Network Working Group                                       A. Bierman
Request for Comments: 2074                               Cisco Systems
Category: Standards Track                                     R. Iddon
                                                   AXON Networks,Inc.
                                                         January 1997


          Remote Network Monitoring MIB Protocol Identifiers

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Table of Contents

1 Introduction ....................................................    3
2 The SNMP Network Management Framework ...........................    3
2.1 Object Definitions ............................................    3
3 Overview ........................................................    3
3.1 Terms .........................................................    4
3.2 Relationship to the Remote Network Monitoring MIB .............    6
3.3 Relationship to the Other MIBs ................................    6
4 Protocol Identifier Encoding ....................................    7
4.1 ProtocolDirTable INDEX Format Examples ........................    9
4.2 Protocol Identifier Macro Format ..............................   10
4.2.1 Mapping of the Protocol Name ................................   12
4.2.2 Mapping of the VARIANT-OF Clause ............................   13
4.2.3 Mapping of the PARAMETERS Clause ............................   13
4.2.3.1 Mapping of the 'countsFragments(0)' BIT ...................   14
4.2.3.2 Mapping of the 'tracksSessions(1)' BIT ....................   15
4.2.4 Mapping of the ATTRIBUTES Clause ............................   15
4.2.5 Mapping of the DESCRIPTION Clause ...........................   15
4.2.6 Mapping of the CHILDREN Clause ..............................   16
4.2.7 Mapping of the ADDRESS-FORMAT Clause ........................   16
4.2.8 Mapping of the DECODING Clause ..............................   16
4.2.9 Mapping of the REFERENCE Clause .............................   17
4.2.10 Evaluating a Protocol-Identifier INDEX .....................   17
5 Protocol Identifier Macros ......................................   18
5.1 Base Identifier Encoding ......................................   18
5.1.1 Protocol Identifier Functions ...............................   19
5.1.1.1 Function 0: No-op .........................................   19
5.1.1.2 Function 1: Protocol Wildcard Function ....................   19
5.2 Base Layer Protocol Identifiers ...............................   20
5.2.1 Ether2 Encapsulation ........................................   21



Bierman & Iddon             Standards Track                     [Page 1]

RFC 2074               RMON Protocol Identifiers            January 1997


5.2.2 LLC Encapsulation ...........................................   22
5.2.3 SNAP over LLC (OUI=000) Encapsulation .......................   23
5.2.4 SNAP over LLC (OUI != 000) Encapsulation ....................   24
5.2.5 IANA Assigned Protocols .....................................   25
5.2.5.1 IANA Assigned Protocol Identifiers ........................   27
5.3 L3: Children of Base Protocol Identifiers .....................   27
5.3.1 IP ..........................................................   28
5.3.2 IPX .........................................................   29
5.3.3 ARP .........................................................   30
5.3.4 IDP .........................................................   30
5.3.5 AppleTalk ARP ...............................................   31
5.3.6 AppleTalk ...................................................   31
5.4 L4: Children of L3 Protocols ..................................   32
5.4.1 ICMP ........................................................   32
5.4.2 TCP .........................................................   32
5.4.3 UDP .........................................................   33
5.5 L5: Application Layer Protocols ...............................   33
5.5.1 FTP .........................................................   33
5.5.1.1 FTP-DATA ..................................................   33
5.5.1.2 FTP Control ...............................................   34
5.5.2 Telnet ......................................................   34
5.5.3 SMTP ........................................................   34
5.5.4 DNS .........................................................   35
5.5.5 BOOTP .......................................................   35
5.5.5.1 Bootstrap Server Protocol .................................   35
5.5.5.2 Bootstrap Client Protocol .................................   35
5.5.6 TFTP ........................................................   36
5.5.7 HTTP ........................................................   36
5.5.8 POP3 ........................................................   36
5.5.9 SUNRPC ......................................................   37
5.5.10 NFS ........................................................   38
5.5.11 SNMP .......................................................   38
5.5.11.1 SNMP Request/Response ....................................   38
5.5.11.2 SNMP Trap ................................................   39
6 Acknowledgements ................................................   39
7 References ......................................................   40
8 Security Considerations .........................................   43
9 Authors' Addresses ..............................................   43













Bierman & Iddon             Standards Track                     [Page 2]

RFC 2074               RMON Protocol Identifiers            January 1997


1.  Introduction

  This memo defines an experimental portion of the Management
  Information Base (MIB) for use with network management protocols in
  the Internet community.  In particular, it describes the algorithms
  required to identify different protocol encapsulations managed with
  the Remote Network Monitoring MIB Version 2 [RMON2]. Although related
  to the original Remote Network Monitoring MIB [RFC1757], this
  document refers only to objects found in the RMON-2 MIB.

2.  The SNMP Network Management Framework

  The SNMP Network Management Framework presently consists of three
  major components.  They are:

o    the SMI, described in RFC 1902 [RFC1902], - the mechanisms used for
    describing and naming objects for the purpose of management.

o    the MIB-II, STD 17, RFC 1213 [RFC1213], - the core set of managed
    objects for the Internet suite of protocols.

o    the protocol, STD 15, RFC 1157 [RFC1157] and/or RFC 1905 [RFC1905],
    - the protocol for accessing managed information.

  Textual conventions are defined in RFC 1903 [RFC1903], and
  conformance statements are defined in RFC 1904 [RFC1904].

  The Framework permits new objects to be defined for the purpose of
  experimentation and evaluation.

2.1.  Object Definitions

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the subset of Abstract Syntax Notation One (ASN.1)
  defined in the SMI.  In particular, each object type is named by an
  OBJECT IDENTIFIER, an administratively assigned name.  The object
  type together with an object instance serves to uniquely identify a
  specific instantiation of the object.  For human convenience, we
  often use a textual string, termed the descriptor, to refer to the
  object type.

3.  Overview

  The RMON-2 MIB [RMON2] uses hierarchically formatted OCTET STRINGs to
  globally identify individual protocol encapsulations in the
  protocolDirTable.




Bierman & Iddon             Standards Track                     [Page 3]

RFC 2074               RMON Protocol Identifiers            January 1997


  This guide contains algorithms and examples of protocol identifier
  encapsulations for use as INDEX values in the protocolDirTable.

  This document is not intended to be an authoritative reference on the
  protocols described herein. Refer to the Official Internet Standards
  document [RFC1800], the Assigned Numbers document [RFC1700], or other
  appropriate RFCs, IEEE documents, etc. for complete and authoritative
  protocol information.

3.1.  Terms

  Several terms are used throughout this document, as well as in the
  RMON-2 MIB [RMON2], that should be introduced:

layer-identifier:
    An octet string fragment representing a particular protocol
    encapsulation layer. A string fragment identifying a particular
    protocol encapsulation layer. This string is exactly four octets,
    (except for the 'vsnap' base-layer identifier, which is exactly
    eight octets) encoded in network byte order. A particular protocol
    encapsulation can be identified by starting with a base layer
    encapsulation (see the 'Base Protocol Identifiers' section for more
    detail), and following the encoding rules specified in the CHILDREN
    clause and assignment section for that layer. Then repeat for each
    identified layer in the encapsulation. (See section 4.2.10
    'Evaluating a Protocol-Identifier INDEX' for more detail.)

protocol:
    A particular protocol layer, as specified by encoding rules in this
    document. Usually refers to a single layer in a given
    encapsulation. Note that this term is sometimes used in the RMON-2
    MIB [RMON2] to name a fully-specified protocol-identifier string.
    In such a case, the protocol-identifier string is named for its
    upper-most layer. A named protocol may also refer to any
    encapsulation of that protocol.

protocol-identifier string:
    An octet string representing a particular protocol encapsulation,
    as specified by encoding rules in this document. This string is
    identified in the RMON-2 MIB [RMON2] as the protocolDirID object. A
    protocol-identifier string is composed of one or more layer-
    identifiers.









Bierman & Iddon             Standards Track                     [Page 4]

RFC 2074               RMON Protocol Identifiers            January 1997


protocol-identifier macro:
    A group of formatted text describing a particular protocol layer,
    as used within the RMON-2 MIB [RMON2]. The macro serves several
    purposes:

    - Name the protocol for use within the RMON-2 MIB [RMON2].
    - Describe how the protocol is encoded into an octet string.
    - Describe how child protocols are identified (if applicable),
      and encoded into an octet string.
    - Describe which protocolDirParameters are allowed for the protocol.
    - Describe how the associated protocolDirType object is encoded
      for the protocol.
    - Provide reference(s) to authoritative documentation for the
      protocol.

protocol-variant-identifier macro:
    A group of formatted text describing a particular protocol layer,
    as used within the RMON-2 MIB [RMON2]. This protocol is a variant
    of a well known encapsulation that may be present in the
    protocolDirTable. This macro is used to document the IANA
    assigned protocols, which are needed to identify protocols which
    cannot be practically identified by examination of 'appropriate
    network traffic' (e.g. the packets which carry them). All other
    protocols (which can be identified by examination of appropriate
    network traffic) should be documented using the protocol-identifier
    macro. A protocol-variant-identifier is documented using the
    protocol-variant version of the protocol-identifier macro.

protocol-parameter:
    A single octet, corresponding to a specific layer-identifier in the
    protocol-identifier. This octet is a bit-mask indicating special
    functions or capabilities that this agent is providing for the
    corresponding protocol.

protocol-parameters string:
    An octet string, which contains one protocol-parameter for each
    layer-identifier in the protocol-identifier.  See the section
    'Mapping of the PARAMETERS Clause' for more detail.  This string is
    identified in the RMON-2 MIB [RMON2] as the protocolDirParameters
    object.

protocolDirTable INDEX:
    A protocol-identifier and protocol-parameters octet string pair
    that have been converted to an INDEX value, according to the
    encoding rules in in section 7.7 of RFC 1902 [RFC1902].






Bierman & Iddon             Standards Track                     [Page 5]

RFC 2074               RMON Protocol Identifiers            January 1997


pseudo-protocol:
    A convention or algorithm used only within this document for the
    purpose of encoding protocol-identifier strings.

3.2.  Relationship to the Remote Network Monitoring MIB

  This document is intended to identify possible string values for the
  OCTET STRING objects protocolDirID and protocolDirParameters.  Tables
  in the new Protocol Distribution, Host, and Matrix groups use a local
  INTEGER INDEX, in order to remain unaffected by changes in this
  document. Only the protocolDirTable uses the strings (protocolDirID
  and protocolDirParameters) described in this document.

  This document is not intended to limit the protocols that may be
  identified for counting in the RMON-2 MIB. Many protocol
  encapsulations, not explicitly identified in this document, may be
  present in an actual implementation of the protocolDirTable. Also,
  implementations of the protocolDirTable may not include all the
  protocols identified in the example section below.

  This document is intentionally separated from the MIB objects to
  allow frequent updates to this document without any republication of
  MIB objects.  Protocol Identifier macros submitted from the RMON
  working group and community at large (to the RMONMIB WG mailing list
  at '[email protected]') will be collected and added to this document.

  Macros submissions will be collected in the IANA's MIB files under
  the directory "ftp://ftp.isi.edu/mib/rmonmib/rmon2_pi_macros/" and in
  the RMONMIB working group mailing list message archive file
  "ftp://ftp.cisco.com/ftp/rmonmib/rmonmib".

  This document does not discuss auto-discovery and auto-population of
  the protocolDirTable. This functionality is not explicitly defined by
  the RMON standard. An agent should populate the directory with
  'interesting' protocols--depending on the intended applications.

3.3.  Relationship to the Other MIBs

  The RMON Protocol Identifiers document is intended for use with the
  protocolDirTable within the RMON MIB. It is not relevant to any other
  MIB, or intended for use with any other MIB.










Bierman & Iddon             Standards Track                     [Page 6]

RFC 2074               RMON Protocol Identifiers            January 1997


4.  Protocol Identifier Encoding

  The protocolDirTable is indexed by two OCTET STRINGs, protocolDirID
  and protocolDirParameters. To encode the table index, each variable-
  length string is converted to an OBJECT IDENTIFIER fragment,
  according to the encoding rules in section 7.7 of RFC 1902 [RFC1902].
  Then the index fragments are simply concatenated. (Refer to figures
  1a - 1d below for more detail.)

  The first OCTET STRING (protocolDirID) is composed of one or more 4-
  octet "layer-identifiers". The entire string uniquely identifies a
  particular protocol encapsulation tree. The second OCTET STRING,
  (protocolDirParameters) which contains a corresponding number of 1-
  octet protocol-specific parameters, one for each 4-octet layer-
  identifier in the first string.

  A protocol layer is normally identified by a single 32-bit value.
  Each layer-identifier is encoded in the ProtocolDirID OCTET STRING
  INDEX as four sub-components [ a.b.c.d ], where 'a' - 'd' represent
  each byte of the 32-bit value in network byte order.  If a particular
  protocol layer cannot be encoded into 32 bits, (except for the
  'vsnap' base layer) then it must be defined as a 'ianaAssigned'
  protocol (see below for details on IANA assigned protocols).

  The following figures show the differences between the OBJECT
  IDENTIFIER and OCTET STRING encoding of the protocol identifier
  string.


                  Fig. 1a
        protocolDirTable INDEX Format
        -----------------------------

    +---+--------------------------+---+---------------+
    | c !                          | c !  protocolDir  |
    | n !  protocolDirID           | n !  Parameters   |
    | t !                          | t !               |
    +---+--------------------------+---+---------------+













Bierman & Iddon             Standards Track                     [Page 7]

RFC 2074               RMON Protocol Identifiers            January 1997


                  Fig. 1b
        protocolDirTable OCTET STRING Format
        ------------------------------------

     protocolDirID
    +----------------------------------------+
    |                                        |
    |              4 * N octets              |
    |                                        |
    +----------------------------------------+

    protocolDirParameters
    +----------+
    |          |
    | N octets |
    |          |
    +----------+

                   Fig. 1c
       protocolDirTable INDEX Format Example
       -------------------------------------

    protocolDirID                   protocolDirParameters
    +---+--------+--------+--------+--------+---+---+---+---+---+
    | c |  proto |  proto |  proto |  proto | c |par|par|par|par|
    | n |  base  |    L3  |   L4   |   L5   | n |ba-| L3| L4| L5|
    | t |(+flags)|        |        |        | t |se |   |   |   |
    +---+--------+--------+--------+--------+---+---+---+---+---+ subOID
    | 1 | 4 or 8 |    4   |    4   |    4   | 1 |1/2| 1 | 1 | 1 | count

    where N is the number of protocol-layer-identifiers required
    for the entire encapsulation of the named protocol. Note that
    the 'vsnap' base layer identifier is encoded into 8 sub-identifiers,
    All other protocol layers are either encoded into 4 sub-identifiers
    or encoded as a 'ianaAssigned' protocol.
















Bierman & Iddon             Standards Track                     [Page 8]

RFC 2074               RMON Protocol Identifiers            January 1997


                   Fig. 1d
      protocolDirTable OCTET STRING Format Example
      --------------------------------------------

    protocolDirID
    +--------+--------+--------+--------+
    |  proto |  proto |  proto |  proto |
    |   base |    L3  |   L4   |   L5   |
    |        |        |        |        |
    +--------+--------+--------+--------+ octet
    | 4 or 8 |    4   |    4   |    4   | count


    protocolDirParameters
    +---+---+---+---+
    |par|par|par|par|
    |ba-| L3| L4| L5|
    |se |   |   |   |
    +---+---+---+---+ octet
    |1/2| 1 | 1 | 1 | count

    where N is the number of protocol-layer-identifiers required
    for the entire encapsulation of the named protocol. Note that
    the 'vsnap' base layer identifier is encoded into 8
    protocolDirID sub-identifiers and 2 protocolDirParameters
    sub-identifiers.

  Although this example indicates four encapsulated protocols, in
  practice, any non-zero number of layer-identifiers may be present,
  theoretically limited only by OBJECT IDENTIFIER length restrictions,
  as specified in section 3.5 of RFC 1902 [RFC1902].

  Note that these two strings would not be concatenated together if
  ever returned in a GetResponse PDU, since they are different MIB
  objects.  However, protocolDirID and protocolDirParameters are not
  currently readable MIB objects.

4.1.  ProtocolDirTable INDEX Format Examples

   -- HTTP; fragments counted from IP and above
   ether2.ip.tcp.www-http =
      16.0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.80.4.0.1.0.0

   -- SNMP over UDP/IP over SNAP
   snap.ip.udp.snmp =
      16.0.0.0.3.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0





Bierman & Iddon             Standards Track                     [Page 9]

RFC 2074               RMON Protocol Identifiers            January 1997


   -- SNMP over IPX over SNAP
   snap.ipx.snmp =
      12.0.0.0.3.0.0.129.55.0.0.144.15.3.0.0.0

   -- SNMP over IPX over raw8023
   -- ianaAssigned(ipxOverRaw8023(1)).snmp =
      12.0.0.0.5.0.0.0.1.0.0.155.15.3.0.0.0

   -- IPX over LLC
   llc.ipx =
      8.0.0.0.2.0.224.224.3.2.0.0

   -- SNMP over UDP/IP over any link layer
   -- wildcard-ether2.ip.udp.snmp
      16.1.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0

   -- IP over any link layer; base encoding is IP over ether2
   -- wildcard-ether2.ip
      8.1.0.0.1.0.0.8.0.2.0.0

  -- AppleTalk Phase 2 over ether2
  -- ether2.atalk
     8.0.0.0.1.0.0.128.155.2.0.0

  -- AppleTalk Phase 2 over vsnap
  -- vsnap(apple).atalk
     12.0.0.0.4.0.8.0.7.0.0.128.155.3.0.0.0

4.2.  Protocol Identifier Macro Format

  The following example is meant to introduce the protocol-identifier
  macro. (The syntax is not quite ASN.1.) This macro is used to
  represent both protocols and protocol-variants.

  If the 'VariantOfPart' component of the macro is present, then the
  macro represents a protocol-variant instead of a protocol.  A
  protocol- variant-identifier is used only for IANA assigned
  protocols, enumerated under the 'ianaAssigned' base-layer.













Bierman & Iddon             Standards Track                    [Page 10]

RFC 2074               RMON Protocol Identifiers            January 1997


    RMON-PROTOCOL-IDENTIFIER MACRO ::=
    BEGIN
            PIMacroName "PROTOCOL-IDENTIFIER"
                    VariantOfPart
                    "PARAMETERS"   ParamPart
                    "ATTRIBUTES"   AttrPart
                    "DESCRIPTION"  Text
                    ChildDescrPart
                    AddrDescrPart
                    DecodeDescrPart
                    ReferPart
            "::=" "{" EncapsPart "}"

            PIMacroName ::=
                identifier

            VariantOfPart ::=
                "VARIANT-OF" identifier | empty

            ParamPart ::=
                "{" ParamList "}"

            ParamList ::=
                Params | empty

            Params ::=
                Param | Params "," Param

            Param ::=
                identifier "(" nonNegativeNumber ")"

            AttrPart ::=
                "{" AttrList "}"

            AttrList ::=
                Attrs | empty

            Attrs ::=
                Attr | Attrs "," Attr

            Attr ::=
                identifier "(" nonNegativeNumber ")"

            ChildDescrPart ::=
                "CHILDREN" Text | empty

            AddrDescrPart ::=
                "ADDRESS-FORMAT" Text | empty



Bierman & Iddon             Standards Track                    [Page 11]

RFC 2074               RMON Protocol Identifiers            January 1997


            DecodeDescrPart ::=
                "DECODING" Text | empty

            ReferPart ::=
                "REFERENCE" Text | empty

            EncapsPart ::=
                "{" Encaps "}"

            Encaps ::=
                Encap | Encaps "," Encap

            Encap ::=
                BaseEncap | NormalEncap | VsnapEncap | IanaEncap

            BaseEncap ::=
                nonNegativeNumber

            NormalEncap ::=
                identifier nonNegativeNumber

            VsnapEncap ::=
                identifier "(" nonNegativeNumber ")" nonNegativeNumber

            IanaEncap ::=
                "ianaAssigned" nonNegativeNumber
                | "ianaAssigned" identifier
                | "ianaAssigned" identifier "(" nonNegativeNumber ")"

            Text ::=
                """" string """"
    END

4.2.1.  Mapping of the Protocol Name

  The 'PIMacroName' value should be a lower-case ASCII string, and
  contain the name or acronym identifying the protocol.  NMS
  applications may treat protocol names as case-insensitive strings,
  and agent implementations must make sure the protocolDirTable does
  not contain any instances of the protocolDirDescr object which differ
  only in the case of one of more letters (if the identifiers are
  intended to represent different protocols).

  It is possible that different encapsulations of the same protocol
  (which are represented by different entries in the protocolDirTable)
  will be assigned the same protocol name.





Bierman & Iddon             Standards Track                    [Page 12]

RFC 2074               RMON Protocol Identifiers            January 1997


  A protocol name should match the "most well-known" name or acronym
  for the indicated protocol.  For example, the document indicated by
  the URL:

      ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers

  defines IP Protocol field values, so protocol-identifier macros for
  children of IP should be given names consistent with the protocol
  names found in this authoritative document.

4.2.2.  Mapping of the VARIANT-OF Clause

  This clause is present for IANA assigned protocols only.  It
  identifies the protocol-identifier macro that most closely represents
  this particular protocol, and is known as the "reference protocol".
  (A protocol-identifier macro must exist for the reference protocol.)
  When this clause is present in a protocol-identifier macro, the macro
  is called a 'protocol-variant-identifier'.

  Any clause (e.g. CHILDREN, ADDRESS-FORMAT) in the reference protocol-
  identifier macro should not be duplicated in the protocol-variant-
  identifier macro, if the 'variant' protocols' semantics are identical
  for a given clause.

  Since the PARAMETERS and ATTRIBUTES clauses must be present in a
  protocol-identifier, an empty 'ParamPart' and 'AttrPart' (i.e.
  "PARAMETERS {}") must be present in a protocol-variant-identifier
  macro, and the 'ParamPart' and 'AttrPart' found in the reference
  protocol- identifier macro examined instead.

  Note that if a 'ianaAssigned' protocol is defined that is not a
  variant of any other documented protocol, then the protocol-
  identifier macro should be used instead of the protocol-variant-
  identifier version of the macro.

4.2.3.  Mapping of the PARAMETERS Clause

  The protocolDirParameters object provides an NMS the ability to turn
  on and off expensive probe resources. An agent may support a given
  parameter all the time, not at all, or subject to current resource
  load.

  The PARAMETERS clause is a list of bit definitions which can be
  directly encoded into the associated ProtocolDirParameters octet in
  network byte order. Zero or more bit definitions may be present. Only
  bits 0-7 are valid encoding values. This clause defines the entire
  BIT set allowed for a given protocol. A conforming agent may choose
  to implement a subset of zero or more of these PARAMETERS.



Bierman & Iddon             Standards Track                    [Page 13]

RFC 2074               RMON Protocol Identifiers            January 1997


  By convention, the following common bit definitions are used by
  different protocols.  These bit positions must not be used for other
  parameters. They should be reserved if not used by a given protocol.
  Bits are encoded in network-byte order.

        Table 3.1  Reserved PARAMETERS Bits
        ------------------------------------

Bit Name              Description
---------------------------------------------------------------------
0   countsFragments   higher-layer protocols encapsulated within
                     this protocol will be counted correctly even
                     if this protocol fragments the upper layers
                     into multiple packets.
1   tracksSessions    correctly attributes all packets of a protocol
                     which starts sessions on well known ports or
                     sockets and then transfers them to dynamically
                     assigned ports or sockets thereafter (e.g. TFTP).

  The PARAMETERS clause must be present in all protocol-identifier
  macro declarations, but may be equal to zero (empty). Note that an
  NMS must determine if a given PARAMETER bit is supported by
  attempting to create the desired protocolDirEntry The associated
  ATTRIBUTE bits for 'countsFragments' and 'tracksSessions' do not
  exist.

4.2.3.1.  Mapping of the 'countsFragments(0)' BIT

  This bit indicates whether the probe is correctly attributing all
  fragmented packets of the specified protocol, even if individual
  frames carrying this protocol cannot be identified as such.  Note
  that the probe is not required to actually present any re-assembled
  datagrams (for address-analysis, filtering, or any other purpose) to
  the NMS.

  This bit may only be set in a protocolDirParameters octet which
  corresponds to a protocol that supports fragmentation and reassembly
  in some form. Note that TCP packets are not considered 'fragmented-
  streams' and so TCP is not eligible.

  This bit may be set in at most one protocolDirParameters octet within
  a protocolDirTable INDEX.









Bierman & Iddon             Standards Track                    [Page 14]

RFC 2074               RMON Protocol Identifiers            January 1997


4.2.3.2.  Mapping of the 'tracksSessions(1)' BIT

  The 'tracksSessions(1)' bit indicates whether frames which are part
  of remapped-sessions (e.g. TFTP download sessions) are correctly
  counted by the probe. For such a protocol, the probe must usually
  analyze all packets received on the indicated interface, and maintain
  some state information, (e.g. the remapped UDP port number for TFTP).

  The semantics of the 'tracksSessions' parameter are independent of
  the other protocolDirParameters definitions, so this parameter may be
  combined with any other legal parameter configurations.

4.2.4.  Mapping of the ATTRIBUTES Clause

  The protocolDirType object provides an NMS with an indication of a
  probe's capabilities for decoding a given protocol, or the general
  attributes of the particular protocol.

  The ATTRIBUTES clause is a list of bit definitions which are encoded
  into the associated instance of ProtocolDirType. The BIT definitions
  are specified in the SYNTAX clause of the protocolDirType MIB object.

        Table 3.2  Reserved ATTRIBUTES Bits
        ------------------------------------

    Bit Name              Description
    ---------------------------------------------------------------------
    0  hasChildren        indicates that there may be children of
                          this protocol defined in the protocolDirTable
                          (by either the agent or the manager).
    1  addressRecognitionCapable
                          indicates that this protocol can be used
                          to generate host and matrix table entries.

  The ATTRIBUTES clause must be present in all protocol-identifier
  macro declarations, but may be empty.

4.2.5.  Mapping of the DESCRIPTION Clause

  The DESCRIPTION clause provides a textual description of the protocol
  identified by this macro.  Notice that it should not contain details
  about items covered by the CHILDREN, ADDRESS-FORMAT, DECODING and
  REFERENCE clauses.

  The DESCRIPTION clause must be present in all protocol-identifier
  macro declarations.





Bierman & Iddon             Standards Track                    [Page 15]

RFC 2074               RMON Protocol Identifiers            January 1997


4.2.6.  Mapping of the CHILDREN Clause

  The CHILDREN clause provides a description of child protocols for
  protocols which support them. It has three sub-sections:

 -  Details on the field(s)/value(s) used to select the child protocol,
    and how that selection process is performed

 -  Details on how the value(s) are encoded in the protocol identifier
    octet string

 -  Details on how child protocols are named with respect to their
    parent protocol label(s)

  The CHILDREN clause must be present in all protocol-identifier macro
  declarations in which the 'hasChildren(0)' BIT is set in the
  ATTRIBUTES clause.

4.2.7.  Mapping of the ADDRESS-FORMAT Clause

  The ADDRESS-FORMAT clause provides a description of the OCTET-STRING
  format(s) used when encoding addresses.

  This clause must be present in all protocol-identifier macro
  declarations in which the 'addressRecognitionCapable(1)' BIT is set
  in the ATTRIBUTES clause.

4.2.8.  Mapping of the DECODING Clause

  The DECODING clause provides a description of the decoding procedure
  for the specified protocol. It contains useful decoding hints for the
  implementor, but should not over-replicate information in documents
  cited in the REFERENCE clause.  It might contain a complete
  description of any decoding information required.

  For 'extensible' protocols ('hasChildren(0)' BIT set) this includes
  offset and type information for the field(s) used for child selection
  as well as information on determining the start of the child
  protocol.

  For 'addressRecognitionCapable' protocols this includes offset and
  type information for the field(s) used to generate addresses.

  The DECODING clause is optional, and may be omitted if the REFERENCE
  clause contains pointers to decoding information for the specified
  protocol.





Bierman & Iddon             Standards Track                    [Page 16]

RFC 2074               RMON Protocol Identifiers            January 1997


4.2.9.  Mapping of the REFERENCE Clause

  If a publicly available reference document exists for this protocol
  it should be listed here.  Typically this will be a URL if possible;
  if not then it will be the name and address of the controlling body.

  The CHILDREN, ADDRESS-FORMAT, and DECODING clauses should limit the
  amount of information which may currently be obtained from an
  'authoritative' document, such as the Assigned Numbers document
  [RFC1700]. Any duplication or paraphrasing of information should be
  brief and consistent with the authoritative document.

  The REFERENCE clause is optional, but should be implemented if an
  authoritative reference exists for the protocol (especially for
  standard protocols).

4.2.10.  Evaluating a Protocol-Identifier INDEX

  The following evaluation is done after protocolDirTable INDEX value
  has been converted into two OCTET STRINGs according to the INDEX
  encoding rules specified in the SMI [RFC1902].

  Protocol-identifiers are evaluated left to right, starting with the
  protocolDirID, which length should be evenly divisible by four. The
  protocolDirParameters length should be exactly one quarter of the
  protocolDirID string length.

  Protocol-identifier parsing starts with the base layer identifier,
  which must be present, and continues for one or more upper layer
  identifiers, until all OCTETs of the protocolDirID have been used.
  Layers may not be skipped, so identifiers such as 'SNMP over IP' or
  'TCP over anylink' can not exist.

  The base-layer-identifier also contains a 'special function
  identifier' which may apply to the rest of the protocol identifier.

  Wild-carding at the base layer within a protocol encapsulation is the
  only supported special function at this time. Refer to the 'Base
  Protocol Identifiers' section for wildcard encoding rules.

  After the protocol-tree identified in protocolDirID has been parsed,
  each parameter bit-mask (one octet for each 4-octet layer-identifier)
  is evaluated, and applied to the corresponding protocol layer.

  A protocol-identifier label may map to more than one value.  For
  instance, 'ip' maps to 5 distinct values, one for each supported
  encapsulation.  (see the 'IP' section under 'L3 Protocol
  Identifiers'),



Bierman & Iddon             Standards Track                    [Page 17]

RFC 2074               RMON Protocol Identifiers            January 1997


  It is important to note that these macros are conceptually expanded
  at implementation time, not at run time.

  If all the macros are expanded completely by substituting all
  possible values of each label for each child protocol, a list of all
  possible protocol-identifiers is produced.  So 'ip' would result in 5
  distinct protocol-identifiers.  Likewise each child of 'ip' would map
  to at least 5 protocol-identifiers, one for each encapsulation (e.g.
  ip over ether2, ip over LLC, etc.).

5.  Protocol Identifier Macros

  The following PROTOCOL IDENTIFIER macros can be used to construct
  protocolDirID and protocolDirParameters strings.

  The sections defining protocol examples are intended to grow over
  subsequent releases. Minimal protocol support is included at this
  time.  (Refer to section 3.2 for details on the protocol macro update
  procedure.)

  An identifier is encoded by constructing the base-identifier, then
  adding one layer-identifier for each encapsulated protocol.

5.1.  Base Identifier Encoding

  The first layer encapsulation is called the base identifier and it
  contains optional protocol-function information and the base layer
  (e.g.  MAC layer) enumeration value used in this protocol identifier.

  The base identifier is encoded as four octets as shown in figure 2.

         Fig. 2
    base-identifier format
    +---+---+---+---+
    |   |   |   |   |
    | f |op1|op2| m |
    |   |   |   |   |
    +---+---+---+---+ octet
    | 1 | 1 | 1 | 1 | count

  The first octet ('f') is the special function code, found in table
  4.1.  The next two octets ('op1' and 'op2') are operands for the
  indicated function. If not used, an operand must be set to zero.  The
  last octet, 'm', is the enumerated value for a particular base layer
  encapsulation, found in table 4.2.  All four octets are encoded in
  network-byte-order.





Bierman & Iddon             Standards Track                    [Page 18]

RFC 2074               RMON Protocol Identifiers            January 1997


5.1.1.  Protocol Identifier Functions

  The base layer identifier contains information about any special
  functions to perform during collections of this protocol, as well as
  the base layer encapsulation identifier.

  The first three octets of the identifier contain the function code
  and two optional operands. The fourth octet contains the particular
  base layer encapsulation used in this protocol (fig. 2).

    Table 4.1  Assigned Protocol Identifier Functions
    -------------------------------------------------

          Function     ID    Param1               Param2
          ----------------------------------------------------
          none          0    not used (0)         not used (0)
          wildcard      1    not used (0)         not used (0)

5.1.1.1.  Function 0: No-op

  If the function ID field (1st octet) is equal to zero, the the 'op1'
  and 'op2' fields (2nd and 3rd octets) must also be equal to zero.
  This special value indicates that no functions are applied to the
  protocol identifier encoded in the remaining octets. The identifier
  represents a normal protocol encapsulation.

5.1.1.2.  Function 1: Protocol Wildcard Function

  The wildcard function (function-ID = 1), is used to aggregate
  counters, by using a single protocol value to indicate potentially
  many base layer encapsulations of a particular network layer
  protocol. A protocolDirEntry of this type will match any base-layer
  encapsulation of the same protocol.

  The 'op1' field (2nd octet) is not used and must be set to zero.

  The 'op2' field (3rd octet) is not used and must be set to zero.

  Each wildcard protocol identifier must be defined in terms of a 'base
  encapsulation'. This should be as 'standard' as possible for
  interoperability purposes. If an encapsulation over 'ether2' is
  permitted, than this should be used as the base encapsulation.









Bierman & Iddon             Standards Track                    [Page 19]

RFC 2074               RMON Protocol Identifiers            January 1997


  The agent may also be requested to count some or all of the
  individual encapsulations for the same protocols, in addition to
  wildcard counting.  Note that the RMON-2 MIB [RMON2] does not require
  that agents maintain counters for multiple encapsulations of the same
  protocol.  It is an implementation-specific matter as to how an agent
  determines which protocol combinations to allow in the
  protocolDirTable at any given time.

5.2.  Base Layer Protocol Identifiers

  The base layer is mandatory, and defines the base encapsulation of
  the packet and any special functions for this identifier.

  There are no suggested protocolDirParameters bits for the base layer.

  The suggested ProtocolDirDescr field for the base layer is given by
  the corresponding "Name" field in the table 4.1 below. However,
  implementations are only required to use the appropriate integer
  identifier values.

  For most base layer protocols, the protocolDirType field should
  contain bits set for  the 'hasChildren(0)' and
  'addressRecognitionCapable(1)' attributes.  However, the special
  'ianaAssigned' base layer should have no parameter or attribute bits
  set.

  By design, only 255 different base layer encapsulations are
  supported.  There are five base encapsulation values defined at this
  time. New base encapsulations (e.g. for new media types) are expected
  to be added over time.

    Table 4.2  Base Layer Encoding Values
    --------------------------------------

          Name          ID
          ------------------
          ether2        1
          llc           2
          snap          3
          vsnap         4
          ianaAssigned    5










Bierman & Iddon             Standards Track                    [Page 20]

RFC 2074               RMON Protocol Identifiers            January 1997


5.2.1.  Ether2 Encapsulation

ether2 PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "DIX Ethernet, also called Ethernet-II."
   CHILDREN
      "The Ethernet-II type field is used to select child protocols.
      This is a 16-bit field.  Child protocols are deemed to start at
      the first octet after this type field.

      Children of this protocol are encoded as [ 0.0.0.1 ], the
      protocol identifier for 'ether2' followed by [ 0.0.a.b ] where
      'a' and 'b' are the network byte order encodings of the MSB and
      LSB of the Ethernet-II type value.

      For example, a protocolDirID-fragment value of:
         0.0.0.1.0.0.8.0 defines IP encapsulated in ether2.

      Children of are named as 'ether2' followed by the type field
      value in hexadecimal.  The above example would be declared as:
         ether2 0x0800"
   ADDRESS-FORMAT
      "Ethernet addresses are 6 octets in network order."
   DECODING
      "Only type values greater than or equal to 1500 decimal indicate
      Ethernet-II frames; lower values indicate 802.3 encapsulation
      (see below)."
   REFERENCE
      "A Standard for the Transmission of IP Datagrams over Ethernet
      Networks; RFC 894 [RFC894].

      The authoritative list of Ether Type values is identified by the
      URL:

         ftp://ftp.isi.edu/in-notes/iana/assignments/ethernet-numbers"
   ::= { 1 }










Bierman & Iddon             Standards Track                    [Page 21]

RFC 2074               RMON Protocol Identifiers            January 1997


5.2.2.  LLC Encapsulation

llc PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "The LLC (802.2) protocol."
   CHILDREN
      "The LLC SSAP and DSAP (Source/Dest Service Access Points) are
      used to select child protocols.  Each of these is one octet long,
      although the least significant bit is a control bit and should be
      masked out in most situations.  Typically SSAP and DSAP (once
      masked) are the same for a given protocol - each end implicitly
      knows whether it is the server or client in a client/server
      protocol.  This is only a convention, however, and it is possible
      for them to be different.  The SSAP is matched against child
      protocols first.  If none is found then the DSAP is matched
      instead.  The child protocol is deemed to start at the first
      octet after the LLC control field(s).

      Children of 'llc' are encoded as [ 0.0.0.2 ], the protocol
      identifier component for LLC followed by [ 0.0.0.a ] where 'a' is
      the SAP value which maps to the child protocol.  For example, a
      protocolDirID-fragment value of:
         0.0.0.2.0.0.0.240

      defines NetBios over LLC.

      Children are named as 'llc' followed by the SAP value in
      hexadecimal.  So the above example would have been named:
         llc 0xf0"
   ADDRESS-FORMAT
      "The address consists of 6 octets of MAC address in network
      order.  Source routing bits should be stripped out of the address
      if present."
   DECODING
      "Notice that LLC has a variable length protocol header; there are
      always three octets (DSAP, SSAP, control).  Depending on the
      value of the control bits in the DSAP, SSAP and control fields
      there may be an additional octet of control information.

      LLC can be present on several different media.  For 802.3 and
      802.5 its presence is mandated (but see ether2 and raw802.3
      encapsulations).  For 802.5 there is no other link layer
      protocol.



Bierman & Iddon             Standards Track                    [Page 22]

RFC 2074               RMON Protocol Identifiers            January 1997


      Notice also that the raw802.3 link layer protocol may take
      precedence over this one in a protocol specific manner such that
      it may not be possible to utilize all LSAP values if raw802.3 is
      also present."
   REFERENCE
      "The authoritative list of LLC LSAP values is controlled by the
      IEEE Registration Authority:
      IEEE Registration Authority
         c/o Iris Ringel
         IEEE Standards Dept
         445 Hoes Lane, P.O. Box 1331
         Piscataway, NJ 08855-1331
         Phone +1 908 562 3813
         Fax: +1 908 562 1571"
   ::= { 2 }

5.2.3.  SNAP over LLC (OUI=000) Encapsulation

snap PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "The Sub-Network Access Protocol (SNAP) is layered on top of LLC
      protocol, allowing Ethernet-II protocols to be run over a media
      restricted to LLC."
   CHILDREN
      "Children of 'snap' are identified by Ethernet-II type values;
      the SNAP PID (Protocol Identifier) field is used to select the
      appropriate child.  The entire SNAP protocol header is consumed;
      the child protocol is assumed to start at the next octet after
      the PID.

      Children of 'snap' are encoded as [ 0.0.0.3 ], the protocol
      identifier for 'snap', followed by [ 0.0.a.b ] where 'a' and 'b'
      are the MSB and LSB of the Ethernet-II type value.  For example,
      a protocolDirID-fragment value of:
         0.0.0.3.0.0.8.0

      defines the IP/SNAP protocol.

      Children of this protocol are named 'snap' followed by the
      Ethernet-II type value in hexadecimal.  The above example would
      be named:

         snap 0x0800"



Bierman & Iddon             Standards Track                    [Page 23]

RFC 2074               RMON Protocol Identifiers            January 1997


   ADDRESS-FORMAT
        "The address format for SNAP is the same as that for LLC"
   DECODING
      "SNAP is only present over LLC.  Both SSAP and DSAP will be 0xAA
      and a single control octet will be present.  There are then three
      octets of OUI and two octets of PID.  For this encapsulation the
      OUI must be 0x000000 (see 'vsnap' below for non-zero OUIs)."
   REFERENCE
      "SNAP Identifier values are assigned by the IEEE Standards
      Office.  The address is:
              IEEE Registration Authority
              c/o Iris Ringel
              IEEE Standards Dept
              445 Hoes Lane, P.O. Box 1331
              Piscataway, NJ 08855-1331
              Phone +1 908 562 3813
              Fax: +1 908 562 1571"
   ::= { 3 }

5.2.4.  SNAP over LLC (OUI != 000) Encapsulation

vsnap PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "This pseudo-protocol handles all SNAP packets which do not have
      a zero OUI.  See 'snap' above for details of those that do."
   CHILDREN
      "Children of 'vsnap' are selected by the 3 octet OUI; the PID is
      not parsed; child protocols are deemed to start with the first
      octet of the SNAP PID field, and continue to the end of the
      packet.

      Children of 'vsnap' are encoded as [ 0.0.0.4 ], the protocol
      identifier for 'vsnap', followed by [ 0.a.b.c.0.0.d.e ] where
      'a', 'b' and 'c' are the 3 octets of the OUI field in network
      byte order. This is in turn followed by the 16-bit EtherType
      value, where the 'd' and 'e' represent the MSB and LSB of the
      EtherType, respectively.

      For example, a protocolDirID-fragment value of:
        0.0.0.4.0.8.0.7.0.0.128.155
      defines the AppleTalk Phase 2 protocol over vsnap.





Bierman & Iddon             Standards Track                    [Page 24]

RFC 2074               RMON Protocol Identifiers            January 1997


      Note that two protocolDirParameters octets must be present in
      protocolDirTable INDEX values for 'vsnap' protocols.  The first
      protocolDirParameters octet defines the actual parameters. The
      second protocolDirParameters octet is not used and must be set to
      zero.

      Children are named as 'vsnap(<OUI>) <ethertype>', where the
      '<OUI>' field is represented as 3 octets in hexadecimal notation
      or the ASCII string associated with the OUI value. The
      <ethertype> field is represented by the 2 byte EtherType value in
      hexadecimal notation. So the above example would be named:

        'vsnap(0x080007) 0x809b' or 'vsnap(apple) 0x809b'"
   ADDRESS-FORMAT
      "The LLC address format is inherited by 'vsnap'.  See the 'llc'
      protocol identifier for more details."
   DECODING
      "Same as for 'snap' except the OUI is non-zero."
   REFERENCE
      "SNAP Identifier values are assigned by the IEEE Standards
      Office.  The address is:
              IEEE Registration Authority
              c/o Iris Ringel
              IEEE Standards Dept
              445 Hoes Lane, P.O. Box 1331
              Piscataway, NJ 08855-1331
              Phone +1 908 562 3813
              Fax: +1 908 562 1571"
   ::= { 4 }

5.2.5.  IANA Assigned Protocols

ianaAssigned PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "This branch contains protocols which do not conform easily to
      the hierarchical format utilized in the other link layer
      branches.  Usually, such a protocol 'almost' conforms to a
      particular 'well-known' identifier format, but additional
      criteria are used (e.g. configuration-based), making protocol
      identification difficult or impossible by examination of
      appropriate network traffic.  preventing the any 'well-known'
      protocol-identifier macro from being used.







Bierman & Iddon             Standards Track                    [Page 25]

RFC 2074               RMON Protocol Identifiers            January 1997


      Sometimes well-known protocols are simply remapped to a different
      port number by one or more venders (e.g. SNMP). These protocols
      can be identified with the 'user-extensibility' feature of the
      protocolDirTable, and do not need special IANA
      assignments.

      A centrally located list of these enumerated protocols must be
      maintained to insure interoperability.
      (See section 3.2 for details on the document update procedure.)
      Support for new link-layers will be added explicitly, and only
      protocols which cannot possibly be represented in a better way
      will be considered as 'ianaEnumerated' protocols.

      IANA assigned protocols are identified by the base-layer-selector
      value [ 0.0.0.5 ], followed by the four octets [ a.b.c.d ] of the
      integer value corresponding to the particular IANA protocol.

      Do not create children of this protocol unless you are sure that
      they cannot be handled by the more conventional link layers
      above."
   CHILDREN
      "Children of this protocol are identified by implementation-
      specific means, described (as best as possible) in the 'DECODING'
      clause within the protocol-variant-identifier macro for each
      enumerated protocol.

      For example, a protocolDirID-fragment value of:
         0.0.0.5.0.0.0.1

      defines the IPX protocol encapsulated directly in 802.3

      Children are named 'ianaAssigned' followed by the name or numeric
      of the particular IANA assigned protocol. The above
      example would be named:

         'ianaAssigned 1' or 'ianaAssigned ipxOverRaw8023'"

   DECODING
      "The 'ianaAssigned' base layer is a pseudo-protocol and is not
      decoded."
   REFERENCE
      "Refer to individual PROTOCOL-IDENTIFIER macros for information
      on each child of the IANA assigned protocol."
   ::= { 5 }







Bierman & Iddon             Standards Track                    [Page 26]

RFC 2074               RMON Protocol Identifiers            January 1997


5.2.5.1.  IANA Assigned Protocol Identifiers

  The following protocol-variant-identifier macro declarations are used
  to identify the RMONMIB IANA assigned protocols in a proprietary way,
  by simple enumeration. Note that an additional four-octet layer
  identifier may be used for some enumerations (as with the 'vsnap'
  base-layer identifier). Refer to the 'CHILDREN' clause in the
  protocol-identifier macro for a particular protocol to determine the
  number of octets in the 'ianaAssigned' layer-identifier.

ipxOverRaw8023 PROTOCOL-IDENTIFIER
   VARIANT-OF  "ipx"
   PARAMETERS  { }
   ATTRIBUTES  { }
   DESCRIPTION
      "This pseudo-protocol describes an encapsulation of IPX over
      802.3, without a type field.

      Refer to the macro for IPX for additional information about this
      protocol."
   DECODING
      "Whenever the 802.3 header indicates LLC a set of protocol
      specific tests needs to be applied to determine whether this is a
      'raw8023' packet or a true 802.2 packet.  The nature of these
      tests depends on the active child protocols for 'raw8023' and is
      beyond the scope of this document."
   ::= { ianaAssigned 1 }

5.3.  L3: Children of Base Protocol Identifiers

  Network layer protocol identifier macros contain additional
  information about the network layer, and is found immediately
  following a base layer-identifier in a protocol identifier.

  The ProtocolDirParameters supported at the network layer are
  'countsFragments(0)', and 'tracksSessions(1). An agent may choose to
  implement a subset of these parameters.

  The protocol-name should be used for the ProtocolDirDescr field.  The
  ProtocolDirType ATTRIBUTES used at the network layer are
  'hasChildren(0)' and 'addressRecognitionCapable(1)'. Agents may
  choose to implement a subset of these attributes for each protocol,
  and therefore limit which tables the indicated protocol can be
  present (e.g.  protocol distribution, host, and matrix tables)..

  The following protocol-identifier macro declarations are given for
  example purposes only. They are not intended to constitute an
  exhaustive list or an authoritative source for any of the protocol



Bierman & Iddon             Standards Track                    [Page 27]

RFC 2074               RMON Protocol Identifiers            January 1997


  information given.  However, any protocol that can encapsulate other
  protocols must be documented here in order to encode the children
  identifiers into protocolDirID strings. Leaf protocols should be
  documented as well, but an implementation can identify a leaf
  protocol even if it isn't listed here (as long as the parent is
  documented).

5.3.1.  IP

ip PROTOCOL-IDENTIFIER
   PARAMETERS {
         countsFragments(0)  -- This parameter applies to all child
                             -- protocols.
   }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "The protocol identifiers for the Internet Protocol (IP). Note
      that IP may be encapsulated within itself, so more than one of
      the following identifiers may be present in a particular
      protocolDirID string."
   CHILDREN
      "Children of 'ip' are selected by the value in the Protocol field
      (one octet), as defined in the PROTOCOL NUMBERS table within the
      Assigned Numbers Document.

      The value of the Protocol field is encoded in an octet string as
      [ 0.0.0.a ], where 'a' is the protocol field .

      Children of 'ip' are encoded as [ 0.0.0.a ], and named as 'ip a'
      where 'a' is the protocol field value. For example, a
      protocolDirID-fragment value of:
         0.0.0.1.0.0.8.0.0.0.0.1

      defines an encapsulation of ICMP (ether2.ip.icmp)"
   ADDRESS-FORMAT
      "4 octets of the IP address, in network byte order.  Each ip
      packet contains two addresses, the source address and the
      destination address."
   DECODING
      "Note: ether2/ip/ipip4/udp is a different protocolDirID than
      ether2/ip/udp, as identified in the protocolDirTable. As such,
      two different local protocol index values will be assigned by the
      agent. E.g. (full INDEX values shown):
       ether2/ip/ipip4/udp 16.0.0.0.1.0.0.8.0.0.0.0.4.0.0.0.17.4.0.0.0.0
       ether2/ip/udp       12.0.0.0.1.0.0.8.0.0.0.0.17.3.0.0.0 "



Bierman & Iddon             Standards Track                    [Page 28]

RFC 2074               RMON Protocol Identifiers            January 1997


   REFERENCE
      "RFC 791 [RFC791] defines the Internet Protocol; The following
      URL defines the authoritative repository for the PROTOCOL NUMBERS
      Table:

         ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers"
   ::= {
         ether2 0x0800,
         llc 0x06,
         snap 0x0800,
         ip 4,
         ip 94
   }

5.3.2.  IPX

ipx PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
        hasChildren(0),
        addressRecognitionCapable(1)
   }
   DESCRIPTION
      "Novell IPX"
   CHILDREN
      "Children of IPX are defined by the 16 bit value of the
      Destination Socket field.  The value is encoded into an octet
      string as [ 0.0.a.b ], where 'a' and 'b' are the network byte
      order encodings of the MSB and LSB of the destination socket
      field."
   ADDRESS-FORMAT
      "4 bytes of Network number followed by the 6 bytes Host address
      each in network byte order".
   REFERENCE
      "The IPX protocol is defined by the Novell Corporation
















Bierman & Iddon             Standards Track                    [Page 29]

RFC 2074               RMON Protocol Identifiers            January 1997


      A complete description of IPX may be secured at the following
      address:
             Novell, Inc.
             122 East 1700 South
             P. O. Box 5900
             Provo, Utah 84601 USA
             800 526 5463
             Novell Part # 883-000780-001"
   ::= {
       ether2     0x8137,           -- 0.0.129.55
       llc        0xe0e003,         -- 0.224.224.3
       snap       0x8137,           -- 0.0.129.55
       ianaAssigned 0x1               -- 0.0.0.1   (ipxOverRaw8023)
   }

5.3.3.  ARP

arp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "An Address Resolution Protocol message (request or response).
      This protocol does not include Reverse ARP (RARP) packets, which
      are counted separately."
   REFERENCE
      "RFC 826 [RFC826] defines the Address Resolution Protocol."
   ::= {
       ether2 0x806,   -- [ 0.0.8.6 ]
       snap 0x806
   }

5.3.4.  IDP

idp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
        hasChildren(0),
        addressRecognitionCapable(1)
   }
   DESCRIPTION
      "Xerox IDP"
   CHILDREN
      "Children of IDP are defined by the 8 bit value of the Packet
      type field.  The value is encoded into an octet string as [
      0.0.0.a ], where 'a' is the value of the packet type field in
      network byte order."





Bierman & Iddon             Standards Track                    [Page 30]

RFC 2074               RMON Protocol Identifiers            January 1997


   ADDRESS-FORMAT
      "4 bytes of Network number followed by the 6 bytes Host address
      each in network byte order".
   REFERENCE
      "Xerox Corporation, Document XNSS 028112, 1981"
   ::=  {
      ether2  0x600,     -- [ 0.0.6.0 ]
      snap    0x600
   }

5.3.5.  AppleTalk ARP

atalkarp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "AppleTalk Address Resolution Protocol."
   REFERENCE
      "AppleTalk Phase 2 Protocol Specification, document ADPA
      #C0144LL/A."
   ::=   {
     ether2 0x80f3,  --  [ 0.0.128.243 ]
     vsnap(0x080007) 0x80f3
   }

5.3.6.  AppleTalk

atalk PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
       hasChildren(0),
       addressRecognitionCapable(1)
   }
   DESCRIPTION
      "AppleTalk Protocol."
   CHILDREN
      "Children of ATALK are defined by the 8 bit value of the DDP type
      field.  The value is encoded into an octet string as [ 0.0.0.a ],
      where 'a' is the value of the DDP type field in network byte
      order."
   ADDRESS-FORMAT
      "2 bytes of Network number followed by 1 byte of node id each in
      network byte order".








Bierman & Iddon             Standards Track                    [Page 31]

RFC 2074               RMON Protocol Identifiers            January 1997


   REFERENCE
      "AppleTalk Phase 2 Protocol Specification, document ADPA
      #C0144LL/A."
   ::=   {
     ether2  0x809b,   -- [ 0.0.128.155 ]
     vsnap(0x080007) 0x809b
   }

5.4.  L4: Children of L3 Protocols

5.4.1.  ICMP

icmp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Internet Message Control Protocol."
   REFERENCE
      "RFC 792 [RFC792] defines the Internet Control Message Protocol."
   ::= { ip 1 }

5.4.2.  TCP

tcp  PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
        hasChildren(0)
   }
   DESCRIPTION
      "Transmission Control Protocol."
   CHILDREN
      "Children of TCP are identified by the 16 bit Destination Port
      value as specified in RFC 793. They are encoded as [ 0.0.a.b],
      where 'a' is the MSB and 'b' is the LSB of the Destination Port
      value. Both bytes are encoded in network byte order.  For
      example, a protocolDirId-fragment of:
          0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.23

      identifies an encapsulation of the telnet protocol
      (ether2.ip.tcp.telnet)"
   REFERENCE
      "RFC 793 [RFC793] defines the Transmission Control Protocol.

      The following URL defines the authoritative repository for
      reserved and registered TCP port values:

        ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
   ::=  { ip 6 }



Bierman & Iddon             Standards Track                    [Page 32]

RFC 2074               RMON Protocol Identifiers            January 1997


5.4.3.  UDP

udp  PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
        hasChildren(0)
   }
   DESCRIPTION
      "User Datagram Protocol."
   CHILDREN
      "Children of UDP are identified by the 16 bit Destination Port
      value as specified in RFC 768. They are encoded as [ 0.0.a.b ],
      where 'a' is the MSB and 'b' is the LSB of the Destination Port
      value. Both bytes are encoded in network byte order.  For
      example, a protocolDirId-fragment of:
          0.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161

      identifies an encapsulation of SNMP (ether2.ip.udp.snmp)"
   REFERENCE
      "RFC 768 [RFC768] defines the User Datagram Protocol.

      The following URL defines the authoritative repository for
      reserved and registered UDP port values:

        ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
  ::= { ip 17 }

5.5.  L5: Application Layer Protocols

5.5.1.  FTP

5.5.1.1.  FTP-DATA

ftp-data PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "The File Transfer Protocol Data Port; the FTP Server process
      default data-connection port. "
   REFERENCE
      "RFC 959 [RFC959] defines the File Transfer Protocol.  Refer to
      section 3.2 of [RFC959] for details on FTP data connections."
   ::= { tcp 20 }








Bierman & Iddon             Standards Track                    [Page 33]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.1.2.  FTP Control

ftp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "The File Transfer Protocol Control Port; An FTP client initiates
      an FTP control connection by sending FTP commands from user port
      (U) to this port."
   REFERENCE
      "RFC 959 [RFC959] defines the File Transfer Protocol."
   ::= { tcp 21 }

5.5.2.  Telnet

telnet PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "The Telnet Protocol; The purpose of the TELNET Protocol is to
      provide a fairly general, bi-directional, eight-bit byte oriented
      communications facility.  Its primary goal is to allow a standard
      method of interfacing terminal devices and terminal-oriented
      processes to each other. "
   REFERENCE
      "RFC 854 [RFC854] defines the basic Telnet Protocol."
   ::= { tcp 23 }

5.5.3.  SMTP

smtp PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "The Simple Mail Transfer Protocol; SMTP control and data
      messages are sent on this port."
   REFERENCE
      "RFC 821 [RFC821] defines the basic Simple Mail Transfer
      Protocol."
   ::= { tcp 25 }











Bierman & Iddon             Standards Track                    [Page 34]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.4.  DNS

domain PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Domain Name Service Protocol; DNS may be transported by either
      UDP [RFC768] or TCP [RFC793].  If the transport is UDP, DNS
      requests restricted to 512 bytes in length may be sent to this
      port."
   REFERENCE
      "RFC 1035 [RFC1035] defines the Bootstrap Protocol."
   ::= { udp 53,
         tcp 53  }

5.5.5.  BOOTP

5.5.5.1.  Bootstrap Server Protocol

bootps PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Bootstrap Protocol Server Protocol; BOOTP Clients send requests
      (usually broadcast) to the bootps port."
   REFERENCE
      "RFC 951 [RFC951] defines the Bootstrap Protocol."
   ::= { udp 67 }

5.5.5.2.  Bootstrap Client Protocol

bootpc PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Bootstrap Protocol Client Protocol; BOOTP Server replies are
      sent to the BOOTP Client using this destination port."
   REFERENCE
      "RFC 951 [RFC951] defines the Bootstrap Protocol."
   ::= { udp 68 }











Bierman & Iddon             Standards Track                    [Page 35]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.6.  TFTP

tftp PROTOCOL-IDENTIFIER
   PARAMETERS {
       tracksSessions(1)
   }
   ATTRIBUTES { }
   DESCRIPTION
      "Trivial File Transfer Protocol; Only the first packet of each
      TFTP transaction will be sent to port 69. If the tracksSessions
      attribute is set, then packets for each TFTP transaction will be
      attributed to tftp, instead of the unregistered port numbers that
      will be encoded in subsequent packets."
   REFERENCE
      "RFC 1350 [RFC1350] defines the TFTP Protocol (revision 2); RFC
      1782 [RFC1782] defines TFTP Option Extensions; RFC 1783 [RFC1783]
      defines the TFTP Blocksize Option; RFC 1784 [RFC1784] defines
      TFTP Timeout Interval and Transfer Size Options."

   ::= { udp 69 }

5.5.7.  HTTP

www-http PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Hypertext Transfer Protocol; "
   REFERENCE
      "RFC 1945 [RFC1945] defines the Hypertext Transfer Protocol
      (HTTP/1.0)."
   ::= { tcp 80 }

5.5.8.  POP3

pop3 PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Post Office Protocol -- Version 3. Clients establish connections
      with POP3 servers by using this destination port number."
   REFERENCE
      "RFC 1725 [RFC1725] defines Version 3 of the Post Office
      Protocol."
   ::= { tcp 110 }






Bierman & Iddon             Standards Track                    [Page 36]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.9.  SUNRPC

sunrpc PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES {
               hasChildren(0)   -- port mapper function numbers
       }
   DESCRIPTION
      "SUN Remote Procedure Call Protocol. Port mapper function
      requests are sent to this destination port."
   CHILDREN
      Specific RPC functions are represented as children of the sunrpc
      protocol. Each 'RPC function protocol' is identified by its
      function number assignment. RPC function number assignments are
      defined by different naming authorities, depending of the
      function identifier value.
      From [RFC1831]:

      Program numbers are given out in groups of hexadecimal 20000000
      (decimal 536870912) according to the following chart:

                    0 - 1fffffff   defined by [email protected]
             20000000 - 3fffffff   defined by user
             40000000 - 5fffffff   transient
             60000000 - 7fffffff   reserved
             80000000 - 9fffffff   reserved
             a0000000 - bfffffff   reserved
             c0000000 - dfffffff   reserved
             e0000000 - ffffffff   reserved

      Children of 'sunrpc' are encoded as [ 0.0.0.111], the protocol
      identifier component for 'sunrpc', followed by [ a.b.c.d ], where
      a.b.c.d is the 32 bit binary RPC program number encoded in
      network byte order.  For example, a protocolDirID-fragment value
      of:
          0.0.0.111.0.1.134.163

      defines the NFS function (and protocol).

      Children are named as 'sunrpc' followed by the RPC function
      number in base 10 format. For example, NFS would be named:
          'sunrpc 100003'.
   REFERENCE
      "RFC 1831 [RFC1831] defines the Remote Procedure Call Protocol
      Version 2.  The authoritative list of RPC Functions is identified
      by the URL:
          ftp://ftp.isi.edu/in-notes/iana/assignments/sun-rpc-numbers"
   ::= { udp 111 }



Bierman & Iddon             Standards Track                    [Page 37]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.10.  NFS

nfs  PROTOCOL-IDENTIFIER
   PARAMETERS {
               countsFragments(0)
       }
   ATTRIBUTES { }
   DESCRIPTION
      "Sun Network File System (NFS);"
   DECODING
      "The first packet in an NFS transaction is sent to the port-
      mapper, and therefore decoded statically by monitoring RFC
      portmap requests [RFC1831]. Any subsequent NFS fragments must be
      decoded and correctly identified by 'remembering' the port
      assignments used in each RPC function call (as identified
      according to the procedures in the RPC Specification Version 2
      [RFC1831]).

      The 'countsFragments(0)' PARAMETER bit is used to indicate
      whether the probe can (and should) monitor portmapper activity to
      correctly attribute all NFS packets."
   REFERENCE
      "The NFS Version 3 Protocol Specification is defined in RFC 1813
      [RFC1813]."
   ::= {
       sunrpc 100003           --  [0.1.134.163]
   }

5.5.11.  SNMP

5.5.11.1.  SNMP Request/Response

snmp  PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Simple Network Management Protocol. Includes SNMPv1 and SNMPv2
      protocol versions. Does not include SNMP trap packets."
   REFERENCE
      "The SNMP SMI is defined in RFC 1902 [RFC1902]. The SNMP
      protocol is defined in RFC 1905 [RFC1905].  Transport mappings
      are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over IPX)
      [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
   ::= {
       udp 161,
       ipx 0x900f,   -- [ 0.0.144.15 ]
       atalk 8
   }



Bierman & Iddon             Standards Track                    [Page 38]

RFC 2074               RMON Protocol Identifiers            January 1997


5.5.11.2.  SNMP Trap

snmptrap PROTOCOL-IDENTIFIER
   PARAMETERS { }
   ATTRIBUTES { }
   DESCRIPTION
      "Simple Network Management Protocol Trap Port."
   REFERENCE
      "The SNMP SMI is defined in RFC 1902 [RFC1902]. The SNMP
      protocol is defined in RFC 1905 [RFC1905].  Transport mappings
      are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over IPX)
      [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
   ::= {
       udp 162,
       ipx 0x9010,
       atalk 9
   }

6.  Acknowledgements

  This document was produced by the IETF RMONMIB Working Group.

  The authors wish to thank the following people for their
  contributions to this document:

       Anil Singhal
       Frontier Software Development, Inc.

       Jeanne Haney
       Bay Networks

       Dan Hansen
       Network General Corp.


















Bierman & Iddon             Standards Track                    [Page 39]

RFC 2074               RMON Protocol Identifiers            January 1997


7.  References

[RFC768]
    Postel, J., "User Datagram Protocol", STD 6, RFC 768,
    USC/Information Sciences Institute, August 1980.

[RFC791]
    Postel, J., ed., "Internet Protocol - DARPA Internet Program
    Protocol Specification", STD 5, RFC 791, USC/Information Sciences
    Institute, September 1981.

[RFC792]
    Postel, J., "Internet Control Message Protocol - DARPA Internet
    Program Protocol Specification", STD 5, RFC 792, USC/Information
    Sciences Institute, September 1981.

[RFC793]
    Postel, J., "Transmission Control Protocol - DARPA Internet Program
    Protocol Specification", STD 5, RFC 793, USC/Information Sciences
    Institute, September 1981.

[RFC821]
    Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
    USC/Information Sciences Institute, August 1982.

[RFC826]
    Plummer, D., "An Ethernet Address Resolution Protocol or
    "Converting Network Protocol Addresses to 48-bit Ethernet Addresses
    for Transmission on Ethernet Hardware", STD 37, RFC 826, MIT-LCS,
    November 1982.

[RFC854]
    Postel, J. and J. Reynolds, "Telnet Protocol Specification",
    STD 8, RFC 854, ISI, May 1983.

[RFC894]
    Hornig, C., "A Standard for the Transmission of IP Datagrams over
    Ethernet Networks", RFC 894, Symbolics, April 1984.

[RFC951]
    Croft, B., and J. Gilmore, "BOOTSTRAP Protocol (BOOTP)", RFC 951,
    Stanford and SUN Microsytems, September 1985.

[RFC959]
    Postel, J., and J. Reynolds, "File Transfer Protocol", STD 8,
    RFC 959, USC/Information Sciences Institute, October 1985.





Bierman & Iddon             Standards Track                    [Page 40]

RFC 2074               RMON Protocol Identifiers            January 1997


[RFC1035]
    Mockapetris, P., "Domain Names - Implementation and Specification",
    STD 13, RFC 1035, USC/Information Sciences Institute, November
    1987.

[RFC1157]
    Case, J., M. Fedor, M. Schoffstall, J. Davin, "Simple Network
    Management Protocol", STD 15, RFC 1157, SNMP Research,
    Performance Systems International, MIT Laboratory for Computer
    Science, May 1990.

[RFC1213]
    McCloghrie, K., and M. Rose, Editors, "Management Information Base
    for Network Management of TCP/IP-based internets: MIB-II", STD 17,
    RFC 1213, Hughes LAN Systems, Performance Systems International,
    March 1991.

[RFC1350]
    Sollins, K., "TFTP Protocol (revision 2)", RFC 1350, MIT, July
    1992.

[RFC1419]
    Minshall, G., and M.  Ritter, "SNMP over AppleTalk", RFC 1419,
    Novell, Inc., Apple Computer, Inc., March 1993.

[RFC1420]
    Bostock, S., "SNMP over IPX", RFC 1420, Novell, Inc., March 1993.

[RFC1700]
    Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700,
    USC/Information Sciences Institute, October 1994.

[RFC1725]
    Myers, J., and M. Rose, "Post Office Protocol - Version 3", RFC
    1725, Carnegie Mellon, Dover Beach Consulting, November 1994.

[RFC1757]
    S. Waldbusser, "Remote Network Monitoring MIB", RFC 1757, Carnegie
    Mellon University, February 1995.

[RFC1782]
    Malkin, G., and A. Harkin, T "TFTP Option Extension", RFC 1782,
    Xylogics, Inc., Hewlett Packard Co., March 1995.

[RFC1783]
    Malkin, G., and A. Harkin, T "TFTP BlockOption Option", RFC 1783,
    Xylogics, Inc., Hewlett Packard Co., March 1995.




Bierman & Iddon             Standards Track                    [Page 41]

RFC 2074               RMON Protocol Identifiers            January 1997


[RFC1784]
    Malkin, G., and A. Harkin, "TFTP Timeout Interval and Transfer Size
    Options", RFC 1784, Xylogics, Inc., Hewlett Packard Co., March
    1995.

[RFC1800]
    Postel, J., Editor, "Internet Official Protocol Standards", STD 1,
    RFC 1920, IAB, March 1996.

[RFC1831]
    Srinivasan, R., "Remote Procedure Call Protocol Version 2", RFC
    1831, Sun Microsystems, Inc., August 1995.

[RFC1902]
    SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Structure of Management Information for version 2
    of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
    January 1996.

[RFC1903]
    SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Textual Conventions for version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[RFC1904]
    SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Conformance Statements for version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[RFC1905]
    SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Protocol Operations for version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[RFC1906]
    SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
    Waldbusser, "Transport Mappings for Version 2 of the Simple Network
    Management Protocol (SNMPv2)", RFC 1906, January 1996.

[RFC1945]
    Berners-Lee, T., and R. Fielding, "Hypertext Transfer Protocol --
    HTTP/1.0", RFC 1945, MIT/UC-Irvine, November 1995.

[RMON2]
    S. Waldbusser, "Remote Network Monitoring MIB (RMON-2)", draft-
    ietf-rmonmib-rmon2-03.txt, International Network Services, January
    1996.




Bierman & Iddon             Standards Track                    [Page 42]

RFC 2074               RMON Protocol Identifiers            January 1997


8.  Security Considerations

  Security issues are not discussed in this memo.

9.  Authors' Addresses

  Andy Bierman
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134

  Phone: 408-527-3711
  EMail: [email protected]


  Robin Iddon
  3Com/AXON
  40/50 Blackfrias Street
  Edinburgh, UK

  Phone: +44 131.558.3888
  EMail: [email protected]





























Bierman & Iddon             Standards Track                    [Page 43]