
          address and optionally the UDP/TCP sender port, and it
          assumes the protocol Id specified for the session.

     o    Sender Tspec

          A Path message is required to carry a Sender Tspec, which
          defines the traffic characteristics of the data flow that the
          sender will generate.  This Tspec is used by traffic control
          to prevent over-reservation, and perhaps unnecessary
          Admission Control failures.

     o    Adspec

          A Path message may carry a package of OPWA advertising
          information, known as an "Adspec".  An Adspec received in a
          Path message is passed to the local traffic control, which
          returns an updated Adspec; the updated version is then
          forwarded in Path messages sent downstream.









Braden, Ed., et. al.        Standards Track                    [Page 20]

RFC 2205                          RSVP                    September 1997


     Path messages are sent with the same source and destination
     addresses as the data, so that they will be routed correctly
     through non-RSVP clouds (see Section 2.9).  On the other hand,
     Resv messages are sent hop-by-hop; each RSVP-speaking node
     forwards a Resv message to the unicast address of a previous RSVP
     hop.

  2.2 Merging Flowspecs

     A Resv message forwarded to a previous hop carries a flowspec that
     is the "largest" of the flowspecs requested by the next hops to
     which the data flow will be sent (however, see Section 3.5 for a
     different merging rule used in certain cases).  We say the
     flowspecs have been "merged".  The examples shown in Section 1.4
     illustrated another case of merging, when there are multiple
     reservation requests from different next hops for the same session
     and with the same filter spec, but RSVP should install only one
     reservation on that interface.  Here again, the installed
     reservation should have an effective flowspec that is the
     "largest" of the flowspecs requested by the different next hops.

     Since flowspecs are opaque to RSVP, the actual rules for comparing
     flowspecs must be defined and implemented outside RSVP proper.
     The comparison rules are defined in the appropriate integrated
     service specification document.  An RSVP implementation will need
     to call service-specific routines to perform flowspec merging.

     Note that flowspecs are generally multi-dimensional vectors; they
     may contain both Tspec and Rspec components, each of which may
     itself be multi-dimensional.  Therefore, it may not be possible to
     strictly order two flowspecs.  For example, if one request calls
     for a higher bandwidth and another calls for a tighter delay
     bound, one is not "larger" than the other.  In such a case,
     instead of taking the larger, the service-specific merging
     routines must be able to return a third flowspec that is at least
     as large as each; mathematically, this is the "least upper bound"
     (LUB).  In some cases, a flowspec at least as small is needed;
     this is the "greatest lower bound" (GLB) GLB (Greatest Lower
     Bound).

     The following steps are used to calculate the effective flowspec
     (Re, Te) to be installed on an interface [RFC 2210].  Here Te is
     the effective Tspec and Re is the effective Rspec.








Braden, Ed., et. al.        Standards Track                    [Page 21]

RFC 2205                          RSVP                    September 1997


     1.   An effective flowspec is determined for the outgoing
          interface.  Depending upon the link-layer technology, this
          may require merging flowspecs from different next hops; this
          means computing the effective flowspec as the LUB of the
          flowspecs.  Note that what flowspecs to merge is determined
          by the link layer medium (see Section 3.11.2), while how to
          merge them is determined by the service model in use [RFC
          2210].

          The result is a flowspec that is opaque to RSVP but actually
          consists of the pair (Re, Resv_Te), where is Re is the
          effective Rspec and Resv_Te is the effective Tspec.

     2.   A service-specific calculation of Path_Te, the sum of all
          Tspecs that were supplied in Path messages from different
          previous hops (e.g., some or all of A, B, and B' in Figure
          9), is performed.

     3.   (Re, Resv_Te) and Path_Te are passed to traffic control.
          Traffic control will compute the effective flowspec as the
          "minimum" of Path_Te and Resv_Te, in a service-dependent
          manner.

     Section 3.11.6 defines a generic set of service-specific calls to
     compare flowspecs, to compute the LUB and GLB of flowspecs, and to
     compare and sum Tspecs.

  2.3 Soft State

     RSVP takes a "soft state" approach to managing the reservation
     state in routers and hosts.  RSVP soft state is created and
     periodically refreshed by Path and Resv messages.  The state is
     deleted if no matching refresh messages arrive before the
     expiration of a "cleanup timeout" interval.  State may also be
     deleted by an explicit "teardown" message, described in the next
     section.  At the expiration of each "refresh timeout" period and
     after a state change, RSVP scans its state to build and forward
     Path and Resv refresh messages to succeeding hops.

     Path and Resv messages are idempotent.  When a route changes, the
     next Path message will initialize the path state on the new route,
     and future Resv messages will establish reservation state there;
     the state on the now-unused segment of the route will time out.
     Thus, whether a message is "new" or a "refresh" is determined
     separately at each node, depending upon the existence of state at
     that node.





Braden, Ed., et. al.        Standards Track                    [Page 22]

RFC 2205                          RSVP                    September 1997


     RSVP sends its messages as IP datagrams with no reliability
     enhancement.  Periodic transmission of refresh messages by hosts
     and routers is expected to handle the occasional loss of an RSVP
     message.  If the effective cleanup timeout is set to K times the
     refresh timeout period, then RSVP can tolerate K-1 successive RSVP
     packet losses without falsely deleting state.  The network traffic
     control mechanism should be statically configured to grant some
     minimal bandwidth for RSVP messages to protect them from
     congestion losses.

     The state maintained by RSVP is dynamic; to change the set of
     senders Si or to change any QoS request, a host simply starts
     sending revised Path and/or Resv messages.  The result will be an
     appropriate adjustment in the RSVP state in all nodes along the
     path; unused state will time out if it is not explicitly torn
     down.

     In steady state, state is refreshed hop-by-hop to allow merging.
     When the received state differs from the stored state, the stored
     state is updated.  If this update results in modification of state
     to be forwarded in refresh messages, these refresh messages must
     be generated and forwarded immediately, so that state changes can
     be propagated end-to-end without delay.  However, propagation of a
     change stops when and if it reaches a point where merging causes
     no resulting state change.  This minimizes RSVP control traffic
     due to changes and is essential for scaling to large multicast
     groups.

     State that is received through a particular interface I* should
     never be forwarded out the same interface.  Conversely, state that
     is forwarded out interface I* must be computed using only state
     that arrived on interfaces different from I*.  A trivial example
     of this rule is illustrated in Figure 10, which shows a transit
     router with one sender and one receiver on each interface (and
     assumes one next/previous hop per interface).  Interfaces (a) and
     (c) serve as both outgoing and incoming interfaces for this
     session.  Both receivers are making wildcard-style reservations,
     in which the Resv messages are forwarded to all previous hops for
     senders in the group, with the exception of the next hop from
     which they came.  The result is independent reservations in the
     two directions.

     There is an additional rule governing the forwarding of Resv
     messages: state from Resv messages received from outgoing
     interface Io should be forwarded to incoming interface Ii only if
     Path messages from Ii are forwarded to Io.





Braden, Ed., et. al.        Standards Track                    [Page 23]

RFC 2205                          RSVP                    September 1997


                        ________________
                     a |                | c
     ( R1, S1 ) <----->|     Router     |<-----> ( R2, S2 )
                       |________________|

            Send                |        Receive
                                |
       WF( *{3B}) <-- (a)       |     (c) <-- WF( *{3B})
                                |
            Receive             |          Send
                                |
       WF( *{4B}) --> (a)       |     (c) --> WF( *{4B})
                                |
            Reserve on (a)      |        Reserve on (c)
             __________         |        __________
            |  * {4B}  |        |       |   * {3B} |
            |__________|        |       |__________|
                                |

                    Figure 10: Independent Reservations


  2.4 Teardown

     RSVP "teardown" messages remove path or reservation state
     immediately.  Although it is not necessary to explicitly tear down
     an old reservation, we recommend that all end hosts send a
     teardown request as soon as an application finishes.

     There are two types of RSVP teardown message, PathTear and
     ResvTear.  A PathTear message travels towards all receivers
     downstream from its point of initiation and deletes path state, as
     well as all dependent reservation state, along the way.  An
     ResvTear message deletes reservation state and travels towards all
     senders upstream from its point of initiation.  A PathTear
     (ResvTear) message may be conceptualized as a reversed-sense Path
     message (Resv message, respectively).

     A teardown request may be initiated either by an application in an
     end system (sender or receiver), or by a router as the result of
     state timeout or service preemption.  Once initiated, a teardown
     request must be forwarded hop-by-hop without delay.  A teardown
     message deletes the specified state in the node where it is
     received.  As always, this state change will be propagated
     immediately to the next node, but only if there will be a net
     change after merging.  As a result, a ResvTear message will prune
     the reservation state back (only) as far as possible.




Braden, Ed., et. al.        Standards Track                    [Page 24]

RFC 2205                          RSVP                    September 1997


     Like all other RSVP messages, teardown requests are not delivered
     reliably.  The loss of a teardown request message will not cause a
     protocol failure because the unused state will eventually time out
     even though it is not explicitly deleted.  If a teardown message
     is lost, the router that failed to receive that message will time
     out its state and initiate a new teardown message beyond the loss
     point.  Assuming that RSVP message loss probability is small, the
     longest time to delete state will seldom exceed one refresh
     timeout period.

     It should be possible to tear down any subset of the established
     state.  For path state, the granularity for teardown is a single
     sender.  For reservation state, the granularity is an individual
     filter spec.  For example, refer to Figure 7.  Receiver R1 could
     send a ResvTear message for sender S2 only (or for any subset of
     the filter spec list), leaving S1 in place.

     A ResvTear message specifies the style and filters; any flowspec
     is ignored.  Whatever flowspec is in place will be removed if all
     its filter specs are torn down.

  2.5 Errors

     There are two RSVP error messages, ResvErr and PathErr.  PathErr
     messages are very simple; they are simply sent upstream to the
     sender that created the error, and they do not change path state
     in the nodes though which they pass.  There are only a few
     possible causes of path errors.

     However, there are a number of ways for a syntactically valid
     reservation request to fail at some node along the path.  A node
     may also decide to preempt an established reservation.  The
     handling of ResvErr messages is somewhat complex (Section 3.5).
     Since a request that fails may be the result of merging a number
     of requests, a reservation error must be reported to all of the
     responsible receivers.  In addition, merging heterogeneous
     requests creates a potential difficulty known as the "killer
     reservation" problem, in which one request could deny service to
     another.  There are actually two killer-reservation problems.

     1.   The first killer reservation problem (KR-I) arises when there
          is already a reservation Q0 in place.  If another receiver
          now makes a larger reservation Q1 > Q0, the result of merging
          Q0 and Q1 may be rejected by admission control in some
          upstream node.  This must not deny service to Q0.






Braden, Ed., et. al.        Standards Track                    [Page 25]

RFC 2205                          RSVP                    September 1997


          The solution to this problem is simple: when admission
          control fails for a reservation request, any existing
          reservation is left in place.

     2.   The second killer reservation problem (KR-II) is the
          converse: the receiver making a reservation Q1 is persistent
          even though Admission Control is failing for Q1 in some node.
          This must not prevent a different receiver from now
          establishing a smaller reservation Q0 that would succeed if
          not merged with Q1.

          To solve this problem, a ResvErr message establishes
          additional state, called "blockade state", in each node
          through which it passes.  Blockade state in a node modifies
          the merging procedure to omit the offending flowspec (Q1 in
          the example) from the merge, allowing a smaller request to be
          forwarded and established.  The Q1 reservation state is said
          to be "blockaded".  Detailed rules are presented in Section
          3.5.

     A reservation request that fails Admission Control creates
     blockade state but is left in place in nodes downstream of the
     failure point.  It has been suggested that these reservations
     downstream from the failure represent "wasted" reservations and
     should be timed out if not actively deleted.  However, the
     downstream reservations are left in place, for the following
     reasons:

     o    There are two possible reasons for a receiver persisting in a
          failed reservation: (1) it is polling for resource
          availability along the entire path, or (2) it wants to obtain
          the desired QoS along as much of the path as possible.
          Certainly in the second case, and perhaps in the first case,
          the receiver will want to hold onto the reservations it has
          made downstream from the failure.

     o    If these downstream reservations were not retained, the
          responsiveness of RSVP to certain transient failures would be
          impaired.  For example, suppose a route "flaps" to an
          alternate route that is congested, so an existing reservation
          suddenly fails, then quickly recovers to the original route.
          The blockade state in each downstream router must not remove
          the state or prevent its immediate refresh.

     o    If we did not refresh the downstream reservations, they might
          time out, to be restored every Tb seconds (where Tb is the
          blockade state timeout interval).  Such intermittent behavior
          might be very distressing for users.



Braden, Ed., et. al.        Standards Track                    [Page 26]

RFC 2205                          RSVP                    September 1997


  2.6 Confirmation

     To request a confirmation for its reservation request, a receiver
     Rj includes in the Resv message a confirmation-request object
     containing Rj's IP address.  At each merge point, only the largest
     flowspec and any accompanying confirmation-request object is
     forwarded upstream.  If the reservation request from Rj is equal
     to or smaller than the reservation in place on a node, its Resv is
     not forwarded further, and if the Resv included a confirmation-
     request object, a ResvConf message is sent back to Rj.  If the
     confirmation request is forwarded, it is forwarded immediately,
     and no more than once for each request.

     This confirmation mechanism has the following consequences:

     o    A new reservation request with a flowspec larger than any in
          place for a session will normally result in either a ResvErr
          or a ResvConf message back to the receiver from each sender.
          In this case, the ResvConf message will be an end-to-end
          confirmation.

     o    The receipt of a ResvConf gives no guarantees.  Assume the
          first two reservation requests from receivers R1 and R2
          arrive at the node where they are merged.  R2, whose
          reservation was the second to arrive at that node, may
          receive a ResvConf from that node while R1's request has not
          yet propagated all the way to a matching sender and may still
          fail.  Thus, R2 may receive a ResvConf although there is no
          end-to-end reservation in place; furthermore, R2 may receive
          a ResvConf followed by a ResvErr.


  2.7 Policy Control

     RSVP-mediated QoS requests allow particular user(s) to obtain
     preferential access to network resources.  To prevent abuse, some
     form of back pressure will generally be required on users who make
     reservations.  For example, such back pressure may be accomplished
     by administrative access policies, or it may depend upon some form
     of user feedback such as real or virtual billing for the "cost" of
     a reservation.  In any case, reliable user identification and
     selective admission will generally be needed when a reservation is
     requested.

     The term "policy control" is used for the mechanisms required to
     support access policies and back pressure for RSVP reservations.
     When a new reservation is requested, each node must answer two
     questions: "Are enough resources available to meet this request?"



Braden, Ed., et. al.        Standards Track                    [Page 27]

RFC 2205                          RSVP                    September 1997


     and "Is this user allowed to make this reservation?"  These two
     decisions are termed the "admission control" decision and the
     "policy control" decision, respectively, and both must be
     favorable in order for RSVP to make a reservation.  Different
     administrative domains in the Internet may have different
     reservation policies.

     The input to policy control is referred to as "policy data", which
     RSVP carries in POLICY_DATA objects.  Policy data may include
     credentials identifying users or user classes, account numbers,
     limits, quotas, etc.  Like flowspecs, policy data is opaque to
     RSVP, which simply passes it to policy control when required.
     Similarly, merging of policy data must be done by the policy
     control mechanism rather than by RSVP itself.  Note that the merge
     points for policy data are likely to be at the boundaries of
     administrative domains.  It may therefore be necessary to carry
     accumulated and unmerged policy data upstream through multiple
     nodes before reaching one of these merge points.

     Carrying user-provided policy data in Resv messages presents a
     potential scaling problem.  When a multicast group has a large
     number of receivers, it will be impossible or undesirable to carry
     all receivers' policy data upstream.  The policy data will have to
     be administratively merged at places near the receivers, to avoid
     excessive policy data.  Further discussion of these issues and an
     example of a policy control scheme will be found in [PolArch96].
     Specifications for the format of policy data objects and RSVP
     processing rules for them are under development.

  2.8 Security

     RSVP raises the following security issues.

     o    Message integrity and node authentication

          Corrupted or spoofed reservation requests could lead to theft
          of service by unauthorized parties or to denial of service
          caused by locking up network resources.  RSVP protects
          against such attacks with a hop-by-hop authentication
          mechanism using an encrypted hash function.  The mechanism is
          supported by INTEGRITY objects that may appear in any RSVP
          message.  These objects use a keyed cryptographic digest
          technique, which assumes that RSVP neighbors share a secret.
          Although this mechanism is part of the base RSVP
          specification, it is described in a companion document
          [Baker96].





Braden, Ed., et. al.        Standards Track                    [Page 28]

RFC 2205                          RSVP                    September 1997


          Widespread use of the RSVP integrity mechanism will require
          the availability of the long-sought key management and
          distribution infrastructure for routers.  Until that
          infrastructure becomes available, manual key management will
          be required to secure RSVP message integrity.

     o    User authentication

          Policy control will depend upon positive authentication of
          the user responsible for each reservation request.  Policy
          data may therefore include cryptographically protected user
          certificates.  Specification of such certificates is a future
          issue.

          Even without globally-verifiable user certificates, it may be
          possible to provide practical user authentication in many
          cases by establishing a chain of trust, using the hop-by-hop
          INTEGRITY mechanism described earlier.

     o    Secure data streams

          The first two security issues concerned RSVP's operation.  A
          third security issue concerns resource reservations for
          secure data streams.  In particular, the use of IPSEC (IP
          Security) in the data stream poses a problem for RSVP:  if
          the transport and higher level headers are encrypted, RSVP's
          generalized port numbers cannot be used to define a session
          or a sender.

          To solve this problem, an RSVP extension has been defined in
          which the security association identifier (IPSEC SPI) plays a
          role roughly equivalent to the generalized ports [RFC 2207].

  2.9 Non-RSVP Clouds

     It is impossible to deploy RSVP (or any new protocol) at the same
     moment throughout the entire Internet.  Furthermore, RSVP may
     never be deployed everywhere.  RSVP must therefore provide correct
     protocol operation even when two RSVP-capable routers are joined
     by an arbitrary "cloud" of non-RSVP routers.  Of course, an
     intermediate cloud that does not support RSVP is unable to perform
     resource reservation.  However, if such a cloud has sufficient
     capacity, it may still provide useful realtime service.

     RSVP is designed to operate correctly through such a non-RSVP
     cloud.  Both RSVP and non-RSVP routers forward Path messages
     towards the destination address using their local uni-/multicast
     routing table.  Therefore, the routing of Path messages will be



Braden, Ed., et. al.        Standards Track                    [Page 29]

RFC 2205                          RSVP                    September 1997


     unaffected by non-RSVP routers in the path.  When a Path message
     traverses a non-RSVP cloud, it carries to the next RSVP-capable
     node the IP address of the last RSVP-capable router before
     entering the cloud.  An Resv message is then forwarded directly to
     the next RSVP-capable router on the path(s) back towards the
     source.

     Even though RSVP operates correctly through a non-RSVP cloud, the
     non-RSVP-capable nodes will in general perturb the QoS provided to
     a receiver.  Therefore, RSVP passes a `NonRSVP' flag bit to the
     local traffic control mechanism when there are non-RSVP-capable
     hops in the path to a given sender.  Traffic control combines this
     flag bit with its own sources of information, and forwards the
     composed information on integrated service capability along the
     path to receivers using Adspecs [RFC 2210].

     Some topologies of RSVP routers and non-RSVP routers can cause
     Resv messages to arrive at the wrong RSVP-capable node, or to
     arrive at the wrong interface of the correct node.  An RSVP
     process must be prepared to handle either situation.  If the
     destination address does not match any local interface and the
     message is not a Path or PathTear, the message must be forwarded
     without further processing by this node.  To handle the wrong
     interface case, a "Logical Interface Handle" (LIH) is used.  The
     previous hop information included in a Path message includes not
     only the IP address of the previous node but also an LIH defining
     the logical outgoing interface; both values are stored in the path
     state.  A Resv message arriving at the addressed node carries both
     the IP address and the LIH of the correct outgoing interface, i.e,
     the interface that should receive the requested reservation,
     regardless of which interface it arrives on.

     The LIH may also be useful when RSVP reservations are made over a
     complex link layer, to map between IP layer and link layer flow
     entities.

  2.10 Host Model

     Before a session can be created, the session identification
     (DestAddress, ProtocolId [, DstPort]) must be assigned and
     communicated to all the senders and receivers by some out-of-band
     mechanism.  When an RSVP session is being set up, the following
     events happen at the end systems.








Braden, Ed., et. al.        Standards Track                    [Page 30]

RFC 2205                          RSVP                    September 1997


     H1   A receiver joins the multicast group specified by
          DestAddress, using IGMP.

     H2   A potential sender starts sending RSVP Path messages to the
          DestAddress.

     H3   A receiver application receives a Path message.

     H4   A receiver starts sending appropriate Resv messages,
          specifying the desired flow descriptors.

     H5   A sender application receives a Resv message.

     H6   A sender starts sending data packets.

     There are several synchronization considerations.

     o    H1 and H2 may happen in either order.

     o    Suppose that a new sender starts sending data (H6) but there
          are no multicast routes because no receivers have joined the
          group (H1).  Then the data will be dropped at some router
          node (which node depends upon the routing protocol) until
          receivers(s) appear.

     o    Suppose that a new sender starts sending Path messages (H2)
          and data (H6) simultaneously, and there are receivers but no
          Resv messages have reached the sender yet (e.g., because its
          Path messages have not yet propagated to the receiver(s)).
          Then the initial data may arrive at receivers without the
          desired QoS.  The sender could mitigate this problem by
          awaiting arrival of the first Resv message (H5); however,
          receivers that are farther away may not have reservations in
          place yet.

     o    If a receiver starts sending Resv messages (H4) before
          receiving any Path messages (H3), RSVP will return error
          messages to the receiver.

          The receiver may simply choose to ignore such error messages,
          or it may avoid them by waiting for Path messages before
          sending Resv messages.

     A specific application program interface (API) for RSVP is not
     defined in this protocol spec, as it may be host system dependent.
     However, Section 3.11.1 discusses the general requirements and
     outlines a generic interface.




Braden, Ed., et. al.        Standards Track                    [Page 31]

RFC 2205                          RSVP                    September 1997


3. RSVP Functional Specification

  3.1 RSVP Message Formats

     An RSVP message consists of a common header, followed by a body
     consisting of a variable number of variable-length, typed
     "objects".  The following subsections define the formats of the
     common header, the standard object header, and each of the RSVP
     message types.

     For each RSVP message type, there is a set of rules for the
     permissible choice of object types.  These rules are specified
     using Backus-Naur Form (BNF) augmented with square brackets
     surrounding optional sub-sequences.  The BNF implies an order for
     the objects in a message.  However, in many (but not all) cases,
     object order makes no logical difference.  An implementation
     should create messages with the objects in the order shown here,
     but accept the objects in any permissible order.

     3.1.1 Common Header

               0             1              2             3
        +-------------+-------------+-------------+-------------+
        | Vers | Flags|  Msg Type   |       RSVP Checksum       |
        +-------------+-------------+-------------+-------------+
        |  Send_TTL   | (Reserved)  |        RSVP Length        |
        +-------------+-------------+-------------+-------------+



        The fields in the common header are as follows:

        Vers: 4 bits

             Protocol version number.  This is version 1.

        Flags: 4 bits

             0x01-0x08: Reserved

                  No flag bits are defined yet.

        Msg Type: 8 bits

             1 = Path

             2 = Resv




Braden, Ed., et. al.        Standards Track                    [Page 32]

RFC 2205                          RSVP                    September 1997


             3 = PathErr

             4 = ResvErr

             5 = PathTear

             6 = ResvTear

             7 = ResvConf

        RSVP Checksum: 16 bits

             The one's complement of the one's complement sum of the
             message, with the checksum field replaced by zero for the
             purpose of computing the checksum.  An all-zero value
             means that no checksum was transmitted.

        Send_TTL: 8 bits

             The IP TTL value with which the message was sent.  See
             Section 3.8.

        RSVP Length: 16 bits

             The total length of this RSVP message in bytes, including
             the common header and the variable-length objects that
             follow.

     3.1.2 Object Formats

        Every object consists of one or more 32-bit words with a one-
        word header, with the following format:

               0             1              2             3
        +-------------+-------------+-------------+-------------+
        |       Length (bytes)      |  Class-Num  |   C-Type    |
        +-------------+-------------+-------------+-------------+
        |                                                       |
        //                  (Object contents)                   //
        |                                                       |
        +-------------+-------------+-------------+-------------+










Braden, Ed., et. al.        Standards Track                    [Page 33]

RFC 2205                          RSVP                    September 1997


        An object header has the following fields:

        Length

             A 16-bit field containing the total object length in
             bytes.  Must always be a multiple of 4, and at least 4.

        Class-Num

             Identifies the object class; values of this field are
             defined in Appendix A.  Each object class has a name,
             which is always capitalized in this document.  An RSVP
             implementation must recognize the following classes:

             NULL

                  A NULL object has a Class-Num of zero, and its C-Type
                  is ignored.  Its length must be at least 4, but can
                  be any multiple of 4.  A NULL object may appear
                  anywhere in a sequence of objects, and its contents
                  will be ignored by the receiver.

             SESSION

                  Contains the IP destination address (DestAddress),
                  the IP protocol id, and some form of generalized
                  destination port, to define a specific session for
                  the other objects that follow.  Required in every
                  RSVP message.

             RSVP_HOP

                  Carries the IP address of the RSVP-capable node that
                  sent this message and a logical outgoing interface
                  handle (LIH; see Section 3.3).  This document refers
                  to a RSVP_HOP object as a PHOP ("previous hop")
                  object for downstream messages or as a NHOP (" next
                  hop") object for upstream messages.

             TIME_VALUES

                  Contains the value for the refresh period R used by
                  the creator of the message; see Section 3.7.
                  Required in every Path and Resv message.







Braden, Ed., et. al.        Standards Track                    [Page 34]

RFC 2205                          RSVP                    September 1997


             STYLE

                  Defines the reservation style plus style-specific
                  information that is not in FLOWSPEC or FILTER_SPEC
                  objects.  Required in every Resv message.

             FLOWSPEC

                  Defines a desired QoS, in a Resv message.

             FILTER_SPEC

                  Defines a subset of session data packets that should
                  receive the desired QoS (specified by a FLOWSPEC
                  object), in a Resv message.

             SENDER_TEMPLATE

                  Contains a sender IP address and perhaps some
                  additional demultiplexing information to identify a
                  sender.  Required in a Path message.

             SENDER_TSPEC

                  Defines the traffic characteristics of a sender's
                  data flow.  Required in a Path message.

             ADSPEC

                  Carries OPWA data, in a Path message.

             ERROR_SPEC

                  Specifies an error in a PathErr, ResvErr, or a
                  confirmation in a ResvConf message.

             POLICY_DATA

                  Carries information that will allow a local policy
                  module to decide whether an associated reservation is
                  administratively permitted.  May appear in Path,
                  Resv, PathErr, or ResvErr message.

                  The use of POLICY_DATA objects is not fully specified
                  at this time; a future document will fill this gap.






Braden, Ed., et. al.        Standards Track                    [Page 35]

RFC 2205                          RSVP                    September 1997


             INTEGRITY

                  Carries cryptographic data to authenticate the
                  originating node and to verify the contents of this
                  RSVP message.  The use of the INTEGRITY object is
                  described in [Baker96].

             SCOPE

                  Carries an explicit list of sender hosts towards
                  which the information in the message is to be
                  forwarded.  May appear in a Resv, ResvErr, or
                  ResvTear message.  See Section 3.4.

             RESV_CONFIRM

                  Carries the IP address of a receiver that requested a
                  confirmation.  May appear in a Resv or ResvConf
                  message.

        C-Type

             Object type, unique within Class-Num.  Values are defined
             in Appendix A.

        The maximum object content length is 65528 bytes.  The Class-
        Num and C-Type fields may be used together as a 16-bit number
        to define a unique type for each object.

        The high-order two bits of the Class-Num is used to determine
        what action a node should take if it does not recognize the
        Class-Num of an object; see Section 3.10.

     3.1.3 Path Messages

        Each sender host periodically sends a Path message for each
        data flow it originates.  It contains a SENDER_TEMPLATE object
        defining the format of the data packets and a SENDER_TSPEC
        object specifying the traffic characteristics of the flow.
        Optionally, it may contain may be an ADSPEC object carrying
        advertising (OPWA) data for the flow.

        A Path message travels from a sender to receiver(s) along the
        same path(s) used by the data packets.  The IP source address
        of a Path message must be an address of the sender it
        describes, while the destination address must be the
        DestAddress for the session.  These addresses assure that the
        message will be correctly routed through a non-RSVP cloud.



Braden, Ed., et. al.        Standards Track                    [Page 36]

RFC 2205                          RSVP                    September 1997


        The format of a Path message is as follows:

          <Path Message> ::= <Common Header> [ <INTEGRITY> ]

                                    <SESSION> <RSVP_HOP>

                                    <TIME_VALUES>

                                   [ <POLICY_DATA> ... ]

                                   [ <sender descriptor> ]

          <sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

                                   [ <ADSPEC> ]


        If the INTEGRITY object is present, it must immediately follow
        the common header.  There are no other requirements on
        transmission order, although the above order is recommended.
        Any number of POLICY_DATA objects may appear.

        The PHOP (i.e., RSVP_HOP) object of each Path message contains
        the previous hop address, i.e., the IP address of the interface
        through which the Path message was most recently sent.  It also
        carries a logical interface handle (LIH).

        Each RSVP-capable node along the path(s) captures a Path
        message and processes it to create path state for the sender
        defined by the SENDER_TEMPLATE and SESSION objects.  Any
        POLICY_DATA, SENDER_TSPEC, and ADSPEC objects are also saved in
        the path state.  If an error is encountered while processing a
        Path message, a PathErr message is sent to the originating
        sender of the Path message.  Path messages must satisfy the
        rules on SrcPort and DstPort in Section 3.2.

        Periodically, the RSVP process at a node scans the path state
        to create new Path messages to forward towards the receiver(s).
        Each message contains a sender descriptor defining one sender,
        and carries the original sender's IP address as its IP source
        address.  Path messages eventually reach the applications on
        all receivers; however, they are not looped back to a receiver
        running in the same application process as the sender.

        The RSVP process forwards Path messages and replicates them as
        required by multicast sessions, using routing information it
        obtains from the appropriate uni-/multicast routing process.
        The route depends upon the session DestAddress, and for some



Braden, Ed., et. al.        Standards Track                    [Page 37]

RFC 2205                          RSVP                    September 1997


        routing protocols also upon the source (sender's IP) address.
        The routing information generally includes the list of zero or
        more outgoing interfaces to which the Path message is to be
        forwarded.  Because each outgoing interface has a different IP
        address, the Path messages sent out different interfaces
        contain different PHOP addresses.  In addition, ADSPEC objects
        carried in Path messages will also generally differ for
        different outgoing interfaces.

        Path state for a given session and sender may not necessarily
        have a unique PHOP or unique incoming interface.  There are two
        cases, corresponding to multicast and unicast sessions.

        o    Multicast Sessions

             Multicast routing allows a stable distribution tree in
             which Path messages from the same sender arrive from more
             than one PHOP, and RSVP must be prepared to maintain all
             such path state.  The RSVP rules for handling this
             situation are contained in Section 3.9.  RSVP must not
             forward (according to the rules of Section 3.9) Path
             messages that arrive on an incoming interface different
             from that provided by routing.

        o    Unicast Sessions

             For a short period following a unicast route change
             upstream, a node may receive Path messages from multiple
             PHOPs for a given (session, sender) pair.  The node cannot
             reliably determine which is the right PHOP, although the
             node will receive data from only one of the PHOPs at a
             time.  One implementation choice for RSVP is to ignore
             PHOP in matching unicast past state, and allow the PHOP to
             flip among the candidates.  Another implementation choice
             is to maintain path state for each PHOP and to send Resv
             messages upstream towards all such PHOPs.  In either case,
             the situation is a transient; the unused path state will
             time out or be torn down (because upstream path state
             timed out).

     3.1.4 Resv Messages

        Resv messages carry reservation requests hop-by-hop from
        receivers to senders, along the reverse paths of data flows for
        the session.  The IP destination address of a Resv message is
        the unicast address of a previous-hop node, obtained from the
        path state.  The IP source address is an address of the node
        that sent the message.



Braden, Ed., et. al.        Standards Track                    [Page 38]

RFC 2205                          RSVP                    September 1997


        The Resv message format is as follows:

          <Resv Message> ::= <Common Header> [ <INTEGRITY> ]

                                  <SESSION>  <RSVP_HOP>

                                  <TIME_VALUES>

                                  [ <RESV_CONFIRM> ]  [ <SCOPE> ]

                                  [ <POLICY_DATA> ... ]

                                  <STYLE> <flow descriptor list>

          <flow descriptor list> ::=  <empty> |

                           <flow descriptor list> <flow descriptor>


        If the INTEGRITY object is present, it must immediately follow
        the common header.  The STYLE object followed by the flow
        descriptor list must occur at the end of the message, and
        objects within the flow descriptor list must follow the BNF
        given below.  There are no other requirements on transmission
        order, although the above order is recommended.

        The NHOP (i.e., the RSVP_HOP) object contains the IP address of
        the interface through which the Resv message was sent and the
        LIH for the logical interface on which the reservation is
        required.

        The appearance of a RESV_CONFIRM object signals a request for a
        reservation confirmation and carries the IP address of the
        receiver to which the ResvConf should be sent.  Any number of
        POLICY_DATA objects may appear.

        The BNF above defines a flow descriptor list as simply a list
        of flow descriptors.  The following style-dependent rules
        specify in more detail the composition of a valid flow
        descriptor list for each of the reservation styles.

        o    WF Style:

               <flow descriptor list> ::=  <WF flow descriptor>

               <WF flow descriptor> ::= <FLOWSPEC>





Braden, Ed., et. al.        Standards Track                    [Page 39]

RFC 2205                          RSVP                    September 1997


        o    FF style:

               <flow descriptor list> ::=

                         <FLOWSPEC>  <FILTER_SPEC>  |

                         <flow descriptor list> <FF flow descriptor>

               <FF flow descriptor> ::=

                         [ <FLOWSPEC> ] <FILTER_SPEC>



             Each elementary FF style request is defined by a single
             (FLOWSPEC, FILTER_SPEC) pair, and multiple such requests
             may be packed into the flow descriptor list of a single
             Resv message.  A FLOWSPEC object can be omitted if it is
             identical to the most recent such object that appeared in
             the list; the first FF flow descriptor must contain a
             FLOWSPEC.

        o    SE style:

               <flow descriptor list> ::= <SE flow descriptor>

               <SE flow descriptor> ::=

                                      <FLOWSPEC> <filter spec list>

               <filter spec list> ::=  <FILTER_SPEC>

                                 |  <filter spec list> <FILTER_SPEC>


        The reservation scope, i.e., the set of senders towards which a
        particular reservation is to be forwarded (after merging), is
        determined as follows:

        o    Explicit sender selection

             The reservation is forwarded to all senders whose
             SENDER_TEMPLATE objects recorded in the path state match a
             FILTER_SPEC object in the reservation.  This match must
             follow the rules of Section 3.2.






Braden, Ed., et. al.        Standards Track                    [Page 40]

RFC 2205                          RSVP                    September 1997


        o    Wildcard sender selection

             A request with wildcard sender selection will match all
             senders that route to the given outgoing interface.

             Whenever a Resv message with wildcard sender selection is
             forwarded to more than one previous hop, a SCOPE object
             must be included in the message (see Section 3.4 below);
             in this case, the scope for forwarding the reservation is
             constrained to just the sender IP addresses explicitly
             listed in the SCOPE object.

             A Resv message that is forwarded by a node is generally
             the result of merging a set of incoming Resv messages
             (that are not blockaded; see Section 3.5).  If one of
             these merged messages contains a RESV_CONFIRM object and
             has a FLOWSPEC larger than the FLOWSPECs of the other
             merged reservation requests, then this RESV_CONFIRM object
             is forwarded in the outgoing Resv message.  A RESV_CONFIRM
             object in one of the other merged requests (whose
             flowspecs are equal to, smaller than, or incomparable to,
             the merged flowspec, and which is not blockaded) will
             trigger the generation of an ResvConf message containing
             the RESV_CONFIRM.  A RESV_CONFIRM object in a request that
             is blockaded will be neither forwarded nor returned; it
             will be dropped in the current node.

     3.1.5 Path Teardown Messages

        Receipt of a PathTear (path teardown) message deletes matching
        path state.  Matching state must have match the SESSION,
        SENDER_TEMPLATE, and PHOP objects.  In addition, a PathTear
        message for a multicast session can only match path state for
        the incoming interface on which the PathTear arrived.  If there
        is no matching path state, a PathTear message should be
        discarded and not forwarded.

        PathTear messages are initiated explicitly by senders or by
        path state timeout in any node, and they travel downstream
        towards all receivers.  A unicast PathTear must not be
        forwarded if there is path state for the same (session, sender)
        pair but a different PHOP.  Forwarding of multicast PathTear
        messages is governed by the rules of Section 3.9.








Braden, Ed., et. al.        Standards Track                    [Page 41]

RFC 2205                          RSVP                    September 1997


        A PathTear message must be routed exactly like the
        corresponding Path message.  Therefore, its IP destination
        address must be the session DestAddress, and its IP source
        address must be the sender address from the path state being
        torn down.

            <PathTear Message> ::= <Common Header> [ <INTEGRITY> ]

                                        <SESSION> <RSVP_HOP>

                                       [ <sender descriptor> ]

            <sender descriptor> ::= (see earlier definition)


        A PathTear message may include a SENDER_TSPEC or ADSPEC object
        in its sender descriptor, but these must be ignored.  The order
        requirements are as given earlier for a Path message, but the
        above order is recommended.

        Deletion of path state as the result of a PathTear message or a
        timeout must also adjust related reservation state as required
        to maintain consistency in the local node.  The adjustment
        depends upon the reservation style.  For example, suppose a
        PathTear deletes the path state for a sender S.  If the style
        specifies explicit sender selection (FF or SE), any reservation
        with a filter spec matching S should be deleted; if the style
        has wildcard sender selection (WF), the reservation should be
        deleted if S is the last sender to the session.  These
        reservation changes should not trigger an immediate Resv
        refresh message, since the PathTear message has already made
        the required changes upstream.  They should not trigger a
        ResvErr message, since the result could be to generate a shower
        of such messages.

     3.1.6 Resv Teardown Messages

        Receipt of a ResvTear (reservation teardown) message deletes
        matching reservation state.  Matching reservation state must
        match the SESSION, STYLE, and FILTER_SPEC objects as well as
        the LIH in the RSVP_HOP object.  If there is no matching
        reservation state, a ResvTear message should be discarded.  A
        ResvTear message may tear down any subset of the filter specs
        in FF-style or SE-style reservation state.

        ResvTear messages are initiated explicitly by receivers or by
        any node in which reservation state has timed out, and they
        travel upstream towards all matching senders.



Braden, Ed., et. al.        Standards Track                    [Page 42]

RFC 2205                          RSVP                    September 1997


        A ResvTear message must be routed like the corresponding Resv
        message, and its IP destination address will be the unicast
        address of a previous hop.

            <ResvTear Message> ::= <Common Header> [<INTEGRITY>]

                                        <SESSION> <RSVP_HOP>

                                        [ <SCOPE> ] <STYLE>

                                        <flow descriptor list>

            <flow descriptor list> ::= (see earlier definition)


        FLOWSPEC objects in the flow descriptor list of a ResvTear
        message will be ignored and may be omitted.  The order
        requirements for INTEGRITY object, sender descriptor, STYLE
        object, and flow descriptor list are as given earlier for a
        Resv message, but the above order is recommended.  A ResvTear
        message may include a SCOPE object, but it must be ignored.

        A ResvTear message will cease to be forwarded at the node where
        merging would have suppressed forwarding of the corresponding
        Resv message.  Depending upon the resulting state change in a
        node, receipt of a ResvTear message may cause a ResvTear
        message to be forwarded, a modified Resv message to be
        forwarded, or no message to be forwarded.  These three cases
        can be illustrated in the case of the FF-style reservations
        shown in Figure 6.

        o    If receiver R2 sends a ResvTear message for its
             reservation S3{B}, the corresponding reservation is
             removed from interface (d) and a ResvTear for S3{B} is
             forwarded out (b).

        o    If receiver R1 sends a ResvTear for its reservation
             S1{4B}, the corresponding reservation is removed from
             interface (c) and a modified Resv message FF( S1{3B} ) is
             immediately forwarded out (a).

        o    If receiver R3 sends a ResvTear message for S1{B}, there
             is no change in the effective reservation S1{3B} on (d)
             and no message is forwarded.







Braden, Ed., et. al.        Standards Track                    [Page 43]

RFC 2205                          RSVP                    September 1997


     3.1.7 Path Error Messages

        PathErr (path error) messages report errors in processing Path
        messages.  They are travel upstream towards senders and are
        routed hop-by-hop using the path state.  At each hop, the IP
        destination address is the unicast address of a previous hop.
        PathErr messages do not modify the state of any node through
        which they pass; they are only reported to the sender
        application.


          <PathErr message> ::= <Common Header> [ <INTEGRITY> ]

                                     <SESSION> <ERROR_SPEC>

                                     [ <POLICY_DATA> ...]

                                    [ <sender descriptor> ]

          <sender descriptor> ::= (see earlier definition)

        The ERROR_SPEC object specifies the error and includes the IP
        address of the node that detected the error (Error Node
        Address).  One or more POLICY_DATA objects may be included
        message to provide relevant information.  The sender descriptor
        is copied from the message in error.  The object order
        requirements are as given earlier for a Path message, but the
        above order is recommended.

     3.1.8 Resv Error Messages

        ResvErr (reservation error) messages report errors in
        processing Resv messages, or they may report the spontaneous
        disruption of a reservation, e.g., by administrative
        preemption.

        ResvErr messages travel downstream towards the appropriate
        receivers, routed hop-by-hop using the reservation state.  At
        each hop, the IP destination address is the unicast address of
        a next-hop node.











Braden, Ed., et. al.        Standards Track                    [Page 44]

RFC 2205                          RSVP                    September 1997


          <ResvErr Message> ::= <Common Header> [ <INTEGRITY> ]

                                     <SESSION>  <RSVP_HOP>

                                     <ERROR_SPEC>  [ <SCOPE> ]

                                     [ <POLICY_DATA> ...]

                                   <STYLE> [ <error flow descriptor> ]


        The ERROR_SPEC object specifies the error and includes the IP
        address of the node that detected the error (Error Node
        Address).  One or more POLICY_DATA objects may be included in
        an error message to provide relevant information (e.g.,, when a
        policy control error is being reported).  The RSVP_HOP object
        contains the previous hop address, and the STYLE object is
        copied from the Resv message in error.  The use of the SCOPE
        object in a ResvErr message is defined below in Section 3.4.
        The object order requirements are as given for Resv messages,
        but the above order is recommended.

        The following style-dependent rules define the composition of a
        valid error flow descriptor; the object order requirements are
        as given earlier for flow descriptor.

        o    WF Style:

                 <error flow descriptor> ::= <WF flow descriptor>


        o    FF style:

                 <error flow descriptor> ::= <FF flow descriptor>


             Each flow descriptor in a FF-style Resv message must be
             processed independently, and a separate ResvErr message
             must be generated for each one that is in error.

        o    SE style:

                 <error flow descriptor> ::= <SE flow descriptor>

             An SE-style ResvErr message may list the subset of the
             filter specs in the corresponding Resv message to which
             the error applies.




Braden, Ed., et. al.        Standards Track                    [Page 45]

RFC 2205                          RSVP                    September 1997


        Note that a ResvErr message contains only one flow descriptor.
        Therefore, a Resv message that contains N > 1 flow descriptors
        (FF style) may create up to N separate ResvErr messages.

        Generally speaking, a ResvErr message should be forwarded
        towards all receivers that may have caused the error being
        reported.  More specifically:

        o    The node that detects an error in a reservation request
             sends a ResvErr message to the next hop node from which
             the erroneous reservation came.

             This ResvErr message must contain the information required
             to define the error and to route the error message in
             later hops.  It therefore includes an ERROR_SPEC object, a
             copy of the STYLE object, and the appropriate error flow
             descriptor.  If the error is an admission control failure
             while attempting to increase an existing reservation, then
             the existing reservation must be left in place and the
             InPlace flag bit must be on in the ERROR_SPEC of the
             ResvErr message.

        o    Succeeding nodes forward the ResvErr message to next hops
             that have local reservation state.  For reservations with
             wildcard scope, there is an additional limitation on
             forwarding ResvErr messages, to avoid loops; see Section
             3.4.  There is also a rule restricting the forwarding of a
             Resv message after an Admission Control failure; see
             Section 3.5.

             A ResvErr message that is forwarded should carry the
             FILTER_SPEC(s) from the corresponding reservation state.

        o    When a ResvErr message reaches a receiver, the STYLE
             object, flow descriptor list, and ERROR_SPEC object
             (including its flags) should be delivered to the receiver
             application.

     3.1.9 Confirmation Messages

        ResvConf messages are sent to (probabilistically) acknowledge
        reservation requests.  A ResvConf message is sent as the result
        of the appearance of a RESV_CONFIRM object in a Resv message.








Braden, Ed., et. al.        Standards Track                    [Page 46]

RFC 2205                          RSVP                    September 1997


        A ResvConf message is sent to the unicast address of a receiver
        host; the address is obtained from the RESV_CONFIRM object.
        However, a ResvConf message is forwarded to the receiver hop-
        by-hop, to accommodate the hop-by-hop integrity check
        mechanism.

          <ResvConf message> ::= <Common Header> [ <INTEGRITY> ]

                                     <SESSION> <ERROR_SPEC>

                                     <RESV_CONFIRM>

                                     <STYLE> <flow descriptor list>

          <flow descriptor list> ::= (see earlier definition)


        The object order requirements are the same as those given
        earlier for a Resv message, but the above order is recommended.

        The RESV_CONFIRM object is a copy of that object in the Resv
        message that triggered the confirmation.  The ERROR_SPEC is
        used only to carry the IP address of the originating node, in
        the Error Node Address; the Error Code and Value are zero to
        indicate a confirmation.  The flow descriptor list specifies
        the particular reservations that are being confirmed; it may be
        a subset of flow descriptor list of the Resv that requested the
        confirmation.

  3.2 Port Usage

     An RSVP session is normally defined by the triple: (DestAddress,
     ProtocolId, DstPort).  Here DstPort is a UDP/TCP destination port
     field (i.e., a 16-bit quantity carried at octet offset +2 in the
     transport header).  DstPort may be omitted (set to zero) if the
     ProtocolId specifies a protocol that does not have a destination
     port field in the format used by UDP and TCP.

     RSVP allows any value for ProtocolId.  However, end-system
     implementations of RSVP may know about certain values for this
     field, and in particular the values for UDP and TCP (17 and 6,
     respectively).  An end system may give an error to an application
     that either:

     o    specifies a non-zero DstPort for a protocol that does not
          have UDP/TCP-like ports, or





Braden, Ed., et. al.        Standards Track                    [Page 47]

RFC 2205                          RSVP                    September 1997


     o    specifies a zero DstPort for a protocol that does have
          UDP/TCP-like ports.

     Filter specs and sender templates specify the pair: (SrcAddress,
     SrcPort), where SrcPort is a UDP/TCP source port field (i.e., a
     16-bit quantity carried at octet offset +0 in the transport
     header).   SrcPort may be omitted (set to zero) in certain cases.

     The following rules hold for the use of zero DstPort and/or
     SrcPort fields in RSVP.

     1.   Destination ports must be consistent.

          Path state and reservation state for the same DestAddress and
          ProtocolId must each have DstPort values that are all zero or
          all non-zero.  Violation of this condition in a node is a
          "Conflicting Dest Ports" error.

     2.   Destination ports rule.

          If DstPort in a session definition is zero, all SrcPort
          fields used for that session must also be zero.  The
          assumption here is that the protocol does not have UDP/TCP-
          like ports.   Violation of this condition in a node is a "Bad
          Src Ports" error.

     3.   Source Ports must be consistent.

          A sender host must not send path state both with and without
          a zero SrcPort.  Violation of this condition is a
          "Conflicting Sender Port" error.

     Note that RSVP has no "wildcard" ports, i.e., a zero port cannot
     match a non-zero port.

  3.3 Sending RSVP Messages

     RSVP messages are sent hop-by-hop between RSVP-capable routers as
     "raw" IP datagrams with protocol number 46.  Raw IP datagrams are
     also intended to be used between an end system and the first/last
     hop router, although it is also possible to encapsulate RSVP
     messages as UDP datagrams for end-system communication, as
     described in Appendix C.  UDP encapsulation is needed for systems
     that cannot do raw network I/O.







Braden, Ed., et. al.        Standards Track                    [Page 48]

RFC 2205                          RSVP                    September 1997


     Path, PathTear, and ResvConf messages must be sent with the Router
     Alert IP option [RFC 2113] in their IP headers.  This option may
     be used in the fast forwarding path of a high-speed router to
     detect datagrams that require special processing.

     Upon the arrival of an RSVP message M that changes the state, a
     node must forward the state modification immediately.  However,
     this must not trigger sending a message out the interface through
     which M arrived (which could happen if the implementation simply
     triggered an immediate refresh of all state for the session).
     This rule is necessary to prevent packet storms on broadcast LANs.

     In this version of the spec, each RSVP message must occupy exactly
     one IP datagram.  If it exceeds the MTU, such a datagram will be
     fragmented by IP and reassembled at the recipient node.  This has
     several consequences:

     o    A single RSVP message may not exceed the maximum IP datagram
          size, approximately 64K bytes.

     o    A congested non-RSVP cloud could lose individual message
          fragments, and any lost fragment will lose the entire
          message.

     Future versions of the protocol will provide solutions for these
     problems if they prove burdensome.  The most likely direction will
     be to perform "semantic fragmentation", i.e., break the path or
     reservation state being transmitted into multiple self-contained
     messages, each of an acceptable size.

     RSVP uses its periodic refresh mechanisms to recover from
     occasional packet losses.  Under network overload, however,
     substantial losses of RSVP messages could cause a failure of
     resource reservations.  To control the queuing delay and dropping
     of RSVP packets, routers should be configured to offer them a
     preferred class of service.  If RSVP packets experience noticeable
     losses when crossing a congested non-RSVP cloud, a larger value
     can be used for the timeout factor K (see section 3.7).

     Some multicast routing protocols provide for "multicast tunnels",
     which do IP encapsulation of multicast packets for transmission
     through routers that do not have multicast capability.  A
     multicast tunnel looks like a logical outgoing interface that is
     mapped into some physical interface.  A multicast routing protocol
     that supports tunnels will describe a route using a list of
     logical rather than physical interfaces.  RSVP can operate across
     such multicast tunnels in the following manner:




Braden, Ed., et. al.        Standards Track                    [Page 49]

RFC 2205                          RSVP                    September 1997


     1.   When a node N forwards a Path message out a logical outgoing
          interface L, it includes in the message some encoding of the
          identity of L, called the "logical interface handle" or LIH.
          The LIH value is carried in the RSVP_HOP object.

     2.   The next hop node N' stores the LIH value in its path state.

     3.   When N' sends a Resv message to N, it includes the LIH value
          from the path state (again, in the RSVP_HOP object).

     4.   When the Resv message arrives at N, its LIH value provides
          the information necessary to attach the reservation to the
          appropriate logical interface.  Note that N creates and
          interprets the LIH; it is an opaque value to N'.

     Note that this only solves the routing problem posed by tunnels.
     The tunnel appears to RSVP as a non-RSVP cloud.  To establish RSVP
     reservations within the tunnel, additional machinery will be
     required, to be defined in the future.

  3.4 Avoiding RSVP Message Loops

     Forwarding of RSVP messages must avoid looping.  In steady state,
     Path and Resv messages are forwarded on each hop only once per
     refresh period.  This avoids looping packets, but there is still
     the possibility of an "auto-refresh" loop, clocked by the refresh
     period.  Such auto-refresh loops keep state active "forever", even
     if the end nodes have ceased refreshing it, until the receivers
     leave the multicast group and/or the senders stop sending Path
     messages.  On the other hand, error and teardown messages are
     forwarded immediately and are therefore subject to direct looping.

     Consider each message type.

     o    Path Messages

          Path messages are forwarded in exactly the same way as IP
          data packets.  Therefore there should be no loops of Path
          messages (except perhaps for transient routing loops, which
          we ignore here), even in a topology with cycles.

     o    PathTear Messages

          PathTear messages use the same routing as Path messages and
          therefore cannot loop.






Braden, Ed., et. al.        Standards Track                    [Page 50]

RFC 2205                          RSVP                    September 1997


     o    PathErr Messages

          Since Path messages do not loop, they create path state
          defining a loop-free reverse path to each sender.  PathErr
          messages are always directed to particular senders and
          therefore cannot loop.

     o    Resv Messages

          Resv messages directed to particular senders (i.e., with
          explicit sender selection) cannot loop.  However, Resv
          messages with wildcard sender selection (WF style) have a
          potential for auto-refresh looping.

     o    ResvTear Messages

          Although ResvTear messages are routed the same as Resv
          messages, during the second pass around a loop there will be
          no state so any ResvTear message will be dropped.  Hence
          there is no looping problem here.

     o    ResvErr Messages

          ResvErr messages for WF style reservations may loop for
          essentially the same reasons that Resv messages loop.

     o    ResvConf Messages

          ResvConf messages are forwarded towards a fixed unicast
          receiver address and cannot loop.

     If the topology has no loops, then looping of Resv and ResvErr
     messages with wildcard sender selection can be avoided by simply
     enforcing the rule given earlier: state that is received through a
     particular interface must never be forwarded out the same
     interface.  However, when the topology does have cycles, further
     effort is needed to prevent auto-refresh loops of wildcard Resv
     messages and fast loops of wildcard ResvErr messages.  The
     solution to this problem adopted by this protocol specification is
     for such messages to carry an explicit sender address list in a
     SCOPE object.










Braden, Ed., et. al.        Standards Track                    [Page 51]

RFC 2205                          RSVP                    September 1997


     When a Resv message with WF style is to be forwarded to a
     particular previous hop, a new SCOPE object is computed from the
     SCOPE objects that were received in matching Resv messages.  If
     the computed SCOPE object is empty, the message is not forwarded
     to the previous hop; otherwise, the message is sent containing the
     new SCOPE object.  The rules for computing a new SCOPE object for
     a Resv message are as follows:

     1.   The union is formed of the sets of sender IP addresses listed
          in all SCOPE objects in the reservation state for the given
          session.

          If reservation state from some NHOP does not contain a SCOPE
          object, a substitute sender list must be created and included
          in the union.  For a message that arrived on outgoing
          interface OI, the substitute list is the set of senders that
          route to OI.

     2.   Any local senders (i.e., any sender applications on this
          node) are removed from this set.

     3.   If the SCOPE object is to be sent to PHOP, remove from the
          set any senders that did not come from PHOP.

     Figure 11 shows an example of wildcard-scoped (WF style) Resv
     messages.  The address lists within SCOPE objects are shown in
     square brackets.  Note that there may be additional connections
     among the nodes, creating looping topology that is not shown.























Braden, Ed., et. al.        Standards Track                    [Page 52]

RFC 2205                          RSVP                    September 1997



                        ________________
                     a |                | c
          R4, S4<----->|     Router     |<-----> R2, S2, S3
                       |                |
                     b |                |
          R1, S1<----->|                |
                       |________________|

         Send on (a):           |    Receive on (c):
                                |
            <-- WF( [S4] )      |       <-- WF( [S4, S1])
                                |
         Send on (b):           |
                                |
            <-- WF( [S1] )      |
                                |
         Receive on (a):        |    Send on (c):
                                |
            WF( [S1,S2,S3]) --> |       WF( [S2, S3]) -->
                                |
         Receive on (b):        |
                                |
            WF( [S2,S3,S4]) --> |
                                |

          Figure 11: SCOPE Objects in Wildcard-Scope Reservations


     SCOPE objects are not necessary if the multicast routing uses
     shared trees or if the reservation style has explicit sender
     selection.  Furthermore, attaching a SCOPE object to a reservation
     should be deferred to a node which has more than one previous hop
     for the reservation state.

     The following rules are used for SCOPE objects in ResvErr messages
     with WF style:

     1.   The node that detected the error initiates an ResvErr message
          containing a copy of the SCOPE object associated with the
          reservation state or message in error.

     2.   Suppose a wildcard-style ResvErr message arrives at a node
          with a SCOPE object containing the sender host address list
          L.  The node forwards the ResvErr message using the rules of
          Section 3.1.8.  However,





Braden, Ed., et. al.        Standards Track                    [Page 53]

RFC 2205                          RSVP                    September 1997


          the ResvErr message forwarded out OI must contain a SCOPE
          object derived from L by including only those senders that
          route to OI.  If this SCOPE object is empty, the ResvErr
          message should not be sent out OI.

  3.5 Blockade State

     The basic rule for creating a Resv refresh message is to merge the
     flowspecs of the reservation requests in place in the node, by
     computing their LUB.  However, this rule is modified by the
     existence of "blockade state" resulting from ResvErr messages, to
     solve the KR-II problem (see Section 2.5).  The blockade state
     also enters into the routing of ResvErr messages for Admission
     Control failure.

     When a ResvErr message for an Admission Control failure is
     received, its flowspec Qe is used to create or refresh an element
     of local blockade state.  Each element of blockade state consists
     of a blockade flowspec Qb taken from the flowspec of the ResvErr
     message, and an associated blockade timer Tb.  When a blockade
     timer expires, the corresponding blockade state is deleted.

     The granularity of blockade state depends upon the style of the
     ResvErr message that created it.  For an explicit style, there may
     be a blockade state element (Qb(S),Tb(S)) for each sender S.  For
     a wildcard style, blockade state is per previous hop P.

     An element of blockade state with flowspec Qb is said to
     "blockade" a reservation with flowspec Qi if Qb is not (strictly)
     greater than Qi.  For example, suppose that the LUB of two
     flowspecs is computed by taking the max of each of their
     corresponding components.  Then Qb blockades Qi if for some
     component j, Qb[j] <= Qi[j].

     Suppose that a node receives a ResvErr message from previous hop P
     (or, if style is explicit, sender S) as the result of an Admission
     Control failure upstream.  Then:

     1.   An element of blockade state is created for P (or S) if it
          did not exist.

     2.   Qb(P) (or Qb(S)) is set equal to the flowspec Qe from the
          ResvErr message.

     3.   A corresponding blockade timer Tb(P) (or Tb(S)) is started or
          restarted for a time Kb*R.  Here Kb is a fixed multiplier and
          R is the refresh interval for reservation state.  Kb should
          be configurable.



Braden, Ed., et. al.        Standards Track                    [Page 54]

RFC 2205                          RSVP                    September 1997


     4.   If there is some local reservation state that is not
          blockaded (see below), an immediate reservation refresh for P
          (or S) is generated.

     5.   The ResvErr message is forwarded to next hops in the
          following way.  If the InPlace bit is off, the ResvErr
          message is forwarded to all next hops for which there is
          reservation state.  If the InPlace bit is on, the ResvErr
          message is forwarded only to the next hops whose Qi is
          blockaded by Qb.

     Finally, we present the modified rule for merging flowspecs to
     create a reservation refresh message.

     o    If there are any local reservation requests Qi that are not
          blockaded, these are merged by computing their LUB.  The
          blockaded reservations are ignored; this allows forwarding of
          a smaller reservation that has not failed and may perhaps
          succeed, after a larger reservation fails.

     o    Otherwise (all local requests Qi are blockaded), they are
          merged by taking the GLB (Greatest Lower Bound) of the Qi's.

          (The use of some definition of "minimum" improves performance
          by bracketing the failure level between the largest that
          succeeds and the smallest that fails.  The choice of GLB in
          particular was made because it is simple to define and
          implement, and no reason is known for using a different
          definition of "minimum" here).

     This refresh merging algorithm is applied separately to each flow
     (each sender or PHOP) contributing to a shared reservation (WF or
     SE style).

     Figure 12 shows an example of the the application of blockade
     state for a shared reservation (WF style).  There are two previous
     hops labeled (a) and (b), and two next hops labeled (c) and (d).
     The larger reservation 4B arrived from (c) first, but it failed
     somewhere upstream via PHOP (a), but not via PHOP (b).  The
     figures show the final "steady state" after the smaller
     reservation 2B subsequently arrived from (d).  This steady state
     is perturbed roughly every Kb*R seconds, when the blockade state
     times out.  The next refresh then sends 4B to previous hop (a);
     presumably this will fail, sending a ResvErr message that will
     re-establish the blockade state, returning to the situation shown
     in the figure.  At the same time, the ResvErr message will be
     forwarded to next hop (c) and to all receivers downstream
     responsible for the 4B reservations.



Braden, Ed., et. al.        Standards Track                    [Page 55]

RFC 2205                          RSVP                    September 1997



              Send     Blockade |   Reserve       Receive
                      State {Qb}|
                                |   ________
       (a) <- WF(*{2B})    {4B} |  | * {4B} | WF(*{4B}) <- (c)
                                |  |________|
                                |
     ---------------------------|-------------------------------
                                |
                                |   ________
       (b) <- WF(*{4B})   (none)|  | * {2B} | WF(*{2B}) <- (d)
                                |  |________|


                  Figure 12: Blockading with Shared Style



  3.6 Local Repair

     When a route changes, the next Path or Resv refresh message will
     establish path or reservation state (respectively) along the new
     route.  To provide fast adaptation to routing changes without the
     overhead of short refresh periods, the local routing protocol
     module can notify the RSVP process of route changes for particular
     destinations.  The RSVP process should use this information to
     trigger a quick refresh of state for these destinations, using the
     new route.

     The specific rules are as follows:

     o    When routing detects a change of the set of outgoing
          interfaces for destination G, RSVP should update the path
          state, wait for a short period W, and then send Path
          refreshes for all sessions G/* (i.e., for any session with
          destination G, regardless of destination port).

          The short wait period before sending Path refreshes is to
          allow the routing protocol to settle, and the value for W
          should be chosen accordingly.  Currently W = 2 sec is
          suggested; however, this value should be configurable per
          interface.

     o    When a Path message arrives with a Previous Hop address that
          differs from the one stored in the path state, RSVP should
          send immediate Resv refreshes to that PHOP.





Braden, Ed., et. al.        Standards Track                    [Page 56]

RFC 2205                          RSVP                    September 1997


  3.7 Time Parameters

     There are two time parameters relevant to each element of RSVP
     path or reservation state in a node: the refresh period R between
     generation of successive refreshes for the state by the neighbor
     node, and the local state's lifetime L.  Each RSVP Resv or Path
     message may contain a TIME_VALUES object specifying the R value
     that was used to generate this (refresh) message.  This R value is
     then used to determine the value for L when the state is received
     and stored.  The values for R and L may vary from hop to hop.

     In more detail:

     1.   Floyd and Jacobson [FJ94] have shown that periodic messages
          generated by independent network nodes can become
          synchronized.  This can lead to disruption in network
          services as the periodic messages contend with other network
          traffic for link and forwarding resources.  Since RSVP sends
          periodic refresh messages, it must avoid message
          synchronization and ensure that any synchronization that may
          occur is not stable.

          For this reason, the refresh timer should be randomly set to
          a value in the range [0.5R, 1.5R].

     2.   To avoid premature loss of state, L must satisfy L >= (K +
          0.5)*1.5*R, where K is a small integer.  Then in the worst
          case, K-1 successive messages may be lost without state being
          deleted.  To compute a lifetime L for a collection of state
          with different R values R0, R1, ..., replace R by max(Ri).

          Currently K = 3 is suggested as the default.  However, it may
          be necessary to set a larger K value for hops with high loss
          rate.  K may be set either by manual configuration per
          interface, or by some adaptive technique that has not yet
          been specified.

     3.   Each Path or Resv message carries a TIME_VALUES object
          containing the refresh time R used to generate refreshes.
          The recipient node uses this R to determine the lifetime L of
          the stored state created or refreshed by the message.

     4.   The refresh time R is chosen locally by each node.  If the
          node does not implement local repair of reservations
          disrupted by route changes, a smaller R speeds up adaptation
          to routing changes, while increasing the RSVP overhead.  With
          local repair, a router can be more relaxed about R since the
          periodic refresh becomes only a backstop robustness



Braden, Ed., et. al.        Standards Track                    [Page 57]

RFC 2205                          RSVP                    September 1997


          mechanism.  A node may therefore adjust the effective R
          dynamically to control the amount of overhead due to refresh
          messages.

          The current suggested default for R is 30 seconds.  However,
          the default value Rdef should be configurable per interface.

     5.   When R is changed dynamically, there is a limit on how fast
          it may increase.  Specifically, the ratio of two successive
          values R2/R1 must not exceed 1 + Slew.Max.

          Currently, Slew.Max is 0.30.  With K = 3, one packet may be
          lost without state timeout while R is increasing 30 percent
          per refresh cycle.

     6.   To improve robustness, a node may temporarily send refreshes
          more often than R after a state change (including initial
          state establishment).

     7.   The values of Rdef, K, and Slew.Max used in an implementation
          should be easily modifiable per interface, as experience may
          lead to different values.  The possibility of dynamically
          adapting K and/or Slew.Max in response to measured loss rates
          is for future study.

  3.8 Traffic Policing and Non-Integrated Service Hops

     Some QoS services may require traffic policing at some or all of
     (1) the edge of the network, (2) a merging point for data from
     multiple senders, and/or (3) a branch point where traffic flow
     from upstream may be greater than the downstream reservation being
     requested.  RSVP knows where such points occur and must so
     indicate to the traffic control mechanism.  On the other hand,
     RSVP does not interpret the service embodied in the flowspec and
     therefore does not know whether policing will actually be applied
     in any particular case.

     The RSVP process passes to traffic control a separate policing
     flag for each of these three situations.

     o    E_Police_Flag -- Entry Policing

          This flag is set in the first-hop RSVP node that implements
          traffic control (and is therefore capable of policing).

          For example, sender hosts must implement RSVP but currently
          many of them do not implement traffic control.  In this case,
          the E_Police_Flag should be off in the sender host, and it



Braden, Ed., et. al.        Standards Track                    [Page 58]

RFC 2205                          RSVP                    September 1997


          should only be set on when the first node capable of traffic
          control is reached.  This is controlled by the E_Police flag
          in SESSION objects.

     o    M_Police_Flag -- Merge Policing

          This flag should be set on for a reservation using a shared
          style (WF or SE) when flows from more than one sender are
          being merged.

     o    B_Police_Flag -- Branch Policing

          This flag should be set on when the flowspec being installed
          is smaller than, or incomparable to, a FLOWSPEC in place on
          any other interface, for the same FILTER_SPEC and SESSION.

     RSVP must also test for the presence of non-RSVP hops in the path
     and pass this information to traffic control.  From this flag bit
     that the RSVP process supplies and from its own local knowledge,
     traffic control can detect the presence of a hop in the path that
     is not capable of QoS control, and it passes this information to
     the receivers in Adspecs [RFC 2210].

     With normal IP forwarding, RSVP can detect a non-RSVP hop by
     comparing the IP TTL with which a Path message is sent to the TTL
     with which it is received; for this purpose, the transmission TTL
     is placed in the common header.  However, the TTL is not always a
     reliable indicator of non-RSVP hops, and other means must
     sometimes be used.  For example, if the routing protocol uses IP
     encapsulating tunnels, then the routing protocol must inform RSVP
     when non-RSVP hops are included.  If no automatic mechanism will
     work, manual configuration will be required.

  3.9 Multihomed Hosts

     Accommodating multihomed hosts requires some special rules in
     RSVP.  We use the term `multihomed host' to cover both hosts (end
     systems) with more than one network interface and routers that are
     supporting local application programs.

     An application executing on a multihomed host may explicitly
     specify which interface any given flow will use for sending and/or
     for receiving data packets, to override the system-specified
     default interface.  The RSVP process must be aware of the default,
     and if an application sets a specific interface, it must also pass
     that information to RSVP.





Braden, Ed., et. al.        Standards Track                    [Page 59]

RFC 2205                          RSVP                    September 1997


     o    Sending Data

          A sender application uses an API call (SENDER in Section
          3.11.1) to declare to RSVP the characteristics of the data
          flow it will originate.  This call may optionally include the
          local IP address of the sender. If it is set by the
          application, this parameter must be the interface address for
          sending the data packets; otherwise, the system default
          interface is implied.

          The RSVP process on the host then sends Path messages for
          this application out the specified interface (only).

     o    Making Reservations

          A receiver application uses an API call (RESERVE in Section
          3.11.1) to request a reservation from RSVP.  This call may
          optionally include the local IP address of the receiver,
          i.e., the interface address for receiving data packets.  In
          the case of multicast sessions, this is the interface on
          which the group has been joined.  If the parameter is
          omitted, the system default interface is used.

          In general, the RSVP process should send Resv messages for an
          application out the specified interface.  However, when the
          application is executing on a router and the session is
          multicast, a more complex situation arises.   Suppose in this
          case that a receiver application joins the group on an
          interface Iapp that differs from Isp, the shortest-path
          interface to the sender.  Then there are two possible ways
          for multicast routing to deliver data packets to the
          application.  The RSVP process must determine which case
          holds by examining the path state, to decide which incoming
          interface to use for sending Resv messages.

          1.   The multicast routing protocol may create a separate
               branch of the multicast distribution `tree' to deliver
               to Iapp.  In this case, there will be path state for
               both interfaces Isp and Iapp.  The path state on Iapp
               should only match a reservation from the local
               application; it must be marked "Local_only" by the RSVP
               process.  If "Local_only" path state for Iapp exists,
               the Resv message should be sent out Iapp.

               Note that it is possible for the path state blocks for
               Isp and Iapp to have the same next hop, if there is an
               intervening non-RSVP cloud.




Braden, Ed., et. al.        Standards Track                    [Page 60]

RFC 2205                          RSVP                    September 1997


          2.   The multicast routing protocol may forward data within
               the router from Isp to Iapp.  In this case, Iapp will
               appear in the list of outgoing interfaces of the path
               state for Isp, and the Resv message should be sent out
               Isp.

          3.   When Path and PathTear messages are forwarded, path
               state marked "Local_Only" must be ignored.

  3.10 Future Compatibility

     We may expect that in the future new object C-Types will be
     defined for existing object classes, and perhaps new object
     classes will be defined.  It will be desirable to employ such new
     objects within the Internet using older implementations that do
     not recognize them.  Unfortunately, this is only possible to a
     limited degree with reasonable complexity.  The rules are as
     follows (`b' represents a bit).

     1.   Unknown Class

          There are three possible ways that an RSVP implementation can
          treat an object with unknown class.  This choice is
          determined by the two high-order bits of the Class-Num octet,
          as follows.

          o    Class-Num = 0bbbbbbb

               The entire message should be rejected and an "Unknown
               Object Class" error returned.

          o    Class-Num = 10bbbbbb

               The node should ignore the object, neither forwarding it
               nor sending an error message.

          o    Class-Num = 11bbbbbb

               The node should ignore the object but forward it,
               unexamined and unmodified, in all messages resulting
               from this message.

          The following more detailed rules hold for unknown-class
          objects with a Class-Num of the form 11bbbbbb:

          1.   Such unknown-class objects received in PathTear,
               ResvTear, PathErr, or ResvErr messages should be
               forwarded immediately in the same messages.



Braden, Ed., et. al.        Standards Track                    [Page 61]

RFC 2205                          RSVP                    September 1997


          2.   Such unknown-class objects received in Path or Resv
               messages should be saved with the corresponding state
               and forwarded in any refresh message resulting from that
               state.

          3.   When a Resv refresh is generated by merging multiple
               reservation requests, the refresh message should include
               the union of unknown-class objects from the component
               requests.  Only one copy of each unique unknown-class
               object should be included in this union.

          4.   The original order of such unknown-class objects need
               not be retained; however, the message that is forwarded
               must obey the general order requirements for its message
               type.

          Although objects with unknown class cannot be merged, these
          rules will forward such objects until they reach a node that
          knows how to merge them.  Forwarding objects with unknown
          class enables incremental deployment of new objects; however,
          the scaling limitations of doing so must be carefully
          examined before a new object class is deployed with both high
          bits on.

     2.   Unknown C-Type for Known Class

          One might expect the known Class-Num to provide information
          that could allow intelligent handling of such an object.
          However, in practice such class-dependent handling is
          complex, and in many cases it is not useful.

          Generally, the appearance of an object with unknown C-Type
          should result in rejection of the entire message and
          generation of an error message (ResvErr or PathErr as
          appropriate).  The error message will include the Class-Num
          and C-Type that failed (see Appendix B); the end system that
          originated the failed message may be able to use this
          information to retry the request using a different C-Type
          object, repeating this process until it runs out of
          alternatives or succeeds.

          Objects of certain classes (FLOWSPEC, ADSPEC, and
          POLICY_DATA) are opaque to RSVP, which simply hands them to
          traffic control or policy modules.  Depending upon its
          internal rules, either of the latter modules may reject a C-
          Type and inform the RSVP process; RSVP should then reject the
          message and send an error, as described in the previous
          paragraph.



Braden, Ed., et. al.        Standards Track                    [Page 62]

RFC 2205                          RSVP                    September 1997


  3.11 RSVP Interfaces

     RSVP on a router has interfaces to routing and to traffic control.
     RSVP on a host has an interface to applications (i.e, an API) and
     also an interface to traffic control (if it exists on the host).

     3.11.1 Application/RSVP Interface

        This section describes a generic interface between an
        application and an RSVP control process.  The details of a real
        interface may be operating-system dependent; the following can
        only suggest the basic functions to be performed.  Some of
        these calls cause information to be returned asynchronously.

        o    Register Session

             Call: SESSION( DestAddress , ProtocolId, DstPort

                        [ , SESSION_object ]

                        [ , Upcall_Proc_addr ] )  -> Session-id


             This call initiates RSVP processing for a session, defined
             by DestAddress together with ProtocolId and possibly a
             port number DstPort.  If successful, the SESSION call
             returns immediately with a local session identifier
             Session-id, which may be used in subsequent calls.

             The Upcall_Proc_addr parameter defines the address of an
             upcall procedure to receive asynchronous error or event
             notification; see below.  The SESSION_object parameter is
             included as an escape mechanism to support some more
             general definition of the session ("generalized
             destination port"), should that be necessary in the
             future.  Normally SESSION_object will be omitted.

        o    Define Sender

             Call: SENDER( Session-id

                        [ , Source_Address ]  [ , Source_Port ]

                        [ , Sender_Template ]

                        [ , Sender_Tspec ]    [ , Adspec ]

                        [ , Data_TTL ]        [ , Policy_data ] )



Braden, Ed., et. al.        Standards Track                    [Page 63]

RFC 2205                          RSVP                    September 1997


             A sender uses this call to define, or to modify the
             definition of, the attributes of the data flow.  The first
             SENDER call for the session registered as `Session-id'
             will cause RSVP to begin sending Path messages for this
             session; later calls will modify the path information.

             The SENDER parameters are interpreted as follows:

             -    Source_Address

                  This is the address of the interface from which the
                  data will be sent.  If it is omitted, a default
                  interface will be used.  This parameter is needed
                  only on a multihomed sender host.

             -    Source_Port

                  This is the UDP/TCP port from which the data will be
                  sent.

             -    Sender_Template

                  This parameter is included as an escape mechanism to
                  support a more general definition of the sender
                  ("generalized source port").  Normally this parameter
                  may be omitted.

             -    Sender_Tspec

                  This parameter describes the traffic flow to be sent;
                  see [RFC 2210].

             -    Adspec

                  This parameter may be specified to initialize the
                  computation of QoS properties along the path; see
                  [RFC 2210].

             -    Data_TTL

                  This is the (non-default) IP Time-To-Live parameter
                  that is being supplied on the data packets.  It is
                  needed to ensure that Path messages do not have a
                  scope larger than multicast data packets.







Braden, Ed., et. al.        Standards Track                    [Page 64]

RFC 2205                          RSVP                    September 1997


             -    Policy_data

                  This optional parameter passes policy data for the
                  sender.  This data may be supplied by a system
                  service, with the application treating it as opaque.

        o    Reserve

             Call: RESERVE( session-id, [ receiver_address , ]

                       [ CONF_flag, ] [ Policy_data, ]

                        style, style-dependent-parms )


             A receiver uses this call to make or to modify a resource
             reservation for the session registered as `session-id'.
             The first RESERVE call will initiate the periodic
             transmission of Resv messages.  A later RESERVE call may
             be given to modify the parameters of the earlier call (but
             note that changing existing reservations may result in
             admission control failures).

             The optional `receiver_address' parameter may be used by a
             receiver on a multihomed host (or router); it is the IP
             address of one of the node's interfaces.  The CONF_flag
             should be set on if a reservation confirmation is desired,
             off otherwise.  The `Policy_data' parameter specifies
             policy data for the receiver, while the `style' parameter
             indicates the reservation style.  The rest of the
             parameters depend upon the style; generally these will be
             appropriate flowspecs and filter specs.

             The RESERVE call returns immediately.  Following a RESERVE
             call, an asynchronous ERROR/EVENT upcall may occur at any
             time.

        o    Release

             Call: RELEASE( session-id )

             This call removes RSVP state for the session specified by
             session-id.  The node then sends appropriate teardown
             messages and ceases sending refreshes for this session-id.







Braden, Ed., et. al.        Standards Track                    [Page 65]

RFC 2205                          RSVP                    September 1997


        o    Error/Event Upcalls

             The general form of a upcall is as follows:

             Upcall: <Upcall_Proc>( ) -> session-id, Info_type,

                           information_parameters


             Here "Upcall_Proc" represents the upcall procedure whose
             address was supplied in the SESSION call.  This upcall may
             occur asynchronously at any time after a SESSION call and
             before a RELEASE call, to indicate an error or an event.

             Currently there are five upcall types, distinguished by
             the Info_type parameter.  The selection of information
             parameters depends upon the type.

             1.   Info_type = PATH_EVENT

                  A Path Event upcall results from receipt of the first
                  Path message for this session, indicating to a
                  receiver application that there is at least one
                  active sender, or if the path state changes.

                  Upcall: <Upcall_Proc>( ) -> session-id,

                              Info_type=PATH_EVENT,

                              Sender_Tspec, Sender_Template

                              [ , Adspec ] [ , Policy_data ]


                  This upcall presents the Sender_Tspec, the
                  Sender_Template, the Adspec, and any policy data from
                  a Path message.

             2.   Info_type = RESV_EVENT

                  A Resv Event upcall is triggered by the receipt of
                  the first RESV message, or by modification of a
                  previous reservation state, for this session.








Braden, Ed., et. al.        Standards Track                    [Page 66]

RFC 2205                          RSVP                    September 1997


                  Upcall: <Upcall_Proc>( ) -> session-id,

                              Info_type=RESV_EVENT,

                              Style, Flowspec, Filter_Spec_list

                              [ , Policy_data ]


                  Here `Flowspec' will be the effective QoS that has
                  been received.  Note that an FF-style Resv message
                  may result in multiple RESV_EVENT upcalls, one for
                  each flow descriptor.

             3.   Info_type = PATH_ERROR

                  An Path Error event indicates an error in sender
                  information that was specified in a SENDER call.

                  Upcall: <Upcall_Proc>( ) -> session-id,

                                Info_type=PATH_ERROR,

                                Error_code , Error_value ,

                                Error_Node , Sender_Template

                                [ , Policy_data_list ]


                  The Error_code parameter will define the error, and
                  Error_value may supply some additional (perhaps
                  system-specific) data about the error.  The
                  Error_Node parameter will specify the IP address of
                  the node that detected the error.  The
                  Policy_data_list parameter, if present, will contain
                  any POLICY_DATA objects from the failed Path message.

             4.   Info_type = RESV_ERR

                  An Resv Error event indicates an error in a
                  reservation message to which this application
                  contributed.

                  Upcall: <Upcall_Proc>( ) -> session-id,

                                Info_type=RESV_ERROR,




Braden, Ed., et. al.        Standards Track                    [Page 67]

RFC 2205                          RSVP                    September 1997


                                Error_code , Error_value ,

                                Error_Node , Error_flags ,

                                Flowspec, Filter_spec_list

                                [ , Policy_data_list ]


                  The Error_code parameter will define the error and
                  Error_value may supply some additional (perhaps
                  system-specific) data.  The Error_Node parameter will
                  specify the IP address of the node that detected the
                  event being reported.

                  There are two Error_flags:

                  -    InPlace

                       This flag may be on for an Admission Control
                       failure, to indicate that there was, and is, a
                       reservation in place at the failure node.  This
                       flag is set at the failure point and forwarded
                       in ResvErr messages.

                  -    NotGuilty

                       This flag may be on for an Admission Control
                       failure, to indicate that the flowspec requested
                       by this receiver was strictly less than the
                       flowspec that got the error.  This flag is set
                       at the receiver API.

                  Filter_spec_list and Flowspec will contain the
                  corresponding objects from the error flow descriptor
                  (see Section 3.1.8).  List_count will specify the
                  number of FILTER_SPECS in Filter_spec_list.  The
                  Policy_data_list parameter will contain any
                  POLICY_DATA objects from the ResvErr message.

             5.   Info_type = RESV_CONFIRM

                  A Confirmation event indicates that a ResvConf
                  message was received.

                  Upcall: <Upcall_Proc>( ) -> session-id,

                                Info_type=RESV_CONFIRM,



Braden, Ed., et. al.        Standards Track                    [Page 68]

RFC 2205                          RSVP                    September 1997


                                Style, List_count,

                                Flowspec, Filter_spec_list

                                [ , Policy_data ]


                  The parameters are interpreted as in the Resv Error
                  upcall.




             Although RSVP messages indicating path or resv events may
             be received periodically, the API should make the
             corresponding asynchronous upcall to the application only
             on the first occurrence or when the information to be
             reported changes.  All error and confirmation events
             should be reported to the application.


     3.11.2 RSVP/Traffic Control Interface

        It is difficult to present a generic interface to traffic
        control, because the details of establishing a reservation
        depend strongly upon the particular link layer technology in
        use on an interface.

        Merging of RSVP reservations is required because of multicast
        data delivery, which replicates data packets for delivery to
        different next-hop nodes.  At each such replication point, RSVP
        must merge reservation requests from the corresponding next
        hops by computing the "maximum" of their flowspecs.  At a given
        router or host, one or more of the following three replication
        locations may be in use.

        1.   IP layer

             IP multicast forwarding performs replication in the IP
             layer.  In this case, RSVP must merge the reservations
             that are in place on the corresponding outgoing interfaces
             in order to forward a request upstream.

        2.   "The network"

             Replication might take place downstream from the node,
             e.g., in a broadcast LAN, in link-layer switches, or in a
             mesh of non-RSVP-capable routers (see Section 2.8).   In



Braden, Ed., et. al.        Standards Track                    [Page 69]

RFC 2205                          RSVP                    September 1997


             these cases, RSVP must merge the reservations from the
             different next hops in order to make the reservation on
             the single outgoing interface.  It must also merge
             reservations requests from all outgoing interfaces in
             order to forward a request upstream.

        3.   Link-layer driver

             For a multi-access technology, replication may occur in
             the link layer driver or interface card.  For example,
             this case might arise when there is a separate ATM point-
             to-point VC towards each next hop.  RSVP may need to apply
             traffic control independently to each VC, without merging
             requests from different next hops.

        In general, these complexities do not impact the protocol
        processing that is required by RSVP, except to determine
        exactly what reservation requests need to be merged.  It may be
        desirable to organize an RSVP implementation into two parts: a
        core that performs link-layer-independent processing, and a
        link-layer-dependent adaptation layer.  However, we present
        here a generic interface that assumes that replication can
        occur only at the IP layer or in "the network".

        o    Make a Reservation

             Call: TC_AddFlowspec( Interface, TC_Flowspec,

                               TC_Tspec, TC_Adspec, Police_Flags )

                                       -> RHandle [, Fwd_Flowspec]


             The TC_Flowspec parameter defines the desired effective
             QoS to admission control; its value is computed as the
             maximum over the flowspecs of different next hops (see the
             Compare_Flowspecs call below).  The TC_Tspec parameter
             defines the effective sender Tspec Path_Te (see Section
             2.2).  The TC_Adspec parameter defines the effective
             Adspec.  The Police_Flags parameter carries the three
             flags E_Police_Flag, M_Police_Flag, and B_Police_Flag; see
             Section 3.8.

             If this call is successful, it establishes a new
             reservation channel corresponding to RHandle; otherwise,
             it returns an error code.  The opaque number RHandle is
             used by the caller for subsequent references to this
             reservation.  If the traffic control service updates the



Braden, Ed., et. al.        Standards Track                    [Page 70]

RFC 2205                          RSVP                    September 1997


             flowspec, the call will also return the updated object as
             Fwd_Flowspec.

        o    Modify Reservation

             Call: TC_ModFlowspec( Interface, RHandle, TC_Flowspec,

                                 TC_Tspec, TC_Adspec, Police_flags )

                                       [ -> Fwd_Flowspec ]


             This call is used to modify an existing reservation.
             TC_Flowspec is passed to Admission Control; if it is
             rejected, the current flowspec is left in force.  The
             corresponding filter specs, if any, are not affected.  The
             other parameters are defined as in TC_AddFlowspec.  If the
             service updates the flowspec, the call will also return
             the updated object as Fwd_Flowspec.

        o    Delete Flowspec

             Call: TC_DelFlowspec( Interface, RHandle )


             This call will delete an existing reservation, including
             the flowspec and all associated filter specs.

        o    Add Filter Spec

             Call: TC_AddFilter( Interface, RHandle,

                             Session , FilterSpec ) -> FHandle


             This call is used to associate an additional filter spec
             with the reservation specified by the given RHandle,
             following a successful TC_AddFlowspec call.  This call
             returns a filter handle FHandle.

        o    Delete Filter Spec

             Call: TC_DelFilter( Interface, FHandle )


             This call is used to remove a specific filter, specified
             by FHandle.




Braden, Ed., et. al.        Standards Track                    [Page 71]

RFC 2205                          RSVP                    September 1997


        o    OPWA Update

             Call: TC_Advertise( Interface, Adspec,

                                 Non_RSVP_Hop_flag ) -> New_Adspec


             This call is used for OPWA to compute the outgoing
             advertisement New_Adspec for a specified interface.  The
             flag bit Non_RSVP_Hop_flag should be set whenever the RSVP
             daemon detects that the previous RSVP hop included one or
             more non-RSVP-capable routers.  TC_Advertise will insert
             this information into New_Adspec to indicate that a non-
             integrated-service hop was found; see Section 3.8.

        o    Preemption Upcall

             Upcall: TC_Preempt() -> RHandle, Reason_code


             In order to grant a new reservation request, the admission
             control and/or policy control modules may preempt one or
             more existing reservations.  This will trigger a
             TC_Preempt() upcall to RSVP for each preempted
             reservation, passing the RHandle of the reservation and a
             sub-code indicating the reason.


     3.11.3 RSVP/Policy Control Interface

        This interface will be specified in a future document.

     3.11.4 RSVP/Routing Interface

        An RSVP implementation needs the following support from the
        routing mechanisms of the node.

        o    Route Query

             To forward Path and PathTear messages, an RSVP process
             must be able to query the routing process(s) for routes.

                Ucast_Route_Query( [ SrcAddress, ] DestAddress,

                                    Notify_flag ) -> OutInterface

                Mcast_Route_Query( [ SrcAddress, ] DestAddress,




Braden, Ed., et. al.        Standards Track                    [Page 72]

RFC 2205                          RSVP                    September 1997


                                    Notify_flag )

                                -> [ IncInterface, ] OutInterface_list


             Depending upon the routing protocol, the query may or may
             not depend upon SrcAddress, i.e., upon the sender host IP
             address, which is also the IP source address of the
             message.  Here IncInterface is the interface through which
             the packet is expected to arrive; some multicast routing
             protocols may not provide it.  If the Notify_flag is True,
             routing will save state necessary to issue unsolicited
             route change notification callbacks (see below) whenever
             the specified route changes.

             A multicast route query may return an empty
             OutInterface_list if there are no receivers downstream of
             a particular router.  A route query may also return a `No
             such route' error, probably as a result of a transient
             inconsistency in the routing (since a Path or PathTear
             message for the requested route did arrive at this node).
             In either case, the local state should be updated as
             requested by the message, which cannot be forwarded
             further.  Updating local state will make path state
             available immediately for a new local receiver, or it will
             tear down path state immediately.

        o    Route Change Notification

             If requested by a route query with the Notify_flag True,
             the routing process may provide an asynchronous callback
             to the RSVP process that a specified route has changed.

                Ucast_Route_Change( ) -> [ SrcAddress, ] DestAddress,

                                               OutInterface

                Mcast_Route_Change( ) -> [ SrcAddress, ] DestAddress,

                              [ IncInterface, ] OutInterface_list


        o    Interface List Discovery

             RSVP must be able to learn what real and virtual
             interfaces are active, with their IP addresses.





Braden, Ed., et. al.        Standards Track                    [Page 73]

RFC 2205                          RSVP                    September 1997


             It should be possible to logically disable an interface
             for RSVP.  When an interface is disabled for RSVP, a Path
             message should never be forwarded out that interface, and
             if an RSVP message is received on that interface, the
             message should be silently discarded (perhaps with local
             logging).

     3.11.5 RSVP/Packet I/O Interface

        An RSVP implementation needs the following support from the
        packet I/O and forwarding mechanisms of the node.

        o    Promiscuous Receive Mode for RSVP Messages

             Packets received for IP protocol 46 but not addressed to
             the node must be diverted to the RSVP program for
             processing, without being forwarded.  The RSVP messages to
             be diverted in this manner will include Path, PathTear,
             and ResvConf messages.  These message types carry the
             Router Alert IP option, which can be used to pick them out
             of a high-speed forwarding path.  Alternatively, the node
             can intercept all protocol 46 packets.

             On a router or multi-homed host, the identity of the
             interface (real or virtual) on which a diverted message is
             received, as well as the IP source address and IP TTL with
             which it arrived, must also be available to the RSVP
             process.

        o    Outgoing Link Specification

             RSVP must be able to force a (multicast) datagram to be
             sent on a specific outgoing real or virtual link,
             bypassing the normal routing mechanism.  A virtual link
             might be a multicast tunnel, for example.  Outgoing link
             specification is necessary to send different versions of
             an outgoing Path message on different interfaces, and to
             avoid routing loops in some cases.

        o    Source Address and TTL Specification

             RSVP must be able to specify the IP source address and IP
             TTL to be used when sending Path messages.

        o    Router Alert

             RSVP must be able to cause Path, PathTear, and ResvConf
             message to be sent with the Router Alert IP option.



Braden, Ed., et. al.        Standards Track                    [Page 74]

RFC 2205                          RSVP                    September 1997


     3.11.6 Service-Dependent Manipulations

        Flowspecs, Tspecs, and Adspecs are opaque objects to RSVP;
        their contents are defined in service specification documents.
        In order to manipulate these objects, RSVP process must have
        available to it the following service-dependent routines.

        o    Compare Flowspecs


                Compare_Flowspecs( Flowspec_1, Flowspec_2 ) ->

                                                       result_code


             The possible result_codes indicate: flowspecs are equal,
             Flowspec_1 is greater, Flowspec_2 is greater, flowspecs
             are incomparable but LUB can be computed, or flowspecs are
             incompatible.

             Note that comparing two flowspecs implicitly compares the
             Tspecs that are contained.  Although the RSVP process
             cannot itself parse a flowspec to extract the Tspec, it
             can use the Compare_Flowspecs call to implicitly calculate
             Resv_Te (see Section 2.2).

        o    Compute LUB of Flowspecs


                LUB_of_Flowspecs( Flowspec_1, Flowspec_2 ) ->

                                                    Flowspec_LUB


        o    Compute GLB of Flowspecs


                GLB_of_Flowspecs( Flowspec_1, Flowspec_2 ) ->

                                                    Flowspec_GLB


        o    Compare Tspecs


                Compare_Tspecs( Tspec_1, Tspec_2 ) -> result_code





Braden, Ed., et. al.        Standards Track                    [Page 75]

RFC 2205                          RSVP                    September 1997


             The possible result_codes indicate: Tspecs are equal, or
             Tspecs are unequal.

        o    Sum Tspecs


                Sum_Tspecs( Tspec_1, Tspec_2 ) -> Tspec_sum


             This call is used to compute Path_Te (see Section 2.2).

4. Acknowledgments

  The design of RSVP is based upon research performed in 1992-1993 by a
  collaboration including Lixia Zhang (UCLA), Deborah Estrin
  (USC/ISI), Scott Shenker (Xerox PARC), Sugih Jamin (USC/Xerox PARC),
  and Daniel Zappala (USC).  Sugih Jamin developed the first prototype
  implementation of RSVP and successfully demonstrated it in May 1993.
  Shai Herzog, and later Steve Berson, continued development of RSVP
  prototypes.

  Since 1993, many members of the Internet research community have
  contributed to the design and development of RSVP; these include (in
  alphabetical order) Steve Berson, Bob Braden, Lee Breslau, Dave
  Clark, Deborah Estrin, Shai Herzog, Craig Partridge, Scott Shenker,
  John Wroclawski, Daniel Zappala, and Lixia Zhang.  In addition, a
  number of host and router vendors have made valuable contributions to
  the RSVP documents, particularly Fred Baker (Cisco), Mark Baugher
  (Intel), Lou Berger (Fore Systems), Don Hoffman (Sun), Steve Jakowski
  (NetManage), John Krawczyk (Bay Networks), and Bill Nowicki (SGI), as
  well as many others.




















Braden, Ed., et. al.        Standards Track                    [Page 76]

RFC 2205                          RSVP                    September 1997


APPENDIX A. Object Definitions

  C-Types are defined for the two Internet address families IPv4 and
  IPv6.  To accommodate other address families, additional C-Types
  could easily be defined.  These definitions are contained as an
  Appendix, to ease updating.

  All unused fields should be sent as zero and ignored on receipt.

  A.1 SESSION Class

     SESSION Class = 1.

     o    IPv4/UDP SESSION object: Class = 1, C-Type = 1

          +-------------+-------------+-------------+-------------+
          |             IPv4 DestAddress (4 bytes)                |
          +-------------+-------------+-------------+-------------+
          | Protocol Id |    Flags    |          DstPort          |
          +-------------+-------------+-------------+-------------+


     o    IPv6/UDP SESSION object: Class = 1, C-Type = 2

          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +               IPv6 DestAddress (16 bytes)             +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          | Protocol Id |     Flags   |          DstPort          |
          +-------------+-------------+-------------+-------------+



     DestAddress

          The IP unicast or multicast destination address of the
          session.  This field must be non-zero.

     Protocol Id

          The IP Protocol Identifier for the data flow.  This field
          must be non-zero.




Braden, Ed., et. al.        Standards Track                    [Page 77]

RFC 2205                          RSVP                    September 1997


     Flags

          0x01 = E_Police flag

               The E_Police flag is used in Path messages to determine
               the effective "edge" of the network, to control traffic
               policing.  If the sender host is not itself capable of
               traffic policing, it will set this bit on in Path
               messages it sends.  The first node whose RSVP is capable
               of traffic policing will do so (if appropriate to the
               service) and turn the flag off.

     DstPort

          The UDP/TCP destination port for the session.  Zero may be
          used to indicate `none'.

          Other SESSION C-Types could be defined in the future to
          support other demultiplexing conventions in the transport-
          layer or application layer.































Braden, Ed., et. al.        Standards Track                    [Page 78]

RFC 2205                          RSVP                    September 1997


  A.2 RSVP_HOP Class

     RSVP_HOP class = 3.

     o    IPv4 RSVP_HOP object: Class = 3, C-Type = 1

          +-------------+-------------+-------------+-------------+
          |             IPv4 Next/Previous Hop Address            |
          +-------------+-------------+-------------+-------------+
          |                 Logical Interface Handle              |
          +-------------+-------------+-------------+-------------+

     o    IPv6 RSVP_HOP object: Class = 3, C-Type = 2

          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +             IPv6 Next/Previous Hop Address            +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          |                Logical Interface Handle               |
          +-------------+-------------+-------------+-------------+


     This object carries the IP address of the interface through which
     the last RSVP-knowledgeable hop forwarded this message.  The
     Logical Interface Handle (LIH) is used to distinguish logical
     outgoing interfaces, as discussed in Sections 3.3 and 3.9.  A node
     receiving an LIH in a Path message saves its value and returns it
     in the HOP objects of subsequent Resv messages sent to the node
     that originated the LIH.  The LIH should be identically zero if
     there is no logical interface handle.
















Braden, Ed., et. al.        Standards Track                    [Page 79]

RFC 2205                          RSVP                    September 1997


  A.3 INTEGRITY Class

     INTEGRITY class = 4.

     See [Baker96].

  A.4 TIME_VALUES Class

     TIME_VALUES class = 5.

     o    TIME_VALUES Object: Class = 5, C-Type = 1


          +-------------+-------------+-------------+-------------+
          |                   Refresh Period R                    |
          +-------------+-------------+-------------+-------------+



     Refresh Period

          The refresh timeout period R used to generate this message;
          in milliseconds.




























Braden, Ed., et. al.        Standards Track                    [Page 80]

RFC 2205                          RSVP                    September 1997


  A.5 ERROR_SPEC Class

     ERROR_SPEC class = 6.

     o    IPv4 ERROR_SPEC object: Class = 6, C-Type = 1


          +-------------+-------------+-------------+-------------+
          |            IPv4 Error Node Address (4 bytes)          |
          +-------------+-------------+-------------+-------------+
          |    Flags    |  Error Code |        Error Value        |
          +-------------+-------------+-------------+-------------+


     o    IPv6 ERROR_SPEC object: Class = 6, C-Type = 2


          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +           IPv6 Error Node Address (16 bytes)          +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          |    Flags    |  Error Code |        Error Value        |
          +-------------+-------------+-------------+-------------+



     Error Node Address

          The IP address of the node in which the error was detected.

     Flags

          0x01 = InPlace

               This flag is used only for an ERROR_SPEC object in a
               ResvErr message.  If it on, this flag indicates that
               there was, and still is, a reservation in place at the
               failure point.

          0x02 = NotGuilty

               This flag is used only for an ERROR_SPEC object in a
               ResvErr message, and it is only set in the interface to



Braden, Ed., et. al.        Standards Track                    [Page 81]

RFC 2205                          RSVP                    September 1997


               the receiver application.  If it on, this flag indicates
               that the FLOWSPEC that failed was strictly greater than
               the FLOWSPEC requested by this receiver.

     Error Code

          A one-octet error description.

     Error Value

          A two-octet field containing additional information about the
               error.  Its contents depend upon the Error Type.

     The values for Error Code and Error Value are defined in Appendix
     B.




































Braden, Ed., et. al.        Standards Track                    [Page 82]

RFC 2205                          RSVP                    September 1997


  A.6 SCOPE Class

     SCOPE class = 7.

     This object contains a list of IP addresses, used for routing
     messages with wildcard scope without loops.  The addresses must be
     listed in ascending numerical order.

     o    IPv4 SCOPE List object: Class = 7, C-Type = 1


          +-------------+-------------+-------------+-------------+
          |                IPv4 Src Address (4 bytes)             |
          +-------------+-------------+-------------+-------------+
          //                                                      //
          +-------------+-------------+-------------+-------------+
          |                IPv4 Src Address (4 bytes)             |
          +-------------+-------------+-------------+-------------+


     o    IPv6  SCOPE list object: Class = 7, C-Type = 2


          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +                IPv6 Src Address (16 bytes)            +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          //                                                      //
          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +                IPv6 Src Address (16 bytes)            +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+









Braden, Ed., et. al.        Standards Track                    [Page 83]

RFC 2205                          RSVP                    September 1997


  A.7 STYLE Class

     STYLE class = 8.

     o    STYLE object: Class = 8, C-Type = 1

          +-------------+-------------+-------------+-------------+
          |   Flags     |              Option Vector              |
          +-------------+-------------+-------------+-------------+



     Flags: 8 bits

          (None assigned yet)

     Option Vector: 24 bits

          A set of bit fields giving values for the reservation
          options.  If new options are added in the future,
          corresponding fields in the option vector will be assigned
          from the least-significant end.  If a node does not recognize
          a style ID, it may interpret as much of the option vector as
          it can, ignoring new fields that may have been defined.

          The option vector bits are assigned (from the left) as
          follows:

          19 bits: Reserved

          2 bits: Sharing control

               00b: Reserved

               01b: Distinct reservations

               10b: Shared reservations

               11b: Reserved

          3 bits: Sender selection control

               000b: Reserved

               001b: Wildcard

               010b: Explicit




Braden, Ed., et. al.        Standards Track                    [Page 84]

RFC 2205                          RSVP                    September 1997


               011b - 111b: Reserved

     The low order bits of the option vector are determined by the
     style, as follows:

             WF 10001b
             FF 01010b
             SE 10010b











































Braden, Ed., et. al.        Standards Track                    [Page 85]

RFC 2205                          RSVP                    September 1997


  A.8 FLOWSPEC Class

     FLOWSPEC class = 9.

     o    Reserved (obsolete) flowspec object: Class = 9, C-Type = 1

     o    Inv-serv Flowspec object: Class = 9, C-Type = 2

          The contents and encoding rules for this object are specified
          in documents prepared by the int-serv working group [RFC
          2210].








































Braden, Ed., et. al.        Standards Track                    [Page 86]

RFC 2205                          RSVP                    September 1997


  A.9 FILTER_SPEC Class

     FILTER_SPEC class = 10.

     o    IPv4 FILTER_SPEC object: Class = 10, C-Type = 1

          +-------------+-------------+-------------+-------------+
          |               IPv4 SrcAddress (4 bytes)               |
          +-------------+-------------+-------------+-------------+
          |    //////   |    //////   |          SrcPort          |
          +-------------+-------------+-------------+-------------+


     o    IPv6 FILTER_SPEC object: Class = 10, C-Type = 2

          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +               IPv6 SrcAddress (16 bytes)              +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          |    //////   |    //////   |          SrcPort          |
          +-------------+-------------+-------------+-------------+


     o    IPv6 Flow-label FILTER_SPEC object: Class = 10, C-Type = 3

          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +               IPv6 SrcAddress (16 bytes)              +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+
          |   ///////   |         Flow Label (24 bits)            |
          +-------------+-------------+-------------+-------------+



     SrcAddress

          The IP source address for a sender host.  Must be non-zero.




Braden, Ed., et. al.        Standards Track                    [Page 87]

RFC 2205                          RSVP                    September 1997


     SrcPort

          The UDP/TCP source port for a sender, or zero to indicate
          `none'.

     Flow Label

          A 24-bit Flow Label, defined in IPv6.  This value may be used
          by the packet classifier to efficiently identify the packets
          belonging to a particular (sender->destination) data flow.









































Braden, Ed., et. al.        Standards Track                    [Page 88]

RFC 2205                          RSVP                    September 1997


  A.10 SENDER_TEMPLATE Class

     SENDER_TEMPLATE class = 11.

     o    IPv4 SENDER_TEMPLATE object: Class = 11, C-Type = 1

          Definition same as IPv4/UDP FILTER_SPEC object.

     o    IPv6 SENDER_TEMPLATE object: Class = 11, C-Type = 2

          Definition same as IPv6/UDP FILTER_SPEC object.

     o    IPv6 Flow-label SENDER_TEMPLATE object: Class = 11, C-Type =
          3

  A.11 SENDER_TSPEC Class

     SENDER_TSPEC class = 12.

     o    Intserv SENDER_TSPEC object: Class = 12, C-Type = 2

          The contents and encoding rules for this object are specified
          in documents prepared by the int-serv working group.

  A.12 ADSPEC Class

     ADSPEC class = 13.

     o    Intserv ADSPEC object: Class = 13, C-Type = 2

          The contents and format for this object are specified in
          documents prepared by the int-serv working group.



















Braden, Ed., et. al.        Standards Track                    [Page 89]

RFC 2205                          RSVP                    September 1997


  A.13 POLICY_DATA Class

     POLICY_DATA class = 14.

     o    Type 1 POLICY_DATA object: Class = 14, C-Type = 1

          The contents of this object are for further study.












































Braden, Ed., et. al.        Standards Track                    [Page 90]

RFC 2205                          RSVP                    September 1997


  A.14 Resv_CONFIRM Class

     RESV_CONFIRM class = 15.

     o    IPv4 RESV_CONFIRM object: Class = 15, C-Type = 1

          +-------------+-------------+-------------+-------------+
          |            IPv4 Receiver Address (4 bytes)            |
          +-------------+-------------+-------------+-------------+


     o    IPv6 RESV_CONFIRM object: Class = 15, C-Type = 2

          +-------------+-------------+-------------+-------------+
          |                                                       |
          +                                                       +
          |                                                       |
          +            IPv6 Receiver Address (16 bytes)           +
          |                                                       |
          +                                                       +
          |                                                       |
          +-------------+-------------+-------------+-------------+





























Braden, Ed., et. al.        Standards Track                    [Page 91]

RFC 2205                          RSVP                    September 1997


APPENDIX B. Error Codes and Values

  The following Error Codes may appear in ERROR_SPEC objects and be
  passed to end systems.  Except where noted, these Error Codes may
  appear only in ResvErr messages.

  o    Error Code = 00: Confirmation

       This code is reserved for use in the ERROR_SPEC object of a
       ResvConf message.  The Error Value will also be zero.

  o    Error Code = 01: Admission Control failure

       Reservation request was rejected by Admission Control due to
       unavailable resources.

       For this Error Code, the 16 bits of the Error Value field are:

          ssur cccc cccc cccc

       where the bits are:




       ss = 00: Low order 12 bits contain a globally-defined sub-code
            (values listed below).


       ss = 10: Low order 12 bits contain a organization-specific sub-
            code.  RSVP is not expected to be able to interpret this
            except as a numeric value.


       ss = 11: Low order 12 bits contain a service-specific sub-code.
            RSVP is not expected to be able to interpret this except as
            a numeric value.

            Since the traffic control mechanism might substitute a
            different service, this encoding may include some
            representation of the service in use.

            u = 0: RSVP rejects the message without updating local
            state.


       u = 1: RSVP may use message to update local state and forward
            the message.  This means that the message is informational.



Braden, Ed., et. al.        Standards Track                    [Page 92]

RFC 2205                          RSVP                    September 1997


       r: Reserved bit, should be zero.


       cccc cccc cccc: 12 bit code.

       The following globally-defined sub-codes may appear in the low-
       order 12 bits when ssur = 0000:

       -    Sub-code = 1: Delay bound cannot be met

       -    Sub-code = 2: Requested bandwidth unavailable

       -    Sub-code = 3: MTU in flowspec larger than interface MTU.

  o    Error Code = 02: Policy Control failure

       Reservation or path message has been rejected for administrative
       reasons, for example, required credentials not submitted,
       insufficient quota or balance, or administrative preemption.
       This Error Code may appear in a PathErr or ResvErr message.

       Contents of the Error Value field are to be determined in the
       future.

  o    Error Code = 03: No path information for this Resv message.

       No path state for this session.  Resv message cannot be
       forwarded.

  o    Error Code = 04: No sender information for this Resv message.

       There is path state for this session, but it does not include
       the sender matching some flow descriptor contained in the Resv
       message.  Resv message cannot be forwarded.

  o    Error Code = 05: Conflicting reservation style

       Reservation style conflicts with style(s) of existing
       reservation state.  The Error Value field contains the low-order
       16 bits of the Option Vector of the existing style with which
       the conflict occurred.  This Resv message cannot be forwarded.

  o    Error Code = 06: Unknown reservation style

       Reservation style is unknown.  This Resv message cannot be
       forwarded.





Braden, Ed., et. al.        Standards Track                    [Page 93]

RFC 2205                          RSVP                    September 1997


  o    Error Code = 07: Conflicting dest ports

       Sessions for same destination address and protocol have appeared
       with both zero and non-zero dest port fields.  This Error Code
       may appear in a PathErr or ResvErr message.

  o    Error Code = 08: Conflicting sender ports

       Sender port is both zero and non-zero in Path messages for the
       same session.  This Error Code may appear only in a PathErr
       message.

  o    Error Code = 09, 10, 11: (reserved)

  o    Error Code = 12: Service preempted

       The service request defined by the STYLE object and the flow
       descriptor has been administratively preempted.

       For this Error Code, the 16 bits of the Error Value field are:


          ssur cccc cccc cccc

       Here the high-order bits ssur are as defined under Error Code
       01.  The globally-defined sub-codes that may appear in the low-
       order 12 bits when ssur = 0000 are to be defined in the future.

  o    Error Code = 13: Unknown object class

       Error Value contains 16-bit value composed of (Class-Num, C-
       Type) of unknown object.  This error should be sent only if RSVP
       is going to reject the message, as determined by the high-order
       bits of the Class-Num.  This Error Code may appear in a PathErr
       or ResvErr message.

  o    Error Code = 14: Unknown object C-Type

       Error Value contains 16-bit value composed of (Class-Num, C-
       Type) of object.

  o    Error Code = 15-19: (reserved)

  o    Error Code = 20: Reserved for API

       Error Value field contains an API error code, for an API error
       that was detected asynchronously and must be reported via an
       upcall.



Braden, Ed., et. al.        Standards Track                    [Page 94]

RFC 2205                          RSVP                    September 1997


  o    Error Code = 21: Traffic Control Error

       Traffic Control call failed due to the format or contents of the
       parameters to the request.  The Resv or Path message that caused
       the call cannot be forwarded, and repeating the call would be
       futile.

       For this Error Code, the 16 bits of the Error Value field are:


          ss00 cccc cccc cccc

       Here the high-order bits ss are as defined under Error Code 01.

       The following globally-defined sub-codes may appear in the low
       order 12 bits (cccc cccc cccc) when ss = 00:

       -    Sub-code = 01: Service conflict

            Trying to merge two incompatible service requests.

       -    Sub-code = 02: Service unsupported

            Traffic control can provide neither the requested service
            nor an acceptable replacement.

       -    Sub-code = 03: Bad Flowspec value

            Malformed or unreasonable request.

       -    Sub-code = 04: Bad Tspec value

            Malformed or unreasonable request.

       -    Sub-code = 05: Bad Adspec value

            Malformed or unreasonable request.

  o    Error Code = 22: Traffic Control System error

       A system error was detected and reported by the traffic control
       modules.  The Error Value will contain a system-specific value
       giving more information about the error.  RSVP is not expected
       to be able to interpret this value.







Braden, Ed., et. al.        Standards Track                    [Page 95]

RFC 2205                          RSVP                    September 1997


  o    Error Code = 23: RSVP System error

       The Error Value field will provide implementation-dependent
       information on the error.  RSVP is not expected to be able to
       interpret this value.

  In general, every RSVP message is rebuilt at each hop, and the node
  that creates an RSVP message is responsible for its correct
  construction.  Similarly, each node is required to verify the correct
  construction of each RSVP message it receives.  Should a programming
  error allow an RSVP to create a malformed message, the error is not
  generally reported to end systems in an ERROR_SPEC object; instead,
  the error is simply logged locally, and perhaps reported through
  network management mechanisms.

  The only message formatting errors that are reported to end systems
  are those that may reflect version mismatches, and which the end
  system might be able to circumvent, e.g., by falling back to a
  previous CType for an object; see code 13 and 14 above.

  The choice of message formatting errors that an RSVP may detect and
  log locally is implementation-specific, but it will typically include
  the following:

  o    Wrong-length message: RSVP Length field does not match message
       length.

  o    Unknown or unsupported RSVP version.

  o    Bad RSVP checksum

  o    INTEGRITY failure

  o    Illegal RSVP message Type

  o    Illegal object length: not a multiple of 4, or less than 4.

  o    Next hop/Previous hop address in HOP object is illegal.

  o    Bad source port: Source port is non-zero in a filter spec or
       sender template for a session with destination port zero.

  o    Required object class (specify) missing

  o    Illegal object class (specify) in this message type.

  o    Violation of required object order




Braden, Ed., et. al.        Standards Track                    [Page 96]

RFC 2205                          RSVP                    September 1997


  o    Flow descriptor count wrong for style or message type

  o    Logical Interface Handle invalid

  o    Unknown object Class-Num.

  o    Destination address of ResvConf message does not match Receiver
       Address in the RESV_CONFIRM object it contains.











































Braden, Ed., et. al.        Standards Track                    [Page 97]

RFC 2205                          RSVP                    September 1997


APPENDIX C. UDP Encapsulation

  An RSVP implementation will generally require the ability to perform
  "raw" network I/O, i.e., to send and receive IP datagrams using
  protocol 46.  However, some important classes of host systems may not
  support raw network I/O.  To use RSVP, such hosts must encapsulate
  RSVP messages in UDP.

  The basic UDP encapsulation scheme makes two assumptions:

  1.   All hosts are capable of sending and receiving multicast packets
       if multicast destinations are to be supported.

  2.   The first/last-hop routers are RSVP-capable.

  A method of relaxing the second assumption is given later.

  Let Hu be a "UDP-only" host that requires UDP encapsulation, and Hr a
  host that can do raw network I/O.  The UDP encapsulation scheme must
  allow RSVP interoperation among an arbitrary topology of Hr hosts, Hu
  hosts, and routers.

  Resv, ResvErr, ResvTear, and PathErr messages are sent to unicast
  addresses learned from the path or reservation state in the node.  If
  the node keeps track of which previous hops and which interfaces need
  UDP encapsulation, these messages can be sent using UDP encapsulation
  when necessary.  On the other hand, Path and PathTear messages are
  sent to the destination address for the session, which may be unicast
  or multicast.

  The tables in Figures 13 and 14 show the basic rules for UDP
  encapsulation of Path and PathTear messages, for unicast DestAddress
  and multicast DestAddress, respectively.  The other message types,
  which are sent unicast, should follow the unicast rules in Figure 13.
  Under the `RSVP Send' columns in these figures, the notation is
  `mode(destaddr, destport)'; destport is omitted for raw packets.  The
  `Receive' columns show the group that is joined and, where relevant,
  the UDP Listen port.

  It is useful to define two flavors of UDP encapsulation, one to be
  sent by Hu and the other to be sent by Hr and R, to avoid double
  processing by the recipient.  In practice, these two flavors are
  distinguished by differing UDP port numbers Pu and Pu'.








Braden, Ed., et. al.        Standards Track                    [Page 98]

RFC 2205                          RSVP                    September 1997


  The following symbols are used in the tables.

  o    D is the DestAddress for the particular session.

  o    G* is a well-known group address of the form 224.0.0.14, i.e., a
       group that is limited to the local connected network.

  o    Pu and Pu' are two well-known UDP ports for UDP encapsulation of
       RSVP, with values 1698 and 1699.

  o    Ra is the IP address of the router interface `a'.

  o    Router interface `a' is on the local network connected to Hu and
       Hr.

  o

  The following notes apply to these figures:


     [Note 1] Hu sends a unicast Path message either to the destination
     address D, if D is local, or to the address Ra of the first-hop
     router.  Ra is presumably known to the host.

     [Note 2] Here D is the address of the local interface through
     which the message arrived.

     [Note 3] This assumes that the application has joined the group D.























Braden, Ed., et. al.        Standards Track                    [Page 99]

RFC 2205                          RSVP                    September 1997



  UNICAST DESTINATION D:

                  RSVP               RSVP
  Node            Send               Receive
  ___       _____________          _______________
  Hu         UDP(D/Ra,Pu)          UDP(D,Pu)
                [Note 1]       and UDP(D,Pu')
                                      [Note 2]


  Hr         Raw(D)                Raw()
              and if (UDP)     and UDP(D, Pu)
              then UDP(D,Pu')         [Note 2]
                                   (Ignore Pu')

  R (Interface a):
             Raw(D)                Raw()
              and if (UDP)     and UDP(Ra, Pu)
              then UDP(D,Pu')      (Ignore Pu')


  Figure 13: UDP Encapsulation Rules for Unicast Path and Resv Messages



  MULTICAST DESTINATION D:

                 RSVP                    RSVP
  Node           Send                    Receive
  ___           _____________        _________________
  Hu             UDP(G*,Pu)              UDP(D,Pu')
                                             [Note 3]
                                     and UDP(G*,Pu)


  Hr             Raw(D,Tr)               Raw()
                  and if (UDP)       and UDP(G*,Pu)
                    then UDP(D,Pu')     (Ignore Pu')

  R (Interface a):
                 Raw(D,Tr)               Raw()
                  and if (UDP)       and UDP(G*,Pu)
                    then UDP(D,Pu')     (Ignore Pu')

     Figure 14: UDP Encapsulation Rules for Multicast Path Messages





Braden, Ed., et. al.        Standards Track                   [Page 100]

RFC 2205                          RSVP                    September 1997


  A router may determine if its interface X needs UDP encapsulation by
  listening for UDP-encapsulated Path messages that were sent to either
  G* (multicast D) or to the address of interface X (unicast D).  There
  is one failure mode for this scheme:  if no host on the connected
  network acts as an RSVP sender, there will be no Path messages to
  trigger UDP encapsulation.  In this (unlikely) case, it will be
  necessary to explicitly configure UDP encapsulation on the local
  network interface of the router.

  When a UDP-encapsulated packet is received, the IP TTL is not
  available to the application on most systems.  The RSVP process that
  receives a UDP-encapsulated Path or PathTear message should therefore
  use the Send_TTL field of the RSVP common header as the effective
  receive TTL.  This may be overridden by manual configuration.

  We have assumed that the first-hop RSVP-capable router R is on the
  directly-connected network.  There are several possible approaches if
  this is not the case.

  1.   Hu can send both unicast and multicast sessions to UDP(Ra,Pu)
       with TTL=Ta

       Here Ta must be the TTL to exactly reach R.  If Ta is too small,
       the Path message will not reach R.  If Ta is too large, R and
       succeeding routers may forward the UDP packet until its hop
       count expires.  This will turn on UDP encapsulation between
       routers within the Internet, perhaps causing bogus UDP traffic.
       The host Hu must be explicitly configured with Ra and Ta.

  2.   A particular host on the LAN connected to Hu could be designated
       as an "RSVP relay host".  A relay host would listen on (G*,Pu)
       and forward any Path messages directly to R, although it would
       not be in the data path.  The relay host would have to be
       configured with Ra and Ta.

















Braden, Ed., et. al.        Standards Track                   [Page 101]

RFC 2205                          RSVP                    September 1997


APPENDIX D. Glossary

  o    Admission control

       A traffic control function that decides whether the packet
       scheduler in the node can supply the requested QoS while
       continuing to provide the QoS requested by previously-admitted
       requests.  See also "policy control" and "traffic control".

  o    Adspec

       An Adspec is a data element (object) in a Path message that
       carries a package of OPWA advertising information.  See "OPWA".

  o    Auto-refresh loop

       An auto-refresh loop is an error condition that occurs when a
       topological loop of routers continues to refresh existing
       reservation state even though all receivers have stopped
       requesting these reservations.  See section 3.4 for more
       information.

  o    Blockade state

       Blockade state helps to solve a "killer reservation" problem.
       See sections 2.5 and 3.5, and "killer reservation".

  o    Branch policing

       Traffic policing at a multicast branching point on an outgoing
       interface that has "less" resources reserved than another
       outgoing interface for the same flow.  See "traffic policing".

  o    C-Type

       The class type of an object; unique within class-name.  See
       "class-name".

  o    Class-name

       The class of an object.  See "object".

  o    DestAddress

       The IP destination address; part of session identification.  See
       "session".





Braden, Ed., et. al.        Standards Track                   [Page 102]

RFC 2205                          RSVP                    September 1997


  o    Distinct style

       A (reservation) style attribute; separate resources are reserved
       for each different sender.  See also "shared style".

  o    Downstream

       Towards the data receiver(s).

  o    DstPort

       The IP (generalized) destination port used as part of a session.
       See "generalized destination port".

  o    Entry policing

       Traffic policing done at the first RSVP- (and policing-) capable
       router on a data path.

  o    ERROR_SPEC

       Object that carries the error report in a PathErr or ResvErr
       message.

  o    Explicit sender selection

       A (reservation) style attribute; all reserved senders are to be
       listed explicitly in the reservation message.  See also
       "wildcard sender selection".

  o    FF style

       Fixed Filter reservation style, which has explicit sender
       selection and distinct attributes.

  o    FilterSpec

       Together with the session information, defines the set of data
       packets to receive the QoS specified in a flowspec.  The
       filterspec is used to set parameters in the packet classifier
       function.  A filterspec may be carried in a FILTER_SPEC or
       SENDER_TEMPLATE object.

  o    Flow descriptor

       The combination of a flowspec and a filterspec.





Braden, Ed., et. al.        Standards Track                   [Page 103]

RFC 2205                          RSVP                    September 1997


  o    Flowspec

       Defines the QoS to be provided for a flow.  The flowspec is used
       to set parameters in the packet scheduling function to provide
       the requested quality of service.  A flowspec is carried in a
       FLOWSPEC object.  The flowspec format is opaque to RSVP and is
       defined by the Integrated Services Working Group.

  o    Generalized destination port

       The component of a session definition that provides further
       transport or application protocol layer demultiplexing beyond
       DestAddress.  See "session".

  o    Generalized source port

       The component of a filter spec that provides further transport
       or application protocol layer demultiplexing beyond the sender
       address.

  o    GLB

       Greatest Lower Bound

  o    Incoming interface

       The interface on which data packets are expected to arrive, and
       on which Resv messages are sent.

  o    INTEGRITY

       Object of an RSVP control message that contains cryptographic
       data to authenticate the originating node and to verify the
       contents of an RSVP message.

  o    Killer reservation problem

       The killer reservation problem describes a case where a receiver
       attempting and failing to make a large QoS reservation prevents
       smaller QoS reservations from being established.  See Sections
       2.5 and 3.5 for more information.

  o    LIH

       The LIH (Logical Interface Handle) is used to help deal with
       non-RSVP clouds.  See Section 2.9 for more information.





Braden, Ed., et. al.        Standards Track                   [Page 104]

RFC 2205                          RSVP                    September 1997


  o    Local repair

       Allows RSVP to rapidly adapt its reservations to changes in
       routing.  See Section 3.6 for more information.

  o    LPM

       Local Policy Module. the function that exerts policy control.

  o    LUB

       Least Upper Bound.

  o    Merge policing

       Traffic policing that takes place at data merge point of a
       shared reservation.

  o    Merging

       The process of taking the maximum (or more generally the least
       upper bound) of the reservations arriving on outgoing
       interfaces, and forwarding this maximum on the incoming
       interface.  See Section 2.2 for more information.

  o    MTU

       Maximum Transmission Unit.

  o    Next hop

       The next router in the direction of traffic flow.

  o    NHOP

       An object that carries the Next Hop information in RSVP control
       messages.

  o    Node

       A router or host system.

  o    Non-RSVP clouds

       Groups of hosts and routers that do not run RSVP.  Dealing with
       nodes that do not support RSVP is important for backwards
       compatibility.  See section 2.9.




Braden, Ed., et. al.        Standards Track                   [Page 105]

RFC 2205                          RSVP                    September 1997


  o    Object

       An element of an RSVP control message; a type, length, value
       triplet.

  o    OPWA

       Abbreviation for "One Pass With Advertising".  Describes a
       reservation setup model in which (Path) messages sent downstream
       gather information that the receiver(s) can use to predict the
       end-to-end service.  The information that is gathered is called
       an advertisement.  See also "Adspec".

  o    Outgoing interface

       Interface through which data packets and Path messages are
       forwarded.

  o    Packet classifier

       Traffic control function in the primary data packet forwarding
       path that selects a service class for each packet, in accordance
       with the reservation state set up by RSVP.  The packet
       classifier may be combined with the routing function.  See also
       "traffic control".

  o    Packet scheduler

       Traffic control function in the primary data packet forwarding
       path that implements QoS for each flow, using one of the service
       models defined by the Integrated Services Working Group.  See
       also " traffic control".

  o    Path state

       Information kept in routers and hosts about all RSVP senders.

  o    PathErr

       Path Error RSVP control message.

  o    PathTear

       Path Teardown RSVP control message.







Braden, Ed., et. al.        Standards Track                   [Page 106]

RFC 2205                          RSVP                    September 1997


  o    PHOP

       An object that carries the Previous Hop information in RSVP
       control messages.


  o    Police

       See traffic policing.

  o    Policy control

       A function that determines whether a new request for quality of
       service has administrative permission to make the requested
       reservation.  Policy control may also perform accounting (usage
       feedback) for a reservation.

  o    Policy data

       Data carried in a Path or Resv message and used as input to
       policy control to determine authorization and/or usage feedback
       for the given flow.

  o    Previous hop

       The previous router in the direction of traffic flow.  Resv
       messages flow towards previous hops.

  o    ProtocolId

       The component of session identification that specifies the IP
       protocol number used by the data stream.

  o    QoS

       Quality of Service.

  o    Reservation state

       Information kept in RSVP-capable nodes about successful RSVP
       reservation requests.


  o    Reservation style

       Describes a set of attributes for a reservation, including the
       sharing attributes and sender selection attributes.  See Section
       1.3 for details.



Braden, Ed., et. al.        Standards Track                   [Page 107]

RFC 2205                          RSVP                    September 1997


  o    Resv message

       Reservation request RSVP control message.


  o    ResvConf

       Reservation Confirmation RSVP control message, confirms
       successful installation of a reservation at some upstream node.

  o    ResvErr

       Reservation Error control message, indicates that a reservation
       request has failed or an active reservation has been preempted.

  o    ResvTear

       Reservation Teardown RSVP control message, deletes reservation
       state.

  o    Rspec

       The component of a flowspec that defines a desired QoS.  The
       Rspec format is opaque to RSVP and is defined by the Integrated
       Services Working Group of the IETF.

  o    RSVP_HOP

       Object of an RSVP control message that carries the PHOP or NHOP
       address of the source of the message.

  o    Scope

       The set of sender hosts to which a given reservation request is
       to be propagated.

  o    SE style

       Shared Explicit reservation style, which has explicit sender
       selection and shared attributes.

  o    Semantic fragmentation

       A method of fragmenting a large RSVP message using information
       about the structure and contents of the message, so that each
       fragment is a logically complete RSVP message.





Braden, Ed., et. al.        Standards Track                   [Page 108]

RFC 2205                          RSVP                    September 1997


  o    Sender template

       Parameter in a Path message that defines a sender; carried in a
       SENDER_TEMPLATE object.  It has the form of a filter spec that
       can be used to select this sender's packets from other packets
       in the same session on the same link.

  o    Sender Tspec

       Parameter in a Path message, a Tspec that characterizes the
       traffic parameters for the data flow from the corresponding
       sender.  It is carried in a SENDER_TSPEC object.

  o    Session

       An RSVP session defines one simplex unicast or multicast data
       flow for which reservations are required.  A session is
       identified by the destination address, transport-layer protocol,
       and an optional (generalized) destination port.

  o    Shared style

       A (reservation) style attribute: all reserved senders share the
       same reserved resources.  See also "distinct style".

  o    Soft state

       Control state in hosts and routers that will expire if not
       refreshed within a specified amount of time.

  o    STYLE

       Object of an RSVP message that specifies the desired reservation
       style.

  o    Style

       See "reservation style"

  o    TIME_VALUES

       Object in an RSVP control message that specifies the time period
       timer used for refreshing the state in this message.








Braden, Ed., et. al.        Standards Track                   [Page 109]

RFC 2205                          RSVP                    September 1997


  o    Traffic control

       The entire set of machinery in the node that supplies requested
       QoS to data streams.  Traffic control includes packet
       classifier, packet scheduler, and admission control functions.


  o    Traffic policing

       The function, performed by traffic control, of forcing a given
       data flow into compliance with the traffic parameters implied by
       the reservation.  It may involve dropping non-compliant packets
       or sending them with lower priority, for example.

  o    TSpec

       A traffic parameter set that describes a flow.  The format of a
       Tspec is opaque to RSVP and is defined by the Integrated Service
       Working Group.

  o    UDP encapsulation

       A way for hosts that cannot use raw sockets to participate in
       RSVP by encapsulating the RSVP protocol (raw) packets in
       ordinary UDP packets.  See Section APPENDIX C for more
       information.

  o    Upstream

       Towards the traffic source.  RSVP Resv messages flow upstream.

  o    WF style

       Wildcard Filter reservation style, which has wildcard sender
       selection and shared attributes.

  o    Wildcard sender selection

       A (reservation) style attribute: traffic from any sender to a
       specific session receives the same QoS.  See also "explicit
       sender selection".










Braden, Ed., et. al.        Standards Track                   [Page 110]

RFC 2205                          RSVP                    September 1997


References

[Baker96]  Baker, F., "RSVP Cryptographic Authentication", Work in
   Progress.

[RFC 1633]  Braden, R., Clark, D., and S. Shenker, "Integrated Services
   in the Internet Architecture: an Overview", RFC 1633, ISI, MIT, and
   PARC, June 1994.

[FJ94]  Floyd, S. and V. Jacobson, "Synchronization of Periodic Routing
   Messages", IEEE/ACM Transactions on Networking, Vol. 2, No. 2,
   April, 1994.

[RFC 2207]  Berger, L. and T. O'Malley, "RSVP Extensions for IPSEC Data
   Flows", RFC 2207, September 1997.

[RFC 2113]  Katz, D., "IP Router Alert Option", RFC 2113, cisco Systems,
   February 1997.

[RFC 2210]  Wroclawski, J., "The Use of RSVP with Integrated Services",
   RFC 2210, September 1997.

[PolArch96]  Herzog, S., "Policy Control for RSVP: Architectural
   Overview".  Work in Progress.

[OPWA95]  Shenker, S. and L. Breslau, "Two Issues in Reservation
   Establishment", Proc. ACM SIGCOMM '95, Cambridge, MA, August 1995.

[RSVP93]  Zhang, L., Deering, S., Estrin, D., Shenker, S., and D.
   Zappala, "RSVP: A New Resource ReSerVation Protocol", IEEE Network,
   September 1993.



Security Considerations

  See Section 2.8.














Braden, Ed., et. al.        Standards Track                   [Page 111]

RFC 2205                          RSVP                    September 1997


Authors' Addresses


  Bob Braden
  USC Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292

  Phone: (310) 822-1511
  EMail: [email protected]

  Lixia Zhang
  UCLA Computer Science Department
  4531G Boelter Hall
  Los Angeles, CA 90095-1596 USA

  Phone: 310-825-2695
  EMail: [email protected]

  Steve Berson
  USC Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292

  Phone: (310) 822-1511
  EMail: [email protected]


  Shai Herzog
  IBM T. J. Watson Research Center
  P.O Box 704
  Yorktown Heights, NY 10598

  Phone: (914) 784-6059
  EMail: [email protected]


  Sugih Jamin
  University of Michigan
  CSE/EECS
  1301 Beal Ave.
  Ann Arbor, MI 48109-2122

  Phone: (313) 763-1583

  EMail: [email protected]




Braden, Ed., et. al.        Standards Track                   [Page 112]