Network Working Group                                       J. Veizades
Request for Comments: 2165                                @Home Network
Category: Standards Track                                    E. Guttman
                                                            C. Perkins
                                                      Sun Microsystems
                                                             S. Kaplan
                                                             June 1997

                      Service Location Protocol

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Service Location Protocol provides a scalable framework for the
  discovery and selection of network services.  Using this protocol,
  computers using the Internet no longer need so much static
  configuration of network services for network based applications.
  This is especially important as computers become more portable, and
  users less tolerant or able to fulfill the demands of network system
  administration.

Table of Contents

1. Introduction                                                       3
2. Terminology                                                        3
    2.1. Notation Conventions  . . . . . . . . . . . . . . . . . .    5
    2.2. Service Information and Predicate Representation  . . . .    5
    2.3. Specification Language  . . . . . . . . . . . . . . . . .    6
3. Protocol Overview                                                  6
    3.1. Protocol Transactions . . . . . . . . . . . . . . . . . .    7
    3.2. Schemes . . . . . . . . . . . . . . . . . . . . . . . . .    8
          3.2.1. The "service:" URL scheme . . . . . . . . . . . .    9
    3.3. Standard Attribute Definitions  . . . . . . . . . . . . .    9
    3.4. Naming Authority  . . . . . . . . . . . . . . . . . . . .   10
    3.5. Interpretation of Service Location Replies  . . . . . . .   10
    3.6. Use of TCP, UDP and Multicast in Service Location . . . .   10
          3.6.1. Multicast vs.  Broadcast  . . . . . . . . . . . .   11
          3.6.2. Service-Specific Multicast Address  . . . . . . .   11
    3.7. Service Location Scaling, and Multicast Operating Modes .   12





Veizades, et. al.           Standards Track                     [Page 1]

RFC 2165               Service Location Protocol               June 1997


4. Service Location General Message Format                           14
    4.1. Use of Transaction IDs (XIDs) . . . . . . . . . . . . . .   15
    4.2. URL Entries . . . . . . . . . . . . . . . . . . . . . . .   16
    4.3. Authentication Blocks . . . . . . . . . . . . . . . . . .   17
    4.4. URL Entry Lifetime  . . . . . . . . . . . . . . . . . . .   19
5. Service Request Message Format                                    19
    5.1. Service Request Usage . . . . . . . . . . . . . . . . . .   22
    5.2. Directory Agent Discovery Request . . . . . . . . . . . .   23
    5.3. Explanation of Terms of Predicate Grammar . . . . . . . .   24
    5.4. Service Request Predicate Grammar . . . . . . . . . . . .   26
    5.5. String Matching for Requests  . . . . . . . . . . . . . .   27
6. Service Reply Message Format                                      28
7. Service Type Request Message Format                               29
8. Service Type Reply Message Format                                 31
9. Service Registration Message Format                               32
10. Service Acknowledgement Message Format                            35
11. Service Deregister Message Format                                 37
12. Attribute Request Message Format                                  38
13. Attribute Reply Message Format                                    40
14. Directory Agent Advertisement Message Format                      42
15. Directory Agents                                                  43
   15.1. Introduction  . . . . . . . . . . . . . . . . . . . . . .   43
   15.2. Finding Directory Agents  . . . . . . . . . . . . . . . .   43
16. Scope Discovery and Use                                           45
   16.1. Protected Scopes  . . . . . . . . . . . . . . . . . . . .   46
17. Language and Character Encoding Issues                            47
   17.1. Character Encoding and String Issues  . . . . . . . . . .   48
         17.1.1. Substitution of Character Escape Sequences  . . .   49
   17.2. Language-Independent Strings  . . . . . . . . . . . . . .   49
18. Service Location Transactions                                     50
   18.1. Service Location Connections  . . . . . . . . . . . . . .   50
   18.2. No Synchronous Assumption . . . . . . . . . . . . . . . .   51
   18.3. Idempotency . . . . . . . . . . . . . . . . . . . . . . .   51
19. Security Considerations                                           51
20. String Formats used with Service Location Messages                52
   20.1. Previous Responders' Address Specification  . . . . . . .   53
   20.2. Formal Definition of the "service:" Scheme  . . . . . . .   53
         20.2.1. Service Type String . . . . . . . . . . . . . . .   54
   20.3. Attribute Information . . . . . . . . . . . . . . . . . .   54
   20.4. Address Specification in Service Location . . . . . . . .   55
   20.5. Attribute Value encoding rules  . . . . . . . . . . . . .   55
21. Protocol Requirements                                             56
   21.1. User Agent Requirements . . . . . . . . . . . . . . . . .   56
   21.2. Service Agent Requirements  . . . . . . . . . . . . . . .   58
   21.3. Directory Agent Requirements  . . . . . . . . . . . . . .   59
22. Configurable Parameters and Default Values                        61
   22.1. Service Agent:  Use Predefined Directory Agent(s) . . . .   62
   22.2. Time Out Intervals  . . . . . . . . . . . . . . . . . . .   63



Veizades, et. al.           Standards Track                     [Page 2]

RFC 2165               Service Location Protocol               June 1997


23. Non-configurable Parameters                                       63
24. Acknowledgments                                                   64
A. Appendix:  Technical contents of ISO 639:1988 (E/F): "Code for
  the representation of names of languages"                          65
B. SLP Certificates                                                  66
C. Example of deploying SLP security using MD5 and RSA               68
D. Example of use of SLP Certificates by mobile nodes                68
E. Appendix:  For Further Reading                                    69

1. Introduction

  Traditionally, users find services by using the name of a network
  host (a human readable text string) which is an alias for a network
  address.  The Service Location Protocol eliminates the need for a
  user to know the name of a network host supporting a service.
  Rather, the user names the service and supplies a set of attributes
  which describe the service.  The Service Location Protocol allows the
  user to bind this description to the network address of the service.

  Service Location provides a dynamic configuration mechanism for
  applications in local area networks.  It is not a global resolution
  system for the entire Internet; rather it is intended to serve
  enterprise networks with shared services.  Applications are modeled
  as clients that need to find servers attached to the enterprise
  network at a possibly distant location.  For cases where there are
  many different clients and/or services available, the protocol is
  adapted to make use of nearby Directory Agents that offer a
  centralized repository for advertised services.

2. Terminology

     User Agent (UA)
               A process working on the user's behalf to acquire
               service attributes and configuration.  The User Agent
               retrieves service information from the Service Agents or
               Directory Agents.

     Service Agent (SA)
               A process working on the behalf of one or more services
               to advertise service attributes and configuration.

     Service Information
               A collection of attributes and configuration information
               associated with a single service.  The Service Agents
               advertise service information for a collection of
               service instances.





Veizades, et. al.           Standards Track                     [Page 3]

RFC 2165               Service Location Protocol               June 1997


     Service   The service is a process or system providing a facility
               to the network.  The service itself is accessed using a
               communication mechanism external to the the Service
               Location Protocol.

     Directory Agent (DA)
               A process which collects information from Service Agents
               to provide a single repository of service information in
               order to centralize it for efficient access by User
               Agents.  There can only be one DA present per given
               host.

     Service Type
               Each type of service has a unique Service Type string.
               The Service Type defines a template, called a "service
               scheme", including expected attributes, values and
               protocol behavior.

     Naming Authority
               The agency or group which catalogues given Service Types
               and Attributes.  The default Naming Authority is IANA,
               the Internet Assigned Numbers Authority.

     Keyword
               A string describing a characteristic of a service.

     Attribute
               A (class, value-list) pair of strings describing a
               characteristic of a service.  The value string may be
               interpreted as a boolean, integer or opaque value if it
               takes specific forms (see section 20.5).

     Predicate
               A boolean expression of attributes, relations and
               logical operators.  The predicate is used to find
               services which satisfy particular requirements.  See
               section 5.3.

     Alphanumeric
               A character within the range 'a' to 'z', 'A' to 'Z', or

     Scope     A collection of services that make up a logical group.
               See sections 3.7 and 16.








Veizades, et. al.           Standards Track                     [Page 4]

RFC 2165               Service Location Protocol               June 1997


     Site Network
               All the hosts accessible within the Agent's multicast
               radius, which defaults to a value appropriate for
               reaching all hosts within a site (see section 22).  If
               the site does not support multicast, the agent's site
               network is restricted to a single subnet.

     URL       A Universal Resource Locator - see [6].

     Address Specification
               This is the network layer protocol dependent mechanism
               for specifying an Agent.  For Internet systems this is
               part of a URL.

2.1. Notation Conventions

     CAPS   Strings which appear in all capital letters are protocol
            literal.  All string comparison is case insensitive,
            however, (see section 5.5).  Some strings are quoted in
            this document to indicate they should be used literally.
            Single characters inside apostrophes are included
            literally.

     <>     Values set off in this manner are fully described in
            section 20.  In general, all definitions of items in
            messages are described in section 20 or immediately
            following their first use.

     |  |
     \  \   Message layouts with this notation indicate a variable
     |  |   length field.

2.2. Service Information and Predicate Representation

  Service information is represented in a text format.  The goal is
  that the format be human readable and transmissible via email.  The
  location of network services is encoded as a Universal Resource
  Locator (URL) which is human readable.  Only the datagram headers are
  encoded in a form which is not human readable.  Strings used in the
  Service Location Protocol are NOT null-terminated.

  Predicates are expressed in a simple boolean notation using keywords,
  attributes, and logical connectives, as described in Section 5.4.

  The logical connectives and subexpressions are presented in prefix-
  order, so that the connective comes first and the expressions it
  operates on follow afterwards.




Veizades, et. al.           Standards Track                     [Page 5]

RFC 2165               Service Location Protocol               June 1997


2.3. Specification Language

  In this document, several words are used to signify the requirements
  of the specification [8].  These words are often capitalized.

     MUST       This word, or the adjective "required", means that
                the definition is an absolute requirement of the
                specification.

     MUST NOT   This phrase means that the definition is an absolute
                prohibition of the specification.

     SHOULD     This word, or the adjective "recommended", means
                that, in some circumstances, valid reasons may exist to
                ignore this item, but the full implications must be
                understood and carefully weighed before choosing a
                different course.  Unexpected results may result
                otherwise.

     MAY        This word, or the adjective "optional", means that this
                item is one of an allowed set of alternatives.  An
                implementation which does not include this option MUST
                be prepared to interoperate with another implementation
                which does include the option.

     silently discard
                The implementation discards the datagram without
                further processing, and without indicating an error to
                the sender.  The implementation SHOULD provide the
                capability of logging the error, including the contents
                of the discarded datagram, and SHOULD record the event
                in a statistics counter.

3. Protocol Overview

  The basic operation in Service Location is that a client attempts to
  discover the location of a Service.  In smaller installations, each
  service will be configured to respond individually to each client.
  In larger installations, services will register their services with
  one or more Directory Agents, and clients will contact the Directory
  Agent to fulfill requests for Service Location information.  Clients
  may discover the whereabouts of a Directory Agent by
  preconfiguration, DHCP [2, 11], or by issuing queries to the
  Directory Agent Discovery multicast address.







Veizades, et. al.           Standards Track                     [Page 6]

RFC 2165               Service Location Protocol               June 1997


3.1. Protocol Transactions

  The diagram below illustrates the relationships described below:

     +---------------+   we want this info:     +-----------+
     |  Application  | - - - - - - - - - - - -> |  Service  |
     +---------------+                          +-----------+
          /|\                                      |     |
           |                         +-------------+     |
           |                         |                   |
          \|/                       \|/                 \|/
     +---------------+          +-----------+      +----------------+
     |   User Agent  |<-------->|  Service  |      |    Service     |
     +---------------+          |   Agent   |      | Agent which    |
           |                    +-----------+      | does not reply |
           |                         |             | to UA requests |
           |                        \|/            +----------------+
           |                   +-------------+           |
           +------------------>|  Directory  |<----------+
                               |    Agent    |
                               +-------------+      ___________
                                    /|\            / Many other\
                                     +------------>|   SA's    |
                                                   \___________/

  The following describes the operations a User Agent would employ to
  find services on the site's network.  The User Agent needs no
  configuration to begin network interaction.  The User Agent can
  acquire information to construct predicates which describe the
  services that match the user's needs.  The User Agent may build on
  the information received in earlier network requests to find the
  Service Agents advertising service information.

  A User Agent will operate two ways:  If the User Agent has already
  obtained the location of a Directory Agent, the User Agent will
  unicast a request to it in order to resolve a particular request.
  The Directory Agent will unicast a reply to the User Agent.  The User
  Agent will retry a request to a Directory Agent until it gets a
  reply, so if the Directory Agent cannot service the request (say it
  has no information) it must return an response with zero values,
  possibly with an error code set.

  If the User Agent does not have knowledge of a Directory Agent or if
  there are no Directory Agents available on the site network, a second
  mode of discovery may be used.  The User Agent multicasts a request
  to the service-specific multicast address, to which the service it
  wishes to locate will respond.  All the Service Agents which are
  listening to this multicast address will respond, provided they can



Veizades, et. al.           Standards Track                     [Page 7]

RFC 2165               Service Location Protocol               June 1997


  satisfy the User Agent's request.  A similar mechanism is used for
  Directory Agent discovery; see section 5.2.  Service Agents which
  have no information for the User Agent MUST NOT respond.

  When a User Agent wishes to obtain an enumeration of ALL services
  which satisfy the query, a retransmission/convergence algorithm is
  used.  The User Agent resends the request, together with a list of
  previous responders.  Only those Service Agents which are not on the
  list respond.  Once there are no new responses to the request the
  accumulation of responses is deemed complete.  Depending on the
  length of the request, around 60 previous responders may be listed in
  a single datagram.  If there are more responders than this, the
  scaling mechanisms described in section 3.7 should be used.

  While the multicast/convergence model may be important for
  discovering services (such as Directory Agents) it is the exception
  rather than the rule.  Once a User Agent knows of the location of a
  Directory Agent, it will use a unicast request/response transaction.

  The Service Agent SHOULD listen for multicast requests on the
  service-specific multicast address, and MUST register with an
  available Directory Agent.  This Directory Agent will resolve
  requests from User Agents which are unicasted using TCP or UDP. This
  means that a Directory Agent must first be discovered, using DHCP,
  the DA Discovery Multicast address, the multicast mechanism described
  above, or manual configuration.  See section 5.2.

  A Service Agent which does not respond to multicast requests will not
  be useful in the absence of Directory Agents.  Some Service Agents
  may not include this functionality, if an especially lightweight
  implementation is required.

  If the service is to become unavailable, it should be deregistered
  with the Directory Agent.  The Directory Agent responds with an
  acknowledgment to either a registration or deregistration.  Service
  Registrations include a lifetime, and will eventually expire.
  Service Registrations need to be refreshed by the Service Agent
  before their Lifetime runs out.  If need be, Service Agents can
  advertise signed URLs to prove that they are authorized to provide
  the service.

3.2. Schemes

  The Service Location Protocol, designed as a way for clients to
  access resources on the network, is a natural application for
  Universal Resource Locators (URLs).  It is intended that by re-using
  URL specification and technology from the World Wide Web, clients and
  servers will be more flexible and able to be written using already



Veizades, et. al.           Standards Track                     [Page 8]

RFC 2165               Service Location Protocol               June 1997


  existing code.  Moreover, it is hoped that browsers will be written
  to take advantage of the similarity in locator format, so that a
  client can dynamically formulate requests for services that are
  resolved differently depending upon the circumstances.

3.2.1. The "service:"  URL scheme

  The service URL scheme is used by Service Location.  It is used to
  specify a Service Location.  Many Service Types will be named by
  including a scheme name after the "service:"  scheme name.  Service
  Types are used by SAs to register and deregister Services with DAs.
  It is also used by SAs and DAs to return Service Replies to UAs.  The
  formal definition of the "service:" URL scheme is in section 20.2.
  The format of the information which follows the "service:"  scheme
  should as closely as possible follow the URL structure and semantics
  as formalized by the IETF standardization process.

  Well known Service Types are registered with the IANA and templates
  are available as RFCs.  Private Service Types may also be supported.

3.3. Standard Attribute Definitions

  Service Types used with the Service Location Protocol must describe
  the following:

        Service Type string of the service
        Attributes and Keywords
        Attribute Descriptions and interpretations

  Service Types not registered with IANA will use their own Naming
  Authority string.  The registration process for new Service Types is
  defined in [13].

  Services which advertise a particular Service Type must support the
  complete set of standardized attributes.  They may support additional
  attributes, beyond the standardized set.  Unrecognized attributes
  MUST be ignored by User Agents.

  Service Type names which begin with "x-" are guaranteed not to
  conflict with any officially registered Service Type names.  It is
  suggested that this prefix be used for experimental or private
  Service Type names.  Similarly, attribute names which begin with "x-"
  are guaranteed not to be used for any officially registered attribute
  names.

  A service of a given Service Type should accept the networking
  protocol which is implied in its definition.  If a Service Type can
  accept multiple protocols, configuration information SHOULD be



Veizades, et. al.           Standards Track                     [Page 9]

RFC 2165               Service Location Protocol               June 1997


  included in the Service Type attribute information.  This
  configuration information will enable an application to use the
  results of a Service Request and Attribute Request to directly
  connect to a service.

  See section 20.2.1 for the format of a Service Type String as used in
  the Service Location Protocol.

3.4. Naming Authority

  The Naming Authority of a service defines the meaning of the Service
  Types and attributes registered with and provided by Service
  Location.  The Naming Authority itself is a string which uniquely
  identifies an organization.  If no string is provided IANA is the
  default.  IANA stands for the Internet Assigned Numbers Authority.

  Naming Authorities may define Service Types which are experimental,
  proprietary or for private use.  The procedure to use is to create a
  'unique' Naming Authority string and then specify the Standard
  Attribute Definitions as described above.  This Naming Authority will
  accompany registration and queries, as described in sections 5 and 9.

3.5. Interpretation of Service Location Replies

  Replies should be considered to be valid at the time of delivery.
  The service may, however, fail or change between the time of the
  reply and the moment an application seeks to make use of the service.
  The application making use of Service Location MUST be prepared for
  the possibility that the service information provided is either stale
  or incomplete.  In the case where the service information provided
  does not allow a User Agent to connect to a service as desired, the
  Service Request and/or Attribute Request may be resubmitted.

  Service specific configuration information (such as which protocol to
  use) should be included as attribute information in Service
  Registrations.  These configuration attributes will be used by
  applications which interpret the Service Location Reply.

3.6. Use of TCP, UDP and Multicast in Service Location

  The Service Location Protocol requires the implementation of UDP
  (connectionless) and TCP (connection oriented) transport protocols.
  The latter is used for bulk transfer, only when necessary.
  Connections are always initiated by an agent request or registration,
  not by a replying Directory Agent.  Service Agents and User Agents
  use ephemeral ports for transmitting information to the service
  location port, which is 427.




Veizades, et. al.           Standards Track                    [Page 10]

RFC 2165               Service Location Protocol               June 1997


  The Service Location discovery mechanisms typically multicast
  messages to as many enterprise networks as needed to establish
  service availability.  The protocol will operate in a broadcast
  environment with limitations detailed in section 3.6.1.

3.6.1. Multicast vs.  Broadcast

  The Service Location Protocol was designed for use in networks where
  DHCP is available, or multicast is supported at the network layer.
  To support this protocol when only network layer broadcast is
  supported, the following procedures may be followed.

3.6.1.1. Single Subnet

  If a network is not connected to any other networks simple network
  layer broadcasts will work in place of multicast.

  Service Agents SHOULD and Directory Agents MUST listen for broadcast
  Service Location request messages to the Service Location port.  This
  allows UAs which lack multicast capabilities to still make use of
  Service Location on a single subnet.

3.6.1.2. Multiple Subnets

  The Directory Agent provides a central clearing house of information
  for User Agents.  If the network is designed so that a Directory
  Agent address is statically configured with each User Agent and
  Service Agent, the Directory Agent will act as a bridge for
  information that resides on different subnets.  The Directory Agent
  address can be dynamically configured with Agents using DHCP. The
  address can also be determined by static configuration.

  As dynamic discovery is not feasible in a broadcast environment with
  multiple subnets and manual configuration is difficult, deploying DAs
  to serve enterprises with multiple subnets will require use of
  multicast discovery with multiple hops (i.e., TTL > 1 in the IP
  header).

3.6.2. Service-Specific Multicast Address

  This mechanism is used so that the number of datagrams any one
  service agent receives is minimized.  The Service Location General
  Multicast Address MAY be used to query for any service, though one
  SHOULD use the service-specific multicast address if it exists.

  If the site network does not support multicast then the query SHOULD
  be broadcast to the Service Location port.  If, on the other hand,
  the underlying hardware will not support the number of needed



Veizades, et. al.           Standards Track                    [Page 11]

RFC 2165               Service Location Protocol               June 1997


  multicast addresses the Service Location General Multicast Address
  MAY be used.  Service Agents MUST listen on this multicast address as
  well as the service-specific multicast addresses for the service
  types they advertise.

  Service-Specific Multicast Addresses are computed by calculating a
  string hash on the Service Type string.  The Service Type string MUST
  first be converted to an ASCII string from whatever character set it
  is represented in, so the hash will have well-defined results.

  The string hash function is modified from a code fragment attributed
  to Chris Torek:

       /*
        *  SLPhash returns a hash value in the range 0-1023 for a
        *  string of single-byte characters, of specified length.
        */
       unsigned long SLPhash (const char *pc, unsigned int length)
           unsigned long h = 0;
   while (length-- != 0) {
               h *= 33;
               h += *pc++;
           }
           return (0x3FF & h);  /* round to a range of 0-1023 */
       }

  This value is added to the base range of Service Specific Discovery
  Addresses, to be assigned by IANA. These will be 1024 contiguous
  multicast addresses.

3.7. Service Location Scaling, and Multicast Operating Modes

  In a very small network, with few nodes, no DA is required.  A user
  agent can detect services by multicasting requests.  Service Agents
  will then reply to them.  Further, Service Agents which respond to
  user requests must be used to make service information available.
  This does not scale to environments with many hosts and services.

  When scaling Service Location systems to intermediate sized networks,
  a central repository (Directory Agent) may be added to reduce the
  number of Service Location messages transmitted in the network
  infrastructure.  Since the central repository can respond to all
  Service and Attribute Requests, fewer Service and Attribute Replies
  will be needed; for the same reason, there is no need to
  differentiate between Directory Agents.

  A site may also grow to such a size that it is not feasible to
  maintain only one central repository of service information.  In this



Veizades, et. al.           Standards Track                    [Page 12]

RFC 2165               Service Location Protocol               June 1997


  case more Directory Agents are needed.  The services (and service
  agents) advertised by the several Directory Agents are collected
  together into logical groupings called "Scopes".

  All Service Registrations that have a scope must be registered with
  all DAs (within the appropriate multicast radius) of that scope which
  have been or are subsequently discovered.  Service Registrations
  which have no scope are only registered with unscoped DAs.  User
  Agents make requests of DAs whose scope they are configured to use.

  Service Agents MUST register with unscoped DAs even if they are
  configured to specifically register with DAs which have a specific
  scope or set of scopes.  User Agents MAY query DAs without scopes,
  even if they are configured to use DAs with a certain scope.  This is
  because any DA with no scope will have all the available service
  information.

  Scoped user agents SHOULD always use a DA which supports their
  configured scope when possible instead of an unscoped DA. This will
  prevent the unscoped DAs from becoming overused and thus a scaling
  problem.

  It is possible to specially configure Service Agents to register only
  with a specific set of DAs (see Section 22.1).  In that case,
  services may not be available to User Agents via all Directory
  Agents, but some network administrators may deem this appropriate.

  There are thus 3 distinct operating modes.  The first requires no
  administrative intervention.  The second requires only that a DA be
  run.  The last requires that all DAs be configured to have scope and
  that a coherent strategy of assigning scopes to services be followed.
  Users must be instructed which scopes are appropriate for them to
  use.  This administrative effort will allow users and applications to
  subsequently dynamically discover services without assistance.

  The first mode (no DAs) is intended for a LAN. The second mode (using
  a DA or DAs, but not using scopes) scales well to a group of
  interconnected LANs with a limited number of hosts.  The third mode
  (with DAs and scopes) allows the SLP protocol to be used in an
  internetworked campus environment.

  If scoped DAs are used, they will not accept unscoped registrations
  or requests.  UAs which issue unscoped requests will discover only
  unscoped services.  They SHOULD use a scope in their requests if
  possible and SHOULD use a DA with their scope in preference to an
  unscoped DA. In a large campus environment it would be a bad idea to
  have ANY unscoped DAs:  They attract ALL registrations and will thus
  present a scaling problem eventually.



Veizades, et. al.           Standards Track                    [Page 13]

RFC 2165               Service Location Protocol               June 1997


  A subsequent protocol document will describe mechanisms for
  supporting a service discovery protocol for the global Internet.

4. Service Location General Message Format

  The following header is used in all of the message descriptions below
  and is abbreviated by using "Service Location header =" followed by
  the function being used.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Version    |    Function   |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |O|M|U|A|F| rsvd|    Dialect    |        Language Code          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Char Encoding          |              XID              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version  This protocol document defines version 1 of the Service
              Location protocol.

     Function Service Location datagrams can be identified as to their
              operation by the function field.  The following are the
              defined operations:

              Message Type             Abbreviation     Function Value

              Service Request          SrvReq               1
              Service Reply            SrvRply              2
              Service Registration     SrvReg               3
              Service Deregister       SrvDereg             4
              Service Acknowledge      SrvAck               5
              Attribute Request        AttrRqst             6
              Attribute Reply          AttrRply             7
              DA Advertisement         DAAdvert             8
              Service Type Request     SrvTypeRqst          9
              Service Type Reply       SrvTypeRply          10

     Length   The number of bytes in the message, including the Service
              Location Header.

     O        The 'Overflow' bit.  See Section 18 for the use of this
              field.







Veizades, et. al.           Standards Track                    [Page 14]

RFC 2165               Service Location Protocol               June 1997


     M        The 'Monolingual' bit.  Requests with this bit set
              indicate the User Agent will only accept responses in the
              language (see section 17) that is indicated by the
              Service or Attribute Request.

     U        The 'URL Authentication Present' bit.  See sections 4.2,
              4.3, 9, and 11 for the use of this field.

     A        The 'Attribute Authentication Present' bit.  See
              sections 4.2, 4.3, and 13 for the use of this field.

     F        If the 'F' bit is set in a Service Acknowledgement, the
              directory agent has registered the service as a new
              entry, not as an updated entry.

     rsvd     MUST be zero.

     Dialect  Dialect tags will be used by future versions of the
              Service Location Protocol to indicate a variant of
              vocabulary used.  This field is reserved and MUST be set
              to 0 for compatibility with future versions of the
              Service Location Protocol.

     Language Code
              Strings within the remainder of the message which follows
              are to be interpreted in the language encoded (see
              section 17 and appendix A) in this field.

     Character Encoding
              The characters making up strings within the remainder of
              the message may be encoded in any standardized encoding
              (see section 17.1).

     Transaction Identifier (XID)
              The XID (transaction ID) field allows the requester to
              match replies to individual requests (see section 4.1).

              Note that, whenever there is an Attribute Authentication
              block, there will also be a URL Authentication block.
              Thus, it is an error to have the 'A' bit set without also
              having the 'U' bit set.

4.1. Use of Transaction IDs (XIDs)

  Retransmission is used to ensure reliable transactions in the Service
  Location Protocol.  If a User Agent or Service Agent sends a message
  and fails to receive an expected response, the message will be sent
  again.  Retransmission of the same Service Location datagram should



Veizades, et. al.           Standards Track                    [Page 15]

RFC 2165               Service Location Protocol               June 1997


  not contain an updated XID. It is quite possible the original request
  reached the DA or SA, but reply failed to reach the requester.  Using
  the same XID allows the DA or SA to cache its reply to the original
  request and then send it again, should a duplicate request arrive.
  This cached information should only be held very briefly
  (CONFIG_INTERVAL_0.)  Any registration or deregistration at a
  Directory Agent, or change of service information at a SA should
  flush this cache so that the information returned to the client is
  always valid.

  The requester creates the XID from an initial random seed and
  increments it by one for each request it makes.  The XIDs will
  eventually wrap back to zero and continue incrementing from there.

  Directory Agents use XID values in their DA Advertisements to
  indicate their state (see section 15.2).

4.2. URL Entries

  When URLs are registered, they have lifetimes and lengths, and may be
  authenticated.  These values are associated with the URL for the
  duration of the registration.  The association is known as a "URL-
  entry", and has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Lifetime            |        Length of URL          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                              URL                              \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              (if present) URL Authentication Block .....
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Lifetime   The length of time that the registration is valid, in
              the absence of later registrations or deregistration.

     Length of URL
              The length of the URL, measured in bytes and < 32768.

     URL Authentication Block
              (if present) A timestamped authenticator (section 4.3)







Veizades, et. al.           Standards Track                    [Page 16]

RFC 2165               Service Location Protocol               June 1997


  The URL conforms to RFC 1738 [6].  If the 'U' bit is set in the
  message header, the URL is followed by an URL Authentication Block.
  If the scheme used in the URL does not have a standardized
  representation, the minimal requirement is:

     service:<srvtype>://<addr-spec>

  "service" is the URL scheme of all Service Location Information
  included in service registrations and service replies.  Each URL
  entry contains the service:<srvtype> scheme name.  It may also
  include an <addr-spec> except in the case of a reply to a Service
  Type request (see section 7).

4.3. Authentication Blocks

  Authentication blocks are used to authenticate service registrations
  and deregistrations.  URLs are registered along with an URL
  Authentication block to retain the authentication information in the
  URL entry for subsequent use by User Agents who receive a Service
  Reply containing the URL entry.  Service attributes are registered
  along with an Attribute Authentication block.  Both authentication
  blocks have the format illustrated below.

  If a service registration is accompanied by authentication which can
  be validated by the DA, the DA MUST validate any subsequent service
  deregistrations, so that unauthorized entities cannot invalidate such
  registered services.  Likewise, if a service registration is
  accompanied by an Attribute Authentication block which can be
  validated by the DA, the DA MUST validate any subsequent attribute
  registrations, so that unauthorized entities cannot invalidate such
  registered attributes.

  To avoid replay attacks which use previously validated
  deregistrations, the deregistration or attribute registration message
  must contain a timestamp for use by the DA. To avoid replay attacks
  which use previously validated registrations to nullify a valid
  deregistration, registrations must also contain a timestamp.














Veizades, et. al.           Standards Track                    [Page 17]

RFC 2165               Service Location Protocol               June 1997


  An authentication block has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    +                           Timestamp                           +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Block Structure Descriptor   |            Length             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Structured Authenticator ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Timestamp A 64-bit value formatted as specified by the Network
              Time Protocol (NTP) [16].

     Block Structure Descriptor (BSD)
              A value describing the structure of the Authenticator.
              The only value currently defined is 1, for
              Object-Identifier.

     Length   The length of the Authenticator

     Structured Authenticator
              An algorithm specification, and the authentication data
              produced by the algorithm.

  The Structured Authenticator contains a digital signature of the
  information being authenticated.  It contains sufficient information
  to determine the algorithm to be used and the keys to be selected to
  verify the digital signature.

  The digital signature is computed over the following ordered stream
  of data:

      CHARACTER ENCODING OF URL   (2 bytes in network byte order)
      LIFETIME                    (2 bytes in network byte order)
      LENGTH OF URL               (2 bytes in network byte order)
      URL                         (n bytes)
      TIMESTAMP                   (8 bytes in SNTP format [16])










Veizades, et. al.           Standards Track                    [Page 18]

RFC 2165               Service Location Protocol               June 1997


  When producing a URL Authentication block, the authentication data
  produced by the algorithm identified within the Structured
  Authenticator calculated over the following ordered stream of data:

      ATTRIBUTE CHARACTER ENCODING   (2 bytes in network byte order)
      LENGTH OF ATTRIBUTES           (2 bytes in network byte order)
      ATTRIBUTES                     (n bytes)
      TIMESTAMP                      (8 bytes in SNTP format [16])

  Every Service Location Protocol entity (User Agent, Service Agent, or
  Directory Agent) which is configured for use with protected scopes
  SHOULD implement "md5WithRSAEncryption" [4] and be able to associate
  it with BSD value == 1.

  In the case where BSD value == 1 and the OID "md5WithRSAEncryption"
  is selected, the Structured Authenticator will start with the ASN.1
  Distinguished Encoding (DER) [9] for "md5WithRSAEncryption", which
  has the as its value the bytes (MSB first in hex):

     "30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00"

  This is then immediately followed by an ASN.1 Distinguished Encoding
  (as a "Bitstring") of the RSA encryption (using the Scope's private
  key) of a bitstring consisting of the OID for "MD5" concatenated by
  the MD5 [22] message digest computed over the fields above.  The
  exact construction of the MD5 OID and digest can be found in RFC 1423
  [4].

4.4. URL Entry Lifetime

  The Lifetime field is set to the number of seconds the reply can be
  cached by any agent.  A value of 0 means the information must not be
  cached.  User Agents MAY cache service information, but if they do,
  they must provide a way for applications to flush this cached
  information and issue the request directly onto the network.

  Services should be registered with DAs with a Lifetime, the suggested
  value being CONFIG_INTERVAL_1.  The service must be reregistered
  before this interval elapses, or the service advertisement will no
  longer be available.  Thus, services which vanish and fail to
  deregister eventually become automatically deregistered.

5. Service Request Message Format

  The Service Request is used to obtain URLs from a Directory Agent or
  Service Agents.





Veizades, et. al.           Standards Track                    [Page 19]

RFC 2165               Service Location Protocol               June 1997


  The format of the Service Request is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Service Location header (function = SrvReq)           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |length of prev resp list string|<Previous Responders Addr Spec>|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                  <Previous Responders Addr Spec>              \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  length of predicate string   |  Service Request <predicate>  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \               Service Request <predicate>, contd.             \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  If a UA issues a request which will result in a reply which is too
  large, the SA or DA will return an abbreviated response (in a
  datagram the size of the site's MTU) which has the 'Overflow' bit
  flag set.  The UA must then issue the request again using TCP.

  The <Previous Responders Addr Spec> is described in sections 7 and
  20.1.

  After a User Agent restarts (say, after rebooting of a system,
  loading of the network kernel), Service Requests should be delayed
  for some random time uniformly distributed within a one second
  interval centered about a configured delay value (by default,
  CONFIG_INTERVAL_4).

  The Service Request allows the User Agent to specify the Service Type
  of the service and a Predicate in a specific language.  The general
  form of a Service Request is shown below:

     <srvtype>[.<na>]/[<scope>]/[<where>]/

  The punctuation is necessary even where the fields are omitted.

   -  The <srvtype> refers to the Service Type.  For each type of
      service available, there is a unique Service type name string.
      See section 20.2.1.






Veizades, et. al.           Standards Track                    [Page 20]

RFC 2165               Service Location Protocol               June 1997


   -  The <na> is the Naming Authority.  This string determines the
      semantic interpretation of the attribute information in the
      <where> part of the Service Request.

   -  The <scope> is a string used to restrict the range of the query.
      Scope is determined administratively, at a given site.  It is not
      necessarily related to network topology (see Section 16).
      Leaving this field out means that the request can be satisfied
      only by unscoped service advertisements.

   -  The <where> string is the Where Clause of the request.  It
      contains a query which allows the selection of those service
      instances which the User Agent is interested in.  The query
      includes attributes, boolean operators and relations.  (See
      section 5.3.)

  In the case of a multicast service request, a list of previous
  responders is sent.  This list will prevent those in the list from
  responding, to be sure that responses from other sources are not
  drowned out.  The request is multicast repeatedly (with a recommended
  wait interval of CONFIG_INTERVAL_2) until there are no new responses,
  or a certain time (CONFIG_INTERVAL_3) has elapsed.  Different timing
  values are applied to a Service Request used for Directory Agent
  Discovery, see Section 5.2.

  In order for a request to succeed in matching registered information,
  the following conditions must be met:

   1. The result must have the same Service Type as the request.

   2. It must have the same Naming Authority.

   3. It must have the same scope.  (If the scope of the request
      as omitted, the request will only match services which were
      registered with no scope.  Note that a scoped request WILL match
      all unscoped Services).

   4. The conditions specified in the Where Clause must match the
      attributes and keywords registered for the service.












Veizades, et. al.           Standards Track                    [Page 21]

RFC 2165               Service Location Protocol               June 1997


5.1. Service Request Usage

  The User Agent may form Service Requests using preconfigured
  knowledge of a Service Type's attributes.  It may also issue
  Attribute Requests to obtain the attribute values for a Service Type
  before issuing Service Requests (see Section 13).  Having obtained
  the attributes which describe a particular kind of service from an
  Attribute Request, or using configured knowledge of a service's
  attributes, the User Agent can build a predicate that describes the
  service needs of the user.

  Service Requests may be sent directly to a Directory Agent.  Suppose
  a printer supporting the lpr protocol is needed on the 12th floor
  which has UNRESTRICTED_ACCESS and prints 12 pages per minute.
  Suppose further that a Attribute Request indicates that there is a
  printer on the 12th floor, a printer that prints 12 pages per minute,
  and a printer that offers UNRESTRICTED_ACCESS. To check whether they
  are same printer, issue the following request:

     lpr//(& (PAGES PER MINUTE==12)
              (UNRESTRICTED_ACCESS)
              (LOCATION==12th FLOOR))/

  Suppose there is no such printer.  The Directory Agent responds with
  a Service Reply with 0 in the number of responses and no reply
  values.

  The User Agent then tries a less restrictive query to find a printer,
  using the 12th floor as "where" criteria.

     lpr//(LOCATION==12th FLOOR)/

  In this case, there is now only one reply:

     Returned URL:   service:lpr://igore.wco.ftp.com:515/draft

  The Address Specification for the printer is:  igore.wco.ftp.com:515,
  containing the name of the host managing the requested printer.
  Files would be printed by spooling to that port on that host.  The
  word 'draft' refers to the name of the print queue the lpr server
  supports.










Veizades, et. al.           Standards Track                    [Page 22]

RFC 2165               Service Location Protocol               June 1997


  In the absence of a Directory Agent, the request above could be
  multicast.  In this case it would be sent to the Service Specific
  Multicast Address for "service:printer" and not to the Directory
  Agent.  Service Agents that can satisfy the predicate will reply.
  Service Agents which cannot support the character set of the request
  MUST return CHARSET_NOT_UNDERSTOOD in the SrvRply.  In all other
  circumstances, Service Agents which cannot satisfy the reply do not
  send any reply at all.

  The only way a User Agent can be sure there are no services which
  match the query is by retrying the request (CONFIG_INTERVAL_8).  If
  no response comes, the User Agent gives up and assumes there are no
  such printers.

  Another form of query is a simpler 'join' query.  Its syntax has no
  parentheses or logical operators.  Each term is conjoined (AND-ed
  together.)  Rewriting the initial query provides an example:

     lpr//PAGES PER MINUTE==12,
          UNRESTRICTED_ACCESS,
          LOCATION==12th FLOOR/

5.2. Directory Agent Discovery Request

  Normally a Service Request returns a Service Reply.  The sole
  exception to this is a Service Request for the Service Type
  "directory-agent".  This Service Request is answered with a DA
  Advertisement.

  Without configured knowledge of a Directory Agent (DA), a User Agent
  or Service Agent uses a Service Request to discover a DA. (See
  section 15.1 for mechanisms by which a client may be configured to
  have knowledge of a DA.) Such a Service Request used for Directory
  Agent Discovery includes a predicate of the form:

     directory-agent///

  This query is always sent to the Directory Agent Discovery multicast
  address.  The Service Type of a Directory Agent is "directory-agent",
  hence it is the Service Type used in the request.  No scope is
  included in the request, so all Directory Agents will reply.  This is
  the only request which omits a scope which all Directory Agents MUST
  respond to.  Normally, a Directory Agent with a scope ONLY responds
  to requests with that scope.  No Naming Authority is included, so
  "IANA" is assumed.  We want to reach all the available directory
  agents.  If the scope were supplied, only DAs supporting that scope
  would reply.




Veizades, et. al.           Standards Track                    [Page 23]

RFC 2165               Service Location Protocol               June 1997


  DA Advertisement Replies may arrive from different sources, similar
  in form to:

    URL returned:   service:directory-agent://slp-resolver.catch22.com
    Scope returned: ACCOUNTING

    URL returned:   service:directory-agent://204.182.15.66 Scope
    returned: JANITORIAL SERVICES

  The DA Advertisement format is defined in Section 14.

  If the goal is merely to discover any Directory Agent, the first
  reply will do.  If the goal, however, is to discover all reachable
  DAs, the request must be retransmitted after an interval (the
  recommended time is CONFIG_INTERVAL_5).  This retransmitted request
  will include a list of DAs which have already responded.  See
  sections 7 and 20.1.  Directory Agents which receive the request will
  only respond if they are not on this list.  After there are no new
  replies, all DAs are presumed to have been discovered.

  If a DA fails to respond after CONFIG_INTERVAL_6 seconds, the UA or
  Service Agent should use a different DA. DA addresses may be cached
  from previous discovery attempts, preconfigured, or by use of DHCP
  (see section 15.2).  If no such DA responds, DA discovery should be
  used to find a new DA. Only after CONFIG_INTERVAL_7 seconds should it
  be assumed that no DA exists and multicast based Service Requests
  should be used.

5.3. Explanation of Terms of Predicate Grammar

  A predicate has a simple structure, which depends on parentheses,
  commas and slashes to delimit the elements.  Examples of proper usage
  are given throughout this document.  The terms used in the grammar
  are as follows:

     predicate:

        Placed in a Service Request, this is interpreted by a Service
        Agent or Directory Agent to determine what information to
        return.

     scope:

        If this is absent in a Service Request, the request will match
        only services registered without a scope.  If it is present,
        only services registered under that scope or are unscoped will
        match the request.




Veizades, et. al.           Standards Track                    [Page 24]

RFC 2165               Service Location Protocol               June 1997


     where-clause:

        This determines which services the request matches.  An empty
        where-clause will match all services.  The request will be
        limited to services which have the specified Service Type, so
        the where-clause is not the sole factor in picking out which
        services match the request.

     where-list:

        The where-list is a logical expression.  It can be a single
        expression, a disjunction or a conjunction.  A single
        expression must apply for the where-clause to match.  A
        disjunction matches if any expression in the OR list matches.
        A conjunction matches only if all elements in the AND list
        match.

        Note that there is no logical negation operator:  This is
        because there is no notion of returning "everything except"
        what matches a given criteria.

        A where-list can be nested and complex.  For example, the
        following requires that three subexpressions must all be true:

               (& (| <query-item> <query-item>)
                  <query-item>
                  (& <query-item> <query-item> <query-item>)
               )

        Notice that white space, tabs or carriage returns can be added
        anywhere outside query-items.  Each list has 2 or more items in
        it, and lists can be nested.  Services which fulfill the entire
        logical expression match the where-clause.

        degenerate expressions but they should be tolerated.  They are
        equivalent to <query-item>.

     query-item:

        A query item has the form:

              '(' <attr-tag> <comp-op> <attr-val> ')'

        or

              '(' <keyword> ')'





Veizades, et. al.           Standards Track                    [Page 25]

RFC 2165               Service Location Protocol               June 1997


        Examples of this would be:

           (SOME ATTRIBUTE == SOME VALUE)
           (RESERVED)
           (QUEUE LENGTH <= 234)

     query-join:

        The query-join is a comma delimited list of conditions which
        the service must satisfy in order to match the query.  The
        items are considered to be logically conjoined.  Thus the
        query-join:

              ATTR1=VALUE1, KEYWORD1, KEYWORD2, ATTR2>=34

        is equivalent to the where-list:

              (& (ATTR1=VALUE1) (KEYWORD1) (KEYWORD2) (ATTR2>=34))

        The query-join cannot be mixed with a where-list.  It is
        provided as a convenient mechanism to provide a statement of
        necessary conditions without building a logical expression.

5.4. Service Request Predicate Grammar

  Service Requests can precisely describe the services they need by
  including a Predicate the body of the Request.  This Predicate must
  be constructed according to the grammar below.

  <predicate>  ::= <srvtype>['.'<na>]'/'<scope>'/'<where>'/'

  <srvtype>    ::= string representing type of service.  Only
                   alphanumeric characters, '+', and '-' are allowed.

  <na>         ::= string representing the Naming Authority.
                   Only alphanumeric characters, '+',
                   and '-' are allowed.  If this field is
                   omitted then "IANA" is assumed.

  <scope>      ::= string representing the directory agent scope.
                   '/', ',' (comma) and ':'  are not allowed in
                   this string.  The scopes "LOCAL" and "REMOTE"
                   are reserved.

  <attr-tag>   ::= class name of an attribute of a given Service
                   Type.  This tag cannot include the following
                    characters:  '(', ')', ',', '=', '!', '>',
                    '<', '/', '*', except where escaped (see 17.1.)



Veizades, et. al.           Standards Track                    [Page 26]

RFC 2165               Service Location Protocol               June 1997


  <keyword>    ::= a class name of an attribute which will have
                   no values.  This string has the same limits
                   as the <attr-tag>, except that white space
                   internal to the keyword is illegal.

  <where>      ::= <where-any> |
                   <where-list> |
                   <query-join>

  <where-any>  ::=
                   That is NOTHING, or white space.

  <where-list> ::= '(' '&' <where-list> <query-list> ')' |
                   '(' '|' <where-list> <query-list> ')' |
                   '(' <keyword> ')'
                   '(' <attr-tag> <comp-op> <attr-val> ')'

  <query-list> ::= <where-list> |
                   <where-list> <query-list>
  <query-join> ::= <keyword> |
                   <join-item> |
                   <query-join> ',' <keyword> |
                   <query-join> ',' <join-item>

  <join-item>  ::= <attr-tag> <comp-op> <attr-val>

  <comp-op>    ::= "!=" | "==" | '<' | "<=" | '>' | ">="

  <attr-val>   ::= any string (see Section 20.5 for the ways
                   in which attr-vals are interpreted.)
                   Value strings may not contain '/', ','
                   '=', '<', '>', or '*' except where escaped
                   (see 17.1.).

                   '(' and ')' may be used in attribute values
                    for the purpose of encoding a binary values.
                    Binary encodings (See 20.5) may
                    include the above reserved characters.

5.5. String Matching for Requests

  All strings are case insensitive, with respect to string matching on
  queries.  All preceding or trailing blanks should not be considered
  for a match, but blanks internal to a string are relevant.

  For example, "  Some String  " matches "SOME STRING", but not "some
  string".




Veizades, et. al.           Standards Track                    [Page 27]

RFC 2165               Service Location Protocol               June 1997


  String matching may only be performed over the same character sets.
  If a request cannot be satisfied due to a lack of support for the
  character set of the request a CHARSET_NOT_UNDERSTOOD error is
  returned.

  String comparisons (using comparison operators such as '<' or
  registration, not using any language specific rules.  The ordering is
  strictly by the character value, i.e.  "0" < "A" is true when the
  character set is US-ASCII, since "0" has the value of 48 and "A" has
  the value 65.

  The special character '*' may precede or follow a string in order to
  allow substring matching.  If the '*' precedes a string, it matches
  any attribute value which ends with the string.  If the string ends
  with a '*', it matches any attribute value which begins with the
  string.  Finally, if a string begins and ends with a '*', the string
  will match any attribute value which contains the string.

  Examples:

       "bob*" matches "bob", "bobcat", and "bob and sue" "*bob" matches
       "bob", "bigbob", and "sue and bob" "*bob*" matches "bob",
       "bobcat", "bigbob", and "a bob I know"

  String matching is done after escape sequences have been substituted.
  See sections 17, 5.3, 17.1.

6. Service Reply Message Format

  The format of the Service Reply Message is:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Location header (function = SrvRply)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Error Code            |         URL Entry count       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         <URL Entry 1> ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                              .                                |
    \                              .                                \
    |                              .                                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         <URL Entry N> ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Each Service Reply message is composed of a list of URL Entries.



Veizades, et. al.           Standards Track                    [Page 28]

RFC 2165               Service Location Protocol               June 1997


  The Error Code may have one of the following values:

     0        Success

     LANGUAGE_NOT_SUPPORTED
              A SA or DA returns this when a request is received from a
              UA which is in a language for which there is no
              registered Service Information and the request arrived
              with the Monolingual bit set.  See Section 17.

     PROTOCOL_PARSE_ERROR
              A SA or DA returns this error when a SrvRply is received
              which cannot be parsed or the declared string lengths
              overrun the message.

     SCOPE_NOT_SUPPORTED
              A DA will return this error if it receives a request
              which has a scope not supported by the DA. An SA will not
              return this error; it will simply not reply to the
              multicast request.

     CHARSET_NOT_UNDERSTOOD
              If the DA or SA receives a request or registration in a
              character set which it does not support, it will return
              this error.

  Each <URL Entry> in the list has the form defined in Section 4.2.
  The URL entries in the reply have no delimiters between them, other
  than the length fields.  The URL length fields indicate where the URL
  strings end.  If the presence of an URL Authenticator block is
  signalled by the 'U' bit, the length of the authenticator block is
  determined by information within the block as discussed in section
  4.3.  A User Agent MAY use the authentication block to determine
  whether the Service Agent advertising the URL is, in fact, authorized
  to offer the indicated service.  If, in a list of URL entries, some
  of the URLs indicate services which are in protected scopes (see
  section 16.1) while other URLs in the list indicate services which
  are not in protected scopes, the latter must still have
  Authentication Blocks, but the length of the authentcitor is shown as
  zero, and no authentication need be done.

7. Service Type Request Message Format

  The Service Type Request is used to determine all the types of
  services supported on a network.






Veizades, et. al.           Standards Track                    [Page 29]

RFC 2165               Service Location Protocol               June 1997


  The request should be sent directly to a DA (though it may also be
  sent to the Service Location General Multicast Address), in order to
  find out all services available on the site network (which are
  advertised by Directory Agents and Service Agents.)  If no DA is
  available, a User Agent MAY issue more than one request to insure
  that all replies have been received.  In each subsequent request, a
  User Agent includes those Service Types that it is aware of.  When no
  new replies arrive within CONFIG_INTERVAL_3 from a request, the User
  Agent can presume that it has acquired a complete set of available
  Service Types.

  The format of a Service Type Request is:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Service Location header (function = SrvTypeRqst)       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  length of prev resp string   |<Previous Responders Addr Spec>|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                  <Previous Responders Addr Spec>              \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   length of naming authority  |   <Naming Authority String>   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \            <Naming Authority String>, continued               \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     length of Scope String    |         <Scope String>        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                   <Scope String>, continued                   \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Note that the <Previous Responders Addr Spec> is a comma delimited
  list.  (See section 20.1.)  The 'length of prev responder list' field
  indicates the length of the comma delimited list string.  A previous
  responder list with 3 elements takes this form:

        <addr-spec>,<addr-spec>,<addr-spec>








Veizades, et. al.           Standards Track                    [Page 30]

RFC 2165               Service Location Protocol               June 1997


  The Naming Authority, if included, will limit the replies to Service
  Type Requests to Service Types which have the specified Naming
  Authority.  If this field is omitted (i.e., the length field is
  zero), the default Naming Authority ("IANA") is assumed.  If the
  length field is -1, service types from all naming authorities are
  requested.

  The Scope String Field, if included, will limit replies to Service
  Types which have the specified scope or are unscoped.  If this field
  is omitted, all Service Types (from the specified Naming Authority)
  are returned.

8. Service Type Reply Message Format

  The Service Type Reply has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Service Location header (function = SrvTypeRply)       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Error Code           |    number of service types    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                     <Service Type Item 1>                     \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             . . .                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                     <Service Type Item N>                     \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The format of a Service Type Item is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | length of Service Type String |     <Service Type String>     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                 <Service Type String>, continued              \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Veizades, et. al.           Standards Track                    [Page 31]

RFC 2165               Service Location Protocol               June 1997


  The Error Code may have one of the following values:

     0        Success

     PROTOCOL_PARSE_ERROR
              A SA or DA returns this error when a SrvTypeRqst is
              received which cannot be parsed.

     SCOPE_NOT_SUPPORTED
              A DA which is configured to have a scope will return this
              error if it receives a SrvTypeRqst which is set to have a
              scope which it does not support.  An SA will not return
              this error, it will simply silently discard the multicast
              request.

     CHARSET_NOT_UNDERSTOOD
              If the DA receives a SrvTypeRqst in a character set which
              it does not support, it MUST use this error.

  The service type's name is provided in the <Service Type String>.  If
  the service type has a naming authority other than "IANA" it should
  be returned following the service type string and a "." character.
  See section 20.2.1 for the formal definition of this field.  User
  Agents calculate Service Specific Multicast addresses based on a hash
  of the Service Type (see Section 3.6.2).  This multicast address may
  then be used for issuing Service and Attribute Requests directly to
  SAs.

  The following are examples of Service Type Strings which might be
  found in Service Type Replies:

        service:lpr://
        service:http://
        service:nfs://

9. Service Registration Message Format

  After a Service Agent has found a Directory Agent, it begins to
  register its advertised services one at a time.  A Service Agent must
  wait for some random time uniformly distributed within the range
  specified by CONFIG_INTERVAL_11 before registering again.
  Registration is done using the Service Registration message
  specifying all attributes for a service.  If the service registration
  in a protected scope 16.1, then the service MUST include both a URL
  Authentication block and an Attribute Authentication block (see
  section 4.3).  In that case, the service agent MUST set both the 'U'
  bit and the 'A' bit (see section 4).




Veizades, et. al.           Standards Track                    [Page 32]

RFC 2165               Service Location Protocol               June 1997


  A Directory Agent must acknowledge each service registration request.
  If authentication blocks are included, the Directory Agent MUST
  verify the authentication before registering the service.  This
  requires obtaining key information, either by preconfiguration,
  maintenance of a security association with the service agent, or
  acquiring the appropriate certificate.

  The format of a Service Registration is:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Service Location header (function = SrvReg)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                          <URL-Entry>                          \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Length of Attr List String   |          <attr-list>          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                    <attr-list>, Continued.                    \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    (if present) Attribute Authentication Block ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The <URL-Entry> is defined at the end of Section 4.2.  The <attr-
  list> is defined in Section 20.3.  The Attribute Authentication
  Block, which is only present if the 'A' bit is set in the message
  header, is defined in section 4.3.

  Service registration may use a connectionless protocol (e.g.  UDP),
  or a connection oriented protocol (e.g.  TCP). If the registration
  operation may contain more information than can be sent in one
  datagram, the Service Agent MUST use a connection oriented protocol
  to register itself with the DA. When a Service Agent registers the
  same attribute class more than once for a service instance, the
  Directory Agent overwrites the all the values associated with that
  attribute class for that service instance.  Separate registrations
  must be made for each language that the service is to be advertised
  in.

  If a SA attempts to register a service with a DA and the registration
  is larger than the site path MTU, then the DA will reply with a
  SrvAck, with the error set to INVALID_REGISTRATION and the 'Overflow'
  byte set.




Veizades, et. al.           Standards Track                    [Page 33]

RFC 2165               Service Location Protocol               June 1997


  An example of Service Registration information is:

     Lifetime (seconds):   16-bit unsigned integer
     URL (at least):       service:<srvtype>://<addr-spec>
     Attributes (if any):  (ATTR1=VALUE),KEYWORD,(ATTR2 = VAL1, VAL2)

  In order to offer continuously advertised services, Service Agents
  should start the reregistration process before the Lifetime they used
  in the registration expires.

  An example of a service registration (valid for 3 hours) is as
  follows:

     Lifetime:   10800
     URL:        service:lpr://igore.wco.ftp.com:515/draft
     Attributes: (SCOPE=DEVELOPMENT),
                 (PAPER COLOR=WHITE),
                 (PAPER SIZE=LETTER),
                 UNRESTRICTED_ACCESS,
                 (LANGUAGE=POSTSCRIPT, HPGCL),
                 (LOCATION=12 FLOOR)

  The same registration could be done again, as shown below, in German;
  however, note that "lpr", "service", and "SCOPE" are reserved terms
  and will remain in the language they were originally registered
  (English).

     Lifetime:   10800
     URL:        service:lpr://igore.wco.ftp.com:515/draft
     Attributes: (SCOPE=ENTWICKLUNG),
                 (PAPIERFARBE=WEISS),
                 (PAPIERFORMAT=BRIEF),
                 UNBEGRENTZTER_ZUGANG,
                 (DRUECKERSPRACHE=POSTSCRIPT,HPGCL),
                 (STANDORT=11 ETAGE)

  Scoped registrations must contain the SCOPE attribute.  Unscoped
  registrations must be registered with all unscoped Directory Agents.

  Registrations of a previously registered service are considered an
  update.  If such an attribute registration is performed in a
  protected scope (see section 16.1), a new Attribute Authentication
  block must also be included, and the 'A' bit set in the registration
  message header.

  The new registration's attributes replace the previous
  registration's, but do not effect attributes which were included
  previously and are not present in the update.



Veizades, et. al.           Standards Track                    [Page 34]

RFC 2165               Service Location Protocol               June 1997


  For example, suppose service:x://a.org has been registered with
  attributes A=1, B=2, C=3.  If a new registration comes for
  service:x://a.org with attributes C=30, D=40, then the attributes for
  the service after the update are A=1, B=2, C=30, D=40.

  In the example above, the SCOPE is set to DEVELOPMENT (in English)
  and ENTWICKLUNG (in German).  Recall that all strings in a message
  must be in one language, which is specified in the header.  The
  string SCOPE is *not* translated, as it is one of the reserved
  strings in the Service Location Protocol (see section 17.2.)

  The Directory Agent may return a server error in the acknowledgment.
  This error is carried in the Error Codes field of the service
  location message header.  A Directory Agent MUST decline to register
  a service if it is specified with an unsupported scope.  In this case
  a SCOPE_NOT_SUPPORTED error is returned in the SrvAck.  A Directory
  Agent MUST NOT accept Service Registrations which have an unsupported
  scope unless it is an unscoped Directory Agent, in which case it MUST
  accept all Service Registrations.

  An unscoped Service Registration will match all requests.  A request
  which specifies a certain scope will therefore return services which
  have that scope and services which are unscoped.  It is strongly
  suggested that one should use scopes in all registrations or none.
  See Sections 16 and 3.7 for details.

  When the URL entry accompanying a registration also contains an
  authentication block (section 4.3), the DA MUST perform the indicated
  authentication, and subsequently indicate the results in the Service
  Acknowledgement message.

10. Service Acknowledgement Message Format

  A Service Acknowledgement is sent as the result of a DA receiving and
  processing a Service Registration or Service Deregistration.  An
  acknowledgment indicating success must have the error code set to
  zero.  Once a DA acknowledges a service registration it makes the
  information available to clients.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            Service Location header (function = SrvAck)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Error Code           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Veizades, et. al.           Standards Track                    [Page 35]

RFC 2165               Service Location Protocol               June 1997


  The Error Code may have one of the following values:

     0        Success

     PROTOCOL_PARSE_ERROR
              A DA returns this error when the SrvReg or SrvDereg is
              received which cannot be parsed or the declared string
              lengths overrun the message.

     INVALID_REGISTRATION
              A DA returns this error when a SrvReg or SrvDeReg is
              invalid.  For instance, an invalid URL, unknown or
              malformed attributes, or deregistering an unregistered
              service all cause this error to be reported.

     SCOPE_NOT_SUPPORTED
              A DA which is configured to have a scope will return this
              error if it receives a SrvReq which is set to have a
              scope which it does not support.

     CHARSET_NOT_UNDERSTOOD
              If the DA receives a SrvReg or SrvDereg in a character
              set which it does not support, it will return this error.

     AUTHENTICATION_ABSENT
              If DA has been configured to require an authentication
              for any service registered in the requested scope, and
              there are no authentication blocks in the registration,
              the DA will return this error.

     AUTHENTICATION_FAILED
              If the registration contains an authentication block
              which fails to match the correct result as calculated
              (see section 4.3) over the URL or attribute data to be
              authenticated, the DA will return this error.

  If the Directory Agent accpets a Service Registration, and already
  has an existing entry, it updates the existing entry with the new
  lifetime information and possibly new attributes and new attribute
  values.  Otherwise, if the registration is acceptable (including all
  necessary authentication checks) the Directory Agent creates a new
  entry, and sets the 'F' bit in the Service Acknowledgement returned
  to the Service Agent.








Veizades, et. al.           Standards Track                    [Page 36]

RFC 2165               Service Location Protocol               June 1997


11. Service Deregister Message Format

  When a service is no longer available for use, the Service Agent must
  deregister itself from Directory Agents that it has been registered
  with.  A service uses the following PDU to deregister itself.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Service Location header (function = SrvDereg)       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         length of URL         |              URL              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \              URL of Service to Deregister, contd.             \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             (if present) authentication block .....
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  length of <tag spec> string  |            <tag spec>         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                     <tag spec>, continued                     \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Service Agent should retry this operation if there is no response
  from the Directory Agent.  The Directory Agent acknowledges this
  operation with a Service Acknowledgment message.  Once the Service
  Agent receives an acknowledgment indicating success, it can assume
  that the service is no longer advertised by the Directory Agent.  The
  Error Code in the Acknowledgment of the Service Deregistration may
  have the same values as described in section 10.

  The Service Deregister Information sent to the directory agent has
  the following form:

       service:<srvtype>://<addr-spec>
       Attribute tags (if any):  ATTR1,KEYWORD,ATTR2

  This will deregister the specified attributes from the service
  information from the directory agent.  If no attribute tags are
  included, the entire service information is deregistered in every
  language and every scope it was registered in.  To deregister the
  printer from the preceding example, use:

        service:lpr://igore.wco.ftp.com:515/draft




Veizades, et. al.           Standards Track                    [Page 37]

RFC 2165               Service Location Protocol               June 1997


  If the service was originally registered with a URL entry containing
  a URL authentication block, then the Service Deregistration message
  header MUST have the 'U' bit set, and the URL entry is then followed
  by the authentication block, with the authenticator calculated over
  the URL data, the timestamp, and the length of the authenticator as
  explained in section 4.3.  In this calculation, the lifetime of the
  URL data is considered to be zero, no matter what the current value
  for the remaining lifetime of the registered URL.

12. Attribute Request Message Format

  The Attribute Request is used to obtain attribute information.  The
  UA supplies a request and the appropriate attribute information is
  returned.

  If the UA supplies only a Service Type, then the reply includes all
  attributes and all values for that Service Type.  The reply includes
  only those attributes for which services exist and are advertised by
  the DA or SA which received the Attribute Request.  Since different
  instances of a given service can, and very likely will, have
  different values for the attributes defined by the Service Type, the
  User Agent must form a union of all attributes returned by all
  service Agents.  The Attribute information will be used to form
  Service Requests.

  If the UA supplies a URL, the reply will contain service information
  corresponding to that URL.

  Attribute Requests include a 'select clause'.  This may be used to
  limit the amount of information returned.  If the select clause is
  empty, all information is returned.  Otherwise, the UA supplies a
  comma delimited list of attribute tags and keywords.  If the
  attribute or keyword is defined for a service, it will be returned in
  the Attribute Reply, along with all registered values for that
  attribute.  If the attribute selected has not been registered for
  that URL or Service Type, the attribute or keyword information is
  simply not returned.














Veizades, et. al.           Standards Track                    [Page 38]

RFC 2165               Service Location Protocol               June 1997


  The Attribute Request message has the following form:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Service Location header (function = AttrRqst)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |length of prev resp list string|<Previous Responders Addr Spec>|
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \         <Previous Responders Addr Spec>, continued            \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         length of URL         |              URL              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                         URL, continued                        \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        length of <Scope>      |           <Scope>             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                      <Scope>, continued                       \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   length of <select-list>     |        <select-list>          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                   <select-list>, continued                    \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  The <Previous Responder Address List> functions exactly as introduced
  in Section 7.  See also Section 20.1.

  The URL can take two forms:  Either it is simply a Service Type, such
  as "service:http:", or it can be a URL, such as
  "service:lpr://igore.wco.ftp.com:515/draft".  In the former case, all
  attributes and the full range of values for each attribute for the
  Service Type is returned.  In the latter case, only the attributes
  for the service whose URL is defined are returned.

  The Scope String is provided so that Attribute Requests for Service
  Types can be made so that only the Attribute information pertaining
  to a specific scope will be returned.  This field is ignored in the
  case when a full URL is sent in the Attribute Request.  The rules for
  encoding of the Scope String are given in Section 5.4.



Veizades, et. al.           Standards Track                    [Page 39]

RFC 2165               Service Location Protocol               June 1997


  The select list takes the form:

   <select-list>  ::= <select-item> |
                      <select-item> ',' <select-list>

   <select-item>  ::= <keyword> | <attr-tag> | <partial-tag> '*'

   <partial-tag>  ::= the partial class name of an attribute
                      If followed by an '*', it matches all class names
                      which begin with the partial tag.  If preceded by
                      a partial tag.  If both preceded and followed by
                      '*' it matches all class names which contain the
                      partial tag.

  For definitions of <attr-tag> and <keyword> see 5.4.

  An example of a select-list following the printer example is:

  PAGES PER MINUTE, UNRESTRICTED_ACCESS, LOCATION

  If sent to a Directory Agent, the number of previous responders is
  zero and there are no Previous Responder Address Specification.
  These fields are only used for repeated multicasting, exactly as for
  the Service Request.

13. Attribute Reply Message Format

  An Attribute Reply Message takes the form:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Service Location header (function = AttrRply)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Error Code            |  length of <attr-list> string |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                          <attr-list>                          \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Error Code may have the following values:

     0        Success







Veizades, et. al.           Standards Track                    [Page 40]

RFC 2165               Service Location Protocol               June 1997


     LANGUAGE_NOT_SUPPORTED
              A SA or DA returns this when a request is received from a
              UA which is in a language for which there is no
              registered Service Information and the request arrived
              with the Monolingual bit set.  See Section 17.

     PROTOCOL_PARSE_ERROR
              A DA or SA returns this error when a AttrRqst is received
              which cannot be parsed or the declared string lengths
              overrun the message.

     SCOPE_NOT_SUPPORTED
              A DA which is configured to have a scope will return this
              error if it receives an AttrRqst which is set to have a
              scope which it does not support.  SAs will silently
              discard multicast AttrRqst messages for scopes they do
              not support.

     CHARSET_NOT_UNDERSTOOD
              If the DA receives an AttrRqst in a character set which
              it does not support, it will return this error.  SAs will
              silently discard multicast AttrRqst messages which arrive
              using character sets they do not support.

  The <attr-list> (attribute list) has the same form as the attribute
  list in a Service Registration, see Section 20.3 for a formal
  definition of this field.

  An Attribute Request for "lpr" might elicit the following reply
  (UNRESTRICTED_ACCESS is a keyword):

        (PAPER COLOR=WHITE,BLUE),
        (PAPER SIZE=LEGAL,LETTER,ENVELOPE,TRACTOR FEED),
        UNRESTRICTED_ACCESS,
        (PAGES PER MINUTE=1,3,12),
        (LOCATION=12th, NEAR ARUNA'S OFFICE),
        (QUEUES=LEGAL,LETTER,ENVELOPE,LETTER HEAD)

  If the message header has the 'A' bit set, the Attribute Reply will
  have an Attribute Authentication block set.  In this case, the
  Attribute Authenticator must be returned with the entire list of
  attributes, exactly as it was registered by an SA in a protected
  scope.  In this case, the URL was registered in a protected scope and
  the UA included a URL but not a select clause.  If the AttrRqst
  specifies that only certain attributes are to be returned, the DA
  does not (typically cannot) compute a new Authenticator so it simply
  returns the attributes without an authenticator block.




Veizades, et. al.           Standards Track                    [Page 41]

RFC 2165               Service Location Protocol               June 1997


  A UA which wishes to obtain authenticated attributes for a service in
  a protected scope MUST therefore must include a particular URL and no
  select list with the AttrRqst.

14. Directory Agent Advertisement Message Format

  Directory Agent Advertisement Messages have the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Location header (function = DAAdvert)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Error Code          |         Length of URL         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                              URL                              \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Length of <Scope-list>    |          <Scope-list>         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    \                    <Scope-list>, continued                    \
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Error Code is set when a DA Advertisement is returned as the
  result of a Service Request.  It will always be set to 0 in the case
  of an unsolicited DA Advertisement.  The Error Code may take the
  values specified in Section 6.

  The URL corresponds to the Directory Agent's location.  The <Scope-
  list> is a comma delimited list of scopes which the DA supports, in
  the following format:

        <Scope-list>    ::=    <Scope> | <Scope-list> ',' <Scope>
        <Scope>         ::=    String representing a scope

  See Section 5.4 for the lexical rules regarding <Scope>.

  DA Advertisements sent in reply to a Directory Agent Discovery
  Request has the same format as the unsolicited DA Advertisement, for
  example:

     URL:        service:directory-agent://SLP-RESOLVER.CATCH22.COM
     SCOPE List: ADMIN





Veizades, et. al.           Standards Track                    [Page 42]

RFC 2165               Service Location Protocol               June 1997


  The Directory Agent can be reached at the Address Specification
  returned, and supports the SCOPE called "ADMIN".

15. Directory Agents

15.1. Introduction

  A Directory Agent acts on behalf of many Service Agents.  It acquires
  information from them and acts as a single point of contact to supply
  that information to User Agents.

  The queries that a User Agent multicasts to Service Agents (in an
  environment without a Directory Agent) are the same as queries that
  the User Agent might unicast to a Directory Agent.  A User Agent may
  cache information about the presence of alternate Directory Agents to
  use in case a selected Directory Agent fails.

  Aside from enhancing the scalability of the protocol (see section
  3.7), running multiple DAs provides robustness of operation.  The DAs
  may have replicated service information which remain accessible even
  when one of the DAs fail.  Directory Agents, in the future, may use
  mechanisms outside of this protocol to coordinate the maintenance of
  a distributed database of Service Location information, and thus
  scale to enterprise networks or larger administrative domains.

  Each Service Agent must register with all DAs they are configured to
  use.  UAs may choose among DAs they are configured to use.

  Locally, Directory Agent consistency is guaranteed using mechanisms
  in the protocol.  There isn't any Directory to Directory Agent
  protocol yet.  Rather, passive detection of DAs by SAs ensures that
  eventually service information will be registered consistently
  between DAs.  Invalid data will age out of the Directory Agents
  leaving only transient stale registrations even in the case of a
  failure of a Service Agent.

15.2. Finding Directory Agents

  A User or Service Agent may be statically configured to use a
  particular DA. This is discouraged unless the application resides on
  a network where any form of multicast or broadcast is impossible.

  Alternatively, a host which uses DHCP [2, 11] may use it to obtain a
  Directory Agent's address.  DHCP options 78 and 79 have been assigned
  for this purpose [21].

  The third way to discover DAs is dynamically.  This is done by
  sending out a Directory Agent Discovery request (see Section 5.2).



Veizades, et. al.           Standards Track                    [Page 43]

RFC 2165               Service Location Protocol               June 1997


  Lastly, the agent may be informed passively as follows:

  When a Directory Agent first comes on-line it sends an unsolicited DA
  Advertisement to the Service Location general multicast address.  If
  a DA supports a particular scope or set of scopes these are placed in
  the reply.  The class for this attribute is 'SCOPE'.

  Every CONFIG_INTERVAL_9 a Directory Agent will send an unsolicited DA
  Advertisement.  This will ensure that eventually it will be
  discovered by all applications which are concerned.

  When a Directory Agent first comes up it begins with 0 as its XID,
  and increments this by one each time it sends an unsolicited DA
  Advertisement.  When the counter wraps, it should go from 0xFFFF to
  0x0100, not 0.

  If the Directory Agent has stored all of the service information in a
  nonvolatile store, it should initially set the XID to 0x100, as it is
  not coming up 'stateless.'  If it stores service registrations in
  memory only, it will restart without any state.  It should indicate
  this by resetting its XID to 0.

  All Service Agents which receive the unsolicited DA Advertisement
  should examine its XID. If the Directory Agent has never before been
  heard from or if the XID is less than it was previously and less than
  256, the Service Agent should assume the DA does not have its service
  registration, even if it once did.  If this is the case and the DA
  has the proper scope, the SA should register all service information
  with the Directory Agent, after waiting a random interval
  CONFIG_INTERVAL_10.

  When a Service Agent or User Agent first comes on-line it must issue
  a Directory Agent Discovery Request unless it is using static or DHCP
  configuration, as described in 5.2.

  A Service Agent registers information with ALL newly discovered
  Directory Agents when either of the above two events take place.
  When scopes are being used, a Service Agent SHOULD choose a set of
  scopes to be advertised in and need only register with Directory
  Agents that support the scopes in which they wish to be registered.
  Services MUST be registered with DAs that support their scope and
  those which have no scope, unless specifically configured not to do
  so (see section 22.1.)








Veizades, et. al.           Standards Track                    [Page 44]

RFC 2165               Service Location Protocol               June 1997


  Once a User Agent becomes aware of a Directory Agent it will unicast
  its queries there.  In the event that more than one Directory Agent
  is detected, it will select one to communicate with.  When scopes are
  supported, the User Agent will direct its queries to different
  Directory Agents depending on which scopes are appropriate domains
  for the query to be answered in.

  The protocol will cause all DAs (of the same scope) to eventually
  obtain consistent information.  Thus one DA should be as good as any
  other for obtaining service information.  There may be temporary
  inconsistencies between DAs.

16. Scope Discovery and Use

  The scope mechanism in the Service Location Protocol enhances its
  scalability.  The primary use of scopes is to provide the capability
  to organize a site network along administrative lines.  A set of
  services can be assigned to a given department of an organization, to
  a certain building or geographical area or for a certain purpose.
  The users of the system can be presented with these organizational
  elements as a top level selection, before services within this domain
  are sought.

  A site network that has grown beyond a size that can be reasonably
  serviced by a few DAs can use the scope mechanism.  DAs have the
  attribute class "SCOPE".  The values for this attribute are a list of
  strings that represent the administrative areas for which this
  Directory Agent is configured.  The semantics and language of the
  strings used to describe the scope are almost entirely the choice of
  the administrative entity of the particular domain in which these
  scopes exist.  The values of SCOPE should be configurable, so the
  system administrator can set its value.  The scopes "LOCAL" and
  "REMOTE" are reserved and SHOULD NOT be used.  Use of these reserved
  values is to be defined in a future protocol document.

  Services with the attribute SCOPE should only be registered with DAs
  which support the same scope or DAs which have no scope.

  Directory Agents advertise their available scopes.  A Service Agent
  may then choose a scope in which to register, and SHOULD register
  with all Directory Agents in that scope, as well as all DAs which
  have no scope.  Failure to be comprehensive in registration according
  to this rule will mean that the service advertisement may not be
  available to all User Agents.







Veizades, et. al.           Standards Track                    [Page 45]

RFC 2165               Service Location Protocol               June 1997


  A Directory Agent which has a scope will return advertisements in
  response to Directory Agent Discovery requests with the scope
  information included.  Note that the "service:directory-agent" scheme
  is registered with the IANA naming authority (which is automatically
  selected by leaving the Naming Authority field empty.)

  The query:

        directory-agent/MATH DEPT//

  Could receive the following DA Advertisement:

     Returned URL:        service:directory-agent://diragent.blah.edu
     Returned SCOPE:      MATH DEPT

  The same Directory Agent if it had no scope value would reply:

     Returned URL:        service:directory-agent://diragent.void.com
     Returned SCOPE:

  If a Directory Agent supported more than one scope it would reply as:

     Returned URL:        service:directory-agent://srv.domain.org
     Returned SCOPE:      MATH DEPT,ENGLISH DEPT,CS DEPT

  A DA which has no scope will reply to any Directory Agent Discovery
  Request.

  Being a member of a scope means that an agent SHOULD use those
  Directory Agents that support its scope.  User Agents send all
  requests to DAs which support the indicated scope.  Services are
  registered with the DA(s) in their scope.  For a UA to find a service
  that is registered in a particular scope it must send requests to a
  DA which supports the indicated scope.  There is no limitation on
  scope membership built into the protocol; that is to say, a User
  Agent or Service Agent may be a member of more than one scope.
  Membership is open to all, unless some external authorization
  mechanism is added to limit access.

16.1. Protected Scopes

  Scope membership MAY also define the security access and
  authorization for services in the scope; such scopes are called
  protected scopes.  If a User Agent wishes to be sure that Service
  Agents are authorized to provide the service they advertise, then the
  User Agent should request services from a protected scope which has
  been configured to have the necessary authentication mechanism and
  keys distributed to the Service Agents within the scope.  A directory



Veizades, et. al.           Standards Track                    [Page 46]

RFC 2165               Service Location Protocol               June 1997


  agent distributing URLs for services in a protected scope will reject
  any registrations or deregistrations for service agents which cannot
  provide cryptographically strong authentication to prove their
  authorization to provide the services.

  For instance, if a campus registrar wishes to find a working printer
  to produce student grade information for mailing, the registrar would
  require the printing user agent to transmit the printable output only
  to those printing Service Agents which have been registered in the
  appropriate protected scope.  Notice that each service agent is,
  under normal circumstances, validated two times:  once when
  registering with the directory agent, and once when the user agent
  validates the URL received with the Service Reply.  This protects
  against the possibilities of malicious Directory Agents as well as
  malicious Service Agents.

  Note that services in protected scopes provide separate
  authentication for their URL entry, and for their attributes.  This
  follows naturally from the needs of the protocol operation.  User
  Agents which specify a service type and attributes needed for service
  in that service type will not receive attribute information from the
  directory agent; they will only receive the appropriate URL entries.
  Only the information returned needs to be authenticated.

  User agents which receive attribute information for a particular URL
  (see section 12), on the other hand, need to authenticate the
  attributes when they are returned (see section 13).  In this case,
  there may be much more data to authenticate, but this operation is
  also performed much less often, usually only while the user is
  browsing the available network resources.

17. Language and Character Encoding Issues

  All Service Registrations declare the language in which the strings
  in the service attributes are written by specifying the appropriate
  code in the message header.  For each language the Service advertises
  a separate registration takes place.  Each of these registrations
  uses the same URL to indicate that they refer to the same service.

  If a Service is fully deregistered (the URL is given in the Service
  Deregister request, without any attribute information) then the
  Service needs to be deregistered only once.  This will effectively
  deregister the service in all languages it has been registered in.








Veizades, et. al.           Standards Track                    [Page 47]

RFC 2165               Service Location Protocol               June 1997


  If, on the other hand, attribute information is included in the
  Service Deregistration request, a separate Service Deregistration of
  selected attributes must be undertaken in each language in which
  service information has been provided to the DA by a Service Agent.
  Service Registrations in different languages are mutually
  unintelligible.  They share no information except for their service
  type and URL with which they were registered.  No attempt is made to
  match queries with "language independence." Instead, queries are
  handled using string matching against registrations in the same
  language as the query.

  Service Types which are standardized will have definitions for all
  attributes and value strings.  Official translations to other
  languages of the attribute tags and values may be created and
  submitted as part of the standard; this is not feasible for all
  languages.  For those languages which are not defined as part of the
  Service Type, a best effort translation of the standard definitions
  of the Service type's attribute strings MAY be used.

  All Service Requests specify a requested language in the message
  header.  The Directory Agent or Service Agent will respond in the
  same language as the request, if it has a registration in the same
  language as the request.  If this language is not supported, and the
  Monolingual bit is not specified, a reply can be sent in the default
  language (which is English.)  If the 'monolingual bit' flag in the
  header is set and the requested language is not supported, a SrvRply
  is returned with the error field set to LANGUAGE_NOT_SUPPORTED.

  If a query is in a supported language on a SA or DA, but has a
  different dialect than the available service information, the query
  MUST be serviced on a best-effort basis.  If possible, the query
  should be matched against the same dialect.  If that is not possible,
  it MAY be matched against any dialect of the same language.

17.1. Character Encoding and String Issues

  Values for character encoding can be found in IANA's database
        http://www.isi.edu/in-notes/iana/assignments/character-sets
  and have the values referred by the MIBEnum value.

  The encoding will determine the interpretation of all character data
  which follows the Service Location Protocol header.  There is no way
  to mix ASCII and UNICODE, for example.  All responses must be in the
  character set of the request, or use US-ASCII. If a request is sent
  to a DA or SA or a registration is sent to a DA, which is unable to
  manipulate or store the character set of the incoming message, the
  request will fail.  The SA or DA returns a CHARSET_NOT_UNDERSTOOD
  error in a SrvAck message in this case.  Requests using US-ASCII will



Veizades, et. al.           Standards Track                    [Page 48]

RFC 2165               Service Location Protocol               June 1997


  never fail for this reason, since all SAs and DAs must be able to
  accept this character set.

  Certain characters are illegal in certain contexts of the protocol.
  Since the protocol is largely character string based, in some
  contexts characters are used as protocol delimiters.  In these cases
  the delimiting characters must not be used as 'data text.'

17.1.1. Substitution of Character Escape Sequences

  The Service Location Protocol has an 'escape mechanism' which is
  consistent with HTTP 2.0 [5] and SGML [15].  If the character
  sequence "&#" is followed by one or more digits, followed by a
  semicolon ';' the entire sequence is interpreted as a single
  character.  The digits are interpreted as a decimal value in the
  character set of the request, as specified by the header.  Thus, in
  US-ASCII &#44; would be interpreted as a comma.  Substitution of
  these escape strings must be done in all <attr-list> and strings
  present in SrvReq and AttrRqst messages.  Only numerical character
  references are accepted, not 'Entity References,' as defined in HTML.
  These escape values should only be used to provide a mechanism for
  including reserved characters in attribute tag and value strings.

  The interpretation of these escape values is different than in HTML
  in one respect:  In HTML the escape values are considered to be in
  the ISO Latin-1 character set.  In Service Location they are
  interpreted in the character set defined in the header of the
  message.

  This escape mechanism allows characters like commas to be included in
  attribute tags and values, which would otherwise be illegal as the
  comma is a protocol delimiter.

  Attribute tags and values of different languages are considered to be
  mutually unintelligible.  A query in one language SHOULD use service
  information registered in that language.

17.2. Language-Independent Strings

  Some strings, such as Service Type names, have standard definitions.
  These strings should be considered as tokens and not as words in a
  language to be translated.









Veizades, et. al.           Standards Track                    [Page 49]

RFC 2165               Service Location Protocol               June 1997


   Reserved String Section xDefinition
   --------------- ------- --------------------------------------
   SCOPE           3, 15   Used to limit the matching of requests.
   SERVICE         6, 9    The URL scheme of all Service Location
                           information registered with a DA or
                           returned from a Service Request.
   <srvtype>       20.2.1  Used in all service registrations
                           and replies.
   domain names    20.4    A fully qualified domain name, used
                           in registrations and replies.
   IANA            3.3     The default naming authority.
   LOCAL           16      Reserved.
   REMOTE          16      Reserved.
   TRUE            20.5    Boolean true.
   FALSE           20.5    Boolean false.


18. Service Location Transactions

18.1. Service Location Connections

  When a Service Location Request or Attribute Request results in a UDP
  reply from a Service or Directory Agent that will overflow a
  datagram, the User Agent can open a connection to the Agent and
  reissue the request over the connection.  The reply will be returned
  with the overflow bit set (see section 4).  The reply will contain as
  much data as will fit into a single datagram.  If no MTU information
  is available for the route, assume that the MTU is 1400; this value
  is configurable (see section 22).

  When a request results in overflowed data that cannot be correctly
  parsed (say, because of duplicate or dropped IP datagrams), a User
  Agent that wishes to reliably obtain the overflowed data must
  establish a TCP connection with the Directory Agent or Service Agent
  with the data.  When the request is sent again with a new XID, the
  reply is returned over the connection.

  When registration data exceeds one datagram in length, the Service
  Registration should be made by establishing a connection with a
  Directory Agent and sending the registration over the connection
  stream.










Veizades, et. al.           Standards Track                    [Page 50]

RFC 2165               Service Location Protocol               June 1997


  Directory Agents and Service Agents must respond to connection
  requests; services whose registration data can overflow a datagram
  must be able to use TCP to send the registration.  User Agents should
  be able to make Service and Attribute Requests using TCP. If they
  fail to implement this, they must be able to interpret partial
  replies and/or reissue requests with more selective criteria to
  reduce the size of the replies.

  A connection initiated by an Agent may be used for a single
  transaction.  It may also be used for multiple transactions.  Since
  there are length fields in the message headers, the Agents may send
  multiple requests along a connection and read the return stream for
  acknowledgments and replies.

  The initiating agent is responsible for closing the TCP connection.
  The DA should wait at least CONFIG_INTERVAL_12 before closing an idle
  connection.  DAs and SAs SHOULD eventually close idle connections to
  ensure robust operation, even when the agent which opened a
  connection neglects to close it.

18.2. No Synchronous Assumption

  There is no requirement that one transaction complete before a given
  host begins another.  An agent may have multiple outstanding
  transactions, initiated either using UDP or TCP.

18.3. Idempotency

  All Service Location actions are idempotent.  Of course registration
  and deregistration will change the state of a DA, but repeating these
  actions with the same XID will have exactly the same effect each
  time.  Repeating a registration with a new XID has the effect of
  extending the lifetime of the registration.

19. Security Considerations

  The Service Location Protocol provides for authentication of Service
  Agents as part of the scope mechanism, and consequently, integrity of
  the data received as part of such registrations.  Service Location
  does not provide confidentiality.  Because the objective of this
  protocol is to advertise services to a community of users,
  confidentiality might not generally be needed when this protocol is
  used in non-sensitive environments.  Specialized schemes might be
  able to provide confidentiality, if needed in the future.  Sites
  requiring confidentiality should implement the IP Encapsulating
  Security Payload (ESP) [3] to provide confidentiality for Service
  Location messages.




Veizades, et. al.           Standards Track                    [Page 51]

RFC 2165               Service Location Protocol               June 1997


  Using unprotected scopes, an adversary might easily use this protocol
  to advertise services on servers controlled by the adversary and
  thereby gain access to users' private information.  Further, an
  adversary using this protocol will find it much easier to engage in
  selective denial of service attacks.  Sites that are in potentially
  hostile environments (e.g.  are directly connected to the Internet)
  should consider the advantages of distributing keys associated with
  protected scopes prior to deploying the sensitive directory agents or
  service agents.

  Service Location is useful as a bootstrap protocol.  It may be used
  in environments in which no preconfiguration is possible.  In such
  situations, a certain amount of "blind faith" is required:  Without
  any prior configuration it is impossible to use any of the security
  mechanisms described above.  Service Location will make use of the
  mechanisms provided by the Security Area of the IETF for key
  distribution as they become available.  At this point it would only
  be possible to gain the benefits associated with the use of protected
  scopes if some cryptographic information can be preconfigured with
  the end systems before they use Service Location.  For User Agents,
  this could be as simple as supplying the public key of a Certificate
  Authority.  See Appendix B.

20. String Formats used with Service Location Messages

  The following section supplies formal definitions for fields and
  protocol elements introduced in the sections indicated.

     Protocol Element                      Defined in         Used in
     -----------------------------------   ------------     ------------
     <Previous Responders' Addr Spec>      20.1             SrvReq
     Service Request <predicate>           5.4              SrvReq
     URL                                   20.2             SrvReg,
                                                              SrvDereg,
                                                              SrvRply
     <attr-list>                           20.3             SrvReg,
                                                              SrvRply,
                                                              AttrRply
     <Service Registration Information>    9                SrvReg
     <Service Deregister Information>      11               SrvDereg
     <Service Type String>                 20.2.1           AttrRqst










Veizades, et. al.           Standards Track                    [Page 52]

RFC 2165               Service Location Protocol               June 1997


20.1. Previous Responders' Address Specification

  The previous responders' Address Specification is specified as

     <Previous Responders' Address Specification> ::=
            <addr-spec> |
            <addr-spec>, <Previous Responders' Address Specification>

  i.e., a list separated by commas with no intervening white space.
  The Address Specification is the address of the Directory Agent or
  Service Agent which supplied the previous response.  The format for
  Address Specifications in Service Location is defined in section
  20.4.  The comma delimiter is required between each <addr-spec>.  The
  use of dotted decimal IP address notation should only be used in
  environments which have no Domain Name Service.

  Example:

        RESOLVO.NEATO.ORG,128.127.203.63

20.2. Formal Definition of the "service:"  Scheme

  A URL with a "service:"  scheme is used in the SrvReg, SrvDereg,
  SrvRply and AttrRqst messages in Service Location.  URLs are defined
  in RFC 1738 [6].  A URL with the "service:"  scheme must contain at
  least:

  <url> ::= service:<srvtype>://<addr-spec>

  where:

     service       the URL scheme for Service Location, to return
                   Replies.

     <srvtype>     a string; Service Types may be standardized
                   by developing a specification for the "service
                   type"-specific part and registering it with IANA.
                   See sections 20.2.1 and 3.3.

     <addr-spec>   the service access point of the service.  It is the
                   network address or domain name where the service can
                   be accessed.  See section 20.4.

  The "service:"  scheme may be followed by any legal URL. The a
  particular service.  The protocol used to access the service at the
  given service access <addr-spec> may be implicit in the Service Type
  name.  If this is not the case, the Service Type MUST be defined in
  such a way that attribute information will include all necessary



Veizades, et. al.           Standards Track                    [Page 53]

RFC 2165               Service Location Protocol               June 1997


  configuration and protocol information.  A User Agent MUST therefore
  be able to use either a "service:"  URL alone or a "service:"  URL in
  conjunction with service attributes to make use of a service.

20.2.1. Service Type String

  The Service Type is a string describing the type of service.  These
  strings may only be comprised of alphanumeric characters, '+', and
  Type names.

  If the Service Type name is followed by a '.'  and a string (which
  has the same limitations) the 'suffix' is considered to be the Naming
  Authority of the service.  If the Naming Authority is omitted, IANA
  is assumed to be the Naming Authority.

  Service Types developed for in-house or experimental use may have any
  name and attribute semantics provided that they do not conflict with
  the standardized Service Types.

20.3. Attribute Information

  The <attr-list> is returned in the Attribute Reply if the Attribute
  Request does not result in an empty result.

  <attr-list> ::= <attribute> | <attribute>, <attr-list>
  <attribute> ::= (<attr-tag>=<attr-val-list>) | <keyword>
  <attr-val-list> ::= <attr-val> | <attr-val>, <attr-val-list>

  An <attr-list> must be scanned prior to evaluation for all
  occurrences of the string "&#" followed by one or more digit followed
  by ';'.  See Section 17.1.1.

  A keyword has only an <attr-tag>, and no values.

  A comma cannot appear in an <attr-val>, as the comma is used as the
  multiple value delimiter.  Examples of an <attr-list> are:

        (SCOPE=ADMINISTRATION)
        (COLOR=RED, WHITE, BLUE)
        (DELAY=10 MINS),BUSY,(LATEST BUILD=10-5-95),(PRIORITY=L,M,H)

  The third example has three attributes in the list.  Color can take
  on the values red, white and blue.  There are several other examples
  of replies throughout the document.







Veizades, et. al.           Standards Track                    [Page 54]

RFC 2165               Service Location Protocol               June 1997


20.4. Address Specification in Service Location

  The address specification used in Service Location is:

    <addr-spec> ::= [<user>:<password>@]<host>[:<port>]

    <host>      ::= Fully qualified domain name |
                    dotted decimal IP address notation

  When no Domain Name Server is available, SAs and DAs must use dotted
  decimal conventions for IP addresses.  Otherwise, it is preferable to
  use a fully qualified domain name wherever possible as renumbering of
  host addresses will make IP addresses invalid over time.

  Generally, just the host domain name (or address) is returned.  When
  there is a non-standard port for the protocol, that should be
  returned as well.  Some applications may make use of the
  <user>:<password>@ syntax, but its use is not encouraged in this
  context until mechanisms are established to maintain confidentiality.

  Address specification in Service Location is consistent with standard
  URL format [6].

20.5. Attribute Value encoding rules

  Attribute values, and attribute tags are CASE INSENSITIVE for
  purposes of lexical comparison.

  Attribute values are strings containing any characters with the
  exception of '(', ')', '=', '>', '<', '/', '*', and ',' (the comma)
  except in the case described below where opaque values are encoded.
  These characters may be included using the character value escape
  mechanism described in section 17.1.1.

  While an attribute can take any value, there are three types of
  values which differentiate themselves from general strings:
  Booleans, Integers and Opaque values.

   -  Boolean values are either "TRUE" or "FALSE".  This is the case
      regardless of the language (i.e.  in French or Telugu, Boolean
      TRUE is "TRUE", as well as in English.)  Boolean attributes can
      take only one value.









Veizades, et. al.           Standards Track                    [Page 55]

RFC 2165               Service Location Protocol               June 1997


   -  Integer values are expressed as a sequence of numbers.  The
      range of allowable values for integers is "-2147483648" to
      "2147483647".  No other form of numeric representation is
      interpreted as such except integers.  For example, hexadecimal
      numbers such as "0x342" are not interpreted as integers, but as
      strings.

   -  Opaque values (i.e.  binary values) are expressed in radix-64
      notation.  The syntax is:

           <opaque-val>    ::=  (<len>:<radix-64-data>)
           <len>           ::=  number of bytes of the original data
           <radix-64-data> ::=  radix-64 encoding of the original data

      <len> is a 16-bit binary number.  Radix-64 encodes every 3 bytes
      of binary data into 4 bytes of ASCII data which is in the range
      of characters which are fully printable and transferable by mail.
      For a formal definition of the Radix-64 format see RFC 1521 [7],
      MIME Part One, Section 5.2 Base64 Content Transfer Encoding, page
      21.

21. Protocol Requirements

  In this section are listed various protocol requirements for User
  Agents, Service Agents, and Directory Agents.

21.1. User Agent Requirements

  A User Agent MAY:

   -  Provide a way for the application to configure the default DA, so
      that it can be used without needing to find it each initially.

   -  Be able to request the address of a DA from DHCP, if configured
      to do so.

   -  Ignore any unauthenticated Service Reply.

   -  Be able to issue requests in any language or character set
      provided that it can switch to the default language and character
      set if the request can not be serviced by DAs and SAs at the
      site.

   -  Require an authentication block in any URL entry returned as
      part of a Service Request, before making use of the advertised
      service.





Veizades, et. al.           Standards Track                    [Page 56]

RFC 2165               Service Location Protocol               June 1997


  A User Agent SHOULD:

   -  Try to contact DHCP to obtain the address of a DA.

   -  Use a scope in all requests, if possible.

   -  Issue requests to scoped DAs if the UA has been configured with a
      scope.

   -  Listen on the Service Location General Multicast address for
      unsolicited DA Advertisements.  This will increase the set of
      Directory Agents available to it for making requests.  See
      Section 15.2.

   -  Be able to be configured to require an authentication block in
      any received URL entry advertised as belonging to a protected
      scope, before making use of the service.

  If the UA does not listen for DA Advertisements, new DAs will not be
  passively detected.  A UA which does not have a configured DA and has
  not yet discovered one and is not listening for unsolicited DA
  Advertisements will remain ignorant of DAs.  It may then do a DA
  discovery before each query performed or it may simply use multicast
  queries to Service Agents.

  A User Agent MUST:

   -  Be able to unicast requests and receive replies from a DA.
      Transactions should be made reliable by using retransmission of
      the request if the reply does not arrive within a timeout
      interval.

   -  Be able to detect DAs using a Directory Agent Discovery request
      issued when the UA starts up.

   -  Be able to send requests to a multicast address.  Service
      Specific Multicast addresses are computed based on a hash of the
      Service Type.  See Section 3.6.2.

   -  Be able to handle numerous replies after a multicast request.
      The implementation may be configurable so it will either return
      the first reply, all replies until a timeout or keep trying till
      the results converge.

   -  Ignore any unauthenticated Service Reply or Attribute Reply when
      an appropriate IPSec Security Association for that Reply exists.





Veizades, et. al.           Standards Track                    [Page 57]

RFC 2165               Service Location Protocol               June 1997


   -  Whenever it obtains its IP address from DHCP in the first place,
      also attempt to obtain scope information, and the address of a
      DA, from DHCP.

   -  Use the IP Authentication Header or IP Encapsulating Payload in
      all Service Location messages, whenever an appropriate IPSec
      Security Association exists.

   -  Be able to issue requests using the US-ASCII character set.

   -  If configured to use a protected scope, be able to use
      "md5WithRSAEncryption" [4] to verify the signed data.

21.2. Service Agent Requirements

  A Service Agent MAY be able to:

   -  Get the address of a local Directory Agent by way of DHCP.

   -  Accept requests in non-US-ASCII character encodings.  This is
      encouraged, especially for UNICODE [1] and UTF-8 [24] encodings.

   -  Register services with a DA in non-US-ASCII character encodings.
      This is encouraged, especially for UNICODE [1] and UTF-8 [24]
      encodings.

  A Service Agent SHOULD be able to:

    -  Listen to the service-specific multicast address of the service
      it is advertising.  The incoming requests should be filtered:  If
      the Address Specification of the SA is in the Previous Responders
      Address Specification list, the SA SHOULD NOT respond.
      Otherwise, a response to the multicast query SHOULD be unicast to
      the UA which sent the request.

   -  Listen for and respond to broadcast requests and TCP connection
      requests, to the Service Location port.

   -  Be configurable to calculate authentication blocks and thereby
   be enabled to register in protected scopes.  This requires that the
   service agent be configured to possess the necessary keys to
   calculate the authenticator.

  A Service Agent MUST be able to:

   -  Listen to the Service Location General Multicast address for
      queries (e.g., Service Type Requests).  If the query can be
      replied to by the Service Agent, the Service Agent MUST do so.



Veizades, et. al.           Standards Track                    [Page 58]

RFC 2165               Service Location Protocol               June 1997


      It MUST check first to make sure it is not on the list of
      'previous responders.'

   -  Listen to the Service Location General Multicast address for
      unsolicited DA Advertisements.  If one is detected, and the DA
      has the right scope, (or has no scope), all services which are
      currently being advertised MUST be registered with the DA (unless
      configured to only use a single DA (see section 22.1), or the DA
      has already been detected, subject to certain rules (see section
      15.2)).

   -  Whenever it obtains its IP address from DHCP in the first place,
      also attempt to obtain scope information, and the address of a
      DA, from DHCP.

   -  Unicast registrations and deregistrations to a DA. Transactions
      should be made reliable by using retransmission of the request if
      the reply does not arrive within a timeout interval.

   -  Be able to detect DAs using a Directory Agent Discovery request
      issued when the SA starts up (unless configured to only use a
      single DA, see section 22.1.)

   -  Use the IP Authentication Header or IP Encapsulating Payload in
      all Service Location messages, whenever an appropriate IPSec
      Security Association exists.

   -  Be able to register service information with a DA using US-ASCII
      character encoding.  It must also be able to reply to requests
      from UAs which use US-ASCII character encoding.

   -  Reregister with a DA before the Lifetime of registered service
      information elapses.

   -  If configured to use a protected scope, be able to use
      "md5WithRSAEncryption" [4] to produce the signed data.

21.3. Directory Agent Requirements

  A Directory Agent MAY:

   -  Accept registrations and requests in non-US-ASCII character
      encodings.  This is encouraged, especially for UNICODE [1] and
      UTF-8 [24] encodings.







Veizades, et. al.           Standards Track                    [Page 59]

RFC 2165               Service Location Protocol               June 1997


  A Directory Agent SHOULD:

   -  Be able to configure certain scopes as protected scopes, so that
      registrations within those scopes require the calculation of
      cryptographically strong authenticators.  This requires that the
      DA be able to possess the keys needed for the authentication, or
      that the DA be able to acquire a certificate generated by a
      trusted Certificate Authority [23], before completing Service
      Registrations for protected scopes.

  A Directory Agent MUST be able to:

   -  Send an unsolicited DA Advertisements to the Service Location
      General Multicast address on startup and repeat it periodically.
      This reply has an XID which is incremented by one each time.  If
      the DA starts with state, it initializes the XID to 0x0100.  If
      it starts up stateless, it initializes the XID to 0x0000.

   -  Ignore any unauthenticated Service Registration or Service
      Deregistration from an entity with which it maintains a security
      association.

   -  Listen on the Directory Agent Discovery Multicast Address for
      Directory Agent Discovery requests.  Filter these requests if the
      Previous Responder Address Specification list includes the DA's
      Address Specification.

   -  Listen for broadcast requests to the Service Location port.

   -  Listen on the TCP and UDP Service Location Ports for unicast
      requests, registrations and deregistrations and service them.

   -  Provide a way in which scope information can be used to configure
      the Directory Agent.

   -  Expire registrations when the service registration's lifetime
      expires.

   -  When a Directory Agent has been configured with a scope, it MUST
      refuse all requests and registrations which do not have this
      scope.  The DA replies with a SCOPE_NOT_SUPPORTED error.  There
      is one exception:  All DAs MUST respond to DA discovery requests
      which have no scope.

   -  When a Directory Agent has been configured without a scope, it
      MUST accept ALL registrations and requests.





Veizades, et. al.           Standards Track                    [Page 60]

RFC 2165               Service Location Protocol               June 1997


   -  Ignore any unauthenticated Service Location messages when an
      appropriate IPSec Security Association exists for that request.

   -  Use the IP Authentication and IP Encapsulating Security Payload
      in Service Location messages whenever an appropriate IPSec
      Security Association exists.

   -  Accept requests and registrations in US-ASCII.

   -  If configured with a protected scope, be able to authenticate (at
      least by using "md5WithRSAEncryption" [4]) Service Registrations
      advertising services purporting to belong to such configured
      protected scopes.

22. Configurable Parameters and Default Values

  There are several configuration parameters for Service Location.
  Default values are chosen to allow protocol operation without the
  need for selection of these configuration parameters, but other
  values may be selected by the site administrator.  The configurable
  parameters will allow an implementation of Service Location to be
  more useful in a variety of scenarios.

     Multicast vs.  Broadcast
              All Service Location entities must use multicast by
              default.  The ability to use broadcast messages must be
              configurable for UAs and SAs.  Broadcast messages are to
              be used in environments where not all Service Location
              entities have hardware or software which supports
              multicast.

     Multicast Radius
              Multicast requests should be sent to all subnets in a
              site.  The default multicast radius for a site is 32.
              This value must be configurable.  The value for the
              site's multicast TTL may be obtained from DHCP using an
              option which is currently unassigned.

     Directory Agent Address
              The Directory Agent address discovery mechanism must be
              configurable.  There are three possibilities for this
              configuration:  A default address, no default address and
              the use of DHCP to locate a DA as described in section
              15.2.  The default value should be use of DHCP, with "no
              default address" used if DHCP does not respond.  In this
              case the UA or SA must do a Directory Agent Discovery
              query.




Veizades, et. al.           Standards Track                    [Page 61]

RFC 2165               Service Location Protocol               June 1997


     Directory Agent Scope Assignment
              The scope or scopes of a DA must be configurable.  The
              default value for a DA is to have no scope if not
              otherwise configured.

     Path MTU
              The default path MTU is assumed to be 1400.  This value
              may be too large for the infrastructure of some sites.
              For this reason this value MUST be configurable for all
              SAs and DAs.

     Keys for Protected Scopes

              If the local administration designates certain scopes as
              "protected scopes", the agents making use of those scopes
              have to be able to acquire keys to authenticate data sent
              by services along with their advertised URLs for services
              within the protected scope.  For instance, service agents
              would use a private key to produce authentication data.
              By default, service agents use "md5WithRSAEncryption" [4]
              to produce the signed data, to be be included with
              service registrations and deregistrations (see appendix
              B, 4.3).  This authentication data could be verified by
              user agents and directory agents that possess the
              corresponding public key.

22.1. Service Agent:  Use Predefined Directory Agent(s)

  A Service Agent's default configuration is to do passive and active
  DA discovery and to register with all DAs which are properly scoped.

  A Service Agent SHOULD be configurable to allow a special mode of
  operation:  They will use only preconfigured DAs.  This means they
  will *NOT* actively or passively detect DAs.

  If a Service Agent is configured this way, knowledge of the DA must
  come through another channel, either static configuration or by the
  use of DHCP.

  The availability of the Service information will not be consistent
  between DAs.  The mechanisms which achieve eventual consistency
  between DAs are ignored by the SA, so their service information will
  not be distributed.  This leaves the SA open to failure if the DA
  they are configured to use fails.







Veizades, et. al.           Standards Track                    [Page 62]

RFC 2165               Service Location Protocol               June 1997


22.2. Time Out Intervals

  These values should be configurable in case the site deploying
  Service Location has special requirements (such as very slow links.)

  Interval name       Section Default Value Meaning
  -----------------   ------- ------------- -----------------------
  CONFIG_INTERVAL_0   4.1     1 minute      Cache replies by XID.
  CONFIG_INTERVAL_1   4.4     10800 seconds registration Lifetime,
                              (ie.  3 hours)after which ad expires
  CONFIG_INTERVAL_2   5       each second,  Retry multicast query
                              backing off   until no new values
                              gradually     arrive.
  CONFIG_INTERVAL_3   5       15 seconds    Max time to wait for a
                                            complete multicast query
                                            response (all values.)
  CONFIG_INTERVAL_4   9       3 seconds     Wait to register on
                                            reboot.
  CONFIG_INTERVAL_5   5.2     3 seconds     Retransmit DA discovery,
                                            try it 3 times.
  CONFIG_INTERVAL_6   5.2     5 seconds     Give up on requests sent
                                            to a DA.
  CONFIG_INTERVAL_7   5.2     15 seconds    Give up on DA discovery
  CONFIG_INTERVAL_8   5.1     15 seconds    Give up on requests
                                            sent to SAs.
  CONFIG_INTERVAL_9   15.2    3 hours       DA Heartbeat, so that SAs
                                            passively detect new DAs.
  CONFIG_INTERVAL_10  15.2    1-3 seconds   Wait to register services
                                            on passive DA discovery.
  CONFIG_INTERVAL_11  9       1-3 seconds   Wait to register services
                                            on active DA discovery.
  CONFIG_INTERVAL_12  18.1    5 minutes     DAs and SAs close idle
                                            connections.

  A note on CONFIG_INTERVAL_9:  While it might seem advantageous to
  have frequent heartbeats, this poses a significant risk of generating
  a lot of overhead traffic.  This value should be kept high to prevent
  routine protocol operations from using any significant bandwidth.

23. Non-configurable Parameters

  IP Port number for unicast requests to Directory Agents:

        UDP and TCP Port Number:                          427







Veizades, et. al.           Standards Track                    [Page 63]

RFC 2165               Service Location Protocol               June 1997


  Multicast Addresses

        Service Location General Multicast Address:       224.0.1.22
        Directory Agent Discovery Multicast Address:      224.0.1.35

  A range of 1024 contiguous multicast addresses for use as Service
  Specific Discovery Multicast Addresses will be assigned by IANA.

  Error Codes:

        No Error                   0
        LANGUAGE_NOT_SUPPORTED     1
        PROTOCOL_PARSE_ERROR       2
        INVALID_REGISTRATION       3
        SCOPE_NOT_SUPPORTED        4
        CHARSET_NOT_UNDERSTOOD     5
        AUTHENTICATION_ABSENT      6
        AUTHENTICATION_FAILED      7


24. Acknowledgments

  This protocol owes some of the original ideas to other service
  location protocols found in many other networking protocols.  Leo
  McLaughlin and Mike Ritter (Metricom) provided much input into early
  version of this document.  Thanks also to Steve Deering (Xerox) for
  providing his insight into distributed multicast protocols.  Harry
  Harjono and Charlie Perkins supplied the basis for the URL based wire
  protocol in their Resource Discovery Protocol.  Thanks also to
  Peerlogic, Inc.  for supporting this work.  Lastly, thanks to Jeff
  Schiller for his help in shaping the security architecture specified
  in this document.



















Veizades, et. al.           Standards Track                    [Page 64]

RFC 2165               Service Location Protocol               June 1997


 A. Appendix:  Technical contents of ISO 639:1988 (E/F): "Code for the
  representation of names of languages"

  Two-letter lower-case symbols are used.  The Registration Authority
  for ISO 639 [14] is Infoterm, Osterreiches Normungsinstitut (ON),
  Postfach 130, A-1021 Vienna, Austria.  Contains additions from ISO
  639/RA Newsletter No.1/1989. See also RFC 1766.

   aa Afar               ga Irish               mg Malagasy
   ab Abkhazian          gd Scots Gaelic        mi Maori
   af Afrikaans          gl Galician            mk Macedonian
   am Amharic            gn Guarani             ml Malayalam
   ar Arabic             gu Gujarati            mn Mongolian
   as Assamese                                  mo Moldavian
   ay Aymara             ha Hausa               mr Marathi
   az Azerbaijani        he Hebrew              ms Malay
                         hi Hindi               mt Maltese
   ba Bashkir            hr Croatian            my Burmese
   be Byelorussian       hu Hungarian
   bg Bulgarian          hy Armenian            na Nauru
   bh Bihari                                    ne Nepali
   bi Bislama            ia Interlingua         nl Dutch
   bn Bengali; Bangla    in Indonesian          no Norwegian
   bo Tibetan            ie Interlingue
   br Breton             ik Inupiak             oc Occitan
                         is Icelandic           om (Afan) Oromo
   ca Catalan            it Italian             or Oriya
   co Corsican           ja Japanese
   cs Czech              jw Javanese            pa Punjabi
   cy Welsh                                     pl Polish
                         ka Georgian            ps Pashto, Pushto
   da Danish             kk Kazakh              pt Portuguese
   de German             kl Greenlandic
   dz Bhutani            km Cambodian           qu Quechua
                         rw Kinyarwanda
   el Greek              kn Kannada             rm Rhaeto-Romance
   en English            ko Korean              rn Kirundi
   eo Esperanto          ks Kashmiri            ro Romanian
   es Spanish            ku Kurdish             ru Russian
   et Estonian           ky Kirghiz
   eu Basque
                         la Latin
   fa Persian            ln Lingala
   fi Finnish            lo Laothian
   fj Fiji               lt Lithuanian
   fo Faeroese           lv Latvian, Lettish
   fr French
   fy Frisian



Veizades, et. al.           Standards Track                    [Page 65]

RFC 2165               Service Location Protocol               June 1997


   sa Sanskrit           ta Tamil               ug Uigar
   sd Sindhi             te Telugu              uk Ukrainian
   sg Sangro             tg Tajik               ur Urdu
   sh Serbo-Croatian     th Thai                uz Uzbek
   si Singhalese         ti Tigrinya
   sk Slovak             tk Turkmen             vi Vietnamese
   sl Slovenian          tl Tagalog             vo Volapuk
   sm Samoan             tn Setswana
   sn Shona              to Tonga               wo Wolof
   so Somali             tr Turkish
   sq Albanian           ts Tsonga              xh Xhosa
   sr Serbian            tt Tatar
   ss Siswati            tw Twi                 yi Yiddish
   st Sesotho                                   yo Yoruba
   su Sundanese
   sv Swedish                                   za Zhuang
   sw Swahili                                   zh Chinese
                                                zu Zulu


B. SLP Certificates

  Certificates may be used in SLP in order to distribute the public
  keys of trusted protected scopes.  Assuming public keys, this
  appendix discusses the use of such certificates in the Service
  Location Protocol.

  Possession of the private key of a protected scope is equivalent to
  being a trusted SA. The trustworthiness of the protected scope
  depends upon all of these private keys being held by trusted hosts,
  and used only for legitimate service registrations and
  deregistrations.

  With access to the proper Certificate Authority (CA), DAs and UAs do
  not need (in advance) hold public keys which correspond to these
  protected scopes.  They do require the public key of the CA. The CA
  produces certificates using its unique private key.  This private key
  is not shared with any other system, and must remain secure.  The
  certificates declare that a given protected scope has a given public
  key, as well as the expiration date of the certificate.

  The ASCII (mail-safe) string format for the certificate is the
  following list of tag and value pairs:

     "certificate-alg=" 1*ASN1CHAR       CRLF
     "scope-charset="   1*DIGIT          CRLF
     "scope="           1*RADIX-64-CHAR  CRLF
     "timestamp="       16HEXDIGIT       CRLF



Veizades, et. al.           Standards Track                    [Page 66]

RFC 2165               Service Location Protocol               June 1997


     "public-key="      1*RADIX-64-CHAR  CRLF
     "cert-digest="     1*RADIX-64-CHAR  CRLF

     ASN1CHAR          = DIGIT | '.'
     HEXDIGIT          = DIGIT | 'a'..'f' | 'A'..'F'
     RADIX-64-CHAR     = DIGIT | 'a'..'z' | 'A'..'Z' | '+' | '/' | '='

  The radix-64 notation is described in RFC 1521 [7].  Spaces are
  ignored in the computation of the binary value corresponding to a
  Radix-64 string.  If the value for scope, public-key or cert-digest
  is greater than 72 characters, the Radix-64 notation may be broken up
  on to separate lines.  The continuation lines must be preceded by one
  or more spaces.  Only the tags listed above may start in the first
  column of the certificate string.  This removes ambiguity in parsing
  the Radix-64 values (since the tags consist of legal Radix-64
  values.)

  The certificate-alg is the ASN.1 string for the Object Identifier
  value of the algorithm used to produce the "cert-digest".  The
  scope-charset is a decimal representation of the MIBEnum value for
  the character set in which the scope is represented.

  The radix-64 encoding of the scope string will allow the ASCII
  rendering of a scope string any character set.

  The 8 byte NTP format timestamp is represented as 16 hex digits.
  This timestamp is the time at which the certificate will expire.

  The format for the public key will depend on the type of cryptosystem
  used, which is identified by the certificate-alg.  When the CA
  generated the certificate holding the public key being obtained, it
  used the message digest algorithm identified by certificate-alg to
  calculate a digest D on the string encoding of the certificate,
  excepting the cert-digest.  The CA then encrypted this value using
  the CA's private key to produce the cert-digest, which is included in
  the certificate.

  The CA generates the certificate off-line.  The mechanism to
  distibute certificates is not specified in the Service Location
  Protocol, but may be in the future.  The CA specifies the algorithms
  to use for message digest and public key decryption.  The DA or SA
  need only obtain the certificate, have a preconfigured public key for
  the CA and support the algorithm specified in the certificate-alg in
  order to obtain certified new public keys for protected scopes.

  The DA or UA may confirm the certificate by calculating the message
  digest D, using the message digest algorithm identified by the
  certificate-alg.  The input to the message digest algorithm is the



Veizades, et. al.           Standards Track                    [Page 67]

RFC 2165               Service Location Protocol               June 1997


  string encoding of the certificate, excepting the cert-digest.  The
  cert-digest is decrypted using the CA's public key to produce D'. If
  D is the same as D', the certificate is legitimate.  The public-key
  for the protected scope may be used until the expiration date
  indicated by the certificate timestamp.

  The certificate may be distributed along untrusted channels, such as
  email or through file transfer, as it must be verified anyhow.  The
  CA's public key must be delivered using a trusted channel.

C. Example of deploying SLP security using MD5 and RSA

  In our site, we have a protected scope "CONTROLLED".  We generate a
  private key - public key pair for the scope, using RSA. The private
  key is maintained on a secret key ring by all SAs in the protected
  scope.  The public key is available to all DAs which support the
  protected scope and to all UAs which will use it.

  In order to register or deregister a URL, the data required to be
  authenticated (as described in section 4.3) is digestified using MD5
  [22] to create a digital signature, then encrypted by RSA with the
  protected scope's private key.  The output of RSA is used in the
   authenticator data field of the authenticator block.

  The DA or UA discovers the appropriate method for verifying the
  authentication by looking inside the authentication block.  Suppose
  that the "md5WithRSAEncryption" [4] algorithm has to be used to
  verify the signed data.  The DA or UA calculates the message digest
  of the URL Entry by using md5, exactly as the SA did.  The
  authenticator block is decrypted using the public key for the
  "CONTROLLED" scope, which is stored in the public key ring of the UA
  or DA under the name "CONTROLLED".  If the digest calculated by the
  UA or DA matches that of the SA, the URL Entry has been validated.

D. Example of use of SLP Certificates by mobile nodes

  Say a mobile node needs to make use of protected scopes.  The mobile
  node is first preconfigured by adding a single public key to its
  public key ring:  We will call it the CA-Key.  This key will be used
  to obtain SLP certificates in the format described in Appendix B.
  The corresponding private key will be used by the CA to create the
  certificates in the necessary format.

  The CA might be operated by a system administrator using a computer
  which is not connected to any networks.  The certificate's duration
  will depend on the policy of the site.  The duration, scope, and
  public key for the protected scope, are used as input to 'md5sum'.
  This sum is then encrypted with RSA using the CA's private key.  The



Veizades, et. al.           Standards Track                    [Page 68]

RFC 2165               Service Location Protocol               June 1997


  radix 64 encoding of this is added to the mail-safe string based
  certificate encoding defined in Appendix B.

  The certificate, say for the protected scope "CONTROLLED" could be
  made available to the mobile node.  For example, it might be on a web
  page.  The mobile node could then process the certificate in order to
  obtain the public key for the CONTROLLED scope.  There is still no
  reason to *trust* this key is really the one to use (as in Appendix
  C).  To trust it, calculate the md5 checksum of the ascii encoded
  certificate, excluding the cert-digest.  Next, decrypt the cert-
  digest using the CA's public key and RSA. If the cert-digest matches
  the output of MD5, the certificate may be trusted (until it expires).

  The mobile node requires only one key (CA-key) in order to obtain
  others dynamically and make use of protected scopes.  Notice that we
  do not define any method for access control by arbitrary UAs to SAs
  in protected scopes.

E. Appendix:  For Further Reading

  Three related resource discovery protocols are NBP and ZIP which are
  part of the AppleTalk protocol family [12], the Legato Resource
  Administration Platform [25], and the Xerox Clearinghouse system
  [20].  Domain names and representation of addresses are used
  extensively in the Service Location Protocol.  The references for
  these are RFCs 1034 and 1035 [17, 18].  Example of a discovery
  protocol for routers include Router Discovery [10] and Neighbor
  Discovery [19].























Veizades, et. al.           Standards Track                    [Page 69]

RFC 2165               Service Location Protocol               June 1997


References

  [1] Unicode Technical Report #4.  The unicode standard, version 1.1
      (volumes 1 and 2).  Technical Report (ISBN 0-201-56788-1) and
      (ISBN 0-201-60845-6), Unicode Consortium, 1994.

  [2] Alexander, S. and R. Droms.  DHCP Options and BOOTP Vendor
      Extensions.  RFC 2131, March 1997.

  [3] Atkinson, R.  IP Encapsulating Security Payload.  RFC 1827,
      August 1995.

  [4] Balenson, D.  Privacy Enhancement for Internet Electronic
      Mail:  Part III: Algorithms, Modes, and Identifiers.  RFC 1423,
      February 1993.

  [5] Berners-Lee, T. and D. Connolly.  Hypertext Markup Language -
      2.0.  RFC 1866, November 1995.

  [6] Berners-Lee, T., L. Masinter, and M. McCahill.  Uniform Resource
      Locators (URL).  RFC 1738, December 1994.

  [7] Borenstein, N. and N. Freed.  MIME (Multipurpose Internet Mail
      Extensions) Part One:  Mechanisms for Specifying and Describing
      the Format of Internet Message Bodies.  RFC 2045, November 1996.

  [8] Bradner, Scott.  Key words for use in RFCs to Indicate
      Requirement Levels. BCP 14, RFC 2119, March 1997.

  [9] CCITT.  Specification of the Abstract Syntax Notation One
      (ASN.1).  Recommendation X.208, 1988.

  [10] Deering, Stephen E., editor.  ICMP Router Discovery Messages.
       RFC 1256, September 1991.

  [11] Droms, Ralph.  Dynamic Host Configuration Protocol.  RFC 2131,
       March 1997.

  [12] Gursharan, S., R. Andrews, and A. Oppenheimer.  Inside
       AppleTalk. Addison-Wesley, 1990.

  [13] Guttman, E.  The service:  URL scheme, November 1996.
       Work In Progress.

  [14] Geneva ISO.  Code for the representation of names of languages.
       ISO 639:1988 (E/F), 1988.





Veizades, et. al.           Standards Track                    [Page 70]

RFC 2165               Service Location Protocol               June 1997


  [15] ISO 8879, Geneva.  Information Processing -- Text and Office
       Systems - Standard Generalized Markup Language (SGML).
       <URL:http://www.iso.ch/cate/d16387.html>, 1986.

  [16] Mills, D.  Simple Network Time Protocol (SNTP) Version 4 for
       IPv4, IPv6 and OSI.  RFC 2030, October 1996.

  [17] Mockapetris, P.  Domain Names - Concepts and Facilities. STD 13,
       RFC 1034, November 1987.

  [18] Mockapetris, P.  DOMAIN NAMES - IMPLEMENTATION AND
       SPECIFICATION.  STD 13, RFC 1035, November 1987.

  [19] Narten, T., E. Nordmark, and W. Simpson.  Neighbor Discovery for
       IP version 6 (IPv6).  RFC 1970, August 1996.

  [20] Oppen, D. and Y. Dalal.  The clearinghouse:  A decentralized
       agent for locating named objects in a distributed environment.
       Technical Report Tech. Rep. OPD-78103, Xerox Office Products
       Division, 1981.

  [21] Perkins, C.  DHCP Options for Service Location Protocol, August
       1996. Work In Progress.

  [22] Rivest, Ronald.  The MD5 Message-Digest Algorithm.  RFC 1321,
       April 1992.

  [23] Schneier, Bruce.  Applied Cryptography:  Protocols, Algorithms,
       and Source Code in C.  John Wiley, New York, NY, USA, 1994.

  [24] X/Open Preliminary Specification.  File System Safe UCS
       Transformation Format (FSS_UTF).  Technical Report Document
       Number:  P316, X/Open Company Ltd., 1994.

  [25] Legato Systems.  The Legato Resource Administration Platform.
       Legato Systems, 1991.















Veizades, et. al.           Standards Track                    [Page 71]

RFC 2165               Service Location Protocol               June 1997


Authors' Addresses

  Questions about this memo can be directed to:

  John Veizades                       Erik Guttman
  @Home Network                       Sun Microsystems
  385 Ravendale Dr.                   Gaisbergstr. 6
  Mountain View, CA 94043             69115 Heidelberg Germany

  Phone: +1 415 944 7332              Phone: +1 415 336 6697
  Fax:   +1 415 944 8500

  Email: [email protected]            Email: [email protected]

  Charles E. Perkins                  Scott Kaplan
  Sun Microsystems
  2550 Garcia Avenue                  346 Fair Oaks St.
  Mountain View, CA  94043            San Francisco, CA 94110

  Phone: +1 415 336 7153              Phone: +1 415 285 4526
  Fax:   +1 415 336 0670

  EMail: [email protected]        Email: [email protected]




























Veizades, et. al.           Standards Track                    [Page 72]