Network Working Group                                         S. Kille
Request for Comments: 2156                                  Isode Ltd.
Obsoletes: 987, 1026, 1138, 1148, 1327, 1495              January 1998
Updates: 822
Category: Standards Track


             MIXER (Mime Internet X.400 Enhanced Relay):
                Mapping between X.400 and RFC 822/MIME

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Table of Contents

  1          - Overview ......................................    3
  1.1        - X.400 .........................................    3
  1.2        - RFC 822 and MIME ..............................    3
  1.3        - The need for conversion .......................    4
  1.4        - General approach ..............................    4
  1.5        - Gatewaying Model ..............................    5
  1.6        - Support of X.400 (1984) .......................    8
  1.7        - X.400 (1992) ..................................    8
  1.8        - MIME ..........................................    8
  1.9        - Body Parts ....................................    8
  1.10       - Local and Global Scenarios ....................    9
  1.11       - Compatibility with previous versions ..........   10
  1.12       - Aspects not covered ...........................   10
  1.13       - Subsetting ....................................   11
  1.14       - Specification Language ........................   11
  1.15       - Related Specifications ........................   11
  1.16       - Document Structure ............................   12
  1.17       - Acknowledgements ..............................   12
  2          - Service Elements ..............................   13
  2.1        - The Notion of Service Across a Gateway ........   13
  2.2        - RFC 822 .......................................   15
  2.3        - X.400 .........................................   18
  3          - Basic Mappings ................................   27
  3.1        - Notation ......................................   27



Kille                       Standards Track                     [Page 1]

RFC 2156                         MIXER                      January 1998


  3.2        - ASCII and IA5 .................................   29
  3.3        - Standard Types ................................   29
  3.4        - Encoding ASCII in Printable String ............   33
  3.5        - RFC 1522 ......................................   34
  4          - Addressing and Message IDs ....................   35
  4.1        - A textual representation of MTS.ORAddress .....   36
  4.2        - Global Address Mapping ........................   43
  4.3        - EBNF.822-address <-> MTS.ORAddress ............   46
  4.4        - Repeated Mappings .............................   59
  4.5        - Directory Names ...............................   62
  4.6        - MTS Mappings ..................................   62
  4.7        - IPMS Mappings .................................   67
  5          - Detailed Mappings .............................   71
  5.1        - RFC 822 -> X.400: Detailed Mappings ...........   71
  5.2        - Return of Contents ............................   86
  5.3        - X.400 -> RFC 822: Detailed Mappings ...........   86
  Appendix A - Mappings Specific to SMTP .....................  114
  1          - Probes ........................................  114
  2          - Long Lines ....................................  114
  3          - SMTP Extensions ...............................  114
  3.1        - SMTP Extension mapping to X.400 ...............  114
  3.2        - X.400 Mapping to SMTP Extensions ..............  115
  Appendix B - Mapping with X.400(1984) ......................  116
  Appendix C - RFC 822 Extensions for X.400 access ...........  118
  Appendix D - Object Identifier Assignment ..................  119
  Appendix E - BNF Summary ...................................  120
  Appendix F - Text format for MCGAM distribution ............  127
  1          - Text Formats ..................................  127
  2          - Mechanisms to register and to distribute
               MCGAMs ........................................  127
  3          - Syntax Definitions ............................  128
  4          - Table Lookups .................................  129
  5          - Domain -> OR Address MCGAM format .............  129
  6          - OR Address -> Domain MCGAM format .............  129
  7          - Domain -> OR Address of Preferred Gateway
               table .........................................  130
  8          - OR Addresss -> domain of Preferred Gateway
               table .........................................  130
  Appendix G - Conformance ...................................  131
  Appendix H - Change History: RFC 987, 1026, 1138, 1148
               ...............................................  133
  1          - Introduction ..................................  133
  2          - Service Elements ..............................  133
  3          - Basic Mappings ................................  133
  4          - Addressing ....................................  134
  5          - Detailed Mappings .............................  134
  6          - Appendices ....................................  134
  Appendix I - Change History: RFC 1148 to RFC 1327 ..........  135



Kille                       Standards Track                     [Page 2]

RFC 2156                         MIXER                      January 1998


  1          - General .......................................  135
  2          - Basic Mappings ................................  135
  3          - Addressing ....................................  135
  4          - Detailed Mappings .............................  135
  5          - Appendices ....................................  136
  Appendix J - Change History: RFC 1327 to this Document
               ...............................................  137
  1          - General .......................................  137
  2          - Service Elements ..............................  137
  3          - Basic Mappings ................................  137
  4          - Addressing ....................................  137
  5          - Detailed Mappings .............................  138
  6          - Appendices ....................................  138
  Appendix L - ASN.1 Summary .................................  139
  Security Considerations ....................................  141
  Author's Address ...........................................  141
  References .................................................  141
  Full Copyright Statement ...................................  144

Chapter 1 -- Overview

1.1.  X.400

  This document relates primarily to the ITU-T 1988 and 1992 X.400
  Series Recommendations / ISO IEC 10021 International Standard.  This
  ISO/ITU-T standard is referred to in this document as "X.400", which
  is a convenient shorthand.  Any reference to the 1984 Recommendations
  will be explicit.  Any mappings relating to elements which are in the
  1992 version and not in the 1988 version will be noted explicitly.
  X.400 defines an Interpersonal Messaging System (IPMS), making use of
  a store and forward Message Transfer System.  This document relates
  to the IPMS, and not to wider application of X.400, such as EDI as
  defined in X.435.

1.2.  RFC 822 and MIME

  RFC 822 evolved as a messaging standard on the DARPA (the US Defense
  Advanced Research Projects Agency) Internet.  RFC 822 specifies an
  end to end message format, consisting of a header and an unstructured
  text body.  MIME (Multipurpose Internet Mail Extensions) specifies a
  structured message body format for use with RFC 822.  The term "RFC
  822" is used in this document to refer to the combination of MIME and
  RFC 822. RFC 822 and MIME are used in conjunction with a number of
  different message transfer protocol environments.  The core of the
  MIXER specification is designed to work with any supporting message
  transfer protocol.





Kille                       Standards Track                     [Page 3]

RFC 2156                         MIXER                      January 1998


  One transfer protocol, SMTP, is of particular importance and is
  covered in MIXER.  On the Internet and other TCP/IP networks, RFC 822
  is used in conjunction with RFC 821, also known as Simple Mail

  Transfer Protocol (SMTP) [30], in a manner conformant with the host
  requirements specification [10].  Use of MIXER with SMTP is defined
  in Appendix A.

1.3.  The need for conversion

  There is a large community using RFC 822 based protocols for mail
  services, who will wish to communicate with users of the IPMS
  provided by X.400 systems.  This will also be a requirement in cases
  where communities intend to make a transition between the different
  technologies, as conversion will be needed to ensure a smooth service
  transition.  It is expected that there will be more than one gateway,
  and this specification will enable them to behave in a consistent
  manner.  Note that the term gateway is used to describe a component
  performing the mapping between RFC 822 and X.400.  This is standard
  usage amongst mail implementors, but differs from that used by
  transport and network service implementors.

  Consistency between gateways is desirable to provide:

  1.   Consistent service to users.

  2.   The best service in cases where a message passes through
       multiple gateways.

1.4.  General approach

  There are a number of basic principles underlying the details of the
  specification.  These principles are goals, and are not achieved in
  all aspects of the specification.

  1.   The specification should be pragmatic.  There should not be
       a requirement for complex mappings for "Academic" reasons.
       Complex mappings should not be required to support trivial
       additional functionality.

  2.   Subject to 1), functionality across a gateway should be as
       high as possible.

  3.   It is always a bad idea to lose information as a result of
       any transformation.  Hence, it is a bad idea for a gateway
       to discard information in the objects it processes.  This
       includes requested services which cannot be fully mapped.




Kille                       Standards Track                     [Page 4]

RFC 2156                         MIXER                      January 1998


  4.   Mail gateways  operate at a level above the layer on which
       they perform mappings.  This implies that the gateway shall
       not only be cognisant of the semantics of objects at the
       gateway level, but also be cognisant of higher level
       semantics.  If meaningful transformation of the objects that
       the gateway operates on is to occur, then the gateway needs
       to understand more than the objects themselves.

  5.   Subject to 1), the mapping should be reversible.  That is, a
       double transformation should bring you back to where you
       started.

1.5.  Gatewaying Model

1.5.1.  X.400

  X.400 defines the IPMS Abstract Service in X.420 , [11] which
  comprises of three basic services:

  1.   Origination

  2.   Reception

  3.   Management

  Management is a local interaction between the user and the IPMS, and
  is therefore not relevant to gatewaying.  The first two services
  consist of operations to originate and receive the following two
  objects:

  1.   IPM (Interpersonal Message). This has two components: a
       heading, and a body.  The body is structured as a sequence
       of body parts, which may be basic components (e.g., IA5
       text, or G3 fax), or forwarded Interpersonal Messages.  The
       heading consists of fields containing end to end user
       information, such as subject, primary recipients (To:), and
       importance.

  2.   IPN (Inter Personal Notification).  A notification  about
       receipt of a given IPM at the UA level.

  The Origination service also allows for origination of a probe, which
  is an object to test whether a given IPM could be correctly received.

  The Reception service also allows for receipt of Delivery Reports
  (DR), which indicate delivery success or failure.





Kille                       Standards Track                     [Page 5]

RFC 2156                         MIXER                      January 1998


  These IPMS Services utilise the Message Transfer System (MTS)
  Abstract Service [12].  The MTS Abstract Service provides the
  following three basic services:

  1.   Submission (used by IPMS Origination)

  2.   Delivery (used by IPMS Reception)

  3.   Administration (used by IPMS Management)

  Administration is a local issue, and so does not affect this
  standard.  Submission and delivery relate primarily to the MTS
  Message (comprising Envelope and Content), which carries an IPM or
  IPN (or other uninterpreted contents).  The Envelope includes a
  message identifier, an originator, and a list of recipients.
  Submission also includes the probe service, which supports the MTS
  Probe. Delivery also includes Reports, which indicate whether a given
  MTS Message has been delivered or not (or for a probe if delivery
  would have happened).

  The MTS is provided by MTAs which interact using the MTA (Message
  Transfer Agent) Service, which defines the interaction between MTAs,
  along with the procedures for distributed operation.  This service
  provides for transfer of MTS Messages, Probes, and Reports.

1.5.2.  RFC 822

  RFC 822 is based on the assumption that there is an underlying
  service, which is here called the 822-MTS service.  The 822-MTS
  service provides three basic functions:

  1.   Identification of a list of recipients.

  2.   Identification of an error return address.

  3.   Transfer of an RFC 822 message.

  It is possible to achieve 2) within the RFC 822 header.

  This specification will be used most commonly with SMTP as the 822-
  MTS service.  The core MIXER specification is written so that it does
  not rely on non-basic 822-MTS services.  Use of non-basic SMTP
  services is described in Appendix A.  The core of this document is
  written using SMTP terminology for 822-MTS services.

  An RFC 822 message consists of a header, and content which is
  uninterpreted ASCII text.  The header is divided into fields, which
  are the protocol elements.  Most of these fields are analogous to IPM



Kille                       Standards Track                     [Page 6]

RFC 2156                         MIXER                      January 1998


  heading fields, although some are analogous to MTS Service Elements
  or MTA Service Elements.

  RFC 822 supports delivery status notifications by use of the NOTARY
  mechanisms [28].

1.5.3.  The Gateway

  Given this functional description of the two services, the functional
  nature of a gateway can now be considered.  It would be elegant to
  consider the SMTP (822-MTS) service mapping onto the MTS Service
  Elements and RFC 822 mapping onto an IPM, but there is a not a clear
  match between these services.  Another elegant approach would be to
  treat this document as the definition of an X.400 Access Unit (AU).
  In this case, the abstraction level is too high, and some necessary
  mapping function is lost.  It is necessary to consider that the IPM
  format definition, the IPMS Service Elements, the MTS Service
  Elements, and MTA Service Elements on one side are mapped into RFC
  822 + SMTP on the other in a slightly tangled manner.  The details of
  the tangle will be made clear in Chapter 5.  Access to the MTA
  Service Elements is minimised.

  The following basic mappings are thus defined.  When going from RFC
  822 to X.400, an RFC 822 message and the associated SMTP information
  is always mapped into an IPM (MTA, MTS, and IPMS Services) and a
  Delivery Status Notification is mapped onto a Report.  Going from
  X.400 to RFC 822, an RFC 822 message and the associated SMTP
  information may be derived from:

  1.   An IPN (MTA, MTS, and IPMS services)

  2.   An IPM (MTA, MTS, and IPMS services)

  A Report (MTA, and MTS Services) is mapped onto a delivery status
  notification.

  Probes (MTA Service) shall be processed by the gateway, as discussed
  in Chapter 5.  MTS Messages containing Content Types other than those
  defined by the IPMS are not mapped by the gateway, and shall be
  rejected at the gateway if no other gatewaying procedure is defined.

  This specification is concerned with X.400 IPMS.  Future
  specifications may defined mappings for other X.400 content types.








Kille                       Standards Track                     [Page 7]

RFC 2156                         MIXER                      January 1998


1.5.4.  Repeated Mappings

  The primary goal of this specification is to support single mappings,
  so that X.400 and RFC 822 users can communicate with maximum
  functionality.

  The mappings specified here are designed to work where a message
  traverses multiple times between X.400 and RFC 822. This is often
  essential, particularly in the case of distribution lists.  However,
  in general, this will lead to a level of service which is the lowest
  common denominator (approximately the services offered by RFC 822).

  Some RFC 822 networks may wish to use X.400 as an interconnection
  mechanism (typically for policy reasons), and this is fully
  supported.

  Where an X.400 message transfers to RFC 822 and then back to X.400,
  there is no expectation of X.400 services which do not have an
  equivalent service in standard RFC 822 being preserved - although
  this may be possible in some cases.

1.6.  Support of X.400 (1984)

  The MIXER definition is based on the initial specification of RFC 987
  and in its addendum RFC 1026, which defined a mapping between
  X.400(1984) and RFC 822.  The core MIXER mapping is defined using the
  full 1988 version of X.400, and not to a 1984 compatible subset. New
  features of X.400(1988) can be used to provide a much cleaner mapping
  than that defined in RFC 987.  To interwork with 1984 systems,
  Appendix B shall be followed.

  If a message is being transferred to an X.400(1984) system by way of
  X.400(1988) MTA it will give a slightly better service to follow the
  rules of Appendix B, than to downgrade without this knowledge.
  Downgrading specifications which supplement those specified in X.400
  (X.419) are given in RFC 1328 [22] and RFC 1496 (HARPOON) [5].

1.7.  X.400 (1992)

  X.400 (1992) features are not used by the core of this mapping, and
  so there is not an equivalent downgrade problem.

1.8.  MIME

  MIME format messages are generated by this mapping.  As MIME messages
  are fully RFC 822 compliant, this will not cause problems with
  systems which are not MIME capable.




Kille                       Standards Track                     [Page 8]

RFC 2156                         MIXER                      January 1998


1.9.  Body Parts

  MIME and X.400 IPMS can both carry arbitrary body parts. MIME defines
  a mechanism for adding new body parts, and new body parts are
  registered with the IANA. X.400 defines a mechanism adding new body
  parts, usually referred to as Body Part 15.  Extensions are defined
  by Object Identifiers, so there is no requirement for a central body
  part registration authority.  The Electronic Messaging Association
  (EMA) maintains a list of some commonly used body parts.  The EMA has
  specified a mechanism to use the File Transfer Body Part (FTBP) as a
  more generic means to support message attachments.  This approach is
  gaining widespread commercial support.

  The mapping between X.400 and MIME body parts is defined in the
  companion MIXER specification, referenced here as RFC 2157 [8].  This
  document is an update of RFC 1494 [6].

  Editor's Note:
     References to 2157 will be resolved as these two
     documents are expected to progress in parallel.

  These two specifications together form the complete MIXER Mapping.

1.10.  Local and Global Scenarios

  There are two basic scenarios for X.400/MIME interworking:

  Global Scenario

     There are two global mail networks (Internet/MIME and X.400),
     interconnected by multiple gateways.   Objects may be transferred
     over multiple gateways, and so it is important that gateways
     behave in a coherent fashion.  MIXER is critical to support this
     scenario.

  Local Scenario

     A gateway is used to connect a closed community to a global mail
     network (this could be enforced by connectivity or gateway
     authorisation policy).  This is a common commercial scenario.
     MIXER is useful to support this scenario, as it allows an industry
     standard provision of service, but this could be supported by
     something which was MIXER-like.

  A solution for the global scenario will work for the local scenario.
  However, there are aspects of MIXER which have significant
  implementation or deployment effort (the global mapping is the major
  one, but there are other details too) which and are needed to support



Kille                       Standards Track                     [Page 9]

RFC 2156                         MIXER                      January 1998


  the global scenario, but are not needed in the local scenario.

  Note that the local scenario may be the driving force for most
  deployments, and support of the global scenario may be an important
  secondary goal.

  There is also a transition effect.  Gateways which are initially
  deployed in a strict local scenario situation start to find
  themselves in a global scenario.  A common case is ADMD provided
  gateways, which are targeted strictly at the local scenario.  In
  practice they soon start to operate in the global scenario, because
  of distribution lists and messages exchanged with X.400 users that
  are not customers of the ADMD.  At this point, users are hurt by the
  restrictions of a local scenario gateway.

  Note that conformance to MIXER applies to an instantiation of a
  gateway, not just an implementation (although clearly it is critical
  that the implementation is capable of being operated in a conformant
  manner).

  MIXER's conformance target is the global scenario, and the
  specification of MIXER defines operation in this way.

1.11.  Compatibility with previous versions

  The changes between this and older versions of the document are given
  in Appendices H, I and J.  These are RFCs 987, 1026, 1138, 1148 and
  1327.  This document is a revision of RFC 1327 [21].  As far as
  possible, changes have been made in a compatible fashion.

1.12.  Aspects not covered

  There have been a number of cases where previous versions of this
  document were used in a manner which was not intended.  This section
  is to make clear some limitations of scope.  In particular, this
  specification does not specify:

  -    Extensions of RFC 822 to provide access to all X.400
       services

  -    X.400 user interface definition

  These are really coupled.  To map the X.400 services, this
  specification defines a number of extensions to RFC 822.  As a side
  effect, these give the 822 user access to SOME X.400 services.
  However, the aim on the RFC 822 side is to preserve current service,
  and it is intentional that access is not given to all X.400 services.
  Thus, it will be a poor choice for X.400 implementors to use MIXER as



Kille                       Standards Track                    [Page 10]

RFC 2156                         MIXER                      January 1998


  an interface - there are too many aspects of X.400 which cannot be
  accessed through it.  If a text interface is desired, a specification
  targeted at X.400, without RFC 822 restrictions, would be more
  appropriate.  Some optional and limited extensions in this area have
  proved useful, and are defined in Appendix C.

1.13.  Subsetting

  This proposal specifies a mapping which is appropriate to preserve
  services in existing RFC 822 communities.  Implementations and
  specifications which subset this specification are non-conformant and
  strongly discouraged.

1.14.  Specification Language

  ISO and Internet standards have clear definitions as to the style of
  language used.  This specification maps between ISO/ITU-T protocol
  and Internet protocols.  This document uses ISO terminology for the
  following reasons:

  1.   This was done in previous versions.

  2.   ISO language may be mechanically converted to Internet
       language, but not vice versa.

  The key elements of the ISO rules are:

  1.   All mandatory features shall clearly be indicated by
       imperative statements or the word "shall" or "shall not".

  2.   Optional features shall be indicated by the word "may".

  3.   The word "should" and the phrase "may not" shall not be
       used.

  In some cases the specification issues guidance on use of optional
  features, by use of the the phrase word "recommended" or "not
  recommended".

  To interpet this document according to Internet rules, replace every
  occurrence of "shall" with "must".

1.15.  Related Specifications

  Mappings between Mail-11 and X.400 and Mail-11 and RFC 822 are
  described in RFC 2162, using mappings related to those defined here
  [2].




Kille                       Standards Track                    [Page 11]

RFC 2156                         MIXER                      January 1998


1.16.  Document Structure

  This document has five chapters:

  1.   Overview - this chapter.

  2.   Service Elements - This describes the (end user) services
       mapped by a gateway.

  3.   Basic mappings - This describes some basic notation used in
       Chapters 3-5, the mappings between character sets, and some
       fundamental protocol elements.

  4.   Addressing - This considers the mapping between X.400 OR
       names and RFC 822 addresses, which is a fundamental gateway
       component.

  5.   Detailed Mappings - This describes the details of all other
       mappings.

  There are also ten appendices.

  WARNING:

     THE REMAINDER OF THIS SPECIFICATION IS TECHNICALLY DETAILED.  IT
     WILL NOT MAKE SENSE, EXCEPT IN THE CONTEXT OF RFC 822 AND X.400
     (1988).  DO NOT ATTEMPT TO READ THIS DOCUMENT UNLESS YOU ARE
     FAMILIAR WITH THESE SPECIFICATIONS.

1.17.  Acknowledgements

  The work in this specification was substantially based on RFC 987 and
  RFC 1148, which had input from many people, who are credited in the
  respective documents.

  A number of comments from people on RFC 1148 lead to RFC 1327.  In
  particular, there were comments and suggestions from: Maurice Abraham
  (HP); Harald Alvestrand (Sintef); Peter Cowen (X-Tel); Jim Craigie
  (JNT); Ella Gardner (MITRE); Christian Huitema (Inria); Erik Huizer
  (SURFnet); Neil Jones (DEC); Ignacio Martinez (IRIS); Julian Onions
  (X-Tel); Simon Poole (SWITCH); Clive Roberts (Data General); Pete
  Vanderbilt (SUN); Alan Young (Concurrent).

  RFC 1327 has been widely adopted, and a review team was formed.  This
  comprised of: Urs Eppenberger (SWITCH)(Chair); Claudio Allocchio
  (INFN); Harald Alvestrand (UNINETT); Dave Crocker (Brandenburg); Ned
  Freed (Innosoft); Erik Huizer (SURFnet); Steve Kille (Isode); Peter
  Sylvester (GC Tech).



Kille                       Standards Track                    [Page 12]

RFC 2156                         MIXER                      January 1998


  Harald Alvestrand also supplied the tables mapping DSN status codes
  with X.400 codes.  Ned Freed defined parts of the File Transfer Body
  Part mapping.

  Comment and input has also been received from: Bengt Ackzell (Generic
  Systems); Samir Albadine (Transpac); Mark Boyes (DEC); Larry Campbell
  (Boston Software Works); Jacqui Caren (Cray); Allan Cargille (MCI);
  Kevin Carrosso (Innosoft); Charlie Combs (OIW); Jim Craigie (Net-
  Tel); Eamon Doyle (Isocor); Efifion Edem (SITA); Jyrki Heikkinen
  (ICL); Edward Hibbert (DCL); Jeroun Houttin (Terena); Kevin Jordan
  (CDS); Paul Kingsnorth (DEC); Carl-Uno Manros (Manros Consulting);
  Suzan Mendes (Telis); Robert Miles (Softswitch); Roger Mizumorri
  (Enterprise Solutions Ltd); Keith Moore (University of Tennessee);
  Ruth Moulton (Net-Tel) Michel Musy (Bull); Kenji Nonaka (NTT): The
  OIW MHSIG; Tom Oliphant (SWITCH); Julian Onions (NEXOR); Jacob Palme
  (KTH); Olivier Paridaens (ULB); Mary la Roche (Citicorp); John
  Setsaas (Maxware); Russell Sharpe (DCL); Patrick Soulier (CCETT);
  Eftimios Tsigros (Universite Libre de Bruxelles); Sean Turner (IECA);
  Mark Wahl (Isode); David Wilson (Isode); Bill Wohler (Worldtalk);
  Alan Young (Isode); Alain Zahm (Telis).

Chapter 2 - Service Elements

  This chapter considers the services offered across a gateway built
  according to this specification.  It gives a view of the
  functionality provided by such a gateway for communication with users
  in the opposite domain.  This chapter considers service mappings in
  the context of SINGLE transfers only, and not repeated mappings
  through multiple gateways.

2.1.  The Notion of Service Across a Gateway

  RFC 822 and X.400 provide a number of services to the end user.  This
  chapter describes the extent to which each service can be supported
  across an X.400 <-> RFC 822 gateway.  The cases considered are single
  transfers across such a gateway, although the problems of multiple
  crossings are noted where appropriate.

2.1.1.  Origination of Messages

  When a user originates a message, a number of services are available.
  Some of these imply actions (e.g., delivery to a recipient), and some
  are insertion of known data (e.g., specification of a subject field).
  This chapter describes, for each offered service, to what extent it
  is supported for a recipient accessed through a gateway.  There are
  three levels of support:





Kille                       Standards Track                    [Page 13]

RFC 2156                         MIXER                      January 1998


  Supported
     The corresponding protocol elements map well, and so the service
     can be fully provided.

  Not Supported
     The service cannot be provided, as there is a complete mismatch.

  Partial Support
     The service can be partially fulfilled.

  In the first two cases, the service is simply marked as "Supported"
  or "Not Supported".  Some explanation may be given if there are
  additional implications, or the (non) support is not intuitive.  For
  partial support, the level of partial support is summarised.  Where
  partial support is good, this will be described by a phrase such as
  "Supported by use of.....".  A common case of this is where the
  service is mapped onto a non-standard service on the other side of
  the gateway, and this would have lead to support if it had been a
  standard service.  In many cases, this is equivalent to support.  For
  partial support, an indication of the mechanism is given, in order to
  give a feel for the level of support provided.  Note that this is not
  a replacement for Chapter 5, where the mapping is fully specified.

     If a service is described as supported, this implies:

  -    Semantic correspondence.

  -    No (significant) loss of information.

  -    Any actions required by the service element.

  An example of a service gaining full support: If an RFC 822
  originator specifies a Subject: field, this is considered to be
  supported, as an X.400 recipient will get a subject indication.

  In many cases, the required action will simply be to make the
  information available to the end user.  In other cases, actions may
  imply generating a delivery report.

  All RFC 822 services are supported or partially supported for
  origination.  The implications of non-supported X.400 services is
  described under X.400.

2.1.2.  Reception of Messages

  For reception, the list of service elements required to support this
  mapping is specified.  This is really an indication of what a
  recipient might expect to see in a message which has been remotely



Kille                       Standards Track                    [Page 14]

RFC 2156                         MIXER                      January 1998


  originated.

2.2.  RFC 822

  RFC 822 does not explicitly define service elements, as distinct from
  protocol elements.  However, all of the RFC 822 header fields, with
  the exception of trace, can be regarded as corresponding to implicit
  RFC 822 service elements.

2.2.1.  Origination in RFC 822

  A mechanism of mapping, used in several cases, is to map the RFC 822
  header into a heading extension in the IPM (InterPersonal Message).
  This can be regarded as partial support, as it makes the information
  available to any X.400 implementations which are interested in these
  services. Communities which require significant RFC 822 interworking
  are recommended to require that their X.400 User Agents are able to
  display these heading extensions.  Support for the various service
  elements (headers) is now listed.

  Date:
       Supported.

  From:
       Supported.  For messages where there is also a sender field,
       the mapping is to "Authorising Users Indication", which has
       subtly different semantics to the general RFC 822 usage of
       From:.

  Sender: Supported.

  Reply-To: Supported.

  To:  Supported.

  Cc:  Supported.

  Bcc: Supported.

  Message-Id: Supported.

  In-Reply-To:
     Supported, for a single reference.  Where multiple references are
     given, partial support is given by mapping to "Cross Referencing
     Indication".  This gives similar semantics.

  References: Supported.




Kille                       Standards Track                    [Page 15]

RFC 2156                         MIXER                      January 1998


  Keywords: Supported by use of a heading extension.

  Subject: Supported.

  Comments: Supported by use of a heading extension.

  Encrypted: Supported by use of a heading extension.

  Content-Language: Supported.

  Resent-*

     Supported by use of a heading extension.  Note that addresses in
     these fields are mapped onto text, and so are not accessible to
     the X.400 user as addresses.  In principle, fuller support would
     be possible by mapping onto a forwarded IP Message, but this is
     not suggested.

  Other Fields

     In particular X-* fields, and "illegal" fields in common usage
     (e.g., "Fruit-of-the-day:") are supported by use of heading
     extensions.

  MIME introduces a number of headings.  Support is defined in RFC
  2157.

2.2.2.  Reception by RFC 822

  This considers reception by an RFC 822 User Agent of a message
  originated in an X.400 system and transferred across a gateway.  The
  following standard services (headers) may be present in such a
  message:

  Date:

  From:

  Sender:

  Reply-To:

  To:

  Cc:

  Bcc:




Kille                       Standards Track                    [Page 16]

RFC 2156                         MIXER                      January 1998


  Message-Id:

  In-Reply-To:

  References:

  Subject:

  Content-Type: (See RFC 2157)

  Content-Transfer-Encoding: (See RFC 2157)

  MIME-Version: (See RFC 2157)

  The following services (headers) may be present in the header of a
  message. These are defined in more detail in Chapter 5 (5.3.4, 5.3.6,
  5.3.7):

  Autoforwarded:

  Autosubmitted:

  X400-Content-Identifier:

  Content-Language:

  Conversion:

  Conversion-With-Loss:

  Delivery-Date:

  Discarded-X400-IPMS-Extensions:

  Discarded-X400-MTS-Extensions:

  DL-Expansion-History:

  Deferred-Delivery:

  Expires:

  Importance:

  Incomplete-Copy:

  Latest-Delivery-Time:




Kille                       Standards Track                    [Page 17]

RFC 2156                         MIXER                      January 1998


  Message-Type:

  Original-Encoded-Information-Types:

  Originator-Return-Address:

  Priority:

  Reply-By:

  Sensitivity:

  Supersedes:

  X400-Content-Type:

  X400-MTS-Identifier:

  X400-Originator:

  X400-Received:

  X400-Recipients:

2.3.  X.400

2.3.1.  Origination in X.400

  When mapping services from X.400 to RFC 822 which are not supported
  by RFC 822, new RFC 822 headers are defined, and registered by
  publication in this standard. It is intended that co-operating RFC
  822 systems may also use them.  Where these new fields are used, and
  no system action is implied, the service can be regarded as being
  partially supported.  Chapter 5 describes how to map X.400 services
  onto these new headers.  Other elements are provided, in part, by the
  gateway as they cannot be provided by RFC 822.

  Some service elements are marked N/A (not applicable).  There are
  five cases, which are marked with different comments:

  N/A (local)
     These elements are only applicable to User Agent / Message
     Transfer Agent interaction and so they cannot apply to RFC 822
     recipients.







Kille                       Standards Track                    [Page 18]

RFC 2156                         MIXER                      January 1998


  N/A (PDAU)
     These service elements are only applicable where the recipient is
     reached by use of a Physical Delivery Access Unit (PDAU), and so
     do not need to be mapped by the gateway.

  N/A (reception)
     These services  are only applicable for reception.

  N/A (prior)
     If requested, this service shall be performed prior to the
     gateway.

  N/A (MS)
     These services are only applicable to Message Store (i.e., a local
     service).

  Finally, some service elements are not supported.  In particular, the
  new security services are not mapped onto RFC 822.  Unless otherwise
  indicated, the behaviour of service elements marked as not supported
  will depend on the criticality marking supplied by the user.  If the
  element is marked as critical for transfer or delivery, a non-
  delivery notification will be generated.  Otherwise, the service
  request will be ignored.

2.3.1.1.  Basic Interpersonal Messaging Service

  These are the mandatory IPM services as listed in Section 19.8 of
  X.400 / ISO/IEC 10021-1, listed here in the order given. Section 19.8
  has cross references to short definitions of each service.

  Access management
     N/A (local).

  Content Type Indication
     Supported by a new RFC 822 header (X400-Content-Type:).

  Converted Indication
     Supported by a new RFC 822 header (X400-Received:).

  Delivery Time Stamp Indication
     N/A (reception).

  IP Message Identification
     Supported.

  Message Identification
     Supported, by use of a new RFC 822 header (X400-MTS-Identifier).
     This new header is required, as X.400 has two message-ids whereas



Kille                       Standards Track                    [Page 19]

RFC 2156                         MIXER                      January 1998


     RFC 822 has only one (see IP Message Identification

  Non-delivery Notification
     Not supported in all cases.  Supported where the recipient system
     supports NOTARY DSNs.  In general all RFC 822 systems will return
     error reports by use of IP messages.  In other service elements,
     this pragmatic result can be treated as effective support of this
     service element.

  Original Encoded Information Types Indication
     Supported as a new RFC 822 header (Original-Encoded-Information-
     Types:).

  Submission Time Stamp Indication
     Supported.

  Typed Body
     Support is defined in RFC 2157.

  User Capabilities Registration
     N/A (local).

2.3.1.2.  IPM Service Optional User Facilities

  This section describes support for the optional (user selectable) IPM
  services as listed in Section 19.9 of X.400 / ISO/IEC 10021- 1,
  listed here in the order given.  Section 19.9 has cross references to
  short definitions of each service.

  Additional Physical Rendition
     N/A (PDAU).

  Alternate Recipient Allowed
     Not supported.  There is no RFC 822 service equivalent to
     prohibition of alternate recipient assignment (e.g., an RFC 822
     system may freely send an undeliverable message to a local
     postmaster).  A MIXER gateway has two conformant options.  The
     first is not to gateway a message requesting prohibition of
     alternate recipient, as this control cannot be guaranteed.  This
     option supports the service, but may cause unacceptable level of
     message rejections. The second is to gateway the message on the
     basis that there is no alternate recipient service in RFC 822. RFC
     1327 allowed only the second option.   If the first option is
     shown to be operationally effective, it may be the only option in
     future versions of MIXER.

  Authorising User's Indication
     Supported.



Kille                       Standards Track                    [Page 20]

RFC 2156                         MIXER                      January 1998


  Auto-forwarded Indication
     Supported as new RFC 822 header (Auto-Forwarded:).

  Basic Physical Rendition
     N/A (PDAU).

  Blind Copy Recipient Indication
     Supported.

  Body Part Encryption Indication
     Supported by use of a new RFC 822 header (Original-Encoded-
     Information-Types:), although in most cases it will not be
     possible to map the body part in question.

  Content Confidentiality
     Not supported.

  Content Integrity
     Not supported.

  Conversion Prohibition
     Supported. Operation defined in RFC 2157.

  Conversion Prohibition in Case of Loss of Information
     Supported.  Operation defined in RFC 2157.

  Counter Collection
     N/A (PDAU).

  Counter Collection with Advice
     N/A (PDAU).

  Cross Referencing Indication
     Supported.

  Deferred Delivery
     N/A (prior).  This service shall always be provided by the MTS
     prior to the gateway.  A new RFC 822 header (Deferred-Delivery:)
     is provided to transfer information on this service to the
     recipient.

  Deferred Delivery Cancellation
     N/A (local).

  Delivery Notification
     Supported.  This is performed at the gateway, but may be performed
     at the end system if the end system supports NOTARY.  Thus, a
     notification is sent by the gateway to the originator.



Kille                       Standards Track                    [Page 21]

RFC 2156                         MIXER                      January 1998


  Delivery via Bureaufax Service
     N/A (PDAU).

  Designation of Recipient by Directory Name
     N/A (local).

  Disclosure of Other Recipients
     Supported by use of a new RFC 822 header (X400-Recipients:).  This
     is descriptive information for the RFC 822 recipient, and is not
     reverse mappable.

  DL Expansion History Indication
     Supported by use of a new RFC 822 header (DL-Expansion-History:).

  DL Expansion Prohibited
     Distribution List means MTS supported distribution list, in the
     manner of X.400.  This service does not exist in the RFC 822
     world, although RFC 822 supports distribution list functionality.
     There is no SMTP leve control to prohibit distribution list
     expansion.   A MIXER gateway has two conformant options.  The
     first is not to gateway a message requesting DL expansion
     prohibition, as this control cannot be guaranteed.  This option
     supports the service, but may cause unacceptable level of message
     rejections. The second is to gateway the message on the basis that
     there is no distribution list service in RFC 822. RFC 1327 allowed
     only the second option.   If the first option is shown to be
     operationally effective, it may be the only option in future
     versions of MIXER.

  Express Mail Service
     N/A (PDAU).

  Expiry Date Indication
     Supported as new RFC 822 header (Expires:).  In general, no
     automatic action can be expected.

  Explicit Conversion
     N/A (prior).

  Forwarded IP Message Indication
     Supported.

  Grade of Delivery Selection
     Not Supported.  There is no equivalent service in RFC 822.

  Importance Indication
     Supported as new RFC 822 header (Importance:).




Kille                       Standards Track                    [Page 22]

RFC 2156                         MIXER                      January 1998


  Incomplete Copy Indication
     Supported as new RFC 822 header (Incomplete-Copy:).

  Language Indication
     Supported as new RFC 822 header (Content-Language:).

  Latest Delivery Designation
     Not supported.  A new RFC 822 header (Latest-Delivery-Time:) is
     provided, which may be used by the recipient for general
     information, but will not be acted on by the SMTP infrastrucuture.

  Message Flow Confidentiality
     Not supported.

  Message Origin Authentication
     N/A (reception).

  Message Security Labelling
     Not supported.

  Message Sequence Integrity
     Not supported.

  Multi-Destination Delivery Supported.

  Multi-part Body
     Supported.

  Non Receipt Notification Request
     Not supported.

  Non Repudiation of Delivery
     Not supported.

  Non Repudiation of Origin
     N/A (reception).

  Non Repudiation of Submission
     N/A (local).

  Obsoleting Indication
     Supported as new RFC 822 header (Supersedes:).

  Ordinary Mail
     N/A (PDAU).

  Originator Indication
     Supported.



Kille                       Standards Track                    [Page 23]

RFC 2156                         MIXER                      January 1998


  Originator Requested Alternate Recipient
     Not supported, but is placed as comment next to address (X400-
     Recipients:).

  Physical Delivery Notification by MHS
     N/A (PDAU).

  Physical Delivery Notification by PDS
     N/A (PDAU).

  Physical Forwarding Allowed
     Supported by use of a comment in a new RFC 822 header (X400-
     Recipients:), associated with the recipient in question.

  Physical Forwarding Prohibited
     Supported by use of a comment in a new RFC 822 header (X400-
     Recipients:), associated with the recipient in question.

  Prevention of Non-delivery notification
     Supported where SMTP and NOTARY are available.  In other cases
     formally supported, as delivery notifications cannot be generated
     by RFC 822.  In practice, errors will be returned as IP Messages,
     and so this service may appear not to be supported (see Non-
     delivery Notification).

  Primary and Copy Recipients Indication
     Supported

  Probe
     Supported at the gateway (i.e., the gateway services the probe).

  Probe Origin Authentication
     N/A (reception).

  Proof of Delivery
     Not supported.

  Proof of Submission
     N/A (local).

  Receipt Notification Request Indication
     Not supported.









Kille                       Standards Track                    [Page 24]

RFC 2156                         MIXER                      January 1998


  Redirection Disallowed by Originator
     Redirection means MTS supported redirection, in the manner of
     X.400.  This service does not exist in the RFC 822 world.  RFC 822
     redirection (e.g., aliasing) is regarded as an informal
     redirection mechanism, beyond the scope of this control.  Messages
     will be sent to RFC 822, irrespective of whether this service is
     requested. In practice, control of this service is not supported.

  Registered Mail
     N/A (PDAU).

  Registered Mail to Addressee in Person
     N/A (PDAU).

  Reply Request Indication
     Supported as comment next to address.

  Replying IP Message Indication
     Supported.

  Report Origin Authentication
     N/A (reception).

  Request for Forwarding Address
     N/A (PDAU).

  Requested Delivery Method
     N/A (local).   The service request is dealt with at submission
     time.  Any such request is made available through the gateway by
     use of a comment associated with the recipient in question.

  Return of Content
     Supported where SMTP and NOTARY are used. In principle for other
     situations, this is N/A, as non-delivery notifications are not
     supported.  In practice, most RFC 822 systems will return part or
     all of the content along with the IP Message indicating an error
     (see Non-delivery Notification).

  Sensitivity Indication
     Supported as new RFC 822 header (Sensitivity:).

  Special Delivery
     N/A (PDAU).

  Stored Message Deletion
     N/A (MS).





Kille                       Standards Track                    [Page 25]

RFC 2156                         MIXER                      January 1998


  Stored Message Fetching
     N/A (MS).

  Stored Message Listing
     N/A (MS).

  Stored Message Summary
     N/A (MS).

  Subject Indication
     Supported.

  Undeliverable Mail with Return of Physical Message
     N/A (PDAU).

  Use of Distribution List
     In principle this applies only to X.400 supported distribution
     lists (see DL Expansion Prohibited).  Theoretically, this service
     is N/A (prior).  In practice, because of informal RFC 822 lists,
     this service can be regarded as supported.

  Auto-Submitted Indication
     Supported

2.3.2.  Reception by X.400

2.3.2.1.  Standard Mandatory Services

  The following standard IPM mandatory user facilities are required for
  reception of RFC 822 originated mail by an X.400 UA.

  Content Type Indication

  Delivery Time Stamp Indication

  IP Message Identification

  Message Identification

  Non-delivery Notification

  Original Encoded Information Types Indication

  Submission Time Stamp Indication

  Typed Body





Kille                       Standards Track                    [Page 26]

RFC 2156                         MIXER                      January 1998


2.3.2.2.  Standard Optional Services

  The following standard IPM optional user facilities are required for
  reception of RFC 822 originated mail by an X.400 UA.

  Authorising User's Indication

  Blind Copy Recipient Indication

  Cross Referencing Indication

  Originator Indication

  Primary and Copy Recipients Indication

  Replying IP Message Indication

  Subject Indication

2.3.2.3.  New Services

  A new X.400 service "RFC 822 Header Field" is defined using the
  extension facilities.  This allows for any RFC 822 header field to be
  represented.  It may be present in RFC 822 originated messages which
  are received by an X.400 UA.

Chapter 3 Basic Mappings

3.1.  Notation

  The X.400 protocols are encoded in a structured manner according to
  ASN.1, whereas RFC 822 is text encoded.  To define a detailed
  mapping, it is necessary to refer to detailed protocol elements in
  each format.  A notation to achieve this is described in this
  section.

3.1.1.  RFC 822

  Structured text is defined according to the Extended Backus Naur Form
  (EBNF) defined in Section 2 of RFC 822 [16].  In the EBNF definitions
  used in this specification, the syntax rules given in Appendix D of
  RFC 822 are assumed.  When these EBNF tokens are referred to outside
  an EBNF definition, they are identified by the string "822." appended
  to the beginning of the string (e.g., 822.addr-spec).  Additional
  syntax rules, to be used throughout this specification, are defined
  in this chapter.

  The EBNF is used in two ways.



Kille                       Standards Track                    [Page 27]

RFC 2156                         MIXER                      January 1998


  1.   To describe components of RFC 822 messages (or of SMTP
       components).  When these new EBNF tokens are referred to
       outside an EBNF definition, they are identified by the
       string "EBNF." appended to the beginning of the string
       (e.g., EBNF.importance).

  2.   To describe the structure of IA5 or ASCII information not in
       an RFC 822 message.

  For all new EBNF, tokens will either be self delimiting, or be
  delimited by self delimiting tokens.  Comments and LWSP are not used
  as delimiters, except for the following cases, where LWSP may be
  inserted according to RFC 822 rules.

  -    Around the ":" in all headers

  -    EBNF.labelled-integer

  -    EBNF.object-identifier

  -    EBNF.encoded-info

  RFC 822 folding rules are applied to all headers.  Comments are never
  used in these new headers.

  This notation is used in a modified form to refer to NOTARY EBNF
  [28].  For this EBNF, the keyword EBNF it replaces with DSN, for
  example DSN.final-recipient-field fields.

3.1.2.  ASN.1

  An element is referred to with the following syntax, defined in EBNF:

     element         = service "." definition *( "." definition )
     service         = "IPMS" / "MTS" / "MTA"
     definition      = identifier / context
     identifier      = ALPHA *< ALPHA or DIGIT or "-" >
     context         = "[" 1*DIGIT "]"

  The EBNF.service keys are shorthand for the following service
  specifications:

  IPMS IPMSInformationObjects defined in Annex E of X.420 / ISO 10021-
  7.

  MTS MTSAbstractService defined in Section 9 of X.411 / ISO 10021-4.

  TA MTAAbstractService defined in Section 13 of X.411 / ISO 10021-4.



Kille                       Standards Track                    [Page 28]

RFC 2156                         MIXER                      January 1998


  FTBP File Transfer Body Part, as defined in [27].

  The first EBNF.identifier identifies a type or value key in the
  context of the defined service specification.  Subsequent
  EBNF.identifiers identify a value label or type in the context of the
  first identifier (SET or SEQUENCE).  EBNF.context indicates a context
  tag, and is used where there is no label or type to uniquely identify
  a component.  The special EBNF.identifier keyword "value" is used to
  denote an element of a sequence.  For example, IPMS.Heading.subject
  defines the subject element of the IPMS heading.  The same syntax is
  also used to refer to element values.  For example,
  MTS.EncodedInformationTypes.[0].g3Fax refers to a value of
  MTS.EncodedInformationTypes.[0] .

3.2.  ASCII and IA5

  A gateway will interpret all IA5 as ASCII.  Thus, mapping between
  these forms is conceptual.

3.3.  Standard Types

  There is a need to convert between ASCII text and some of the types
  defined in ASN.1 [14].  For each case, an EBNF syntax definition is
  given, for use in all of this specification, which leads to a mapping
  between ASN.1, and an EBNF construct.  All EBNF syntax definitions of
  ASN.1 types are in lower case, whereas ASN.1 types are referred to
  with the first letter in upper case.  Except as noted, all mappings
  are symmetrical.

3.3.1.  Boolean

  Boolean is encoded as:

     boolean = "TRUE" / "FALSE"

3.3.2.  NumericString

  NumericString is encoded as:

     numericstring = *(DIGIT / " ")











Kille                       Standards Track                    [Page 29]

RFC 2156                         MIXER                      January 1998


3.3.3.  PrintableString

  PrintableString is a restricted IA5String defined as:

     printablestring  = *( ps-char )
     ps-restricted-char      = 1DIGIT /  1ALPHA / " " / "'" / "+"
                        / "," / "-" / "." / "/" / ":" / "=" / "?"
     ps-delim         = "(" / ")"
     ps-char          = ps-delim / ps-restricted-char

  This can be used to represent real printable strings in EBNF.

3.3.4.  T.61String

  In cases where T.61 strings are only used for conveying human
  interpreted information, the aim of a mapping is to render the
  characters appropriately in the remote character set, rather than to
  maximise reversibility.  For these cases, there are two options, both
  of which are conformant to this specification:

  1.   The mappings to IA5 defined in ITU-T Recommendation X.408
       (1988) may be used [13].  These will then be encoded in
       ASCII.   This is the approach mandated in RFC 1327.

  2.   This mapping may be used if the characters are not contained
       within ASCII repertoire, but are all in an IANA-registered
       character set.  Use the encoding defined in RFC 1522 [9] to
       generate appropriate encoded-words.  If this mapping is
       used, the character set ISO-8859-1 shall be used if all of
       the characters needed are available in this repertoire.  In
       other cases, the character set TELETEX shall be used.  The
       details of this character set is defined in the Appendix C
       of RFC 2157.

  There is also a need to represent Teletex Strings in ASCII, for some
  aspects of OR Address.  For these, the following encoding is used:

     teletex-string   = *( ps-char / t61-encoded )
     t61-encoded      = "{" 1* t61-encoded-char "}"
     t61-encoded-char = 3DIGIT

  Characters in EBNF.ps-char are mapped simply.  Other octets,
  including control characters, are mapped using a quoting mechanism
  similar to the printable string mechanism.  Each octet is represented
  as 3 decimal digits.  For example, the Yen character (hex A5) is
  represented as {165}.  As the three character string, a, yen
  character, b, would be represented as either "a{165}b".




Kille                       Standards Track                    [Page 30]

RFC 2156                         MIXER                      January 1998


  The use of escape sequences follows that set down for ASN1.  in ISO
  8825-1, with the additional specifiction that the default G1 page is
  ISO Latin 1.  The page settings may be changed by escape sequences.
  Changes of the settings hold within a pair of curly brackets ({}),
  and the settings revert to the default after the right bracket (})
  (i.e., they do not carry forward to subsequent T.61 encoding).

  There are a number of places where a string may have a Teletex and/or
  Printable String representation.  The following EBNF is used to
  represent this.

     teletex-and-or-ps = [ printablestring ] [ "*" teletex-string ]

  The natural mapping is restricted to EBNF.ps-char, in order to make
  the full BNF easier to parse.  An example is:

        "yen*{165}"

3.3.5.  UTCTime

  Both UTCTime and the RFC 822 822.date-time syntax contain: Year,
  Month, Day of Month, hour, minute, second (optional), and Timezone
  (technically a time differential in UTCTime).  822.date-time also
  contains an optional day of the week, but this is redundant.  With
  the exception of Year, a symmetrical mapping can be made between
  these constructs.

  Note:
     In practice, a gateway will need to parse various illegal variants
     on 822.date-time.  In cases where 822.date-time cannot be parsed,
     it is recommended that the derived UTCTime is set to the value at
     the time of translation.  Such errors may be noted in an RFC 822
     comment, to aid detection and correction.

  When mapping to X.400, the UTCTime format which specifies the
  timezone offset shall be used.

  When mapping to RFC 822, the 822.date-time format shall include a
  numeric timezone offset (e.g., -0500).

  When mapping time values, the timezone shall be preserved as
  specified.  The date shall not be normalised to any other timezone.









Kille                       Standards Track                    [Page 31]

RFC 2156                         MIXER                      January 1998


  RFC 822, as modified by RFC 1123, requires use of a four digit year.
  Note that the original RFC 822 uses a two digit date, which is no
  longer legal.  UTCTime uses a two digit date.  To map a year from RFC
  822 to X.400, simply use the last two digits.  To map a year from
  X.400 to RFC 822, assume that the two digit year refers to a year in
  the 10 year epoch 1980-2079.

3.3.6.  Integer

  A basic ASN.1 Integer will be mapped onto EBNF.numericstring.  In
  many cases ASN.1 will enumerate Integer values or use ENUMERATED.  An
  EBNF encoding labelled-integer is provided. When mapping from EBNF to
  ASN.1, only the integer value is mapped, and the associated text is
  discarded.  When mapping from ASN.1 to EBNF, a text label may be
  added.  It is recommended that this is done wherever possible and
  that clear text labels are chosen.

  A second encoding labelled-integer-2 is provided. This is used in
  DSNs, where the parsing rules will treat the text as a comment. This
  definition was not present in RFC 1327.

     labelled-integer ::= [ key-string ] "(" numericstring ")"

     labelled-integer-2 ::= [ numericstring ] "(" key-string ")"

     key-string      = *key-char
     key-char        = <a-z, A-Z, 0-9, and "-">


3.3.7.  Object Identifier

  Object identifiers are represented in a form similar to that given in
  ASN.1.  The order is the same as for ASN.1 (big-endian).  The numbers
  are mandatory, and used when mapping from the ASCII to ASN.1.  The
  key-strings are optional.  It is recommended that as many strings as
  possible are generated when mapping from ASN.1 to ASCII, to
  facilitate user recognition.

     object-identifier  ::= oid-comp object-identifier
                     | oid-comp

     oid-comp ::= [ key-string ] "(" numericstring ")"









Kille                       Standards Track                    [Page 32]

RFC 2156                         MIXER                      January 1998


  An example representation of an object identifier is:

     joint-iso-ccitt(2) mhs (6) ipms (1) ep (11) ia5-text (0)

     or

     (2) (6) (1)(11)(0)

  Because of the use of brackets and the conflict with the RFC 822
  comment convention, MIXER is defines so that the EBNFobject-
  identifier definition is not used in structured fields.

3.4.  Encoding ASCII in Printable String

  Some information in RFC 822 is represented in ASCII, and needs to be
  mapped into X.400 elements encoded as printable string.  For this
  reason, a mechanism to represent ASCII encoded as PrintableString is
  needed.

  A structured subset of EBNF.printablestring is now defined.  This
  shall be used to encode ASCII in the PrintableString character set.

     ps-encoded       = *( ps-restricted-char / ps-encoded-char )
     ps-encoded-char  = "(a)"               ; (@)
                      / "(p)"               ; (%)
                      / "(b)"               ; (!)
                      / "(q)"               ; (")
                      / "(u)"               ; (_)
                      / "(l)"               ; "("
                      / "(r)"               ; ")"
                      / "(" 3DIGIT ")"

  The 822.3DIGIT in EBNF.ps-encoded-char shall have range 0-127, and is
  interpreted in decimal as the corresponding ASCII character.  Special
  encodings are given for: at sign (@), percent (%), exclamation
  mark/bang (!), double quote ("), underscore (_), left bracket ((),
  and right bracket ()).  These characters, with the exception of round
  brackets, are not included in PrintableString, but are common in RFC
  822 addresses.  The abbreviations will ease specification of RFC 822
  addresses from an X.400 system.  These special encodings shall be
  interpreted in a case insensitive manner, but always generated in
  lower case.

  A reversible mapping between PrintableString and ASCII can now be
  defined.  The reversibility means that some values of printable
  string (containing round braces) cannot be generated from ASCII.
  Therefore, this mapping shall only be used in cases where the
  printable strings have been derived from ASCII (and will therefore



Kille                       Standards Track                    [Page 33]

RFC 2156                         MIXER                      January 1998


  have a restricted domain).  For example, in this specification, it is
  only applied to a Domain Defined Attribute which will have been
  generated by use of this specification and a value such as "(" would
  not be possible.

  To encode ASCII as PrintableString, the EBNF.ps-encoded syntax is
  used, with all EBNF.ps-restricted-char mapped directly.  All other
  822.CHAR are encoded as EBNF.ps-encoded-char.

  To encode PrintableString as ASCII, parse PrintableString as
  EBNF.ps-encoded, and then reverse the previous mapping.  If the
  PrintableString cannot be parsed, then the mapping is being applied
  in to an inappropriate value, and an error shall be given to the
  procedure doing the mapping. In some cases, it may be preferable to
  pass the printable string through unaltered.

  Some examples are now given.  Note the arrows which indicate
  asymmetrical mappings:

        PrintableString           ASCII

        'a demo.'         <->   'a demo.'
        foo(a)bar         <->   foo@bar
        (q)(u)(p)(q)      <->   "_%"
        (a)               <->   @
        (A)               ->    @
        (l)a(r)           <->   (a)
        (126)             <->   ~
        (                 ->    (
        (l)               <->   (

3.5.  RFC 1522

  RFC 1522 defines a mechanism for encoding other character set
  information into elements of RFC 822 Headers.  A gateway may ignore
  this encoding and treat the elements as ASCII.

  A preferred approach is for the gateway to interpret the RFC 1522
  encoding. This will not always be straightforward, because:

  1.   RFC 1522 permits an openly extensible character set choice,
       which may be broader than T.61.

  2.   It is not always possible to map all characters into the
       equivalent X.400 field.

  RFC 1522 is only applied to fields which are "for information only".
  A gateway which interprets header elements according to RFC 1522 may



Kille                       Standards Track                    [Page 34]

RFC 2156                         MIXER                      January 1998


  apply reasonable heuristics to minimise information loss.

Chapter 4 - Addressing and Message IDs

  Addressing is the most complex aspect of X.400 <-> RFC 822 gateway
  and is therefore  given a separate chapter.  This chapter also
  discusses message identifiers, as they are closely linked to
  addresses.  This chapter, as a side effect, also defines a textual
  representation of an X.400 OR Address.   This specification has much
  similarity to the X.400(92) representation of addresses.   This was
  because early versions of this specification were a major input to
  this work.  This specification retains compatibility with earlier
  versions.  The X.400 specification of address representation can be
  parsed but is not generated.

  Initially we consider an address in the (human) mail user sense of
  "what is typed at the mailsystem to reference a mail user".  A basic
  RFC 822 address is defined by the EBNF EBNF.822-address:

        822-address     = [ route ] addr-spec

  These definitions are taken from RFC 822.  In SMTP (or another 822-
  MTS protocol), the originator and each recipient are considered to be
  defined by such a construct.  In an RFC 822 header, the EBNF.822-
  address is encapsulated in the 822-address syntax rule, and there may
  also be associated comments.  None of this extra information has any
  semantics, other than to the end user.

  The basic X.400 OR Address, used by the MTS for routing, is defined
  by MTS.ORAddress.  In IPMS, the MTS.ORAddress is encapsulated within
  IPMS.ORDescriptor.

  The RFC 822 822.address is mapped with IPMS.ORDescriptor, and that
  RFC 822 EBNF.822-address is mapped with MTS.ORAddress.

  Section 4.1 defines a textual representation of an OR Address, which
  is used throughout the rest of this specification.  This text
  representation is designed to represent an X.400 address in the LHS
  (left hand side) or local part of an RFC 822 address, and so this
  representation gives a mechanism to represent X.400 addresses within
  RFC 822 addresses.

  Section 4.2 describes global equivalence mapping between parts of the
  X.400 and RFC 822 name spaces, and defines the concept of a MIXER
  Conformant Global Address Mapping (MCGAM).  Gateways conforming to
  this specification shall support MCGAMs.





Kille                       Standards Track                    [Page 35]

RFC 2156                         MIXER                      January 1998


  Section 4.3 is the core part of this chapter, and defines the mapping
  mechanism.

4.1.  A textual representation of MTS.ORAddress

  MTS.ORAddress is structured as an ordered set of attributes
  (type/value pairs).  It is clearly necessary to be able to encode
  this in ASCII for gatewaying purposes.  All components shall be
  encoded, in order to guarantee return of error messages, and to
  optimise third party replies.

4.1.1.  Basic OR Address Representation

  An OR Address has a number of structured and unstructured attributes.
  For each unstructured attribute, a key and an encoding is specified.
  For structured attributes, the X.400 attribute is mapped onto one or
  more attribute value pairs.  For domain defined attributes, each
  element of the sequence will be mapped onto a triple (key and two
  values), with each value having the same encoding.  The attributes
  are as follows, with 1984 attributes given in the first part of the
  attribute key table.  For each attribute, a reference is given,
  consisting of the relevant sections in X.402 / ISO 10021-2, and the
  extension identifier for 88 only attributes.  The attribute key table
  follows:

Attribute (Component)               Key         Enc    Ref     Id

84/88 Attributes

MTS.CountryName                      C                P     18.3.3
MTS.AdministrationDomainName         ADMD             P     18.3.1
MTS.PrivateDomainName                PRMD             P     18.3.21
MTS.NetworkAddress                   X121             N     18.3.7
MTS.TerminalIdentifier               T-ID             P     18.3.23
MTS.OrganizationName                 O                P/T   18.3.9
MTS.OrganizationalUnitNames.value    OU               P/T   18.3.10
MTS.NumericUserIdentifier            UA-ID            N     18.3.8
MTS.PersonalName                     PN               P/T   18.3.12
MTS.PersonalName.surname             S                P/T   18.3.12
MTS.PersonalName.given-name          G                P/T   18.3.12
MTS.PersonalName.initials            I                P/T   18.3.12
MTS.PersonalName
  .generation-qualifier             GQ               P/T   18.3.12
MTS.DomainDefineAttribute.value      DD               P/T   18.1







Kille                       Standards Track                    [Page 36]

RFC 2156                         MIXER                      January 1998


88 Attributes

MTS.CommonName                       CN               P/T   18.3.2    1
MTS.TeletexCommonName                CN               P/T   18.3.2    2
MTS.TeletexOrganizationName          O                P/T   18.3.9    3
MTS.TeletexPersonalName              PN               P/T   18.3.12   4
MTS.TeletexPersonalName.surname      S                P/T   18.3.12   4
MTS.TeletexPersonalName.given-name   G                P/T   18.3.12   4
MTS.TeletexPersonalName.initials     I                P/T   18.3.12   4
MTS.TeletexPersonalName
  .generation-qualifier             GQ               P/T   18.3.12   4
MTS.TeletexOrganizationalUnitNames
  .value                            OU               P/T   18.3.10   5
MTS.TeletexDomainDefinedAttribute
  .value                            DD               P/T   18.1      6
MTS.PDSName                          PD-SERVICE       P     18.3.11   7
MTS.PhysicalDeliveryCountryName      PD-C             P     18.3.13   8
MTS.PostalCode                       PD-CODE          P     18.3.19   9
MTS.PhysicalDeliveryOfficeName       PD-OFFICE        P/T   18.3.14   10
MTS.PhysicalDeliveryOfficeNumber     PD-OFFICE-NUM    P/T   18.3.15   11
MTS.ExtensionORAddressComponents     PD-EXT-ADDRESS   P/T   18.3.4    12
MTS.PhysicalDeliveryPersonName       PD-PN            P/T   18.3.17   13
MTS.PhysicalDeliveryOrganizationName PD-O             P/T   18.3.16   14
MTS.ExtensionPhysicalDelivery
  AddressComponents                 PD-EXT-DELIVERY  P/T   18.3.5    15
MTS.UnformattedPostalAddress         PD-ADDRESS       UPA   18.3.25   16
MTS.StreetAddress                    PD-STREET        P/T   18.3.22   17
MTS.PostOfficeBoxAddress             PD-BOX           P/T   18.3.18   18
MTS.PosteRestanteAddress             PD-RESTANTE      P/T   18.3.20   19
MTS.UniquePostalName                 PD-UNIQUE        P/T   18.3.26   20
MTS.LocalPostalAttributes            PD-LOCAL         P/T   18.3.6    21
MTS.ExtendedNetworkAddress
  .e163-4-address.number            NET-NUM          N     18.3.7    22
MTS.ExtendedNetworkAddress
  .e163-4-address.sub-address       NET-SUB          N     18.3.7    22
MTS.ExtendedNetworkAddress
  .psap-address                     NET-PSAP         X     18.3.7    22
MTS.TerminalType                     T-TY             I     18.3.24   23













Kille                       Standards Track                    [Page 37]

RFC 2156                         MIXER                      January 1998


  The following keys identify different EBNF encodings, which are
  associated with the ASCII representation of MTS.ORAddress.


        Key         Encoding

        P     printablestring
        N     numericstring
        T     teletex-string
        P/T   teletex-and-or-ps
        UPA   upa-string
        I     labelled-integer
        X     presentation-address

  The EBNF for presentation-address is taken from the specification RFC
  1278 "A String Encoding of Presentation Address" [23].

  In most cases, the EBNF encoding maps directly to the ASN.1 encoding
  of the attribute.  There are a few exceptions. In cases where an
  attribute can be encoded as either a PrintableString or NumericString
  (Country, ADMD, PRMD), either form is mapped into the EBNF.  When
  generating ASN.1, the NumericString encoding shall be used if the
  string contains digits and only digits.

  There are a number of cases where the P/T (teletex-and-or-ps)
  representation is used.  Where the key maps to a single attribute,
  this choice is reflected in the encoding of the attribute (attributes
  10-21). For example:

         /CN=yen*{165}/

  For most of the 1984 attributes and common name, there is a
  printablestring and a teletex variant.   This pair of attributes is
  mapped onto the single component here.  This will give a clean
  mapping for the common cases where only one form of the name is used.
  If there is  teletex attribute or teletex component only, and it
  contains only characters in the printable string character set, it
  shall be represented in the EBNF as if it had been encoded as
  printable string.   A single printable string representation shall
  also be done when both forms are present and they have the same
  printable string representation.

  The Unformatted Postal Address has a slightly more complex mapping
  onto a variant of   (teletex-and-or-ps), defined as:

       upa-string = [ printable-upa ] [ "*" teletex-string ]
       printable-upa = printablestring *( "|" printablestring )




Kille                       Standards Track                    [Page 38]

RFC 2156                         MIXER                      January 1998


  The optional teletex part is straightforward.  There is an (optional)
  sequence of printable strings which are mapped in order.  For
  example:

     /PD-ADDRESS=The Dome|The Square|Richmond|England/

  X.400 (1992) has introduced a string representation of OR Addresses
  (see F.401, Annex B).  This has specified a number of string keywords
  for attributes.  As earlier versions of this specification  were an
  input to this work, many of the keywords are the same.  To increase
  compatibility, the following alternative values shall be recognised
  when mapping from RFC 822 to X.400.  These shall not be generated
  when mapping from X.400 to RFC 822.  The following keyword
  alternative table and the subsequent paragraph lists alternative
  keywords.


                       Keyword         Alternative

                   ADMD              A
                   PRMD              P
                   GQ                Q
                   X121              X.121
                   UA-ID             N-ID
                   PD-OFFICE-NUM     PD-OFFICE NUMBER
                   PD-OFFICE-NUM     PD-OFN
                   PD-EXT-ADDRESS    PD-EA
                   PD-EXT-DELIVERY   PD-ED
                   PD-OFFICE         PD-OF
                   PD-STREET         PD-S
                   PD-UNIQUE         PD-U
                   PD-LOCAL          PD-L
                   PD-RESTANTE       PD-R
                   PD-BOX            PD-B
                   PD-CODE           PD-PC
                   PD-SERVICE        PD-SN
                   DD                DDA
                   NET-NUM           E.164
                   NET-PSAP          PSAP
                   PD-ADDRESS        PD-A

  When mapping from RFC 822 to X.400, the keywords defined in this
  paragraph shall be recognized.  The ordered keywords: OU1, OU2,
  OU3, and OU4, shall be recognised.  If these are present, no
  keyword OU shall be present.  These will be treated as ordered
  values of OU.  PD-A1, PD-A2, PD-A3, PD-A4, PD-A5, PD-A6 shall be
  treated as ordered lines.  If present, these will be assembled
  with separating line feeds to form a single physical address.  In



Kille                       Standards Track                    [Page 39]

RFC 2156                         MIXER                      January 1998


  this case PD-ADDRESS (or PD-A) shall not be present.   Similarly,
  there are ordered keywords for domain defined attributes: DD1,
  DD2, DD3, DD4,

  If ISDN is present, it may be interpreted as an E.163/164
  address, using local heuristics to parse the string.  X.400
  defines the key, but does not give an interpretation of the
  value.

  For T-TY (Terminal Type), the X.400 recommended values are
  preferred, but other values are allowed.  These values are: tlx
  (3); ttx (4); g3fax (5); g4fax (6); ia5 (7); and vtx (8).

4.1.2.  Encoding of Personal Name

  Handling of Personal Name and Teletex Personal Name  is a common
  requirement.   Therefore MIXER defines an alternative to the
  EBNF.standard-type syntax, which utilises the "human" conventions for
  encoding these components.  A syntax is defined, which is designed to
  provide a clean encoding for the common cases of OR Address
  specification where:

  1.   There is no generational qualifier

  2.   Initials, if present, contain only letters

  3.   Given Name, if present, does not contain full stop ("."),
       and is at least two characters long.

  4.   Surname does not contain full stop in the first two
       characters.

  5    If Surname is the only component, it does not contain full
       stop.

  The following EBNF is defined:

        encoded-pn      = [ given "." ] *( initial "." ) surname

        given           = 2*<ps-char not including ".">

        initial         = ALPHA

        surname         = printablestring







Kille                       Standards Track                    [Page 40]

RFC 2156                         MIXER                      January 1998


  This is used to map from any string containing only printable string
  characters to an OR address personal name.  To map from a string to
  OR Address components, parse the string according to the EBNF.  The
  given name and surname are assigned directly.  All EBNF.initial
  tokens are concatenated without intervening full stops to generate
  the initials component.

  For an OR address which follows the above restrictions, a string is
  derived in the natural manner.  In this case, the mapping will be
  reversible.

  For example:

        GivenName       = "Marshall"
        Surname         = "Rose"

        Maps with  "Marshall.Rose"

        Initials        = "MT"
        Surname         = "Rose"

        Maps with  "M.T.Rose"

        GivenName       = "Marshall"
        Initials        = "MT"
        Surname         = "Rose"

        Maps with  "Marshall.M.T.Rose"

  Note that X.400 suggests that Initials is used to encode all initials
  except the surname (X.402 section 18.3.12).  Therefore, the defined
  encoding is "natural" when either GivenName or Initials, but not
  both, are present.  The case where both are present can be encoded.

4.1.3.  Standard Encoding of MTS.ORAddress

  Given this structure, we can specify an EBNF representation of an OR
  Address. The output format of addresses is defined by EBNF.std-or-
  address.  The more flexible input format is defined by EBNF.std-or-
  address-input. The input EBNF has been added subsequent to RFC 1327,
  to reflect the formal incorporation of a number of heuristics.  The
  address element separator on input may be "/", ";", or a mixture of
  these.  The output format is used in all examples.

        std-or-address  = 1*( "/" attribute "=" value ) "/"
        attribute       = standard-type
                        / "RFC-822"
                        / dd-key "." std-printablestring



Kille                       Standards Track                    [Page 41]

RFC 2156                         MIXER                      January 1998


        std-or-address-input =  [ sep pair ] sep  pair *( sep pair )
                               sep  [ pair sep ]

        sep             = "/" / ";"
        pair            = input-attribute "=" value
        input-attribute = attribute
                        / dd-key ":" std-printablestring

        standard-type   = key-string

        dd-key          = key-string

        value           = std-printablestring

        std-printablestring
                        = *( std-char / std-pair )

        std-char        = <"{", "}", "*", and any ps-char
                                        except "/" and "=" >
        std-pair        = "$" ps-char

  For address generation, the standard-type is any key defined in the
  key table in Section 4.1, except PN, and DD.  For address parsing,
  other key values from Section 4.1 are also valid.  The EBNF leads to
  a set of attribute/value pairs. The value is interpreted according to
  the EBNF encoding defined in the table.

  If the standard-type is PN, the value is interpreted according to
  EBNF.encoded-pn, and the components of MTS.PersonalName and/or
  MTS.TeletexPersonalName derived accordingly.

  If dd-key is the recognised Domain Defined string (DD) or one of the
  alternatives defined in Section 4.1, then the type and value are
  interpreted according to the syntax implied from the encoding, and
  aligned to either the teletex or printable string form.  Key and
  value shall have the same encoding.

  If value is "RFC-822", then the (printable string) Domain Defined
  Type of "RFC-822" is assumed.  This is an optimised encoding of the
  domain defined type defined by this specification.

  The matching of all keywords shall be done in a case-independent
  manner.

  EBNF.std-or-address uses the characters "/" and "=" as delimiters.
  Domain Defined Attributes and any value may contain these characters.
  A quoting mechanism, using the non-printable string "$" is used to
  allow these characters to be represented.



Kille                       Standards Track                    [Page 42]

RFC 2156                         MIXER                      January 1998


  If an address of this syntax is parsed, and a country value is
  present, but no ADMD, the string shall be interpreted as if an ADMD
  value of single space had been specified.

4.2.  Global Address Mapping

  From a user perspective, the ideal mapping  would be entirely
  symmetrical and global, to enable addresses to be referred to
  transparently in the remote system, with the choice of gateway being
  left to the Message Transfer Service.  There are two fundamental
  reasons why this is not possible:

  1.   The syntaxes are sufficiently different to make this
       impossible.

  2    There is insufficient administrative co-operation between
       the X.400 and RFC 822 name registration authorities for this
       to work.

  Another way to view this situation is to see that there is not a full
  global equivalence between X.400 and RFC 822 addressing.  To meet
  user needs to the extent possible, this specification provides for
  equivalence where there is sufficient co-operation.  To be useful,
  this equivalence shall be recognised and interpreted in the same way
  by all gateways.  Therefore, an asymmetrical mapping is defined,
  which can be symmetrical where there is appropriate administrative
  co-operation.  Section 4.3 describes the asymetrical aspects.   This
  section describes a mechanism to enable the administrative co-
  ordination for symmetrical mappings.

  In order to achieve a symmetrical mapping there is a need to define
  an administrative equivalence between parts of the OR Address and
  Domain namespaces.  Previous version of this specification did this
  by definition of a global set of mappings.  MIXER defines the concept
  of a MIXER Conformant Global Address Mapping (MCGAM).  This acronym
  is defined so that it is very clear what is being referenced.

  The X.400 and Internet Mail address spaces are hierarchical.  It is
  possible to define an equivalence between two points in the
  hierarchies, such that addresses below that point can be derived in
  an algorithmic manner.  An MCGAM is a mapping from a point in one
  hierarchy to a point in the other hierarchy.  An "MGGAM pair" is a
  pair of symmetrical mappings between two points.  To define an MCGAM,
  the following shall apply:

  1.   The authority defining the MCGAM shall have responsibility
       for BOTH of the namespaces between which the MCGAM is
       defined.



Kille                       Standards Track                    [Page 43]

RFC 2156                         MIXER                      January 1998


  2.   The authority defining the MCGAM is responsible to ensure
       that addresses allocated below the two equivalence points
       conform to the rules set out below.

  3.   The authority defining the MCGAM is responsible to ensure
       that addresses which are generated according to the MCGAM
       are routed correctly.

  In general, MCGAMs will be independent.   In some cases, a set of
  MCGAMs may be related (e.g., where one MCGAM defines a mapping for an
  organization and a second MCGAM defines an excpetion for a subtree
  within the organization).   In this case, the related set of MCGAMs
  shall be treated as a single MCGAM for distribution purposes.

  The existence of an MCGAM does not imply routability and access for
  all users.

  The authority defining an MCGAM may simply use this mapping locally.
  This will often be the case in a "local scenario" gateway.   Because
  of third party addressing, a MIXER gateway will work best with the
  maximum number of MCGAMs.   Therefore, three mechanisms are defined
  to enable publication and exchange of MCGAMs:

  1.   Distribution of text tables.  This is described in Appendix
       F of this specification.

  2.   Distribution by Domain Name Service.   This is described in
       RFC 2163 [3].

  3.   Distribution by X.500 Directory Service.   This is defined
       in RFC 2164 [26].

  The following sections define how the MCGAM namespace equivalence is
  modelled.  The Internet Domain Namespace defines a simple hierarchy.
  For the purposes of this mapping, only parts of the namespace where
  domains conform to the EBNF domain-syntax are allowed.

        domain-syntax   = alphanum [ *alphanumhyphen alphanum ]
        alphanum        = <ALPHA or DIGIT>
        alphanumhyphen  = <ALPHA or DIGIT or HYPHEN>

  Although RFC 822 allows for a more general syntax, this restricted
  syntax is used in MIXER as it is the one chosen by the various domain
  service administrations.  In practice, it reflects all RFC 822 usage.







Kille                       Standards Track                    [Page 44]

RFC 2156                         MIXER                      January 1998


  The following OR Address attributes are considered as a hierarchy,
  and may be specified by the domain.  They are (in order of the
  hierarchy defined by MIXER):

        Country, ADMD, PRMD, Organization, Organizational Units

  There may be up to four ordered Organizational Units.   This
  hierarchy reflects most usage of X.400, although X.400 may be used in
  other ways. In particular, it covers the Mnemonic OR Address using a
  1984 compatible encoding.  This is seen as the dominant form of OR
  Address. MCGAMs may only be used when this hierarchy applies.

  An equivalence mapping is defined between two nodes in the respective
  hierarchies. For example:

        => "AC.UK" might be mapped with
        PRMD="UK.AC", ADMD="GOLD 400", C="GB"

  The mapping identifies that the management of these points in the
  respective hierarchies is the same (or co-operate very closely).  The
  equivalence means that the namespaces below this equivalence point
  map 1:1, except where the mapping is overridden by further
  equivalence mappings lower down the hierarchy.   This equivalence may
  be achieved in three ways:

  1.   All of the nodes below this point are RFC 822, and the MIXER
       mapping defines the X.400 addresses for these nodes.

  2.   All of the nodes below this point are X.400, and the MIXER
       mapping defines the  RFC 822 addresses for these nodes.

  3.   There are X.400 and RFC 822 nodes below this point, and
       addressing is managed in a manner which  ensures the
       equivalence.   The rules to achieve this are  defined by
       MIXER.

  Each of these ways gives a framework for MCGAM definition.

  When an MCGAM is defined, a systematic mapping for the inferior nodes
  in the two hierarchies follows.   This is a 1:1 mapping between the
  nodes in the subtrees.  For example, given the MCGAM pair defined
  above:

        the domain "R-D.Salford.AC.UK" algorithmically maps with
        OU="R-D", O="Salford", PRMD="UK.AC", ADMD="GOLD 400", C="GB"






Kille                       Standards Track                    [Page 45]

RFC 2156                         MIXER                      January 1998


  Note that when an equivalence is defined, that this can be re-defined
  for lower points in the hierarchy.  However, it is not possible to
  declare contained subtrees to be un-mappable.

  The equivalence mapping also provides a mechanism to deal with
  missing elements in the X.400 hierarchy (most commonly the PRMD,
  which is the only element that may be ommitted when conforming to
  recent versions of X.400).  A domain may be associated with an
  omitted attribute in conjunction with several present ones.  When
  performing the algorithmic insertion of components lower in the
  hierarchy, the omitted value shall be skipped.  For example:

        If there is an MCGAM pair between domain HNE.EGM" and "O=HNE",
        "ADMD=ECQ", "C=TC", and omitted PRMD

  then

        "ZI.HNE.EGM" is algorithmically mapped with "OU=I", "O=HNE",
        "ADMD=ECQ", "C=TC"

  Attributes may have null values, and  this is treated separately from
  omitted attributes (while it is not ideal to make this distinction,
  it is useful in practice).

4.2.1.  Directory and Nameserver Mappings

  When a set of MCGAMs are supported by X.500 or DNS, there is the
  possibility that results will be indeterminate due to timeout.
  Lookup shall be repeated until a value is determined, in order to
  maintain  consistent gateway operation.

  Where the mapping relates to an envelope address, the gateway shall
  non-deliver messages according to the associated MTA's normal timeout
  policy.  Where the mapping relates to addresses in the message
  header, there shall be a timeout in the range of 1-4 hours or shorter
  if this is required to maintain quality of service constraints.   If
  a mapping cannot be done in this time, address encapsulation shall be
  used.

4.3.  EBNF.822-address <-> MTS.ORAddress

  This section defines the basic address mapping.

4.3.1.  X.400 encoded in RFC 822

  This section defines how X.400 addresses are represented in RFC 822
  addresses.




Kille                       Standards Track                    [Page 46]

RFC 2156                         MIXER                      January 1998


  The std-or-address syntax is  used to encode OR Address information
  in the 822.local-part of EBNF.822-address.  Where there is an
  applicable equivalence mapping, further  OR Address information is
  associated with the 822.domain component.  This cannot be used in the
  general case, due to character set problems, and to the variants of
  X.400 OR Addresses which use different attribute types.  The only way
  to encode the full PrintableString character set in a domain is by
  use of the 822.domain-ref syntax (i.e. 822.atom).  This is likely to
  cause problems on many systems.  The effective character set of
  domains is in practice reduced from the RFC 822 set, by restrictions
  imposed by domain conventions and policy [10], and by the EBNF
  definition in SMTP.

  A generic 822.address consists of a 822.local-part and a sequence of
  822.domains (e.g., <@domain1,@domain2:user@domain3>).  All except the
  822.domain associated with the 822.local-part (domain3 in this case)
  are considered to specify routing within the RFC 822 world, and will
  not be interpreted by the gateway (although they may have identified
  the gateway from within the RFC 822 world).

  The  822.domain associated with the 822.local-part identifies the
  gateway from within the RFC 822 world.  This final 822.domain may be
  used to determine some number of OR Address attributes, where this
  does not conflict with the first role.  RFC 822 routing to gateways
  will usually be set up to facilitate the 822.domain being used for
  both purposes.

  In the case that there is no applicable equivalence mapping, all of
  the X.400 address is encoded in the 822.local-part and the 822.domain
  identifies the gateway to which the message is being sent.  This
  technique may be used by the RFC 822 user for any X.400 address where
  the equivalence mapping is not known.

  In the case that there is an applicable MCGAM, the maximum number of
  attributes are encoded in the 822.domain.  The remaining attributes
  are encoded on the LHS, using the EBNF.std-or-address syntax.  For
  example:

        /I=J/S=Linnimouth/GQ=5/@Marketing.Widget.COM

  encodes the MTS.ORAddress consisting of:


        MTS.CountryName                       = "TC"
        MTS.AdministrationDomainName          = "BTT"
        MTS.OrganizationName                  = "Widget"
        MTS.OrganizationalUnitNames.value     = "Marketing"
        MTS.PersonalName.surname              = "Linnimouth"



Kille                       Standards Track                    [Page 47]

RFC 2156                         MIXER                      January 1998


        MTS.PersonalName.initials             = "J"
        MTS.PersonalName.generation-qualifier = "5"

  on the basis of an MCGAM pair between:

        Domain: Widget.COM
        OR Address: O="Widget", ADMD="BTT", C="TC"

  Given the OR address, the domain Widget.COM is determined from the
  equivalence mapping and the next component is determined
  algorithmically to give Marketing.Widget.COM.  The remaining
  attributes are encoded on the LHS in 822.local-part.

  There is a further mechanism to simplify the encoding of common
  cases, where the only attributes to be encoded on the LHS are (non-
  Teletex) Personal Name attributes which comply with the restrictions
  of 4.1.2.  To achieve this, the 822.local-part shall be encoded as
  EBNF.encoded-pn.  In the previous example, if the GenerationQualifier
  was not present in the OR Address, it would map with the RFC 822
  address:  [email protected].

  From the standpoint of the RFC 822 Message Transfer System, the
  domain specification is used to route the message in the standard
  manner.  The standard domain mechanisms are used to select
  appropriate gateways for the corresponding OR Address space.  It is
  the responsibility of the management that defines the equivalence
  mapping to define routing in the manner which will enable the message
  to be delivered.

4.3.2.  RFC 822 encoded in X.400

  The previous section showed a mapping from X.400 to RFC 822.  In the
  case where  the mapping was symmetrical and based on the equivalence
  mapping, this has also shown how RFC 822 is encoded in the X.400.
  This equivalence cannot be used for all RFC 822 addresses.

  The general case is mapped by use of domain defined attributes.  A
  (Printable String) Domain defined type "RFC-822" is defined. The
  associated attribute value is an ASCII string encoded according to
  Section 3.3.3 of this specification. The interpretation of the ASCII
  string follows RFC 822, and RFC 1123 [10,16].  Domains shall always
  be fully qualified.









Kille                       Standards Track                    [Page 48]

RFC 2156                         MIXER                      January 1998


  Other OR Address attributes will be used to identify a context in
  which the OR Address will be interpreted.  This might be a Management
  Domain, or some part of a Management Domain which identifies a
  gateway MTA.  For example:

        C               = "GB"
        ADMD            = "GOLD 400"
        PRMD            = "UK.AC"
        O               = "UCL"
        OU              = "CS"
        "RFC-822"      =  "Jimmy(a)WIDGET-LABS.CO.UK"

  OR

        C               = "TC"
        ADMD            = "Wizz.mail"
        PRMD            = "42"
        "rfc-822"       = "postel(a)venera.isi.edu"

  Note in each case the PrintableString encoding of "@" as "(a)".  In
  the second example, the "RFC-822" domain defined attribute is
  interpreted everywhere within the (Private) Management Domain.  In
  the first example, further attributes are needed within the
  Management Domain to identify a gateway.  Thus, this scheme can be
  used with varying levels of Management Domain co-operation.

  There is a limit of 128 characters in the length of value of a domain
  defined attribute, and an OR Address can have a maxmimum of four
  domain defined attributes.  Where the printable string generated from
  the RFC 822 address exceeds 128 characters, additional domain defined
  attributes are used to enable up to 512 characters to be encoded.
  These attributes shall be filled completely before the next one is
  started.   The (Printable String) DDA keywords are:  RFC822C1;
  RFC822C2; RFC822C3.  Longer addresses cannot be encoded.

  MIXER defines a representation of RFC 822 addresses in printable
  string domain defined attributes.  Teletex domain defined attributes
  with a key of RFC-822, RFC822C1; RFC822C2; RFC822C3 shall not be
  generated.  This is for backwards compatibility reasons.












Kille                       Standards Track                    [Page 49]

RFC 2156                         MIXER                      January 1998


  Reception of these attributes in the manner defined below is
  mandatory.  This is to allow the possibility for future versions of
  MIXER to allow generation of teletex domain defined attributes.
  Where the values of all of these teletex domain defined attributes
  are printable string characters, they shall be interpreted in the
  same way as the printable string domain defined attributes.   If this
  is not the case, the printable string encoding translation shall be
  omitted.  If both teletex and printable string attributes are
  present, this is valid if and only if they represent exactly the same
  RFC 822 address.

4.3.3.  Component Ordering

  In most cases, ordering of OR Address components is not significant
  for the mappings specified.  However, Organizational Units (printable
  string and teletex forms) and Domain Defined Attributes are specified
  as SEQUENCE in MTS.ORAddress, and so their order may be significant.
  This specification needs to take account of this:

  1.   To allow consistent mapping into the domain hierarchy

  2.   To ensure preservation of order over multiple mappings.

  There are three places where an order is specified:

  1.   The text encoding (std-or-address) of MTS.ORAddress as used
       in the local-part of an RFC 822 address.  An order is needed
       for those components which may have multiple values
       (Organizational Unit, and Domain Defined Attributes). When
       generating an 822.std-or-address, components of a given type
       shall be in hierarchical order with the most significant
       component on the RHS (right hand side or domain part).  If
       there is an Organization Attribute, it shall be to the right
       of any Organizational Unit attributes.  These requirements
       are for the following reasons:

  -         Alignment to the hierarchy of other components in RFC
            822 addresses (thus, Organizational Units will appear
            in the same order, whether encoded on the RHS or LHS).

  -         Backwards compatibility with RFC 987/1026.

  -         To ensure that gateways generate consistent addresses.
            This is both to help end users, and to generate
            identical message ids.






Kille                       Standards Track                    [Page 50]

RFC 2156                         MIXER                      January 1998


  Further, it is recommended that all other attributes are generated
  according to this ordering, so that all attributes so encoded follow
  a consistent hierarchy.  When generating 822.msg-id, this order shall
  be followed.

  2.   For the Organizational Units (OU) in MTS.ORAddress, the
       first OU in the SEQUENCE is the most significant, as specified
       in X.400.

       3.   For the Domain Defined Attributes in MTS.ORAddress, the
       First Domain Defined Attribute in the SEQUENCE is the most
       significant.

  Note that although this ordering is mandatory for this mapping, MIXER
  does not give additional implications on the ordering significance
  within X.400.

4.3.4.  RFC 822 -> X.400 Basic Address Mapping

  There are two basic cases:

  1.   X.400 addresses encoded in RFC 822.  This will also include
       RFC 822 addresses which are given reversible encodings.

  2.   "Genuine" RFC 822 addresses.

  The mapping shall proceed as follows, by first assuming case 1).

  STAGE I.

  1.   If the 822-address is not of the form:

        local-part "@" domain

      take the domain which will be routed on and apply step 2 of stage
      1 to derive (a possibly null) set of attributes. Then go to stage
      II.

      The gateway may  reduce a source route address to this form by
      removal of all but the last domain.  In terms of the design
      intentions of RFC 822, this would be an incorrect action. (Note
      that an address of the form local%part@domain is not a source
      route).  However, in most cases, it will provide a better service








Kille                       Standards Track                    [Page 51]

RFC 2156                         MIXER                      January 1998


      to the end user, and is in line with the Internet Host
      Requirements.  This is a reflection on the common inappropriate
      use of source routing in RFC 822 based systems, despite the
      discussion in the Host Requirements [10].  Either approach, or
      the intermediate approach of stripping only domain references
      which reference the local gateway are conformant to this
      specification.

  2.   If the 822.local-part uses the 822.quoted-string encoding,
       remove this quoting.  If the resulting unquoted
       822.local-part has leading space, trailing space, or two
       adjacent spaces go to stage II.

  3.   If the unquoted 822.local-part contains any characters not
       in PrintableString, "{", "}", "*", and "$", go to stage II.

  4.   Parse the (unquoted) 822.local-part according to the EBNF
       EBNF.std-or-address-input.  Checking of upper bounds shall
       not be done at this point.  If this parse fails, parse the
       local-part according to the EBNF EBNF.encoded-pn.  If this
       parse fails, go to stage II.  The result is a set of
       type/value pairs.

  5.   Associate the EBNF.attribute-value syntax (determined from
       the identified type) with each value, and check that it
       conforms.  If not, go to stage II.

  6.   If the set of attributes forms a valid X.400 address,
       according to X.402, then go to step 9.  All forms of X.400
       address are allowed at this stage.  Steps 7-8 default
       attributes for certain types of OR Address.

  7.   If the set of attributes cannot form a mnemonic form of
       X.400 address after addition of attributes which may be
       derived from the EBNF.domain (C, ADMD, PRMD, O, OU), go to
       stage II.

  8.   Attempt to parse EBNF.domain as:

        *( domain-syntax "." ) known-domain

       Where EBNF.known-domain is the longest possible match in the set
       of MCGAMs being used by the gateway (described in Section 4.2).
       EBNF.domain-syntax is the restricted domain syntax defined in
       Section 4.2, to which all of the domain components shall conform
       for the parse to be successful.  If this fails, go to stage II.





Kille                       Standards Track                    [Page 52]

RFC 2156                         MIXER                      January 1998


       For each component, systematically allocate the attribute
       implied by each EBNF.domain-syntax component in the order: C,
       ADMD, PRMD, O, OU.  Note that if the MCGAM used identifies an
       "omitted attribute", then this attribute shall be omitted in the
       systematic allocation.  If this new component exceed an upper
       bound (ADMD: 16; PRMD: 16; O: 64; OU:  32) or it would lead to
       more than four OUs, then go to stage II with the attributes
       derived.

       The attributes derived in this step (referred to as RHS
       attributes) are merged with the ones derived from the LHS (step
       6).  In some cases, not all of the RHF attributes are used.  LHS
       attributes are all used.  C will not be in the LHS attributes.
       If ADMD is in the LHS attributes,  only C is taken from the RHS
       attributes. If PRMD is in the LHS attributes, C and ADMD are
       taken from the RHS attributes.  If O is on the LHS, C, ADMD and
       PRMD (if present) are taken from the RHS attributes.  In other
       cases all RHS attributes are taken.

  9.   Ensure that the set of attributes conforms both to the
       MTS.ORAddress specification and to the restrictions on this
       set given in X.400, and that no upper bounds are exceeded
       for any attribute.  If not go to stage II.

  10.  Build the OR Address from this information.

  STAGE II.

  This will only be reached if the RFC 822 EBNF.822-address is not a
  valid X.400 encoding.  This implies that the address  refers to a
  recipient on an RFC 822 system or that the encoding of the address is
  invalid.  Such addresses shall be encoded in an X.400 OR Address
  using a domain defined attribute.

  1.   Convert the EBNF.822-address to PrintableString, as
       specified in Chapter 3.

  2.   Generate the "RFC-822" domain defined attribute  from this
       string.

  3.   Build the rest of the OR Address in the manner described
       below.









Kille                       Standards Track                    [Page 53]

RFC 2156                         MIXER                      January 1998


  It is not always possible to encode the domain defined attribute
  due to length restrictions.  If the limit is exceeded by a
  mapping at the MTS level, then the gateway shall reject the
  message in question.  If this occurs at the IPMS level, then the
  action will depend on the policy being taken for IPMS encoding,
  which is discussed in Section 5.1.3.

  Use Stage I, step 8, to generate a set of attributes to build the
  remainder of the address.  The administrative equivalence of the
  mappings will ensure correct routing through X.400 to a gateway
  back to RFC 822.

  If Stage I, step 8 does not generate a set of attributes or
  the address generated is unroutable, the remained of the OR
  address is generated as follows.  The remainder of the OR address
  effectively identifies a source route to a gateway from the X.400
  side.  There are three cases, which are handled differently:

  SMTP Return Address
     This shall be set up so that errors are returned through the
     same gateway.  Therefore, the OR Address of the local
     gateway shall be used.

  IPMS Addresses
     These are optimised for replying.  In general, the message
     may end up anywhere within the X.400 world, and so this
     optimisation identifies a gateway appropriate for  the RFC
     822 address being converted.  The 822.domain to which the
     address would be routed is used to select an appropriate
     gateway.

     In this case, it may be useful to use a non-local gateway,
     which will optimise the reply address.   This information
     may be looked up in gateway tables in a manner equivalent to
     the MCGAM lookup.  Because of the similarity of lookup, the
     three MCGAM lookup mechanisms (table, X.500, DNS) are also
     available to look up this information.   This information is
     local, and a gateway may insert any appropriate  (gateway)
     OR Address.  The longest possible match on the 822.domain
     defines which gateway to use.  This mechanism is used for
     any part of the X.400 namespace for which it is desirable to
     identify a preferred X.400 gateway in order to optimise
     routing.

     If no mapping is found for the 822.domain, a default value
     (typically that of the local gateway) is used.  It is never
     appropriate to ignore the locally used MCGAMs.




Kille                       Standards Track                    [Page 54]

RFC 2156                         MIXER                      January 1998


  SMTP Recipient
     As the RFC 822 and X.400 worlds are in principle fully
     connected, there is no technical reason for this situation
     to occur. In practice, this is not the case.  In some cases,
     routing may be configured to use X.400 to connect an RFC 822
     island to the Internet.  The information that this part of
     the domain space is to be routed by X.400 rather than
     remaining within the RFC 822 world shall be configured
     privately into the gateway in question. X.400 routing shall
     not make use of the presence of the RFC-822 DDA to perform
     X.400 routing.  The OR address shall then be generated in
     the same manner as for an IPMS address, using the locally
     available MCGAMs.  It is to support this case that the
     definition of the global domain to gateway mapping is
     important, as the use of this mapping will lead to a remote
     X.400 address, which can be routed by X.400 routing
     procedures.  The information in this mapping shall not be
     used as a basis for deciding to convert a message from RFC
     822 to X.400.

  Three examples are given, neither of which has applicable MCGAMs.

  Example 1: (Address not in "localpart" "@" "domainpart")

  @relay.co.uk:userb@host2

           maps to

  c=gb; a= ; p=uk.ac; o=mr; dd.rfc-822=(a)relay.co.uk:userb(a)host2;

  Example 2: (Address with non printablestring characters)

  [email protected]

           maps to

  c=us; a=MCI; P=relay; dd.rfc-822=Tom(u)Harris(a)cs.widget.com;


  Example 3: (Address with an entry for alter.net into the OR Address
  of Preferred Gateway table, pointing to c=gb; A=BTglobal; P=relay)

  [email protected]

     maps to

  c=gb; a=BTglobal; P=relay; dd.rfc-822=postmaster(a)UK.alter.net;




Kille                       Standards Track                    [Page 55]

RFC 2156                         MIXER                      January 1998


4.3.4.1.  Heuristic for mapping RFC 822 to X.400

  The following heuristic, which  relates to ordering of address
  components, may be used when mapping from RFC 822 to X.400.  The
  ordering of attributes may be inverted or mixed, and so the following
  heuristics may be applied:

      If there is an Organization attribute to the left of any Org Unit
      attribute, assume that the hierarchy is inverted.  This is to
      facilitate the situation where a user has input the attributes in
      reverse hierarchical order.  To do this the gateway shall first
      map according to the order defined in 4.3.3.    If this mapping
      generates an address which X.400 address verification shows to be
      invalid, this heuristic may be applied as an alternative to
      immediate rejection of the address.

4.3.5.  X.400 -> RFC 822 Basic Address Mapping

  There are two basic cases:

  1.   RFC 822 addresses encoded in X.400.

  2.   "Genuine" X.400 addresses.  This may include symmetrically
       encoded RFC 822 addresses.

  When an MTS Recipient OR Address is interpreted, gatewaying will be
  selected if there is a single "RFC-822" domain defined attribute
  present.  In this case, use mapping A and in other cases, use mapping
  B.

  RFC 1327 specified that this shall only be done when the gateway
  identfied is local or otherwise known, and identified the approach
  specified here as a pragmatic option.  Experience has shown that this
  is effective in practice, despite theoretical problems.

  If a gateway wishes to make a mapping in a manner similar to RFC
  1327, but does not wish for this global interpretation (e.g., to
  support an RFC 822 local system, which does not use global
  addressing), then it may choose a private domain defined attribute,
  different to "RFC-822".  An RFC 1327 gateway might be configurable to
  operate in this manner.

  Mapping A

  1.   Map the domain defined attribute value to ASCII, as defined
       in Chapter 3, and drop all other attributes.





Kille                       Standards Track                    [Page 56]

RFC 2156                         MIXER                      January 1998


  Mapping B

  This is used for X.400 addresses which do not use the explicit RFC
  822 encoding.

  1.   For all string encoded attributes, remove any leading or
       trailing spaces, and replace adjacent spaces with a single
       space.

       The only attribute which is permitted to have zero length is
       the ADMD.  This shall be mapped onto a single space.

       These transformations are for lookup only.   If an
       EBNF.std-or-address mapping is used as in 4), then the
       original values shall be used.

  2.   The numeric country codes may be mapped to the two letter
       values (as defined in ISO 3166).  Global mappings are
       usually only defined in terms of the ISO 3166 codes.

  3.   Noting the hierarchy specified in 4.3.1 and including
       omitted attributes, determine the maximum set of attributes
       which have an associated domain specification in the local
       set of MCGAMs.  If no match is found, allocate the domain as
       described below, and go to step 5. The default domain to be
       used is the specification of the local gateway.   A gateway
       may use other domains according to private mapping tables or
       heuristics.   For example, it may choose a domain which it
       knows to provide a free gateway service to the mapped
       address.

       In cases where the address refers to an X.400 UA, it is
       important that the generated domain will correctly route to
       a gateway.  In general, this is achieved by carefully co-
       ordinating RFC 822 routing with the definition of the
       MCGAMs, as there is no easy way for the gateway to make this
       check.  One rule that shall be used is that domains with
       only one component will not route to a gateway.  If the
       generated domain does not route correctly, the address is
       treated as if no match is found.

       The gateway may also make use of a mapping equivalent to the
       MCGAM mapping to determine the domain to use.  This mapping
       is done from the OR Address hierarchy.   This is not a
       global mapping, but is a routing style mapping from the OR
       Address space, to enable a best choice domain to be
       inserted.   This mapping is supported by the three MCGAM
       lookup mechanisms.



Kille                       Standards Track                    [Page 57]

RFC 2156                         MIXER                      January 1998


  4.   The mapping identified  in 3) gives a domain, and an OR
       address prefix.  Follow the hierarchy: C, ADMD, PRMD, O, OU.
       For each successive component below the OR address prefix, which
       conforms to the syntax EBNF.domain-syntax (as defined in 4.3.1),
       allocate the next subdomain.  At least one attribute of the
       X.400 address shall not be mapped onto subdomain, as 822.local-
       part cannot be null.  If there are omitted attributes in the OR
       address prefix, these will have correctly and uniquely mapped to
       a domain component.   Where there is an attribute omitted below
       the prefix, all attributes remaining in the OR address shall be
       encoded on the LHS.  This is to ensure a reversible mapping. For
       example, if there is an address /S=XX/O=YY/ADMD=A/C=NN/ and a
       mapping for /ADMD=A/C=NN/ is used, then /S=XX/O=YY/ is encoded
       on the LHS.

  5.   If the address contains any attribute not used in mnemonic
       form, then all of the attributes in the address shall be encoded
       on the LHS in EBNF.std-or-address syntax, as described below.

       For addresses of mnemonic form, if the remaining components are
       personal-name components, conforming to the restrictions of
       4.2.1, then EBNF.encoded-pn is derived to form 822.local-part.
       In other cases the remaining components are simply encoded as
       822.local-part using the EBNF.std-or-address syntax.  If
       necessary, the 822.quoted-string encoding is used.  The
       following are examples of legal quoting: "a b".c@x; "a b.c"@x.
       Either form may be generated.  Generation of the latter style is
       strongly recommended.

  Four examples are given.

  Example 1: (Address with missing X.400 elements and no specific
  mapping rule for "o=sales; a=Master400; C=it", where a mapping exists
  for a=master400; C=it;)

  S=Support; O=sales;  A=Master400; C=it;

      maps to

  /S=Support/o=sales/@Master400.it











Kille                       Standards Track                    [Page 58]

RFC 2156                         MIXER                      January 1998


  Example 2: (Address with illegal characters in RFC822 generated
  domain if default hierarchical translation (specific mapping rule is
  existing for c=fr; a=atlas; p=autoroutes) is used)

  S=renseignements; O=Region Parisienne; P=autoroutes; A=atlas; C=fr;

      maps to

  "/S=renseignements/o=Region Parisienne/"@autoroutes.fr


  Example 3:  (Address containing elements not mappable into RFC822
  local part)

  S=Rossi; DD.cap=20100; DD.ph1=Via Larga 11; DDA.city=Milano;
  A=PtPostel; C=it;

      maps to

  "/DD.cap=20100/DD.ph1=Via Larga
  11/DD.city=Milano/S=Rossi/"@ptpostel.it


  Example 4:   (Address with an entry for A=ATT; C=us; into the domain
  of Preferred Gateway table, pointing to attmail.com)

  G=Andy; S=Wharol; O=MMNY; A=ATT; C=us;

     maps to

  /G=Andy/S=Wharol/[email protected]

4.4.  Repeated Mappings

  There are two types of repeated mapping:

  1.   A recursive mapping, where the repeat is within one gateway

  2    A source route, where the repetition occurs across multiple
       gateways











Kille                       Standards Track                    [Page 59]

RFC 2156                         MIXER                      January 1998


4.4.1.  Recursive Mappings

  It is possible to supply an address which is recursive at a single
  gateway.  For example:

             C          = "XX"
             ADMD       = "YY"
             O          = "ZZ"
             "RFC-822"  = "Smith(a)ZZ.YY.XX"

  This is mapped first to an RFC 822 address, and then back to the
  X.400 address:

             C          = "XX"
             ADMD       = "YY"
             O          = "ZZ"
             Surname    = "Smith"

  In some situations this type of recursion may be frequent.  It is
  important where this occurs, that no unnecessary protocol conversion
  occurs. This will minimise loss of service.

4.4.2.  Source Routes

  The mappings defined are symmetrical and reversible across a single
  gateway.  The symmetry is particularly useful in cases of (mail
  exploder type) distribution list expansion.  For example, an X.400
  user sends to a list on an RFC 822 system which he belongs to.  The
  received message will have the originator and any 3rd party X.400 OR
  Addresses in correct format (rather than doubly encoded).  In cases
  (X.400 or RFC 822) where there is common agreement on gateway
  identification, then this will apply to multiple gateways.

  When a message traverses multiple gateways, the mapping will always
  be reversible, in that a reply can be generated which will correctly
  reverse the path.  In many cases, the mapping will also be
  symmetrical, which will appear clean to the end user.  For example,
  if countries "AB" and "XY" have RFC 822 networks, but are
  interconnected by X.400, the following may happen:  The originator
  specifies:

         [email protected]









Kille                       Standards Track                    [Page 60]

RFC 2156                         MIXER                      January 1998


  This is routed to a gateway, which generates:

             C               = "XY"
             ADMD            = "PTT"
             PRMD            = "Griddle MHS Providers"
             Organization    = "Widget Corporation"
             Surname         = "Soap"
             Given Name      = "Joe"

  This is then routed to another gateway where the mapping is reversed
  to give:

         [email protected]

  Here, use of the gateway is transparent.

  Mappings will only be symmetrical where mapping equivalences are
  defined. In other cases, the reversibility is more important, due to
  the (far too frequent) cases where RFC 822 and X.400 services are
  partitioned.

  The syntax may be used to source route.  THIS IS STRONGLY
  DISCOURAGED.  For example:

     X.400 -> RFC 822  -> X.400

     C             = "UK"
     ADMD          = "Gold 400"
     PRMD          = "UK.AC"
     "RFC-822"     = "/PN=Duval/DD.Title=Manager/(a)Inria.ATLAS.FR"

  This will be sent to an arbitrary UK Academic Community gateway by
  X.400.  Then it will be sent by JNT Mail to another gateway
  determined by the domain Inria.ATLAS.FR (FR.ATLAS.Inria).  This will
  then derive the X.400 OR Address:

     C             = "FR"
     ADMD          = "ATLAS"
     PRMD          = "Inria"
     PN.S          = "Duval"
     "Title"       = "Manager"










Kille                       Standards Track                    [Page 61]

RFC 2156                         MIXER                      January 1998


  Similarly:

  RFC 822 -> X.400 -> RFC 822

  "/RFC-822=jj(a)seismo.css.gov/PRMD=AC/ADMD=BT/C=GB/"@monet.berkeley.edu

  This will be sent to monet.berkeley.edu by RFC 822, then to the
  AC PRMD by X.400, and then to [email protected] by RFC 822.

4.5.  Directory Names

  Directory Names are an optional part of OR Name, along with OR
  Address.  The RFC 822 addresses are mapped onto the OR Address
  component. As there is no functional mapping for the Directory Name
  on the RFC 822 side, a textual mapping is used.  There is no
  requirement for reversibility in terms of the goals of this
  specification.  There may be some loss of functionality in terms of
  third party recipients where only a directory name is given, but this
  seems preferable to the significant extra complexity of adding a full
  mapping for Directory Names.

  The Directory Name shall be represented within an RFC 822 comment
  using the comaptible formats of RFC 1484 or RFC 1485.  It is
  recommended that the directory string format of RFC 1485 is used
  [24].  The User Friendly Name form of RFC 1484 may be used [25].

4.6.  MTS Mappings

  The basic mappings at the MTS level are:

     1) SMTP originator ->
                   MTS.PerMessageSubmissionFields.originator-name
        MTS.OtherMessageDeliveryFields.originator-name ->
                   SMTP originator

     2) SMTP recipient ->
                   MTS.PerRecipientMessageSubmissionFields
        MTS.OtherMessageDeliveryFields.this-recipient-name ->
                   SMTP recipient

  SMTP recipients and return addresses are encoded as EBNF.822-address.

  The MTS Originator is always encoded as MTS.OriginatorName, which
  maps onto MTS.ORAddressAndOptionalDirectoryName, which in turn maps
  onto MTS.ORName.






Kille                       Standards Track                    [Page 62]

RFC 2156                         MIXER                      January 1998


4.6.1.  RFC 822 -> X.400 MTS Mappings

  From the SMTP Originator, use the basic ORAddress mapping, to
  generate MTS.PerMessageSubmissionFields.originator-name (MTS.ORName),
  without a DirectoryName.

  For recipients, the following settings are made for each component of
  MTS.PerRecipientMessageSubmissionFields.

  recipient-name
     This is derived from the SMTP recipient by the basic ORAddress
     mapping.

  originator-report-request
     This may either be set to "delivery-report", or set according to
     SMTP extensions as set out in Appendix A.

  explicit-conversion
     This optional component is omitted, as this service is not needed

  extensions
     The default value (no extensions) is used

4.6.2.  X.400 -> RFC 822 MTS Mappings

  The basic functionality is to generate the SMTP originator and
  recipients.  There is information present on the X.400 side, which
  cannot be mapped into analogous SMTP services.  For this reason, new
  RFC 822 fields are added for the MTS Originator and Recipients.  The
  information discarded at the SMTP level will be present in these
  fields. In some cases a (positive) delivery report will be generated.

4.6.2.1.  SMTP Mappings

  Use the basic ORAddress mapping, to generate the SMTP originator
  (return address) from MTS.OtherMessageDeliveryFields.originator-name
  (MTS.ORName).  If MTS.ORName.directory-name is present, it is
  discarded.  (Note that it will be presented to the user, as described
  in 4.6.2.2).

  The mapping  uses the MTA level information, and maps each value of
  MTA.PerRecipientMessageTransferFields.recipient-name, where the
  responsibility bit is set, onto an SMTP recipient.

     Note:The SMTP recipient is conceptually generated from
     MTS.OtherMessageDeliveryFields.this-recipient-name.  This is done
     by taking MTS.OtherMessageDeliveryFields.this-recipient-name, and
     generating an SMTP recipient according to the basic ORAddress



Kille                       Standards Track                    [Page 63]

RFC 2156                         MIXER                      January 1998


     mapping, discarding MTS.ORName.directory-name if present.
     However, if this model was followed exactly, there would be no
     possibility to have multiple SMTP recipients on a single message.
     This is unacceptable, and so layering is violated.

4.6.2.2.  Generation of RFC 822 Headers

  Not all per-recipient information can be passed at the SMTP level.
  For this reason, two new RFC 822 headers are created, in order to
  carry this information to the RFC 822 recipient.  These fields are
  "X400-Originator:"  and "X400-Recipients:".

  The "X400-Originator:" field is set to the same value as the SMTP
  originator.  In addition, if
  MTS.OtherMessageDeliveryFields.originator-name (MTS.ORName) contains
  MTS.ORName.directory-name then this Directory Name shall be
  represented in an 822.comment.

  Recipient names, taken from each value of
  MTS.OtherMessageDeliveryFields.this-recipient-name and
  MTS.OtherMessageDeliveryFields.other-recipient-names are made
  available to the RFC 822 user by use of the "X400-Recipients:" field.
  By taking the recipients at the MTS level, disclosure of recipients
  will be dealt with correctly.  However, this conflicts with a desire
  to optimise mail transfer.  There is no problem when disclosure of
  recipients is allowed. Similarly, there is no problem if there is
  only one RFC 822 recipient, as the "X400-Recipients" field is only
  given one address.

  There is a problem if there are multiple RFC 822 recipients, and
  disclosure of recipients is prohibited.  In this case, discard the
  per-recipient information.

  If any MTS.ORName.directory-name is present, it shall be represented
  in an 822.comment.

  If MTS.OtherMessageDeliveryFields.orignally-intended-recipient-name
  is present, then there has been redirection,  or there has been
  distribution list expansion.  Distribution list expansion is a per-
  message option, and the information associated with this is
  represented by the "DL-Expansion-History:" field described in Section
  5.3.6.  Other information is represented in an 822.comment associated
  with MTS.OtherMessageDeliveryFields.this-recipient-name, The message
  may be delivered to different RFC 822 recipients, and so several
  addresses in the "X400-Recipients:" field may have such comments.
  The non-commented recipient is the RFC 822 recipient. The EBNF of the
  comment is defined by redirect-comment.




Kille                       Standards Track                    [Page 64]

RFC 2156                         MIXER                      January 1998


        redirect-comment  = redirect-first *( redirect-subsequent )

        redirect-first = "Originally To:"  mailbox  "Redirected on"
           date-time "To:"  redirection-reason

        redirect-subsequent = mailbox  "Redirected Again on"
           date-time "To:"  redirection-reason

        redirection-history-item = "intended recipient" mailbox
           "redirected to"  redirection-reason
           "on" date-time

        redirection-reason =
           "Recipient Assigned Alternate Recipient"
           / "Originator Requested Alternate Recipient"
           / "Recipient MD Assigned Alternate Recipient"
           / "Directory Look Up"
           / "Alias"

  It is derived from
  MTA.PerRecipientMessageTransferFields.extension.redirection-history.
  The values are taken from the X.400(92) Implementor's guide (Version
  13, July 1995).   The first three values are in X.400(88).   The
  fourth value is in X.400(92), but has the name "recipient-directory-
  substitution-alternate-recipient". An example of this with two
  redirects is:

  X400-Recipients: [email protected] (Originally To:
            [email protected]
        Redirected on Thu, 30 May 91 14:39:40 +0100
            To: Originator Requested Alternate Recipient
            [email protected]
        Redirected Again on Thu, 30 May 91 14:41:20 +0100
            To: Recipient MD Assigned Alternate Recipient)

  In addition the following per-recipient services from
  MTS.OtherMessageDeliveryFields.extensions are represented in comments
  if they are used.  None of these services can be provided on RFC 822
  networks, and so in general these will be informative strings
  associated with other MTS recipients. In some cases, string values
  are defined.  For the remainder, the string value shall be chosen by
  the implementor.   If the parameter has a default value, then no
  comment shall be inserted when the parameter has that default value.

  requested-delivery-method

  physical-forwarding-prohibited
       "(Physical Forwarding Prohibited)".



Kille                       Standards Track                    [Page 65]

RFC 2156                         MIXER                      January 1998


  physical-forwarding-address-request
       "(Physical Forwarding Address Requested)".

  physical-delivery-modes

  registered-mail-type

  recipient-number-for-advice

  physical-rendition-attributes

  physical-delivery-report-request
      "(Physical Delivery Report Requested)".

  proof-of-delivery-request
      "(Proof of Delivery Requested)".

4.6.2.3.  Delivery Report Generation

  If SMTP is used, the behaviour is specified in Appendix A.  In other
  cases, if MTA.PerRecipientMessageTransferFields.per-recipient-
  indicators requires a positive delivery notification, this shall be
  generated by the gateway.  Supplementary Information shall be set to
  indicate that the report is gateway generated.  This information
  shall include the name of the gateway generating the report.

4.6.3.  Message IDs (MTS)

  A mapping from 822.msg-id to MTS.MTSIdentifier is defined.  The
  reverse mapping is not needed, as MTS.MTSIdentifier is always mapped
  onto new RFC 822 fields.  The value of MTS.MTSIdentifier.local-part
  will facilitate correlation of gateway errors.

  To map from 822.msg-id, apply the standard mapping to 822.msg-id, in
  order to generate an MTS.ORAddress.  The Country, ADMD, and PRMD
  components of this are used to generate MTS.MTSIdentifier.global-
  domain-identifier.  MTS.MTSIdentifier.local-identifier is set to the
  822.msg-id, including the braces "<" and ">".   If this string is
  longer than MTS.ub-local-id-length (32), then it is truncated to this
  length.

  The reverse mapping is not used in this specification.  It would be
  applicable where MTS.MTSIdentifier.local-identifier is of syntax
  822.msg-id, and it algorithmically identifies MTS.MTSIdentifier.







Kille                       Standards Track                    [Page 66]

RFC 2156                         MIXER                      January 1998


4.7.  IPMS Mappings

  All RFC 822 addresses are assumed to use the 822.mailbox syntax.
  This includes all 822.comments associated with the lexical tokens of
  the 822.mailbox.  In the IPMS OR Names are encoded as MTS.ORName.
  This is used within the  IPMS.ORDescriptor, IPMS.RecipientSpecifier,
  and IPMS.IPMIdentifier.  An asymmetrical mapping is defined between
  these components.

4.7.1.  RFC 822 -> X.400

  To derive IPMS.ORDescriptor from an RFC 822 address.

  1.   Take the address, and extract an EBNF.822-address.  Any
       source routing shall be removed.  This can be derived trivially
       from either the 822.addr-spec or 822.route-addr syntax.  This is
       mapped to MTS.ORName as described above, and used as
       IMPS.ORDescriptor.formal-name.

  2.   A string shall be built consisting of (if present):

  -         The 822.phrase component if the 822.address is an
            822.phrase 822.route-addr construct.

  -         Any 822.comments, in order, retaining the parentheses.

        This string is then encoded into T.61 using a human oriented
        mapping (as described in Section 3.5).  If the string is not
        null, it is assigned to IPMS.ORDescriptor.free-form-name.

3.   IPMS.ORDescriptor.telephone-number is omitted.

  If IPMS.ORDescriptor is being used in IPMS.RecipientSpecifier,
  IPMS.RecipientSpecifier.reply-request and
  IPMS.RecipientSpecifier.notification-requests are set to default
  values (false and none).

  If the 822.group construct is present, any included 822.mailbox is
  encoded as above to generate a separate IPMS.ORDescriptor.  The
  822.group is  mapped to T.61 (as described in Section 3.5), and a
  IPMS.ORDescriptor with only an free-form-name component built from
  it.

4.7.2.  X.400 -> RFC 822

  Mapping from IPMS.ORDescriptor to RFC 822 address.  In the basic
  case, where IPMS.ORDescriptor.formal-name is present, proceed as
  follows.



Kille                       Standards Track                    [Page 67]

RFC 2156                         MIXER                      January 1998


  1.   Encode IPMS.ORDescriptor.formal-name (MTS.ORName) as
       EBNF.822-address.

  2a.  If IPMS.ORDescriptor.free-form-name is present, convert it
       to ASCII or T.61 (Section 3.5), and use this as the 822.phrase
       component of 822.mailbox using the 822.phrase 822.route-addr
       construct.

  2b.  If IPMS.ORDescriptor.free-form-name is absent.  If
       EBNF.822-address is parsed as 822.addr-spec use this as the
       encoding of 822.mailbox.  If EBNF.822-address is parsed as
       822.route 822.addr-spec, then an 822.phrase taken from
       822.local-part is added.

  3    If IPMS.ORDescriptor.telephone-number is present, this is
       placed in an 822.comment, with the string "Tel ".  The normal
       international form of number is used.  For example:

        (Tel +44-181-333-7777)

  4.   If IPMS.ORDescriptor.formal-name.directory-name is present,
       then a text representation is placed in a trailing 822.comment.

  5.   If IPMS.RecipientSpecifier.report-request has any non-
       default values, then an 822.comment "(Receipt Notification
       Requested)", and/or "(Non Receipt Notification Requested)",
       and/or "(IPM Return Requested)" may be appended to the address.
       "(Receipt Notification Requested)" may be used to infer "(Non
       Receipt Notification Requested)".  The effort of correlating P1
       and P2 information is too great to justify the gateway sending
       Receipt Notifications.

       In RFC 1327, inclusion of these comments was mandatory.
       Experience has shown that the clutter and confusion caused to
       RFC 822 users does not justify the information conveyed.
       Implementors are recommended to not include these comments.
       Unless an application is found where retention of these comments
       is desirable, they will be dropped from the next version.

  6.   If IPMS.RecipientSpecifier.reply-request is True, an
       822.comment "(Reply requested)"  is appended to the address.

  If IPMS.ORDescriptor.formal-name is absent, IPMS.ORDescriptor.free-
  form-name is converted to ASCII (see section 3.5), and used as
  822.phrase within the RFC 822 822.group syntax.  For example:

        Free Form Name ":" ";"




Kille                       Standards Track                    [Page 68]

RFC 2156                         MIXER                      January 1998


  Steps 3-6 are then followed.

4.7.3.  IP Message IDs

  There is a need to map both ways between 822.msg-id and
  IPMS.IPMIdentifier.  This allows for X.400 Receipt Notifications,
  Replies, and Cross References to reference an RFC 822 Message ID,
  which is preferable to a gateway generated ID.  A reversible and
  symmetrical mapping is defined.  This provides fully reversible
  mappings when messages pass multiple times across the X.400/RFC 822
  boundary.

  An important issue with messages identifiers is mapping to the exact
  form, as many systems use these ids as uninterpreted keys.  The use
  of table driven mappings is not always symmetrical, particularly in
  the light of alternative domain names, and alternative management
  domains.  For this reason, a purely algorithmic mapping is used.  A
  mapping which is simpler than that for addresses can be used for two
  reasons:

  -    There is no major requirement to make message IDs "natural"

  -    There is no issue about being able to reply to message IDs.
       (For addresses, creating a return path which works is more
       important than being symmetrical).

  The mapping works by defining a way in which message IDs generated on
  one side of the gateway can be represented on the other side in a
  systematic manner.  The mapping is defined so that the possibility of
  clashes is low enough to be treated as impossible.

4.7.3.1.  822.msg-id represented in X.400

  IPMS.IPMIdentifier.user is omitted.  The IPMS.IPMIdentifier.user-
  relative-identifier is set to a printable string encoding of the
  822.msg-id with the angle braces ("<" and ">") removed.  The upper
  bound on this component is 64.  The options for handling this are
  discussed in Section 5.1.3.

4.7.3.2.  IPMS.IPMIdentifier represented in RFC 822

  The 822.domain of 822.msg-id is set to the value "MHS". The
  822.local-part of 822.msg-id is constructed by building a string of
  syntax EBNF.id-loc from IPMS.IPMIdentifier.

         id-loc ::= [ printablestring ] "*"  [ std-or-address ]





Kille                       Standards Track                    [Page 69]

RFC 2156                         MIXER                      January 1998


  EBNF.printablestring is the IPMS.IPMIdentifier.user-relative-
  identifier, and EBNF.std-or-address being an encoding of the
  IPMS.IPMIdentifier.user derived according to this specification.
  822.local-part is derived from EBNF.id-loc, if necessary using the
  822.quoted-string encoding.  For example:

        <"147*/S=Dietrich/O=Siemens/ADMD=DBP/C=DE/"@MHS>

4.7.3.3.  822.msg-id -> IPMS.IPMIdentifier

  If the 822.local-part can be parsed as:

        [ printablestring ] "*"  [ std-or-address ]

  and the 822.domain is "MHS", then this ID was X.400 generated.  If
  EBNF.printablestring is present, the value is assigned to
  IPMS.IPMIdentifier.user-relative-identifier.  If EBNF.std-or-address
  is present, the OR Address components derived from it are used to set
  IPMS.IPMIdentifier.user.

  Otherwise, this is an RFC 822 generated ID.  In this case, set
  IPMS.IPMIdentifier.user-relative-identifier to a printable string
  encoding of the 822.msg-id without the angle braces and omit
  IPMS.IPMID.user.

4.7.3.4.  IPMS.IPMIdentifier -> 822.msg-id

  If IPMS.IPMIdentifier.user is absent, and IPMS.IPMIdentifier.user-
  relative-identifier mapped to ASCII and angle braces added parses as
  822.msg-id, then this is an RFC 822 generated ID.

  Otherwise, the ID is X.400 generated.  Use the
  IPMS.IPMIdentifier.user to generate an EBNF.std-or-address form
  string.  Build the 822.local-part of the 822.msg-id with the syntax:

        [ printablestring ] "*"  [ std-or-address ]

  The printablestring is taken from IPMS.IPMIdentifier.user-relative-
  identifier.  Use 822.quoted-string if necessary.  The 822.msg-id is
  generated with this 822.local-part, and "MHS" as the 822.domain.

4.7.3.5.  Phrase form

  In "In-Reply-To:" and "References:", the encoding 822.phrase may be
  used as an alternative to 822.msg-id.  To map from 822.phrase to
  IPMS.IPMIdentifier, assign IPMS.IPMIdentifier.user-relative-
  identifier to the phrase.  When mapping from IPMS.IPMIdentifier for
  "In-Reply-To:" and "References:", if IPMS.IPMIdentifier.user is



Kille                       Standards Track                    [Page 70]

RFC 2156                         MIXER                      January 1998


  absent and IPMS.IPMIdentifier.user-relative-identifier does not parse
  as 822.msg-id, generate an 822.phrase rather than adding the domain
  MHS.

4.7.3.6.  RFC 987 backwards compatibility

  The mapping defined here is different to that used in RFC 987, as the
  RFC 987 mapping lead to changed message IDs in many cases.  Fixing
  the problems is preferable to retaining backwards compatibility.  An
  implementation of this standard may recognise message IDs generated
  by RFC 987.  This is not recommended.

  RFC 987 generated encodings may be recognised as follows.  When
  mapping from X.400 to RFC 822, if the IPMS.IPMIdentifier.user-
  relative-identifier is "RFC-822" the id is RFC 987 generated. When
  mapping from RFC 822 to X.400, if the 822.domain is not "MHS", and
  the 822.local-part can be parsed as

        [ printablestring ] "*"  [ std-or-address ]

  then it is RFC 987 generated.  In each of these cases, it is
  recommended to follow the RFC 987 rules.

Chapter 5 - Detailed Mappings

  This chapter specifies  detailed mappings for the functions outlined
  in Chapters 1 and 2.  It makes extensive use of the notations and
  mappings defined in Chapters 3 and 4.

5.1.  RFC 822 -> X.400: Detailed Mappings

  The mapping of RFC 822/MIME messages to X.400 InterPersonal Messages
  is described in Sections 5.1.1 to 5.1.7.   Mapping of NOTARY format
  delivery status notifications, which are all messages of type
  multipart/report and subtype delivery-status-notifications to X.400
  delivery reports is covered in Section 5.1.8.

5.1.1.  Basic Approach

  A single IP Message is generated from an RFC 822 message.  The RFC
  822 headers are used to generate the IPMS.Heading.

  Some RFC 822 fields cannot be mapped onto a standard IPM Heading
  field, and so an extended field is defined in Section 5.1.2.  This is
  then used for fields which cannot be mapped onto existing services.






Kille                       Standards Track                    [Page 71]

RFC 2156                         MIXER                      January 1998


  The message is submitted to the MTS, and the services required can be
  defined by specifying MTS.MessageSubmissionEnvelope.  A few
  parameters of the MTA Abstract service are also specified, which are
  not in principle available to the MTS User.  Use of these services
  allows RFC 822 MTA level parameters to be carried in the analogous
  X.400 service elements.  The advantages of this mapping far outweigh
  the layering violation.

5.1.2.  X.400 Extension Field

  An IPMS Extension is defined:

  rfc-822-field HEADING-EXTENSION
             VALUE RFC822FieldList
             ::= id-rfc-822-field-list


  RFC822FieldList ::= SEQUENCE OF RFC822Field

  RFC822Field ::= IA5String

  The Object Identifier id-rfc-822-field-list is defined in Appendix D.

  To encode any RFC 822 Header using this extension, an RFC822Field
  element is built using the 822.field omitting the trailing CRLF
  (e.g., "Fruit-Of-The-Day: Kiwi Fruit"). All fields shall be unfolded.
  There shall be no space before the ":".  The reverse mapping builds
  the RFC 822 field in a straightforward manner.  This RFC822Field is
  appended to the RFC822FieldList, which is added to the IPM Heading as
  an extension field.

5.1.3.  Generating the IPM

  The IPM (IPMS Service Request) is generated according to the rules of
  this section. The IPMS.IPM.body is generated from the RFC 822 message
  body in the manner described in Section 5.1.5.

  If no specific 1988 features are used, the IPM generated is encoded
  as content type 2.  Otherwise, it is encoded as content type 22.  The
  latter will always be the case if extension heading fields are
  generated.










Kille                       Standards Track                    [Page 72]

RFC 2156                         MIXER                      January 1998


  When generating the IPM, the issue of upper bounds are handled as
  follows. Truncate fields to the upper bounds specified in X.400.
  This will prevent problems with UAs which enforce upper bounds, but
  will sometimes discard useful information.  This approach will cause
  more problems for some fields than others (e.g., truncating an OR
  Address component that would be used to route a reply would be a more
  severe problem than truncating a Free Form Name).  If the Free Form
  name is truncated, it shall be done so that it does not break RFC 822
  comments and RFC 1522 encoding.

  Note:This approach removes a choice of options given in RFC 1327,
       based on operational experience.

  The rest of this section concerns IPMS.IPM.heading (IPMS.Heading).
  The only mandatory component of IPMS.Heading is the
  IPMS.Heading.this-IPM (IPMS.IPMIdentifier).  A default is generated
  by the gateway.  With the exception of "Received:", the values of
  multiple fields are merged (e.g., If there are two "To:" fields, then
  the mailboxes of both are merged to generate a single list which is
  used in the IPMS.Heading.primary-recipients.  Information shall be
  generated from the standard RFC 822 Headers as follows:

  Date:
       Ignore (Handled at MTS level)

  Received:
       Ignore (Handled at MTA level)

  Message-Id:
       Mapped to IPMS.Heading.this-IPM.  For these, and all other
       fields containing 822.msg-id the mappings of Chapter 4 are used
       for each 822.msg-id.

  From:
       If Sender: is present, this is mapped to
       IPMS.Heading.authorizing-users.  If not, it is mapped to
       IPMS.Heading.originator.  For this, and other components
       containing addresses, the mappings of Chapter 4 are used for
       each address.

  Sender:
       Mapped to IPMS.Heading.originator.  Because X.400 does not have
       the same From/Sender distinction as RFC 822, this mapping is not
       always natural and may lead to unexpected results in some cases.

  Reply-To:
       Mapped to IPMS.Heading.reply-recipients.




Kille                       Standards Track                    [Page 73]

RFC 2156                         MIXER                      January 1998


  To:  Mapped to IPMS.Heading.primary-recipients

  Cc:  Mapped to IPMS.Heading.copy-recipients.

  Bcc: Mapped to IPMS.Heading.blind-copy-recipients if there is at
       least one BCC: recipient.  If there are no recipients in this
       field, it shall either be mapped to a zero length sequence or
       mapped to a single recipient that has a free from name "BCC" and
       no other addressing information.  This alternate treatment is
       allowed because some X.400 systems cannot handle a zero lenght
       sequence of addresses.

  In-Reply-To:
       If there is one value, it is mapped to IPMS.Heading.replied-to-
       IPM, using the 822.phrase or 822.msg-id mapping as appropriate.
       If there are multiple values, this cannot be done as the X.400
       heading is single valued. In this case no IPMS.Heading.replied-
       to-IPM is generated and the values are mapped to
       IPMS.Heading.related-IPMs, along with any values from a
       "References:" field.

  References:
       Mapped to IPMS.Heading.related-IPMs.

  Keywords:
       Mapped onto a heading extension.

  Subject:
       Mapped to IPMS.Heading.subject.  The field-body uses the human
       oriented mapping referenced in Section 3.3.4.

  Comments:
       Mapped onto a heading extension.

       This is a change from 1327, which specified to generate an
       IPMS.BodyPart of type IPMS.IA5TextBodyPart with
       IPMS.IA5TextBodyPart.parameters.repertoire set to the default
       (ia5), containing the value of the fields, preceded by the
       string "Comments: " and that this body part shall precede the
       other one. Experience has shown that this complexity is not
       justified.  This text is retained to facilitate backwards
       compatibility.

  Encrypted:
       Mapped onto a heading extension.

  Resent-*
       Mapped onto a heading extension.



Kille                       Standards Track                    [Page 74]

RFC 2156                         MIXER                      January 1998


       Note that it would be possible to use a ForwardedIPMessage for
       these fields, but the semantics are (arguably) slightly
       different, and it is probably not worth the effort.

  Content-Language:
       This field is defined in RFC 1766 [7].  Map the first two
       characters of each value given onto the IPM Languages extension.
       If any comments or values longer than two characters occur, a
       header extension shall also be generated.

  Other Fields
       In particular X-* fields, and "illegal" fields in common usage
       (e.g., "Fruit-of-the-day:") are mapped onto a heading extension,
       unless covered by another section or appendix of this
       specification.  The same treatment is applied to RFC 822 fields
       where the content of the field does not conform to RFC 822
       (e.g., a Date: field with unparseable syntax).

  The mapping of the following headings is defined in RFC 2157.

  MIME-Version: 5
  Content-Transfer-Encoding:
  Content-Type
  Content-ID
  Content-Description

5.1.4.  Generating the IPM Body

  Generation of the IPM Body is defined in RFC 2157.

5.1.5.  Mappings to the MTS Abstract Service

  The MTS.MessageSubmissionEnvelope comprises
  MTS.PerMessageSubmissionFields, and
  MTS.PerRecipientMessageSubmissionFields.  The mandatory parameters
  are defaulted as follows.

  MTS.PerMessageSubmissionFields.originator-name
     This is always generated from SMTP, as defined in Chapter 4.

  MTS.PerMessageSubmissionFields.content-type
     Set to the value implied by the encoding of the IPM (2 or 22).

  MTS.PerRecipientMessageSubmissionFields.recipient-name
     These will always be supplied from SMTP, as defined in Chapter 4.






Kille                       Standards Track                    [Page 75]

RFC 2156                         MIXER                      January 1998


  Optional components are omitted, and default components defaulted.
  This means that disclosure of recipients is prohibited and conversion
  is allowed.  There are two exceptions to the defaulting. For
  MTS.PerMessageSubmissionFields.per-message-indicators, the following
  settings are made:

  -    Alternate recipient is allowed, as it seems desirable to
       maximise the opportunity for (reliable) delivery.

  If SMTP is used, Appendix A shall be followed in setting these
  parameters.

  The trace is set to indicate conversion (described below) and the
  encoded information types in the trace is derived from the message
  generated by the gateway, and shall reflect all body parts (including
  those in enclosed messages).  In addition it shall include the
  Encoded Information Type "eit-mixer", which is defined in Appendix D.
  The presence of the EIT will indicate to the X.400 recipient that a
  MIXER conversion has occurred.
  MTS.PerMessageSubmissionFields.original-encoded-information-types
  will include all of the values used in the trace, unless specified
  otherwise in RFC 2157.

  This type of conversion will prevent the normal loop detection from
  working in certain circumstances, and introduces the possiblity of
  gateway loops.  MIXER gateways shall therefore count the number of
  MIXER conversions made.  If this count exceeds five in one direction,
  the message shall be treated as if a loop has been detected.

  The MTS.PerMessageSubmissionFields.content-correlator is encoded as
  IA5String, and contains the Subject:, Message-ID:, Date:,  and To:
  fields (if present) in this order.  This includes the strings
  "Subject:", "Date:", "To:", "Message-ID:", and appropriate folding to
  make the field appear readable.  This shall be truncated to MTS.ub-
  content-correlator-length (512) characters.  In addition, if there is
  a "Subject:" field, the MTS.PerMessageSubmissionFields.content-
  identifier, is set to a printable string representation of the
  contents of it.   If the length of this string is greater than
  MTS.ub-content-id-length (16), it shall be truncated to 13 characters
  and the string "..." appended. Both are used, due to the much larger
  upper bound of the content correlator, and that the content id is
  available in X.400(1984).









Kille                       Standards Track                    [Page 76]

RFC 2156                         MIXER                      January 1998


5.1.6.  Mappings to the MTA Abstract Service

  There is a need to map directly onto some aspects of the MTA Abstract
  service, for the following reasons:

  -    So the  MTS Message Identifier can be generated from the RFC
       822 Message-ID:.

  -    So that the submission date can be generated from the
       822.Date.

  -    To prevent loss of trace information

  -    To prevent RFC 822/X.400 looping caused by distribution
       lists or redirects

  The following mappings are defined.

  Message-Id:
     If this is present and no Resent: fields are present, the
     MTA.PerMessageTransferFields.message-identifier may be generated
     from it, using the mappings described in Chapter 4.

     This mapping arguably generates messages which do not conform to
     US GOSIP (1984 version only), which states:

     6.7.e MPDU Identifier Validation

     (1) Validation of the GlobalDomainIdentifier component of the MPDU
     Identifier is performed on reception of a message (i.e. the result
     of a TRANSFER.Indication).

     (2) The country name should be known to the validating domain, and
     depending on the country name, validation of the

     ADMD name may also be possible.

     (3) Additional validation of the GlobalDomainIdentifier is
     performed against the corresponding first entry in the
     TraceInformation. If inconsistencies are found during the
     comparison, a non-delivery notice with the above defined reason
     and diagnostic code is generated.

     (4) A request will be generated to the CCITT for a more meaningful
     diagnostic code (such as "InconsistentMPUTIdentifier").






Kille                       Standards Track                    [Page 77]

RFC 2156                         MIXER                      January 1998


  This applies to ADMDs only, and is specified in the 1984 version and
  not the 1988 version. Conformance depends on the interpretation of
  "inconsistency".   The specification makes the most sensible choice,
  and so is not being changed in the update from RFC 1327.

  Date: (and Resent-Date:)
     If one or more Resent-Date: fields is present, the most recent
     Resent-Date: field shall be used instead of the Date: field in the
     following description.

     The Date: field is used to set the first component of
     MTA.PerMessageTransferFields.trace-information
     (MTA.TraceInformationElement).  The SMTP originator is mapped into
     an MTS.ORAddress, and used to derive
     MTA.TraceInformationElement.global-domain-identifier.  The
     optional components of MTA.TraceInformationElement.domain-
     supplied-information are omitted, and the mandatory components are
     set as follows:

     MTA.DomainSuppliedInformation.arrival-time
        This is set to the date derived from Date:

     MTA.DomainSuppliedInformation.routing-action
        Set to relayed.

     The first element of MTA.PerMessageTransferFields.internal-trace-
     information is generated in an analogous manner, although this can
     be dropped later in certain circumstances (see the procedures for
     "Received:").  The MTA.InternalTraceInformationElement.mta-name is
     derived from the 822.domain in the 822 MTS Originator address.

  Received:
     All RFC 822 trace is used to derive
     MTA.PerMessageTransferFields.trace-information and
     MTA.PerMessageTransferFields.internal-trace-information.
     Processing of Received: lines  follows processing of Date:, and is
     done from the bottom to the top of the RFC 822 header (i.e., in
     chronological order).  When other trace elements (in particular
     X400-Received:)  are processed the relative ordering (top to
     bottom of the header) shall be retained correctly.

     The initial element of MTA.PerMessageTransferFields.trace-
     information shall be generated from Date: as described above,
     unless the message has previously been in X.400, when it will be
     derived from the X.400 trace information.






Kille                       Standards Track                    [Page 78]

RFC 2156                         MIXER                      January 1998


     For each  Received: field, the following processing shall be done.
     If the "by"  part of the received is present and there is an
     available MCGAM which can map this domain, use it to derive an
     MTS.GlobalDomainIdentifier.  Otherwise MTS.GlobalDomainIdentifier
     is set from local information.  If this is different from the one
     in the last element of MTA.PerMessageTransferFields.trace-
     information (MTA.TraceInformationElement.global-domain-identifier)
     create a new MTA.TraceInformationElement, and optionally remove
     MTA.PerMessageTransferFields.internal-trace-information.
     Requirements on trace stripping are discussed below.

     Then add a new element (MTA.InternalTraceInformationElement) to
     MTA.PerMessageTransferFields.internal-trace-information, creating
     this if needed.  This shall be done, even if nter-MD trace is
     created.  The MTA.InternalTraceInformationElement.global-domain-
     identifier is set to the value derived.  The
     MTA.InternalTraceInformationElement.mta-supplied-information
     (MTA.MTASuppliedInformation) is set as follows:

        MTA.MTASuppliedInformation.arrival-time
           Derived from the date of the Received: line

        MTA.MTASuppliedInformation.routing-action
           Set to relayed

     The MTA.InternalTraceInformationElement.mta-name is taken from the
     "by" component of the "Received:" field, truncated to MTS.ub-mta-
     name-length (32).  For example:

        Received: from computer-science.nottingham.ac.uk by
           vs6.Cs.Ucl.AC.UK via Janet with NIFTP  id aa03794;
           28 Mar 89 16:38 GMT

  Generates the string

        vs6.Cs.Ucl.AC.UK

  The gateway shall add in a single element of trace information,
  reflecting the gateway's local information and the time of
  conversion.  The MTA.InternalTraceInformationElement.mta-supplied-
  information (MTA.MTASuppliedInformation) is set as follows:

  MTA.DomainSuppliedInformation.arrival-time
     Set to the time of conversion

  MTA.DomainSuppliedInformation.routing-action
     Set to relayed




Kille                       Standards Track                    [Page 79]

RFC 2156                         MIXER                      January 1998


  MTA.AdditionalAcctions.converted-encoded-information-types Set to
  correct set of EITs for the message that is generated by the gateway.
  This trace element will thus reflect gateway operation as a
  conversion.

  This trace generation will often lead to generation of substantial
  amounts of trace information, which does not reflect X.400 transfers.
  Stripping of some of this trace may be necessary in some operational
  environments.   This stripping shall be considered a function of the
  associated X.400 MTA, and not of the MIXER gateway.

5.1.7.  Mapping New Fields

  This specification defines a number of new fields for Reports,
  Notifications and IP Messages. A gateway conforming to this
  specification shall  map all of these fields to X.400, except as
  defined below.

  The mapping of two  extended fields is particularly important, in
  order to prevent looping.  "DL-Expansion-History:" is mapped to
  MTA.PerMessageTransferFields.extensions.dl-expansion-history X400-
  Received: shall be mapped to MTA.PerMessageTransferFields.trace-
  information and MTA.PerMessageTransferFields.internal-trace-
  information.  In cases where X400-Received: is present, the usual
  mapping of Date: to generate the first element of trace shall not be
  done.   This is because the message has come from X.400, and so the
  first element of trace can be taken from the first X400-Received:.

  The following fields shall not be mapped, and shall be

  -    Discarded-X400-MTS-Extensions:

  -    Message-Type:

  -    Discarded-X400-IPMS-Extensions:

  -    X400-Content-Type:

  -    X400-Originator:

  -    X400-Recipients:

  -    X400-MTS-Identifier:  Mapping this field would be useful in
       some circumstances, but very dangerous in others (e.g.,
       following an internet list expansion).  Therefore it is not
       mapped.





Kille                       Standards Track                    [Page 80]

RFC 2156                         MIXER                      January 1998


5.1.8.  Mapping Delivery Status Notifications to X.400

5.1.8.1.  Basic Model

  Internet Mail delivery status notifications (DSN) are mapped to X.400
  delivery reports.   With message mapping, information without a
  mapping is carried by an IPM Extension.   This cannot be done for
  delivery reports.   Two mechanisms are used for information where
  there is not a direct mapping.

  The first mechanism is to define extensions, which allow all of the
  DSN information to be carried in the delivery report.  This is not
  completely satisfactory for two reasons:

  1.   User defined extensions are supported by the ISO version of
       the standard, but not the CCITT one.  Therefore,
       implementation support for these extensions will not be
       universal.

  2.   X.400 User Agent implementations will not in general
       recognise these extensions.   Therefore, although the
       information will be present, it will often not be available
       to the user.    This may be very problematic, as this
       information may be critical to diagnosing the reason for a
       failure.

  Therefore a second mechanism is defined.  This shall always be used
  when the DSN contains non-delivery information, and may be used in
  other cases.  This mechanism is to map the whole DSN (as if it were
  an ordinary multipart) into the return of content.  This will make
  the DSN information available as a text body part in the outer
  message, with the real returned content as an enclosed message.  This
  mechanism will ensure that information is not lost at the gateway.

5.1.8.2.  DSN Extensions

  Two X.400 MTS extensions are defined as follows:

  dsn-header-list EXTENSION
     RFC822FieldList
     ::= id-dsn-header-list

  dsn-field-list EXTENSION
     RFC822FieldList
     ::= id-dsn-field-list






Kille                       Standards Track                    [Page 81]

RFC 2156                         MIXER                      January 1998


  The Object Identifiers id-dsn-header-list and id-dsn-field-list are
  defined in Appendix D.  Theses extensions are used in the same way as
  the IPM extension rfc-822-field, described in Section 5.1.2.   These
  extensions may only be used with ISO-10021, and not X.400 (which does
  not allow user extensions at the MTS level).

5.1.8.3.  DSN to Delivery Report Mapping

  Some DSNs are mapped to Delivery Reports and some to IPMs, according
  to the value of the action field.   The mapping to an IPM is exactly
  as for a normal IPM mapping.   The choice of IPM and Delivery report
  is made for each reported recipient.   If this choice is different
  for different reported recipients both a Delivery Report and an IPM
  shall be generated.

  Reports are not be submitted in the X.400 model, and so the report
  submission is considered in terms of the MTA Abstract Service.  An
  MTA.Report is constructed. The MTA.ReportTransferEnvelope.report-
  identifier is generated from the Message-Id of the DSN (if present)
  and otherwise generated as the MTA would generate one for a submitted
  message.

  The DSN has an RFC 822 header.  Trace is mapped in the same manner as
  for a message to MTA.ReportTransferEnvelope.trace-information.  All
  other headers are used to create a dsn-header-list extension, which
  is added to MTA.PerReportTransferFields.extensions.  The DSN will
  have a single SMTP recipient.   This is mapped to the
  MTA.ReportTransferEnvelope.report-destination-name.

  The DSN is then treated as a normal MIME message, and an X.400 IPM is
  generated.   This IPM is used as
  MTA.PerReportTransferFields.returned-content, and its type is used to
  set MTA.PerReportTransferFields.content-type.  The DSN body part is
  mapped as if it was IA5 text/plain.

  The mandatory MTA.PerReportTransferFields.subject-identifier shall be
  generated from the DSN.per-message-field original-envelope-id, if
  this starts with the string "X400-MTS-Identifier: ", and derived from
  the rest of the field, which is encoded as EBNF.mts-msg-id.  In other
  cases, this field shall be generated by the MIXER Gateway.

  All other mappings are made from the DSN body part. A dsn-field-list
  extension is created and added to
  MTA.ReportTransferFields.extensions.  This is referred to as the per
  report extension list.  The DSN.per-message-fields are mapped as
  follows:





Kille                       Standards Track                    [Page 82]

RFC 2156                         MIXER                      January 1998


  original-envelope-id-field
  reporting-mta-field
  dsn-gateway-field
  received-from-mta-field
  arrival-date-field
  extension-field
  other

     All of these fields are added to the per report extension list.
     Currently there are no other mappings defined.

  Each reported recipient is considered in turn, and a
  MTA.PerRecipientReportTransferFields created for each.  The
  parameters of this are defaulted as follows:

  originally-specified-recipient-number
     In general, these are not available, and so are assigned
     incrementally.

  last-trace-information
     The arrival-time is generated from DSN.arrival-date if present,
     and if not from the Date: of the DSN.  This is a strucutred field,
     and the Report element contains the key information on the
     recipient.  For a DeliveryReport, the type-ofMTS-user is defaulted
     to public and the message-deliery-time is set to the same as the
     arrival-time.  For a NonDeliveryReport, the code mappings are
     define in Section 5.1.8.4.

  A dsn-field-list extension is created  and added to
  MTA.PerRecipientTransferFields.extensions.  This is referred to as
  the per recipient extension list.  The DSN.per-recipient-fields are
  mapped as follows

  original-recipient-field
     Mapped to MTA.PerRecipientReportTransferFields.originally-
     intended-recipient-name.

  final-recipient-field
     Mapped to MTA.PerRecipientReportTransferFields.actual-recipient-
     name.

  action-field
     If this is set to "failed", a non-delivery report is generated.
     If this is set to "delivered" a delivery report is generated.
     Bit one or two of MTA.PerRecipientTransferFields.per-recipient-
     indicators is set accordingly.  This also controls the encoding of
     MTA.PerRecipientTransferFields.last-trace-information, and the
     selection of the report type.



Kille                       Standards Track                    [Page 83]

RFC 2156                         MIXER                      January 1998


     For other values of the action-field ("delayed", "relayed",
     "expanded"), an IPM is generated.   This enables the status
     information to be communicated to the X.400 user, without the
     confusion of multiple delivery reports.

  status-field
     This is added to the per report extension list.  For non-delivery,
     it is also used to generate the reason and diagnostic codes
     contained within MTA.PerRecipientReportTransferFields.last-trace.
     The mappings are defined below.

  remote-mta-field

  diagnostic-code-field

  last-attempt-date-field

  will-retry-until-field

  extension-field

  other
     All of these fields are added to the per recipient extension list.

5.1.8.4.  Status Value Mappings

  Status values are mapped to X.400 reason and diagnostic codes as
  follows.

  If a status value is found that is not in this table, the gateway may
  use the same mapping as for "X.n.0" (1/None or 0/None), or it may map
  to another, configurable code.  Implementors are requested to forward
  new codes to the mixer list for inclusion in future versions of this
  standard.  So for instance. "5.2.37", currently undefined, would map
  onto the same as "5.2.0", namely 1/None.
















Kille                       Standards Track                    [Page 84]

RFC 2156                         MIXER                      January 1998


DSN code  Meaning                               X400 code Meaning

X.0.0     Other status                          1/None

X.1.0     Other Address Status                  1/None
X.1.1     Bad mailbox address                   1/0     Unrecognized
X.1.2     Bad system address                    1/0     Unrecognized
X.1.3     Bad mailbox address syntax            1/0     Unrecognized
X.1.4     Mailbox address ambiguous             1/1
X.1.5     Only used for positive reports, not applicable
X.1.6     Destination mailbox has moved         1/43  New addr unknown
X.1.7     Bad sender's mailbox address syntax   1/11  Invalid arguments
X.1.8     Bad sender's system address           1/11  Invalid arguments

X.2.0     Other or undefined mailbox status     1/None
X.2.1     Mailbox disabled, not accepting       1/4   Recipient unavail
X.2.2     Mailbox full                          1/4
X.2.3     Message length exceeds admin limit.   1/7     Content too long
X.2.4     Mailing list expansion problem        1/30  DL expansion fail

X.3.0     Other or undefined system status      0/None
X.3.1     System full                           1/2     MTS congestion
X.3.2     System not accepting network messages 1/2     MTS congestion
X.3.3     System not capable of selected feat   1/18    Unsupp crit func
X.3.4     Message too big for system            1/7
X.3.5     System incorrectly configured      1/None

X.4.0     Other or undefined network or routing 0/None
X.4.1     No answer from host                   0/None
X.4.2     Bad connection                        0/None
X.4.3     Routing server failure                6/None  Dir op unsucc.
X.4.4.    Unable to route                       0/None
X.4.5     Network congestion                    1/2     MTS congest.
X.4.6     Routing loop detected                 1/3
X.4.7     Delivery time expired                 1/5

X.5.0     Other or undefined protocol status    1/None

X.5.1     Invalid command                       1/14    Protocol viol.
X.5.2     Syntax error                          1/14
X.5.3     Too many recipients                   1/16
X.5.4     Invalid command arguments             1/14
X.5.5     Wrong protocol version                1/18    Unsupp.crit.func








Kille                       Standards Track                    [Page 85]

RFC 2156                         MIXER                      January 1998


X.6.0     Other or undefined media error        2/None  Conv. not perf
X.6.1     Media not supported                   1/6     EIT unsupp.
X.6.2     Conversion required and prohibited    1/9
X.6.3     Conversion required but not supported 2/8
X.6.4     Conversion with loss performed        POSITIVE only
X.6.5     Conversion failed                  2/47   Unable to downgrade

X.7.0     Other or undefined security status    1/46
X.7.1     Delivery not authorized, message ref  1/29  No DL submit perm
X.7.2     Mailing list expansion prohibited     1/28
X.7.3     Security conversion req but not poss  1/46  Secure mess. error
X.7.4     Security features not supported       1/46
X.7.5     Cryptographic failure                 1/46
X.7.6     Cryptographic algorithm not supported 1/46
X.7.7     Message integrity failure             1/46

5.1.8.5.  DSNs that originated in X.400

  The mapping of X.400 delivery reports to DSNs will in general provide
  sufficient information to make a useful reverse mapping.  Messages
  will often be mapped multiple times, commonly due to forwarding
  messages and to distribution lists.   Multiple mappings for delivery
  reports will be a good deal less common.  For this reason, the
  reverse mapping of the X.400 DSN extensions defined in MIXER is
  optional.

5.2.  Return of Contents

  RFC 1327 offered two approaches for return of content, as this
  service is optional in X.400 and expected in RFC 822.   MIXER simply
  requires that a gateway requests the return of content service from
  X.400.

5.3.  X.400 -> RFC 822: Detailed Mappings

5.3.1.  Basic Approach

  A single RFC 822 message is generated from the incoming IP Message,
  Report, or IP Notification.   All IPMS.BodyParts are mapped onto a
  single RFC 822 body.  Other services are mapped onto RFC 822 header
  fields.  Where there is no appropriate existing field, new fields are
  defined for IPMS, MTS and MTA services.

  The gateway mechanisms will correspond to MTS Delivery.  As with
  submission, there are aspects where the MTA (transfer) services are
  also used. In particular, there is an optimisation to allow for
  multiple SMTP recipients.




Kille                       Standards Track                    [Page 86]

RFC 2156                         MIXER                      January 1998


5.3.2.  RFC 822 Settings

  An RFC 822 Message has a number of mandatory fields in the RFC 822
  Header.  Some SMTP services mandate specification of an SMTP
  Originator.  Even in cases where this is optional, it is usually
  desirable to specify a value.  The following defaults are defined,
  which shall be used if the mappings specified do not derive a value:

  SMTP Originator
     If this is not generated by the mapping (e.g., for a Delivery
     Report), a value pointing at a gateway administrator shall be
     assigned.

  Date:
     A value will always be generated

  From:
     If this is not generated by the mapping, it is assigned equal to
     the SMTP Originator.  If this is gateway generated, an appropriate
     822.phrase shall be added.

  At least one recipient field
     If no recipient fields are generated, a field "To: list:;", shall
     be added.

  This will ensure minimal RFC 822 compliance.  When generating RFC 822
  headers, folding may be used.  It is recommended to do this,
  following the guidelines of RFC 822.

5.3.3.  Basic Mappings

5.3.3.1.  Encoded Information Types

  This mapping from MTS.EncodedInformationTypes is needed in several
  disconnected places.  EBNF is defined as follows:

     encoded-info    = 1#encoded-type

     encoded-type    = built-in-eit / object-identifier












Kille                       Standards Track                    [Page 87]

RFC 2156                         MIXER                      January 1998


     built-in-eit    = "Undefined"         ; undefined (0)
                     / "Telex"             ; tLX (1)
                     / "IA5-Text"          ; iA5Text (2)
                     / "G3-Fax"            ; g3Fax (3)
                     / "TIF0"              ; tIF0 (4)
                     / "Teletex"           ; tTX (5)
                     / "Videotex"          ; videotex (6)
                     / "Voice"             ; voice (7)
                     / "SFD"               ; sFD (8)
                     / "TIF1"              ; tIF1 (9)

  MTS.EncodedInformationTypes is mapped onto EBNF.encoded-info.
  MTS.EncodedInformationTypes.non-basic-parameters is ignored.  Built
  in types are mapped onto fixed strings (compatible with X.400(1984)
  and RFC 987), and other types are mapped onto EBNF.object-identifier.

5.3.3.2.  Global Domain Identifier

  The following simple EBNF is used to represent
  MTS.GlobalDomainIdentifier:

     global-id = std-or-address

  This is encoded using the std-or-address syntax, for the attributes
  within the Global Domain Identifier.

5.3.4.  Mappings from the IP Message

  Consider that an IPM has to be mapped to RFC 822.  The IPMS.IPM
  comprises an IPMS.IPM.heading and IPMS.IPM.body.   The heading is
  considered first.  Some EBNF for new fields is defined:

ipms-field = "Supersedes" ":" 1*msg-id
            / "Expires" ":" date-time
            / "Reply-By" ":" date-time
            / "Importance" ":" importance
            / "Sensitivity" ":" sensitivity
            / "Autoforwarded" ":" boolean
            / "Incomplete-Copy" ":"
            / "Content-Language" ":" 1#language
            / "Message-Type" ":" message-type
            / "Discarded-X400-IPMS-Extensions" ":" 1#object-identifier
            / "Autosubmitted" ":" autosubmitted


importance      = "low" / "normal" / "high"





Kille                       Standards Track                    [Page 88]

RFC 2156                         MIXER                      January 1998


sensitivity     = "Personal" / "Private" /
                 "Company-Confidential"

language        = 2*ALPHA [ "(" language-description ")" ]
    language-description = printable-string


message-type    = "Delivery Report"
               / "InterPersonal Notification"
               / "Multiple Part"

autosubmitted   = "not-auto-submitted"
               / "auto-generated"
               / "auto-replied"
               / "auto-forwarded"

  The mappings and actions for the IPMS.Heading are now specified for
  each element.  Addresses and Message Identifiers are mapped according
  to Chapter 4.  Other mappings are explained, or are straightforward
  (algorithmic).  If a field with addresses contains zero elements, it
  shall be discarded, except for IPMS.Heading.blind-copy-recipients,
  which can be mapped onto BCC: (the only RFC 822 field which allows
  zero recipients).

  IPMS.Heading.this-IPM
     Mapped to "Message-ID:".

  IPMS.Heading.originator
     If IPMS.Heading.authorizing-users is present this is mapped to
     Sender:, if not to "From:".

  IPMS.Heading.authorizing-users
     Mapped to "From:".

  IPMS.Heading.primary-recipients
     Mapped to "To:".

  IPMS.Heading.copy-recipients
     Mapped to "Cc:".

  IPMS.Heading.blind-copy-recipients
     Mapped to "Bcc:".

  IPMS.Heading.replied-to-ipm
     Mapped to "In-Reply-To:".






Kille                       Standards Track                    [Page 89]

RFC 2156                         MIXER                      January 1998


  IPMS.Heading.obsoleted-IPMs
     Mapped to the extended RFC 822 field "Supersedes:".   The replaces
     the RFC 1327 field "Obsoletes:".   Reverse mapping of the RFC 1327
     field may be supported.

  IPMS.Heading.related-IPMs
     Mapped to "References:".

  IPMS.Heading.subject
     Mapped to "Subject:".  The contents are converted to ASCII or T.61
     (as defined in Section 3.5).  CRLF will not be present in a valid
     X.400 field.  Any CRLF present are not mapped, but are used as
     points at which the subject field shall be folded, unless an RFC
     1522 encoding is used.

  IPMS.Heading.expiry-time
     Mapped to the extended RFC 822 field "Expires:".  The replaces the
     RFC 1327 field "Expiry-Date:".   Reverse mapping of the RFC 1327
     field may be supported.

  IPMS.Heading.reply-time
     Mapped to the extended RFC 822 field "Reply-By:".

  IPMS.Heading.reply-recipients
     Mapped to "Reply-To:".

  IPMS.Heading.importance
     Mapped to the extended RFC 822 field "Importance:".

  IPMS.Heading.sensitivity
     Mapped to the extended RFC 822 field "Sensitivity:".

  IPMS.Heading.autoforwarded
     Mapped to the extended RFC 822 field "Autoforwarded:".

  The standard extensions (Annex H of X.420 / ISO 10021-7) are mapped
  as follows:

  incomplete-copy
     Mapped to the extended RFC 822 field "Incomplete-Copy:".

  language
     Mapped to the  RFC 822 field "Content-Language:", defined in RFC
     1766 [7].  This mapping may be made without loss of information.

  auto-submitted
     Map to the extended RFC 822 field "Autosubmitted:".




Kille                       Standards Track                    [Page 90]

RFC 2156                         MIXER                      January 1998


  If the RFC 822 extended header is found, this shall be mapped onto an
  RFC 822 header, as described in Section 5.1.2.

  If a non-standard extension is found, it shall be discarded, unless
  the gateway understands the extension and can perform an appropriate
  mapping onto an RFC 822 header field.  If extensions are discarded,
  the list is indicated in the extended RFC 822 field "Discarded-X400-
  IPMS-Extensions:".

5.3.4.1.  Mapping the IPMS Body

  The mapping of the IPMS Body is defined in RFC 2157.

5.3.4.2.  Example Message

  An example message, illustrating a number of aspects is given below.

Received: from mhs-relay.ac.uk by bells.cs.ucl.ac.uk via JANET with
         NIFTP id <[email protected]>;
         Thu, 30 May 1991 18:24:55 +0100
X400-Received: by mta "mhs-relay.ac.uk" in /PRMD=uk.ac/ADMD= /C=gb/;
              Relayed; Thu, 30 May 1991 18:23:26 +0100
X400-Received: by /PRMD=HMG/ADMD=GOLD 400/C=GB/; Relayed;
              Thu, 30 May 1991 18:20:27 +0100
Message-Type: Multiple Part
Date: Thu, 30 May 1991 18:20:27 +0100
X400-Originator: [email protected]
X400-MTS-Identifier:
    [/PRMD=HMG/ADMD=GOLD 400/C=GB/;PC1000-910530172027-57D8]
Original-Encoded-Information-Types: ia5
X400-Content-Type: P2-1984 (2)
X400-Content-Identifier: Email Problems
From: [email protected] (Tel +44 71 217 3487)
Message-ID: <PC1000-910530172027-57D8*@MHS>
To: Jim Craigie <[email protected]>,
   Tony Bates <[email protected]>,
   Steve Kille <[email protected]>
Subject: Email Problems
Sender: [email protected]
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=boundary-1

--boundary-1
Content-Type: text/plain; charset=US-ASCII

Hope you gentlemen.......





Kille                       Standards Track                    [Page 91]

RFC 2156                         MIXER                      January 1998


Regards,

Stephen Harrison
UK GOSIP Project

--boundary-1
Content-Type: message/rfc822

From: Urs Eppenberger <[email protected]>
Message-ID:
<562*/S=Eppenberger/OU=verw/O=switch/PRMD=SWITCH/ADMD=ARCOM/C=CH/@MHS>
To: "Stephen.Harrison" <[email protected]>
Cc: [email protected]
Subject: Response to Email link
Content-Type: multipart/mixed; boundary=boundary-2


--boundary-2

Dear Mr Harrison......


--boundary-2--

--boundary-1--

5.3.5.  Mappings from an IP Notification

  Because of the service setting, IP Notifications will not usually
  need to be mapped by a MIXER gateway.  A message is generated, with
  the following fields:

  From:
     Set to the IPMS.IPN.ipn-originator.

  To:  Set to the recipient from MTS.MessageSubmissionEnvelope.
     If there have been redirects, the original address shall be used.

  Subject:
     Set to the string  "X.400 Inter-Personal Notification" for a
     receipt notification and to "X.400 Inter-Personal Notification
     (failure)" for a non-receipt notification.

  Message-Type:
     Set to "InterPersonal Notification"

  References:
     Set to IPMS.IPN.subject-ipm



Kille                       Standards Track                    [Page 92]

RFC 2156                         MIXER                      January 1998


  Discarded-X400-IPMS-Extensions:
     Used for any discarded IPN extensions.

  The following EBNF is defined for the body of the Message.  This
  format is defined to ensure that all information from an
  interpersonal notification is available to the end user in a uniform
  manner.

        ipn-body-format = ipn-description <CRLF>
                        [ ipn-extra-information <CRLF> ]
                        [ ipn-content-return ]

        ipn-description = ipn-receipt / ipn-non-receipt

        ipn-receipt = "Your message to:" preferred-recipient <CRLF>
                 "was received at" receipt-time <CRLF> <CRLF>
                 "This notification was generated"
                  acknowledgement-mode <CRLF>
                 "The following extra information was given:" <CRLF>
                  ipn-suppl <CRLF>

        ipn-non-receipt = "Your message to:"
                     preferred-recipient <CRLF>
                     ipn-reason

        ipn-reason = ipn-discarded / ipn-auto-forwarded

        ipn-discarded = "was discarded for the following reason:"
                         discard-reason <CRLF>

        ipn-auto-forwarded = "was automatically forwarded." <CRLF>
                             [ "The following comment was made:"
                             auto-comment ]


        ipn-extra-information =
               "The following information types were converted:"
                encoded-info

        ipn-content-return = "The Original Message is not available"
                             / "The Original Message follows:"

        preferred-recipient = mailbox
        receipt-time        = date-time
        auto-comment        = printablestring
        ipn-suppl           = printablestring





Kille                       Standards Track                    [Page 93]

RFC 2156                         MIXER                      January 1998


        discard-reason     = "Expired" / "Obsoleted" /
                    "User Subscription Terminated" / "IPM Deleted"

        acknowledgement-mode = "Manually" / "Automatically"

  The mappings for elements of the common fields of IPMS.IPN
  (IPMS.CommonFields) onto this structure and the message header are:

  subject-ipm
     Mapped to "References:"

  ipn-originator
     Mapped  to "From:".

  ipn-preferred-recipient
     Mapped to EBNF.preferred-recipient

  conversion-eits
     Mapped to EBNF.encoded-info in EBNF.ipn-extra-information

  The mappings for elements of IPMS.IPN.non-receipt-fields
  (IPMS.NonReceiptFields) are:

  non-receipt-reason
     Used to select between EBNF.ipn-discarded and EBNF.ipn-auto-
     forwarded

  discard-reason
     Mapped to EBNF.discard-reason

  auto-forward-comment
     Mapped to EBNF.auto-comment

  returned-ipm
     This applies only to non-receipt notifications.  EBNF.ipn-
     content-return shall always be omitted for receipt notifications,
     and always be present in non-receipt notifications.  If present,
     the second option of EBNF.ipn-content-return is chosen, and the
     message is included.  In this case, the message is formatted as
     multipart/mixed, and the returned message included as
     message/rfc822 after the text body part. Otherwise the first
     option is chosen.

  The mappings for elements of IPMS.IPN.receipt-fields
  (IPMS.ReceiptFields) are:

  receipt-time
     Mapped to EBNF.receipt-time



Kille                       Standards Track                    [Page 94]

RFC 2156                         MIXER                      January 1998


  acknowledgement-mode
     Mapped to EBNF.acknowledgement-mode

  suppl-receipt-info
     Mapped to EBNF.ipn-suppl

  An example notification is:

        From: Steve Kille <[email protected]>
        To: Julian Onions <[email protected]>
        Subject: X.400 Inter-personal Notification
        Message-Type: InterPersonal Notification
        References: <[email protected]>
        Date: Wed, 21 Jun 89 08:45:25 +0100

        Your message to: Steve Kille <[email protected]>
        was automatically forwarded.
        The following comment was made:
           Sent on to a random destination

        The following information types were converted: g3fax

5.3.6.  Mappings from the MTS Abstract Service

  This section describes the MTS mappings for User Messages (IPM and
  IPN).  This mapping is defined by specifying the mapping of
  MTS.MessageDeliveryEnvelope.  The following extensions to RFC 822 are
  defined to support this mapping:

        mts-field = "X400-MTS-Identifier" ":" mts-msg-id
                  / "X400-Originator" ":" mailbox
                  / "X400-Recipients" ":" 1#mailbox
                  / "Original-Encoded-Information-Types" ":"
                     encoded-info
                  / "X400-Content-Type" ":" mts-content-type
                  / "X400-Content-Identifier" ":" printablestring
                  / "Priority" ":" priority
                  / "Originator-Return-Address" ":" 1#mailbox
                  / "DL-Expansion-History" ":" mailbox ";" date-time
                     ";"
                  / "Conversion" ":" prohibition
                  / "Conversion-With-Loss" ":" prohibition
                  / "Delivery-Date" ":" date-time
                  / "Discarded-X400-MTS-Extensions" ":"
                     1#( object-identifier / labelled-integer )


        prohibition     = "Prohibited" / "Allowed"



Kille                       Standards Track                    [Page 95]

RFC 2156                         MIXER                      January 1998


        mts-msg-id       = "[" global-id ";" *text "]"

        mts-content-type = "P2" /  labelled-integer
                         / object-identifier

        priority        = "normal" / "non-urgent" / "urgent"


  The mappings for each element of MTS.MessageDeliveryEnvelope can now
  be considered.  Where the specified action does not result in an
  extended element being mapped, the criticality associated with this
  element shall be considered.  If the element is marked as critical
  for transfer or for delivery, the message shall be non delivered by
  the gateway because a critical extension cannot be correctly handled.

  MTS.MessageDeliveryEnvelope.message-delivery-identifier
     Mapped to the extended RFC 822 field "X400-MTS-Identifier:".

  MTS.MessageDeliveryEnvelope.message-delivery-time
     Discarded, as this time will be represented in an appropriate
     trace element.

  The mappings for elements of MTS.MessageDeliveryEnvelope.other-fields
  (MTS.OtherMessageDeliveryFields) are:

  content-type
     Mapped to the extended RFC 822 field "X400-Content-Type:".  The
     string "P2" is retained for backwards compatibility with RFC 987.
     This shall not be generated, and either the EBNF.labelled-integer
     or EBNF.object-identifier encoding used.

  originator-name
     Mapped to the SMTP originator, and to the extended RFC 822 field
     "X400-Originator:".  This is described in Section 4.6.2.

  original-encoded-information-types
     Mapped to the extended RFC 822 field "Original-Encoded-
     Information-Types:".

  priority
     Mapped to the extended RFC 822 field "Priority:".

  delivery-flags
     If the conversion-prohibited bit is set, add an extended RFC 822
     field "Conversion:".

  this-recipient-name and other-recipient-names
     The handling of these elements is described in Section 4.6.2.



Kille                       Standards Track                    [Page 96]

RFC 2156                         MIXER                      January 1998


  originally-intended-recipient-name
     The handling of this element is described in Section 4.6.2.

  converted-encoded-information-types
     Discarded.  This information will be mapped in the trace.

  message-submission-time
     Mapped to Date:.

  content-identifier
     Mapped to the extended RFC 822 field "X400-Content-Identifier:".
     In RFC 1327, this was "Content-Identifier:".  This has been
     changed to avoid confusion with MIME defined fields.   Gateways
     which reverse map, may support the old field.

  If any extensions (MTS.MessageDeliveryEnvelope.other-
  fields.extensions) are present, and they are marked as critical for
  transfer or delivery, then the message shall be rejected.  The
  extensions (MTS.MessageDeliveryEnvelope.other-fields.extensions) are
  mapped as follows.

  conversion-with-loss-prohibited
     If set to MTS.ConversionWithLossProhibited.conversion-with-loss-
     prohibited, then add the extended RFC 822 field "Conversion-With-
     Loss:".

  requested-delivery-method
     Mapped to a comment, as described in Section 4.6.2.2.

  originator-return-address
     Mapped to the extended RFC 822 field "Originator-Return-Address:".

  physical-forwarding-address-request
  physical-delivery-modes
  registered-mail-type
  recipient-number-for-advice
  physical-rendition-attributes
  physical-delivery-report-request
  physical-forwarding-prohibited


     These elements are only appropriate for physical delivery.
     They are represented as comments in the "X400-Recipients:"
     field, as described in Section 4.6.2.2.

  originator-certificate
  message-token
  content-confidentiality-algorithm-identifier



Kille                       Standards Track                    [Page 97]

RFC 2156                         MIXER                      January 1998


  content-integrity-check
  message-origin-authentication-check
  message-security-label
  proof-of-delivery-request

     These elements imply use of security services not available in the
     RFC 822 environment.  If they are marked as critical for transfer
     or delivery, then the message shall be rejected.  Otherwise they
     are discarded.

  redirection-history
     This is described in Section 4.6.2.

  dl-expansion-history
     Each element is mapped to an extended RFC 822 field "DL-
     Expansion-History:".  These fileds shall be ordered in the message
     header, so that the most recent expansion comes first (same order
     as trace).

     If any MTS (or MTA) Extensions not specified in X.400 are present,
     and they are marked as critical for transfer or delivery, then the
     message shall be rejected.  If they are not so marked, they can
     safely be discarded.  The list of discarded fields shall be
     indicated in the extended header "Discarded-X400-MTS-Extensions:".

5.3.7.  Mappings from the MTA Abstract Service

  There are some mappings at the MTA Abstract Service level which are
  done for IPM and IPN.  These can be derived from
  MTA.MessageTransferEnvelope.  The reasons for the mappings at this
  level, and the violation of layering are:

  -    Allowing for multiple recipients to share a single RFC 822
       message

  -    Making the X.400 trace information available on the RFC 822
       side

  -    Making any information on deferred delivery available

  The SMTP recipients are calculated from the full list of X.400
  recipients.  This is all of the members of
  MTA.MessageTransferEnvelope.per-recipient-fields being passed through
  the gateway, where the responsibility bit is set.  In some cases, a
  different RFC 822 message would be calculated for each recipient, due
  to differing service requests for each recipient.  As discussed in
  4.6.2.2, this specification allows either for multiple messages to be
  generated, or for the per-recipient information to be discarded.



Kille                       Standards Track                    [Page 98]

RFC 2156                         MIXER                      January 1998


  The following EBNF is defined for extended RFC 822 headers:

  mta-field       = "X400-Received" ":" x400-trace
                  / "Deferred-Delivery" ":" date-time
                  / "Latest-Delivery-Time" ":" date-time

  x400-trace       = "by" md-and-mta ";"
                   [ "deferred until" date-time ";" ]
                   [ "converted" "(" encoded-info ")" ";" ]
                   [ "attempted" md-or-mta ";"  ]
                      action-list
                   ";" arrival-time

  md-and-mta       = [ "mta" mta "in" ]  global-id
  mta              = word
  arrival-time     = date-time

  md-or-mta        = "MD" global-id
                   / "MTA" mta

  Action-list      = 1#action
  action           = "Redirected"
                   / "Expanded"
                   / "Relayed"
                   / "Rerouted"

  Note the EBNF.mta is encoded as 822.word.  If the character set does
  not allow encoding as 822.atom, the 822.quoted-string encoding is
  used.

  If MTA.PerMessageTransferFields.deferred-delivery-time is present, it
  is used to generate a Deferred-Delivery: field.  X.400 does not make
  this information available at the MTS level on delivery, because it
  requires that this service is provided by the first MTA. In the event
  that the first MTA does not provide this service, the function may
  optionally be implemented by the gateway: that is, the gateway may
  hold the message until the time specified in the protocol element.
  Thus, the value of this element will usually be in the past.  For
  this reason, the extended RFC 822 field is primarily for information.

  If MTA.PerMessageTransferFields.extensions.dl-expansion-prohibited is
  present and set to dl-expansion-probited, the gateway may reject that
  message on the basis that it is unable to control distribution list
  expansion beyond the gateway.  The service relating to this is
  described in Section 2.3.1.2.  This approach was not specified in RFC
  1327.  If it is found to be useful, it may be made mandatory in
  future versions of MIXER.




Kille                       Standards Track                    [Page 99]

RFC 2156                         MIXER                      January 1998


  If MTA.PerMessageTransferFields.extensions.recipient-reassignment-
  prohibited is present and set to recipeint-reassignment-probited, the
  gateway may reject that message on the basis that it is unable to
  control distribution list expansion beyond the gateway.  The service
  relating to this is described in Section 2.3.1.2.  This approach was
  not specified in RFC 1327.  If it is found to be useful, it may be
  made mandatory in future versions of MIXER.

  Merge MTA.PerMessageTransferFields.trace-information, and
  MTA.PerMessageTransferFields.internal-trace-information to produce a
  single ordered trace list.  If Internal trace from other management
  domains has not been stripped, this may require complex interleaving.
  Where an element of internal trace and external trace are identical,
  except for the MTA in the internal trace, only the internal trace
  element shall be presented. Use this to generate a sequence of
  "X400-Received:" fields. The only difference between external trace
  and internal trace will be the extra MTA information in internal
  trace elements.

  When generating an RFC 822 message all trace fields (X400-Received
  and Received) shall be at the beginning of the header, before any
  other fields.  Trace shall be in chronological order, with the most
  recent element at the front of the message.  This ordering is
  determined from the order of the fields, not from timestamps in the
  trace, as there is no guarantee of clock synchronisation.  A simple
  example trace (external) is:

  X400-Received: by /PRMD=UK.AC/ADMD=Gold 400/C=GB/ ; Relayed ;
          Tue, 20 Jun 89 19:25:11 +0100

  A more complex example (internal):

  X400-Received: by mta "UK.AC.UCL.CS" in
         /PRMD=UK.AC/ADMD=Gold 400/C=GB/ ;
         deferred until  Tue, 20 Jun 89 14:24:22 +0100 ;
          converted (undefined, g3fax) ; attempted MD /ADMD=Foo/C=GB/ ;
          Relayed, Expanded, Redirected ; Tue, 20 Jun 89 19:25:11 +0100

  The gateway itself shall add a single line of trace information,
  indicating MIXER conversion by use of a comment.  For example:

  Received: from isode.com by isode.com
         (MIXER Conversion following RFC 1327);
         Thu, 2 Jan 1997 14:46:03 +0000

  If SMTP is being used, Appendix A shall also be followed, which
  includes optional mappings to extension parameters.




Kille                       Standards Track                   [Page 100]

RFC 2156                         MIXER                      January 1998


5.3.8.  Mappings from Report Delivery

  that only reports destined for the MTS user will be mapped.  Some
  additional services are also taken from the MTA service.  X.400
  Delivery Reports are Mapped onto Delivery Status Notifications, as
  defined by NOTARY [28].

5.3.8.1.  MTS Mappings

  A Delivery Report service will be represented as
  MTS.ReportDeliveryEnvelope, which comprises of per-report-fields
  (MTS.PerReportDeliveryFields) and per-recipient-fields.

  The enclosing message is a MIME message of content type
  multipart/report, with report-type=delivery-status, which is
  generated with the following fields:

  From:
       An administrator at the gateway system.

  To:  A mapping of the
       MTA.ReportTransferEnvelope.report-destination-name.  This is
       also the SMTP recipient.

  Message-Type:
       Set to "Delivery Report".  This is strictly redundant, but
       retained for backwards compatibility with RFC 1327.

  Subject:
       The EBNF for the subject line is:

      subject-line  = "Delivery-Report" "(" status ")"
                      [ "for" destination ]

      status        = "success" / "failure" / "success and failures"

      destination   = mailbox / "MTA" word

  The subject is intended to give a clear indication as to the nature
  of the message, and summarise its contents. EBNF.status is set
  according to whether the recipients reported on are all successes,
  all failures, or a mixture.  It is common for a report to reference a
  single recipient, in which case a subject line giving using all of
  the options of EBNF.status can be used.  This gives useful
  information to the recipient.  Where information varies between
  reported recpients, the options cannot be used.  The EBNF.destination
  is used to indicate the addresses in the reports.  If the report is
  for a single address, EBNF.mailbox is used to give the RFC 822



Kille                       Standards Track                   [Page 101]

RFC 2156                         MIXER                      January 1998


  representation of the address.  If all of the reported recpients
  reference the same MTA this is included in EBNF.word.   The MTA is
  determined from the delivery report's trace.

  The format of the body of the message follows the NOTARY delivery
  status notification format, and is defined to ensure that all
  information is conveyed to the RFC 822 user in a consistent manner.
  The format is structured as if it was a message coming from the
  gateway, with three body parts. The first body part is ASCII text
  structured as follows:

  1.   A few lines giving keywords to indicate the original
       message.

  2.   A human summary of the status of each recipient being
       reported on.

  The second (mandatory)  body part is the NOTARY delivery status
  notification, which contains detailed information extracted from the
  report.  This information may be critical to diagnosing an obscure
  problem.

  The third (optional) body part contains the returned message (return
  of content).  This structure is useful to the RFC 822 recipient, as
  it enables the original message to be extracted.  For negative
  reports it shall be included if the original message is available.
  For positive reports headers from the message shall be included if
  the original message is available.

  The first body part containing the user oriented description is of
  type text/plain.  The format of this body part is defined below as
  EBNF.dr-user-info.

        dr-user-info = dr-summary <CRLF>
                        dr-recipients <CRLF>
                        dr-content-return

        dr-content-return = "The Original Message is not available"
             / "The Original Message follows:"

        dr-summary = "This report relates to your message:" <CRLF>
                        content-correlator <CRLF> <CRLF>
                     "of" date-time <CRLF> <CRLF>

        dr-recipients = *(dr-recipient <CRLF> <CRLF>)

        dr-recipient = dr-recip-success / dr-recip-failure




Kille                       Standards Track                   [Page 102]

RFC 2156                         MIXER                      January 1998


        dr-recip-success =
                        "Your message was successfully delivered to:"
                         mailbox "at" date-time


        dr-recip-failure = "Your message was not delivered to:"
                                mailbox <CRLF>
                        "for the following reason:" *word report-point
        = [ "mta" mta-name "in" ] global-id content-correlator = *word
        mta-name = word

  EBNF.dr-summary
     The EBNF.content-correlator is taken from the content correlator
     (or content identifier if there is no content correlator) and the
     EBNF.date-time from the trace, as described in Section 5.3.8.3.
     LWSP may be added to improve the layout of the body part.

  EBNF.dr-recipients
     There is an element for each recipient in the delivery report.  In
     each case, EBNF.mailbox is taken from the RFC 822 form of the
     originally specified recipient, which is taken from the originally
     specified recipient element if present or from the actual
     recipient.  When reporting success, the message delivery time is
     used to derive EBNF.date-time.  When reporting failure, the
     information includes a human readable interpretation of the X.400
     diagnostic and reason codes, and the supplementary information.

  EBNF.dr-content-return
     This is set according to whether or not the content is being
     returned.

  The EBNF of this body part is designed for english-speaking users.
  The language of the strings in the EBNF may be altered.


















Kille                       Standards Track                   [Page 103]

RFC 2156                         MIXER                      January 1998


  The EBNF used in the delivery status notification is:

     dr-per-message-fields =
        / "X400-Conversion-Date" ":" date-time
        / "X400-Subject-Submision-Identifier" ":"
                                  mts-msg-id
        / "X400-Content-Identifier" ":" printablestring
        / "X400-Content-Type" ":" mts-content-type
        / "X400-Original-Encoded-Information-Types" ":"
                             encoded-info
        / "X400-Originator-and-DL-Expansion-History" ":"
                             mailbox ";" date-time ";"
        / "X400-Reporting-DL-Name" ":" mailbox
        / "X400-Content-Correlator" ":" content-correlator
        / "X400-Recipient-Info" ":" recipient-info
        / "X400-Subject-Intermediate-Trace-Information" ":"
                             x400-trace
        / dr-extensions

     dr-per-recipient-fields =
        / "X400-Redirect-Recipient" ":" "x400" ";" std-or
        / "X400-Mapped-Redirect-Recipient" ":" "rfc822" ";" mailbox
        / "X400-Converted-EITs" ":" encoded-info ";"
        / "X400-Delivery-Time" ":" date-time
        / "X400-Type-of-MTS-User" ":" labelled-integer
        / "X400-Last-Trace" ":" [ encoded-info ] date-time
        / "X400-Supplementary-Info" ":"
              <"> printablestring <"> ";"
        / "X400-Redirection-History" ":" redirect-history-item
        / "X400-Physical-Forwarding-Address" ":" mailbox
        / "X400-Originally-Specified-Recipient-Number" ":"
              integer
        / dr-extensions

     dr-extensions = "X400-Discarded-DR-Extensions" ":"
                       1# (object-identifier / labelled-integer)

     dr-diagnostic = "Reason" labelled-integer-2
                       [ ";" "Diagnostic" labelled-integer-2 ]

  A body part of type delivery status, as defined by NOTARY, is
  generated.  MIXER extends this delivery status notification (DSN)
  specification, by defining additional per message fields in EBNF.dr-
  per-message-fields and additional per recipient fields in EBNF.dr-
  per-recipient-fields.   These are used as extensions to DSN.per-
  message-fields and DSN.per-recipient-fields.  MIXER also defines a
  new NOTARY address type "x400", with encoding of EBNF.std-or.   A
  directory name may be inluded as an RFC 822 comment.



Kille                       Standards Track                   [Page 104]

RFC 2156                         MIXER                      January 1998


  The following DSN.per-message-fields are always generated:

  DSN.reporting-mta-field
     The DSN.mta-name-type is set to "x400", and this string is
     reserved by MIXER.  The DSN.mta-name has its syntax specified by
     EBNF.report-point, with the information derived from the first
     element of the DR's trace.

  DSN.arrival-date-field
     This is derived from the date of the
     MTA.PerRecipientReportTransferFields.last-trace-info.arrival-time
     of the first recipient in the report.

  The following two EBNF.per-message-fields are generated by the MIXER
  gateway:

  DSN.dsn-gateway-field
     The type is set to "dns" and the  domain  set to the local domain
     of the gateway.

  X400-Conversion-Date:
     The EBNF.date-time is set to the time of the MIXER conversion.

  The elements of MTS.ReportDeliveryEnvelope.per-report-fields are
  mapped as follows onto the DSN per message fields as follows:

  subject-submission-identifier
     Mapped to DSN.original-envelope-id-field.  The encoding of this
     MTS Identifier follows the format EBNF.mts-msg-id.

  content-identifier
     Mapped to X400-Content-Identifier:

  content-type
     Mapped to X400-Content-Type:

  original-encoded-information-types
     Mapped to X400-Encoded-Info:

  The extensions from MTS.ReportDeliveryEnvelope.per-report-
  fields.extensions are mapped as follows:

  originator-and-DL-expansion-history
     Each element is mapped to an "X400-Originator-and-DL-Expansion-
     History:"  They shall be ordered so that the most recent expansion
     comes first in the header (same order as trace).





Kille                       Standards Track                   [Page 105]

RFC 2156                         MIXER                      January 1998


  reporting-DL-name
     Mapped to X400-Reporting-DL-Name:

  content-correlator
     If the content correlator starts with the string "SMTP/NOTARY
     ENVID: ", then the remainder of the content correlator is mapped
     to the DSN original-envelope-id field.  If this is not the case,
     the content correlator is mapped to X400-Content-Correlator:,
     provided that the encoding is IA5String (this will always be the
     case).

  message-security-label
  reporting-MTA-certificate
  report-origin-authentication-check

     These security parameters will not be present unless there is an
     error in a remote MTA.  If they are present, they shall be
     discarded in preference to discarding the whole report.  They
     shall be listed in the X400-Discarded-DR-Extensions: field.

  If there are any other DR extensions, they shall also be discarded
  and listed in the X400-Discarded-DR-Extensions: field.

  For each element of MTS.ReportDeliveryEnvelope.per-recipient-fields,
  a set of DSN.per-recipient-fields is generated.  The fields are
  filled in as follows:

  actual-recipient-name
     If originally-intended-recipient-name is not present, generate a
     DSN.original-recipient-field fields, with DSN.address-type of
     "rfc822", and with an RFC 822 mailbox generated from the address
     encoded as specified by NOTARY.  Also generate a DSN.final-
     recipient-field field, which holds the X.400 representation of the
     same address.  If the directory name is present, it shall be added
     as a trailing comment in the X.400 form.

     If originally-intended-recipient-name is present, generate an
     "X400-Mapped-Redirect-Recipient:" field, with DSN.address-type of
     "rfc822", and with an RFC 822 mailbox generated from the address
     encoded as specified by NOTARY.  Also generate an "X400-Redirect-
     Recipient:" field, which holds the X.400 representation of the
     same address.  If the directory name is present, it shall be added
     as a trailing comment in the X.400 form.








Kille                       Standards Track                   [Page 106]

RFC 2156                         MIXER                      January 1998


  report
     If it is MTS.Report.delivery, then set DSN.action-field to
     "delivered", and set "X400-Delivery-Time:" and "X400-Type-of-MTS-
     User:" from the information in the report.  DSN.status field is
     set to "2.0.0".

     If it is MTS.Report.non-delivery, then set DSN.action-field to
     "failed".   DSN.diagnostic-code-field is encoded according to the
     syntax EBNF.dr-diagnostic, with the labelled integers set from the
     reason and diagnostic codes.  DSN.status-field is derived from the
     reason and diagnostic codes, as described below.

  converted-encoded-information-types
     Set X400-Converted-EITs:

  originally-intended-recipient
     Generate a DSN.final-recipient-field field, with DSN.address-type
     of "rfc822", and with an RFC 822 mailbox generated from the
     address encoded as specified by NOTARY.  Also generate a
     DSN.original-recipient-field field, which holds the X.400
     representation of the same address.  If the directory name is
     present, it shall be added as a trailing comment in the X.400
     form.

  supplementary-info
     Set X400-Supplementary-Info:

  redirection-history
     Generate an "X400-Redirection-History:" field for each redirect
     history element.  The fields are ordered with the earliest
     redirect first.

  physical-forwarding-address
     Set X400-Physical-Forwarding-Address as a mailbox, with directory
     name in comment if present.

  recipient-certificate
     Discard

  proof-of-delivery
     Discard

  Any unknown extensions shall be discarded, irrespective of
  criticality.  All discarded extensions shall be included in a "X400-
  Discarded-DR-Extensions:" field.






Kille                       Standards Track                   [Page 107]

RFC 2156                         MIXER                      January 1998


  The number from the MTA.PerRecipientReportTransferFields.originally-
  specified-recipient-number shall be mapped to "X400-Originally-
  Specified-Recipient-Number:", in order to facilitate reverse mapping
  of delivery reports.

  The original message shall be included in the delivery status
  notification if it is available. The original message will usually be
  available at the gateway, as discussed in Section 5.2.  If the
  original message is available, but is not a legal message format, a
  dump of the ASN.1 may be included, encoded as application/octet-
  string.  This is recommended, but not required.

  Where the original message is included, it shall be encoded according
  to the MIME specifications as content type message/rfc822.

5.3.8.2.  Status Code Mappings

  This section defines the mappings from X.400 diagnostic and status
  codes to the NOTARY Status field.

C/D     X400 meaning                            DSN code        Means

0/Any   Transfer failure (may be temporary)     4.4.0 Other net/route
1/Any   Unable to transfer                      5.0.0 Other, unknown
2/Any   Conversion not performed                5.6.3 Conv not supported
3/Any   Physical rendition not performed        5.6.0 Other media error
4/Any   Physical delivery not performed         5.1.0 Other address
                                                     status
5/Any   Restricted delivery                     5.7.1
6/Any   Directory operation unsuccessful        5.4.3 Routing server
                                                     failure
7/Any   Deferred delivery not performed         5.3.3 Not capable

1/0     Unrecognized OR name                    5.1.1
1/1     Ambiguous OR name                       5.1.4
1/2     MTS congestion                          4.3.1
1/3     Loop detected                           5.4.6
1/4     Recipient unavailable                   4.2.1
1/5     Delivery time expired                   4.4.7
1/6     Encoded information types unsupported   5.6.1 Media unsupp.
1/7     Content too long                        5.2.3
2/8     Conversion impractical                  5.6.3
2/9     Conversion prohibited                   5.6.3
1/10    Implicit conversion not subscribed      5.6.3
1/11    Invalid arguments                       5.5.2
1/12    Content syntax error                    5.5.2
1/13    Size constraint violation               5.5.2
1/14    Protocol violation                      5.5.0



Kille                       Standards Track                   [Page 108]

RFC 2156                         MIXER                      January 1998


1/15    Content type not supported              5.6.1 Media unsupp.
1/16    Too many recipients                     5.5.3
1/17    No bilateral agreement                  5.4.4
1/18    Unsupported critical function           5.3.3 System not capable
2/19    Conversion with loss prohibited         5.6.2
2/20    Line too long                           5.6.0
2/21    Page split                              5.6.0
2/22    Pictorial symbol loss                   5.6.2
2/23    Punctuation symbol loss                 5.6.2
2/24    Alphabetic character loss               5.6.2
2/25    Multiple information loss               5.6.2
1/26    Recipient reassignment prohibited       5.4.0 Undefined net/route
1/27    Redirection loop detected               5.4.6
1/28    DL expansion prohibited                 5.7.2
1/29    No DL submit permission                 5.7.1 Delivery not
                                                     authorized
1/30    DL expansion failure                    4.2.4
4/31    Physical rendition attrs not supported  5.6.0 Undefined media
                                                     error
4/32-45 Various physical mail stuff             5.1.0 Other address
                                                     status
1/43    New address unknown                     5.1.6 Destination mbox
                                                     moved
1/46    Secure messaging error                  5.7.0 Other security
                                                     status
2/47    Unable to downgrade                     5.3.3 System not capable
0/48    Unable to complete transfer             5.3.4 Message too big
0/49    Transfer attempts limit reached         4.4.7 Delivery time
                                                     expired

5.3.8.3.  MTA Mappings

  The single SMTP recipient is constructed from
  MTA.ReportTransferEnvelope.report-destination-name, using the
  mappings of Chapter 4.  Unlike with a user message, this information
  is not available at the MTS level.

  The following additional mappings are made, which results in fields
  in the outer header of the DSN.

  MTA.ReportTransferEnvelope.report-destination-name
     This is used to generate the To: field.

  MTA.ReportTransferEnvelope.identifier
     Mapped to the extended RFC 822 field "X400-MTS-Identifier:".  It
     may also be used to derive a "Message-Id:" field.





Kille                       Standards Track                   [Page 109]

RFC 2156                         MIXER                      January 1998


  MTA.ReportTransferEnvelope.trace-information
     and
  MTA.ReportTransferEnvelope.internal-trace-information

     Mapped onto the extended RFC 822 field "X400-Received:", as
     described in Section 5.3.7.  Date: is generated from the first
     element of trace.

  The following additional mappings are made, which result in per
  message fields in the DSN body part:

  MTA.PerRecipientReportTransferFields.last-trace-information
     Mapped to X400-Last-Trace:".

  MTA.PerReportTransferFields.subject-intermediate-trace-
     information Mapped to "X400-Subject-Intermediate-Trace-
     Information:". These fields are ordered so that the most recent
     trace element comes first.

5.3.8.4.  Example Delivery Reports

  This section contains sample delivery reports.   These are the same
  examples used in RFC 1327, and so they also illustrate the changes
  between RFC 1327 and this document.  Example Delivery Report 1:

  Received: from cs.ucl.ac.uk by bells.cs.ucl.ac.uk
     via Delivery Reports Channel id <[email protected]>;
     Thu, 7 Feb 1991 15:48:39 +0000 From: UCL-CS MTA
  <[email protected]> To: [email protected] Subject: Delivery
  Report (failure) for [email protected] Message-Type: Delivery
  Report Date: Thu, 7 Feb 1991 15:48:39 +0000 Message-ID:
  <"bells.cs.u.694:07.01.91.15.48.34"@cs.ucl.ac.uk> X400-Content-
  Identifier: Greetings.  MIME-Version: 1.0 Content-Type:
  multipart/report; report-type=delivery-status;
      boundary=boundary-1

  --boundary-1

  This report relates to your message:
          Greetings.

          of Thu, 7 Feb 1991 15:48:20 +0000

  Your message was not delivered to
          [email protected] for the following reason:
          Bad Address
          MTA 'bbn.com' gives error message  (USER) Unknown user name
  in



Kille                       Standards Track                   [Page 110]

RFC 2156                         MIXER                      January 1998


          "[email protected]"

  The Original Message follows:


  --boundary-1 content-type: message/delivery-status

  Reporting-MTA: x400;  bells.cs.ucl.ac.uk in /PRMD=uk.ac/ADMD=gold
  400/C=gb/ Arrival-Date: Thu, 7 Feb 1991 15:48:34 +0000 DSN-Gateway:
  dns;  bells.cs.ucl.ac.uk X400-Conversion-Date: Thu, 7 Feb 1991
  15:48:40 +0000 Original-Envelope-Id:
           [/PRMD=uk.ac/ADMD=gold
  400/C=gb/;<[email protected]>] X400-Content-Identifier:
  Greetings.  X400-Subject-Intermediate-Trace-Information:
  /PRMD=uk.ac/ADMD=gold 400/C=gb/;
           arrival Thu, 7 Feb 1991 15:48:20 +0000 action Relayed X400-
  Subject-Intermediate-Trace-Information:  /PRMD=uk.ac/ADMD=gold
  400/C=gb/;
           arrival Thu, 7 Feb 1991 15:48:18 +0000 action Relayed



  Original-Recipient: rfc822; [email protected] Final-Recipient:
  x400;
    /RFC-822=H.Hildegard(a)bbn.com/OU=cs/O=ucl/PRMD=uk.ac/ADMD=gold
  400/C=gb/; Action: failure Status: 5.1.1 Diagnostic-Code: x400;
  Reason 1 (Unable-To-Transfer);
       Diagnostic 0 (Unrecognised-ORName) X400-Last-Trace: (ia5) Thu, 7
  Feb 1991 15:48:18 +0000; X400-Originally-Specified-Recipient-Number:
  1 X400-Supplementary-Info: "MTA 'bbn.com' gives error message  (USER)
      Unknown user name in "[email protected]"";


  --boundary-1 Content-Type: message/rfc822

  Received: from glenlivet.cs.ucl.ac.uk by bells.cs.ucl.ac.uk
    with SMTP inbound id <[email protected]>;
    Thu, 7 Feb 1991 15:48:21 +0000 To: [email protected] Subject:
  Greetings.  Phone: +44-71-380-7294 Date: Thu, 07 Feb 91 15:48:18
  +0000 Message-ID: <[email protected]> From: Steve Kille
  <[email protected]>


  Steve

  --boundary-1--





Kille                       Standards Track                   [Page 111]

RFC 2156                         MIXER                      January 1998


  Example Delivery Report 2:

  Received: from cs.ucl.ac.uk by bells.cs.ucl.ac.uk
    via Delivery Reports Channel id <[email protected]>;
    Thu, 7 Feb 1991 15:49:11 +0000
  X400-Received: by mta "bells.cs.ucl.ac.uk" in
    /PRMD=uk.ac/ADMD=gold 400/C=gb/;
    Relayed; Thu, 7 Feb 1991 15:49:08 +0000
  X400-Received: by /PRMD=DGC/ADMD=GOLD 400/C=GB/; Relayed;
    Thu, 7 Feb 1991 15:48:40 +0000
  From: UCL-CS MTA <[email protected]>
  To: [email protected]
  Subject: Delivery Report (failure) for
           [email protected]
  Message-Type: Delivery Report
  Date: Thu, 7 Feb 1991 15:46:11 +0000
  Message-ID: <"DLE/910207154840Z/000"@cs.ucl.ac.uk>
  X400-Content-Identifier: A useful mess...
  MIME-Version: 1.0
  Content-Type: multipart/report; report-type=delivery-status;
      boundary=boundary-1

  --boundary-1

  This report relates to your message:
          A useful mess...

          of Thu, 7 Feb 1991 15:43:20 +0000


  Your message was not delivered to
          [email protected]
          for the following reason:
          Bad Address
          DG 21187: (CEO POA) Unknown addressee.

  The Original Message is not available


  --boundary-1
  content-type: message/delivery-status


  Reporting-MTA: x400; /PRMD=DGC/ADMD=GOLD 400/C=GB/
  Arrival-Date: Thu, 7 Feb 1991 15:48:40 +0000
  DSN-Gateway: dns;  bells.cs.ucl.ac.uk
  X400-Conversion-Date: Thu, 7 Feb 1991 15:49:12 +0000
  Original-Envelope-Id:



Kille                       Standards Track                   [Page 112]

RFC 2156                         MIXER                      January 1998


    [/PRMD=uk.ac/ADMD=gold 400/C=gb/;<[email protected]>]
  X400-Content-Identifier: A useful mess...


  Original-Recipient: rfc822; [email protected]
  Final-Recipient: x400;
    /I=j/S=nosuchuser/OU=dle/O=cambridge/PRMD=DGC/ADMD=GOLD 400/C=GB/
  Action: failure
  Status: 5.1.1
  Diagnostic-Code: x400; Reason 1 (Unable-To-Transfer);
      Diagnostic 0 (Unrecognised-ORName)
  X400-Supplementary-Info: "DG 21187: (CEO POA) Unknown addressee."
  X400-Originally-Specified-Recipient-Number: 1

  --boundary-1--


5.3.9.  Probe

  This is an MTS internal issue.  Any probe shall be serviced by the
  gateway, as there is no equivalent RFC 822 functionality.  The value
  of the reply is dependent on whether the gateway could service an MTS
  Message with the values specified in the probe.  The reply shall make
  use of MTS.SupplementaryInformation to indicate that the probe was
  serviced by the gateway.


























Kille                       Standards Track                   [Page 113]

RFC 2156                         MIXER                      January 1998


Appendix A - Mappings Specific to SMTP

  This Appendix is specific to the Simple Mail Transfer  Protocol (RFC
  821).  It describes specific changes in the context of this protocol.
  When MIXER is used with SMTP, conformance to this appendix is
  mandatory.

  1.  Probes

  When servicing a probe, as described in section 5.3.9, use may be
  made of the SMTP VRFY command to increase the accuracy of information
  contained in the delivery report.

  2.  Long Lines

  SMTP is a text oriented protocol, and is required to support a line
  length of at least 1000 characters.   Some implementations do not
  support line lengths greater than 1000 characters.   This can cause
  problems.  Where body parts have long lines, it is recommended to use
  a MIME encoding that folds lines (quoted printable).

  3.  SMTP Extensions

  There are several RFCs that specify extensions to SMTP. Most of these
  are not relevant to MIXER.  The NOTARY work to support delivery
  report defines extensions which are relevant [29].  Use of these
  extensions by a MIXER gateway is optional.  If these extensions are
  used, they shall be used in the manner described below.

  3.1.  SMTP Extension mapping to X.400

  Mappings are defined for the following extensions:

  NOTIFY
     This is used to set the report and non-delivery bits of
     MTA.PerRecipientMessageTransferFields.per-recipient-indicators.
     If the value is NEVER, both bits are zero.  If SUCCESS is present,
     the report bit is set.  Otherwise, the non-delivery-report bit is
     set.  If the gateway uses the NOTIFY command, it shall perform
     this mapping in all cases.

  ORCPT
     If the address type of the original recipient is "x400" or
     "rfc822", this may be used at the MTS level, to generate an
     element of redirection history, with the redirection date being
     the date of conversion and the reason set to "alias".





Kille                       Standards Track                   [Page 114]

RFC 2156                         MIXER                      January 1998


  ENVID
     If present, this may be used to generate a content correlator.
     This is used rather than the MTS Identifier, as the ENVID is
     unique for the UA only and is likely to be too large to map to an
     MTS identifier. The content correlator is encoded as an IA5 String
     containing the ENVID and prefixed by the string:

                           "SMTP/NOTARY ENVID: "

     If the ENVID starts with the string "X400-MTS-Identifier: ", then
     this ENVID was generated from an X.400 MTS Identifier.  The
     reverse mapping defined in Section 3.2 of Appendix A shall not be
     used, as this may cause problems in certain situations (e.g.,
     where the message was expanded by an Internet mailing list).

  3.2.  X.400 Mapping to SMTP Extensions

  The following extensions may be used as a part of the MIXER mapping:

  NOTIFY
     The originator-report and originator-non-delivery-report bits of
     MTA.PerRecipientMessageTransferFields.per-recipient-indicators
     determine how this is used.   If both bits are zero, the parameter
     is NEVER.  If the report bit is set, SUCCESS is used.   Otherwise,
     FAILURE is used.  If this is done, the gateway shall not generate
     a delivery report for this recipient, unless this is needed in the
     case where the originating MTA service report requirements differ
     from the user requirements.   Additional originating MTA
     requrirements are satisfied by the gateway.

  ORCPT
     If the MTS.perRecipientDeliveryFields.originally-intended-
     recipient-name is present, the ORCPT command may be used to carry
     this value, using the "x400" syntax.

  ENVID
     This may be generated, with the value taken from the
     MTS.MessageDeliveryEnvelope.message-delivery-identifer.  If this
     is done, it shall be encoded as EBNF.mts-msg-id, preceded by the
     string "X400-MTS-Identifier: ".

  RET
     If MTA.PerMessageTransferFields.per-message-indicators.content-
     return-request is set to FALSE, the parameter RET may be set to
     HDRS, to specify return of headers only.






Kille                       Standards Track                   [Page 115]

RFC 2156                         MIXER                      January 1998


Appendix B - Mapping with X.400(1984)

  This appendix defines modifications to the  mapping for use with
  X.400(1984).

  The X.400(1984) protocols are a proper subset of X.400(1988).  When
  mapping from X.400(1984) to RFC 822, no changes to this specification
  are needed.

  When mapping from RFC 822 to X.400(1984), no use can be made of 1988
  specific features.   No use of such features is made at the MTS
  level.  The heading extension feature is used at the IPMS level, and
  this shall be replaced by the RFC 987 approach.  All header
  information which would usually be mapped into the rfc-822-heading-
  list extension is mapped into a single IA5 body part, which is the
  first body part in the message.  This body part will start with the
  string "RFC-822-Headers:" as the first line.  The headers then follow
  this line.  This specification requires correct reverse mapping of
  this format, either from 1988 or 1984.  RFC 822 extended headers
  which could be mapped into X.400(1988) elements, are also mapped to
  the body part.

  In an environment where RFC 822 is of major importance, it may be
  desirable for downgrading to consider the case where the message was
  originated in an RFC 822 system, and mapped according to this
  specification.  The rfc-822-heading-list extension may be mapped
  according to this appendix.

  When parsing std-or, the following restrictions shall be observed:

  -    Only the 84/88 attributes identified in the table in
       Section 4.2 are present.

  -    No teletex encoding is allowed.

  If an address violates this, it shall be treated as an RFC 822
  address, which will usually lead to encoding as a DDA "RFC-822".

  It is possible that attributes of zero length may be present
  in an OR Address.  This is not legal in 1988, except for ADMD
  where the case is explicitly described in Section 4.3.5.
  Attributes of zero length are deprecated (the attribute shall be
  omitted), and will therefore be unusual.  However, some systems
  generate them and rely on them.  Therefore, any null attribute
  shall be enoded using the std-or encoding (e.g., /O=/).






Kille                       Standards Track                   [Page 116]

RFC 2156                         MIXER                      January 1998


  If a non-Teletex Common Name (CN) is present, it shall be
  mapped onto a Domain Defined Attribute "Common".  This is in line
  with RFC 1328 on X.400 1988 to 1984 downgrading [22].

  This specification defines a mapping of the Internet message
  framework to X.400.  Body part mappings are defined in RFC
  2157 [6], which relies on X.400(88) features.   Downgrading to
  X.400(84) for body parts is defined in RFC 1496 (HARPOON), which
  shall be followed in the context of this appendix [5].










































Kille                       Standards Track                   [Page 117]

RFC 2156                         MIXER                      January 1998


Appendix C - RFC 822 Extensions for X.400 access

  This appendix defines a number of optional mappings which may be
  provided to give access from RFC 822 to a number of X.400 services.
  These mappings are beyond the basic scope of this specification.
  There has been a definite demand to use extended RFC 822 as a
  mechanism to access X.400, and these extensions provide access to
  certain features.  If this functionality is provided, this appendix
  shall be followed.  The following headings are defined:

        extended-heading =
            "Prevent-NonDelivery-Report" ":"
            / "Generate-Delivery-Report" ":"
            / "Alternate-Recipient" ":" prohibition
            / "Disclose-Recipients" ":"  prohibition
            / "X400-Content-Return" ":" prohibition

  Prevent-NonDelivery-Report and Generate-Delivery-Report allow setting
  of MTS.PerRecipientSubmissionFields.originator-report-request.  The
  setting will be the same for all recipients.

  Alternate-Recipient, Disclose-Recipients, and X400-Content-Return
  allow for override of the default settings for
  MTS.PerMessageIndicators.

  Use of NOTARY mechanisms is a preferred meachanism for controlling
  these parameters.
























Kille                       Standards Track                   [Page 118]

RFC 2156                         MIXER                      January 1998


Appendix D - Object Identifier Assignment

  The following Object Identifiers shall be used.

  internet ::= OBJECT IDENTIFIER  { iso org(3) dod(6) 1 } -- from RFC
  1155

  mail OBJECT IDENTIFIER ::= { internet 7 }  -- IANA assigned

  mixer OBJECT IDENTIFIER ::= { mail mixer(1) } -- inherited from RFC
  1495
  mixer-core OBJECT IDENTIFIER ::= { mixer core(3) }

  id-rfc-822-field-list OBJECT IDENTIFIER ::= {mixer-core 2}
  id-dsn-header-list OBJECT IDENTIFIER ::= {mixer-core 3}
  id-dsn-field-list OBJECT IDENTIFIER ::= {mixer-core 4}

  eit-mixer OBJECT IDENTIFIER ::= {mixer-core 5}
                 -- the MIXER pseudo-EIT

  This object identifier for id-rfc-822-field-list is different to
  the one assigned in RFC 1327, which was erroneous.





























Kille                       Standards Track                   [Page 119]

RFC 2156                         MIXER                      January 1998


Appendix E - BNF Summary

  boolean = "TRUE" / "FALSE"


  numericstring = *(DIGIT / " ")


  printablestring  = *( ps-char )
  ps-restricted-char      = 1DIGIT /  1ALPHA / " " / "'" / "+"
                            / "," / "-" / "." / "/" / ":" / "=" / "?"
  ps-delim         = "(" / ")"
  ps-char          = ps-delim / ps-restricted-char


  ps-encoded       = *( ps-restricted-char / ps-encoded-char )
  ps-encoded-char  = "(a)"               ; (@)
                     / "(p)"               ; (%)
                     / "(b)"               ; (!)
                     / "(q)"               ; (")
                     / "(u)"               ; (_)
                     / "(l)"               ; "("
                     / "(r)"               ; ")"
                     / "(" 3DIGIT ")"

  teletex-string   = *( ps-char / t61-encoded )
  t61-encoded      = "{" 1* t61-encoded-char "}"
  t61-encoded-char = 3DIGIT


  teletex-and-or-ps = [ printablestring ] [ "*" teletex-string ]


  labelled-integer ::= [ key-string ] "(" numericstring ")"

  labelled-integer-2 ::= [ numericstring ] "(" key-string ")"

  key-string      = *key-char
  key-char        = <a-z, A-Z, 0-9, and "-">

  object-identifier  ::= oid-comp object-identifier
                         | oid-comp

  oid-comp ::= [ key-string ] "(" numericstring ")"


  encoded-info    = 1#encoded-type




Kille                       Standards Track                   [Page 120]

RFC 2156                         MIXER                      January 1998


  encoded-type    = built-in-eit / object-identifier

  built-in-eit    = "Undefined"         ; undefined (0)
                  / "Telex"             ; tLX (1)
                  / "IA5-Text"          ; iA5Text (2)
                  / "G3-Fax"            ; g3Fax (3)
                  / "TIF0"              ; tIF0 (4)
                  / "Teletex"           ; tTX (5)
                  / "Videotex"          ; videotex (6)
                  / "Voice"             ; voice (7)
                  / "SFD"               ; sFD (8)
                  / "TIF1"              ; tIF1 (9)



  encoded-pn      = [ given "." ] *( initial "." ) surname

  given           = 2*<ps-char not including ".">

  initial         = ALPHA

  surname         = printablestring


  std-or-address  = 1*( "/" attribute "=" value ) "/"
  attribute       = standard-type
                  / "RFC-822"
                  / dd-key "." std-printablestring

  std-or-address-input =  [ sep pair ] sep  pair *( sep pair )
                         sep  [ pair sep ]

  sep             = "/" / ";"
  pair            = input-attribute "=" value
  input-attribute = attribute
                  / dd-key ":" std-printablestring


  standard-type   = key-string

  dd-key          = key-string

  value           = std-printablestring

  std-printablestring
                  = *( std-char / std-pair )

  std-char        = <"{", "}", "*", and any ps-char



Kille                       Standards Track                   [Page 121]

RFC 2156                         MIXER                      January 1998


                                               except "/" and "=" >
  std-pair        = "$" ps-char


  global-id = std-or-address



  mta-field       = "X400-Received" ":" x400-trace
                  / "Deferred-Delivery" ":" date-time
                  / "Latest-Delivery-Time" ":" date-time



  x400-trace       = "by" md-and-mta ";"
                   [ "deferred until" date-time ";" ]
                   [ "converted" "(" encoded-info ")" ";" ]
                   [ "attempted" md-or-mta ";"  ]
                      action-list
                      ";" arrival-time


  md-and-mta       = [ "mta" mta "in" ]  global-id
  mta              = word
  arrival-time     = date-time

  md-or-mta        = "MD" global-id
                   / "MTA" mta

  Action-list      = 1#action
  action           = "Redirected"
                   / "Expanded"
                   / "Relayed"
                   / "Rerouted"

  dr-user-info = dr-summary <CRLF>
                 dr-recipients <CRLF>
                 dr-content-return


  dr-content-return = "The Original Message is not available"
       / "The Original Message follows:"

  dr-summary = "This report relates to your message:" <CRLF>
                  content-correlator <CRLF> <CRLF>
               "of" date-time <CRLF> <CRLF>

  dr-recipients = *(dr-recipient <CRLF> <CRLF>)



Kille                       Standards Track                   [Page 122]

RFC 2156                         MIXER                      January 1998


  dr-recipient = dr-recip-success / dr-recip-failure

  dr-recip-success =
                  "Your message was successfully delivered to:"
                   mailbox "at" date-time


  dr-recip-failure = "Your message was not delivered to:"
                          mailbox <CRLF>
                  "for the following reason:" *word

  report-point = [ "mta" mta-name "in" ] global-id
  content-correlator = *word
  mta-name = word

     dr-per-message-fields =
               / "X400-Conversion-Date" ":" date-time
               / "X400-Subject-Submision-Identifier" ":"
                                     mts-msg-id
               / "X400-Content-Identifier" ":" printablestring
               / "X400-Content-Type" ":" mts-content-type
               / "X400-Original-Encoded-Information-Types" ":"
                             encoded-info
               / "X400-Originator-and-DL-Expansion-History" ":"
                             mailbox ";" date-time ";"
               / "X400-Reporting-DL-Name" ":" mailbox
               / "X400-Content-Correlator" ":" content-correlator
               / "X400-Recipient-Info" ":" recipient-info
               / "X400-Subject-Intermediate-Trace-Information" ":"
                                       x400-trace
               / dr-extensions


     dr-per-recipient-fields =
               / "X400-Redirect-Recipient" ":" "x400" ";" std-or
               / "X400-Mapped-Redirect-Recipient" ":" "rfc822" ";"
                     mailbox
               / "X400-Converted-EITs" ":" encoded-info ";"
               / "X400-Delivery-Time" ":" date-time
               / "X400-Type-of-MTS-User" ":" labelled-integer
               / "X400-Last-Trace" ":" [ encoded-info ] date-time
               / "X400-Supplementary-Info" ":"
                     <"> printablestring <"> ";"
               / "X400-Redirection-History" ":" redirect-history-item
               / "X400-Physical-Forwarding-Address" ":" mailbox
               / "X400-Originally-Specified-Recipient-Number" ":"
                     integer
               / dr-extensions



Kille                       Standards Track                   [Page 123]

RFC 2156                         MIXER                      January 1998


     dr-extensions = "X400-Discarded-DR-Extensions" ":"
                       1# (object-identifier / labelled-integer)


     dr-diagnostic = "Reason" labelled-integer-2
                     [ ";" "Diagnostic" labelled-integer-2 ]

     mts-field = "X400-MTS-Identifier" ":" mts-msg-id
               / "X400-Originator" ":" mailbox
               / "X400-Recipients" ":" 1#mailbox
               / "Original-Encoded-Information-Types" ":"
                               encoded-info
               / "X400-Content-Type" ":" mts-content-type
               / "X400-Content-Identifier" ":" printablestring
               / "Priority" ":" priority
               / "Originator-Return-Address" ":" 1#mailbox
               / "DL-Expansion-History" ":" mailbox ";" date-time ";"
               / "Conversion" ":" prohibition
               / "Conversion-With-Loss" ":" prohibition
               / "Delivery-Date" ":" date-time
               / "Discarded-X400-MTS-Extensions" ":"
                            1#( object-identifier / labelled-integer )

     prohibition     = "Prohibited" / "Allowed"

     mts-msg-id       = "[" global-id ";" *text "]"

     mts-content-type = "P2" /  labelled-integer
                     / object-identifier

     priority        = "normal" / "non-urgent" / "urgent"

     ipn-body-format = ipn-description <CRLF>
                     [ ipn-extra-information <CRLF> ]
                     [ ipn-content-return ]

     ipn-description = ipn-receipt / ipn-non-receipt

     ipn-receipt = "Your message to:" preferred-recipient <CRLF>
              "was received at" receipt-time <CRLF> <CRLF>
              "This notification was generated"
               acknowledgement-mode <CRLF>
              "The following extra information was given:" <CRLF>
               ipn-suppl <CRLF>

     ipn-non-receipt = "Your message to:"
             preferred-recipient <CRLF>
             ipn-reason



Kille                       Standards Track                   [Page 124]

RFC 2156                         MIXER                      January 1998


     ipn-reason = ipn-discarded / ipn-auto-forwarded

     ipn-discarded = "was discarded for the following reason:"
                     discard-reason <CRLF>

     ipn-auto-forwarded = "was automatically forwarded." <CRLF>
                     [ "The following comment was made:"
                             auto-comment ]


     ipn-extra-information =
              "The following information types were converted:"
              encoded-info

     ipn-content-return = "The Original Message is not available"
                     / "The Original Message follows:"

     preferred-recipient = mailbox
     receipt-time        = date-time
     auto-comment        = printablestring
     ipn-suppl           = printablestring


     discard-reason     = "Expired" / "Obsoleted" /
                 "User Subscription Terminated" / "IPM Deleted"

     acknowledgement-mode = "Manually" / "Automatically"


     ipms-field = "Supersedes" ":" 1*msg-id
                / "Expires" ":" date-time
                / "Reply-By" ":" date-time
                / "Importance" ":" importance
                / "Sensitivity" ":" sensitivity
                / "Autoforwarded" ":" boolean
                / "Incomplete-Copy" ":"
                / "Content-Language" ":" 1#language
                / "Message-Type" ":" message-type
                / "Discarded-X400-IPMS-Extensions" ":"
                      1#object-identifier
                / "Autosubmitted" ":" autosubmitted

     importance      = "low" / "normal" / "high"

     sensitivity     = "Personal" / "Private" /
                            "Company-Confidential"

     language        = 2*ALPHA [ "(" language-description ")" ]



Kille                       Standards Track                   [Page 125]

RFC 2156                         MIXER                      January 1998


     language-description = printable-string


     message-type    = "Delivery Report"
                     / "InterPersonal Notification"
                     / "Multiple Part"


     autosubmitted   = "not-auto-submitted"
                     / "auto-generated"
                     / "auto-replied"
                     / "auto-forwarded"

     redirect-comment  = redirect-first *( redirect-subsequent )

     redirect-first = "Originally To:"  mailbox  "Redirected on"
              date-time "To:"  redirection-reason

     redirect-subsequent = mailbox  "Redirected Again on"
              date-time "To:"  redirection-reason

     redirection-history-item = "intended recipient" mailbox
              "redirected to"  redirection-reason
              "on" date-time

     redirection-reason =
              "Recipient Assigned Alternate Recipient"
              / "Originator Requested Alternate Recipient"
              / "Recipient MD Assigned Alternate Recipient"
              / "Directory Look Up"
              / "Alias"

     subject-line  = "Delivery-Report" "(" status ")"
                     [ "for" destination ]

     status        = "success" / "failure" / "success and failures"

     destination   = mailbox / "MTA" word

     extended-heading =
         "Prevent-NonDelivery-Report" ":"
         / "Generate-Delivery-Report" ":"
         / "Alternate-Recipient" ":" prohibition
         / "Disclose-Recipients" ":"  prohibition
         / "X400-Content-Return" ":" prohibition






Kille                       Standards Track                   [Page 126]

RFC 2156                         MIXER                      January 1998


Appendix F - Text format for MCGAM distribution

1.  Text Formats

  This appendix defines text formats for exchange of four types of
  mapping.

  1.   Domain Name Space -> OR Address Space MCGAM

  2.   OR Address Space -> Domain Name Space MCGAM

  3.   Domain Name Space -> OR Address of preferred gateway

  4.   OR Address Space -> Domain Name of preferred gateway

2.  Mechanisms to register and to distribute MCGAMs

  There is a well known set of MCGAM tables.

  The global coordination of the mapping rules is a part of the DANTE
  MailFLOW Project. New mapping rules may be defined by the authority
  responsible for the relevant name space. The rules need to be
  registered with a national mapping registration authority, which in
  turn passes them on to the central mapping registration authority.
  All the collected mapping rules are merged together into the globally
  coordinated mapping tables by the MailFLOW Project Team. The tables
  are available from the national mapping registration authorities.

  To get a contact address of the mapping registration authority for
  the respective country or more information about the MailFLOW Project
  contact:

     SWITCH
     MailFLOW Project Team
     Limmatquai 138
     8001 Zuerich
     Switzerland

     email: [email protected]
            S=MailFLOW;O=MailFLOW;P=DANTE;A=mailnet;C=fi;

     fax:   +41 1 268 15 68
     tel:   +41 1 268 15 20








Kille                       Standards Track                   [Page 127]

RFC 2156                         MIXER                      January 1998


3.  Syntax Definitions

  An address syntax is defined, which is compatible with the syntax
  used for 822.domains.  By representing the OR addresses as domains,
  all lookups can be mechanically implemented as domain -> domain
  mappings.  This syntax defined is initially for use in table format,
  but the syntax is defined in a manner which makes it suitable to be
  adapted for  use with the  Domain Name Service.  This syntax allows
  for a general representation of OR addresses, so that it can be used
  in other applications.  Not all attributes are used in the table
  formats defined.

  To allow the mapping where a level of the hierarchy is omitted, the
  pseudo-value "@" (not a printable string character) is used to
  indicate omission of a level in the hierarchy.  This is distinct from
  the form including the element with no value, although a correct
  X.400 implementation will interpret both in the same manner.

  This syntax is not intended to be handled by users.

     dmn-or-address  = dmn-part *( "." dmn-part )
     mn-part        = dmn-attribute "$" value
     dmn-attribute  = standard-type
                     /  "~" dmn-printablestring
     value           = dmn-printablestring
                     / "@"
     dmn-printablestring =
                     = *( dmn-char / dmn-pair )
     dmn-char        = <"{", "}", "*", and any ps-char
                                             except ".">
     dmn-pair        = "\."

  An example usage:

     ~ROLE$Big\.Chief.ADMD$ATT.C$US
     [email protected]$US

  The first example illustrates quoting of a "." and a domain define
  attribute (ROLE).  The second  example illustrates omission of the
  ADMD level. There shall be a strict ordering of all components in
  this table, with the most significant components on the RHS.   This
  allows the encoding to be treated as a domain.

  Various further restrictions are placed on the usage of dmn-or-
  address in the address space mapping tables.

  a.   Only C, ADMD, PRMD, O, and up to four OUs may be used.




Kille                       Standards Track                   [Page 128]

RFC 2156                         MIXER                      January 1998


  b.   No components shall be omitted from this hierarchy, although
       the hierarchy may terminate at any level.  If the mapping is
       to an omitted component, the "@" syntax is used.

4.  Table Lookups

  When determining a match, there are aspects which apply to all
  lookups.  Matches are always case independent. The key for all three
  tables is a domain. The longest possible match shall be obtained.
  Suppose the table has two entries with the following keys:

     K.L
     J.K.L

     Domain "A.B.C" will not return any matches.  Domain "I.J.K.L"
     will match the entry "J.K.L:.

5.  Domain -> OR Address MCGAM format

  The BNF is:

     domain-syntax "#" dmn-or-address "#"

  EBNF.domain-syntax is defined in Section 4.2. Note that the trailing
  "#" is used for clarity, as the dmn-or-address syntax might lead to
  values with trailing blanks.  Lines starting with "#" are comments.

     For example:
     AC.UK#PRMD$UK\.AC.ADMD$GOLD 400.C$GB#
     XEROX.COM#O$Xerox.ADMD$ATT.C$US#
     GMD.DE#[email protected]$GMD.ADMD$DBP.C$DE#

  A domain is looked up to determine the top levels of an OR Address.
  Components of the domain which are not matched are used to build the
  remainder of the OR address, as described in Section 4.3.4.

6.  OR Address -> Domain MCGAM format

  The syntax of this table is:

     dmn-or-address "#" domain-syntax "#"

     For example:

     #
     # Mapping table
     #
     PRMD$UK\.AC.ADMD$GOLD 400.C$GB#AC.UK#



Kille                       Standards Track                   [Page 129]

RFC 2156                         MIXER                      January 1998


  The OR Address is used to generate a domain key.  It is important to
  order the components correctly, and to fill in missing components in
  the hierarchy.  Use of this mapping is described in Section 4.3.2.

7.  Domain -> OR Address of Preferred Gateway table

  This uses the same format as the domain -> OR address MCGAM table.
  In this case, the restriction to only use C/ADMD/PRMD/O/OU does not
  apply.  Use of this mapping is described in Section 4.3.4. A domain
  cannot appear in this table and in the domain to OR Address table.

8.  OR Addresss -> domain of Preferred Gateway table

  This uses the same format as the OR Address -> domain MCGAM table.
  Use of this mapping is described in Section 4.3.5. An OR Address
  cannot appear in this table and in the OR Address to domain table.



































Kille                       Standards Track                   [Page 130]

RFC 2156                         MIXER                      January 1998


Appendix G - Conformance

  This appendix defines a number of options, which a conforming gateway
  shall specify.  Conformance to this specification shall not be
  claimed if any of the mandatory features are not implemented.  A
  specification of conformance may list the service elements of Chapter
  2, in order to be clear that full conformance is provied.  In
  particular:

  -    Formats for all fields shall be followed.

  -    The gateway shall enable MCGAMs to be used.

  -    Formats for subject lines, delivery reports and IPNs shall
       be followed.   A system which followed the syntax, but
       translated text into a language other than english would be
       conformant.

  -    RFC 1137 shall not be followed when mapping to SMTP.

  -    All mappings of trace shall be implemented.

  -    There shall be a mechanism to access all three global
       mappings.

  -    RFC 2157 shall be followed for mapping body parts.

  -    When it is specified that a MIME format message is
       generated, RFC 2045 shall be followed.

  A gateway shall specify:

  -    Which Interent Message Transport (822-MTS)  protocols are
       supported.  If SMTP is supported, Appendex A of MIXER shall
       be used.

  -    Which X.400 versions  are supported (84, 88, 92).

  -    Which mechanisms (table, X.500, DNS) are supported to access
       MCGAMs.

  -    The mechanism or mechanisms by which the global mapping
       information is accessed.

  The following are optional parts of this specification.  A conforming
  implementation shall specify which of these it supports.

  -    Support for the extension mappings of Appendix C.



Kille                       Standards Track                   [Page 131]

RFC 2156                         MIXER                      January 1998


  -    Support for returning illegal format content in a delivery
       report

  -    Which address interpretation heuristics are supported
       (4.3.4.1)

  -    If RFC 987 generated message ids are handled in a backwards
       compatible manner (4.7.3.6)











































Kille                       Standards Track                   [Page 132]

RFC 2156                         MIXER                      January 1998


Appendix H - Change History: RFC 987, 1026, 1138, 1148

  RFC 987 was the original document, and contained the key elements of
  this specification.  It was specific to X.400(1984).  RFC 1026
  specified a small number of necessary changes to RFC 987.

  RFC 1138 was based on the RFC 987 work.  It contained an editorial
  error, and was reissued a few months later as RFC 1148.  RFC 1148
  will be referred to here, as it is the document which is widely
  referred to elsewhere. The major goal of RFC 1148 was to upgrade RFC
  987 to X.400(1988).  It did this, but did not obsolete RFC 987, which
  was recommended for use with X.400(1984).  This appendix summarises
  the changes made in going from RFC 987 to RFC 1148.

  RFC 1148 noted the following about its upgrade from RFC 987:
  Unnecessary change is usually a bad idea.  Changes on the RFC 822
  side are avoided as far as possible,  so that RFC 822 users do not
  see arbitrary differences between systems conforming to this
  specification, and those following RFC 987.  Changes on the X.400
  side are minimised, but are more  acceptable, due to the mapping onto
  a new set of services and protocols.

1.  Introduction

  The model has shifted from a protocol based mapping to a service
  based mapping.  This has increased the generality of the
  specification, and improved the model.  This change affects the
  entire document.

  A restriction on scope has been added.

2.  Service Elements

  -    The new service elements of X.400 are dealt with.

  -    A clear distinction is made between origination and
       reception

3.  Basic Mappings

  -    Add teletex support

  -    Add object identifier support

  -    Add labelled integer support

  -    Make PrintableString <-> ASCII mapping reversible




Kille                       Standards Track                   [Page 133]

RFC 2156                         MIXER                      January 1998


  -    The printable string mapping is aligned to the NBS mapping
       derived from RFC 987.

4.  Addressing

  -    Support for new addressing attributes

  -    The message ID mapping is changed to not be table driven

5.  Detailed Mappings


  -    Define extended IPM Header, and use instead of second body
       part for RFC 822 extensions

  -    Realignment of element names

  -    New syntax for reports, simplifying the header and
       introducing a mandatory body format (the RFC 987 header
       format was unusable)

  -    Drop complex autoforwarded mapping

  -    Add full mapping for IP Notifications, defining a body
       format

  -    Adopt an MTS Identifier syntax in line with the OR Address
       syntax

  -    A new format for X400 Trace representation on the RFC 822
       side

6.  Appendices

  -    Move Appendix on restricted 822 mappings to a separate RFC

  -    Delete Phonenet and SMTP Appendixes














Kille                       Standards Track                   [Page 134]

RFC 2156                         MIXER                      January 1998


Appendix I - Change History: RFC 1148 to RFC 1327

1.  General

  -    The scope of the document was changed to cover X.400(1984),
       and so obsolete RFC 987.

  -    Changes were made to allow usage to connect RFC 822 networks
       using X.400

  -    Text was tightened to be clear about optional and mandatory
       aspects

  -    A good deal of clarification

  -    A number of minor EBNF errors

  -    Better examples are given

  -    Further X.400 upper bounds are handled correctly

2.  Basic Mappings

  -    The encoding of object identifier is changed slightly

3.  Addressing

  -    A global mapping of domain to preferred gateway is
       introduced.

  -    An overflow mechanism is defined for RFC 822 addresses of
       greater than 128 bytes

  -    Changes were made to improve compatibility with the PDAM on
       writing OR Addresses.

  +         The PD and Terminal Type keywords were aligned to the
            PDAM.  It is believed that minimal use has been made of
            the RFC 1148 keywords.

  +         P and A are allowed as alternate keys for PRMD and ADMD

  +         Where keywords are different, the PDAM keywords are
            alternatives on input.  This is mandatory.

4.  Detailed Mappings

  -    The format of the Subject: lines is defined.



Kille                       Standards Track                   [Page 135]

RFC 2156                         MIXER                      January 1998


  -    Illegal use (repetition) of the heading EXTENSION is
       corrected, and a new object identifier assigned.

  -    The Delivery Report format is extensively revised in light
       of operational experience.

  -    The handling of redirects is significantly changed, as the
       previous mechanism did not work.

5.  Appendices

  -    An SMTP appendix is added, allowing optional use of the VRFY
       command to improve probe information.

  -    Handling of JNT Mail Acknowledge-To is changed slightly.

  -    A DDA JNT-MAIL is allowed on input.

  -    The format definitions of Appendix F are explained further,
       and a third table definition added.

  -    An appendix on use with X.400(1984) is added.

  -    Optional extensions are defined to give RFC 822 access to
       further X.400 facilities.

  -    An appendix on conformance is added.
























Kille                       Standards Track                   [Page 136]

RFC 2156                         MIXER                      January 1998


Appendix J - Change History: RFC 1327 to this Document

1.  General

  This update is primarily for stability, and to fold in compatibility
  for MIME and to add support for the new NOTARY delivery status
  notifications.  Other general changes:

  -    Various editorial updates

  -    Minor EBNF errors

  -    Reference to mapping table support by DNS and X.500.

  -    Alignment to X.400(92)

  -    Assignment of a new object identifier

  -    Removal of specification relating to body mapping, which is
       now defined in RFC 2157.

2.  Service Elements

  -    Support of Auto-Submitted service

3.  Basic Mappings

  -    Comments shall not be used in new headers, to remove parsing
       ambiguity

  -    RFC 1522 encoding may be used as an alternative to X.408
       downgrade, where appropriate.

  -    Correct handling of RFC 822 four year dates.

4.  Addressing

  -    Replaced the mandatory global address mapping with MCGAMs.

  -    Add codes and add a heuristic to align to the standard X.400
       form of writing OR Addresses.

  -    Improved text on ordering heuristic

  -    Leading "/" interpretation added






Kille                       Standards Track                   [Page 137]

RFC 2156                         MIXER                      January 1998


  -    All bar one of the address mapping heuristics made
       mandatory.

  -    Interpretation of domain defined attribute "RFC-822" made
       mandatory in all cases

  -    Make report request comments optional

5.  Detailed Mappings

  -    Comments no longer maps to separate body part

  -    Allow Languages to be multi-valued

  -    Change Content-Identifier to X400-Content-Identifier, in
       order to avoid confusion with MIME.

  -    Reverse mapping of MIXER defined fields made mandatory

  -    "Expiry-Date:" changed to "Expires:".

  -    "Obsoletes:" changed to "Supersedes:".

  -    Define correct handling when "Resent-Date:" is present.

6.  Appendices

  -    Change "Content-Return" to "X400-Content-Return" in Appendix
       C.

  -    Relaxation of restrictions on mapping 3 in Appendix F.

  -    Add linkage to HARPOON in Appendix B.

  -    RFC 2157 added to the conformance statement of Appendix
        G.

  -    Added Appendix L, with ASN. Summary.













Kille                       Standards Track                   [Page 138]

RFC 2156                         MIXER                      January 1998


Appendix L - ASN.1 Summary

  MIXER Definitions { iso org(3) dod(6) internet(1) mail(7)
        mixer(1) mixer-core(3) definitions(1) }

  DEFINITIONS IMPLICIT TAGS ::=

  BEGIN

  -- exports everything

  IMPORTS

  EXTENSION FROM
    MTSAbstractService {join-iso-ccit mhs-motis(6) mts(3)
          modules(0) mts-abstract-service(1) }

    HEADING-EXTENSION FROM
      IPMSAbstractService {join-iso-ccit mhs-motis(6) ipms(1)
            modules(0) abstract-service(3) }



  rfc-822-field HEADING-EXTENSION
          VALUE RFC822FieldList
          ::= id-rfc-822-field-list


  RFC822FieldList ::= SEQUENCE OF RFC822Field

  RFC822Field ::= IA5String



  dsn-header-list EXTENSION
     RFC822FieldList
     ::= id-dsn-header-list

  dsn-field-list EXTENSION
     RFC822FieldList
     ::= id-dsn-field-list

  internet ::= OBJECT IDENTIFIER  { iso org(3) dod(6) 1 } -- from RFC
  1155

  mail OBJECT IDENTIFIER ::= { internet 7 }  -- IANA assigned





Kille                       Standards Track                   [Page 139]

RFC 2156                         MIXER                      January 1998


  mixer OBJECT IDENTIFIER ::= { mail mixer(1) } -- inherited from RFC
  1495
  mixer-core OBJECT IDENTIFIER ::= { mixer core(3) }

  id-rfc-822-field-list OBJECT IDENTIFIER ::= {mixer-core 2}
  id-dsn-header-list OBJECT IDENTIFIER ::= {mixer-core 3}
  id-dsn-field-list OBJECT IDENTIFIER ::= {mixer-core 4}

  eit-mixer OBJECT IDENTIFIER ::= {mixer-core 5}
                  -- the MIXER pseudo-EIT


  END -- MIXER ASN.1






































Kille                       Standards Track                   [Page 140]

RFC 2156                         MIXER                      January 1998


SECURITY CONSIDERATIONS

  Security issues are not discussed in this memo.

AUTHOR'S ADDRESS

  Steve Kille
  Isode Ltd
  The Dome
  The Square
  Richmond
  TW9 1DT
  England

  Phone: +44-181-332-9091
  Internet EMail: [email protected]

  X.400 Email: I=S; S=Kille; P=Isode; A=Mailnet; C=FI;

  UFN:  S.Kille, Isode, GB

References

  1.   CCITT , "Recommendations X.400", Message Handling Systems:
       System Model - Service Elements, October 1984.

  2.   Allocchio, C., "MaXIM11 - Mapping between X.400 / Internet
       Mail and Mail-11 mail", RFC 2162, January 1998.

  3.   Allocchio, C., "Using the Internet DNS to Distribute MIXER
       Conformant Global Address Mapping (MCGAM)", RFC 2163,
       January 1998.

  4.   Alvestrand, H., Kille, S., Miles, R., Rose, M., and S.
       Thompson, "Mapping between X.400 and RFC-822 Message
       Bodies", RFC 1495, August 1993.

  5.   Alvestrand, H., Romaguera, J., and K. Jordan, "Rules for
       Downgrading Messages for X.400(88) to X.400(84) When MIME
       Content-Types are Present in the Messages (Harpoon)", RFC
       1496, August 1993.

  6.   Alvestrand, H., and S. Thompson, "Equivalences between X.400
       and RFC-822 Message Bodies", RFC 1494, August 1993.

  7.   Alvestrand, H., "Tags for the Identification of Languages",
       RFC 1766, March 1995.




Kille                       Standards Track                   [Page 141]

RFC 2156                         MIXER                      January 1998


  8.   Alvestrand, H., "Mapping between X.400 and RFC-822/MIME
       Message Bodies", RFC 2157, January 1998.

  9.   Freed, N., and N. Borenstein, "Multipurpose Internet
       Mail Extensions (MIME) Part One: Format of Internet Message
       Bodies", RFC 2045, November 1996.

  10.  Braden, R., "Requirements for Internet Hosts -- Application
       and Support", STD 3, RFC 1123, October 1989.

  11.  CCITT/ISO, "CCITT Recommendations X.420/ ISO/IEC 10021-7,"
       Message Handling Systems: Interpersonal Messaging System,
       Dec 1988.

  12.  CCITT/ISO, "CCITT Recommendations X.411/ ISO/IEC 10021-4,"
       Message Handling Systems: Message Transfer System: Abstract
       Service Definition and Procedures, Dec 1988.

  13.  CCITT/ISO, "CCITT Recommendations X.400/ ISO/IEC 10021-1,"
       Message Handling: System and Service Overview , Dec 1988.

  14.  CCITT/ISO, "Specification of Abstract Syntax Notation One
       (ASN.1)," CCITT Recommendation X.208 / ISO/IEC 8824, Dec
       1988.

  15.  CCITT/ISO, "CCITT Recommendations X.400/ ISO/IEC 10021-1,"
       Message Handling: System and Service Overview , Dec 1992.

  16.  Crocker, D., "Standard of the Format of ARPA Internet Text
       Messages", STD 11, RFC 822, August 1982.

  17.  Kille, S., "Mapping Between X.400 and RFC 822", UK Academic
       Community Report (MG.19) / RFC 987, June 1986.

  18.  Kille, S., "Addendum to RFC 987", UK Academic Community
       Report (MG.23) / RFC 1026, August 1987.

  19.  Kille, S., "Mapping Between X.400(1988) / ISO 10021 and RFC
       822", RFC 1138, October 1989.

  20.  Kille, S., "Mapping Between X.400(1988) / ISO 10021 and RFC
       822", RFC 1148, March 1990.

  21.  Kille, S., "Mapping Between X.400(1988) / ISO 10021 and RFC
       822", RFC 1327, May 1992.

  22.  Kille, S., "X.400 1988 to 1984 downgrading", RFC 1328, May
       1992.



Kille                       Standards Track                   [Page 142]

RFC 2156                         MIXER                      January 1998


  23.  Kille, S., "A String Encoding of Presentation Address", RFC
       1278, November 1992.

  24.  Kille, S., "A String Representation of Distinguished Name",
       RFC 1485, January 1992.

  25.  Kille, S., "Using the OSI Directory to achieve User
       Friendly Naming", RFC 1484, January 1992.

  26.  Kille, S., "Use of an X.500/LDAP directory to support MIXER
       address mapping", RFC 2164, January 1998.

  27.  Koorland, N., "Message Attachmment Work Group (MAWG): MAWG
       Feasibility Project Guide," EMA Report, Version 1.5, Nov
       1995.

  28.  Moore, K., and G. Vaudreuil, "An Extensible Message Format for
       Delivery Status Notifications", RFC 1894, January 1996.

  29.  Moore, K., "SMTP Service Extensions for Delivery Status
       Notifications", RFC 1891, Januaty 1996.

  30.  Postel, J., "SIMPLE MAIL TRANSFER PROTOCOL", STD 10, RFC 821,
       August 1982.



























Kille                       Standards Track                   [Page 143]

RFC 2156                         MIXER                      January 1998


Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Kille                       Standards Track                   [Page 144]