Network Working Group                                          R. Friend
Request for Comments: 1974                              Stac Electronics
Category: Informational                                       W. Simpson
                                                             DayDreamer
                                                            August 1996


                  PPP Stac LZS Compression Protocol

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.

  The PPP Compression Control Protocol [2] provides a method to
  negotiate and utilize compression protocols over PPP encapsulated
  links.

  This document describes the use of the Stac LZS data compression
  algorithm, with single or multiple compression histories, for
  compressing PPP encapsulated packets.

Table of Contents

    1.     Introduction ..........................................    2
       1.1       Licensing .......................................    2
       1.2       Specification of Requirements ...................    3
    2.     LZS Packets ...........................................    3
       2.1       Padding .........................................    4
       2.2       Zero Deletion/Insertion .........................    4
       2.3       Reliability and Sequencing ......................    4
          2.3.1  Reset-Request and Reset-Ack Packet Formats.......    5
       2.4       Data Expansion ..................................    6
       2.5       Packet Format ...................................    6
          2.5.1  PPP Protocol ....................................    7
          2.5.2  History Number ..................................    7
          2.5.3  Check Value .....................................    7
             2.5.3.1  LCB ........................................    7
             2.5.3.2  CRC ........................................    7
             2.5.3.3  Sequence Number ............................    8
                2.5.3.3.1  History Synchronization with Sequence
                            Numbers Example ......................    9



Friend & Simpson             Informational                      [Page 1]

RFC 1974                        Stac LZS                     August 1996


          2.5.4  History Synchronization Procedure ...............   10
          2.5.5  Compressed Data .................................   11
    3.     Sending Compressed Datagrams ..........................   12
       3.1       Transmitter Process .............................   12
       3.2       Receiver Process ................................   12
       3.3       History Maintenance .............................   13
       3.4       History Resynchronization Mechanism .............   14
    4.     Configuration Option Format ...........................   14
    5.     Definition of Extended Mode ...........................   16
       5.1       Extended Mode Packet Format .....................   16
       5.2       Extended Mode Transmitter Process ...............   18
       5.3       Extended Mode Receiver Process ..................   18
       5.4       Extended Mode Synchronization ...................   19
    SECURITY CONSIDERATIONS ......................................   19
    REFERENCES ...................................................   20
    CHAIR'S ADDRESS    ...........................................   20
    AUTHORS' ADDRESSES............................................   20

1.  Introduction

  Starting with a sliding window compression history, similar to LZ1
  [3], Stac Electronics developed a new, enhanced compression algorithm
  identified as Stac LZS.  The LZS algorithm is optimized to compress
  all file types as efficiently as possible.  Even string matches as
  short as two octets are effectively compressed.

  The Stac LZS compression algorithm supports both single compression
  history communication and multiple compression history communication.

  A single compression history will require the minimum amount of
  memory to implement, but may not provide as much compression as a
  multiple history implementation.

  Often, many streams of information are interleaved over the same
  link.  Each virtual link will transmit data that is independent of
  other virtual links.  Using multiple compression histories can
  improve the compression ratio of a communication link by associating
  separate compression histories with separate virtual links of
  communication.

1.1.  Licensing

  Source and object licenses are available on a non-discriminatory
  basis.  Hardware implementations are also available.  Contact Stac
  Electronics at the address and phone number listed with the author's
  address for further information.





Friend & Simpson             Informational                      [Page 2]

RFC 1974                        Stac LZS                     August 1996


1.2.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications MUST be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.

2.  LZS Packets

  Before any LZS packets may be communicated, PPP must reach the
  Network-Layer Protocol phase.

  When the Compression Control Protocol (CCP) has reached the Opened
  state, and LZS is negotiated as the primary compression algorithm,
  exactly one Stac LZS datagram is encapsulated in the PPP Information
  field, where the PPP Protocol field indicates type hex 00FD
  (compressed datagram) or type hex 00FB (Individual link compressed
  datagram).  Type hex 00FD is used when compression is negotiated over
  a single physical link or when compression is negotiated over a
  single bundle consisting of multiple physical links.  Type hex 00FB
  is used when compression is negotiated separately over individual
  physical links to the same destination.  For more information, please
  refer to PPP Compression Control Protocol.

  When CCP has not successfully reached the Opened state, or LZS is not
  the primary compression algorithm, exactly one LZS datagram is
  encapsulated in the PPP Information field, where the PPP Protocol
  field indicates type hex 4021 (Stac LZS).

     Note that in the latter case, use of LZS is terminated by the PPP
     LCP Protocol-Reject.  The default format is used: a single history
     with no History Number field and no Check Value field (as if the



Friend & Simpson             Informational                      [Page 3]

RFC 1974                        Stac LZS                     August 1996


     negotiated history count were 1).

  The maximum length of the Stac LZS datagram transmitted over a PPP
  link is the same as the maximum length of the Information field of a
  PPP encapsulated packet.

  Prior to compression, the uncompressed data begins with the PPP
  Protocol ID Field.  Protocol-Field-Compression MAY be used on this
  value, if it has been successfully negotiated for the link.

  The PPP Protocol ID Field is followed by the original Information
  field. The length of the uncompressed data field is limited only by
  the allowed size of the compressed data field and the higher protocol
  layers.

  PPP Link Control Protocol packets MUST NOT be sent within Stac LZS
  packets.  PPP Network Control Protocol packets MUST NOT be sent
  within Stac LZS packets.

2.1.  Padding

  The LZS Information field always ends with the last compressed data
  byte (also known as the <end marker>), which is used to disambiguate
  padding.  This allows trailing bits as well as octets to be
  considered padding.

2.2  Zero Deletion/Insertion

  When the sender does not add Padding [1], any trailing zero octets
  MAY be removed prior to transmission.  A single trailing zero octet
  MUST be appended upon receipt, after removal of any framing FCS.

2.3.  Reliability and Sequencing

  When no Compression History is kept, the algorithm does not depend on
  a reliable link, and does not require that packets be delivered in
  sequence.  However, per packet compression results in a lower
  compression ratio than it could be on a stream.

  Some reasons for resetting the history on a per packet basis include:

     -  The link has a high error rate.
     -  The resources of the transmitter or receiver limit the ability
        to maintain a compression history between packets.

  When more than 1 Compression History is negotiated, the packet
  sequence MUST be preserved within specific History Numbers.  There is
  no sequence requirement between different History Numbers.



Friend & Simpson             Informational                      [Page 4]

RFC 1974                        Stac LZS                     August 1996


  When one or more compression histories is negotiated on the link, the
  implementation MUST implement either a lower layer reliable link
  protocol, or keep the compressor and decompressor histories in
  synchronization, or both.

  To maintain history synchronization, the implementation MUST use the
  Reset-Request and Reset-Ack messages of the Compression Control
  Protocol and MUST use an Option 17 check mode value of sequence
  numbers (and MAY implement other check mode values other than none).
  In this case the Data field of the CCP Reset-Request and Reset-Ack
  MUST contain the two octet History Number to be reset, most
  significant octet first.

  If neither of these conditions are met on the data link, then the
  compression histories MUST be reset after transmitting each datagram.

  The transmitter MAY clear a Compression History at any time.  The
  receiver is implicitly notified of this event, and the decompression
  history will automatically be affected.

  The transmitter MUST reset a history after a CCP Reset-Request for
  the given History Number.

  2.3.1  Reset-Request and Reset-Ack Packet Formats

     A summary of the CCP Reset-Request and Reset-Ack packet formats
     for Stac LZS compressed links are shown below.  The fields are
     transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |              Data             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Code

     14 for Reset-Request;

     15 for Reset-Ack.

  Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has



Friend & Simpson             Informational                      [Page 5]

RFC 1974                        Stac LZS                     August 1996


     been received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

     On reception, the Identifier field of the Reset-Request is copied
     into the Identifier field of the Reset-Ack packet.

  Data

     The Data field contains the two octet History Number of the
     compression history that is to be reset, most significant octet
     first.  This History Number value is 1 when no history number is
     present.

2.4.  Data Expansion

  The maximum expansion of Stac LZS is 12.5%.

  A Maximum Receive Unit (MRU) MAY be negotiated that is 12.5% larger
  than the size of a normal packet.  Then, packets can always be sent
  compressed regardless of expansion.

  When the expansion plus compression header exceeds the size of the
  peer's MRU for the link, the PPP packet MUST be sent without
  compression, in the original PPP packet form with the "native" PPP
  Protocol ID number.  The transmitter MUST reset the affected history.

  If it is detected that most packets are expanding (for example, due
  to the use of already compressed data), then the transmitter SHOULD
  stop sending compressed packets, and reset the appropriate history.
  Data compression MAY be resumed on this data link later.

2.5.  Packet Format

  A summary of the Stac LZS packet format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         PPP Protocol          |       (History Number*)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        (Check Value*)         |       Compressed Data ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   * Note: these fields are variable length fields as described below.







Friend & Simpson             Informational                      [Page 6]

RFC 1974                        Stac LZS                     August 1996


  2.5.1.  PPP Protocol

     The PPP Protocol field is a 2 octet field described in the Point-
     to-Point Protocol Encapsulation [1].

     When the Stac LZS compression protocol is successfully negotiated
     by the PPP Compression Control Protocol [2], the value is 00FD hex
     or 00FB hex as described in section 2.  This value MAY be
     compressed when Protocol-Field-Compression is negotiated.

  2.5.2.  History Number

     The history number field comprises 0, 1, or 2 octets.

     The number of the compression history which was used, ranging from
     2 to the negotiated History Count.  By default a History Count of
     value 1 is supported and this field is not present.

     If the negotiated History Count is less than 2, this field is
     removed.  There is no need for the field when no history is kept,
     or only a single history is kept.

     If the negotiated History Count is 2 or more, but less than
     256,this field is 1 octet.  If 256 or more histories are
     negotiated, this field is 2 octets, most significant octet first.

  2.5.3.  Check Value

     The check value field comprises 0, 1, or 2 octets.  By default,
     sequence number check is added to the packet (the field comprises
     1 octet).

     2.5.3.1.  LCB

        A simple one octet Longitudinal Check Byte (LCB) MAY be used,
        after successful negotiation of the LCB option.  The LCB is the
        Exclusive-OR of FF(hex) and each octet of the uncompressed
        datagram (prior to the compression operation).  On receipt, the
        receiver computes the Exclusive-OR of FF(hex) and each octet of
        the decompressed packet.  If this value does not match the
        received LCB, then a receive failure for that history has
        occurred.  The receive failure is handled according to the
        history synchronization procedure in section 2.5.4.

     2.5.3.2.  CRC

        A two octet Cyclic Redundancy Check (CRC) MAY be used, instead
        of the LCB, after successful negotiation of the CRC option.



Friend & Simpson             Informational                      [Page 7]

RFC 1974                        Stac LZS                     August 1996


        The transmitter MUST initialize the CRC value to FFFF(hex) at
        the beginning of each packet.  The CRC computation is based on
        the HDLC FCS-16 polynomial:

           x**16 + x**12 + x**5 + 1

        The ones complement of the CRC is transmitted least significant
        octet first, which contains the coefficient of the highest
        term. On receipt, the receiver initializes the CRC to FFFF
        (hex), and computes the CRC based on the formula above for each
        octet of the decompressed packet.  If the received CRC value
        does not match the transmitted CRC value, then a receive
        failure for that history has occurred.  The receive failure is
        handled according to the history synchronization procedure in
        section 2.5.4.

     2.5.3.3.  Sequence Number

        A one octet Sequence Number MAY be used, instead of a LCB or
        CRC, after successful negotiation of the Sequence Number
        option.  After CCP has reached the open state, the transmitter
        MUST set the value of the sequence number field (the sequence
        number of the packet) to "1" and increment modulo 256 on
        successive packets that contain data fields.  The sequence
        number is relative to the history number used.

        After CCP has reached the open state, the receiver MUST set its
        internal reference value of the next expected sequence number
        (the sequence number of next packet to be received) to "1".

        After a packet is received, the receiver MUST set the value of
        its internal reference value of the next expected sequence
        number for that history to the value of the sequence number
        field of the received packet plus 1 modulo 256.

        If the sequence number of the received packet is not equal to
        the internal reference value of the expected sequence number
        for the same history, a receive failure for that history has
        occurred.  The receiver MUST silently discard the out of order
        packet, and handle the failure according to the history
        synchronization procedure in section 2.5.4.

        The sequence number MUST NOT be reset by the transmitter when a
        packet containing a Reset-Req is received. The receiver MUST
        always maintain its sequence number references for all
        supported histories.





Friend & Simpson             Informational                      [Page 8]

RFC 1974                        Stac LZS                     August 1996


     2.5.3.3.1  History Synchronization with Sequence Numbers Example

     Compressing Sender                Decompressing Receiver
     ....                              ....
     send seq 101     ----------->     recv seq 101
                                       is 101 == 101?  Ok.
                                       forward packet for processing
                                       set internal reference to 102

     send seq 102     ----------->     recv seq 102
                                       is 102 == 102?  Ok.
                                       forward packet for processing
                                       set internal reference to 103

     send seq 103     ------X          (packet lost)

     send seq 104     ----------->     recv seq 104
                                       is 104 == 103?  Send reset req!
                                       silently discard packet
                                       set internal reference to 105

     (packet lost)        X-------     send reset request (ID=200)
                                       post-increment the identifier.

     send seq 105     ----------->     recv seq 105
                                       is 105 == 105?  Ok.
                                       was reset ack received?  No!
                                       silently discard packet
                                       set internal reference to 106

                      <-----------     send reset request again(ID=200)
                                       (e.g. reset-ack time out)

     send seq 106     ------X          (packet lost)

     recv reset req   <-----------
     (after line delay)
        (ID=200)

     reset compression
        history
     send reset ack   ----------->     recv reset ack (ID=200)
        (ID=200)

     send seq 107     ----------->     recv seq 107
                                       is 107 == 106?  Send reset req!
                                       silently discard packet
                                       set internal reference to 108



Friend & Simpson             Informational                      [Page 9]

RFC 1974                        Stac LZS                     August 1996


     recv reset req   <-----------     send reset request (ID=201)
        (ID=201)                       post-increment the identifier.

     send seq 108     ----------->     recv seq 108
                                       is 108 == 108?  Ok.
                                       was reset ack received?  No!
                                       silently discard packet
                                       set internal reference to 109

     send seq 109     ----------->     recv seq 109
                                       is 109 == 109?  Ok.
                                       was reset ack received?  No!
                                       silently discard packet
                                       set internal reference to 110

     reset compression
        history
     send reset ack   ----------->     recv reset ack (ID=201)
        (ID=201)

     send seq 110     ----------->     recv seq 110
                                       is 110 == 110?  Ok.
                                       forward packet for processing
                                       set internal reference to 111

     send seq 111     ----------->     recv seq 111
                                       is 111 == 111?  Ok.
                                       forward packet for processing
                                       set internal reference to 112
     ....                              ....

  2.5.4.  History Synchronization Procedure

     On receipt, if Sequence Number one (1) follows any other number
     than zero (0), or is otherwise out of sequence, or the LCB or CRC
     is invalid, a CCP Reset-Request MUST be sent, containing the two
     octet History Number (most significant octet first, and which is
     the value 1 when no History Number is present), with a CCP
     Identifier.  Identifiers are incremented on each occurrence of an
     out of sequence packet.

     Upon receipt of the Reset-Request, the transmitter MUST reset the
     affected compression history, and transmit a CCP Reset-Ack packet
     with the Identifier field and data (history number) field set to
     the corresponding values of the Reset-Request.  However, the
     Sequence Number (if implemented) is not reset.





Friend & Simpson             Informational                     [Page 10]

RFC 1974                        Stac LZS                     August 1996


     For each packet that generates a receive failure, the receiver
     MUST increment the Identifier and transmit a CCP Reset-Request.
     For re-transmissions of existing receive failures, the Identifier
     MUST NOT be incremented.

     After transmitting the Reset-Request packet, the receiver MUST
     continue silently discarding valid compressed packets for the
     corresponding history, until the correct CCP Reset-Ack Identifier
     (corresponding to the Reset-Request) for that History Number is
     received.  Note that if sequence numbers are used, the receiver
     MUST process the sequence number of a received packet according to
     the procedures in section 2.5.4.

  2.5.5.  Compressed Data

     The data field MUST contain only one datagram in compressed form.
     The length of this field is always an integer number of octets.
     There MUST BE only one end marker per block of compressed data.

     The form of the data field is one block of compressed data as
     defined in 3.2 of X3.241-1994, and is repeated here for
     informational purposes ONLY.

  <Compressed Stream> := [<Compressed String>] <End Marker>
  <Compressed String> := 0 <Raw Byte> | 1 <Compressed Bytes>
  <Raw Byte> := <b><b><b><b><b><b><b><b>          (8-bit byte)
  <Compressed Bytes> := <Offset> <Length>

  <Offset> := 1 <b><b><b><b><b><b><b> |           (7-bit offset)
              0 <b><b><b><b><b><b><b><b><b><b><b> (11-bit offset)
  <End Marker> := 110000000

<b> := 1 | 0

  <Length> :=
  00        = 2     1111 0110      = 14
  01        = 3     1111 0111      = 15
  10        = 4     1111 1000      = 16
  1100      = 5     1111 1001      = 17
  1101      = 6     1111 1010      = 18
  1110      = 7     1111 1011      = 19
  1111 0000 = 8     1111 1100      = 20
  1111 0001 = 9     1111 1101      = 21
  1111 0010 = 10    1111 1110      = 22
  1111 0011 = 11    1111 1111 0000 = 23
  1111 0100 = 12    1111 1111 0001 = 24
  1111 0101 = 13     ...




Friend & Simpson             Informational                     [Page 11]

RFC 1974                        Stac LZS                     August 1996


3.  Sending Compressed Datagrams

  The reliable and efficient transport of datagrams on the data link
  depends on the following processes.

3.1.  Transmitter Process

  When a network datagram is received, it is assigned to a particular
  history buffer and processed according to ANSI X3.241-1994 to form
  compressed data.  Prior to the compression operation, if a Reset-
  Request is outstanding for the history buffer to be used or if the
  negotiated history count for this data link is 0, the history buffer
  is cleared.

  Uncompressed data MUST be sent (in the original PPP packet form with
  the "native" PPP Protocol ID number) if compression causes enough
  expansion to cause the data compression datagram size to exceed the
  Information field's MRU.  In this case, since the compressor has
  modified the history buffer before sending an uncompressed datagram,
  the history buffer MUST be cleared before the next datagram is
  processed.

  The output of the compression operation is placed in the information
  field of the datagram.  If the sequence number field is present
  according the value of the check mode field, the sequence number
  counter for the applicable history number MUST be incremented and its
  value placed in the sequence number field.  If the LCB field is
  present according the value of the check mode field, the LCB value
  MUST be computed as specified in section 2.5.3.1. and the resultant
  value placed in the LCB field.  If the CRC field is present according
  the value of the check mode field, the CRC value MUST be computed as
  specified in section 2.5.3.2.  and the resultant value placed in the
  LCB field.  Upon reception of a CCP Reset-Request packet, the
  transmitting compressor MUST be cleared to an initial state, which
  includes clearing the history buffer.  In addition to the reset of
  the compressor, a CCP Reset-Ack packet MUST be transmitted.  The data
  field of this packet MUST be filled with the corresponding two octet
  history number, most significant octet first.

3.2.  Receiver Process

  If a CCP Reset-Request packet is received, the local compression
  engine MUST be signaled that a Reset-Request has been received for
  the history number specified in the data field.  If a CCP Reset-Ack
  packet is received, any outstanding receive failure for the specified
  history MUST be cleared.  If no receive failure is outstanding, and
  the sequence number field is present, its value is checked.  If a
  receive failure has occurred, it MUST be handled according to the



Friend & Simpson             Informational                     [Page 12]

RFC 1974                        Stac LZS                     August 1996


  history resynchronization mechanism described below, and the
  remainder of the datagram is discarded.

  If no receive failure is detected, the data is assigned to the
  indicated decompression history buffer and the compressed data block
  MUST be decompressed according to ANSI X3.241-1994.  If the LCB or
  CRC fields are present on the received datagram, an LCB or CRC for
  the uncompressed data MUST be computed and checked against the
  received LCB or CRC according to sections 2.5.3.1. or 2.5.3.2.,
  respectively.  If a receive failure has occurred, it MUST be handled
  according to the History Resynchronization Mechanism described in
  section 3.4.

  If a CCP Reset-Ack packet is received, the receiving decompressor's
  corresponding history MAY be reset to an initial state.  (However,
  due to the characteristics of the Stac LZS algorithm, a decompressor
  history reset is not required).  After reset, any compressed or
  uncompressed data contained in the packet is processed.

  On the occurrence of a receive failure, an implementation MUST
  transmit a CCP Reset-Request packet with the data field containing
  the two octet history number (most significant octet first) matching
  the history that had the failure.  Once a receive failure has
  occurred, the data in any subsequent packets received for that
  history MUST be discarded until a CCP Reset-Ack packet containing a
  valid Identifier matching the Identifier that was sent with the last
  CCP Reset-Request packet is received.  It is the responsibility of
  the receiver to ensure the reliability of the Reset-Request/Ack
  mechanism.  This may require the transmission of additional CCP
  Reset-Request packets before a CCP Reset-Ack packet is received.

3.3.  History Maintenance

  The History Count field determines the number of history buffers to
  be maintained for the compression protocol.  For example, each
  history buffer could represent a separate logical connection between
  the data compression peers.  When maintaining a history, the peers
  MUST use link error detection and signaling to ensure that both the
  compressor and decompressor copies of each history buffer are always
  identical.

  Setting the History Count field to the value "0" indicates that the
  compression is to be on a connectionless basis.  In this case, a
  single history buffer is used and MUST be cleared at the beginning of
  every datagram.

  When the History Count field is set to the value "1", a single
  history buffer is maintained by each of the data compression peers.



Friend & Simpson             Informational                     [Page 13]

RFC 1974                        Stac LZS                     August 1996


  (A single logical connection.)

  When the History Count field is set to a value greater than "1",
  separate history buffers, error detection states, and signaling
  states are maintained by the decompressing entity for each history.
  The compressing peer may transmit data on any number of separate
  histories, up to the value of the History Count field.

3.4.  History Resynchronization Mechanism

  The Stac LZS protocol utilizes CCP Reset-Request/Reset-Ack mechanism
  in order to provide a mechanism for indicating a receiver failure in
  one direction of a compressed link without affecting traffic in the
  other direction.  A receive failure is determined using the LCB, CRC,
  or sequence number mechanisms, according to the value of the check
  mode field.

  Reset-Requests and Reset-Acks are specific to the history number of
  the packet containing them.

  Reset-Request/Reset-Ack history synchronization signaling is provided
  to recover from a loss of synchronization between peers, especially
  in unreliable transport layers.  As with all compression algorithms,
  the decompressor can not recover from dropped, erroneous, or mis-
  ordered datagrams, and will propagate errors catastrophically until
  both peers are reset to an initial state.

  The Stac LZS protocol provides a means to detect these error
  conditions: LCB or CRC for erroneous datagrams, and sequence number
  for dropped or mis-ordered datagrams.  There is a means for
  correcting a loss of synchronization: clear both the failing
  compression and decompression histories, and follow the transmitter
  and receiver processes in sections 3.1. and 3.2.

4.  Configuration Option Format

Description

     The CCP Stac LZS Configuration Option negotiates the use of
     Stac LZS on the link.  By ultimate disagreement, no compression is
     used.

     All implementations must support the default values.








Friend & Simpson             Informational                     [Page 14]

RFC 1974                        Stac LZS                     August 1996


  A summary of the Stac LZS Configuration Option format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |        History Count          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Check Mode  |
  +-+-+-+-+-+-+-+-+


  Type

     17

  Length

     5

  History Count

     The History Count field is two octets, most significant octet
     first, and specifies the maximum number of Compression Histories.

     The value 0 indicates that the implementation expects the peer to
     clear the Compression History at the beginning of every packet.

     The value 1 is the default value, and is used to indicate that
     only one history is maintained.

     Other valid values range from 2 to 65535.  The peer is not
     required to send as many histories as the implementation indicates
     that it can accept.  However, it should be noted that resources
     are allocated in each peer to support the number of negotiated
     histories in this field.

  Check Mode

     The Check Mode field indicates support of LCB, CRC or Sequence
     checking, and other future extensions to this standard.  This
     field comprises 2 sub-fields, and is considered to be bit-mapped.
     The 3 least significant bits comprise 5 mutually exclusive values.
     The upper 5 bits are all "Reserved" bit locations must be set to
     "0" to allow for future backward-compatible extensions to this
     standard.





Friend & Simpson             Informational                     [Page 15]

RFC 1974                        Stac LZS                     August 1996


     For compatibility, Sequence Numbers MUST be implemented; the other
     four check modes MAY be implemented.

Defined values:

        0    None             (MAY be implemented; however, MUST
                               implement history count of zero)
        1    LCB              (MAY be implemented)
        2    CRC              (MAY be implemented)
        3    Sequence Number  (MUST be implemented)
        4    Extended Mode    (MAY be implemented)

         0       1        2        3     4     5     6     7
     +-------+-------+----------+-----+-----+-----+-----+-----+
     |    LCB/CRC/Seq#/Ext'd    | Res | Res | Res | Res | Res |
     +-------+-------+----------+-----+-----+-----+-----+-----+

5. Definition of Extended Mode

  When Check Mode 4 (Extended Mode) is successfully negotiated, the
  packet format is different from the format described above. The
  Extended Mode format is described below.  Extended Mode only supports
  a history count of 1.

5.1. Extended Mode Packet Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         PPP Protocol          |A|B|C|D| Coherency Count       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Compressed Data...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  PPP Protocol

     The PPP Protocol field is described in the Point-to-Point Protocol
     Encapsulation [1].

     When a compression protocol is successfully negotiated by
     the PPP Compression Control Protocol [2], the value is hex 00FD.
     Protocol-Field-Compression MUST NOT be used on this value when
     extended mode is negotiated on the link, even if Protocol-Field-
     Compression was successfully negotiated before data compression.







Friend & Simpson             Informational                     [Page 16]

RFC 1974                        Stac LZS                     August 1996


  Bit A - PACKET_FLUSHED

     This bit indicates that the history buffer has just been reset
     before this packet was generated.  Thus, this packet can ALWAYS
     be decompressed because it is not based on any previous history.
     This bit is typically sent to inform the peer that it has reset
     its history buffer and that the peer can accept this packet
     and re-synchronize.

  Bit B

     This bit is not used with Stac LZS compression.

  Bit C - PACKET_COMPRESSED

     This bit is used to indicate that the packet is compressed.  A
     value of 0 indicates uncompressed data, and a value of 1 indicates
     compressed data.

  Bit D

     This bit is not used with Stac LZS compression.

  Coherency Count

     The coherency count is used to assure that the packets are sent in
     proper order and that no packet has been dropped.  This count is
     initialized to the value 0x000, and is always increased by 1 after
     each PPP packet is sent.  When all bits are 1, the count returns
     to 0.

     The coherency count is 12 bits so the decompressor must handle the
     rollover case.

  Compressed Data

     The compressed data begins with the protocol field.  For example,
     an IP packet may contain 0021 followed by an IP header. The
     compressor will first try to compress the 0021 protocol field and
     then move on to the IP header.

     Protocol-Field-Compression MUST NOT be used on this value when
     extended mode is negotiated on the link, even if Protocol-Field-
     Compression was successfully negotiated before data compression.

     Zero deletion/insertion described in section 2.2 MUST NOT be
     performed when extended mode is negotiated.




Friend & Simpson             Informational                     [Page 17]

RFC 1974                        Stac LZS                     August 1996


5.2. Extended Mode Transmitter Process

  When a network datagram is received, it is processed according to
  ANSI X3.241-1994 to form compressed data.  If a CCP Reset-Request has
  been received from the decompressor, the compressor must clear its
  history buffer before sending the next packet.

  Uncompressed data MUST be sent if the compression operation causes
  the compressed datagram to expand.  In this case, since the
  compressor has modified the history buffer before sending an
  uncompressed datagram, the history buffer MUST be cleared before the
  next datagram is processed.  The uncompressed data is placed in the
  information field of the datagram, and Bit-A MUST be set (indicating
  the history was cleared) and Bit-C MUST be clear (indicating
  uncompressed data) in the current packet's header. The value of the
  coherency counter is placed in the coherency count field and then the
  coherency counter is incremented.

  If the compression operation does not cause the compressed datagram
  to expand and if a received Reset-Request is outstanding, then the
  output of the compression operation is placed in the information
  field of the datagram, and Bit-A MUST be set (indicating the history
  was cleared) and Bit-C MUST be set (indicating compressed data) in
  the current packet's header. The value of the coherency counter is
  placed in the coherency count field and then the coherency counter is
  incremented.

  If the compression operation does not cause the compressed datagram
  to expand and there is not a Reset-Request outstanding, then the
  output of the compression operation is placed in the information
  field of the datagram, and Bit-A MUST be clear (indicating the
  history was not cleared) and Bit-C MUST be set (indicating compressed
  data) in the current packet's header. The value of the coherency
  counter is placed in the coherency count field and then the coherency
  counter is incremented.

  Upon reception of a CCP Reset-Request packet, the transmitting
  compressor MUST be cleared to an initial state, which includes
  clearing the history buffer.  In addition to the reset of the
  compressor, the PACKET_FLUSHED bit MUST be set in the header of the
  next transmitted data packet.

5.3. Extended Mode Receiver Process

  When a data compression datagram is received from the peer, Bit-A and
  Bit-C MUST be checked.  Prior to the decompression operation, if
  Bit-A is set, then the coherency count MUST be resynchronized to the
  received value in the coherency count field of the received packet,



Friend & Simpson             Informational                     [Page 18]

RFC 1974                        Stac LZS                     August 1996


  and the receiving decompressor's corresponding history MAY be reset
  to an initial state.  (However, due to the characteristics of the
  Stac LZS algorithm, a decompressor history reset is not required).
  After reset, any compressed or uncompressed data contained in the
  packet is processed, depending on the state of Bit-C.

  Prior to the decompression operation, if Bit-C is clear (indicating
  uncompressed data), then the decompression history buffer must not be
  modified and the decompressor is not involved with deencapsulation.
  If Bit-C is set (indicating compressed data) then the received packet
  is decompressed according to ANSI X3.241-1994.

  If the received packet is corrupt, then a Reset-Request is sent and
  this packet is discarded.  If the received packet contains an
  incorrect coherency count, a Reset-Request is sent and this packet is
  discarded.

5.4. Extended Mode Synchronization

  Packets may be lost during transfer. If the decompressor maintained
  coherency count does not match the coherency count received in the
  compressed packet or if the decompressor detects that a received
  packet is corrupted, the decompressor drops the packet and sends a
  CCP Reset-Request packet. The compressor on receiving this packet
  resets the history buffer and sets the PACKET_FLUSHED bit in the next
  frame it sends. The decompressor on receiving a packet with its
  PACKET_FLUSHED bit set, resets its history buffer and sets its
  coherency count to the one shipped by the compressor in that packet.

  Thus synchronization is achieved without a Reset-Ack packet.

Security Considerations

  Security issues are not discussed in this memo.

















Friend & Simpson             Informational                     [Page 19]

RFC 1974                        Stac LZS                     August 1996


References

  [1]   Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
        51, RFC 1661, Daydreamer, July 1994.

  [2]   Rand, D., "The PPP Compression Control Protocol (CCP)", RFC
        1962, July 1996.

  [3]   Lempel, A. and Ziv, J., "A Universal Algorithm for Sequential
        Data Compression", IEEE Transactions On Information Theory,
        Vol. IT-23, No. 3, May 1977.

  [4]   Rand, D., "PPP Reliable Transmission", RFC 1663, Novell, July
        1994.

Chair's Address

  The working group can be contacted via the current chair:

     Karl F. Fox
     Ascend Communications
     3518 Riverside Dr., Suite 101
     Columbus, Ohio  43221

     (614) 451-1883

     EMail: [email protected]

Authors' Addresses

  Questions about this memo can also be directed to:

     Robert Friend
     Stac Technology
     12636 High Bluff Drive
     San Diego, CA  92130
     (619) 794-4542
     EMail: [email protected]


     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071
     [email protected]
         [email protected] (preferred)




Friend & Simpson             Informational                     [Page 20]