Network Working Group                                         W. Polites
Request for Comments: 1986                                    W. Wollman
Category: Experimental                                            D. Woo
                                                  The MITRE Corporation
                                                              R. Langan
                                                        U.S. ARMY CECOM
                                                            August 1996


   Experiments with a Simple File Transfer Protocol for Radio Links
        using Enhanced Trivial File Transfer Protocol (ETFTP)


Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  This memo does not specify an Internet standard of any
  kind.  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

1. INTRODUCTION SECTION

  This document is a description of the Enhanced Trivial File Transfer
  Protocol (ETFTP). This protocol is an experimental implementation of
  the NETwork BLock Transfer Protocol (NETBLT), RFC 998 [1], as a file
  transfer application program. It uses the User Datagram Protocol
  (UDP), RFC 768 [2], as its transport layer. The two protocols are
  layered to create the ETFTP client server application. The ETFTP
  program is named after Trivial File Transfer Protocol (TFTP), RFC
  1350 [3], because the source code from TFTP is used as the building
  blocks for the ETFTP program. This implementation also builds on but
  differs from the work done by the National Imagery Transmission
  Format Standard [4].

  This document is published for discussion and comment on improving
  the throughput performance of data transfer utilities over Internet
  Protocol (IP) compliant, half duplex, radio networks.

  There are many file transfer programs available for computer
  networks.  Many of these programs are designed for operations through
  high-speed, low bit error rate (BER) cabled networks. In tactical
  radio networks, traditional file transfer protocols, such as File
  Transfer Protocol (FTP) and TFTP, do not always perform well. This is
  primarily because tactical half duplex radio networks typically
  provide slow-speed, long delay, and high BER communication links.
  ETFTP is designed to allow a user to control transmission parameters
  to optimize file transfer rates through half-duplex radio links.




Polites, Wollman & Woo        Experimental                      [Page 1]

RFC 1986                         ETFTP                       August 1996


  The tactical radio network used to test this application was
  developed by the Survivable Adaptive Systems (SAS) Advanced
  Technology Demonstration (ATD). Part of the SAS ATD program was to
  address the problems associated with extending IP networks across
  tactical radios.  Several tactical radios, such as, SINgle Channel
  Ground and Airborne Radio Systems (SINCGARS), Enhanced Position
  Location Reporting Systems (EPLRS), Motorola LST-5C, and High
  Frequency (HF) radios have been interfaced to the system.  This
  document will discuss results obtained from using ETFTP across a
  point-to-point LST-5C tactical SATellite COMmunications (SATCOM)
  link. The network includes a 25 Mhz 486 Personal Computer (PC) called
  the Army Lightweight Computer Unit (LCU), Cisco 2500 routers,
  Gracilis PackeTen Network switches, Motorola Sunburst Cryptographic
  processors, a prototype forward error correction (FEC) device, and
  Motorola LST-5C tactical Ultra High Frequency (UHF) satellite
  communications (SATC!  OM) radio. Table 1, "Network Trans fer Rates,"
  describes the equipment network connections and the bandwidth of the
  physical media interconnecting the devices.

  Table 1: Network Transfer Rates

  +-------------------------------+-------------------------------+
  | Equipment                     | Rate (bits per second)        |
  +-------------------------------+-------------------------------+
  | Host Computer (486 PC)        | 10,000,000 Ethernet           |
  +-------------------------------+-------------------------------+
  | Cisco Router                  | 10,000,000 Ethernet to        |
  |                               | 19,200 Serial Line Internet   |
  |                               | Protocol (SLIP)               |
  +-------------------------------+-------------------------------+
  | Gracilis PackeTen             | 19,200 SLIP to                |
  |                               | 16,000 Amateur Radio (AX.25)  |
  +-------------------------------+-------------------------------+
  | FEC                           | half rate or quarter rate     |
  +-------------------------------+-------------------------------+
  | Sunburst Crypto               | 16,000                        |
  +-------------------------------+-------------------------------+
  | LST-5C Radio                  | 16,000                        |
  +-------------------------------+-------------------------------+

  During 1993, the MITRE team collected data for network configurations
  that were stationary and on-the-move. This network configuration did
  not include any Forward Error Correction (FEC) at the link layer.
  Several commercially available implementations of FTP were used to
  transfer files through a 16 kbps satellite link. FTP relies upon the
  Transmission Control Protocol (TCP) for reliable communications.  For
  a variety of file sizes, throughput measurements ranged between 80
  and 400 bps. At times, TCP connections could be opened, however, data



Polites, Wollman & Woo        Experimental                      [Page 2]

RFC 1986                         ETFTP                       August 1996


  transfers would be unsuccessful. This was most likely due to the
  smaller TCP connection synchronization packets, as compared to the
  TCP data packets.  Because of the high bit error rate of the link,
  the smaller packets were much more likely to be received without
  error. In most cases, satellite channel utilization was less than 20
  percent.  Very often a file transfer would fail because FTP
  implementations would curtail the transfer due t!  o the poor
  conditions of the commu nication link.

  The current focus is to increase the throughput and channel
  utilization over a point to point, half duplex link. Follow on
  experiments will evaluate ETFTP's ability to work with multiple hosts
  in a multicast scenario. Evaluation of the data collected helped to
  determine that several factors limited data throughput. A brief
  description of those limiting factors, as well as, solutions that can
  reduce these networking limitations is provided below.

Link Quality

  The channel quality of a typical narrow-band UHF satellite link does
  not sufficiently support data communications without the addition of
  a forward error correction (FEC) capability.  From the data
  collected, it was determined that the UHF satellite link supports, on
  average, a 10e-3 bit error rate.

  Solution: A narrow-band UHF satellite radio FEC prototype was
  developed that improves data reliability, without excessively
  increasing synchronization requirements. The prototype FEC increased
  synchronization requirements by less than 50 milliseconds (ms). The
  FEC implementation will improve an average 10e-3 BER channel to an
  average 10e-5 BER channel.

Delays

  Including satellite propagation delays, the tactical satellite radios
  require approximately 1.25 seconds for radio synchronization prior to
  transmitting any data across the communication channel.  Therefore,
  limiting the number of channel accesses required will permit data
  throughput to increase. This can be achieved by minimizing the number
  of acknowledgments required during the file transfer.  FTP generates
  many acknowledgments which decreases throughput by increasing the
  number of satellite channel accesses required.

  To clarify, when a FTP connection request is generated, it is sent
  via Ethernet to the router and then forwarded to the radio network
  controller (RNC).  The elapsed time is less than 30 ms. The RNC keys
  the crypto unit and 950 ms later modem/crypto synchronization occurs.
  After synchronization is achieved, the FTP connection request is



Polites, Wollman & Woo        Experimental                      [Page 3]

RFC 1986                         ETFTP                       August 1996


  transmitted. The transmitting terminal then drops the channel and the
  modem/crypto synchronization is lost. Assuming that the request was
  received successfully, the receiving host processes the request and
  sends an acknowledgment. Again the modem/crypto have to synchronize
  prior to transmitting the acknowledgment. Propagation delays over a
  UHF satellite also adds roughly 500 ms to the total round trip delay.

  Solution: When compared to FTP, NETBLT significantly reduces the
  number of acknowledgments required to complete a file transfer.
  Therefore, leveraging the features available within an implementation
  of NETBLT will significantly improve throughput across the narrow-
  band UHF satellite communication link.

  To reduce the number of channel accesses required, a number of AX.25
  parameters were modified.  These included the value of p for use
  within the p-persistence link layer protocol, the slot time, the
  transmit tail time, and the transmit delay time.  The p-persistence
  is a random number threshold between 0 and 255.  The slot time is the
  time to wait prior to attempting to access the channel.  The transmit
  tail increases the amount of time the radio carrier is held on, prior
  to dropping the channel. Transmit delay is normally equal to the
  value of the radio synchronization time.  By adjusting these
  parameters to adapt to the tactical satellite environment, improved
  communication performance can be achieved.

  First, in ETFTP, several packets within a buffer are transmitted
  within one burst. If the buffer is partitioned into ten packets, each
  of 1024 bytes, then 10,240 bytes of data is transmitted with each
  channel access. It is possible to configure ETFTP's burstsize to
  equal the number of packets per buffer. Second, the transmit tail
  time was increased to hold the key down on the transmitter long
  enough to insure all of the packets within the buffer are sent in a
  single channel access. These two features, together, allow the system
  to transmit an entire file (example, 100,000 bytes) with only a
  single channel access by adjusting buffer size. Thirdly, the ETFTP
  protocol only acknowledges each buffer, not each packet. Thus, a
  single acknowledgment is sent from the receiving terminal containing
  a request for the missing packets within each buffer, reducing the
  number of acknowledgment packets sent. Which in turn, reduced the
  number of times the channel has to be turned around.

  To reduce channel access time, p-persistence was set to the maximum
  value and slot time to a minimum value. These settings support
  operations for a point-to-point communication link between two users.
  This value of p would not be used if more users were sharing the
  satellite channel.





Polites, Wollman & Woo        Experimental                      [Page 4]

RFC 1986                         ETFTP                       August 1996


Backoffs

  TCP's slow start and backoff algorithms implemented in most TCP
  packages assume that packet loss is due to network congestion.  When
  operating across a tactical half duplex communication channel
  dedicated to two users, packet loss is primarily due to poor channel
  quality, not network congestion. A linear backoff at the transport
  layer is recommended. In a tactical radio network there are numerous
  cases where a single host is connected to multiple radios. In a
  tactical radio network, layer two will handle channel access.
  Channel access will be adjusted through parameters like p-persistence
  and slot time. The aggregate effect of the exponential backoff from
  the transport layer added to the random backoff of the data link
  layer, will in most cases, cause the radio network to miss many
  network access opportunities. A linear backoff will reduce the number
  missed data link network access opportunities

  Solution: Tunable parameters and timers have been modified to
  resemble those suggested by NETBLT.

Packet Size

  In a tactical environment, channel conditions change rapidly.
  Continuously transmitting large packets under 10e-3 BER conditions
  reduces effective throughput.

  Solution: Packet sizes are dynamically adjusted based upon the
  success of the buffer transfers. If 99 percent of all packets within
  a buffer are received successfully, packet size can be increased to a
  negotiated value.  If 50 percent or more of all packets within a
  buffer are not successfully delivered, the packet size can be
  decreased to a negotiated value.

2. PROTOCOL DESCRIPTION

  Throughout this document the term packet is used to describe a
  datagram that includes all network overhead. A block is used to
  describe information, without any network encapsulation.

  The original source files for TFTP, as downloaded from ftp.uu.net,
  were modified to implement the ETFTP/NETBLT protocol. These same
  files are listed in "UNIX Network Programming" [5].

  ETFTP was implemented for operations under the Santa Cruz Operations
  (SCO) UNIX. In the service file, "/etc/services", an addition was
  made to support "etftp" at a temporary well known port of "1818"
  using "UDP" protocol. The file, "/etc/inetd.conf", was modified so
  the "inetd" program could autostart the "etftpd" server when a



Polites, Wollman & Woo        Experimental                      [Page 5]

RFC 1986                         ETFTP                       August 1996


  connection request came in on the well known port.

  As stated earlier, the transport layer for ETFTP is UDP, which will
  not be discussed further here. This client server application layer
  protocol is NETBLT, with four notable differences.

  The first change is that this NETBLT protocol is implemented on top
  of the UDP layer. This allowed the NETBLT concepts to be tested
  without modifying the operating system's transport or network layers.
  Table 2, "Four Layer Protocol Model," shows the protocol stack for
  FTP, TFTP and ETFTP.

  Table 2: Four Layer Protocol Model

  +---------------------------------------------------------------+
  |                         PROTOCOL STACK                        |
  +---------------+---------------+---------------+---------------+
  |APPLICATION    |FTP            |TFTP           |ETFTP/NETBLT   |
  +---------------+---------------+---------------+---------------+
  |TRANSPORT      |TCP            |UDP            |UDP            |
  +---------------+---------------+---------------+---------------+
  |NETWORK        |IP                                             |
  +---------------+---------------+---------------+---------------+
  |LINK           |Ethernet, SLIP, AX.25                          |
  +---------------+---------------+---------------+---------------+

  The second change is a carryover from TFTP, which allows files to be
  transferred in netascii or binary modes. A new T bit flag is assigned
  to the reserved field of the OPEN message type.

  The third change is to re-negotiate the DATA packet size. This change
  affects the OPEN, NULL-ACK, and CONTROL_OK message types.  A new R
  bit is assigned to the reserved field of the OPEN message type.

  The fourth change is the addition of two new fields to the OPEN
  message type. The one field is a two byte integer for radio delay in
  seconds, and the next field is two bytes of padding.

  The ETFTP data encapsulation is shown in Table 3, "ETFTP Data
  Encapsulation,". The Ethernet, SLIP, and AX.25 headers are mutually
  exclusive. They are stripped off and added by the appropriate
  hardware layer.









Polites, Wollman & Woo        Experimental                      [Page 6]

RFC 1986                         ETFTP                       August 1996


  Table 3: ETFTP Data Encapsulation

  +------------+------------+------------+------------+-----------+
  |Ethernet(14)|            |            |ETFTP/      |           |
  |SLIP(2)     |IP(20)      |UDP(8)      |NETBLT(24)  |DATA(1448) |
  |AX.25(20)   |            |            |            |           |
  +------------+------------+------------+------------+-----------+

2.1     MESSAGE TYPES AND FORMATS

  Here are the ETFTP/NETBLT message types and formats.

  MESSAGES        VALUES
  OPEN    0  Client request to open a new connection
  RESPONSE        1  Server positive acknowledgment for OPEN
  KEEPALIVE       2  Reset the timer
  QUIT    3  Sender normal Close request
  QUITACK 4  Receiver acknowledgment of QUIT
  ABORT   5  Abnormal close
  DATA    6  Sender packet containing data
  LDATA   7  Sender last data block of a buffer
  NULL-ACK        8  Sender confirmation of CONTROL_OK changes
  CONTROL 9  Receiver request to
          GO      0 Start transmit of next buffer
          OK      1 Acknowledge complete buffer
          RESEND  2 Retransmit request
  REFUSED 10 Server negative acknowledgment of OPEN
  DONE    11 Receiver acknowledgment of QUIT.

  Packets are "longword-aligned", at four byte word boundaries.
  Variable length strings are NULL terminated, and padded to the four
  byte boundary. Fields are listed in network byte order. All the
  message types share a common 12 byte header. The common fields are:

  Checksum        IP compliant checksum
  Version Current version ID
  Type    NETBLT message type
  Length  Total byte length of packet
  Local Port      My port ID
  Foreign Port    Remote port ID
  Padding Pad as necessary to 4 byte boundary

  The OPEN and RESPONSE messages are similar and shown in Table 4,
  "OPEN and RESPONSE Message Types,". The client string field is used
  to carry the filename to be transferred.






Polites, Wollman & Woo        Experimental                      [Page 7]

RFC 1986                         ETFTP                       August 1996


  Table 4: OPEN and RESPONSE Message Types

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+
  |Connection ID                                                  |
  +---------------+---------------+---------------+---------------+
  |Buffer size                                                     |
  +---------------+---------------+---------------+---------------+
  |Transfer size                                                   |
  +---------------+---------------+---------------+---------------+
  |DATA Packet size                |Burstsize                      |
  +---------------+---------------+---------------+---------------+
  |Burstrate                      |Death Timer Value              |
  +---------------+---------------+---------------+---------------+
  |Reserved(MBZ)          |R|T|C|M|Maximum # Outstanding Buffers  |
  +---------------+---------------+---------------+---------------+
  |*Radio Delay                   |*Padding                       |
  +---------------+---------------+---------------+---------------+
  |Client String . . .            |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+

  Connection ID   The unique connection number
  Buffer size     Bytes per buffer
  Transfer size   The length of the file in bytes
  DATA Packet size        Bytes per ETFTP block
  Burstsize       Concatenated packets per burst
  Burstrate       Milliseconds per burst
  Death Timer     Seconds before closing idle links
  Reserved        M bit is mode: 0=read/put, 1=write/get
          C bit is checksum: 0=header, 1=all
          *T bit is transfer: 0=netascii, 1=binary
          *R bit is re-negotiate: 0=off, 1=on
  Max # Out Buffs Maximum allowed un-acknowledged buffers
  Radio Delay     *Seconds of delay from send to receive
  Padding *Unused
  Client String   Filename.

  The KEEPALIVE, QUITACK, and DONE messages are identical to the common
  header, except for the message type values. See Table 5, "KEEPALIVE,
  QUITACK, and DONE Message Types,".




Polites, Wollman & Woo        Experimental                      [Page 8]

RFC 1986                         ETFTP                       August 1996


  Table 5: KEEPALIVE, QUITACK, and DONE Message Types

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+


  The QUIT, ABORT, and REFUSED messages allow a string field to carry
  the reason for the message. See Table 6, "QUIT, ABORT, and REFUSED
  Message Types,".

  Table 6: QUIT, ABORT, and REFUSED Message Types

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+
  |Reason for QUIT/ABORT/REFUSED . . .                            |
  +---------------+---------------+---------------+---------------+
  |. . .                          |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+

  The DATA and LDATA messages make up the bulk of the messages
  transferred. The last packet of each buffer is flagged as an LDATA
  message. Each and every packet of the last buffer has the reserved L
  bit set. The highest consecutive sequence number is used for the
  acknowledgment of CONTROL messages. It should contain the ID number
  of the current CONTROL message being processed. Table 7, "DATA and
  LDATA Message Types,", shows the DATA and LDATA formats.











Polites, Wollman & Woo        Experimental                      [Page 9]

RFC 1986                         ETFTP                       August 1996


  Table 7: DATA and LDATA Message Types

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+
  |Buffer Number                                                  |
  +---------------+---------------+---------------+---------------+
  |High Consecutive Seq Num Rcvd  |Packet Number                  |
  +---------------+---------------+---------------+---------------+
  |Data Area Checksum Value       |Reserved (MBZ)               |L|
  +---------------+---------------+---------------+---------------+

  Buffer Number   The first buffer number starts at 0
  Hi Con Seq Num  The acknowledgment for CONTROL messages
  Packet Number   The first packet number starts at 0
  Data Checksum   Checksum for data area only
  Reserved        L: the last buffer bit: 0=false, 1=true

  The NULL-ACK message type is sent as a response to a CONTROL_OK
  message that modifies the current packet size, burstsize, or
  burstrate. In acknowledging the CONTROL_OK message, the sender is
  confirming the change request to the new packet size, burstsize, or
  burstrate. If no modifications are requested, a NULL-ACK message is
  unnecessary. See Table 8, "NULL-ACK Message Type," for further
  details.

  Table 8: NULL-ACK Message Type

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+
  |High Consecutive Seq Num Rcvd  |New Burstsize                  |
  +---------------+---------------+---------------+---------------+
  |New Burstrate                  |*New DATA Packet size           |
  +---------------+---------------+---------------+---------------+




Polites, Wollman & Woo        Experimental                     [Page 10]

RFC 1986                         ETFTP                       August 1996


  The CONTROL messages have three subtypes: GO, OK, and RESEND as shown
  in Tables 9-12. The CONTROL message common header may be followed by
  any number of longword aligned subtype messages.

  Table 9: CONTROL Message Common Header

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Checksum                       |Version        |Type           |
  +---------------+---------------+---------------+---------------+
  |Length                         |Local Port                     |
  +---------------+---------------+---------------+---------------+
  |Foreign Port                   |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+

  Table 10: CONTROL_GO Message Subtype

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Subtype        |Padding        |Sequence Number                |
  +---------------+---------------+---------------+---------------+
  |Buffer Number                                                  |
  +---------------+---------------+---------------+---------------+

  Table 11: CONTROL_OK Message Subtype

                    1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Subtype        |Padding        |Sequence Number                |
  +---------------+---------------+---------------+---------------+
  |Buffer Number                                                  |
  +---------------+---------------+---------------+---------------+
  |New Offered Burstsize          |New Offered Burstrate          |
  +---------------+---------------+---------------+---------------+
  |Current Control Timer Value    |*New DATA Packet size           |
  +---------------+---------------+---------------+---------------+












Polites, Wollman & Woo        Experimental                     [Page 11]

RFC 1986                         ETFTP                       August 1996


  Table 12: CONTROL_RESEND Message Subtype

                     1                   2                   3
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
  +---------------+---------------+---------------+---------------+
  |Subtype        |Padding        |Sequence Number                |
  +---------------+---------------+---------------+---------------+
  |Buffer Number                                                  |
  +---------------+---------------+---------------+---------------+
  |Number of Missing Packets      |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+
  |Packet Number (2 bytes)        |. . .                          |
  +---------------+---------------+---------------+---------------+
  |. . .                          |Longword Alignment Padding     |
  +---------------+---------------+---------------+---------------+

2.2 ETFTP COMMAND SET

  Being built from TFTP source code, ETFTP shares a significant portion
  of TFTP's design. Like TFTP, ETFTP does NOT support user password
  validation. The program does not support changing directories (i.e.
  cd), neither can it list directories, (i.e. ls). All filenames must
  be given in full paths, as relative paths are not supported. The
  internal finite state machine was modified to support NETBLT message
  types.

  The NETBLT protocol is implemented as closely as possible to what is
  described in RFC 998, with a few exceptions. The client string field
  in the OPEN message type is used to carry the filename of the file to
  be transferred. Netascii or binary transfers are both supported. If
  enabled, new packet sizes, burstsizes, and burstrates are re-
  negotiated downwards when half or more of the blocks in a buffer
  require retransmission. If 99% of the packets in a buffer is
  successfully transferred without any retransmissions, packet size is
  re-negotiated upwards.

  The interactive commands supported by the client process are similar
  to TFTP. Here is the ETFTP command set. Optional parameters are in
  square brackets. Presets are in parentheses.

  ?       help, displays command list
  ascii   mode ascii, appends CR-LF per line
  autoadapt       toggles backoff function (on)
  baudrate baud   baud rate (16000 bits/sec)
  binary  mode binary, image transfer
  blocksize bytes packet size in bytes (512 bytes/block)
  bufferblock blks        buffer size in blocks (128 blocks/buff)
  burstsize packets       burst size in packets (8 blocks/burst)



Polites, Wollman & Woo        Experimental                     [Page 12]

RFC 1986                         ETFTP                       August 1996


  connect host [p]        establish connection with host at port p
  exit    ends program
  get rfile lfile copy remote file to local file
  help    same as ?
  mode choice     set transfer mode (binary)
  multibuff num   number of buffers (2 buffers)
  put lfile rfile copy local file to remote file
  quit    same as exit
  radiodelay sec  transmission delay in seconds (2 sec)
  status  display network parameters
  trace   toggles debug display (off).

2.3 DATA TRANSFER AND FLOW CONTROL

  This is the scenario between client and server transfers:

  Client sends OPEN for connection, blocksize, buffersize, burstsize,
  burstrate, transfer mode, and get or put. See M bit of reserved
  field.

  Server sends a RESPONSE with the agreed parameters.

  Receiver sends a CONTROL_GO request sending of first buffer.

  Sender starts transfer by reading the file into multiple memory
  buffers. See Figure 1, "File Segmentation,". Each buffer is divided
  according to the number of bytes/block. Each block becomes a DATA
  packet, which is concatenated according to the blocks/burst.  Bursts
  are transmitted according to the burstrate. Last data block is
  flagged as LDATA type.

  +---+     +---+      +---+ +---+ +---+      +---+ +---+ +---+
  |   |     | 0 |      | L | | 4 | | 3 | ---- | 2 | | 1 | | 0 |
  |   |     | +---+    +---+ +---+ +---+      +---+ +---+ +---+
  |   |     +-|   | -->      +---+ +---+      +---+ +---+ +---+
  |   | -->   | 1 |          | L | | 3 | ---- | 2 | | 1 | | 0 |
  +---+       +---+          +---+ +---+      +---+ +---+ +---+
  File   Multi Buffers  Blocks per Burst

  Figure 1. File Segmentation

  Receiver acknowledges buffer as CONTROL_OK or CONTROL_RESEND.

  If blocks are missing, a CONTROL_RESEND packet is transmitted. If
  half or more of the blocks in a buffer are missing, an adaptive
  algorithm is used for the next buffer transfer. If no blocks are
  missing, a CONTROL_OK packet is transmitted.




Polites, Wollman & Woo        Experimental                     [Page 13]

RFC 1986                         ETFTP                       August 1996


  Sender re-transmits blocks until receipt of a CONTROL_OK. If the
  adaptive algorithm is set, then new parameters are offered, in the
  CONTROL_OK message. The priority of the adaptive algorithm is:

  -       Reduce packetsize by half (MIN = 16 bytes/packet)
  -       Reduce burstsize by one (MIN = 1 packet/burst)
  -       Reduce burstrate to actual tighttimer rate

  If new parameters are valid, the sender transmits a NULL-ACK packet,
  to confirm the changes.

  Receiver sends a CONTROL_GO to request sending next buffer.

  At end of transfer, sender sends a QUIT to close the connection.

  Receiver acknowledges the close request with a DONE packet.

2.4 TUNABLE PARAMETERS

  These parameters directly affect the throughput rate of ETFTP.

  Packetsize      The packetsize is the number of 8 bit bytes per
  packet. This number refers to the user data bytes in a block, (frame),
  exclusive of any network overhead. The packet size has a valid range
  from 16 to 1,448 bytes. The Maximum Transfer Unit (MTU) implemented in
  most commercial network devices is 1,500 bytes. The de-facto industry
  standard is 576 byte packets.

  Bufferblock     The bufferblock is the number of blocks per buffer.
  Each implementation may have restrictions on available memory, so the
  buffersize is calculated by multiplying the packetsize times the
  bufferblocks.

  Baudrate        The baudrate is the bits per second transfer rate of
  the slowest link (i.e., the radios). The baudrate sets the speed of
  the sending process. The sending process cannot detect the actual
  speed of the network, so the user must set the correct baudrate.

  Burstsize       The burstsize in packets per burst sets how many
  packets are concatenated and burst for transmission efficiency. The
  burstsize times the packetsize must not exceed the available memory of
  any intervening network devices. On the Ethernet portion of the
  network, all the packets are sent almost instantaneously. It is
  necessary to wait for the network to drain down its memory buffers,
  before the next burst is sent. The sending process needs to regulate
  the rate used to place packets into the network.





Polites, Wollman & Woo        Experimental                     [Page 14]

RFC 1986                         ETFTP                       August 1996


  Radiodelay      The radiodelay is the time in seconds per burst it
  takes to synchronize with the radio controllers. Any additional
  hardware delays should be set here. It is the aggregate delay of the
  link layer, such as transmitter key-up, FEC, crypto synchronization,
  and propagation delays.

  These parameters above are used to calculate a burstrate, which is the
  length of time it takes to transmit one burst. The ov is the overhead
  of 72 bytes per packet of network encapsulation. A byte is defined as
  8 bits. The burstrate value is:

    burstrate = (packetsize+ov)*burstsize*8/baudrate

  In a effort to calculate the round trip time, when data is flowing in
  one direction for most of the transfer, the OPEN and RESPONSE message
  types are timed, and the tactical radio delays are estimated. Using
  only one packet in each direction to estimate the rate of the link is
  statistically inaccurate. It was decided that the radio delay should
  be a constant provided by the user interface.  However, a default
  value of 2 seconds is used. The granularity of this value is in
  seconds because of two reasons. The first reason is that the UNIX
  supports a sleep function in seconds only. The second reason is that
  in certain applications, such as deep space probes, a 16-bit integer
  maximum of 32,767 seconds would suffice.

2.5 DELAYS AND TIMERS

  From these parameters, several timers are derived. The control timer
  is responsible for measuring the per buffer rate of transfer. The
  SENDER copy is nicknamed the loosetimer.

    loosetimer = (burstrate+radiodelay)*bufferblock/burstsize

  The RECEIVER copy of the timer is nicknamed the tighttimer, which
  measures the elapsed time between CONTROL_GO and CONTROL_OK packets.
  The tighttimer is returned to the SENDER to allow the protocol to
  adjust for the speed of the network.

  The retransmit timer is responsible for measuring the network receive
  data function. It is used to set an alarm signal (SIGALRM) to
  interrupt the network read. The retransmit timer (wait) is initially
  set to be the greater of twice the round trip or 4 times the
  radiodelay, plus a constant 5 seconds.








Polites, Wollman & Woo        Experimental                     [Page 15]

RFC 1986                         ETFTP                       August 1996


     wait = MAX ( 2*roundtriptime,  4*radiodelay ) + 5 seconds

  and

     alarm timeout = wait.

  Each time the same read times out, a five second backoff is added to
  the next wait. The backoff is necessary because the initial user
  supplied radiodelay, or the initial measured round trip time may be
  incorrect.

  The retransmit timer is set differently for the RECEIVER during a
  buffer transfer. Before the arrival of the first DATA packet, the
  original alarm time out is used. Once the DATA packets start
  arriving, and for the duration of each buffer transfer, the RECEIVER
  alarm time out is reset to the expected arrival time of the last DATA
  packet (blockstogo) plus the delay (wait). As each DATA packet is
  received, the alarm is decremented by one packet interval. This same
  algorithm is used for receiving missing packets, during a RESEND.

    alarmtimeout = blockstogo*burstrate/burstsize + wait

  The death timer is responsible for measuring the idle time of a
  connection. In the ETFTP program, the death timer is set to be equal
  to the accumulated time of ten re-transmissions plus their associated
  backoffs. As such, the death timer value in the OPEN and RESPONSE
  message types is un-necessary. In the ETFTP program, this field could
  be used to transfer the radio delay value instead of creating the two
  new fields.

  The keepalive timer is responsible for resetting the death timer.
  This timer will trigger the sending of a KEEPALIVE packet to prevent
  the remote host from closing a connection due to the expiration of
  its death timer. Due to the nature of the ETFTP server process, a
  keepalive timer was not necessary, although it is implemented.

2.6 TEST RESULTS

  The NETBLT protocol has been tested on other high speed networks
  before, see RFC 1030 [6]. These test results in Tables 13 and 14,
  "ETFTP Performance," were gathered from files transferred across the
  network and LST-5C TACSAT radios.  The radios were connected together
  via a coaxial cable to provide a "clean" link. A clean link is
  defined to a BER of 10e-5. The throughput rates are defined to be the
  file size divided by the elapsed time resulting in bits per second
  (bps).  The elapsed time is measured from the time of the "get" or
  "put" command to the completion of the transfer. This is an all
  inclusive time measurement based on user perspective. It includes the



Polites, Wollman & Woo        Experimental                     [Page 16]

RFC 1986                         ETFTP                       August 1996


  connection time, transfer time, error recovery time, and disconnect
  time. The user concept of elapsed time is the length of time it takes
  to copy a file from disk to disk. These results show only the average
  performances, including the occasional packet re-transmissions. The
  network configuration was set as:

  ETFTP Parameters:

  Filesize                101,306 bytes
  Radiodelay      2 seconds
  Buffersize      16,384-131,072 bytes
  Packetsize      512-2048 bytes
  Burstsize               8-16 packets/burst

  Gracilis PackeTen Parameters:

  0 TX Delay      400 milliseconds
  1 P Persist     255 [range 1-255]
  2 Slot Time     30 milliseconds
  3 TX Tail               300 milliseconds
  4 Rcv Buffers   8 2048 bytes/buffer
  5 Idle Code     Flag

  Radio Parameters:

  Baudrate                16,000 bps
  Encryption      on


  Table 13: ETFTP Performance at 8 Packets/Burst in Bits/Second

  +-----------+-----------+-----------+-----------+-----------+
  |buffersize |packetsize |packetsize |packetsize |packetsize |
  |(bytes)    |2,048 bytes|1,448 bytes|1,024 bytes|512 bytes  |
  +-----------+-----------+-----------+-----------+-----------+
  |    16,384 |     7,153 |     6,952 |     6,648 |     5,248 |
  +-----------+-----------+-----------+-----------+-----------+
  |    32,768 |     7,652 |     7,438 |     7,152 |     4,926 |
  +-----------+-----------+-----------+-----------+-----------+
  |    65,536 |     8,072 |     8,752 |     8,416 |     5,368 |
  +-----------+-----------+-----------+-----------+-----------+
  |   131,072 |     8,828 |     9,112 |     7,888 |     5,728 |
  +-----------+-----------+-----------+-----------+-----------+








Polites, Wollman & Woo        Experimental                     [Page 17]

RFC 1986                         ETFTP                       August 1996


  Table 14: ETFTP Performance at 16 Packets/Burst in Bits/Second

  +-----------+-----------+-----------+-----------+-----------+
  |buffersize |packetsize |packetsize |packetsize |packetsize |
  |(bytes)    |2,048 bytes|1,448 bytes|1,024 bytes|512 bytes  |
  +-----------+-----------+-----------+-----------+-----------+
  |    16,384 |     5,544 |     5,045 |     4,801 |     4,570 |
  +-----------+-----------+-----------+-----------+-----------+
  |    32,768 |     8,861 |     8,230 |     8,016 |     7,645 |
  +-----------+-----------+-----------+-----------+-----------+
  |    65,536 |     9,672 |     9,424 |     9,376 |     8,920 |
  +-----------+-----------+-----------+-----------+-----------+
  |   131,072 |    10,432 |    10,168 |     9,578 |     9,124 |
  +-----------+-----------+-----------+-----------+-----------+

2.7 PERFORMANCE CONSIDERATIONS

  These tests were performed across a tactical radio link with a
  maximum data rate of 16000 bps. In testing ETFTP, it was found that
  the delay associated with the half duplex channel turnaround time was
  the biggest factor in throughput performance. Therefore, every
  attempt was made to minimize the number of times the channel needed
  to be turned around. Obviously, the easiest thing to do is to use as
  big a buffer as necessary to read in a file, as acknowledgments
  occurred only at the buffer boundaries. This is not always feasible,
  as available storage on disk could easily exceed available memory.
  However, the current ETFTP buffersize is set at a maximum of 524,288
  bytes.

  The larger packetsizes also improved performance. The limit on
  packetsize is based on the 1500 byte MTU of network store and forward
  devices. In a high BER environment, a large packetsize could be
  detrimental to success. By reducing the packetsize, even though it
  negatively impacts performance, reliability is sustained. When used
  in conjunction with FEC, both performance and reliability can be
  maintained at an acceptable level.

  The burstsize translates into how long the radio transmitters are
  keyed to transmit. In ETFTP, the ideal situation is to have the first
  packet of a burst arrive in the radio transmit buffer, as the last
  packet of the previous burst is just finished being sent. In this
  way, the radio transmitter would never be dropped for the duration of
  one buffer. In a multi-user radio network, a full buffer transmission
  would be inconsiderate, as the transmit cycle could last for several
  minutes, instead of seconds. In measuring voice communications,
  typical transmit durations are on the order of five to twenty
  seconds.  This means that the buffersize and burstsize could be
  adjusted to have similar transmission durations.



Polites, Wollman & Woo        Experimental                     [Page 18]

RFC 1986                         ETFTP                       August 1996


3.  REFERENCE SECTION

  [1] Clark, D., Lambert, M., and L. Zhang,
      "NETBLT: A Bulk Data Transfer Protocol", RFC 998, MIT,
      March 1987.

  [2] Postel, J., "User Datagram Protocol" STD 6, RFC 768,
      USC/Information Sciences Institute, August 1980.

  [3] Sollins, K., "Trivial File Transfer Protocol", STD 33,
      RFC 1350, MIT, July 1992.

  [4] MIL-STD-2045-44500, 18 June 1993, "Military Standard Tactical
      Communications Protocol 2 (TACO 2) fot the National Imagery
      Transmission Format Standard", Ft. Monmouth, New Jersey.

  [5] Stevens, W. Richard, 1990, "UNIX Network Programming",
      Prentice-Hall Inc., Englewood, New Jersey, Chapter 12.

  [6] Lambert, M., "On Testing the NETBLT Protocol over
      Divers Networks", RFC 1030, MIT, November 1987.

4.  SECURITY CONSIDERATIONS

  The ETFTP program is a security loophole in any UNIX environment.
  There is no user/password validation. All the problems associated to
  TFTP are repeated in ETFTP. The server program must be owned by root
  and setuid to root in order to work. As an experimental prototype
  program, the security issue was overlooked. Since this protocol has
  proven too be a viable solution in tactical radio networks, the
  security issues will have to be addressed, and corrected.




















Polites, Wollman & Woo        Experimental                     [Page 19]

RFC 1986                         ETFTP                       August 1996


5.  AUTHORS' ADDRESSES

  William J. Polites
  The Mitre Corporation
  145 Wyckoff Rd.
  Eatontown, NJ 07724

  Phone: (908) 544-1414
  EMail:[email protected]


  William Wollman
  The Mitre Corporation
  145 Wyckoff Rd.
  Eatontown, NJ 07724

  Phone: (908) 544-1414
  EMail:[email protected]


  David Woo
  The Mitre Corporation
  145 Wyckoff Rd.
  Eatontown, NJ 07724

  Phone: (908) 544-1414
  EMail: [email protected]


  Russ Langan
  U.S. Army Communications Electronics Command (CECOM)
  AMSEL-RD-ST-SP
  ATTN: Russell Langan
  Fort Monmouth, NJ 07703

  Phone: (908) 427-2064
  Fax: (908) 427-2822
  EMail: [email protected]













Polites, Wollman & Woo        Experimental                     [Page 20]

RFC 1986                         ETFTP                       August 1996


6.  GLOSSARY

  ATD             Advanced Technology Demonstration
  AX.25           Amateur Radio X.25 Protocol
  BER             Bit Error Rate
  EPLRS           Enhanced Position Location Reporting Systems
  ETFTP           Enhanced Trivial File Transfer Protocol
  FEC             Forward Error Correction
  FTP             File Transfer Protocol
  HF              High Frequency
  LCU             Lightweight Computer Unit
  ms              milliseconds
  MTU             Maximum Transfer Unit
  NETBLT  NETwork Block Transfer protocol
  NITFS           National Imagery Transmission Format Standard
  PC              Personal Computer
  RNC             Radio Network Controller
  SAS             Survivable Adaptive Systems
  SATCOM  SATellite COMmunications
  SCO             Santa Cruz Operations
  SINCGARS        SINgle Channel Ground and Airborne Radio Systems
  SLIP            Serial Line Internet Protocol
  TACO2           Tactical Communications Protocol 2
  TCP             Transmission Control Protocol
  TFTP            Trivial File Transfer Protocol
  UDP             User Datagram Protocol
  UHF             Ultra High Frequency

  * Modification from NETBLT RFC 998.
  * The new packet size is a modification to the NETBLT RFC 998.
  * The new packet size is a modification to the NETBLT RFC 998.




















Polites, Wollman & Woo        Experimental                     [Page 21]